WorldWideScience

Sample records for antiferromagnetic quantum critical

  1. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  2. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    Science.gov (United States)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  3. Quantum critical dynamics for a prototype class of insulating antiferromagnets

    Science.gov (United States)

    Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao

    2018-06-01

    Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.

  4. Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    DEFF Research Database (Denmark)

    Stone, M.B.; Reich, D.H.; Broholm, C.

    2003-01-01

    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k(B)T/Jless than or equal to0.025 for H=0 and H=8.7 T, where...

  5. Dipolar Antiferromagnetism and Quantum Criticality in LiErF4

    International Nuclear Information System (INIS)

    Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik

    2012-01-01

    Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

  6. Superconductivity mediated by quantum critical antiferromagnetic fluctuations: The rise and fall of hot spots

    Science.gov (United States)

    Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.

    2017-05-01

    In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.

  7. Anomalous properties and coexistence of antiferromagnetism and superconductivity near a quantum critical point in rare-earth intermetallides

    International Nuclear Information System (INIS)

    Val’kov, V. V.; Zlotnikov, A. O.

    2013-01-01

    Mechanisms of the appearance of anomalous properties experimentally observed at the transition through the quantum critical point in rare-earth intermetallides have been studied. Quantum phase transitions are induced by the external pressure and are manifested as the destruction of the long-range antiferromagnetic order at zero temperature. The suppression of the long-range order is accompanied by an increase in the area of the Fermi surface, and the effective electron mass is strongly renormalized near the quantum critical point. It has been shown that such a renormalization is due to the reconstruction of the quasiparticle band, which is responsible for the formation of heavy fermions. It has been established that these features hold when the coexistence phase of antiferromagnetism and superconductivity is implemented near the quantum critical point.

  8. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field

    International Nuclear Information System (INIS)

    Liu Guanghua; Li Ruoyan; Tian Guangshan

    2012-01-01

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h c = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1. (paper)

  9. Field-induced magnetic instability and quantum criticality in the antiferromagnet CeCu2Ge2.

    Science.gov (United States)

    Liu, Yi; Xie, Donghua; Wang, Xiaoying; Zhu, Kangwei; Yang, Ruilong

    2016-01-13

    The magnetic quantum criticality in strongly correlated electron systems has been considered to be closely related with the occurrence of unconventional superconductivity. Control parameters such as magnetic field, pressure or chemical doping are frequently used to externally tune the quantum phase transition for a deeper understanding. Here we report the research of a field-induced quantum phase transition using conventional bulk physical property measurements in the archetypal antiferromagnet CeCu2Ge2, which becomes superconductive under a pressure of about 10 GPa with Tc ~ 0.64 K. We offer strong evidence that short-range dynamic correlations start appearing above a magnetic field of about 5 T. Our demonstrations of the magnetic instability and the field-induced quantum phase transition are crucial for the quantum criticality, which may open a new route in experimental investigations of the quantum phase transition in heavy-fermion systems.

  10. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    Science.gov (United States)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  11. Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition

    Science.gov (United States)

    Abrahams, Elihu; Wölfle, Peter

    2012-01-01

    We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh2Si2, for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results. PMID:22331893

  12. Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs{sub 2}CuCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cong, P. T., E-mail: t.pham@hzdr.de [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Postulka, L.; Wolf, B.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M., E-mail: michael.lang@physik.uni-frankfurt.de [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Well, N. van [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2016-10-14

    Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.

  13. Quantum Number Fractionalization in Antiferromagnets

    OpenAIRE

    Laughlin, R. B.; Giuliano, D.; Caracciolo, R.; White, O.

    1998-01-01

    This is a pedagogical introduction to the mathematics of 1-dimensional spin-1/2 antiferromagnets. Topics covered include the Haldane-Shastry Hamiltonian, vector ``supercharges'', conserved spin currents, spinons, the supersymmetric Kuramoto-Yokoyama Hamiltonian, and holons.

  14. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  15. Quantum disordered phase in a doped antiferromagnet

    International Nuclear Information System (INIS)

    Kuebert, C.; Muramatsu, A.

    1995-01-01

    A quantitative description of the transition to a quantum disordered phase in a doped antiferromagnet is obtained for the long-wavelength limit of the spin-fermion model, which is given by the O(3) non-linear σ model, a free fermionic part and current-current interactions. By choosing local spin quantization axes for the fermionic spinor we show that the low-energy limit of the model is equivalent to a U(1) gauge theory, where both the bosonic and fermionic degrees of freedom are minimally coupled to a vector gauge field. Within a large-N expansion, the strength of the gauge fields is found to be determined by the gap in the spin-wave spectrum, which is dynamically generated. The explicit doping dependence of the spin-gap is determined as a function of the parameters of the original model. As a consequence of the above, the gauge-fields mediate a long-range interaction among dopant holes and S-1/2 magnetic excitations only in the quantum disordered phase. The possible bound-states in this regime correspond to charge-spin separation and pairing

  16. Long-range interactions in antiferromagnetic quantum spin chains

    Science.gov (United States)

    Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.

    2017-08-01

    We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.

  17. Scattering of neutrons and critical phenomena in antiferromagnetic fermi liquid

    International Nuclear Information System (INIS)

    Akhiezer, I.A.; Barannik, E.A.

    1980-01-01

    The scattering of slow neutrons in an antiferromagnetic with collectivized magnetic electrons is considered and it is shown to significantly differ from the neutron scattering in an antiferromagnetic with localized magnetic electrons. The behaviour of scattering cross sections and fluctuation correlators near the Neel point is studied. These magnitudes are shown to increase with the critical index r=-1 [ru

  18. High-order study of the quantum critical behavior of a frustrated spin-1/2 antiferromagnet on a stacked honeycomb bilayer

    Science.gov (United States)

    Bishop, R. F.; Li, P. H. Y.

    2017-12-01

    We study a frustrated spin-1/2 J1-J2-J3-J1⊥ Heisenberg antiferromagnet on an A A -stacked bilayer honeycomb lattice. In each layer we consider nearest-neighbor (NN), next-nearest-neighbor, and next-next-nearest-neighbor antiferromagnetic (AFM) exchange couplings J1,J2 , and J3, respectively. The two layers are coupled with an AFM NN exchange coupling J1⊥≡δ J1 . The model is studied for arbitrary values of δ along the line J3=J2≡α J1 that includes the most highly frustrated point at α =1/2 , where the classical ground state is macroscopically degenerate. The coupled cluster method is used at high orders of approximation to calculate the magnetic order parameter and the triplet spin gap. We are thereby able to give an accurate description of the quantum phase diagram of the model in the α δ plane in the window 0 ≤α ≤1 ,0 ≤δ ≤1 . This includes two AFM phases with Néel and striped order, and an intermediate gapped paramagnetic phase that exhibits various forms of valence-bond crystalline order. We obtain accurate estimations of the two phase boundaries, δ =δci(α) , or equivalently, α =αc i(δ ) , with i =1 (Néel) and 2 (striped). The two boundaries exhibit an "avoided crossing" behavior with both curves being re-entrant. Thus, in this α δ window, Néel order exists only for values of δ in the range δc1 (α ) , with δc1 0 for αc 1(0 ) ≈0.49 (1 ) , and striped order similarly exists only for values of δ in the range δc2 (α ) , with δc2 αc2(0) ≈0.600 (5 ) and δc2 0 for αc 2(0 ) >α >α2<≈0.56 (1 ) .

  19. Quantum criticality.

    Science.gov (United States)

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  20. Quantum Criticality

    Science.gov (United States)

    Drummond, P. D.; Chaturvedi, S.; Dechoum, K.; Comey, J.

    2001-02-01

    We investigate the theory of quantum fluctuations in non-equilibrium systems having large crit­ical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical sys­tems in which macroscopic 'Schrödinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrödinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrödinger cat. -Pacs: 03.65.Bz

  1. Quantum criticality among entangled spin chains

    Science.gov (United States)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  2. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    International Nuclear Information System (INIS)

    Gottwald, Tobias

    2010-01-01

    domain wall formation, antiferromagnetically induced density shifts, and we show the relevant role of spin-imbalance for antiferromagnetic states. Since the first step for understanding the physics of the examined models was the application of a mean field approximation, we analyze the effect of including the second order terms of the weak coupling perturbation expansion for the repulsive model. We show that our results survive the influence of quantum fluctuations and show that the renormalization factors for order parameters and critical temperatures lead to a weaker influence of the fluctuations on the results in finite sized systems than on the results in the thermodynamical limit. Furthermore, in the context of second order theory we address the question whether results obtained in the dynamical mean field theory (DMFT), which is meanwhile a frequently used method for describing trapped systems, survive the effect of the non-local Feynman diagrams neglected in DMFT. (orig.)

  3. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    domain wall formation, antiferromagnetically induced density shifts, and we show the relevant role of spin-imbalance for antiferromagnetic states. Since the first step for understanding the physics of the examined models was the application of a mean field approximation, we analyze the effect of including the second order terms of the weak coupling perturbation expansion for the repulsive model. We show that our results survive the influence of quantum fluctuations and show that the renormalization factors for order parameters and critical temperatures lead to a weaker influence of the fluctuations on the results in finite sized systems than on the results in the thermodynamical limit. Furthermore, in the context of second order theory we address the question whether results obtained in the dynamical mean field theory (DMFT), which is meanwhile a frequently used method for describing trapped systems, survive the effect of the non-local Feynman diagrams neglected in DMFT. (orig.)

  4. Critical Properties of Pure and Random Antiferromagnets

    DEFF Research Database (Denmark)

    Cowley, R. A.; Carneiro, K.

    1980-01-01

    Neutron scattering techniques have been used to study the critical properties of CoF2 and the randomly mixed systems: Co/ZnF2 and KMn/NiF3. The results for CoF2 are in excellent accord with the critical properties of the three-dimensional Ising model. In all of the random crystals studied the tra...

  5. Quantum phase transitions of a disordered antiferromagnetic topological insulator

    Science.gov (United States)

    Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.

    2014-01-01

    We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.

  6. Revealing novel quantum phases in quantum antiferromagnets on random lattices

    Directory of Open Access Journals (Sweden)

    R. Yu

    2009-01-01

    Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.

  7. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  8. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  9. Vector boson excitations near deconfined quantum critical points.

    Science.gov (United States)

    Huh, Yejin; Strack, Philipp; Sachdev, Subir

    2013-10-18

    We show that the Néel states of two-dimensional antiferromagnets have low energy vector boson excitations in the vicinity of deconfined quantum critical points. We compute the universal damping of these excitations arising from spin-wave emission. Detection of such a vector boson will demonstrate the existence of emergent topological gauge excitations in a quantum spin system.

  10. Detecting quantum critical points using bipartite fluctuations.

    Science.gov (United States)

    Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn

    2012-03-16

    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.

  11. Monte Carlo study of one hole in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Sorella, S.

    1992-01-01

    Using the standard Quantum Monte Carlo technique for the Hubbard model, I present here a numerical investigation of the hole propagation in a Quantum Antiferromagnet. The calculation is very well stabilized, using selected sized systems and special use of the trial wavefunction that satisfy the close shell condition in presence of an arbitrarily weak Zeeman magnetic field, vanishing in the thermodynamic limit. In this paper the author investigates the question of vanishing or nonvanishing quasiparticle weight, in order to clarify whether the Mott insulator should behave just as conventional insulator with an upper and lower Hubbard band. By comparing the present finite size scaling with several techniques predicting a finite quasiparticle weight the data seem more consistent with a vanishing quasiparticle weight, i.e., as recently suggested by P.W. Anderson the Hubbard-Mott insulator should be characterized by non-trivial excitations which cannot be interpreted in a simple quasi-particle picture. However it cannot be excluded, based only on numerical grounds, that a very small but non vanishing quasiparticle weight should survive in the thermodynamic limit

  12. Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior

    International Nuclear Information System (INIS)

    Buyers, W.J.L.; Holden, T.M.; Svensson, E.C.; Lander, G.H.

    1977-11-01

    Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the [001] domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along the spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons

  13. Unconventional Quantum Critical Points

    OpenAIRE

    Xu, Cenke

    2012-01-01

    In this paper we review the theory of unconventional quantum critical points that are beyond the Landau's paradigm. Three types of unconventional quantum critical points will be discussed: (1). The transition between topological order and semiclassical spin ordered phase; (2). The transition between topological order and valence bond solid phase; (3). The direct second order transition between different competing orders. We focus on the field theory and universality class of these unconventio...

  14. Critical Kondo destruction and the violation of the quantum-to-classical mapping of quantum criticality

    International Nuclear Information System (INIS)

    Kirchner, Stefan; Si Qimiao

    2009-01-01

    Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality, which describes the critical properties solely in terms of fluctuations of the order parameter. This has led to the question as to how the Kondo effect gets destroyed as the system undergoes a phase change. In one approach to the problem, Kondo lattice systems are studied through a self-consistent Bose-Fermi Kondo model within the extended dynamical mean field theory. The quantum phase transition of the Kondo lattice is thus mapped onto that of a sub-Ohmic Bose-Fermi Kondo model. In the present article we address some aspects of the failure of the standard order-parameter functional for the Kondo-destroying quantum critical point of the Bose-Fermi Kondo model.

  15. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  16. Frustration and quantum criticality

    Science.gov (United States)

    Vojta, Matthias

    2018-06-01

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality.

  17. Frustration and quantum criticality.

    Science.gov (United States)

    Vojta, Matthias

    2018-03-15

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality. © 2018 IOP Publishing Ltd.

  18. Quasistatic antiferromagnetism in the quantum wells of SmTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Need, Ryan F.; Marshall, Patrick B.; Kenney, Eric; Suter, Andreas; Prokscha, Thomas; Salman, Zaher; Kirby, Brian J.; Stemmer, Susanne; Graf, Michael J.; Wilson, Stephen D.

    2018-03-01

    High carrier density quantum wells embedded within a Mott insulating matrix present a rich arena for exploring unconventional electronic phase behavior ranging from non-Fermi-liquid transport and signatures of quantum criticality to pseudogap formation. Probing the proposed connection between unconventional magnetotransport and incipient electronic order within these quantum wells has however remained an enduring challenge due to the ultra-thin layer thicknesses required. Here we address this challenge by exploring the magnetic properties of high-density SrTiO3 quantum wells embedded within the antiferromagnetic Mott insulator SmTiO3 via muon spin relaxation and polarized neutron reflectometry measurements. The one electron per planar unit cell acquired by the nominal d0 band insulator SrTiO3 when embedded within a d1 Mott SmTiO3 matrix exhibits slow magnetic fluctuations that begin to freeze into a quasistatic spin state below a critical temperature T*. The appearance of this quasistatic well magnetism coincides with the previously reported opening of a pseudogap in the tunneling spectra of high carrier density wells inside this film architecture. Our data suggest a common origin of the pseudogap phase behavior in this quantum critical oxide heterostructure with those observed in bulk Mott materials close to an antiferromagnetic instability.

  19. Construction and study of exact ground states for a class of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Fannes, M.

    1989-01-01

    Techniques of quantum probability are used to construct the exact ground states for a class of quantum spin systems in one dimension. This class in particular contains the antiferromagnetic models introduced by various authors under the name of VBS-models. The construction permits a detailed study of these ground states. (A.C.A.S.) [pt

  20. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    Science.gov (United States)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  1. Theory of the upper critical field in antiferromagnetic superconductors

    International Nuclear Information System (INIS)

    Ro, C.; Levin, K.

    1984-01-01

    We compute the temperature T dependence of the upper critical field H/sub c/2(T) in antiferromagnetic (AF) superconductors. Using a strong-coupling formalism we explicitly treat the effects of the molecular field H/sub Q/, inelastic and elastic spin-fluctuation scattering and magnetic as well as nonmagnetic impurities. A sum rule is used to relate the T dependence of H/sub Q/ to that of the spin-fluctuation scattering. The decreased pair breaking observed below the Neel temperature in SmRh 4 B 4 and the increased pair breaking seen in the AF Chevrel compounds will both occur in our theory for a reasonable choice of parameters. For larger values of the dimensionless spin-exchange coupling constant N(0)J/sup c/f, spin-fluctuation-scattering effects dominate over those of H/sub Q/ and decreased pair breaking is observed below T/sub N/. For smaller values of the coupling constant, the converse is true. Impurity scattering is treated in a self-consistent fashion. As a consequence, the molecular field H/sub Q/ is altered by nonmagnetic impurities. This leads to important pair-breaking effects in H/sub c/2. A physical manifestation of this pair breaking is a qualitative change in the shape of the H/sub c/2 versus T curve, as nonmagnetic impurities are added. We give detailed predictions for the expected effects of these impurities on H/sub c/2 which can be tested experimentally

  2. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    Science.gov (United States)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  3. APS Quantum Critical Higgs

    CERN Document Server

    Bellazzini, Brando; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-01-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in AdS space. For both of these models we consider the processes $gg\\to ZZ$ and $gg\\to hh$, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  4. Quantum Critical Higgs

    Science.gov (United States)

    Bellazzini, Brando; Csáki, Csaba; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-10-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However, light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper, we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in anti-de Sitter space. For both of these models, we consider the processes g g →Z Z and g g →h h , which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  5. New Type of Quantum Criticality in the Pyrochlore Iridates

    Directory of Open Access Journals (Sweden)

    Lucile Savary

    2014-11-01

    Full Text Available Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons and antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.

  6. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  7. Fractional excitations in the square-lattice quantum antiferromagnet

    DEFF Research Database (Denmark)

    Piazza, B. Dalla; Mourigal, M.; Christensen, Niels Bech

    2015-01-01

    -projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wavevector, these fractional excitations are bound and form conventional magnons. Our results establish...... the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration....

  8. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    Science.gov (United States)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  9. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    Science.gov (United States)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  10. Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model

    International Nuclear Information System (INIS)

    Zhao-Sen, Liu; Vladimir, Sechovský; Martin, Diviš

    2011-01-01

    A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell. We study the magnetic properties in the presence and absence of an external magnetic field. Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the field direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Quantum oscillations in antiferromagnetic CaFe2As2 on the brink of superconductivity

    International Nuclear Information System (INIS)

    Harrison, N; McDonald, R D; Mielke, C H; Bauer, E D; Ronning, F; Thompson, J D

    2009-01-01

    We report quantum oscillation measurements on CaFe 2 As 2 under strong magnetic fields-recently reported to become superconducting under pressures of as little as a kilobar. The largest observed carrier pocket occupies less than 0.05% of the paramagnetic Brillouin zone volume-consistent with Fermi surface reconstruction caused by antiferromagnetism. On comparing several alkaline earth AFe 2 As 2 antiferromagnets (with A = Ca, Sr and Ba), the dependences of the Fermi surface cross-sectional area F α and the effective mass m α * of the primary observed pocket on the antiferromagnetic/structural transition temperature T s are both found to be consistent with the case for quasiparticles in a conventional spin-density wave model. These findings suggest that the recently proposed strain-enhanced superconductivity in these materials occurs within a broadly conventional spin-density wave phase. (fast track communication)

  12. Critical Behaviour of Pure and Site-Random Two Dimensional Antiferromagnets

    DEFF Research Database (Denmark)

    Birgenau, R. J.; Als-Nielsen, Jens Aage; Shirane, G.

    1977-01-01

    Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T......Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T...

  13. Deconfined Quantum Critical Points: Symmetries and Dualities

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2017-09-01

    Full Text Available The deconfined quantum critical point (QCP, separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N_{f}=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4×Z_{2}^{T} symmetry. We propose several dualities for the deconfined QCP with SU(2 spin symmetry which together make natural the emergence of a previously suggested SO(5 symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.

  14. Hole spectral functions in lightly doped quantum antiferromagnets

    Science.gov (United States)

    Kar, Satyaki; Manousakis, Efstratios

    2011-11-01

    We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.

  15. Quantum Triple Point and Quantum Critical End Points in Metallic Magnets.

    Science.gov (United States)

    Belitz, D; Kirkpatrick, T R

    2017-12-29

    In low-temperature metallic magnets, ferromagnetic (FM) and antiferromagnetic (AFM) orders can exist, adjacent to one another or concurrently, in the phase diagram of a single system. We show that universal quantum effects qualitatively alter the known phase diagrams for classical magnets. They shrink the region of concurrent FM and AFM order, change various transitions from second to first order, and, in the presence of a magnetic field, lead to either a quantum triple point where the FM, AFM, and paramagnetic phases all coexist or a quantum critical end point.

  16. Critical phase for the antiferromagnetic Z(5) model on a square lattice

    International Nuclear Information System (INIS)

    Baltar, V.L.; Carneiro, G.M.; Pol, M.E.; Zagury, N.

    1983-04-01

    The existence of a critical phase for the antiferromagnetic Z(5) model on a square lattice is suggested based on results of Monte Carlo (MC) simulations and of Migdal Kadanoff Renormalization Group calculations (MKRG). The MKRG simulates a line of fixed points which it is interpreted as the locus of attraction of a critical phase. The MC simulations are compatible with this interpretation. (Author) [pt

  17. A critical scattering study of the helical antiferromagnets Ho and Dy

    International Nuclear Information System (INIS)

    Gaulin, B.D.; Hagen, M.; Child, H.R.

    1988-01-01

    We have measured the frequency integrated magnetic critical scattering of neutrons from paramagnetic Dy and Ho. Analysis of these data show the paramagnetic to helical antiferromagnetic phase transitions are characterized by the critical exponents ν = 0.57 +- 0.05 and γ = 1.05 = +- .07 for Dy and ν = 0.57 +- .04 and γ = 1.14 = +- .10 for Ho. 3 refs., 2 figs., 1 tab

  18. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Ceccatto, H.A.; Gazza, C.J.; Trumper, A.E.

    1992-07-01

    The Schwinger boson approach to quantum helimagnets is discussed. It is shown that in order to get quantitative agreement with exact results on finite lattices, parity-breaking pairing of bosons must be allowed. The so-called J 1 - J 2 - J 3 model is studied, particularly on the special line J 2 = 2J 3 . A quantum disordered phase is found between the Neel and spiral phases, though notably only in the strong quantum limit S = 1/2, and for the third-neighbor coupling J 3 ≥ 0.038 J 1 . For spins S≥1 the spiral phase goes continuously to an antiferromagnetic order. (author). 19 refs, 3 figs

  19. On the simplest scale invariant tree-tensor-states preserving the quantum symmetries of the antiferromagnetic XXZ chain

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the line of critical antiferromagnetic XXZ chains with coupling J  >  0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.

  20. 'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings

    International Nuclear Information System (INIS)

    Meleshenko, Peter A.; Klinskikh, Alexander F.

    2011-01-01

    We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.

  1. Numerical study of ground state and low lying excitations of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Trivedi, N.; Ceperley, D.M.

    1989-01-01

    The authors have studied, via Green function Monte Carlo (GFMC), the S = 1/2 Heisenberg quantum antiferromagnet in two dimensions on a square lattice. They obtain the ground state energy with only statistical errors E 0 /J = -0.6692(2), the staggered magnetization m † = 0.31(2), and from the long wave length behavior of the structure factor, the spin wave velocity c/c o = 1.14(5). They show that the ground state wave function has long range pair correlations arising from the zero point motion of spin waves

  2. Proposal for quantum gates in permanently coupled antiferromagnetic spin rings without need of local fields.

    Science.gov (United States)

    Troiani, Filippo; Affronte, Marco; Carretta, Stefano; Santini, Paolo; Amoretti, Giuseppe

    2005-05-20

    We propose a scheme for the implementation of quantum gates which is based on the qubit encoding in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link would result in an effective coupling that vanishes as far as the system is kept in the computational space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown to allow the performing of single-qubit and two-qubit gates without an individual addressing of the rings by means of local magnetic fields.

  3. Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets.

    Science.gov (United States)

    Powalski, M; Uhrig, G S; Schmidt, K P

    2015-11-13

    A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.

  4. Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Peters, D; Selke, W; McCulloch, I P

    2010-01-01

    Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.

  5. Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF3

    DEFF Research Database (Denmark)

    Coldea, R.; Cowley, R.A.; Perring, T.G.

    1998-01-01

    component evolves below T-N into the longitudinal susceptibility identified in an earlier polarized neutron experiment. The intensity and energy width of the longitudinal scattering decrease on cooling below T-N. Down to the lowest temperatures where the longitudinal susceptibility could be measured......The magnetic critical scattering of the near-ideal three-dimensional Heisenberg antiferromagnet (AF) RbMnF3 has been remeasured using neutron scattering. The critical dynamics has been studied in detail in the temperature range 0.77T(N)

  6. Quantum critical environment assisted quantum magnetometer

    Science.gov (United States)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  7. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    Science.gov (United States)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  8. Thermal conductivity of a quantum spin-1/2 antiferromagnetic chain with magnetic impurities

    International Nuclear Information System (INIS)

    Zviagin, A.A.

    2008-01-01

    We present an exact theory that describes how magnetic impurities change the behavior of the thermal conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic impurities and a large concentration of impurities with similar values of the couplings to the host chain (a weak disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope of that behavior becomes smaller, compared to the homogeneous case. The strong disorder in the distribution of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity, compared to the linear-in-T dependence of the homogeneous chain and the chain with weak disorder. Recent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin systems manifest qualitative agreement with our results

  9. Self-consistent hole motion and spin excitations in a quantum antiferromagnet

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu, L.; Li, Y.M.; Lai, W.Y.

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes and spin excitations in a quantum antiferromagnet within the generalized t-J model. On the one hand, the effects of local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing to obtain the hole wave function and its spectrum, as well as the effective mass for a propagating hole. On the other hand, the change of the spin excitation spectrum and the spin correlations due to the presence of dynamical holes are studied within the same adiabatic approximation. The stability of the hole states with respect to such changes justifies the self-consistency of the proposed formalism. (author). 25 refs, 6 figs, 1 tab

  10. Quantum criticality and black holes

    International Nuclear Information System (INIS)

    Sachdev, Subir; Mueller, Markus

    2009-01-01

    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.

  11. Role of disorder in the multi-critical region of d-wave superconductivity and antiferromagnetism

    International Nuclear Information System (INIS)

    Yanase, Youichi; Ogata, Masao

    2007-01-01

    We investigate the disorder-induced microscopic inhomogeneity in the multi-critical region of d-wave superconductivity and antiferromagnetism on the basis of the microscopic t-t ' -U-V model. We find that a small amount of point disorder induces the nano-scale inhomogeneity of spin and superconducting fluctuations when the coherence length of superconductivity is remarkably short as in the under-doped cuprates. Then, the two fluctuations spatially segregate to avoid their competition. We show the remarkable electron-hole asymmetry in high-T c cuprates where the quite different spatial structure is expected in the electron-doped materials

  12. Quantum group based theory for antiferromagnetism and superconductivity: proof and further evidence

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Sher; Mamun, S.M.; Yanagisawa, T.; Khan, Hayatullah; Rahman, M.O.; Termizi, J.A.S

    2003-10-15

    Previously one of us presented a conjecture to model antiferromagnetism and high temperature superconductivity and their 'unification' by quantum group symmetry rather than the corresponding classical symmetry in view of the critique by Baskaran and Anderson of Zhang's classical SO(5) model. This conjecture was further sharpened, experimental evidence and the important role of 1-d systems (stripes) was emphasized and moreover the relationship between quantum groups and strings via WZWN models were given in an earlier paper. In this brief note we give and discuss mathematical proof of this conjecture, which completes an important part of this idea, since previously an explicit simple mathematical proof was lacking. It is important to note that in terms of physics that the arbitrariness (freedom) of the d-wave factor g{sup 2}(k) is tied to quantum group symmetry whereas in order to recover classical SO(5) one must set it to unity in an adhoc manner. We comment on the possible connection between this freedom and the pseudogap behaviour in the cuprates.

  13. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet.

    Science.gov (United States)

    Hong, Tao; Qiu, Y; Matsumoto, M; Tennant, D A; Coester, K; Schmidt, K P; Awwadi, F F; Turnbull, M M; Agrawal, H; Chernyshev, A L

    2017-05-05

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C 9 H 18 N 2 CuBr 4 . Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

  14. Quantum anomalous Hall effect and topological phase transition in two-dimensional antiferromagnetic Chern insulator NiOsCl6

    Science.gov (United States)

    Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru

    2018-05-01

    By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C  =  ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C  =  ‑1 for 0    U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.

  15. Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model

    Science.gov (United States)

    Ricardo de Sousa, J.; Araújo, Ijanílio G.

    1999-07-01

    We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.

  16. Electric control of antiferromagnets

    OpenAIRE

    Fina, I.; Marti, X.

    2016-01-01

    In the past five years, most of the paradigmatic concepts employed in spintronics have been replicated substituting ferromagnets by antiferromagnets in critical parts of the devices. The numerous research efforts directed to manipulate and probe the magnetic moments in antiferromagnets have been gradually established a new and independent field known as antiferromagnetic spintronics. In this paper, we focus on the electrical control and detection of antiferromagnetic moments at a constant tem...

  17. Quantum Critical Point revisited by the Dynamical Mean Field Theory

    Science.gov (United States)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei

    Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.

