WorldWideScience

Sample records for antiferromagnetic phase transition

  1. Quantum Phase Transitions in Antiferromagnets and Superfluids

    Science.gov (United States)

    Sachdev, Subir

    2000-03-01

    A general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition shall be presented. Basic results will be reviewed in the context of experiments on the spin-ladder compounds. Recent large N computations (M. Vojta and S. Sachdev, Phys. Rev. Lett. 83), 3916 (1999) on an extended t-J model motivate a global scenario of the quantum phases and transitions in the high temperature superconductors, and connections will be made to numerous experiments. A universal theory (S. Sachdev, C. Buragohain, and M. Vojta, Science, in press M. Vojta, C. Buragohain, and S. Sachdev, cond- mat/9912020) of quantum impurities in spin-gap antiferromagnets near a magnetic ordering transition will be compared quantitatively to experiments on Zn doped Y Ba2 Cu3 O7 (Fong et al.), Phys. Rev. Lett. 82, 1939 (1999)

  2. Antiferromagnetic phase transition and spin correlations in NiO

    DEFF Research Database (Denmark)

    Chatterji, Tapan; McIntyre, G.J.; Lindgård, Per-Anker

    2009-01-01

    We have investigated the antiferromagnetic (AF) phase transition and spin correlations in NiO by high-temperature neutron diffraction below and above TN. We show that AF phase transition is a continuous second-order transition within our experimental resolution. The spin correlations manifested by...... process. We determined the critical exponents =0.328±0.002 and =0.64±0.03 and the Néel temperature TN=530±1 K. These critical exponents suggest that NiO should be regarded as a 3dXY system...

  3. Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors

    Science.gov (United States)

    Sachdev, Subir

    I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operator method is used to describe the transition of dimerized antiferromagnetic insulators between magnetically ordered states and spin-gap states. The Schwinger boson method is applied to frustrated square lattice antiferromagnets: phase diagrams containing collinear and spirally ordered magnetic states, Z_2 spin liquids, and valence bond solids are presented, and described by an effective gauge theory of spinons. Insights from these theories of insulators are then applied to a variety of symmetry breaking transitions in d-wave superconductors. The latter systems also contain fermionic quasiparticles with a massless Dirac spectrum, and their influence on the order parameter fluctuations and quantum criticality is carefully discussed. I conclude with an introduction to strong coupling problems associated with symmetry breaking transitions in two-dimensional metals, where the order parameter fluctuations couple to a gapless line of fermionic excitations along the Fermi surface.

  4. Phase transitions in n=4 type II antiferromagnets

    International Nuclear Information System (INIS)

    The Landau-Ginzburg-Wilson (LGW) Hamiltonian associated with n=4 type II fcc antiferromagnets is discussed. It is shown that the model is expected to exhibit a first order transition in d=3 dimensions. Recent experimental results on CeS, CeSe and CeTe are discussed. (author)

  5. Design of Co/ Pd multilayer system with antiferromagnetic-to-ferromagnetic phase transition

    OpenAIRE

    Thiele, Jan-Ulrich; Hauet, Thomas; Hellwig, Olav

    2008-01-01

    International audience Among the known magnetic material systems, most are either purely antiferromagnetic or purely ferromagnetic at temperatures up to their critical temperature. There are only very few examples of materials that undergo a temperature dependent phase transition from an antiferromagnetic to a ferromagnetic phase or vice versa, and of these, only the chemically ordered alloy FeRh exhibits this transition near room temperature. Here we present a perpendicular anisotropy mul...

  6. Pressure-induced antiferromagnetic transition and phase diagram in FeSe

    International Nuclear Information System (INIS)

    We report measurements of resistance and ac magnetic susceptibility on FeSe single crystals under high pressure up to 27.2 kbar. The structural phase transition is quickly suppressed with pressure, and the associated anomaly is not seen above ∼18 kbar. The superconducting transition temperature evolves nonmonotonically with pressure, showing a minimum at ∼12 kbar. We find another anomaly at 21.2 K at 11.6 kbar. This anomaly most likely corresponds to the antiferromagnetic phase transition found in μSR measurements. The antiferromagnetic and superconducting transition temperatures both increase with pressure up to ∼25 kbar and then level off. The width of the superconducting transition anomalously broadens in the pressure range where the antiferromagnetism coexists. (author)

  7. Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu, E-mail: taniyama.t.aa@m.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2015-08-24

    We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.