  18. Quantum critical point revisited by dynamical mean-field theory

    Science.gov (United States)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  19. Quantum critical point revisited by dynamical mean-field theory

    International Nuclear Information System (INIS)

    Xu, Wenhu; Kotliar, Gabriel; Rutgers University, Piscataway, NJ; Tsvelik, Alexei M.

    2017-01-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  20. Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field

    International Nuclear Information System (INIS)

    Sato, Masahiro; Oshikawa, Masaki

    2002-01-01

    We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)

  1. Fermion-induced quantum critical points.

    Science.gov (United States)

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-08-22

    A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.

  2. Influence of quantum phase transition on spin transport in the quantum antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-06-01

    We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.

  3. Dynamics of quantum discord in a quantum critical environment

    International Nuclear Information System (INIS)

    Xi Zhengjun; Li Yongming; Lu Xiaoming; Sun Zhe

    2011-01-01

    We study the dynamics of quantum discord (QD) of two qubits independently coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. For this model, we drive the corresponding Kraus operators, obtain the analytic results of QD and compare the dynamics of QD with the dynamics of relative entropy of entanglement nearby the critical point. It is shown that the impact of the quantum criticality environment on QD can be concentrated in a very narrow region nearby the critical point, so it supplies an efficient way to detect the critical points. In the vicinity of the critical point, the evolution of QD is shown to be more complicated than that of entanglement. Furthermore, we find that separable states can also be used to reflect the quantum criticality of the environment.

  4. Spin Dynamics and Critical Fluctuations in a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1975-01-01

    A comprehensive elastic- and inelastic-neutron-scattering study of the binary mixed antiferromagnet Rb2Mn0.5Ni0.5F4 has been carried out. The pure materials, Rb2MnF4 and Rb2NiF4 are [2d] near-Heisenberg antiferromagnets of the K2NiF4 type. Elastic-scattering experiments demonstrate that the Mn...

  5. Frustrated Heisenberg Antiferromagnets on Cubic Lattices: Magnetic Structures, Exchange Gaps, and Non-Conventional Critical Behaviour

    OpenAIRE

    Ignatenko, A. N.; Irkhin, V. Yu.

    2016-01-01

    We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...

  6. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  7. Interplay of quantum and classical fluctuations near quantum critical points

    International Nuclear Information System (INIS)

    Continentino, Mucio Amado

    2011-01-01

    For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff = d + z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension d c there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ = νz between the shift exponent ψ of the critical line and the crossover exponent νz, for d + z > d c by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP. (author)

  8. Spotlighting quantum critical points via quantum correlations at finite temperatures

    International Nuclear Information System (INIS)

    Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo

    2011-01-01

    We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.

  9. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice

    Science.gov (United States)

    Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun

    2018-05-01

    We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.

  10. Criticality and entanglement in random quantum systems

    International Nuclear Information System (INIS)

    Refael, G; Moore, J E

    2009-01-01

    We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.

  11. Quench dynamics across quantum critical points

    International Nuclear Information System (INIS)

    Sengupta, K.; Powell, Stephen; Sachdev, Subir

    2004-01-01

    We study the quantum dynamics of a number of model systems as their coupling constants are changed rapidly across a quantum critical point. The primary motivation is provided by the recent experiments of Greiner et al. [Nature (London) 415, 39 (2002)] who studied the response of a Mott insulator of ultracold atoms in an optical lattice to a strong potential gradient. In a previous work, it had been argued that the resonant response observed at a critical potential gradient could be understood by proximity to an Ising quantum critical point describing the onset of density wave order. Here we obtain numerical results on the evolution of the density wave order as the potential gradient is scanned across the quantum critical point. This is supplemented by studies of the integrable quantum Ising spin chain in a transverse field, where we obtain exact results for the evolution of the Ising order correlations under a time-dependent transverse field. We also study the evolution of transverse superfluid order in the three-dimensional case. In all cases, the order parameter is best enhanced in the vicinity of the quantum critical point

  12. Quantum crystal growing: adiabatic preparation of a bosonic antiferromagnet in the presence of a parabolic inhomogeneity

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Eckardt, André

    2013-01-01

    felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...

  13. Quantum fluctuations in the competition among spin glass, antiferromagnetism and local pairing superconductivity

    International Nuclear Information System (INIS)

    Magalhaes, S.G.; Zimmer, F.M.; Kipper, C.J.; Calegari, E.J.

    2007-01-01

    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising SG model with a local BCS pairing interaction in the presence of a transverse magnetic field Γ. The spins in different sublattices interact with Gaussian random couplings with an antiferromagnetic mean. The problem is formulated in a Grassmann path integral formalism. The static ansatz and the replica symmetry are used to obtain the half-filling thermodynamic potential. The results are shown in phase diagrams that exhibit a complex transition line separating the PAIR phase from the others. This line is second order at high temperature which ends in a tricritical point. The presence of Γ affects deeply the transition lines

  14. Critical behavior of AC antiferromagnetic and ferromagnetic susceptibilities of a spin-1/2 metamagnetic Ising system

    International Nuclear Information System (INIS)

    Gulpinar, Gul; Vatansever, Erol

    2012-01-01

    In this study, the temperature variations of the equilibrium and the non-equilibrium antiferromagnetic and ferromagnetic susceptibilities of a metamagnetic system are examined near the critical point. The kinetic equations describing the time dependencies of the total and staggered magnetizations are derived by utilizing linear response theory. In order to obtain dynamic magnetic relaxation behavior of the system, the stationary solutions of the kinetic equations in existence of sinusoidal staggered and physical external magnetic fields are performed. In addition, the static and dynamical mean field critical exponents are calculated in order to formulate the critical behavior of antiferromagnetic and ferromagnetic magnetic response of a metamagnetic system. Finally, a comparison of the findings of this study with previous theoretical and experimental studies is represented and it is shown that a good agreement is found with our results. - Highlights: ► Staggered dynamic susceptibility diverges as T→T N in the low frequency region. ► Dynamic total susceptibility exhibits a finite jump discontinuity as T→T N while wτ 2 ⪡1. ► The slope of the staggered magnetic dispersion curve chances in sign as T→T N .

  15. Fermion-induced quantum critical points

    OpenAIRE

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-01-01

    A unified theory of quantum critical points beyond the conventional Landau?Ginzburg?Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau?Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such t...

  16. Critical behaviors of gravity under quantum perturbations

    Directory of Open Access Journals (Sweden)

    ZHANG Hongsheng

    2014-02-01

    Full Text Available Phase transition and critical phenomenon is a very interesting topic in thermodynamics and statistical mechanics. Gravity is believed to have deep and inherent relation to thermodynamics. Near the critical point,the perturbation becomes significant. Thus for ordinary matter (governed by interactions besides gravity the critical behavior will become very different if we ignore the perturbations around the critical point,such as mean field theory. We find that the critical exponents for RN-AdS spacetime keep the same values even when we consider the full quantum perturbations. This indicates a key difference between gravity and ordinary thermodynamic system.

  17. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Reyes, A.P. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Ashey, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Caldwell, T. [NHMFL, Los Alamos, NM 87545 (United States); Prokofiev, A. [Goethe University, 60054 Frankfurt (Germany); Assmus, W. [Goethe University, 60054 Frankfurt (Germany); Teitel' baum, G. [E.K.Zavoiskii Institute for Technical Physics of the RAS, Sibirskii Trakt 10/7, Kazan 420029 (Russian Federation)]. E-mail: grteit@kfti.knc.ru

    2006-05-01

    Our {sup 51}V NMR measurements in the LiCuVO{sub 4} single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the {sup 51}V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  18. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO 4

    Science.gov (United States)

    Smith, R.; Reyes, A. P.; Ashey, R.; Caldwell, T.; Prokofiev, A.; Assmus, W.; Teitel'baum, G.

    2006-05-01

    Our 51V NMR measurements in the LiCuVO 4 single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the 51V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  19. Dynamical Response near Quantum Critical Points.

    Science.gov (United States)

    Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William

    2017-02-03

    We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.

  20. Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2010-01-11

    Low-temperature specific-heat measurements on YbRh{sub 2}Si{sub 2} at the second order antiferromagnetic (AF) phase transition reveal a sharp peak at T{sub N}=72 mK. The corresponding critical exponent alpha turns out to be alpha=0.38, which differs significantly from that obtained within the framework of the fluctuation theory of second order phase transitions based on the scale invariance, where alphaapprox =0.1. We show that under the application of magnetic field the curve of the second order AF phase transitions passes into a curve of the first order ones at the tricritical point leading to a violation of the critical universality of the fluctuation theory. This change of the phase transition is generated by the fermion condensation quantum phase transition. Near the tricritical point the Landau theory of second order phase transitions is applicable and gives alphaapprox =1/2. We demonstrate that this value of alpha is in good agreement with the specific-heat measurements.

  1. DTADH and quantum critical phenomena caused by anisotropy and external magnetic field for spin-1/2 Heisenberg diamond chains

    International Nuclear Information System (INIS)

    Li Yanchao

    2010-01-01

    Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J 3 anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.

  2. Finite-dimensional effects and critical indices of one-dimensional quantum models

    International Nuclear Information System (INIS)

    Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.

    1986-01-01

    Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values

  3. Universal signatures of fractionalized quantum critical points.

    Science.gov (United States)

    Isakov, Sergei V; Melko, Roger G; Hastings, Matthew B

    2012-01-13

    Ground states of certain materials can support exotic excitations with a charge equal to a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive unusual quantum phase transitions. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we establish the existence of such an exotic critical point, called XY*. We measure a highly nonclassical critical exponent η = 1.493 and construct a universal scaling function of winding number distributions that directly demonstrates the distinct topological sectors of an emergent Z(2) gauge field. The universal quantities used to establish this exotic transition can be used to detect other fractionalized quantum critical points in future model and material systems.

  4. Quantum critical behavior in three-dimensional one-band Hubbard model at half-filling

    International Nuclear Information System (INIS)

    Karchev, Naoum

    2013-01-01

    A one-band Hubbard model with hopping parameter t and Coulomb repulsion U is considered at half-filling. By means of the Schwinger bosons and slave fermions representation of the electron operators and integrating out the spin–singlet Fermi fields an effective Heisenberg model with antiferromagnetic exchange constant is obtained for vectors which identifies the local orientation of the spin of the itinerant electrons. The amplitude of the spin vectors is an effective spin of the itinerant electrons accounting for the fact that some sites, in the ground state, are doubly occupied or empty. Accounting adequately for the magnon–magnon interaction the Néel temperature is calculated. When the ratio t/U is small enough (t/U ≤0.09) the effective model describes a system of localized electrons. Increasing the ratio increases the density of doubly occupied states which in turn decreases the effective spin and Néel temperature. The phase diagram in the plane of temperature (T N )/U and parameter t/U is presented. The quantum critical point (T N =0) is reached at t/U =0.9. The magnons in the paramagnetic phase are studied and the contribution of the magnons’ fluctuations to the heat capacity is calculated. At the Néel temperature the heat capacity has a peak which is suppressed when the system approaches a quantum critical point. It is important to stress that, at half-filling, the ground state, determined by fermions, is antiferromagnetic. The magnon fluctuations drive the system to quantum criticality and when the effective spin is critically small these fluctuations suppress the magnetic order. -- Highlights: •Technique of calculation is introduced which permits us to study the magnons’ fluctuations. •Quantum critical point is obtained in the one-band 3D Hubbard model at half-filling. •The present analytical results supplement the numerical ones (see Fig. 7)

  5. Signatures of a gearwheel quantum spin liquid in a spin-1/2 pyrochlore molybdate Heisenberg antiferromagnet

    Science.gov (United States)

    Iqbal, Yasir; Müller, Tobias; Riedl, Kira; Reuther, Johannes; Rachel, Stephan; Valentí, Roser; Gingras, Michel J. P.; Thomale, Ronny; Jeschke, Harald O.

    2017-12-01

    We theoretically investigate the low-temperature phase of the recently synthesized Lu2Mo2O5N2 material, an extraordinarily rare realization of a S =1 /2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5 + are the S =1 /2 magnetic species. Despite a Curie-Weiss temperature (ΘCW) of -121 (1 ) K, experiments have found no signature of magnetic ordering or spin freezing down to T*≈0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T =| ΘCW|/100 , in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2Mo2O5N2 .

  6. Antiferromagnetic ground state in NpCoGe

    Czech Academy of Sciences Publication Activity Database

    Colineau, E.; Griveau, J.C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, Alexander; Caciuffo, R.

    2014-01-01

    Roč. 89, č. 11 (2014), "115135-1"-"115135-11" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : neptunium * anti-ferromagnetism * quantum critical phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  7. Fermi Surfaces in the Antiferromagnetic, Paramagnetic and Polarized Paramagnetic States of CeRh2Si2 Compared with Quantum Oscillation Experiments

    Science.gov (United States)

    Pourret, Alexandre; Suzuki, Michi-To; Palaccio Morales, Alexandra; Seyfarth, Gabriel; Knebel, Georg; Aoki, Dai; Flouquet, Jacques

    2017-08-01

    The large quantum oscillations observed in the thermoelectric power in the antiferromagnetic (AF) state of the heavy-fermion compound CeRh2Si2 disappear suddenly when entering in the polarized paramagnetic (PPM) state at Hc ˜ 26.5 T, indicating an abrupt reconstruction of the Fermi surface. The electronic band structure was calculated using [LDA+U] for the AF state taking the correct magnetic structure into account, for the PPM state, and for the paramagnetic state (PM). Different Fermi surfaces were obtained for the AF, PM, and PPM states. Due to band folding, a large number of branches was expected and observed in the AF state. The LDA+U calculation was compared with the previous LDA calculations. Furthermore, we compared both calculations with previously published de Haas-van Alphen experiments. The better agreement with the LDA approach suggests that above the critical pressure pc CeRh2Si2 enters in a mixed-valence state. In the PPM state under a high magnetic field, the 4f contribution at the Fermi level EF drops significantly compared with that in the PM state, and the 4f electrons contribute only weakly to the Fermi surface in our approach.

  8. Dynamic trapping near a quantum critical point

    Science.gov (United States)

    Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli

    2015-02-01

    The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.

  9. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    Science.gov (United States)

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  10. Antiferromagnetism and Kondo effect in a two quantum dot system: a slave boson approach

    International Nuclear Information System (INIS)

    Hamad, I.J.; Anda, E.V.

    2012-01-01

    Full text: In a recent experiment, Jakob et. al proposed a device consisting of a cobalt atom attached to the tip of a scanning tunneling microscope (STM) which interacts with another Co atom adsorbed on a gold surface. The high capacity to tune the tip-sample distance obtained by the authors, with a sub-picometre resolution, enabled the control of the electronic interaction between the two Co atoms and allowed the access to a very rich set of physical phenomena, specifically, those associated to the interplay of the antiferromagnetic interaction between the spins of the Co atoms and the Kondo correlation with the electronic reservoir spins. As well, it is possible to carefully study the geometrical aspects of the experimental disposition creating Fano anti resonances in the differential conductance as a function of the applied potential. In order to reproduce the physics observed in such an experiment we elaborate a model consisting of two sites where the electrons are highly correlated, that simulates the two Co atoms. Each atom interacts with an electronic reservoir and between themselves by means of a directed coupling and also, indirectly, through a coupling between the two electronic reservoirs. The many- body system is solved using a Slave Boson Formalism, solving the problem in the mean field approximation for finite values of U, the Coulomb electronic repulsion at the Co sites. Unlike the NRG calculations developed in the mentioned work, which partially explain the measurements, our results carries the physics information associated to the direct coupling between the Co atoms that permits to study the different regimes and the geometrical implications on the conductance results. Our study is able to explain the experimental results in all the parameter space. (author)

  11. Quantum discord and quantum phase transition in spin chains

    OpenAIRE

    Dillenschneider, Raoul

    2008-01-01

    Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The observations are in agreement with the information provided by the concurrence which measures the entanglement of the many-body system.

  12. Effective and fundamental quantum fields at criticality

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michael

    2010-10-28

    We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)

  13. Effective and fundamental quantum fields at criticality

    International Nuclear Information System (INIS)

    Scherer, Michael

    2010-01-01

    We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)

  14. Detection of quantum critical points by a probe qubit.

    Science.gov (United States)

    Zhang, Jingfu; Peng, Xinhua; Rajendran, Nageswaran; Suter, Dieter

    2008-03-14

    Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase transition by coupling the system to a probe qubit. It uses directly the increased sensibility of the quantum system to perturbations when it is close to a critical point. Using an NMR quantum simulator, we demonstrate this measurement technique for two different types of quantum phase transitions in an Ising spin chain.

  15. New quantum criticality revealed under pressure

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2017-01-01

    Unconventional quantum critical phenomena observed in Yb-based periodic crystals such as YbRh_2Si_2 and β-YbAlB_4 have been one of the central issues in strongly correlated electron systems. The common criticality has been discovered in the quasicrystal Yb_1_5Au_5_1Al_3_4, which surprisingly persists under pressure at least up to P = 1.5 GPa. The T/H scaling where the magnetic susceptibility can be expressed as a single scaling function of the ratio of the temperature T to the magnetic field H has been discovered in the quasicrystal, which is essentially the same as that observed in β-YbAlB_4. Recently, the T/H scaling as well as the common criticality has also been observed even in the approximant crystal Yb_1_4Au_5_1Al_3_5 under pressure. The theory of critical Yb-valence fluctuation gives a natural explanation for these striking phenomena in a unified way. (author)

  16. Critical behavior of 2 and 3 dimensional ferro- and antiferromagnetic spin ice systems in the framework of the Effective Field Renormalization Group technique

    OpenAIRE

    Garcia-Adeva, A. J.; Huber, D. L.

    2001-01-01

    In this work we generalize and subsequently apply the Effective Field Renormalization Group technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagome and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As ...

  17. Antiferromagnetic spintronics

    Science.gov (United States)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  18. Duality between the Deconfined Quantum-Critical Point and the Bosonic Topological Transition

    Directory of Open Access Journals (Sweden)

    Yan Qi Qin

    2017-09-01

    Full Text Available Recently, significant progress has been made in (2+1-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP^{1} model (NCCP^{1} and noncompact quantum electrodynamics (QED with two flavors (N=2 of massless two-component Dirac fermions. The easy-plane NCCP^{1} model is the field theory of the putative deconfined quantum-critical point separating a planar (XY antiferromagnet and a dimerized (valence-bond solid ground state, while N=2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N=2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S=1/2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined

  19. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.; Manchon, Aurelien; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  20. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.

    2018-02-15

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  1. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  2. Antiferromagnetic skyrmions

    Science.gov (United States)

    Tretiakov, Oleg; Barker, Joseph

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.

  3. Electron spin resonance and quantum critical phenomena in VOx multiwall nanotubes

    International Nuclear Information System (INIS)

    Demishev, S.V.; Chernobrovkin, A.L.; Glushkov, V.V.; Samarin, N.A.; Sluchanko, N.E.; Semeno, A.V.; Goodilin, E.A.; Grigorieva, A.V.; Tretyakov, Yu.D.

    2008-01-01

    Basing on the high frequency (60 GHz) electron spin resonance study of the VO x multiwall nanotubes (VO x -NTs) carried out in the temperature range 4.2-200 K we report: (i) the first direct experimental evidence of the presence of the antiferromagnetic dimers in VO x -NTs and (ii) the observation of an anomalous low temperature growth of the magnetic susceptibility for quasi-free spins, which obey the power law χ(T)∝1/T α with the exponent α∼0.6 in a wide temperature range 4.2-50 K. We argue that the observed departures from the Curie-Weiss behaviour manifest the onset of the quantum critical regime and formation of the Griffiths phase as a magnetic ground state of these spin species. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS2 chain

    Science.gov (United States)

    Jian, Shao-Kai; Xian, Zhuo-Yu; Yao, Hong

    2018-05-01

    We show that the quantum critical point (QCP) between a diffusive metal and ferromagnetic (or antiferromagnetic) phases in the SYK chain has a gravitational description corresponding to the double-trace deformation in an AdS2 chain. Specifically, by studying a double-trace deformation of a Z2 scalar in an AdS2 chain where the Z2 scalar is dual to the order parameter in the SYK chain, we find that the susceptibility and renormalization group equation describing the QCP in the SYK chain can be exactly reproduced in the holographic model. Our results suggest that the infrared geometry in the gravity theory dual to the diffusive metal of the SYK chain is also an AdS2 chain. We further show that the transition in SYK model captures universal information about double-trace deformation in generic black holes with near horizon AdS2 space-time.

  5. Energy of the amplitude mode in the bicubic antiferromagnet: Series expansion results

    Science.gov (United States)

    Oitmaa, J.

    2018-05-01

    Series expansion methods are used to study the quantum critical behavior of the bicubic spin-1/2 antiferromagnet. Excitation energies are computed throughout the Brillouin zone, for both the Néel and dimer phases. We compute the energy of the amplitude/Higgs mode and show that it becomes degenerate with the magnon modes at the quantum critical point, as expected on general symmetry grounds.

  6. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. [MPI-CPFS (Germany); Bachmann, M. [MPI-CPFS (Germany); Moll, P.J.W. [MPI-CPFS (Germany); Balicas, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcdonald, Ross David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Eric Dietzgen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ronning, Filip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-Tc and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn5. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivity appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.

  7. Quantum Critical Quasiparticle Scattering within the Superconducting State of CeCoIn_{5}.

    Science.gov (United States)

    Paglione, Johnpierre; Tanatar, M A; Reid, J-Ph; Shakeripour, H; Petrovic, C; Taillefer, Louis

    2016-07-01

    The thermal conductivity κ of the heavy-fermion metal CeCoIn_{5} was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H_{c2}, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution of κ/T with field reveals that the electron-electron scattering (or transport mass m^{⋆}) of those unpaired electrons diverges as H→H_{c2} from below, in the same way that it does in the normal state as H→H_{c2} from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn_{5} at H^{⋆}=H_{c2} even from inside the superconducting state. The fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.

  8. Antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Martí, Xavier; Wadley, P.; Wunderlich, Joerg

    2016-01-01

    Roč. 11, č. 3 (2016), 231-241 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 38.986, year: 2016

  9. Quantum phase transition and critical phenomena

    International Nuclear Information System (INIS)

    Dutta, A.; Chakrabarti, B.K.

    1998-01-01

    We intend to describe briefly the generic features associated with the zero temperature transition in quantum mechanical systems. We elucidate the discussion of the introductory section using the very common example of Ising model in a transverse field. We discuss the method of fermionisation for one dimensional systems. The quantum-classical correspondence is discussed using Suzuki-Trotter method. We then introduce the quantum rotor model and discuss its spherical limit. We finally discuss novel features arising due to the presence of quenched randomness in the quantum Ising and rotor systems. (author)

  10. Characteristic signatures of quantum criticality driven by geometrical frustration.

    Science.gov (United States)

    Tokiwa, Yoshifumi; Stingl, Christian; Kim, Moo-Sung; Takabatake, Toshiro; Gegenwart, Philipp

    2015-04-01

    Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn, where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion, and magnetic Grüneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven be geometrical frustration. We also discovered a spin flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin liquid-like state.

  11. Universal Postquench Prethermalization at a Quantum Critical Point

    Science.gov (United States)

    Gagel, Pia; Orth, Peter P.; Schmalian, Jörg

    2014-11-01

    We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive nonequilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are: (i) a power law rise of order and correlations after an initial collapse of the equilibrium state and (ii) a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches.

  12. Critical examination of logical formulations in quantum theory. Statistical inference and Hilbertian distance between quantum states

    International Nuclear Information System (INIS)

    Hadjisawas, Nicolas.

    1982-01-01

    After a critical study of the logical quantum mechanics formulations of Jauch and Piron, classical and quantum versions of statistical inference are studied. In order to do this, the significance of the Jaynes and Kulback principles (maximum likelihood, least squares principles) is revealed from the theorems established. In the quantum mechanics inference problem, a ''distance'' between states is defined. This concept is used to solve the quantum equivalent of the classical problem studied by Kulback. The ''projection postulate'' proposition is subsequently deduced [fr

  13. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  14. Quantum uncertainty in critical systems with three spins interaction

    International Nuclear Information System (INIS)

    Carrijo, Thiago M; Avelar, Ardiley T; Céleri, Lucas C

    2015-01-01

    In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics. (paper)

  15. Quantum theories of the early universe - a critical appraisal

    International Nuclear Information System (INIS)

    Hu, B.L.

    1988-01-01

    A critical appraisal of certain general problems in the study of quantum processes in curved space as applied to the construction of theories of the early universe is presented. Outstanding issues in different cosmological models and the degree of success of different quantum processes in addressing these issues are summarized. (author)

  16. Quantum criticality in Einstein-Maxwell-dilaton gravity

    International Nuclear Information System (INIS)

    Wen, Wen-Yu

    2012-01-01

    We investigate the quantum Lifshitz criticality in a general background of Einstein-Maxwell-dilaton gravity. In particular, we demonstrate the existence of critical point with dynamic critical exponent z by tuning a nonminimal coupling to its critical value. We also study the effect of nonminimal coupling and exponent z to the Efimov states and holographic RG flow in the overcritical region. We have found that the nonminimal coupling increases the instability for a probe scalar to condensate and its back reaction is discussed. At last, we give a quantum mechanics treatment to a solvable system with z=2, and comment for generic z>2.

  17. On foundational and geometric critical aspects of quantum electrodynamics

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1994-01-01

    The foundational difficulties encountered by the conventional formulation of quantum electrodynamics, and the criticism by Dirac Schwinger, Rohrlich, and others, aimed at some of the physical and mathematical premises underlying that formulation, are reviewed and discussed. The basic failings of the conventional methods of quantization of the electromagnetic field are pointed out, especially with regard to the issue of local (anti) commutativity of quantum fields as an embodiment of relativistic microcausality. A brief description is given of a recently advanced new type of approach to quantum electrodynamics, and to quantum field theory in general, which is epistemically based on intrinsically quantum ideas about the physical nature of spacetime, and is mathematically based on a fiber theoretical formulation of quantum geometries, aimed in part at removing the aforementioned difficulties and inconsistencies. It is shown that these ideas can be traced to a conceptualization of spacetime outlined by Einstein in the last edition of his well-known semipopular exposition of relativity theory. 57 refs

  18. Itinerant density instability at classical and quantum critical points

    Science.gov (United States)

    Feng, Yejun; van Wezel, Jasper; Flicker, Felix; Wang, Jiyang; Silevitch, D. M.; Littlewood, P. B.; Rosenbaum, T. F.

    2015-03-01

    Itinerant density waves are model systems for studying quantum critical behavior. In both the model spin- and charge-density-wave systems Cr and NbSe2, it is possible to drive a continuous quantum phase transition with critical pressures below 10 GPa. Using x-ray diffraction techniques, we are able to directly track the evolution of the ordering wave vector Q across the pressure-temperature phase diagram. We find a non-monotonic dependence of Q on pressure. Using a Landau-Ginsburg theoretical framework developed by McMillan for CDWs, we evaluate the importance of the physical terms in driving the formation of ordered states at both the thermal and quantum phase transitions. We find that the itinerant instability is the deciding factor for the emergent order, which is further influenced by the critical fluctuations in both the thermal and quantum limits.

  19. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  20. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  1. Critical behavior of two- and three-dimensional ferromagnetic and antiferromagnetic spin-ice systems using the effective-field renormalization group technique

    Science.gov (United States)

    Garcia-Adeva, Angel J.; Huber, David L.

    2001-07-01

    In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.

  2. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  3. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    Science.gov (United States)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  4. Collinear Order in Frustrated Quantum Antiferromagnet on Square Lattice (CuBr)LaNb2O7

    Science.gov (United States)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro; Yasuda, Jun; Baba, Yoichi; Nishi, Masakazu; Hirota, Kazuma; Narumi, Yasuo; Hagiwara, Masayuki; Kindo, Koichi; Saito, Takashi; Ajiro, Yoshitami; Yoshimura, Kazuyoshi

    2006-11-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional S = 1/2 square-lattice system (CuBr)LaNb2O7, prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb2O7. (CuBr)LaNb2O7 exhibits a second-order magnetic transition at 32 K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb2O7, despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q = (π, 0, π) with a reduced moment of 0.6μB. Mixed ferromagnetic nearest-neighbor (J1) and antiferromagnetic second-nearest-neighbor (J2) interactions are of comparable strength (J1/kB = -35.6 K and J2/kB = 41.3 K), placing the system in a more frustrated region of the CAF phase than ever reported.