  8. Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current

    Science.gov (United States)

    Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu

    2015-08-01

    We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.

  9. Imaging the antiferromagnetic to ferromagnetic first order phase transition of FeRh

    OpenAIRE

    Mariager, S. O.; Guyader, L. Le; Buzzi, M.; Ingold, G.; Quitmann, C.

    2013-01-01

    The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to shape anisotropy, but the magnetocrystalline anisotropy is negligible and there is no preferred in-plane magnetization direction. When heating through the AFM to FM phase transition the nucleation of the FM phase occurs at many independent nucleat...

  10. Bond-Dilution-Induced Quantum Phase Transitions in Heisenberg Antiferromagnets

    OpenAIRE

    Yasuda, Chitoshi; Todo, Synge; Takayama, Hajime

    2006-01-01

    Bond-dilution effects on the ground state of the square-lattice antiferromagnetic Heisenberg model, consisting of coupled bond-alternating chains, are investigated by means of the quantum Monte Carlo simulation. It is found that, when the ground state of the non-diluted system is a non-magnetic state with a finite spin gap, a sufficiently weak bond dilution induces a disordered state with a mid gap in the original spin gap, and under a further stronger bond dilution an antiferromagnetic long-...

  11. Excitations and phase transitions in random anti-ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, R.A.; Birgeneau, R.J.; Shirane, G.

    1979-01-01

    Neutron scattering techniques can be used to study the magnetic excitations and phase transitions in the randomly mixed transition metal fluorides. The results for the excitations of samples with two different types of magnetic ions show two bands of excitations; each associated with excitations propagating largely on one type of ion. In the diluted salts the spectra show a complex line shape and greater widths. These results are in good accord with computer simulations showing that linear spin wave theory can be used, but have not been described satisfactorily using the coherent potential approximation. The phase transitions in these materials are always smeared, but it is difficult to ascertain if this smearing is due to macroscopic fluctuations in the concentration or of an intrinsic origin. Studies of these systems close to the percolation point have shown that the thermal disorder is associated with the one-dimensional weak links of the large clusters. Currently theory and experiment are in accord for the two-dimensional Ising system but features are still not understood in Heisenberg systems in both two and three dimensions.

  12. Excitations and phase transitions in random anti-ferromagnets

    International Nuclear Information System (INIS)

    Neutron scattering techniques can be used to study the magnetic excitations and phase transitions in the randomly mixed transition metal fluorides. The results for the excitations of samples with two different types of magnetic ions show two bands of excitations; each associated with excitations propagating largely on one type of ion. In the diluted salts the spectra show a complex line shape and greater widths. These results are in good accord with computer simulations showing that linear spin wave theory can be used, but have not been described satisfactorily using the coherent potential approximation. The phase transitions in these materials are always smeared, but it is difficult to ascertain if this smearing is due to macroscopic fluctuations in the concentration or of an intrinsic origin. Studies of these systems close to the percolation point have shown that the thermal disorder is associated with the one-dimensional weak links of the large clusters. Currently theory and experiment are in accord for the two-dimensional Ising system but features are still not understood in Heisenberg systems in both two and three dimensions

  13. Field-induced phase transitions in antiferromagnetic systems

    International Nuclear Information System (INIS)

    Neutron scattering experiments and magnetization measurements are carried out on cobalt bromide hexahydrate, of which 48% of the water molecules are replaced by deuterium oxide molecules. Results were compared with data obtained from non-deuterated cobalt bromide hexahydrate. Neutron scattering experiments showed the importance of the deuterium fraction. Interplay exists between the crystallographic system and the magnetic system, which is influenced by changing the deuterium fraction. Neutron scattering and magnetization experiments on partially deuterated RbFeCl3.2H2O and CsFeCl3.2H2O were performed to study the magnetic phase transitions in these quasi one-dimensional Ising compounds. The observed behaviour in the various phases can be described by the nucleation theory of chain reversals. (Auth.)