  5. Collinear order in frustrated quantum antiferromagnet on square lattice (CuBr)LaNb2O7

    International Nuclear Information System (INIS)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro

    2006-01-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional s=1/2 square-lattice system (CuBr)LaNb 2 O 7 , prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb 2 O 7 . (CuBr)LaNb 2 O 7 exhibits a second-order magnetic transition at 32K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb 2 O 7 , despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q=(π, 0, π) with a reduced moment of 0.6μ B . Mixed ferromagnetic nearest-neighbor (J 1 ) and antiferromagnetic second-nearest-neighbor (J 2 ) interactions are of comparable strength (J 1 /k B =-35.6K and J 2 /k B =41.3K), placing the system in a more frustrated region of the CAF phase than ever reported. (author)

  6. Quantum critical matter. Quantum phase transitions with multiple dynamics and Weyl superconductors

    International Nuclear Information System (INIS)

    Meng, Tobias

    2012-01-01

    In this PhD thesis, the physics of quantum critical matter and exotic quantum state close to quantum phase transitions is investigated. We will focus on three different examples that highlight some of the interesting phenomena related to quantum phase transitions. Firstly, we discuss the physics of quantum phase transitions in quantum wires as a function of an external gate voltage when new subbands are activated. We find that at these transitions, strong correlations lead to the formation of an impenetrable gas of polarons, and identify criteria for possible instabilities in the spin- and charge sectors of the model. Our analysis is based on the combination of exact resummations, renormalization group techniques and Luttinger liquid approaches. Secondly, we turn to the physics of multiple divergent time scales close to a quantum critical point. Using an appropriately generalized renormalization group approach, we identify that the presence of multiple dynamics at a quantum phase transition can lead to the emergence of new critical scaling exponents and thus to the breakdown of the usual scaling schemes. We calculate the critical behavior of various thermodynamic properties and detail how unusual physics can arise. It is hoped that these results might be helpful for the interpretation of experimental scaling puzzles close to quantum critical points. Thirdly, we turn to the physics of topological transitions, and more precisely the physics of Weyl superconductors. The latter are the superconducting variant of the topologically non-trivial Weyl semimetals, and emerge at the quantum phase transition between a topological superconductor and a normal insulator upon perturbing the transition with a time reversal symmetry breaking perturbation, such as magnetism. We characterize the topological properties of Weyl superconductors and establish a topological phase diagram for a particular realization in heterostructures. We discuss the physics of vortices in Weyl

  7. Random walks, critical phenomena, and triviality in quantum field theory

    International Nuclear Information System (INIS)

    Fernandez, R.; Froehlich, J.; Sokal, A.D.

    1992-01-01

    The subject of this book is equilibrium statistical mechanics - in particular the theory of critical phenomena - and quantum field theory. A general review of the theory of critical phenomena in spin systems, field theories, and random-walk and random-surface models is presented. Among the more technical topics treated in this book, the central theme is the use of random-walk representations as a tool to derive correlation inequalities. The consequences of these inequalities for critical-exponent theory and the triviality question in quantum field theory are expounded in detail. The book contains some previously unpublished results. It addresses both the researcher and the graduate student in modern statistical mechanics and quantum field theory. (orig.)

  8. Universal post-quench prethermalization at a quantum critical point

    Science.gov (United States)

    Orth, Peter P.; Gagel, Pia; Schmalian, Joerg

    2015-03-01

    We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive non-equilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are a powerlaw rise of order and correlations after an initial collapse of the equilibrium state and a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches. [1] P. Gagel, P. P. Orth, J. Schmalian, Phys.Rev. Lett. (in press) arXiv:1406.6387

  9. Black holes as critical point of quantum phase transition.

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  10. Quantum critical phenomena and conformal invariance

    International Nuclear Information System (INIS)

    Zhe Chang.

    1995-05-01

    We show that the Abelian bosonization of continuum limit of the 1D Hubbard model corresponds to the 2D explicitly conformal invariant Gaussian model at weak coupling limit. A universality argument is used to extend the equivalence to an entire segment of the critical line of the strongly correlated electron system. An integral equation satisfied by the mapping function between critical lines of the 1D Hubbard model and 2D Gaussian model is obtained and then solved in some limiting cases. By making use of the fact that the free Hubbard system reduces to four fermions and each of them is related to a c = 1/2 conformal field theory, we present exactly the partition function of the Hubbard model on a finite 1D lattice. (author). 16 refs

  11. Universal postquench coarsening and aging at a quantum critical point

    Science.gov (United States)

    Gagel, Pia; Orth, Peter P.; Schmalian, Jörg

    2015-09-01

    The nonequilibrium dynamics of a system that is located in the vicinity of a quantum critical point is affected by the critical slowing down of order-parameter correlations with the potential for novel out-of-equilibrium universality. After a quantum quench, i.e., a sudden change of a parameter in the Hamiltonian, such a system is expected to almost instantly fall out of equilibrium and undergo aging dynamics, i.e., dynamics that depends on the time passed since the quench. Investigating the quantum dynamics of an N -component φ4 model coupled to an external bath, we determine this universal aging and demonstrate that the system undergoes a coarsening, governed by a critical exponent that is unrelated to the equilibrium exponents of the system. We analyze this behavior in the large-N limit, which is complementary to our earlier renormalization-group analysis, allowing in particular the direct investigation of the order-parameter dynamics in the symmetry-broken phase and at the upper critical dimension. By connecting the long-time limit of fluctuations and response, we introduce a distribution function that shows that the system remains nonthermal and exhibits quantum coherence even on long time scales.

  12. Metatheoretical critics on current trends in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Carlos C. Aranda

    2014-06-01

    Full Text Available Is our purpose in this article to review several approaches to modern problems in quantum mechanics from a critical point of view using the approximation of the traditional mathematical thinking. Nevertheless we point out several natural questions that arise in abstract mathematical reasoning.

  13. A magnetically induced quantum critical point in holography

    NARCIS (Netherlands)

    Gursoy, U.; Gnecchi, A.; Toldo, C.; Papadoulaki, O.

    We investigate quantum critical points in a 2+1 dimensional gauge theory at finite chemical potential χ and magnetic field B. The gravity dual is based on 4D NN = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are constructed analytically — are extremal, dyonic,

  14. Electron self-trapping at quantum and classical critical points

    NARCIS (Netherlands)

    Auslender, M.I.; Katsnelson, M.I.

    2006-01-01

    Using Feynman path integral technique estimations of the ground state energy have been found for a conduction electron interacting with order parameter fluctuations near quantum critical points. In some cases only singular perturbation theory in the coupling constant emerges for the electron ground

  15. Critical current in the Integral Quantum Hall Effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    A multiparticle theory of the Integral Quantum Hall Effect (IQHE) was constructed operating with pairs wave function as an order parameter. The IQHE is described with bosonic macroscopic states while the fractional QHE with fermionic ones. The calculation of the critical current and Hall conductivity temperature dependence is presented. (author)

  16. Reggeon quantum mechanics: a critical discussion

    International Nuclear Information System (INIS)

    Ciafaloni, M.; Le Bellac, M.; Rossi, G.C.

    1977-01-01

    The quantum-mechanical problem of reggeon field theory in zero transverse dimensions is re-examined in order to set up a precise mathematical framework for the case μ=α(0)-1>0. The authors establish a Hamiltonian formulation in a Hilbert space for μ 2 (0, infinity) space. It is proved that the S-matrix and the pomeron Green functions, at fixed rapidity Y and triple-pomeron coupling lambda not equal to 0, have a spectral decomposition and are analytic in μ for -infinity 0, most of the qualitative results found by previous authors are confirmed and in particular the tunnelling shift [approximately exp(-μ 2 /2lambda 2 )] setting the scale for the asymptotic behaviour in Y. In the classical limit of lambda/μ small it is found that the action, for μ>0, develops a singularity in Y at some value Ysub(c). Arguements are given to show that for Y approximately Ysub(c) perturbation theory breaks shown. Most of these results are shown to be stable against the addition of a small quartic coupling of the simplest type [lambda'(anti psipsi) 2 ] up to the 'magic' value lambda'=lambda 2 /μ. The existence of a level crossing at this value is confirmed by an analytic continuation in lambda'. (Auth.)

  17. Quantum critical spin-2 chain with emergent SU(3) symmetry.

    Science.gov (United States)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K

    2015-04-10

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  18. Haldane-gap excitations in the low-Hc one-dimensional quantum antiferromagnet Ni(C5D14N2)2N3(PF6)

    International Nuclear Information System (INIS)

    Zheludev, A.; Chen, Y.; Broholm, C. L.; Honda, Z.; Katsumata, K.

    2001-01-01

    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet Ni(C 5 D 14 N 2 ) 2 N 3 (PF 6 ), that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δ x =0.42(3) meV, Δ y =0.52(6) meV, and Δ z =1.9(1) meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are measured. The dispersion relation is studied for momentum transfers both along and perpendicular to the chains' direction. The in-chain exchange constant J=2.8 meV is found to be much larger than interchain coupling, J y =1.8(4)x10 -3 meV and J x =4(3)x10 -4 meV, along the b and a axes, respectively. The results are discussed in the context of future experiments in high magnetic fields

  19. Quantum critical singularities in two-dimensional metallic XY ferromagnets

    Science.gov (United States)

    Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.

    2018-02-01

    An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.

  20. Characterization of the critical submanifolds in quantum ensemble control landscapes

    International Nuclear Information System (INIS)

    Wu Rebing; Rabitz, Herschel; Hsieh, Michael

    2008-01-01

    The quantum control landscape is defined as the functional that maps the control variables to the expectation values of an observable over the ensemble of quantum systems. Analyzing the topology of such landscapes is important for understanding the origins of the increasing number of laboratory successes in the optimal control of quantum processes. This paper proposes a simple scheme to compute the characteristics of the critical topology of the quantum ensemble control landscapes showing that the set of disjoint critical submanifolds one-to-one corresponds to a finite number of contingency tables that solely depend on the degeneracy structure of the eigenvalues of the initial system density matrix and the observable whose expectation value is to be maximized. The landscape characteristics can be calculated as functions of the table entries, including the dimensions and the numbers of positive and negative eigenvalues of the Hessian quadratic form of each of the connected components of the critical submanifolds. Typical examples are given to illustrate the effectiveness of this method

  1. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yichen, E-mail: ychuang@caltech.edu

    2017-05-15

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.

  2. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    Science.gov (United States)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  3. Quantum Critical “Opalescence” around Metal-Insulator Transitions

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2006-08-01

    Divergent carrier-density fluctuations equivalent to the critical opalescence of gas-liquid transition emerge around a metal-insulator critical point at a finite temperature. In contrast to the gas-liquid transitions, however, the critical temperatures can be lowered to zero, which offers a challenging quantum phase transition. We present a microscopic description of such quantum critical phenomena in two dimensions. The conventional scheme of phase transitions by Ginzburg, Landau, and Wilson is violated because of its topological nature. It offers a clear insight into the criticalities of metal-insulator transitions (MIT) associated with Mott or charge-order transitions. Fermi degeneracy involving the diverging density fluctuations generates emergent phenomena near the endpoint of the first-order MIT and must shed new light on remarkable phenomena found in correlated metals such as unconventional cuprate superconductors. It indeed accounts for the otherwise puzzling criticality of the Mott transition recently discovered in an organic conductor. We propose to accurately measure enhanced dielectric fluctuations at small wave numbers.

  4. Thermal conductivity at a disordered quantum critical point

    International Nuclear Information System (INIS)

    Hartnoll, Sean A.; Ramirez, David M.; Santos, Jorge E.

    2016-01-01

    Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T"0"."3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.

  5. Critical indices for the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Bonetto, F.

    1997-01-01

    The understanding of the Yukawa 2 quantum field theory is still incomplete if the fermionic mass is much smaller than the coupling. We analyze the Schwinger functions for small coupling uniformly in the mass and we find that the asymptotic behavior of the two-point Schwinger function is anomalous and described by two critical indices, related to the renormalization of the mass and of the wave function. The indices are explicitly computed by convergent series in the coupling. (orig.)

  6. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.

    Science.gov (United States)

    Fradkin, Eduardo; Moore, Joel E

    2006-08-04

    The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.

  7. Anomalous quantum critical spin dynamics in YFe2Al10

    Science.gov (United States)

    Huang, K.; Tan, C.; Zhang, J.; Ding, Z.; MacLaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Baines, C.; Wu, L. S.; Aronson, M. C.; Shu, L.

    2018-04-01

    We report results of a muon spin relaxation (μ SR ) study of YFe2Al10 , a quasi-two-dimensional (2D) nearly ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2 + magnetism, with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the electronic spin dynamics directly. We attribute this to the proportionality of λ (ωμ,T ) to the dynamic structure factor S (ωμ,T ) , where ωμ≈105-107s-1 is the muon Zeeman frequency. These results suggest critical divergences of S (ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield forms for S (ω ,T ) that agree with neutron scattering data (ω ≈1012s-1 ). Extrapolation to μ SR frequencies agrees semiquantitatively with the observed temperature dependence of λ (ωμ,T ) , but predicts frequency independence for ωμ≪T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of YFe2Al10 is not well understood at low frequencies.

  8. Entropy Flow Through Near-Critical Quantum Junctions

    Science.gov (United States)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  9. Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM

    2007-12-15

    For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)

  10. Defect production in nonlinear quench across a quantum critical point.

    Science.gov (United States)

    Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi

    2008-07-04

    We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.

  11. Quantum critical scaling of fidelity in BCS-like model

    International Nuclear Information System (INIS)

    Adamski, Mariusz; Jedrzejewski, Janusz; Krokhmalskii, Taras

    2013-01-01

    We study scaling of the ground-state fidelity in neighborhoods of quantum critical points in a model of interacting spinful fermions—a BCS-like model. Due to the exact diagonalizability of the model, in one and higher dimensions, scaling of the ground-state fidelity can be analyzed numerically with great accuracy, not only for small systems but also for macroscopic ones, together with the crossover region between them. Additionally, in the one-dimensional case we have been able to derive a number of analytical formulas for fidelity and show that they accurately fit our numerical results; these results are reported in the paper. Besides regular critical points and their neighborhoods, where well-known scaling laws are obeyed, there is the multicritical point and critical points in its proximity where anomalous scaling behavior is found. We also consider scaling of fidelity in neighborhoods of critical points where fidelity oscillates strongly as the system size or the chemical potential is varied. Our results for a one-dimensional version of a BCS-like model are compared with those obtained recently by Rams and Damski in similar studies of a quantum spin chain—an anisotropic XY model in a transverse magnetic field. (paper)

  12. Quantum correlation approach to criticality in the XX spin chain with multiple interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, W.W., E-mail: weien.cheng@gmail.com [Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunication, Nanjing 210003 (China); Department of Physics, Hubei Normal University, Huangshi 435002 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education (China); Shan, C.J. [Department of Physics, Hubei Normal University, Huangshi 435002 (China); Sheng, Y.B.; Gong, L.Y.; Zhao, S.M. [Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunication, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education (China)

    2012-09-01

    We investigate the quantum critical behavior in the XX spin chain with a XZY-YZX type multiple interaction by means of quantum correlation (Concurrence C, quantum discord D{sub Q} and geometric discord D{sub G}). Around the critical point, the values of these quantum correlations and corresponding derivatives are investigated numerically and analytically. The results show that the non-analyticity property of the concurrence cannot signal well the quantum phase transition, but both the quantum discord and geometric discord can characterize the critical behavior in such model exactly.

  13. Perspectives of antiferromagnetic spintronics

    Science.gov (United States)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  14. Single-copy entanglement in critical quantum spin chains

    International Nuclear Information System (INIS)

    Eisert, J.; Cramer, M.

    2005-01-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results--which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains--are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ∼(1/6)log 2 (L), and contrast it with the block entropy

  15. Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points

    Science.gov (United States)

    Ding, Chengxiang; Zhang, Long; Guo, Wenan

    2018-06-01

    Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.

  16. Nonequilibrium dynamic critical scaling of the quantum Ising chain.

    Science.gov (United States)

    Kolodrubetz, Michael; Clark, Bryan K; Huse, David A

    2012-07-06

    We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.

  17. Quantum critical behaviour of the plateau-insulator transition in the quantum Hall regime

    International Nuclear Information System (INIS)

    Visser, A de; Ponomarenko, L A; Galistu, G; Lang, D T N de; Pruisken, A M M; Zeitler, U; Maude, D

    2006-01-01

    High-field magnetotransport experiments provide an excellent tool to investigate the plateau-insulator phase transition in the integral quantum Hall effect. Here we review recent low-temperature high-field magnetotransport studies carried out on several InGaAs/InP heterostructures and an InGaAs/GaAs quantum well. We find that the longitudinal resistivity ρ xx near the critical filling factor ν c ∼ 0.5 follows the universal scaling law ρ xx (ν, T) ∝ exp(-Δν/(T/T 0 ) κ ), where Δν = ν-ν c . The critical exponent κ equals 0.56 ± 0.02, which indicates that the plateau-insulator transition falls in a non-Fermi liquid universality class

  18. Critical exponents for the Reggeon quantum spin model

    International Nuclear Information System (INIS)

    Brower, R.C.; Furman, M.A.

    1978-01-01

    The Reggeon quantum spin (RQS) model on the transverse lattice in D dimensional impact parameter space has been conjectured to have the same critical behaviour as the Reggeon field theory (RFT). Thus from a high 'temperature' series of ten (D=2) and twenty (D=1) terms for the RQS model the authors extrapolate to the critical temperature T=Tsub(c) by Pade approximants to obtain the exponents eta=0.238 +- 0.008, z=1.16 +- 0.01, γ=1.271 +- 0.007 for D=2 and eta=0.317 +- 0.002, z=1.272 +- 0.007, γ=1.736 +- 0.001, lambda=0.57 +- 0.03 for D=1. These exponents naturally interpolate between the D=0 and D=4-epsilon results for RFT as expected on the basis of the universality conjecture. (Auth.)

  19. Perspectives of antiferromagnetic spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  20. Quantum critical scaling for field-induced quantum phase transition in a periodic Anderson-like model polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.J., E-mail: dinglinjie82@126.com; Zhong, Y.

    2017-07-15

    Highlights: • The quantum critical scaling is investigated by Green’s function theory. • The obtained power-law critical exponents (β, δ and α) obey the critical scaling relation α + β(1 + δ) = 2. • The scaling hypothesis equations are proposed to verify the scaling analysis. - Abstract: The quantum phase transition and thermodynamics of a periodic Anderson-like polymer chain in a magnetic field are investigated by Green’s function theory. The T-h phase diagram is explored, wherein a crossover temperature T{sup ∗} denoting the gapless phase crossover into quantum critical regimes, smoothly connects near the critical fields to the universal linear line T{sup ∗} ∼ (h − h{sub c,s}), and ends at h{sub c,s}, providing a new route to capture quantum critical point (QCP). The quantum critical scaling around QCPs is demonstrated by analyzing magnetization, specific heat and Grüneisen parameter Γ{sub h}, which provide direct access to distill the power-law critical exponents (β, δ and α) obeying the critical scaling relation α + β(1 + δ) = 2, analogous to the quantum spin system. Furthermore, scaling hypothesis equations are proposed to check the scaling analysis, for which all the data collapse onto a single curve or two independent branches for the plot against an appropriate scaling variable, indicating the self-consistency and reliability of the obtained critical exponents.

  1. Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons

    Science.gov (United States)

    Scammell, H. D.; Sushkov, O. P.

    2017-01-01

    Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.

  2. Spiral phases of doped antiferromagnets

    International Nuclear Information System (INIS)

    Shraiman, B.I.; Siggia, E.D.

    1990-01-01

    The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs

  3. Er2Ti2O7: Evidence of quantum order by disorder in a frustrated antiferromagnet

    DEFF Research Database (Denmark)

    Champion, J.D.M.; Harris, M.J.; Holdsworth, P.C.W.

    2003-01-01

    Er(2)Ti(2)O(7) has been suggested to be a realization of the frustrated XY pyrochlore lattice antiferromagnet, for which theory predicts fluctuation-induced symmetry breaking in a highly degenerate ground state manifold. We present a theoretical analysis of the classical model compared...

  4. Spintronics of antiferromagnetic systems

    International Nuclear Information System (INIS)

    Gomonaj, E.V.; Loktev, V.M.

    2014-01-01

    Spintronics of antiferromagnetics is a new field that has developed in a fascinating research topic in physics of magnetism. Antiferromagnetics, like ferromagnetic materials experience the influence of spin-polarized current, even though they show no macroscopic magnetization. The mechanism of this phenomenon is related to spin-dependent interaction between free and localized electrons-sd-exchange. Due to the peculiarities of antiferromagnetic materials (complicated magnetic structure, essential role of the exchange interactions, lack of macroscopic magnetization) spintronics of antiferromagnets appeals to new theoretical and experimental approaches. The purpose of this review is to systemize and summarize the recent progress in this field. We start with a short introduction into the structure and dynamics of antiferromagnets and proceed with discussion of different microscopic and phenomenological theories for description of current-induced phenomena in ferro-/antiferromagnetic heterostructures. We also consider the problems of the reverse influence of antiferromagnetic ordering on current, and effectiveness of the fully antiferromagnetic spin valve. In addition, we shortly review and interpret the available experimental results.

  5. Critical properties of effective gauge theories for novel quantum fluids

    Energy Technology Data Exchange (ETDEWEB)

    Smoergrav, Eivind

    2005-07-01

    Critical properties of U(1) symmetric gauge theories are studied in 2+1 dimensions, analytically through duality transformations and numerically through Monte Carlo simulations. Physical applications range from quantum phase transitions in two dimensional insulating materials to superfluid and superconducting properties of light atoms such as hydrogen under extreme pressure. A novel finite size scaling method, utilizing the third moment M{sub 3} of the action, is developed. Finite size scaling analysis of M{sub 3} yields the ratio (1 + alpha)/ny and 1/ny separately, so that critical exponents alpha and ny can be obtained independently without invoking hyperscaling. This thesis contains eight research papers and an introductory part covering some basic concepts and techniques. Paper 1: The novel M{sub 3} method is introduced and employed together with Monte Carlo simulations to study the compact Abelian Higgs model in the adjoint representation with q = 2. Paper 2: We study phase transitions in the compact Abelian Higgs model for fundamental charge q = 2; 3; 4; 5. Various other models are studied to benchmark the M{sub 3} method. Paper 3: This is a proceeding paper based on a talk given by F. S. Nogueira at the Aachen EPS HEP 2003 conference. A review of the results from Paper 1 and Paper 2 on the compact Abelian Higgs model together with some results on q = 1 obtained by F. S. Nogueira, H. Kleinert, and A. Sudboe is given. Paper 4: The effect of a Chern-Simons (CS) term in the phase structure of two Abelian gauge theories is studied. Paper 5: We study the critical properties of the N-component Ginzburg-Landau theory. Paper 6: We consider the vortices in the 2-component Ginzburg-Landau model in a finite but low magnetic field. The ground state is a lattice of co centered vortices in both order parameters. We find two novel phase transitions. i) A 'vortex sub-lattice melting' transition where vortices in the field with lowest phase stiffness (&apos

  6. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5.

    Science.gov (United States)

    Ronning, F; Helm, T; Shirer, K R; Bachmann, M D; Balicas, L; Chan, M K; Ramshaw, B J; McDonald, R D; Balakirev, F F; Jaime, M; Bauer, E D; Moll, P J W

    2017-08-17

    Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn 5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at H c  ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.

  7. Quantum-critical scaling of fidelity in 2D pairing models

    Energy Technology Data Exchange (ETDEWEB)

    Adamski, Mariusz, E-mail: mariusz.adamski@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Jȩdrzejewski, Janusz [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Krokhmalskii, Taras [Institute for Condensed Matter Physics, 1 Svientsitski Street, 79011, Lviv (Ukraine)

    2017-01-15

    The laws of quantum-critical scaling theory of quantum fidelity, dependent on the underlying system dimensionality D, have so far been verified in exactly solvable 1D models, belonging to or equivalent to interacting, quadratic (quasifree), spinless or spinfull, lattice-fermion models. The obtained results are so appealing that in quest for correlation lengths and associated universal critical indices ν, which characterize the divergence of correlation lengths on approaching critical points, one might be inclined to substitute the hard task of determining an asymptotic behavior at large distances of a two-point correlation function by an easier one, of determining the quantum-critical scaling of the quantum fidelity. However, the role of system's dimensionality has been left as an open problem. Our aim in this paper is to fill up this gap, at least partially, by verifying the laws of quantum-critical scaling theory of quantum fidelity in a 2D case. To this end, we study correlation functions and quantum fidelity of 2D exactly solvable models, which are interacting, quasifree, spinfull, lattice-fermion models. The considered 2D models exhibit new, as compared with 1D ones, features: at a given quantum-critical point there exists a multitude of correlation lengths and multiple universal critical indices ν, since these quantities depend on spatial directions, moreover, the indices ν may assume larger values. These facts follow from the obtained by us analytical asymptotic formulae for two-point correlation functions. In such new circumstances we discuss the behavior of quantum fidelity from the perspective of quantum-critical scaling theory. In particular, we are interested in finding out to what extent the quantum fidelity approach may be an alternative to the correlation-function approach in studies of quantum-critical points beyond 1D.

  8. Frustrated antiferromagnets at high fields: Bose-Einstein condensation in degenerate spectra

    International Nuclear Information System (INIS)

    Jackeli, G.; Zhitomirsky, M.E.

    2004-01-01

    Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the J 1 -J 2 frustrated square-lattice antiferromagnet with J 2 =(1/2)J 1 and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into a partially magnetized state is treated via a mapping to a dilute gas of hard-core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave vectors at (π,π) and (π,0,0) for the two models. We predict a unique form for the magnetization curve ΔM=S-M≅μ (d-1)/2 (logμ) (d-1) , where μ is a distance from the quantum critical point

  9. Quantum mechanical cluster calculations of critical scintillation processes

    International Nuclear Information System (INIS)

    Derenzo, Stephen E.; Klintenberg, Mattias K.; Weber, Marvin J.

    2000-01-01

    This paper describes the use of commercial quantum chemistry codes to simulate several critical scintillation processes. The crystal is modeled as a cluster of typically 50 atoms embedded in an array of typically 5,000 point charges designed to reproduce the electrostatic field of the infinite crystal. The Schrodinger equation is solved for the ground, ionized, and excited states of the system to determine the energy and electron wave function. Computational methods for the following critical processes are described: (1) the formation and diffusion of relaxed holes, (2) the formation of excitons, (3) the trapping of electrons and holes by activator atoms, (4) the excitation of activator atoms, and (5) thermal quenching. Examples include hole diffusion in CsI, the exciton in CsI, the excited state of CsI:Tl, the energy barrier for the diffusion of relaxed holes in CaF2 and PbF2, and prompt hole trapping by activator atoms in CaF2:Eu and CdS:Te leading to an ultra-fast (<50ps) scintillation rise time.

  10. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    Science.gov (United States)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  11. Possible influence of the ferromagnetic/antiferromagnetic interface on the effective critical behavior of bilayers based on La{sub 1−x}Sr{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Miño, Lucero, E-mail: lalvarezm@unal.edu.co [Universidad Nacional de Colombia, Sede Manizales, Cra. 27 #64-60, Manizales (Colombia); Grupo de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Sede Bogotá, Avenida Carrera 30 #45, Bogotá (Colombia); Mulcué-Nieto, Luis Fernando, E-mail: lfmulcuen@unal.edu.co [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Cra. 27 #64-60, Manizales (Colombia)

    2015-03-01

    In this work, the effective critical exponent of the spontaneous magnetization, β, and the transition temperature, T{sub C}, were calculated from magnetization measurements of three bilayers based on La{sub 1−x}Sr{sub x}MnO{sub 3} (LSMO). The bilayers structure is a ferromagnetic (FM) LSMO film grown on top of an antiferromagnetic (AF) LSMO film. The value of the antiferromagnetic film thickness was kept the same for the three samples, while the ferromagnetic film had different thickness for each bilayer. Applying a method of calculation based on a linear superposition of the magnetization close to the critical temperature, a β value corresponding to the 3D Ising model was found for the bilayer with the thinnest ferromagnetic film. This result, and the other obtained values are explained taking into account the possible influence of the FM/AF interface on the magnetic and crystal orderings. - Highlights: • The critical exponent β of three LSMO bilayers was determined. • Two bilayers with the thinner FM layer have very similar transition temperature. • Two bilayers with the thinner FM layer have very similar width values. • We have found values of β of the 3D Ising model. • Interface also seems to be responsible for some structural disorder.

  12. Universal conductance and conductivity at critical points in integer quantum Hall systems.

    Science.gov (United States)

    Schweitzer, L; Markos, P

    2005-12-16

    The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, and , respectively. In the second-lowest Landau band, a critical conductance is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value . We argue that this difference is due to the multifractal structure of critical wave functions, a property that should generically show up in the conductance at quantum critical points.

  13. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    Science.gov (United States)

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  14. Phase transition with trivial quantum criticality in an anisotropic Weyl semimetal

    Science.gov (United States)

    Li, Xin; Wang, Jing-Rong; Liu, Guo-Zhu

    2018-05-01

    When a metal undergoes continuous quantum phase transition, the correlation length diverges at the critical point and the quantum fluctuation of order parameter behaves as a gapless bosonic mode. Generically, the coupling of this boson to fermions induces a variety of unusual quantum critical phenomena, such as non-Fermi liquid behavior and various emergent symmetries. Here, we perform a renormalization group analysis of the semimetal-superconductor quantum criticality in a three-dimensional anisotropic Weyl semimetal. Surprisingly, distinct from previously studied quantum critical systems, the anomalous dimension of anisotropic Weyl fermions flows to zero very quickly with decreasing energy, and the quasiparticle residue takes a nonzero value. These results indicate that the quantum fluctuation of superconducting order parameter is irrelevant at low energies, and a simple mean-field calculation suffices to capture the essential physics of the superconducting transition. We thus obtain a phase transition that exhibits trivial quantum criticality, which is unique comparing to other invariably nontrivial quantum critical systems. Our theoretical prediction can be experimentally verified by measuring the fermion spectral function and specific heat.

  15. Fermionic quantum critical point of spinless fermions on a honeycomb lattice

    International Nuclear Information System (INIS)

    Wang, Lei; Corboz, Philippe; Troyer, Matthias

    2014-01-01

    Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)

  16. Energy scales and magnetoresistance at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a Chernova street, Syktyvkar, 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole, 45-052 (Poland)

    2009-03-02

    The magnetoresistance (MR) of CeCoIn{sub 5} is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization, etc.) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau-Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the above kink-like peculiarity separates two distinct energy scales in QCP vicinity - low temperature LFL scale and high temperature one related to NFL regime. Our comprehensive theoretical analysis of experimental data permits to reveal for the first time new MR and kinks scaling behavior as well as to identify the physical reasons for above energy scales.

  17. Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8

    Science.gov (United States)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.

    2012-09-01

    Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.

  18. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    International Nuclear Information System (INIS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ, effective magnetic field H 1 , H 2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry. (paper)

  19. Zero-field quantum critical point in CeCoIn5.

    Science.gov (United States)

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2013-09-06

    Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is studied by measurements of the magnetic Grüneisen ratio ΓH and specific heat in different field orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of ΓH in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.

  20. Spin transport and spin torque in antiferromagnetic devices

    Science.gov (United States)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  1. Holographic aspects of black holes, matrix models and quantum criticality

    NARCIS (Netherlands)

    Papadoulaki, O.

    2017-01-01

    In one word the core subject of this thesis is holography. What we mean by holography broadly is the mapping of a gravitational theory in D dimensions to a quantum mechanics system or quantum field theory in one less dimension In chapter 1, we give a basic and self-contained introduction of the

  2. A critical analysis of the quantum theory of measurement

    International Nuclear Information System (INIS)

    Fer, F.

    1984-01-01

    Keeping strictly in the positivist and probabilistic, hence hilbertian frame of Quantum Mechanics, the author tries to ascertain whether or not Quantum Mechanics, starting from its axioms, reaches the aim of any physical theory, that is, comparison with experiment. The answer is: no, as long as it keeps close to the existing axiomatics, and also to accurate mathematics. (Auth.)

  3. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  4. Equivalence of the O( n) vector ferromagnetic and antiferromagnetic models

    Science.gov (United States)

    Sousa, J. Ricardo de

    The effective-field renormalization group (EFRG) approach is used to find the Néel temperature ( TN) of the O( n) vector model with antiferromagnetic (AF) interaction. The EFRG method is illustrated by employing approximations in which clusters with one ( N‧=1) and two ( N=2) spins are used. The critical temperature TN is obtained as a function of component ( n) and coordination ( z) numbers. For all values of n and z we show that TN= Tc, where Tc is the Curie temperature for the ferromagnetic (F) case. As a comparison, the results of the quantum Heisenberg model ( n=3) with F and AF interactions are also presented, and we find that TN> Tc, which is different from the classical result Tc= TN.

  5. Quantum criticality in electron-doped BaFe2-xNixAs2.

    Science.gov (United States)

    Zhou, R; Li, Z; Yang, J; Sun, D L; Lin, C T; Zheng, Guo-qing

    2013-01-01

    A quantum critical point is a point in a system's phase diagram at which an order is completely suppressed at absolute zero temperature (T). The presence of a quantum critical point manifests itself in the finite-T physical properties, and often gives rise to new states of matter. Superconductivity in the cuprates and in heavy fermion materials is believed by many to be mediated by fluctuations associated with a quantum critical point. In the recently discovered iron-pnictide superconductors, we report transport and NMR measurements on BaFe(2-x)Ni(x)As₂ (0≤x≤0.17). We find two critical points at x(c1)=0.10 and x(c2)=0.14. The electrical resistivity follows ρ=ρ₀+AT(n), with n=1 around x(c1) and another minimal n=1.1 at x(c2). By NMR measurements, we identity x(c1) to be a magnetic quantum critical point and suggest that x(c2) is a new type of quantum critical point associated with a nematic structural phase transition. Our results suggest that the superconductivity in carrier-doped pnictides is closely linked to the quantum criticality.

  6. A non-critical string approach to black holes, time and quantum dynamics

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.

    1994-01-01

    We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\

  7. Spin dynamics in the high-field phase of quantum-critical S =1/2 TlCuCl sub 3

    CERN Document Server

    Rueegg, C; Furrer, A; Krämer, K; Güdel, H U; Vorderwisch, P; Mutka, H

    2002-01-01

    An external magnetic field suppresses the spin-energy gap in singlet ground state S=1/2 TlCuCl sub 3. The system becomes quantum-critical at H sub c approx 5.7 T, where the energy of the lowest Zeeman-split triplet excitation crosses the nonmagnetic ground state. Antiferromagnetic ordering is reported above H sub c , which underlines the three-dimensional nature of the observed quantum phase transition. The intrinsic parameters of S=1/2 TlCuCl sub 3 allow us to access the critical region microscopically by neutron scattering. A substantial study of the spin dynamics in the high-field phase of TlCuCl sub 3 at T=1.5 K up to H=12 T was performed for the first time. The results possibly indicate two dynamical regimes, which can be understood within characteristically renormalized triplet modes and a low-lying dynamics of potentially collective origin. (orig.)

  8. Precise Determination of Quantum Critical Points by the Violation of the Entropic Area Law

    OpenAIRE

    Xavier, J. C.; Alcaraz, F. C.

    2011-01-01

    Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate r...

  9. Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice

    Science.gov (United States)

    Komijani, Yashar; Coleman, Piers

    2018-04-01

    Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.

  10. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    Greentree, Andrew D; Olivero, Paolo; Draganski, Martin; Trajkov, Elizabeth; Rabeau, James R; Reichart, Patrick; Gibson, Brant C; Rubanov, Sergey; Huntington, Shane T; Jamieson, David N; Prawer, Steven

    2006-01-01

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  11. A critical note on the greatest days of quantum theory

    International Nuclear Information System (INIS)

    Popper, K.

    1984-01-01

    The paper traces the scientific ideas of Louis de Broglie, concerning quantum theory. Uncertainty and scatter; Copenhagen or realism; the argument of Einstein, Podolski and Rosen; and realistic consequences of aspect's experiment; are all discussed. (U.K.)

  12. Solitons in one-dimensional antiferromagnetic chains

    International Nuclear Information System (INIS)

    Pires, A.S.T.; Talim, S.L.; Costa, B.V.

    1989-01-01

    We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions

  13. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor.

    Science.gov (United States)

    Butch, Nicholas P; Jin, Kui; Kirshenbaum, Kevin; Greene, Richard L; Paglione, Johnpierre

    2012-05-29

    In the high-temperature cuprate superconductors, the pervasiveness of anomalous electronic transport properties suggests that violation of conventional Fermi liquid behavior is closely tied to superconductivity. In other classes of unconventional superconductors, atypical transport is well correlated with proximity to a quantum critical point, but the relative importance of quantum criticality in the cuprates remains uncertain. Here, we identify quantum critical scaling in the electron-doped cuprate material La(2-x)Ce(x)CuO(4) with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping. This zero-temperature phase boundary, which delineates a metallic Fermi liquid regime from an extended non-Fermi liquid ground state, closely follows the upper critical field of the overdoped superconducting phase and gives rise to an expanse of distinct non-Fermi liquid behavior at finite temperatures. Together with signatures of two distinct flavors of quantum fluctuations, these facts suggest that quantum criticality plays a significant role in shaping the anomalous properties of the cuprate phase diagram.

  14. One-norm geometric quantum discord and critical point estimation in the XY spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com

    2016-11-15

    In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparing with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.

  15. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien; Saidaoui, Hamed Ben Mohamed; Ghosh, Sumit

    2015-01-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  16. Nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch

    2008-01-01

    I denne Ph.D. afhandling studeres forskellige egenskaber ved antiferromagnetiske nanopartikler. I en ideel antiferromagnet er spinnene orienteret således at der ikke er et resulterende magnetisk moment. I nanopartikler af antiferromagnetiske materialer er denne kompensation på grund af forskellig...

  17. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  18. Prospect for antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Jungwirth, Tomáš

    2015-01-01

    Roč. 51, č. 4 (2015), s. 2900104 ISSN 0018-9464 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  19. Quantum criticality around metal-insulator transitions of strongly correlated electron systems

    Science.gov (United States)

    Misawa, Takahiro; Imada, Masatoshi

    2007-03-01

    Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical “opalescence.” The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and κ-ET -type organic conductors provide us with evidence for the existence of the present marginal

  20. A study of the quantum classical crossover in the spin dynamics of the 2D S = 5/2 antiferromagnet Rb2MnF4: neutron scattering, computer simulations and analytic theories

    International Nuclear Information System (INIS)

    Huberman, T; Tennant, D A; Cowley, R A; Coldea, R; Frost, C D

    2008-01-01

    We report comprehensive inelastic neutron scattering measurements of the magnetic excitations in the 2D spin-5/2 Heisenberg antiferromagnet Rb 2 MnF 4 as a function of temperature from deep in the Néel ordered phase up to paramagnetic, 0.13 B T/4JS −1 for temperatures up to near the Curie–Weiss temperature, Θ CW . For wavevectors smaller than ξ −1 , relaxational dynamics occurs. The observed renormalization of spin wave energies, and evolution of excitation lineshapes, with increasing temperature are quantitatively compared with finite-temperature spin wave theory and computer simulations for classical spins. Random phase approximation calculations provide a good description of the low temperature renormalization of spin waves. In contrast, lifetime broadening calculated using the first Born approximation shows, at best, modest agreement around the zone boundary at low temperatures. Classical dynamics simulations using an appropriate quantum classical correspondence were found to provide a good description of the intermediate and high temperature regimes over all wavevector and energy scales, and the crossover from quantum to classical dynamics observed around Θ CW /S, where the spin S = 5/2. A characterization of the data over the whole wavevector/energy/temperature parameter space is given. In this, T 2 behaviour is found to dominate the wavevector and temperature dependence of the linewidths over a large parameter range, and no evidence of hydrodynamic behaviour or dynamical scaling behaviour found within the accuracy of the datasets. An efficient and easily implemented classical dynamics methodology is presented that provides a practical method for modelling other semiclassical quantum magnets

  1. Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2016-02-15

    Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.

  2. Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice

    International Nuclear Information System (INIS)

    Mariz, A.M.; Santos, R.M.Z. dos; Tsallis, C.; Santos, R.R. dos.

    1984-01-01

    Within a Real Space Renormalization group framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in satisfactory agreement with known results whenever available. (Author) [pt

  3. Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.; Santos, R.M.Z. dos; Santos, Raimundo R. dos.

    1984-11-01

    Within a Real Space Renormalization Group Framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in antisfactory agreement with known results whenever available. (Author) [pt

  4. Environment-assisted Quantum Critical Effect for Excitation Energy Transfer in a LH2-type Trimer

    Science.gov (United States)

    Xu, Lan; Xu, Bo

    2015-10-01

    In this article, we are investigating excitation energy transfer (EET) in a basic unit cell of light-harvesting complex II (LH2), named a LH2-type trimer. Calculation of energy transfer efficiency (ETE) in the framework of non-Markovian environment is also implemented. With these achievements, we theoretically predict the environment-assisted quantum critical effect, where ETE exhibits a sudden change at the critical point of quantum phase transition (QPT) for the LH2-type trimer. It is found that highly efficient EET with nearly unit efficiency may occur in the vicinity of the critical point of QPT.

  5. Weyl magnons in breathing pyrochlore antiferromagnets

    Science.gov (United States)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  6. Antiferromagnetic transition in graphene functionalized with nitroaniline

    Science.gov (United States)

    Komlev, Anton A.; Makarova, Tatiana L.; Lahderanta, Erkki; Semenikhin, Petr Valeryevich; Veinger, Anatoly I.; Kochman, Igor V.; Magnani, Giacomo; Bertoni, Giovanni; Pontiroli, Daniele; Ricco, Mauro

    2017-07-01

    Magnetic properties of graphene nanostructures functionalized with aromatic radicals were investigated by electron spin resonance (ESR) and superconducting quantum interference device (SQUID) techniques. Three types of functionalized graphene samples were investigated (functionalization was performed by 4-bromoaniline, 4-nitroaniline, or 4-chloroaniline). According to SQUID measurements, in case of functionalization by nitroaniline, sharp change in temperature dependence of magnetic susceptibility was observed near 120 K. Such behavior was explained as antiferromagnetic ordering. The same but more extended effect was observed in ESR measurements below 160 K. In the ESR measurements, only one resonance line with g-factor equal to 2.003 was observed. Based on the temperature dependencies of spin concentration and resonance position and intensity, the effect was explained as antiferromagnetic ordering along the extended defects on the basal planes of the graphene.

  7. Long range order in the ground state of two-dimensional antiferromagnets

    International Nuclear Information System (INIS)

    Neves, E.J.; Perez, J.F.

    1985-01-01

    The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt

  8. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo_2V_2O_8

    International Nuclear Information System (INIS)

    Liu Juan-Juan; Wang Jin-Chen; Luo Wei; Sheng Jie-Ming; Bao Wei; He Zhang-Zhen; Danilkin, S. A.

    2016-01-01

    The magnetic structure of the spin-chain antiferromagnet SrCo_2V2O_8 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature T_N = 4.96 K. The moment of 2.16μ_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo_2V_2O_8 warrants SrCo_2V_2O_8 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism. (paper)

  9. Tunable quantum criticality and super-ballistic transport in a "charge" Kondo circuit.

    Science.gov (United States)

    Iftikhar, Z; Anthore, A; Mitchell, A K; Parmentier, F D; Gennser, U; Ouerghi, A; Cavanna, A; Mora, C; Simon, P; Pierre, F

    2018-05-03

    Quantum phase transitions (QPTs) are ubiquitous in strongly-correlated materials. However the microscopic complexity of these systems impedes the quantitative understanding of QPTs. Here, we observe and thoroughly analyze the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena. Copyright © 2018, American Association for the Advancement of Science.

  10. Superconductivity in doped antiferromagnets

    International Nuclear Information System (INIS)

    Lagos, M.

    1990-09-01

    The antiferromagnetic S = 1/2 Heisenberg model is extended to account for the presence of holes. The holes move along a sublattice whose sites are located in between the spin sites. The spin-hole coupling arises from the modification of the exchange interaction between two neighbouring spins when the site between them is occupied by a hole. this physical picture leads to a generalized version of the so called t-J model Hamiltonian. The use of a recently developed method that introduces spin-O excitations for dealing with the Heisenberg antiferromagnetic model allows us to map the model Hamiltonian onto a Froelich one, with the spin-O magnetic excitations substituting phonons. The case of electrons moving along the spin sites is discussed as well. (author). 16 refs, 2 figs

  11. Concepts of antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo

    2017-01-01

    Roč. 11, č. 4 (2017), 1-8, č. článku 1700022. ISSN 1862-6254 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.032, year: 2016

  12. Critical behaviour of SU(n) quantum chains and topological non-linear σ-models

    International Nuclear Information System (INIS)

    Affleck, I.; British Columbia Univ., Vancouver

    1988-01-01

    The critical behaviour of SU(n) quantum ''spin'' chains, Wess-Zumino-Witten σ-models and grassmanian σ-models at topological angle θ = π (of possible relevance to the quantum Hall effect) is reexamined. It is argued that an additional Z n symmetry is generally necessary to stabilize the massless phase. This symmetry is not present for the σ-models for n>2 and is only present for certain representations of ''spin'' chains. (orig.)

  13. Characterization of the Quantized Hall Insulator Phase in the Quantum Critical Regime

    OpenAIRE

    Song, Juntao; Prodan, Emil

    2013-01-01

    The conductivity $\\sigma$ and resistivity $\\rho$ tensors of the disordered Hofstadter model are mapped as functions of Fermi energy $E_F$ and temperature $T$ in the quantum critical regime of the plateau-insulator transition (PIT). The finite-size errors are eliminated by using the non-commutative Kubo-formula. The results reproduce all the key experimental characteristics of this transition in Integer Quantum Hall (IQHE) systems. In particular, the Quantized Hall Insulator (QHI) phase is det...

  14. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  15. Bound on quantum computation time: Quantum error correction in a critical environment

    International Nuclear Information System (INIS)

    Novais, E.; Mucciolo, Eduardo R.; Baranger, Harold U.

    2010-01-01

    We obtain an upper bound on the time available for quantum computation for a given quantum computer and decohering environment with quantum error correction implemented. First, we derive an explicit quantum evolution operator for the logical qubits and show that it has the same form as that for the physical qubits but with a reduced coupling strength to the environment. Using this evolution operator, we find the trace distance between the real and ideal states of the logical qubits in two cases. For a super-Ohmic bath, the trace distance saturates, while for Ohmic or sub-Ohmic baths, there is a finite time before the trace distance exceeds a value set by the user.

  16. Critical current anomaly at the topological quantum phase transition in a Majorana Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-28

    Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.

  17. Quantum critical point in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl

    2009-02-02

    Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.

  18. The critical point of quantum chromodynamics through lattice and ...

    Indian Academy of Sciences (India)

    The Padé approximants are the rational functions. PL. M (z) = .... Deviations from a smooth behaviour near the critical point are visible in these extrap- ... see that there is evidence, albeit statistically not very significant, that the kurtosis changes.

  19. Spin reorientation via antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  20. Origin of chaos near critical points of quantum flow.

    Science.gov (United States)

    Efthymiopoulos, C; Kalapotharakos, C; Contopoulos, G

    2009-03-01

    The general theory of motion in the vicinity of a moving quantum nodal point (vortex) is studied in the framework of the de Broglie-Bohm trajectory method of quantum mechanics. Using an adiabatic approximation, we find that near any nodal point of an arbitrary wave function psi there is an unstable point (called the X point) in a frame of reference moving with the nodal point. The local phase portrait forms always a characteristic pattern called the "nodal-point- X -point complex." We find general formulas for this complex as well as necessary and sufficient conditions of validity of the adiabatic approximation. We demonstrate that chaos emerges from the consecutive scattering events of the orbits with nodal-point- X -point complexes. The scattering events are of two types (called type I and type II). A theoretical model is constructed yielding the local value of the Lyapunov characteristic numbers in scattering events of both types. The local Lyapunov characteristic number scales as an inverse power of the speed of the nodal point in the rest frame, implying that it scales proportionally to the size of the nodal-point- X -point complex. It is also an inverse power of the distance of a trajectory from the X point's stable manifold far from the complex. This distance plays the role of an effective "impact parameter." The results of detailed numerical experiments with different wave functions, possessing one, two, or three moving nodal points, are reported. Examples are given of regular and chaotic trajectories, and the statistics of the Lyapunov characteristic numbers of the orbits are found and compared to the number of encounter events of each orbit with the nodal-point- X -point complexes. The numerical results are in agreement with the theory, and various phenomena appearing at first as counterintuitive find a straightforward explanation.

  1. Rounding by disorder of first-order quantum phase transitions: emergence of quantum critical points.

    Science.gov (United States)

    Goswami, Pallab; Schwab, David; Chakravarty, Sudip

    2008-01-11

    We give a heuristic argument for disorder rounding of a first-order quantum phase transition into a continuous phase transition. From both weak and strong disorder analysis of the N-color quantum Ashkin-Teller model in one spatial dimension, we find that, for N > or =3, the first-order transition is rounded to a continuous transition and the physical picture is the same as the random transverse field Ising model for a limited parameter regime. The results are strikingly different from the corresponding classical problem in two dimensions where the fate of the renormalization group flows is a fixed point corresponding to N-decoupled pure Ising models.

  2. Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas

    Science.gov (United States)

    PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela

    2018-06-01

    We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.

  3. Critical excitation spectrum of a quantum chain with a local three-spin coupling.

    Science.gov (United States)

    McCabe, John F; Wydro, Tomasz

    2011-09-01

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D(4),A(4)) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  4. Critical excitation spectrum of a quantum chain with a local three-spin coupling

    International Nuclear Information System (INIS)

    McCabe, John F.; Wydro, Tomasz

    2011-01-01

    Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D 4 ,A 4 ) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.

  5. Quantum critical phase and Lifshitz transition in an extended periodic Anderson model

    International Nuclear Information System (INIS)

    Laad, M S; Koley, S; Taraphder, A

    2012-01-01

    We study the quantum phase transition in f-electron systems as a quantum Lifshitz transition driven by selective-Mott localization in a realistic extended Anderson lattice model. Using dynamical mean-field theory (DMFT), we find that a quantum critical phase with anomalous ω/T scaling separates a heavy Landau-Fermi liquid from ordered phase(s). This non-Fermi liquid state arises from a lattice orthogonality catastrophe originating from orbital-selective Mott localization. Fermi surface reconstruction occurs via the interplay between and penetration of the Green function zeros to the poles, leading to violation of Luttinger’s theorem in the strange metal. We show how this naturally leads to scale-invariant responses in transport. Thus, our work represents a specific DMFT realization of the hidden-FL and FL* theories, and holds promise for the study of ‘strange’ metal phases in quantum matter. (fast track communication)

  6. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  7. Field induced magnetic quantum critical behavior in the Kondo necklace model

    International Nuclear Information System (INIS)

    Reyes, Daniel; Continentino, Mucio

    2008-01-01

    The Kondo necklace model augmented by a Zeeman term, serves as a useful model for heavy fermion compounds in an applied magnetic field. The phase diagram and thermodynamic behavior for arbitrary dimensions d has been investigated previously in the zero field case [D. Reyes, M. Continentino, Phys. Rev. B 76 (2007) 075114. ]. Here we extend the treatment to finite fields using a generalized bond operator representation for the localized and conduction electrons spins. A decoupling scheme on the double time Green's functions yields the dispersion relation for the excitations of the system. Two critical magnetic fields are found namely, a critical magnetic field called henceforth h c1 and a saturation field nominated h c2 . Then three important regions can be investigated: (i) Kondo spin liquid state (KSL) at low fields h c1 ; (ii) destruction of KSL state at h≥h c1 and appearance of a antiferromagnetic state; and (iii) saturated paramagnetic region above the upper critical field h c2

  8. Topology and Edge Modes in Quantum Critical Chains

    Science.gov (United States)

    Verresen, Ruben; Jones, Nick G.; Pollmann, Frank

    2018-02-01

    We show that topology can protect exponentially localized, zero energy edge modes at critical points between one-dimensional symmetry-protected topological phases. This is possible even without gapped degrees of freedom in the bulk—in contrast to recent work on edge modes in gapless chains. We present an intuitive picture for the existence of these edge modes in the case of noninteracting spinless fermions with time-reversal symmetry (BDI class of the tenfold way). The stability of this phenomenon relies on a topological invariant defined in terms of a complex function, counting its zeros and poles inside the unit circle. This invariant can prevent two models described by the same conformal field theory (CFT) from being smoothly connected. A full classification of critical phases in the noninteracting BDI class is obtained: Each phase is labeled by the central charge of the CFT, c ∈1/2 N , and the topological invariant, ω ∈Z . Moreover, c is determined by the difference in the number of edge modes between the phases neighboring the transition. Numerical simulations show that the topological edge modes of critical chains can be stable in the presence of interactions and disorder.

  9. Dynamic structure factor for liquid He4 and quantum lattice model

    International Nuclear Information System (INIS)

    Lee, M.H.

    1975-01-01

    It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)

  10. Matter fields near quantum critical point in (2+1)-dimensional U(1) gauge theory

    International Nuclear Information System (INIS)

    Liu Guozhu; Li Wei; Cheng Geng

    2010-01-01

    We study chiral phase transition and confinement of matter fields in (2+1)-dimensional U(1) gauge theory of massless Dirac fermions and scalar bosons. The vanishing scalar boson mass, r=0, defines a quantum critical point between the Higgs phase and the Coulomb phase. We consider only the critical point r=0 and the Coulomb phase with r>0. The Dirac fermion acquires a dynamical mass when its flavor is less than certain critical value N f c , which depends quantitatively on the flavor N b and the scalar boson mass r. When N f f c , the matter fields carrying internal gauge charge are all confined if r≠0 but are deconfined at the quantum critical point r=0. The system has distinct low-energy elementary excitations at the critical point r=0 and in the Coulomb phase with r≠0. We calculate the specific heat and susceptibility of the system at r=0 and r≠0, which can help to detect the quantum critical point and to judge whether dynamical fermion mass generation takes place.

  11. Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    Science.gov (United States)

    Roy, Bitan; Foster, Matthew S.

    2018-01-01

    We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the

  12. Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    Directory of Open Access Journals (Sweden)

    Bitan Roy

    2018-03-01

    Full Text Available We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (E_{k}=±sqrt[v^{2}k_{x}^{2}+b^{2}k_{y}^{2n}] with n=2, which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ(E∼|E|^{1/n}], this anisotropic semimetal (ASM is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model or (ii get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ε=1/n, augmented with a 1/n expansion (parametrically suppressing quantum fluctuations in the higher dimension by perturbing away from the one-dimensional limit, realized by setting ε=0 and n→∞. We identify charge density wave (CDW, antiferromagnet (AFM, and singlet s-wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (∼ε takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2-symmetric quantum critical

  13. Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe

    Energy Technology Data Exchange (ETDEWEB)

    Levy, F; Huxley, A [CEA, SPSMS, DRFMC, F-38054 Grenoble, (France); Levy, F; Sheikin, I [CNRS, GHMFL, F-38042 Grenoble, (France); Huxley, A [Univ Edinburgh, Scottish Univ Phys Alliance, Sch Phys, Edinburgh EH9 3JZ, Midlothian, (United Kingdom)

    2007-07-01

    When a pure material is tuned to the point where a continuous phase-transition line is crossed at zero temperature, known as a quantum critical point (QCP), completely new correlated quantum ordered states can form. These phases include exotic forms of superconductivity. However, as superconductivity is generally suppressed by a magnetic field, the formation of superconductivity ought not to be possible at extremely high field. Here, we report that as we tune the ferromagnet, URhGe, towards a QCP by applying a component of magnetic field in the material's easy magnetic plane, superconductivity survives in progressively higher fields applied simultaneously along the material's magnetic hard axis. Thus, although superconductivity never occurs above a temperature of 0.5 K, we find that it can survive in extremely high magnetic fields, exceeding 28 T. (authors)

  14. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory.

    Science.gov (United States)

    Abram, M; Zegrodnik, M; Spałek, J

    2017-09-13

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  15. A quantum criticality perspective on the charging of narrow quantum-dot levels

    OpenAIRE

    Kashcheyevs, V.; Karrasch, C.; Hecht, T.; Weichselbaum, A.; Meden, V.; Schiller, A.

    2008-01-01

    Understanding the charging of exceptionally narrow levels in quantum dots in the presence of interactions remains a challenge within mesoscopic physics. We address this fundamental question in the generic model of a narrow level capacitively coupled to a broad one. Using bosonization we show that for arbitrary capacitive coupling charging can be described by an analogy to the magnetization in the anisotropic Kondo model, featuring a low-energy crossover scale that depends in a power-law fashi...

  16. Field-induced quantum criticality of a spin-1/2 planar ferromagnet

    International Nuclear Information System (INIS)

    Mercaldo, M T; Rabuffo, I; Cesare, L De; D'Auria, A Caramico

    2009-01-01

    The low-temperature critical properties and crossovers of a spin- 1/2 planar ferromagnet in a longitudinal magnetic field are explored in terms of an anisotropic bosonic action, suitable to describe the spin model in the low-temperature regime. This is performed adopting a procedure which combines an averaging over dynamic degrees of freedom and the classical Wilson renormalization group transformation. Within this framework we get the phase boundary, ending in a quantum critical point, and general expressions for the correlation length and susceptibility as functions of the temperature and the applied magnetic field within the disordered phase. In particular, two crossovers occur decreasing the temperature with the magnetic field fixed at its quantum critical point value, which might be actually observable in complex magnetic compounds, as suggested by recent experiments.

  17. Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model

    Science.gov (United States)

    Sousa, J. Ricardo de

    A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.

  18. Identification of the low-energy excitations in a quantum critical system

    Directory of Open Access Journals (Sweden)

    Tom Heitmann

    2017-05-01

    Full Text Available We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.242Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R (2006].

  19. Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point

    Science.gov (United States)

    Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng

    2018-03-01

    Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.

  20. On the possibility of complete revivals after quantum quenches to a critical point

    Science.gov (United States)

    Najafi, K.; Rajabpour, M. A.