  14. Néel Temperature of Antiferromagnets for Phase Transitions Driven by Spin-wave Interactions

    OpenAIRE

    Ayuela, Andrés; Klein, Douglas J.; March, Norman H.

    2013-01-01

    In a recent article,1 a wide variety of phase transitions, with transition (t) temperature Tt , were shown to be usefully characterized by the form kBTt  Echar exp1/ λ  where λ measured the strength of the quasiparticle interactions driving the phase transition. The present article is concerned primarily with antiferromagnets (AFs) having Néel temperature TN. It is first argued that the characteristic energy Echar can be usefully represented by kBθ, where θ is the Curie-Weiss ...

  15. Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh2Si2

    International Nuclear Information System (INIS)

    Low-temperature specific-heat measurements on YbRh2Si2 at the second order antiferromagnetic (AF) phase transition reveal a sharp peak at TN=72 mK. The corresponding critical exponent α turns out to be α=0.38, which differs significantly from that obtained within the framework of the fluctuation theory of second order phase transitions based on the scale invariance, where α≅0.1. We show that under the application of magnetic field the curve of the second order AF phase transitions passes into a curve of the first order ones at the tricritical point leading to a violation of the critical universality of the fluctuation theory. This change of the phase transition is generated by the fermion condensation quantum phase transition. Near the tricritical point the Landau theory of second order phase transitions is applicable and gives α≅1/2. We demonstrate that this value of α is in good agreement with the specific-heat measurements.

  16. Entropy-driven phase transition in low-temperature antiferromagnetic Potts models

    Czech Academy of Sciences Publication Activity Database

    Kotecký, R.; Sokal, A.D.; Swart, Jan M.

    2014-01-01

    Roč. 330, č. 3 (2014), s. 1339-1394. ISSN 0010-3616 R&D Projects: GA ČR GA201/09/1931; GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Antiferromagnetic Potts model * proper coloring * plane quadrangulation * phase transition * diced lattice Subject RIV: BA - General Mathematics Impact factor: 2.086, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/swart-0429507.pdf

  17. Quantum Phase Transitions, Entanglement Spectrum, and Schmidt Gap in Bond-Alternative S = 1 Antiferromagnetic Chain

    International Nuclear Information System (INIS)

    Bipartite entanglement, entanglement spectrum, and Schmidt gap in S=1 bond-alternative antiferromagnetic Heisenberg chain are investigated by the infinite time-evolving block decimation (iTEBD) method. The quantum phase transition (QPT) from the singlet-dimer phase to the Haldane phase can be detected by the singular behavior of bipartite entanglement, the sudden change of the entanglement spectrum, and the completely vanishing of the Schmidt gap. The critical point is determined to be around rc ≃ 0.587, and the second-order character of the QPT is verified. Doubly degenerate entanglement spectra of both even and odd bonds are observed in the Haldane phase, by which one can distinguish the Haldane phase from the singlet-dimer phase easily. Nearest-neighbor antiferromagnetic correlations and next-nearest-neighbor ferromagnetic correlations are found in the whole parameter region. At the critical massless point, although exponentially decaying antiferromagnetic correlation is observed, it approaches to a constant value finally. Therefore, long-range correlations exist and the correlation length becomes divergent at the critical point. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Static characterization of the antiferromagnetic-to-ferromagnetic phase transition of FeRh thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramm, Paul; Radu, Ilie; Weber, Alexander; Back, Christian [Institut fuer Angewandte und Experimentelle Physik, Universitaet Regensburg (Germany); Stamm, Christian; Kachel, Torsten; Pontius, Niko; Duerr, Hermann [BESSY GmbH, Berlin (Germany); Raabe, Joerg; Quitmann, Christoph; Joly, Luiic [Paul Scherrer Institut, Villigen PSI (Switzerland); Thiele, Jan-Ulrich [Hitachi Global Storage Technologies, San Jose Research Center (United States)