    2017-07-01

    In a recent letter [J. Cardy, Phys. Rev. Lett. 112, 220401 (2014), 10.1103/PhysRevLett.112.220401], the author made a very interesting observation that complete revivals of quantum states after quantum quench can happen in a period that is a fraction of the system size. This is possible for critical systems that can be described by minimal conformal field theories with central charge c detect a regime in the phase diagram of the XY chain in which one can not determine the period of the partial revivals using the quasiparticle picture.

  1. Some critical considerations on the present epistemological and scientific debate on quantum mechanics

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1985-09-01

    Some general methodological considerations aimed to guarantee the necessary logical rigor to the present debate on quantum mechanics are presented. In particular some misunderstandings about the implications of the critical analysis put forward by Einstein, Podolsky and Rosen (EPR) which can be found in the literature, are discussed. These misunderstandings are shown to arise from possible underestimates, overestimates and misinterpretations of the EPR argument. It is argued that the difficulties pointed out by EPR are, in a sense that will be defined precisely, unavoidable. A model which tries to solve the difficulties arising from quantum non separability effects when macroscopic systems are involved, is briefly sketched. (author)

  2. The Amplification of the Critical Temperature by Quantum Size Effects In a Superlattice of Quantum Wires

    International Nuclear Information System (INIS)

    Bianconi, A.; Missori, M.; Saini, N.L.; Oyanagi, H.; Yamaguchi, H.; Nishihara, Y.; Ha, D.H.; Della Longa, S.

    1995-01-01

    Here we report experimental evidence that the high Tc superconductivity in a cuprate perovskite occurs in a superlattice of quantum wires. The structure of the high Tc superconducting CuO 2 plane in Bi 2 Sr 2 CaCu 2 O 8+y (Bi2212) at the mesoscopic level (10-100 A) has been determined. It is decorated by a plurality of parallel superconducting stripes of width L=14± 1 A defined by the domain walls formed by stripes of width W=11+1 A characterized by a 0.17 A shorter Cu-O (apical) distance and a large tilting angle θ =12±4degree of the distorted square pyramids. We show that this particular heterostructure provides the physical mechanism raising Tc from the low temperature range Tc 2 plane by a factor ∼10 is realized by 1) tuning the Fermi level near the bottom of the second ubband of the stripes, with k y =2π/L, formed by the quantum size effect and 2) by forming a superlattice of wires with domain walls of width W of the order of the superconducting coherence length ξ 0 . (author)

  3. Nonlinear quenches of power-law confining traps in quantum critical systems

    International Nuclear Information System (INIS)

    Collura, Mario; Karevski, Dragi

    2011-01-01

    We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.

  4. Universal Scaling and Critical Exponents of the Anisotropic Quantum Rabi Model

    Science.gov (United States)

    Liu, Maoxin; Chesi, Stefano; Ying, Zu-Jian; Chen, Xiaosong; Luo, Hong-Gang; Lin, Hai-Qing

    2017-12-01

    We investigate the quantum phase transition of the anisotropic quantum Rabi model, in which the rotating and counterrotating terms are allowed to have different coupling strengths. The model interpolates between two known limits with distinct universal properties. Through a combination of analytic and numerical approaches, we extract the phase diagram, scaling functions, and critical exponents, which determine the universality class at finite anisotropy (identical to the isotropic limit). We also reveal other interesting features, including a superradiance-induced freezing of the effective mass and discontinuous scaling functions in the Jaynes-Cummings limit. Our findings are extended to the few-body quantum phase transitions with N >1 spins, where we expose the same effective parameters, scaling properties, and phase diagram. Thus, a stronger form of universality is established, valid from N =1 up to the thermodynamic limit.

  5. Decofinement, dimensional crossover and quantum criticality in coupled correlated chains with frustration

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    The dynamics of the charge sector of a one-dimensional quarter-filled electronic system with extended Hubbard interactions were recently mapped onto that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. Motivated by studying the effects of inter-chain couplings, we investigate the phase diagram for the case of a system of many coupled effective (TFIM) chains. A random phase approximation analysis reveals a phase diagram with an ordered phase existing at finite temperatures. The phase boundary ends at a zero temperature quantum critical point. Critical quantum fluctuations are found to drive a zero temperature deconfinement transition, as well as enhance the dispersion of excitations in the transverse directions, leading to a dimensional crossover at finite temperatures. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (author)

  6. Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe3

    Science.gov (United States)

    Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.

    2018-05-01

    Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our recent studies on the compound LaCrGe3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change of order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.

  7. Critical fluctuations and the rates of interstate switching near the excitation threshold of a quantum parametric oscillator.

    Science.gov (United States)

    Lin, Z R; Nakamura, Y; Dykman, M I

    2015-08-01

    We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum fluctuations induce transitions between the period-two states over the quasienergy barrier. We find the effective quantum activation energies for such transitions and their scaling with the difference of the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation time with the quantum noise parameters in the critical region near the threshold. The results are extended to oscillators with nonlinear friction.

  8. Relative criterion for validity of a semiclassical approach to the dynamics near quantum critical points.

    Science.gov (United States)

    Wang, Qian; Qin, Pinquan; Wang, Wen-ge

    2015-10-01

    Based on an analysis of Feynman's path integral formulation of the propagator, a relative criterion is proposed for validity of a semiclassical approach to the dynamics near critical points in a class of systems undergoing quantum phase transitions. It is given by an effective Planck constant, in the relative sense that a smaller effective Planck constant implies better performance of the semiclassical approach. Numerical tests of this relative criterion are given in the XY model and in the Dicke model.

  9. Rare-Region-Induced Avoided Quantum Criticality in Disordered Three-Dimensional Dirac and Weyl Semimetals

    Directory of Open Access Journals (Sweden)

    J. H. Pixley

    2016-06-01

    Full Text Available We numerically study the effect of short-ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively theoretically studied quantum critical point separating semimetal and diffusive-metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H and exactly calculate the density of states (DOS near zero energy, using a combination of Lanczos on H^{2} and the kernel polynomial method on H. We establish the existence of two distinct types of low-energy eigenstates contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and (ii nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space regions with the largest (and rarest local random potential. Using twisted boundary conditions, we are able to systematically find and study these two (essentially independent types of eigenstates. We find that the Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal quantum critical point is converted to an avoided quantum criticality that is “rounded out” by nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean Dirac point. However, the crossover effects of the avoided (or hidden criticality manifest themselves in a so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results for

  10. Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function

    CERN Document Server

    Mavromatos, Nikolaos E

    1995-01-01

    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...

  11. Quantum Statistical Mechanics on a Quantum Computer

    OpenAIRE

    De Raedt, H.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.

    1999-01-01

    We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.

  12. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  13. Role of the antiferromagnetic bulk spins in exchange bias

    International Nuclear Information System (INIS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-01-01

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  14. Quantum criticality and emergence of the T/B scaling in strongly correlated metals

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    A new type of scaling observed in heavy-electron metal β-YbAlB_4, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.

  15. Quantum criticality and first-order transitions in the extended periodic Anderson model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-03-01

    We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.

  16. Singularity of the London penetration depth at quantum critical points in superconductors.

    Science.gov (United States)

    Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir

    2013-10-11

    We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As(1-x)P(x))2 [K. Hashimoto et al., Science 336, 1554 (2012)].

  17. Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point

    Science.gov (United States)

    Kastrinakis, George

    2018-05-01

    We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.

  18. Quantum criticality and emergence of the T/B scaling in strongly correlated metals

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shinji [Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu (Japan); Miyake, Kazumasa [Toyota Physical and Chemical Research Institute, Nagakute (Japan)

    2016-02-15

    A new type of scaling observed in heavy-electron metal β-YbAlB{sub 4}, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.

  19. Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields.

    Science.gov (United States)

    Boechat, B; Florencio, J; Saguia, A; de Alcantara Bonfim, O F

    2014-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.

  20. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    Science.gov (United States)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  1. Ising critical behaviour in the one-dimensional frustrated quantum XY model

    International Nuclear Information System (INIS)

    Granato, E.

    1993-06-01

    A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs

  2. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  3. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  4. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  5. Magnetic-field control of quantum critical points of valence transition.

    Science.gov (United States)

    Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques

    2008-06-13

    We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd.

  6. On the magnetism of Heisenberg double-layer antiferromagnets

    International Nuclear Information System (INIS)

    Uijen, C.M.J. van.

    1980-01-01

    The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)

  7. Avoided Quantum Criticality and Magnetoelastic Coupling in BaFe2-xNixAs2

    DEFF Research Database (Denmark)

    Lu, Xingye; Gretarsson, H.; Zhang, Rui

    2013-01-01

    suppressed and separated, resulting in sNT>T with increasing x, as was previously observed. However, the temperature separation between sT and NT decreases with increasing x for x≥0.065, tending toward a quantum bicritical point near optimal superconductivity at x≈0.1. The zero-temperature transition...... is preempted by the formation of a secondary incommensurate magnetic phase in the region 0.088≲x≲0.104, resulting in a finite value of NT≈cT+10 K above the superconducting dome around x≈0.1. Our results imply an avoided quantum critical point, which is expected to strongly influence the properties of both...

  8. Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains

    International Nuclear Information System (INIS)

    Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del

    2016-01-01

    We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)

  9. Antiferromagnetic spinor condensates in a bichromatic superlattice

    Science.gov (United States)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  10. Origin of quantum criticality in Yb-Al-Au approximant crystal and quasicrystal

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb 15 Al 34 Au 51 , the approximant crystal Yb 14 Al 35 Au 51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ∼ T -0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size. (author)

  11. High spin cycles: topping the spin record for a single molecule verging on quantum criticality

    Science.gov (United States)

    Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.

    2018-03-01

    The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10].20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe-Gd coupling and a frustrating next-nearest neighbour Fe-Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a `flatland' of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.

  12. Stokes phenomena and quantum integrability in non-critical string/M theory

    International Nuclear Information System (INIS)

    Chan, Chuan-Tsung; Irie, Hirotaka; Yeh, Chi-Hsien

    2012-01-01

    We study Stokes phenomena of the k×k isomonodromy systems with an arbitrary Poincaré index r, especially which correspond to the fractional-superstring (or parafermionic-string) multi-critical points (p-hat,q-hat)=(1,r-1) in the k-cut two-matrix models. Investigation of this system is important for the purpose of figuring out the non-critical version of M theory which was proposed to be the strong-coupling dual of fractional superstring theory as a two-matrix model with an infinite number of cuts. Surprisingly the multi-cut boundary-condition recursion equations have a universal form among the various multi-cut critical points, and this enables us to show explicit solutions of Stokes multipliers in quite wide classes of (k,r). Although these critical points almost break the intrinsic Z k symmetry of the multi-cut two-matrix models, this feature makes manifest a connection between the multi-cut boundary-condition recursion equations and the structures of quantum integrable systems. In particular, it is uncovered that the Stokes multipliers satisfy multiple Hirota equations (i.e. multiple T-systems). Therefore our result provides a large extension of the ODE/IM correspondence to the general isomonodromy ODE systems endowed with the multi-cut boundary conditions. We also comment about a possibility that N=2 QFT of Cecotti-Vafa would be “topological series” in non-critical M theory equipped with a single quantum integrability.

  13. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  14. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum

  15. Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula

    Science.gov (United States)

    Milsted, Ashley; Vidal, Guifre

    2017-12-01

    We study the emergence of two-dimensional conformal symmetry in critical quantum spin chains on the finite circle. Our goal is to characterize the conformal field theory (CFT) describing the universality class of the corresponding quantum phase transition. As a means to this end, we propose and demonstrate automated procedures which, using only the lattice Hamiltonian H =∑jhj as an input, systematically identify the low-energy eigenstates corresponding to Virasoro primary and quasiprimary operators, and assign the remaining low-energy eigenstates to conformal towers. The energies and momenta of the primary operator states are needed to determine the primary operator scaling dimensions and conformal spins, an essential part of the conformal data that specifies the CFT. Our techniques use the action, on the low-energy eigenstates of H , of the Fourier modes Hn of the Hamiltonian density hj. The Hn were introduced as lattice representations of the Virasoro generators by Koo and Saleur [Nucl. Phys. B 426, 459 (1994), 10.1016/0550-3213(94)90018-3]. In this paper, we demonstrate that these operators can be used to extract conformal data in a nonintegrable quantum spin chain.

  16. CePdAl. A frustrated Kondo lattice at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Veronika [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Karlsruhe Institute of Technology (Germany); Sakai, Akito; Gegenwart, Philipp [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Huesges, Zita; Lucas, Stefan; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Taubenheim, Christian; Grube, Kai; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany); Huang, Chien-Lung [Karlsruhe Institute of Technology (Germany); Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    CePdAl is one of the rare frustrated Kondo lattice systems that can be tuned across a quantum critical point (QCP) by means of chemical pressure, i. e., the substitution of Pd by Ni. Magnetic frustration and Kondo effect are antithetic phenomena: The Kondo effect with the incipient delocalization of the magnetic moments, is not beneficial for the formation of a frustrated state. On the other hand, magnetic frustrated exchange interactions between the local moments can result in a breakdown of Kondo screening. Furthermore, the fate of frustration is unclear when approaching the QCP, since there is no simple observable to quantify the degree of frustration. We present thermodynamic and neutron scattering experiments on CePd{sub 1-x}Ni{sub x}Al close to the critical concentration x ∼0.14. Our experiments indicate that even at the QCP magnetic frustration is still present, opening the perspective to find new universality classes at such a quantum phase transition.

  17. Quantum dynamics and entanglement of spins on a square lattice

    DEFF Research Database (Denmark)

    Christensen, Niels Bech; Rønnow, Henrik Moodysson; McMorrow, Desmond Francis

    2007-01-01

    in understanding quantum effects in one-dimensional quantum antiferromagnets, but a complete experimental description of even simple two-dimensional antiferromagnets is lacking. Here we describe a comprehensive set of neutron scattering measurements that reveal a non-spin-wave continuum and strong quantum effects...

  18. Quantum criticality in He3 bi-layers and heavy fermion compounds

    International Nuclear Information System (INIS)

    Benlagra, A.

    2009-11-01

    Despite intense experimental as well as theoretical efforts the understanding of physical phenomena peculiar to heavy fermion compounds remains one of the major problems in condensed matter physics; this research thesis considers the recently proposed theoretical approaches to describe the critical regime properties. This approach is based on the following idea: critical modes which are responsible for this regime are non-magnetic and are associated to the destruction of the Kondo effect between localized magnetic impurities and travelling conduction electrons at the quantum critical point. The author derives an analytic expression for the free energy within this model by using the Luttinger-Ward functional approach within the frame of the Eliashberg theory. The obtained expressions are transparently including the effect of critical fluctuations, integrated in a self-coherent way. The behaviour of different thermodynamic quantities is then deduced from these expressions. The result is compared with recent experiments on heavy fermion compounds as well as on a Helium-3 bilayer system adsorbed on graphite substrate in order to test the validity of such a model. Strengths and drawbacks of the model are outlined

  19. How to manipulate magnetic states of antiferromagnets

    Science.gov (United States)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  20. Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers

    International Nuclear Information System (INIS)

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2015-01-01

    The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)

  1. Magnetism of one-dimensional strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    International Nuclear Information System (INIS)

    Lee, J. Y.; Guan, X. W.; Batchelor, M. T.; Lee, C.

    2009-01-01

    We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin-exchange interaction via the thermodynamic Bethe ansatz method. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field H is less than the lower critical field H c1 ; (ii) a ferromagnetic phase of atoms in the hyperfine state |F=1, m F =1> when the external magnetic field exceeds the upper critical field H c2 ; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region H c1 c2 . At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired m F =1 bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.

  2. Antiferromagnetic exchange coupling measurements on single Co clusters

    Science.gov (United States)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  3. Giant Magnetic Fluctuations at the Critical Endpoint in Insulating HoMnO3

    Science.gov (United States)

    Choi, Y. J.; Lee, N.; Sharma, P. A.; Kim, S. B.; Vajk, O. P.; Lynn, J. W.; Oh, Y. S.; Cheong, S.-W.

    2013-04-01

    Although abundant research has focused recently on the quantum criticality of itinerant magnets, critical phenomena of insulating magnets in the vicinity of critical endpoints (CEP’s) have rarely been revealed. Here we observe an emergent CEP at 2.05 T and 2.2 K with a suppressed thermal conductivity and concomitant strong critical fluctuations evident via a divergent magnetic susceptibility (e.g., χ''(2.05T,2.2K)/χ''(3T,2.2K)≈23,500%, comparable to the critical opalescence in water) in the hexagonal insulating antiferromagnet HoMnO3.

  4. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.

    2017-05-30

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  5. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.; Sinova, J.; Manchon, Aurelien; Marti, X.; Wunderlich, J.; Felser, C.

    2017-01-01

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  6. Entropy excess in strongly correlated Fermi systems near a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2012-12-15

    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau

  7. Quantum critical fluctuations due to nested Fermi surface: The case of spinless fermions

    International Nuclear Information System (INIS)

    Schlottmann, P.

    2007-01-01

    A quantum critical point (QCP) can be obtained by tuning the critical temperature of a second-order phase transition to zero. A simple model of spinless fermions with nested Fermi surface leading to a charge density wave is considered. The QCP is obtained by tuning the nesting mismatch of the Fermi surface, which has the following consequences: (i) For the tuned QCP, the specific heat over T and the effective mass increase with the logarithm of the temperature as T is lowered. (ii) For the tuned QCP the linewidth of the quasi-particles is sublinear in T and ω. (iii) The specific heat and the linewidth display a crossover from non-Fermi liquid (∼T) to Fermi liquid (∼T 2 ) behavior with increasing nesting mismatch and decreasing temperature. (iv) For the tuned QCP, the dynamical charge susceptibility has a quasi-elastic peak with a linewidth proportional to T. (v) For non-critical Fermi vector mismatch the peak is inelastic. (vi) While the specific heat and the quasi-particle linewidth are only weakly dependent on the geometry of the nested Fermi surfaces, the momentum-dependent dynamical susceptibility is expected to be affected by the shape of the Fermi surface

  8. Two-loop disorder effects on the nematic quantum criticality in d-wave superconductors

    International Nuclear Information System (INIS)

    Wang, Jing

    2015-01-01

    The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic quantum critical point that is supposed to exist in some d-wave cuprate superconductors. This non-Fermi liquid state may be turned into a disorder-dominated diffusive metal if the fermions also couple to a disordered potential that generates a relevant perturbation in the sense of renormalization group theory. It is therefore necessary to examine whether a specific disorder is relevant or not. We study the interplay between critical nematic fluctuation and random chemical potential by performing renormalization group analysis. The parameter that characterizes the strength of random chemical potential is marginal at the one-loop level, but becomes marginally relevant after including the two-loop corrections. Thus even weak random chemical potential leads to diffusive motion of nodal fermions and the significantly critical behaviors of physical implications, since the strength flows eventually to large values at low energies. - Highlights: • The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic QCP. • The strength of random chemical potential is marginal at the one-loop level. • The strength becomes marginally relevant after including the two-loop corrections. • The diffusive metallic state is induced by the marginally relevant disorder. • The behaviors of some physical observables are presented at the nematic QCP

  9. Weakly interacting topological insulators: Quantum criticality and the renormalization group approach

    Science.gov (United States)

    Chen, Wei

    2018-03-01

    For D -dimensional weakly interacting topological insulators in certain symmetry classes, the topological invariant can be calculated from a D - or (D +1 ) -dimensional integration over a certain curvature function that is expressed in terms of single-particle Green's functions. Based on the divergence of curvature function at the topological phase transition, we demonstrate how a renormalization group approach circumvents these integrations and reduces the necessary calculation to that for the Green's function alone, rendering a numerically efficient tool to identify topological phase transitions in a large parameter space. The method further unveils a number of statistical aspects related to the quantum criticality in weakly interacting topological insulators, including correlation function, critical exponents, and scaling laws, that can be used to characterize the topological phase transitions driven by either interacting or noninteracting parameters. We use 1D class BDI and 2D class A Dirac models with electron-electron and electron-phonon interactions to demonstrate these principles and find that interactions may change the critical exponents of the topological insulators.

  10. Landau-Ginzburg Limit of Black Hole's Quantum Portrait: Self Similarity and Critical Exponent

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Recently we have suggested that the microscopic quantum description of a black hole is an overpacked self-sustained Bose-condensate of N weakly-interacting soft gravitons, which obeys the rules of 't Hooft's large-N physics. In this note we derive an effective Landau-Ginzburg Lagrangian for the condensate and show that it becomes an exact description in a semi-classical limit that serves as the black hole analog of 't Hooft's planar limit. The role of a weakly-coupled Landau-Ginzburg order parameter is played by N. This description consistently reproduces the known properties of black holes in semi-classical limit. Hawking radiation, as the quantum depletion of the condensate, is described by the slow-roll of the field N. In the semiclassical limit, where black holes of arbitrarily small size are allowed, the equation of depletion is self similar leading to a scaling law for the black hole size with critical exponent 1/3.

  11. Transport anomalies and quantum criticality in electron-doped cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu; Yu, Heshan; He, Ge; Hu, Wei; Yuan, Jie; Zhu, Beiyi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jin, Kui, E-mail: kuijin@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-06-15

    Highlights: • Electrical transport and its complementary thermal transport on electron-doped cuprates are reviewed. • The common features of electron-doped cuprates are sorted out and shown in the last figure. • The complex superconducting fluctuations and quantum fluctuations are distinguished. - Abstract: Superconductivity research is like running a marathon. Three decades after the discovery of high-T{sub c} cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary of the intriguing phenomena reported in electron-doped cuprates from the aspect of electrical transport as well as the complementary thermal transport. We attempt to sort out common features of the electron-doped family, e.g. the strange metal, negative magnetoresistance, multiple sign reversals of Hall in mixed state, abnormal Nernst signal, complex quantum criticality. Most of them have been challenging the existing theories, nevertheless, a unified diagram certainly helps to approach the nature of electron-doped cuprates.

  12. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  13. Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.

    Science.gov (United States)

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-12

    A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.

  14. LaCu6-xAgx : A promising host of an elastic quantum critical point

    Science.gov (United States)

    Poudel, L.; Cruz, C. de la; Koehler, M. R.; McGuire, M. A.; Keppens, V.; Mandrus, D.; Christianson, A. D.

    2018-05-01

    Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P21 / c) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc = 0.225 . All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx .

  15. Critical strain region evaluation of self-assembled semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sales, D L [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Pizarro, J [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Garcia, R [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Trevisi, G [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Frigeri, P [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Nasi, L [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Franchi, S [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Molina, S I [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain)

    2007-11-28

    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga)As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor devices.

  16. Analogies between antiferromagnets and antiferroelectrics

    International Nuclear Information System (INIS)

    Enz, C.P.; Matthias, B.T.

    1980-01-01

    Ferro- and antiferromagnetism in the Laves phase TiBesub(2-x) Cusub(x) occurs for 0.1 4 H 2 PO 4 and its solid solutions with TlH 2 PO 4 and with the ferroelectric KH 2 PO 4 are discussed as function of deuteration and of pressure. Another analogy as function of pressure is established with the antiferroelectric perovskite PbZrO 3 . (author)

  17. At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited

    Science.gov (United States)

    Rams, Marek M.; Sierant, Piotr; Dutta, Omyoti; Horodecki, Paweł; Zakrzewski, Jakub

    2018-04-01

    We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N-1 (Heisenberg scaling) in terms of the number of elementary subsystems used N . The second approach compares the overlap between the ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an elementary estimator represented by a single-site magnetization already outperforms the Heisenberg behavior providing the N-1.5 scaling. In this case, Fisher information sets the ultimate scaling as N-1.75, which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal scaling predictions of the estimation precision offered by such observables, both at zero and finite temperatures, and support them with numerical simulations in the model. We provide an experimental proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for preparation of quantum states involved is taken into account.

  18. Soft Coulomb gap and asymmetric scaling towards metal-insulator quantum criticality in multilayer MoS2.

    Science.gov (United States)

    Moon, Byoung Hee; Bae, Jung Jun; Joo, Min-Kyu; Choi, Homin; Han, Gang Hee; Lim, Hanjo; Lee, Young Hee

    2018-05-24

    Quantum localization-delocalization of carriers are well described by either carrier-carrier interaction or disorder. When both effects come into play, however, a comprehensive understanding is not well established mainly due to complexity and sparse experimental data. Recently developed two-dimensional layered materials are ideal in describing such mesoscopic critical phenomena as they have both strong interactions and disorder. The transport in the insulating phase is well described by the soft Coulomb gap picture, which demonstrates the contribution of both interactions and disorder. Using this picture, we demonstrate the critical power law behavior of the localization length, supporting quantum criticality. We observe asymmetric critical exponents around the metal-insulator transition through temperature scaling analysis, which originates from poor screening in insulating regime and conversely strong screening in metallic regime due to free carriers. The effect of asymmetric scaling behavior is weakened in monolayer MoS 2 due to a dominating disorder.

  19. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy

    2004-01-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  20. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  1. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs

  2. Contradiction between the results of observations of resistance and critical current quantum oscillations in asymmetric superconducting rings

    International Nuclear Information System (INIS)

    Gurtovoi, V. L.; Dubonos, S. V.; Karpii, S. V.; Nikulov, A. V.; Tulin, V. A.

    2007-01-01

    Magnetic field dependences of critical current, resistance, and rectified voltage of asymmetric (half circles of different widths) and symmetrical (half circles of equal widths) aluminum rings close to the super-conducting transition were measured. All these dependences are periodic magnetic field functions with periods corresponding to the flux quantum in the ring. The periodic dependences of critical current measured in opposite directions were found to be close to each other for symmetrical rings and shifted with respect to each other by half the flux quantum in asymmetric rings with ratios between half circle widths of from 1.25 to 2. This shift of the dependences by a quarter of the flux quantum as the ring becomes asymmetric makes critical current anisotropic, which explains the effect of alternating current rectification observed for asymmetric rings. Shifts of the extrema of the periodic dependences of critical current by a quarter of the flux quantum directly contradict the results obtained by measuring asymmetric ring resistance oscillations, whose extrema are, as for symmetrical rings, observed at magnetic fluxes equal to an integer and a half of flux quanta

  3. Dynamical Quantum Phase Transitions in Spin Chains with Long-Range Interactions: Merging Different Concepts of Nonequilibrium Criticality

    Science.gov (United States)

    Žunkovič, Bojan; Heyl, Markus; Knap, Michael; Silva, Alessandro

    2018-03-01

    We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying interactions characterized by an exponent α , which can be experimentally realized in ion traps. We focus on two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical transverse field. We argue that such a transition occurs only for long-range interactions α ≤2 . The second class corresponds to the emergence of time-periodic singularities in the return probability to the ground-state manifold which is obtained for all values of α and agrees with the order parameter transition for α ≤2 . We characterize how the two classes of nonequilibrium criticality correspond to each other and give a physical interpretation based on the symmetry of the time-evolved quantum states.

  4. Deconfined quantum criticality of the O(3) nonlinear σ model in two spatial dimensions: A renormalization-group study

    International Nuclear Information System (INIS)

    Kim, Ki-Seok

    2005-01-01

    We investigate the quantum phase transition of the O(3) nonlinear σ model without Berry phase in two spatial dimensions. Utilizing the CP 1 representation of the nonlinear σ model, we obtain an effective action in terms of bosonic spinons interacting via compact U(1) gauge fields. Based on the effective field theory, we find that the bosonic spinons are deconfined to emerge at the quantum critical point of the nonlinear σ model. It is emphasized that the deconfinement of spinons is realized in the absence of Berry phase. This is in contrast to the previous study of Senthil et al. [Science 303, 1490 (2004)], where the Berry phase plays a crucial role, resulting in the deconfinement of spinons. It is the reason why the deconfinement is obtained even in the absence of the Berry phase effect that the quantum critical point is described by the XY ('neutral') fixed point, not the IXY ('charged') fixed point. The IXY fixed point is shown to be unstable against instanton excitations and the instanton excitations are proliferated. At the IXY fixed point it is the Berry phase effect that suppresses the instanton excitations, causing the deconfinement of spinons. On the other hand, the XY fixed point is found to be stable against instanton excitations because an effective internal charge is zero at the neutral XY fixed point. As a result the deconfinement of spinons occurs at the quantum critical point of the O(3) nonlinear σ model in two dimensions

  5. Quench dynamics near a quantum critical point: Application to the sine-Gordon model

    International Nuclear Information System (INIS)

    De Grandi, C.; Polkovnikov, A.; Gritsev, V.

    2010-01-01

    We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter λ(t) changes in time as λ(t)∼υt r , based on the adiabatic expansion of the excitation probability in powers of υ. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility χ 2r+2 (λ), which for sudden quenches (r=0) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.

  6. Effective Hamiltonian and low-lying eigenenergy clustering patterns of four-sublattice antiferromagnets

    DEFF Research Database (Denmark)

    Zhang, N.G.; Henley, C.L.; Rischel, C.

    2002-01-01

    We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...

  7. Increasing the critical thickness of InGaAs quantum wells using strain-relief technologies

    Science.gov (United States)

    Jones, Andrew Marquis

    The advantages of optical communication through silica fiber have made long-distance electrical communication through copper wire obsolete. The two windows of operation for long-haul optical communication are centered around the wavelengths of 1.3 mum and 1.55 mum, which have minimal amounts of signal attenuation and dispersion. Benefits of optical communications within these windows include low system costs, high bandwidth, and high system reliability which have encouraged the development of emitters and receivers at these relatively long wavelengths. Long-wavelength semiconductor lasers are typically fabricated on InP substrates, but their performance suffers greatly with increases in operating temperature. Laser diodes on GaAs substrates are not as sensitive to operating temperature due to quantum-well active regions with relative deep potential barriers, but critical thickness limits the wavelength ceiling to 1.1 mum. Strain-relief technologies are currently being investigated to enable long-wavelength lasers with deeper potential wells leading to a corresponding increase in characteristic temperatures. Having a larger lattice constant than GaAs enables ternary InGaAs substrates to increase the 1.1-mum wavelength ceiling. Extending this ceiling to one of the optical communication windows could enable high-characteristic-temperature, long-wavelength lasers. Broad-area and buried-heterostructure lasers have demonstrated the potential of ternary substrates to increase characteristic temperatures and emission wavelengths. Wavelengths as long as 1.15 mum and characteristic temperatures as high as 145 K have been achieved. Reduced-area metalorganic chemical vapor deposition involves the deposition of strained materials on isolated islands. Due to the discontinuous nature of reduced-area epitaxy, strained materials are allowed to expand near the mesa edges, decreasing the overall strain in the structure. Laser diodes using this technology have been successfully

  8. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  9. The Heisenberg antiferromagnet on the square-kagomé lattice

    Directory of Open Access Journals (Sweden)

    J. Richter

    2009-01-01

    Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.

  10. Evolution of topological features in finite antiferromagnetic Heisenberg chains

    International Nuclear Information System (INIS)

    Chen Changfeng

    2003-01-01

    We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed

  11. Theory of Correlated Pairs of Electrons Oscillating in Resonant Quantum States to Reach the Critical Temperature in a Metal

    OpenAIRE

    Aroche, Raúl Riera; Rosas-Cabrera, Rodrigo Arturo; Burgos, Rodrigo Arturo Rosas; Betancourt-Riera, René; Betancourt-Riera, Ricardo

    2017-01-01

    The formation of Correlated Electron Pairs Oscillating around the Fermi level in Resonant Quantum States (CEPO-RQS), when a metal is cooled to its critical temperature T=Tc, is studied. The necessary conditions for the existence of CEPO-RQS are analyzed. The participation of electron-electron interaction screened by an electron dielectric constant of the form proposed by Thomas Fermi is considered and a physical meaning for the electron-phonon-electron interaction in the formation of the CEPO...

  12. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-Dimensional Dirac Semimetals.

    Science.gov (United States)

    Fu, Bo; Zhu, Wei; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong; Zhang, Zhenyu

    2017-04-07

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behavior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. We further show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.

  13. Off-criticality behaviour of the Blume-Capel quantum chain as a check of Zamolodchikov's conjecture

    International Nuclear Information System (INIS)

    Gehlen, G. v.

    1989-07-01

    Using finite-size numerical calculations, we study the off-criticality behaviour of the Blume-Capel quantum chain in the neighbourhood of the c=7/10 tricritical Ising point. Moving from the tricritical point in the (1/10, 1/10)- and (3/5, 3/5)-directions into the disordered region, we find masses and thresholds in agreement with the structure proposed by Zamolodchikov from conformal field theory. Moving in the opposite directions, the spectrum is degenerate between the Z 2 -even and Z 2 -odd sectors, suggesting an underlying supersymmetry. The free-particle energy momentum relation and the scaling properties off criticality are checked. (orig.)

  14. Atomic spin-chain realization of a model for quantum criticality

    NARCIS (Netherlands)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I.S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A.F.

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be

  15. Specific heat study of quasi-one-dimensional antiferromagnetic model for an organic polymer chain

    International Nuclear Information System (INIS)

    Qu Shaohua; Zhu Lin

    2008-01-01

    The specific heat of an infinite one-dimensional polymer chain bearing periodically arranged side radicals connected to the even sites is studied by means of quantum transfer-matrix method based on a Ising-Heisenberg model. In the absence of the exchange interactions between side radicals and the main chain, the curves of specific heat show a round peak due to the antiferromagnetic excitations for the all antiferromagnetic interactions along the polymer chain. Considering the exchange interactions between the side radicals and the main chain, the curves of the specific heat show double-peak structure for ferromagnetic interactions between the radicals and main chain, indicating that a competition between ferromagnetic and antiferromagnetic interactions and the possibility of the occurrence of the stable ferrimagnetic state along the polymer chain

  16. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  17. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  18. Antiferromagnetic resonance excited by oscillating electric currents

    Science.gov (United States)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  19. Investigation of some critical parameters of buffer conditions for the development of quantum dots-based optical sensors

    International Nuclear Information System (INIS)

    Yuan Jipei; Guo Weiwei; Wang Erkang

    2008-01-01

    The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ. Dozens folds elevation of the quenching extents were observed with the increase of concentrations of H + and sodium citrate, and the quenching mechanisms were also fundamentally different with the changes of the surrounding buffer solutions. The quenching models were proposed and analyzed at different buffer conditions. Taking pH values for example, QDs quenching obeyed the sphere of effective quenching model with the sphere radii of 8.29 nm at pH 8.0, the linear Stern-Volmer equation with Stern-Volmer constant of 2.0 x 10 3 mol -1 L at pH 7.0, and the two binding site static quenching model at basic conditions. The elucidation of parameters for assay performance was important in the development of QDs-based optical sensors

  20. Magnon Spin Nernst Effect in Antiferromagnets

    Science.gov (United States)

    Zyuzin, Vladimir A.; Kovalev, Alexey A.

    2016-11-01

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  1. Magnon Spin Nernst Effect in Antiferromagnets.

    Science.gov (United States)

    Zyuzin, Vladimir A; Kovalev, Alexey A

    2016-11-18

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  2. Critical regions with central charge c=1/2,7/10,4/5 in the spin-1 quantum chain

    International Nuclear Information System (INIS)

    Mueller, E.

    1991-01-01

    The phase diagramm of the Blume-Emery-Griffiths spin-1-quantum chain is calculated by finite-size scaling with respect to all four parameters. We locate the three-dimensional critical manifold and determine a two-dimensional tricritical surface where the spectra exhibit conformal invariance corresponding to the central charges c=7/10 and 4/5. Choosing one parameter to be zero, we can treat the model analytically and from this the spectrum on a large part of the Ising-like critical region can be understood: there the spectrum consists of conformal c=1/2-levels on which a massive spectrum is superimposed. Calculating three-point functions we study which perturbations by primary fields lead from c=4/5 or c=7/10-critical points to Ising-type regions. (orig.) [de

  3. Logarithmic terms in entanglement entropies of 2D quantum critical points and Shannon entropies of spin chains.

    Science.gov (United States)

    Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E

    2011-07-08

    Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.

  4. Ferromagnetic quantum criticality in the uranium-based ternary compounds URhSi, URhAl, and UCoAl

    International Nuclear Information System (INIS)

    Combier, Tristan

    2014-01-01

    In this thesis we explore the ferromagnetic quantum criticality in three uranium-based ternary compounds, by means of thermodynamical and transport measurements on single crystal samples, at low temperature and high pressure. URhSi and URhAl are itinerant ferromagnets, while UCoAl is a paramagnet being close to a ferromagnetic instability. All of them have Ising-type magnetic ordering. In the orthorhombic compound URhSi, we show that the Curie temperature decreases upon applying a magnetic field perpendicular to the easy magnetization axis, and a quantum phase transition is expected around 40 T. In the hexagonal system URhAl, we establish the pressure-temperature phase diagram for the first time, indicating a quantum phase transition around 5 GPa. In the isostructural compound UCoAl, we investigate the metamagnetic transition with measurements of magnetization, Hall effect, resistivity and X-ray magnetic circular dichroism. Some intriguing magnetic relaxation phenomena are observed, with step-like features. Hall effect and resistivity have been measured at dilution temperatures, under hydrostatic pressure up to 2.2 GPa and magnetic field up to 16 T. The metamagnetic transition terminates under pressure and magnetic field at a quantum critical endpoint. In this region, a strong effective mass enhancement occurs, and an intriguing difference between up and down field sweeps appears in transverse resistivity. This may be the signature of a new phase, supposedly linked to the relaxation phenomena observed in magnetic measurements, arising from frustration on the quasi-Kagome lattice of uranium atoms in this crystal structure. (author) [fr

  5. Critical investigation of Jauch's approach to the quantum theory of measurement

    International Nuclear Information System (INIS)

    Herbut, Fedor

    1986-01-01

    To make Jauch's approach more realistic, his assumptions are modified in two ways: (1) On the quantum system plus the measuring apparatus (S + MA) after the measuring interaction has ceased, one can actually measure only operators of the form given. (2) Measurement is defined in the most general way (including, besides first-kind, also second-kind and third-kind or indirect measurements). It is shown that Jauch's basic result that the microstates (statistical operators) of S + MA before and after the collapse correspond to the same macrostate (belong to the same equivalence class of microstates) remains valid under the above modifications, and that the significance of this result goes beyond measurement theory. On the other hand, it is argued that taking the orthodox (i.e. uncompromisingly quantum) view of quantum mechanics, it is not the collapse, but the Jauch-type macrostates that are spurious in a Jauch-type theory. (author)

  6. A criticism to the fundamental principles of physics: The problem of the quantum measurement (I)

    International Nuclear Information System (INIS)

    Mormontoy Cardenas, Oscar; Marquez Jacome, Mateo

    2008-01-01

    The wave packet model collapse debt to extremely fast fluctuations of quantum field leads to interpreting the phase speed of the harmonic waves that compose the packet, as the speed of time flux. If it consider that harmonics waves keep different phases, the waves packet scattered almost instantly and, as consequence of that, allows the possibility of the quantum system energy it is measure with exactitude absolute in given time. These results induce to think that the time would being a superforce which would determine finally the events of universe and being responsible of the intrinsic pulsations observable in the physics systems. (author)

  7. Novel quantum criticality in CeRu2Si2 near absolute zero observed by thermal expansion and magnetostriction.

    Science.gov (United States)

    Yoshida, J; Abe, S; Takahashi, D; Segawa, Y; Komai, Y; Tsujii, H; Matsumoto, K; Suzuki, H; Onuki, Y

    2008-12-19

    We report linear thermal expansion and magnetostriction measurements for CeRu2Si2 in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal expansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point.

  8. Quantum criticality and the formation of a putative electronic liquid crystal in Sr3Ru2O7

    International Nuclear Information System (INIS)

    Mackenzie, A.P.; Bruin, J.A.N.; Borzi, R.A.; Rost, A.W.; Grigera, S.A.

    2012-01-01

    We present a brief review of the physical properties of Sr 3 Ru 2 O 7 , in which the approach to a magnetic-field-tuned quantum critical point is cut off by the formation of a novel phase with transport characteristics consistent with those of a nematic electronic liquid crystal. Our goal is to summarise the physics that led to that conclusion being drawn, describing the key experiments and discussing the theoretical approaches that have been adopted. Throughout the review we also attempt to highlight observations that are not yet understood, and to discuss the future challenges that will need to be addressed by both experiment and theory.

  9. Optical determination of the Neel vector in a CuMnAs thin-film antiferromagnet

    Czech Academy of Sciences Publication Activity Database

    Saidl, Vít; Němec, P.; Wadley, P.; Hills, V.; Campion, R. P.; Novák, Vít; Edmonds, K. W.; Maccherozzi, F.; Dhesi, S.S.; Gallagher, B. L.; Trojánek, F.; Kuneš, Jan; Železný, Jakub; Malý, P.; Jungwirth, Tomáš

    2017-01-01

    Roč. 11, č. 2 (2017), s. 91-96 ISSN 1749-4885 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : magneto-optics * spintronics * antiferromagnets Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 37.852, year: 2016

  10. NMR relaxation rate in quasi one-dimensional antiferromagnets

    Science.gov (United States)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  11. Novel spin excitation in the high field phase of an S=1 antiferromagnetic chain

    International Nuclear Information System (INIS)

    Hagiwara, M.; Kashiwagi, T.; Kimura, S.; Honda, Z.; Kindo, K.

    2007-01-01

    We report the results of high-field multi-frequency ESR experiment on the S=1 Heisenberg antiferromagnetic chain Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) for the fields up to about 55T and the frequencies up to about 2THz. We have found that excitation branches above the critical field (H c ) where the energy gap closes change into one branch around 15T which becomes close to the paramagnetic line at high fields. The branch above 15T fits well the conventional antiferromagnetic resonance mode with easy planar anisotropy. We compare the results with those in a weakly coupled antiferromagnetic dimer compound KCuCl 3 and discuss the origin of the branches observed above H c

  12. Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature

  13. A method for quantitative nondestructive evaluation using high critical temperature superconducting quantum interference device

    International Nuclear Information System (INIS)

    Kojima, Fumio; Nagashima, Yoshinori; Suzuki, Daisuke; Kasai, Naoko

    1998-01-01

    This paper is concerned with a computational method for detecting and characterizing defect shapes in conducting materials using superconducting quantum interference device (SQUID). The mathematical model is described by electrical potential problems with mixed boundary condition. The model output is then represented by Biot-Savart's law. The estimation scheme is proposed for reconstructing defect shapes in sample materials with defect. Successful numerical results are reported in order to show the feasibility of the proposed algorithms. (author)

  14. A method for quantitative nondestructive evaluation using high critical temperature superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Fumio; Nagashima, Yoshinori [Osaka Inst. of Tech. (Japan); Suzuki, Daisuke; Kasai, Naoko

    1998-06-01

    This paper is concerned with a computational method for detecting and characterizing defect shapes in conducting materials using superconducting quantum interference device (SQUID). The mathematical model is described by electrical potential problems with mixed boundary condition. The model output is then represented by Biot-Savart`s law. The estimation scheme is proposed for reconstructing defect shapes in sample materials with defect. Successful numerical results are reported in order to show the feasibility of the proposed algorithms. (author)

  15. Critical Investigation of Jauch's Approach to the Quantum Theory of Measurement

    Science.gov (United States)

    Herbut, Fedor

    1986-08-01

    To make Jauch's approach more realistic, his assumptions are modified in two ways: (1) On the quantum system plus the measuring apparatus (S+MA) after the measuring interaction has ceased, one can actually measure only operators of the form A⊗∑ k b k Q k ,where A is any Hermitian operator for S, the resolution of the identity ∑kQk=1 defines MA as a classical system (following von Neumann), and the b k are real numbers (S and MA are distant). (2) Measurement is defined in the most general way (including, besides first-kind, also second-kind and third-kind or indirect measurements). It is shown that Jauch's basic result that the microstates (statistical operators) of S+MA before and after the collapse correspond to the same macrostate (belong to the same equivalence class of microstates) remains valid under the above modifications, and that the significance of this result goes beyond measurement theory. On the other hand, it is argued that taking the orthodox (i.e. uncompromisingly quantum) view of quantum mechanics, it is not the collapse, but the Jauch-type macrostates that are spurious in a Jauch-type theory.

  16. Theoretical modeling of diluted antiferromagnetic systems

    International Nuclear Information System (INIS)

    Pozo, J; Elgueta, R; Acevedo, R

    2000-01-01

    Some magnetic properties of a Diluted Antiferromagnetic System (DAFS) are studied. The model of the two sub-networks for antiferromagnetism is used and a Heisenberg Hamiltonian type is proposed, where the square operators are expressed in terms of boson operators with the approach of spin waves. The behavior of the diluted system's fundamental state depends basically on the competition effect between the anisotropy field and the Weiss molecular field. The approach used allows the diluted system to be worked for strong anisotropies as well as when these are very weak

  17. Singularity of classical and quantum correlations at critical points of the Lipkin-Meshkov-Glick model in bipartition and tripartition of spins

    OpenAIRE

    Xiu-Xing, Zhang; Fu-Li, Li

    2012-01-01

    We study the classical correlation (CC) and quantum discord (QD) between two spin subgroups of the Lipkin-Meshkov-Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartition, we find that the classical correlations and all the quantum correlations including the QD, the entanglement of formation (EoF) and the logarithmic negativity (LN) are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartition, however, ...

  18. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien

    2017-01-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque

  19. Ferromagnetism and antiferromagnetism coexistence in SrRu1-xMnxO3: Density functional calculation

    International Nuclear Information System (INIS)

    Hadipour, H.; Fallahi, S.; Akhavan, M.

    2011-01-01

    We have calculated the electronic structure of SrRu 1-x Mn x O 3 using the full potential linearized augmented plane wave method by LSDA and LSDA+U. The antiparallel alignment between the Mn and Ru ions are consistent with the competition between ferromagnetism and antiferromagnetism in the low Mn-doped polycrystalline samples. This is in contrast to the appearance of quantum critical point and FM and AFM transitions in the single crystal measurement. Our results show that the discrepancy between different experimental phase diagrams is related to the conditions of sample preparation and also the difference between the degree of magnetic interactions between the Mn and Ru moments. The DOS and the calculated Mn magnetic moment is similar to the magnetic moment of a purely ionic compound with d 3 configuration. The AFM state has band gap of 1.2 eV at the Fermi energy predicting an insulating behavior. -- Graphical abstract: The antiparallel alignment between the Mn and Ru ions are consistent with the competition between ferromagnetism and antiferromagnetism with the formation of a spin glass phase. We have calculated the electronic structure of SrRu 1-x Mn x O 3 using the full potential linearized augmented plane wave method by LSDA and LSDA+U in the range of both low and high Mn-doping for parallel and antiparallel alignments of Ru and Mn moments. In the low Mn-doped polycrystalline samples with tetragonal structure, the AFM hybridization between Mn and the Ru host lattice strongly favors alignment of the Ru moments, and provides an explanation for retaining of high Curie temperature of SrRuO 3 with Mn substitution. Display Omitted Research highlights: → For the low Mn-doping the AFM coupling between Mn and Ru becomes stable. → Results are consistent with the QCP between FM and AFM transitions in single crystals. → In high Mn-doping, electron correlation is important in predicting the insulating behavior.

  20. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    Science.gov (United States)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  1. Critical properties of the D=3 bond-mixed quantum Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Tsallis, C.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Stinchcombe, R.B.; Buck, B.

    1983-01-01

    Within a Migdal-Kadanoff-like real-space renormalisation group procedure critical properties of the quenched bond-mixed spin 1/2 Heisenberg ferromagnet in simple cubic lattice are treated. It is verified that it is possible, within a very simple framework, to obtain quite reliable results for the critical temperatures. In addition to that, a general method for renormalising arbitrary clusters of Heisenberg-coupled spins 1/2 is outlined. (Author) [pt

  2. Criticality of the D=2 quantum Heisenberg ferromagnet with quenched random anisotropic

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.

    1985-01-01

    The square-lattice spin 1/2 anisotropic Heisenberg ferromagnet is considered, with interactions whose symmetry can independently (quenched model) and randomly be of two competing types, namely the isotropic Heisenberg type and the Ising one. Within a real space renormalization group framework, a quite precise numerical calculation of the critical frontier is performed, and its main asymptotic behaviour are established. The relevant universality classes are also characterized, through the analysis of the correlation length critical exponent. (Author) [pt

  3. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  4. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  5. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  6. Metallic and antiferromagnetic fixed points from gravity

    Science.gov (United States)

    Paul, Chandrima

    2018-06-01

    We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.

  7. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  8. Thermoinduced magnetization in nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine

    2004-01-01

    We show that there is a thermoinduced contribution to the magnetic moment of nanoparticles of antiferromagnetic materials. It arises from thermal excitations of the uniform spin-precession mode, and it has the unusual property that its magnitude increases with increasing temperature. This has...

  9. Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As(1-x)P(x))2.

    Science.gov (United States)

    Walmsley, P; Putzke, C; Malone, L; Guillamón, I; Vignolles, D; Proust, C; Badoux, S; Coldea, A I; Watson, M D; Kasahara, S; Mizukami, Y; Shibauchi, T; Matsuda, Y; Carrington, A

    2013-06-21

    We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.

  10. Boundary critical phenomena and a quasiparticle-quasihole symmetric metal-insulator: transition in a constricted quantum hall circuit

    International Nuclear Information System (INIS)

    Lal, Siddhartha

    2007-09-01

    Motivated by surprises in recent experimental findings, we study transport in a model of a quantum Hall edge system with a gate-voltage controlled constriction. A finite backscattered current at finite edge-bias is explained as arising from the splitting of edge current caused by the difference in the filling fractions of the bulk (ν 1 ) and constriction (ν 2 ) quantum Hall fluid regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model. The constriction region splits the incident long-wavelength chiral edge density-wave excitations among the transmitting and reflecting edge states encircling it. The competition between two interedge tunneling processes taking place inside the constriction, related by a quasiparticle-quasihole (qp-qh) symmetry, is accounted for by computing the boundary theories of the system. This competition is found to determine the strong coupling configuration of the system. A separatrix of qp-qh symmetric gapless critical states is found to lie between the relevant RG flows to a metallic and an insulating configuration of the constriction system. This constitutes an interesting generalisation of the Kane-Fisher quantum impurity model. The features of the RG phase diagram are also confirmed by computing various correlators and chiral linear conductances of the system. In this way, our results find excellent agreement with many recent puzzling experimental results for the cases of ν 1 = 1/3, 1. We also discuss and make predictions for the case of a constriction system with ν 2 = 5/2. (author)

  11. Non-Fermi Liquid Behavior Close to a Quantum Critical Point in a Ferromagnetic State without Local Moments

    Directory of Open Access Journals (Sweden)

    E. Svanidze

    2015-03-01

    Full Text Available A quantum critical point (QCP occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid behavior, manifested in the logarithmic divergence of the specific heat both in the ferro-and the paramagnetic states, as well as linear temperature dependence of the low-temperature resistivity. With doping, critical scaling is observed close to the QCP, as the critical exponents δ, γ, and β have weak composition dependence, with δ nearly twice and β almost half of their respective mean-field values. The unusually large paramagnetic moment μ_{PM}∼1.3μ_{B}/F.U. is nearly composition independent. Evidence for strong spin fluctuations, accompanying the QCP at x_{c}=0.035±0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.

  12. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2

    Science.gov (United States)

    Kliemt, K.; Krellner, C.

    2016-09-01

    The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.

  13. Mapping of parent hamiltonians from abelian and non-abelian quantum hall states to exact models of critical spin chains

    CERN Document Server

    Greiter, Martin

    2011-01-01

    This monograph introduces an exact model for a critical spin chain with arbitrary spin S, which includes the Haldane--Shastry model as the special case S=1/2.  While spinons in the Haldane-Shastry model obey abelian half-fermi statistics, the spinons in the general model introduced here obey non-abelian statistics.  This manifests itself through topological choices for the fractional momentum spacings.  The general model is derived by mapping exact models of quantized Hall states onto spin chains.  The book begins with pedagogical review of all the relevant models including the non-abelian statistics in the Pfaffian Hall state, and is understandable to every student with a graduate course in quantum mechanics.

  14. Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    International Nuclear Information System (INIS)

    Kawasaki, S; Tabuchi, T; Zheng Guoqing; Wang, X F; Chen, X H

    2010-01-01

    75 As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe 2 As 2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependencies of nuclear-spin-lattice relaxation rate (1/T 1 ) measured in the tetragonal phase show no coherence peak just below T c (P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar ≤ P ≤ 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.

  15. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  16. Stability of the antiferromagnetic state in the electron doped iridates

    Science.gov (United States)

    Bhowal, Sayantika; Moradi Kurdestany, Jamshid; Satpathy, Sashi

    2018-06-01

    Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin–orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2‑x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.

  17. Critical behavior in two-dimensional quantum gravity and equations of motion of the string

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Wadia, S.R.

    1990-01-01

    The authors show how consistent quantization determines the renormalization of couplings in a quantum field theory coupled to gravity in two dimensions. The special status of couplings corresponding to conformally invariant matter is discussed. In string theory, where the dynamical degree of freedom of the two-dimensional metric plays the role of time in target space, these renormalization group equations are themselves the classical equations of motion. Time independent solutions, like classical vacuua, correspond to the situation in which matter is conformally invariant. Time dependent solutions, like tunnelling configurations between vacuua, correspond to special trajectories in theory space. The authors discuss an example of such a trajectory in the space containing the c ≤ 1 minimal models. The authors also discuss the connection between this work and the recent attempts to construct non-pertubative string theories based on matrix models

  18. Critical issues in the formation of quantum computer test structures by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T.; Lo, C. C.; Weis, C. D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-04-06

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO2/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, 121Sb25+, in SiO2/Si is also discussed.

  19. Critical tunnel currents and dissipation of Quantum-Hall bilayers in the excitonic condensate state

    International Nuclear Information System (INIS)

    Yoon, Y; Huang, X; Yarar, E; Dietsche, W; Tiemann, L; Schmult, S; Klitzing, K v

    2011-01-01

    Transport and tunneling is studied in the regime of the excitonic condensate at total filling factor one using the counterflow geometry. At small currents the coupling between the layers is large making the two layers virtually electrically inseparable. Above a critical current the tunneling becomes negligible. An onset of dissipation in the longitudinal transport is observed in the same current range.

  20. Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet

    International Nuclear Information System (INIS)

    Basu, S.; Singh, A.

    1996-01-01

    A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy -J. Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets, is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on La 2 CuO 4 . copyright 1996 The American Physical Society

  1. Critical values of the Yang-Yang functional in the quantum sine-Gordon model

    International Nuclear Information System (INIS)

    Lukyanov, Sergei L.

    2011-01-01

    The critical values of the Yang-Yang functional corresponding to the vacuum states of the sine-Gordon QFT in the finite-volume are studied. Two major applications are discussed: (i) generalization of Fendley-Saleur-Zamolodchikov relations to arbitrary values of the sine-Gordon coupling constant, and (ii) connection problem for a certain two-parameter family of solutions of the Painleve III equation.

  2. Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Ali Pinar, M. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Erdinc, Ahmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2006-04-24

    The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made.

  3. Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Ali Pinar, M.; Erdinc, Ahmet; Canko, Osman

    2006-01-01

    The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made

  4. Theory of antiferromagnetic pairing in cuprate superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.

    2006-01-01

    A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed

  5. Magnetic behaviour of interacting antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Markovich, V; Jung, G; Gorodetsky, G; Puzniak, R; Wisniewski, A; Skourski, Y; Mogilyanski, D

    2012-01-01

    Magnetic properties of interacting La 0.2 Ca 0.8 MnO 3 nanoparticles have been investigated. The field-induced transition from antiferromagnetic (AFM) to ferromagnetic (FM) state in the La 0.2 Ca 0.8 MnO 3 bulk has been observed at exceptionally high magnetic fields. For large particles, the field-induced transition widens while magnetization progressively decreases. In small particles the transition is almost fully suppressed. The thermoremanence and isothermoremanence curves constitute fingerprints of irreversible magnetization originating from nanoparticle shells. We have ascribed the magnetic behaviour of nanoparticles to a core-shell scenario with two main magnetic contributions; one attributed to the formation of a collective state formed by FM clusters in frustrated coordination at the surfaces of interacting AFM nanoparticles and the other associated with inner core behaviour as a two-dimensional diluted antiferromagnet. (paper)

  6. Huge residual resistivity in the quantum critical region of CeAgSb2

    International Nuclear Information System (INIS)

    Nakashima, Miho; Kirita, Shingo; Asai, Rihito; Kobayashi, Tatsuo C; Okubo, Tomoyuki; Yamada, Mineko; Thamizhavel, Arumugam; Inada, Yoshihiko; Settai, Rikio; Galatanu, Andre; Yamamoto, Etsuji; Ebihara, Takao; Onuki, Yoshichika

    2003-01-01

    We have studied the effect of pressure on the electrical resistivity of a high-quality single crystal CeAgSb 2 which has a small net ferromagnetic moment of 0.4μ B /Ce. The magnetic ordering temperature T ord = 9.7 K decreases with increasing pressure p and disappears at a critical pressure p c ≅ 3.3 GPa. The residual resistivity, which is close to zero up to 3 GPa, increases steeply above 3 GPa, reaching 55μΩ cm at p c . A huge residual resistivity is found to appear when the magnetic order disappears. (letter to the editor)

  7. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  8. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  9. Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain

    OpenAIRE

    Hao, Xiang; Zhu, Shiqun

    2008-01-01

    The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...

  10. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  11. Properties of Haldane Excitations and Multiparticle States in the Antiferromagnetic Spin-1 Chain Compound CsNiCl3

    International Nuclear Information System (INIS)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.; Tun, Z.; Coldea, Radu; Enderle, M.

    2002-01-01

    We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl 3 . Measurements over a wide range of wave-vector transfers along the chain confirm that above T N CsNiCl 3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length ζ = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl 3 for T ∼< 12 K, possibly caused by multiply frustrated interchain interactions.

  12. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  13. Model calculation of thermal conductivity in antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.

    2015-11-01

    A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.

  14. Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories.

    Science.gov (United States)

    Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M

    2016-11-18

    The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.

  15. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  16. Antiferromagnetism of nuclear matter in the model with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2006-01-01

    The possibility of ferromagnetic (FM) antiferromagnetic (AFM) phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi-liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter undergoes a phase transition to the AFM spin state. The self-consistent equations of spin-polarized nuclear matter have no solutions corresponding to FM spin ordering and, hence, the FM transition does not appear. The AFM spin state properties are investigated [ru

  17. Pressure induced superconductivity in the antiferromagnetic Dirac material BaMnBi2

    OpenAIRE

    Huimin Chen; Lin Li; Qinqing Zhu; Jinhu Yang; Bin Chen; Qianhui Mao; Jianhua Du; Hangdong Wang; Minghu Fang

    2017-01-01

    The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi2 with T c of ~4?K at 2.6?GPa. Both the higher upper critical field, ? 0 H...

  18. Phase transition induced for external field in tree-dimensional isotropic Heisenberg antiferromagnet

    OpenAIRE

    Neto, Minos A.; Viana, J. Roberto; Salmon, Octavio D. R.; Filho, E. Bublitz; de Sousa, J. Ricardo

    2017-01-01

    In this paper, we report mean-field and effective-field renormalization group calculations on the isotropic Heisenberg antiferromagnetic model under a longitudinal magnetic field. As is already known, these methods, denoted by MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic certain Bravais lattice. Our attention has been on the obtantion of the critical frontier in the plane of temperature versus magnetic field, for the simple cubic ...

  19. Interactions between superconductivity and quantum criticality in CeCoIn5, URhGe and UCoGe

    International Nuclear Information System (INIS)

    Howald, L.

    2011-01-01

    The subject of this thesis is the analyze of the superconducting upper critical field (Hc2) and the interaction between superconductivity and quantum critical points (QCP), for the compounds CeCoIn 5 , URhGe and UCoGe. In CeCoIn 5 , study by mean of resistivity of the Fermi liquid domain allows us to localize precisely the QCP at ambient pressure. This analyze rule out the previously suggested pinning of Hc2(0) at the QCP. In a second part, the evolution of Hc2 under pressure is analyzed. The superconducting dome is unconventional in this compound with two characteristic pressures: at 1.6 GPa, the superconducting transition temperature is maximum but it is at 0.4 GPa that physical properties (maximum of Hc2(0), maximum of the initial slope dHc2/dT, maximum of the specific heat jump DC/C,... ) suggest a QCP. We explain this antagonism with pair-breaking effects in the proximity of the QCP. With these two experiments, we suggest a new phase diagram for CeCoIn 5 . In a third part, measurements of thermal conductivity on URhGe and UCoGe are presented. We obtained the bulk superconducting phase transition and confirmed the unusual curvature of the slope dHc2/dT observed by resistivity. The temperatures and fields dependence of thermal conductivity allow us to identify a non-electronic contribution for heat transport down to the lowest temperature (50 mK) and probably associated with magnon or longitudinal fluctuations. We also identified two different domains in the superconducting region, These domains are compatible with a two bands model for superconductivity. Thermopower measurements on UCoGe reveal a strong anisotropy to current direction and several anomaly under field applied in the b direction. We suggest a Lifshitz transition to explain our observations in these two compounds. (author) [fr

  20. Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies

    Science.gov (United States)

    Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg

    2018-03-01

    A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.

  1. Interplay between magnetic quantum criticality, Fermi surface and unconventional superconductivity in UCoGe, URhGe and URu2Si2

    International Nuclear Information System (INIS)

    Bastien, Gael

    2017-01-01

    This thesis is concentrated on the ferromagnetic superconductors UCoGe and URhGe and on the hidden order state in URu 2 Si 2 . In the first part the pressure temperature phase diagram of UCoGe was studied up to 10.5 GPa. Ferromagnetism vanishes at the critical pressure pc≅1 GPa. Unconventional superconductivity and non Fermi liquid behavior can be observed in a broad pressure range around pc. The superconducting upper critical field properties were explained by the suppression of the magnetic fluctuations under field. In the second part the Fermi surfaces of UCoGe and URhGe were investigated by quantum oscillations. In UCoGe four Fermi surface pockets were observed. Under magnetic field successive Lifshitz transitions of the Fermi surface have been detected. The observed Fermi surface pockets in UCoGe evolve smoothly with pressure up to 2.5 GPa and do not show any Fermi surface reconstruction at the critical pressure pc. In URhGe, three heavy Fermi surface pockets were detected by quantum oscillations. In the last part the quantum oscillation study in the hidden order state of URu 2 Si 2 shows a strong g factor anisotropy for two Fermi surface pockets, which is compared to the macroscopic g factor anisotropy extracted from the upper critical field study. (author) [fr

  2. Nobel Lecture: Topological quantum matter*

    Science.gov (United States)

    Haldane, F. Duncan M.

    2017-10-01

    Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."

  3. Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet

    Science.gov (United States)

    Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.

    Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.

  4. Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model

    International Nuclear Information System (INIS)

    Si-Lakhal, B.; Abada, A.

    2003-11-01

    Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)

  5. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    Science.gov (United States)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  6. Mechanisms for spin supersolidity in S=(1/2) spin-dimer antiferromagnets

    International Nuclear Information System (INIS)

    Picon, J.-D.; Albuquerque, A. F.; Schmidt, K. P.; Laflorencie, N.; Troyer, M.; Mila, F.

    2008-01-01

    Using perturbative expansions and the contractor renormalization (CORE) algorithm, we obtain effective hard-core bosonic Hamiltonians describing the low-energy physics of S=1/2 spin-dimer antiferromagnets known to display supersolid phases under an applied magnetic field. The resulting effective models are investigated by means of mean-field analysis and quantum Monte Carlo simulations. A ''leapfrog mechanism,'' through means of which extra singlets delocalize in a checkerboard-solid environment via correlated hoppings, is unveiled that accounts for the supersolid behavior

  7. Anisotropic magnetoresistance in an antiferromagnetic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Fina, I.; Martí, Xavier; Yi, D.; Liu, J.; Chu, J.-H.; Rayan-Serrao, C.; Suresha, S.; Shick, Alexander; Železný, Jakub; Jungwirth, Tomáš; Fontcuberta, J.; Ramesh, R.

    2014-01-01

    Roč. 5, SEP (2014), "4671-1"-"4671-7" ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G; GA ČR(CZ) GAP204/10/0330 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : antiferromagnets * semiconductors * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 11.470, year: 2014

  8. Room-temperature antiferromagnetic memory resistor

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, P.; Paull, R.J.; Clarkson, J.D.; Kudrnovský, Josef; Turek, Ilja; Kuneš, Jan; Yi, D.; Chu, J.-H.; Nelson, C.T.; You, L.; Arenholz, E.; Salahuddin, S.; Fontcuberta, J.; Jungwirth, Tomáš; Ramesh, R.

    2014-01-01

    Roč. 13, č. 4 (2014), s. 367-374 ISSN 1476-1122 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR(CZ) GAP204/11/1228 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 ; RVO:68081723 Keywords : spintronics * antiferromagnets * memories Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 36.503, year: 2014

  9. Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects

    Science.gov (United States)

    Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.

    2014-07-01

    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.

  10. Singularities of classical and quantum correlations at critical points of the Lipkin–Meshkov–Glick model in bipartitions and tripartitions of spins

    International Nuclear Information System (INIS)

    Zhang, Xiu-xing; Li, Fu-li

    2013-01-01

    By using the lowest order expansion in the number of spins, we study the classical correlation (CC) and quantum correlations (QCs) between two spin subgroups of the Lipkin–Meshkov–Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartitions, we find that the CC and all the QCs are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartitions, however, the CC is still divergent but the QCs remain finite at the critical point. The present result shows that the CC is very robust but the QCs are much frangible to the environment disturbance.

  11. Dirac Fermions in an Antiferromagnetic Semimetal

    Science.gov (United States)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.

    Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry  and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both  and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.

  12. Antiferromagnetic domains in rare earth metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S B [Hull Univ. (UK). Dept. of Applied Physics

    1975-12-01

    Anomalies in the c-axis elastic properties of antiferromagnetic Dy, 50% Tb-Ho and 60% Gd-Y are reported. The anomalies are only present when the sample is cycled from the ferromagnetic to the antiferromagnetic state and are attributed to domains in the helical regime.

  13. Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian

    1988-01-01

    The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs

  14. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine

    2007-01-01

    The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles, the co...

  15. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  16. NMR Study of the S=1/2 Quantum Kagome Lattice Antiferromagnet [Cu_3(titmb)_2(CH_3CO_2)_6]・H_2O(Frustrated Systems, Field-Induced Phase Transitions and Dynamics in Quantum Spin Systems)

    OpenAIRE

    Satoru, MAEGAWA; Kenji, YOSHIOKA; Shinichi, KAWAHARA; Akira, OYAMADA; Kenichi, FUJITA; Ryohei, YAMAGUCHI; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University

    2005-01-01

    A quantum kagome lattice magnet, [Cu_3(titmb)_2(CH_3CO_2)_6]・H_2O with s=1/2 has been studied by magnetization and NMR experiments. No magnetic phase transition was observed down to 180mK. The spin-lattice relaxation rate T^_1 above 20K is almost temperature independent, while below 10K the rates decrease sharply as the temperature is decreased, and can be described as T^_1=B exp(-△/κ_BT). The field dependence on the energy gap △ has been obtained and is found to show plateaus between 3.2 and...

  17. Quantum phase transition and thermodynamic properties of a fourfold magnetic periodic system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuling, E-mail: wangshuling0324.student@sina.com [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Ruixue [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Linjie [Department of Physics, China Three Gorges University, Yi Chang 443002 (China); Fu, Hua-Hua; Zhu, Si-cong [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ni, Yun [Huazhong University of Science and Technology, Wenhua College, Wuhan 430074 (China); Meng, Yan [Department of Physics, Xingtai University, Xingtai 054001 (China); Yao, Kailun [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of Science, Shenyang 110015 (China)

    2014-12-15

    Based on the experimental synthesis of organic compound verdazyl radical β-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl, consisting of four antiferromagnetic couplings, we study the magnetic properties and thermodynamic behaviors for different antiferromagnetic interactions using Green’s function theory. Under different fields, there are five regimes containing two gapless phases and three magnetization plateaus (M=0, 1/2 and saturated magnetization) distinguished by four critical lines, which are evidenced by the two-site entanglement entropy and closely related to the energy spectra. In addition, we calculate the susceptibility and specific heat, to demonstrate the low-lying excitations at low temperatures. It will provide guidance for us to synthesize varieties of unconventional magnetic materials, and stimulate future studies on quantum spin systems. - Highlights: • The antiferromagnetic interaction-magnetic field phase diagrams are constructed. • The magnetization per site makes different contribution to the 1/2 plateau. • The spectral functions for different magnetic interactions are studied. • We investigate the gapless or gapped low-lying excitations at low temperatures.

  18. Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice

    International Nuclear Information System (INIS)

    Ertaş Mehmet; Keskin Mustafa

    2013-01-01

    Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. (general)

  19. From classical physics to quantum physics. An historically-critical deductive derivation with application examples from solid-state physics

    International Nuclear Information System (INIS)

    Enders, P.

    2006-01-01

    This book goes a novel way from classical physics to quantum physics. After the description of Euler's and Helmholtz's representations of classical mechanics the Schroedinger equation is derivated without making any additional assumptions about the nature of quantum mechanical systems. Thereby not the differences between but the common properties of classical and quantum mechanics are accentuated and four fundamental problems of the quantization named by Schroedinger are solved. Extensively to the historical literature is related. This book applies not only to students and scientists but also to teachers and historians of natural sciences: It contains many details which enter no more into modern presentations of classical mechanics, but are important for the understanding of quantum mechanics [de

  20. Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1/2 Heisenberg Antiferromagnet

    Directory of Open Access Journals (Sweden)

    Hui Shao

    2017-12-01

    Full Text Available We study the spin-excitation spectrum (dynamic structure factor of the spin-1/2 square-lattice Heisenberg antiferromagnet and an extended model (the J-Q model including four-spin interactions Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ-function contribution to the structure factor expected from spin-wave (magnon excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu(DCOO_{2}·4D_{2}O, where a broad spectral-weight continuum at wave vector q=(π,0 was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π,0 show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q=(π/2,π/2 (as also seen experimentally. We further investigate the reasons for the small magnon weight at (π,0 and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π,0 in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π,0-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole pair in

  1. Ising antiferromagnet on the Archimedean lattices

    Science.gov (United States)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  2. Magnetostriction and magnetoelastic domains in antiferromagnets

    International Nuclear Information System (INIS)

    Gomonay, Helen; Loktev, Vadim M.

    2002-01-01

    The problem of the observable equilibrium domain structure (DS) in pure antiferromagnets is investigated with the use of continuous elasticity theory. It is shown that the difference between the bulk and surface magnetoelastic strains causes imaginary 'incompatibility elastic charges' analogous to the surface 'magnetic' charges in ferromagnets. The corresponding long-range field is shown to contribute to the 'stray' energy of the sample that governs the appearance of the DS, the contribution from the 'elastic charges' being proportional to the sample volume. Competition between the elastic 'stray' field, which favours inhomogeneous strain distribution, and an external field, which tends to make the sample homogeneous, provides a reversible reconstruction of the DS under the action of the external magnetic field. (author)

  3. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    Science.gov (United States)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  4. Quantum memory for images: A quantum hologram

    International Nuclear Information System (INIS)

    Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.

    2008-01-01

    Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve

  5. Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations

    Science.gov (United States)

    Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D.

    2018-04-01

    We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c =1 . The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.

  6. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  7. Thermal Entanglement and Critical Behavior of Magnetic Properties on a Triangulated Kagomé Lattice

    Directory of Open Access Journals (Sweden)

    N. Ananikian

    2011-01-01

    Full Text Available The equilibrium magnetic and entanglement properties in a spin-1/2 Ising-Heisenberg model on a triangulated Kagomé lattice are analyzed by means of the effective field for the Gibbs-Bogoliubov inequality. The calculation is reduced to decoupled individual (clusters trimers due to the separable character of the Ising-type exchange interactions between the Heisenberg trimers. The concurrence in terms of the three qubit isotropic Heisenberg model in the effective Ising field in the absence of a magnetic field is non-zero. The magnetic and entanglement properties exhibit common (plateau, peak features driven by a magnetic field and (antiferromagnetic exchange interaction. The (quantum entangled and non-entangled phases can be exploited as a useful tool for signalling the quantum phase transitions and crossovers at finite temperatures. The critical temperature of order-disorder coincides with the threshold temperature of thermal entanglement.

  8. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    Science.gov (United States)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  9. Antiferromagnetic ordering in the plumbide EuPdPb

    Energy Technology Data Exchange (ETDEWEB)

    Heletta, Lukas; Klenner, Steffen; Block, Theresa; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    The plumbide EuPdPb was synthesized in polycrystalline form by reaction of the elements in a sealed niobium ampoule in a muffle furnace. The structure was refined from single-crystal X-ray diffractometer data: TiNiSi type, Pnma, a = 752.4(2), b = 476.0(2), c = 826.8(2) pm, wR2 = 0.0485, 704 F{sup 2} values and 20 variables. The europium atoms are coordinated by two tilted and puckered Pd{sub 3}Pb{sub 3} hexagons (280-289 pm Pd-Pb) with pronounced Eu-Pd bonding (312-339 pm). Temperature-dependent magnetic susceptibility measurements show Curie-Weiss behaviour and an experimental magnetic moment of 7.35(1) μB per Eu atom. EuPdPb orders antiferromagnetically at T{sub N} = 13.8(5) K and shows a metamagnetic transition at a critical field of 15 kOe. {sup 151}Eu Moessbauer spectra confirm divalent europium (δ = -10.04(1) mm s{sup -1}) and show full magnetic hyperfine field splitting (B{sub hf} = 21.1(1) T) at 6 K.

  10. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    Science.gov (United States)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  11. Effect of anisotropic strain on the quantum critical phase of Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Daniel; Barber, Mark; Mackenzie, Andrew [MPI-Chemische Physik fester Stoffe, Dresden (Germany); Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, St Andrews (United Kingdom); Hicks, Clifford [MPI-Chemische Physik fester Stoffe, Dresden (Germany); Perry, Robin [SUPA, School of Physics, University of Edinburgh, Edinburgh (United Kingdom)

    2015-07-01

    We have developed a novel piezoelectric-based device for applying both compressive and tensile strains to single crystals. One particularly appealing target for such studies is Sr{sub 3}Ru{sub 2}O{sub 7}. Sr{sub 3}Ru{sub 2}O{sub 7} has a novel quantum critical phase around a metamagnetic transition at 8 T, which shows very strong transport anisotropy in the presence of weak symmetry-breaking fields. We discuss the response of this phase to applied anisotropic lattice strain.

  12. Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.

  13. Reciprocal propagation of surface modes in an antiferromagnetic film

    International Nuclear Information System (INIS)

    Oliveira, F.A.; Amato, M.A.

    1987-09-01

    Linear response theory is used to evaluate the Green's functions describing the fluctuations in an antiferromagnetic film at zero applied field. It is shown the similarities between the dielectric and magnetic excitations. (Author) [pt

  14. Electronic energy spectra in antiferromagnetic media with broken reciprocity

    International Nuclear Information System (INIS)

    Vitebsky, I.; Edelkind, J.; Bogachek, E.N.; Scherbakov, A.G.; Landman, U.

    1997-01-01

    Electronic energy spectra var-epsilon(q) of antiferromagnetically ordered media may display nonreciprocity; that is, the energies corresponding to Bloch states with wave numbers q and -q may be different. In this paper a simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antiferromagnetically ordered crystals as well as periodical layered structures. copyright 1997 The American Physical Society

  15. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  16. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  17. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    Science.gov (United States)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  18. Fluctuation dynamics near the quantum critical point in the S=1/2 Ising chain CoNb{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Steffen; Engelmayer, Johannes; Lorenz, Thomas; Hemberger, Joachim [II. Physikalisches Institut, Koeln Univ. (Germany)

    2016-07-01

    CoNb{sub 2}O{sub 6} is a model system for quantum phase transitions in magnetic field. Its structure consists of layers of CoO{sub 6} octahedrons separated by non-magnetic NbO{sub 6} layers. The edge-sharing oxygen octahedrons link the Co{sup 2+} spins via Co-O-Co superexchange and form 1D ferromagnetic zigzag chains along the orthorhombic c axis. Crystal field effects lead to an easy-axis anisotropy of the Co{sup 2+} moments in the ac plane and to an effective spin-1/2 chain system. The 1D spin system can be described by the Ising model. At T=0 K a transverse magnetic field can induce a quantum phase transition from a long range ferromagnetic state into a quantum paramagnetic state. Employing measurements of the complex AC-susceptibility in the frequency range 10 MHz < ν < 5 GHz for temperatures down to 50 mK we investigate the slowing down of the magnetic fluctuation dynamics in the vicinity of the critical field at μ{sub 0}H=5.25 T.

  19. The origins of the research on the foundations of quantum mechanics (and other critical activities) in Italy during the 1970s

    Science.gov (United States)

    Baracca, Angelo; Bergia, Silvio; Del Santo, Flavio

    2017-02-01

    We present a reconstruction of the studies on the Foundations of Quantum Mechanics carried out in Italy at the turn of the 1960s. Actually, they preceded the revival of the interest of the American physicists towards the foundations of quantum mechanics around mid-1970s, recently reconstructed by David Kaiser in a book of 2011. An element common to both cases is the role played by the young generation, even though the respective motivations were quite different. In the US they reacted to research cuts after the war in Vietnam, and were inspired by the New Age mood. In Italy the dissatisfaction of the young generations was rooted in the student protests of 1968 and the subsequent labour and social fights, which challenged the role of scientists. The young generations of physicists searched for new scientific approaches and challenged their own scientific knowledge and role. The criticism to the foundations of quantum mechanics and the perspectives of submitting them to experimental tests were perceived as an innovative research field and this attitude was directly linked to the search for an innovative and radical approach in the history of science. All these initiatives gave rise to booming activity throughout the 1970s, contributing to influence the scientific attitude and the teaching approach.

  20. Helical waves in easy-plane antiferromagnets

    Science.gov (United States)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  1. Antiferromagnetism and magnetoleasticity of UNiAl

    International Nuclear Information System (INIS)

    Sechovsky, V.; Honda, F.; Svoboda, P.; Prokes, K.; Chernyavsky, O.; Doerr, M.; Rotter, M.; Loewenhaupt, M.

    2003-01-01

    We report on a thermal-expansion (TE) and magnetostriction (MS) study of the antiferromagnet UNiAl at temperatures 2-90 K and in magnetic fields up to 16.5 T applied along the c-axis. The TE along the c-axis (in 0 T) exhibits a broad valley centered around 35 K. This anomaly is nearly removed in 16.5 T. For T≤7 K a sharp metamagnetic transition (MT) observed in UNiAl at 11.4 T and it is accompanied by abrupt MS effects of +1.3x10 -4 and -1.8x10 -4 along the a- and c-axis, respectively. In fields above the MT a negligible additional negative MS is induced along c-axis whereas the a-axis and consequently the volume expand considerably, which indicates a field-induced enhancement of the U magnetic moment. T>7 K, the MT becomes gradually smeared out but a non-negligible MS is observed even for T>T N . In the light of these results the TE anomaly measured in zero field may be attributed to AF that survives at temperatures far above T N

  2. Weyl magnons in noncoplanar stacked kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-03-01

    Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.

  3. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation

    Science.gov (United States)

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-04-01

    Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials.

  4. Dilute antiferromagnetism in magnetically doped phosphorene

    Directory of Open Access Journals (Sweden)

    Andrew Allerdt

    2017-11-01

    Full Text Available We study the competition between Kondo physics and indirect exchange on monolayer black phos-phorous using a realistic description of the band structure in combination with the density matrixrenormalization group (DMRG method. The Hamiltonian is reduced to a one-dimensional problemvia an exact canonical transformation that makes it amenable to DMRG calculations, yielding exactresults that fully incorporate the many-body physics. We find that a perturbative description of theproblem is not appropriate and cannot account for the slow decay of the correlations and the completelack of ferromagnetism. In addition, at some particular distances, the impurities decouple formingtheir own independent Kondo states. This can be predicted from the nodes of the Lindhard function.Our results indicate a possible route toward realizing dilute anti-ferromagnetism in phosphorene. Received: 19 September 2017, Accepted: 12 October 2017; Edited by: K. Hallberg; DOI: http://dx.doi.org/10.4279/PIP.090008 Cite as: A Allerdt, A E Feiguin, Papers in Physics 9, 090008 (2017

  5. Room-temperature antiferromagnetic memory resistor.

    Science.gov (United States)

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  6. Effect of Dzyaloshinskii-Moriya on Magnetic orders of J_1-J_2 Antiferromagnetic Heisenberg model

    Directory of Open Access Journals (Sweden)

    Fariba Masoudi

    2017-11-01

    Full Text Available Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM interaction cants the spins of one on the subluttices. The ground state of model is classically degenerate for , including infinit numbers of vorticity vectors that are able to minimize the model. This phase is important because of the probability of the existence of quantum spin liquid in this region. To investigate the effect of quantum fluctuation on the stability of the classical phase diagram, linear spin wave theory of  Holstein-Primakoff is used. The results show that in the classical degeneracy regime, the quantum fluctuations for  cause spiral order in this region. The ground state of model remains disorder for, and this region is a good place for finding quantum spin liquid

  7. Enhanced pairing of quantum critical metals near d=3+1

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Kachru, Shamit; Kaplan, Jared; Raghu, S.; Torroba, Gonzalo; Wang, Huajia

    2015-07-20

    We study the dynamics of a quantum critical boson coupled to a Fermi surface in intermediate energy regimes where the Landau damping of the boson can be parametrically controlled, either via large Fermi velocity or by large- N techniques. We develop a systematic approach to the BCS instability of such systems, including careful treatment of the enhanced log 2 and log 3 singularities which appear already at 1-loop. These singularities arise due to the exchange of a critical boson in the Cooper channel and are absent in Fermi liquid theory. We also treat possible instabilities to charge density wave (CDW) formation, and compare the scales Λ BCS and Λ CDW of the onset of the instabilities in different parametric regimes. We address the question of whether the dressing of the fermions into a non-Fermi liquid via interactions with the order parameter field can happen at energies > Λ BCS , Λ CDW .

  8. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment

    Science.gov (United States)

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.

    2015-10-01

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.

  9. Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires

    Science.gov (United States)

    Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.

    2016-04-01

    Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.

  10. Spin excitations and quantum criticality in the quasi-one-dimensional Ising-like ferromagnet CoCl2·2D2O in a transverse field

    DEFF Research Database (Denmark)

    Larsen, J.; Schäffer, T. K.; Hansen, U. B.

    2017-01-01

    We present experimental evidence for a quantum phase transition in the easy-axis S = 3/2 anisotropic quasione-dimensional ferromagnet CoCl2 · 2D2O in a transverse field. Elastic neutron scattering shows that the magnetic order parameter vanishes at a transverse critical field μ0Hc = 16.05(4) T......, while inelastic neutron scattering shows that the gap in the magnetic excitation spectrum vanishes at the same field value, and reopens for H>Hc. The field dependence of the order parameter and the gap are well described by critical exponents β = 0.45 ± 0.09 and zν close to 1/2, implying...... that the quantum phase transition in CoCl2 · 2D2O differs significantly from the textbook version of a S = 1/2 Ising chain in a transverse field. We attribute the difference to weak but finite three-dimensionality of the magnetic interactions....

  11. Magnetism of classical and quantum systems of localized spins

    International Nuclear Information System (INIS)

    Mariz, A.M.

    1985-01-01

    The static critical properties of localized are studied spin systems. Several models are discussed: (a) the anisotropic quantum Heisenberg ferromagnet on square lattice (with quenched bond-dilution and random anisotropy) and on simple cubic lattice; (b) the Z(4) ferromagnetic model on square lattice; (c) the Ising model on the Cayley tree, in the presence of competing interactions. The (a) and (b) problems are studied within a real-space Renormalisation Group (RG) approach. In both cases, methods to perform the relevant partial tracings, that are better than those available in the literature are developed. The critical frontiers obtained reproduce all known exact results, and they are high precision ones everywhere. Correlation lenght critical exponents (υ) and the crossover exponents (Φ) are also calculated. The values are, in degree of approximation, equal or superior to those obtained using the Migdal-Kadanoff RG. The (c) problem is investigated by constructing recursive relations (similar to RG); the resulting phase diagram (numerically exact) presents a set of modulated phases, besides the ferromagnetic, antiferromagnetic and paramagnetic ones. It is worth to stress the presence of metastability phenomena and the existence of the paramagnetic phase at arbitrary non-vanishing small temperatures. In addition to the previous works a study of the energy eigenvalues and the specific heat of a general anharmonic single quantum oscillator, by using the Turschner and WKB approximations was performed. Comparisons between them, exhibit the superiority of the Turschner approximation. (author) [pt

  12. Antiferromagnetic Ising model with transverse and longitudinal field

    International Nuclear Information System (INIS)

    Kischinhevsky, M.

    1985-01-01

    We study the quantum hamiltonian version of the Ising Model in one spacial dimension under an external longitudinal (uniform) field at zero temperature. A phenomenological renormalization group procedure is used to obtain the phase diagram; the transverse and longitudinal zero field limits are studied and we verify the validity of universality at non zero transverse fields, where two-dimensional critical behaviour is obtained. To perform the numerical calculations we use the Lanczos scheme, which gives highly precise results with rather short processing times. We also analyse the possibility of using these techniques to extend the present work to the quantum hamiltonian version of the q-state Potts Model (q>2) in larger system. (author) [pt

  13. Small clusters with anisotropic antiferromagnetic exchange in a magnetic field

    International Nuclear Information System (INIS)

    Parkinson, J B; Elliott, R J; Timonen, J

    2004-01-01

    We consider small symmetric clusters of magnetic atoms (spins) with anisotropic exchange interaction between the atoms in a magnetic field at zero temperature. The inclusion of the anisotropy leads to a wealth of different phases as a function of the applied magnetic field. These are not phases in the thermodynamic sense with critical properties but rather physical structures with different arrangements of the spins and hence different symmetries. We study the spatial symmetry of these phases, for the classical and quantum cases. Results are presented mainly for three frustrated systems, the triangle, the tetrahedron and the five-atom ring, which have many interesting features. In the classical limit we obtain phase diagrams in which some of the phase changes occur because of energy crossings and others due to energy bifurcations, corresponding to 'first-' and 'second-order' changes. In the quantum case we show how the symmetries of the states are related to the corresponding classical symmetries

  14. Interpretation of heat capacity anomalies: low temperature antiferromagnetism in YbSnPd2

    Science.gov (United States)

    Giudicelli, P.; Bernhoeft, N.

    2004-07-01

    Since the early experiments on critical opalescence, heat capacity anomalies, which herald continuous transitions of phase, are frequently given microscopic interpretation through an appropriate space-time correlation function. Unfortunately, the global nature of the probe often results in an ill-defined spectral representation of the integrated modes and, as such, help is often sought in the general theoretical consensus of the temporal slowing down and spatial divergence of the critical modes. In this letter it is explicitly shown how a large and continuous anomaly in the heat capacity, which announces the antiferromagnetic phase transition in YbSnPd2 as established by independent neutron diffraction techniques, is not associated with a critical slowing down of spatially correlated modes but, surprisingly, with a stiffening of spatially local excitations. It appears that the results may be of relevance in the study of other strongly correlated electron systems.

  15. Neutron scattering studies of two-dimensional antiferromagnetic spin fluctuations in insulating and superconducting S = ½ systems

    DEFF Research Database (Denmark)

    Christensen, Niels Bech

    . Along the antiferromagnetic zone boundary a pronounced intensity variation is found for the dominant single-magnon excitations. This variation tracks an already known zone boundary dispersion. Usingpolarization analysis to separate the components of the excitation spectrum, a continuum of longitudinally...... polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described bylinear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo...

  16. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    Science.gov (United States)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  17. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  18. Magnetic Properties of the S=2 Heisenberg Antiferromagnetic Chain Compound MnCl3(bpy)

    International Nuclear Information System (INIS)

    Hagiwara, M; Idutsu, Y; Honda, Z; Yamamoto, S

    2012-01-01

    We report the results of magnetic susceptibilities at temperatures between 2 and 300 K, and magnetization in magnetic fields of up to 52 T on polycrystalline samples of MnCl 3 (bpy) (bpy=2, 2'-bipyridine) and the comparison with numerical calculations. This compound is one of the rare examples of the spin 2 quasi-one-dimensional Heisenberg antiferromagnet, and the magnetic properties of tiny single crystal samples were reported previously. The temperature dependence of magnetic susceptibility and the magnetization curve after subtracting the contribution of magnetic impurity are well fitted to those calculated by a quantum Monte Carlo method with the intrachain exchange constant J/k B =31.2 K and the g-value g=2.02 which are comparable to reported values (J/k B =34.8±1.6 K and g=2.04±0.04).

  19. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    Science.gov (United States)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  20. Pseudo-particles picture in single-hole-doped two-dimensional Neel ordered antiferromagnet

    International Nuclear Information System (INIS)

    Pereira, A R; Ercolessi, E; Pires, A S T

    2007-01-01

    Using the nonlinear σ model on a non-simply connected manifold, we consider the interaction effects between the elementary excitations (magnons and skyrmions) and static spin vacancy (hole) in two-dimensional quantum antiferromagnetic systems. Holes scatter magnons and trap skyrmions. The phase-shifts of the scattered magnons are obtained and used to calculate the zero point energy of spin waves measured with respect to the vacuum. It is suggested that this zero point energy lowers the energy cost of removing spins from the lattice. We also study the problems of the skyrmion-hole interactions and the skyrmion-hole (half-skyrmion-hole) bound states in the presence of magnons. We argue that two adjacent non-magnetic impurities are attracted when they are placed at the centre of half-skyrmions

  1. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    ,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...

  2. Emptiness formation probability and quantum Knizhnik-Zamolodchikov equation

    International Nuclear Information System (INIS)

    Boos, H.E.; Korepin, V.E.; Smirnov, F.A.

    2003-01-01

    We consider the one-dimensional XXX spin-1/2 Heisenberg antiferromagnet at zero temperature and zero magnetic field. We are interested in a probability of formation of a ferromagnetic string P(n) in the antiferromagnetic ground-state. We call it emptiness formation probability (EFP). We suggest a new technique for computation of the EFP in the inhomogeneous case. It is based on the quantum Knizhnik-Zamolodchikov equation (qKZ). We calculate EFP for n≤6 for inhomogeneous case. The homogeneous limit confirms our hypothesis about the relation of quantum correlations and number theory. We also make a conjecture about a structure of EFP for arbitrary n

  3. Antiferromagnetic phase of the gapless semiconductor V3Al

    Science.gov (United States)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  4. Anti-ferromagnetic Heisenberg model on bilayer honeycomb

    International Nuclear Information System (INIS)

    Shoja, M.; Shahbazi, F.

    2012-01-01

    Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.

  5. Wetting layer states in low density InAs/InGaAs quantum dots from sub-critical InAs coverages

    International Nuclear Information System (INIS)

    Seravalli, L; Trevisi, G; Frigeri, P; Rossi, F; Buffagni, E; Ferrari, C

    2013-01-01

    In this work we study the properties of wetting layers in InAs/InGaAs/GaAs quantum dot (QD) structures suitable for single photon emission; the mandatory low density of QDs is obtained by an molecular beam epitaxy (MBE) approach based on the deposition of sub-critical InAs coverages followed by post-growth annealing. Such a growth regime is fundamentally different from the Stranski–Krastanow (SK) one commonly used for the deposition of QDs. By fitting x-ray diffraction (XRD) spectra, ten-steps composition profiles were derived and used as inputs of model calculations of the two-dimensional quantum energy system: model results were validated by comparison with photoluminescence spectra. A strong reduction of In molar fraction in wetting layers in comparison with SK structures was found, causing a larger wavefunction delocalization for carriers that populate the wetting layer energy levels. Moreover, by considering the limits for strain relaxation when In x Ga 1−x As capping layers are used, we grew structures with the highest possible values of x to study the modifications of the energy system. When x = 0.20 the electron–heavy hole overlap is almost halved and the carriers' probability of being in the first nanometre of the wetting layer is reduced by 60%. These results will be useful for advanced design of QD nanostructures for single photon sources. (paper)

  6. Modeling the PbS quantum dots complex dielectric function by adjusting the E-k diagram critical points of bulk PbS

    Science.gov (United States)

    Hechster, Elad; Sarusi, Gabby

    2017-07-01

    The complex dielectric function ɛ(E )=ɛR(E )+i ɛI(E ) of a semiconductor is a key parameter that dictates the material's optical and electrical properties. Surprisingly, the ɛ(E ) of Lead Sulfide (PbS) quantum dots (QDs) has not been widely studied. In the present work, we develop a new model that aims to simulate the ɛ(E ) of QDs. Our model is based on the fact that the quantum confinement in the nano regime affects all the electronic transitions throughout the entire Brillouin zone. Hence, as a first approximation, we attribute an equal contribution of energy, equivalent to the bandgap broadening, to each critical point (CP) in the E-k diagram. This is mathematically realized by adding these energy contributions to the central energy parameters of the Lorentz oscillator model. In order to validate our model, we used the CP parameters of bulk PbS to simulate the ɛ(E ) of PbS QDs. Next, we use Maxwell Relations to calculate the refractive index and the extinction coefficient of PbS QDs from ɛ(" separators="|E ). Our results were compared with those published in the previous literature and showed good agreement. Our findings open a new avenue that may enable the calculation of the ɛ(" separators="|E ) for nanoparticle systems.

  7. Effect of uniaxial strain on the quantum critical phase of Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Mark E.; Brodsky, Daniel O.; Mackenzie, Andrew P. [Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, Dresden 01187 (Germany); Hicks, Clifford W. [Max Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, Dresden 01187 (Germany); Perry, Robin [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-07-01

    Sr{sub 3}Ru{sub 2}O{sub 7} has a metamagnetic quantum critical endpoint, which in highly pure samples is masked by a novel phase. This phase is isotropic in the absence of symmetry-breaking fields, but weak in-plane magnetic fields are well-known to induce strong resistive anisotropy, leading to speculation that the phase intrinsically breaks the tetragonal symmetry of the lattice. We have used uniaxial strain to break the symmetry of the lattice and have found a dramatic response: compression by 0.1%, for example, induces a resistive anisotropy of ∝ 2.5. I will discuss these results in the context of the underlying symmetry of the anomalous phase.

  8. LaCu6-xAgx: A promising host of an elastic quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Lekh [ORNL; Dela Cruz, Clarina R. [ORNL; Koehler, Michael R. [University of Tennessee, Knoxville (UTK); McGuire, Michael A. [ORNL; Keppens, Veerle [University of Tennessee, Knoxville (UTK); Mandrus, David [ORNL; Christianson, Andrew D. [ORNL

    2018-05-01

    Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx.

  9. Spin waves in antiferromagnetic FeF2

    DEFF Research Database (Denmark)

    Hutchings, M T; Rainford, B.D.; Guggenheim, H J

    1970-01-01

    Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...

  10. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  11. Magnetoresistive properties of non-uniform state of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.

    1996-01-01

    The phenomenological model of magnetoresistive properties of magneto-non-single-phase state of alloyed magnetic semiconductors is considered using the concept derived for a description of magnetoresistive effects in layered and granular magnetic metals. By assuming that there exists a magneto-non-single state in the manganites having the perovskite structure, it is possible to describe, in the framework of above approach, large magnetoresistive effects of manganite phases with antiferromagnetic order and semiconductor-type conductivity as well as those with antiferromagnetic properties and metallic-type conductivity

  12. Spin-flip transition and Faraday effect in antiferromagnet KMnF3 in megagauss magnetic field

    International Nuclear Information System (INIS)

    Mukhin, A.A.; Plis, V.I.; Popov, A.I.; Zvezdin, A.K.; Platonov, V.; Tatsenko, O.M.

    1998-01-01

    Faraday effect in the antiferromagnet KMnF 3 has been investigated in pulse explosive fields up to 500 T at T=78 K. The laser wavelength 0.63 μm was used in the experiment. The magnetic field dependence of Faraday rotation in this antiferromagnet shows a unique feature of a lack of saturation effect in the fields up to 500 T whereas critical field of spin-flip transition is about 120 T. The theoretical analysis of microscopic nature of Faraday rotation, including the diamagnetic, magneto-dipole and paramagnetic mechanisms has been performed. The strong competition of these mechanisms is important to explain the extremely small value of the effect and its unusual magnetic field dependence

  13. Criticality and novel quantum liquid phases in Ginzburg-Landau theories with compact and non-compact gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Smiseth, Jo

    2005-07-01

    The critical properties of three-dimensional U(1)-symmetric lattice gauge theories have been studied. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. The thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions is discussed with emphasis on continuous phase transitions, critical phenomena and phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs model are presented, and the critical phenomena are discussed. Furthermore, the multicomponent Ginzburg-Landau theory and the applications to liquid metallic hydrogen are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme, including the Metropolis algorithm, error estimates, and re weighting techniques. This chapter is followed by the papers I-VIII. Paper I: Criticality in the (2+1)-Dimensional Compact Higgs Model and Fractionalized Insulators. Paper II: Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator. Paper III: Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials. Paper IV: Phase structure of Abelian Chern-Simons gauge theories. Paper V: Critical Properties of the N-Color London Model. Paper VI: Field- and temperature induced topological phase transitions in the three-dimensional N-component London superconductor. Paper VII: Vortex Sublattice Melting in a Two-Component Superconductor. Paper VIII: Observation of a metallic superfluid in a numerical experiment (ml)

  14. Majorana-Fermions, Their-Own Antiparticles, Following Non-Abelian Anyon/Semion Quantum-Statistics : Solid-State MEETS Particle Physics Neutrinos: Spin-Orbit-Coupled Superconductors and/or Superfluids to Neutrinos; Insulator-Heisenberg-Antiferromagnet MnF2 Majorana-Siegel-Birgenau-Keimer - Effect

    Science.gov (United States)

    Majorana-Fermi-Segre, E.-L.; Antonoff-Overhauser-Salam, Marvin-Albert-Abdus; Siegel, Edward Carl-Ludwig

    2013-03-01

    Majorana-fermions, being their own antiparticles, following non-Abelian anyon/semion quantum-statistics: in Zhang et.al.-...-Detwiler et.al.-...``Worlds-in-Collision'': solid-state/condensed-matter - physics spin-orbit - coupled topological-excitations in superconductors and/or superfluids -to- particle-physics neutrinos: ``When `Worlds' Collide'', analysis via Siegel[Schrodinger Centenary Symp., Imperial College, London (1987); in The Copenhagen-Interpretation Fifty-Years After the Como-Lecture, Symp. Fdns. Mod.-Phys., Joensu(1987); Symp. on Fractals, MRS Fall-Mtg., Boston(1989)-5-papers!!!] ``complex quantum-statistics in fractal-dimensions'', which explains hidden-dark-matter(HDM) IN Siegel ``Sephirot'' scenario for The Creation, uses Takagi[Prog.Theo.Phys. Suppl.88,1(86)]-Ooguri[PR D33,357(85)] - Picard-Lefschetz-Arnol'd-Vassil'ev[``Principia Read After 300 Years'', Not.AMS(1989); quantum-theory caveats comment-letters(1990); Applied Picard-Lefschetz Theory, AMS(2006)] - theorem quantum-statistics, which via Euler- formula becomes which via de Moivre- -formula further becomes which on unit-circle is only real for only, i.e, for, versus complex with imaginary-damping denominator for, i.e, for, such that Fermi-Dirac quantum-statistics for

  15. Geometric phase of a central spin coupled to an antiferromagnetic environment

    International Nuclear Information System (INIS)

    Yuan Xiaozhong; Zhu Kadi; Goan, H.-S.

    2010-01-01

    Using the spin-wave approximation, we study the geometric phase (GP) of a central spin (signal qubit) coupled to an antiferromagnetic (AF) environment under the application of an external global magnetic field. The external magnetic field affects the GP of the qubit directly and also indirectly through its effect on the AF environment. We find that when the applied magnetic field is increased to the critical magnetic field point, the AF environment undergoes a spin-flop transition, a first-order phase transition, and at the same time the GP of the qubit changes abruptly to zero. This sensitive change of the GP of a signal qubit to the parameter change of a many-body environment near its critical point may serve as another efficient tool or witness to study the many-body phase transition. The influences of the AF environment temperature and crystal anisotropy field on the GP are also investigated.

  16. Experimental study of multilayer solid epitaxy: two-dimensional critical behavior of a quantum solid/superfluid interface

    International Nuclear Information System (INIS)

    Ramesh, S.

    1985-01-01

    This thesis constitutes the first precise, quantitative experimental study of layering transitions, two-dimensional critical temperatures, and their relation to surface roughening. The experiments used superfluid fourth sound to probe the liquid solid 4 He interface, by coupling with surface waves unique to this interface. An annular resonator with electric transducers was used to measure the fourth sound velocity c 4 in an exfoliated graphite (Grafoil) superleak. Measurements of the pressure dependence of the fourth sound resonance frequencies (and attenuation) from ∼6 bar to ∼26 bar were made along eight isotherms from 1.0 K to 1.7 K. Plots of fourth sound resonance frequency versus coverage clearly indicate layer-by-layer solid nucleation and epitaxal growth of hcp solid 4 He on the basal plane of graphite. Further analysis yielded solid adsorption isotherms and a kinetic growth coefficient for the 4 He crystal surface and also indicated the existence of a critical temperature region and also indicated the existence of a critical temperature region around 1.0-1.2 K (the region of a bulk roughening transition). The acoustical theory for the experimental system was worked out using a parallel waveguide model; Landau's thermohydrodynamic equations were reformulated by including the mass- and heat-exchange effects occurring in the system; the equations were solved to obtain expressions for the velocity of sound propagation and attenuation

  17. Excitations in a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Birgeneau, R. J.; Walker, L. R.; Guggenheim, H. J.

    1975-01-01

    Inelastic neutron scattering studies of the magnetic excitations in the planar Heisenberg random antiferromagnet Rb2Mn0.5Ni0.5F4 at 7K are reported. Two well-defined bands of excitations are observed. A simple mean crystal model is found to predict accurately the measured dispersion relations using...

  18. Observation of Antiferromagnetic Resonance in an Organic Superconductor

    DEFF Research Database (Denmark)

    Torrance, J. B.; Pedersen, H. J.; Bechgaard, K.

    1982-01-01

    Anomalous microwave absorption has been observed in the organic superconductor TMTSF2AsF6 (TMTSF: tetramethyltetraselenafulvalene) below its metal-nonmetal transition near 12 K. This absorption is unambiguously identified as antiferromagnetic resonance by the excellent agreement between a spin...

  19. Static and dynamic behaviour of antiferromagnetic linear chains

    International Nuclear Information System (INIS)

    Henkens, L.S.J.M.

    1977-01-01

    This thesis deals with an experimental study of the static and dynamic behaviour of s=1/2 heisenberg antiferromagnetic linear chains in the temperature range of 0,05K 4 , CuSeO 4 .5H 2 O, and CuBeF 4 .5H 2 O, all of which are isomorphic salts

  20. 235U NMR study of the itinerant antiferromagnet USb2

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Ikushima, Kenji; Kambe, Shinsaku; Tokunaga, Yo; Aoki, Dai; Haga, Yoshinori; O-bar nuki, Yoshichika; Yasuoka, Hiroshi; Walstedt, Russell E.

    2005-01-01

    We have succeeded in resolving a 235 U antiferromagnetic nuclear magnetic resonance (AFNMR) signal using 235 U-enriched samples of USb 2 . The uranium hyperfine field and coupling constant estimated for this compound are consistent with those from other experiments. This is the first reported observation of 235 U NMR in conducting host material

  1. NdRhSn: A ferromagnet with an antiferromagnetic precursor

    Czech Academy of Sciences Publication Activity Database

    Mihalik, M.; Prokleška, J.; Kamarád, Jiří; Prokeš, K.; Isnard, O.; McIntyre, G. J.; Dönni, A.; Yoshii, S.; Kitazawa, H.; Sechovský, V.; de Boer, F.R.

    2011-01-01

    Roč. 83, č. 10 (2011), "104403-1"-"104403-10" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : NdRhSn * ferromagnet * antiferromagnetic precursor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  2. Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain

    International Nuclear Information System (INIS)

    Daniel, M.; Amuda, R.

    1994-11-01

    We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs

  3. Ferro- and antiferro-magnetism in (Np, Pu)BC

    Czech Academy of Sciences Publication Activity Database

    Klimczuk, T.; Shick, Alexander; Kozub, Agnieszka L.; Griveau, J.C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.

    2015-01-01

    Roč. 3, č. 4 (2015), "041803-1"-"041803-9" ISSN 2166-532X R&D Projects: GA ČR GA15-07172S Institutional support: RVO:68378271 Keywords : ferromagetism * antiferromagnetism * magnetic anisotropy * strong electron correlations * spin-orbit coupling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.323, year: 2015

  4. Field-Induced Quantum Critical Point and Nodal Superconductivity in the Heavy-Fermion Superconductor Ce_{2}PdIn_{8}

    Directory of Open Access Journals (Sweden)

    J. K. Dong

    2011-09-01

    Full Text Available The in-plane resistivity ρ and thermal conductivity κ of the heavy-fermion superconductor Ce_{2}PdIn_{8} single crystals were measured down to 50 mK. A field-induced quantum critical point, occurring at the upper critical field H_{c2}, is demonstrated from the ρ(T∼T near H_{c2} and ρ(T∼T^{2} when further increasing the field. The large residual linear term κ_{0}/T at zero field and the rapid increase of κ(H/T at low field give evidence for nodal superconductivity in Ce_{2}PdIn_{8}. The jump of κ(H/T near H_{c2} suggests a first-order-like phase transition at low temperature. These results mimic the features of the famous CeCoIn_{5} superconductor, implying that Ce_{2}PdIn_{8} may be another interesting compound to investigate for the interplay between magnetism and superconductivity.

  5. {mu}SR study of organic systems: ferromagnetism, antiferromagnetism, the spin-crossover effect, and fluctuations in magnetic nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Blundell, S.J.; Pratt, F.L.; Lancaster, T.; Marshall, I.M.; Steer, C.A.; Hayes, W.; Sugano, T.; Letard, J.-F.; Caneschi, A.; Gatteschi, D.; Heath, S.L

    2003-02-01

    We present the results of recent {mu}SR experiments on a variety of novel organic and molecular magnetic systems. Muons are sensitive to local static fields and magnetic fluctuations, but can probe much more than just the onset of long-range magnetic order. We review our work on nitronyl nitroxide organic ferromagnets and antiferromagnets. We describe a muon study of the spin-crossover phenomenon which has been studied in Fe(PM-PEA){sub 2}(NCS){sub 2}, and which shows Gaussian and root-exponential muon relaxation in the high-spin and low-spin phases, respectively. Experiments on a disc-shaped molecular complex containing Fe{sub 19} (with spin ((31)/(2))) reveal the effects of quantum tunneling of magnetization and allow an estimate of the quantum tunneling rate.

  6. μSR study of organic systems: ferromagnetism, antiferromagnetism, the spin-crossover effect, and fluctuations in magnetic nanodiscs

    International Nuclear Information System (INIS)

    Blundell, S.J.; Pratt, F.L.; Lancaster, T.; Marshall, I.M.; Steer, C.A.; Hayes, W.; Sugano, T.; Letard, J.-F.; Caneschi, A.; Gatteschi, D.; Heath, S.L.

    2003-01-01

    We present the results of recent μSR experiments on a variety of novel organic and molecular magnetic systems. Muons are sensitive to local static fields and magnetic fluctuations, but can probe much more than just the onset of long-range magnetic order. We review our work on nitronyl nitroxide organic ferromagnets and antiferromagnets. We describe a muon study of the spin-crossover phenomenon which has been studied in Fe(PM-PEA) 2 (NCS) 2 , and which shows Gaussian and root-exponential muon relaxation in the high-spin and low-spin phases, respectively. Experiments on a disc-shaped molecular complex containing Fe 19 (with spin ((31)/(2))) reveal the effects of quantum tunneling of magnetization and allow an estimate of the quantum tunneling rate

  7. Padé approximations for the magnetic susceptibilities of Heisenberg antiferromagnetic spin chains for various spin values

    International Nuclear Information System (INIS)

    Law, J M; Benner, H; Kremer, R K

    2013-01-01

    The temperature dependence of the spin susceptibilities of S = 1, 3/2 , 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH 3 ) 4 N[MnCl 3

  8. Novel magnetic hydrogen sensing: a case study using antiferromagnetic haematite nanoparticles

    International Nuclear Information System (INIS)

    Punnoose, Alex; Reddy, K M; Thurber, Aaron; Hays, Jason; Engelhard, Mark H

    2007-01-01

    Hydrogen sensing is a critical component of safety to address widespread public perceptions of the hazards of production, storage, transportation and use of hydrogen in proposed future automobiles and in various other applications. A nanoscale magnetic hydrogen sensor is proposed based on the experimental observation of systematically varying the saturation magnetization and remanence of nanoscale antiferromagnetic haematite with hydrogen flow. The saturation magnetization and remanence of the nanoscale haematite sample showed an increase of one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1-10% range and at 575 K, suggesting that a practical magnetic hydrogen sensor could be developed using this material and the novel magnetic sensing method. Thermogravimetric analysis of the haematite sample shows significant mass loss when hydrogen gas is introduced. X-ray diffraction and x-ray photoelectron spectroscopy studies ruled out any impurity phase formation as a result of gas-sample interaction. This work thus facilitates the use of the magnetic properties of an antiferromagnetic material as gas sensing parameters, thus exploring the concept of 'magnetic gas sensing'

  9. Two-dimensional magnetism in the triangular antiferromagnet NiGa2S4

    International Nuclear Information System (INIS)

    Nambu, Yusuke

    2013-01-01

    At sufficiently low temperatures, electron spins in normal magnets generally order into some fashion, for instance, ferromagnetic and antiferromagnetic. Geometrical frustration and/or reduced dimensionality can suppress such conventional orders, and occasionally induce unknown states of matter. This is the case for the two-dimensional (2D) triangular antiferromagnet Ni(Ga 2 S 4 , in which S=1 nickel spins do not order, instead show an exotic magnetism. We found (1) a resonant critical slowing down toward T*=8.5 K followed by a viscous spin liquid behavior, and (2) a spin-size dependent ground state. To elucidate (1), spin dynamics ranging from 10 -13 to 10 0 seconds were quantitatively explored through the experimental techniques such as inelastic neutron scattering, backscattering, neutron spin echo, ac and nonlinear susceptibilities. The finding of (2) is evidenced by impurity effects. Integer spins substituted systems such as zinc and iron ions retain a quadratic temperature dependence of the magnetic specific heat as for the parent compound. However, substitutions of half-odd integer spins, cobalt and manganese ions, eventually induce a distinct behavior, indicating an importance of integer size of spins to stabilize the 2D magnetism realized in NiGa 2 S 4 . The article gives our experimental findings and as well as some relevant theoretical scenarios. (author)

  10. The coprime quantum chain

    Science.gov (United States)

    Mussardo, G.; Giudici, G.; Viti, J.

    2017-03-01

    In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues n i of the occupation number operators at each site of a chain of length M. The n i ’s take value in the interval [2,q] and may be regarded as S z eigenvalues in the spin representation j  =  (q  -  2)/2. The distinctive interaction of the model is based on the coprimality matrix \\boldsymbolΦ : for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers n i and n i+1 of neighbouring sites share a common divisor, while for the anti-ferromagnetic case it assigns a lower energy to configurations where n i and n i+1 are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into different classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit q\\to ∞ .

  11. Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids

    Science.gov (United States)

    van den Brink, Jeroen

    The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.

  12. Weyl magnons in pyrochlore antiferromagnets with an all-in-all-out order

    Science.gov (United States)

    Jian, Shao-Kai; Nie, Wenxing

    2018-03-01

    We investigate topological magnon band crossings of pyrochlore antiferromagnets with all-in-all-out (AIAO) magnetic order. By general symmetry analysis and spin-wave theory, we show that pyrochlore materials with AIAO orders can host Weyl magnons under external magnetic fields or uniaxial strains. Under a small magnetic field, the magnon bands of the pyrochlore with AIAO background can feature two opposite-charged Weyl points, which is the minimal number of Weyl points realizable in quantum materials, and has not been experimentally observed so far. We further show that breathing pyrochlores with AIAO orders can exhibit Weyl magnons upon uniaxial strains. These findings apply to any pyrochlore material supporting AIAO orders, irrespective of the forms of interactions. Specifically, we show that the Weyl magnons are robust against direct (positive) Dzyaloshinskii-Moriya interactions. Because of the ubiquitous AIAO orders in pyrochlore magnets including R2Ir2O7 , and experimentally achievable external strain and magnetic field, our predictions provide a promising arena to witness the Weyl magnons in quantum magnets.

  13. Characterizing agosticity using the quantum theory of atoms in molecules: bond critical points and their local properties.

    Science.gov (United States)

    Tognetti, Vincent; Joubert, Laurent; Raucoules, Roman; De Bruin, Theodorus; Adamo, Carlo

    2012-06-07

    In this paper, we extend the work of Popelier and Logothetis [J. Organomet. Chem. 1998, 555, 101] on the characterization of agosticity by considerably enlarging the set of the studied organometallic molecules. To this aim, 23 representative complexes have been considered, including all first line transition metals at various oxidation states and exhibiting four types of agosticity (α, β, γ, and δ). From these examples, the concepts of agostic atom, agostic bond, and agostic interaction are defined and discussed, notably by advocating Bader's analysis of the electron density. The nature and the local properties of the bond critical points are then investigated, and the relationships with the main geometric parameters of the complexes are particularly examined. Moreover, new local descriptors based on kinetic energy densities are developed in order to provide new tools for bond characterization.

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: CARS spectroscopy of carbon dioxide in the critical point vicinity

    Science.gov (United States)

    Arakcheev, V. G.; Bagratashvili, Viktor N.; Valeev, A. A.; Gordienko, Vyacheslav M.; Kireev, Vyacheslav V.; Morozov, V. B.; Olenin, A. N.; Popov, Vladimir K.; Tunkin, V. G.; Yakovlev, D. V.

    2004-01-01

    The transformation of the Q-band of the low-frequency 1285-cm-1 component of the 2v2/v1 Fermi doublet of a CO2 molecule is studied in the critical point vicinity (Tc=31.03 °C, Pc=72.8 atm) by the CARS method. CARS spectra were recorded by changing pressure isothermically from 48 to 120 atm at several temperatures in the range between 25 and 36°C. At the temperature above 29°C, the pressure dependences of the Q-band width pass through the maximum, which exceeds by 40% —50% the typical Q-band width in the liquid phase. The position of the maximum shifts to higher pressures with increasing temperature. The inhomogeneous broadening of the Q-band is interpreted based on the cluster microstructure of a supercritical fluid.

  15. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    Science.gov (United States)

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  16. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Science.gov (United States)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  17. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    International Nuclear Information System (INIS)

    Neogi, S.K.; Karmakar, R.; Misra, A.K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-01-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn 1−x Mn x O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO 3 ) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ 1 and τ 2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase

  18. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, S.K.; Karmakar, R. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Misra, A.K. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India); Das, D. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India)

    2013-11-15

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn{sub 1−x}Mn{sub x}O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO{sub 3}) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ{sub 1} and τ{sub 2} are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase.

  19. Quantum signatures of chaos or quantum chaos?

    Energy Technology Data Exchange (ETDEWEB)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)

    2016-11-15

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  20. Quantum signatures of chaos or quantum chaos?

    International Nuclear Information System (INIS)

    Bunakov, V. E.

    2016-01-01

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.