    2007-07-01

    The antiferromagnetic-to-ferromagnetic phase transition present on the FeRh thin film alloy is studied by employing static magneto-optic Kerr effect (MOKE), X-ray magnetic circular dichroism (XMCD) and X-ray photoemission electron microscopy (XPEEM) techniques, which give information on the average magnetization, the element-specific magnetic moments as well as the domain structure, respectively. The element-specific hysteresis provided by the XMCD measurements near the transition temperature reveal the growth of the Fe magnetic moment and development of the small but crucial induced Rh magnetic moment in the ferromagnetic phase. Using temperature dependent XPEEM in the vicinity of the phase transition we observe the formation and the partial reproducibility of the magnetic domain structure. The temperature hysteresis of the magnetic contrast deduced from the XPEEM data is in good agreement with the temperature dependent MOKE measurements.

  19. A holographic model for antiferromagnetic quantum phase transition induced by magnetic field

    CERN Document Server

    Cai, Rong-Gen; Kusmartsev, F V

    2015-01-01

    We propose a gravity dual of antiferromagnetic quantum phase transition (QPT) induced by magnetic field and study the criticality in the vicinity of quantum critical point (QCP). Results show the boundary critical theory is a strong coupling theory with dynamic exponent $z=2$. The hyperscaling law is violated and logarithmic corrections appear near the QCP. We compare our theoretical results with experimental data on variety of materials including low-dimensional magnet, BiCoPO$_5$ and pyrochlores, Er$_{2-2x}$Y$_{2x}$Ti$_2$O$_7$. Our model describes well the existing experiments and predicts QCP and other high field magnetic properties of these compounds.

  20. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    Science.gov (United States)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  1. Critical Space-Time Networks and Geometric Phase Transitions from Frustrated Edge Antiferromagnetism

    CERN Document Server

    Trugenberger, Carlo A

    2015-01-01

    Recently I proposed a simple dynamical network model for discrete space-time which self-organizes as a graph with Hausdorff dimension d_H=4. The model has a geometric quantum phase transition with disorder parameter (d_H-d_s) where d_s is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  2. Quantum Phase Transitions in d-wave Superconductors and Antiferromagnetic Kagome Lattices

    Science.gov (United States)

    Huh, Yejin

    Strongly correlated systems are of interest due to their exotic collective behavior. In this thesis we study low energy effective theory and quantum phase transitions of d-wave superconductors and spin liquids. First we examine the quantum theory of the spontaneous breaking of lattice rotation symmetry in d-wave superconductors on the square lattice. This is described by a field theory of an Ising nematic order parameter coupled to the gapless fermionic quasiparticles. We determine the structure of the renormalization group to all orders in a 1/Nf expansion, where Nf is the number of fermion spin components. Asymptotically exact results are obtained for the quantum critical theory in which, as in the large Nf theory, the nematic order has a large anomalous dimension, and the fermion spectral functions are highly anisotropic. Next we study quantum phase transitions in antiferromagnetic kagome lattices. Due to the high geometric frustration, this system poses as a good candidate for a spin liquid with exotic excitations. Here we look at physics of the spinon and vison sector. In the spinon sector, we investigate the zero-temperature phase diagram of the nearest-neighbor kagome antiferromagnet in the presence of Dzyaloshinksii-Moriya interaction. We develop a theory for the transition between Z 2 spin liquids with bosonic spinons and a phase with antiferromagnetic long-range order. Connections to recent numerical studies and experiments are discussed. Finally in the vison sector, we present a projective symmetry group (PSG) analysis of the spinless excitations of Z2 spin liquids on the kagome lattice. In the simplest case, vortices carrying Z2 magnetic flux ('visons') are shown to transform under the 48 element group GL(2, Z3 ). Alternative exchange couplings can also lead to a second case with visons transforming under 288 element group GL(2, Z3 ) x D3. We study the quantum phase transition in which visons condense into confining states with valence bond solid order

  3. Extinction of phase transition and spin transport on site diluted quantum two-dimensional antiferromagnet in Bose-Einstein condensation

    Science.gov (United States)

    Dos Santos Lima, Leonardo

    We study the two-dimensional Heisenberg antiferromagnetic model with ion single anisotropy in the square lattice in the presence of nonmagnetic impurities at T = 0 using the SU(3) Schwinger boson theory. In particular, we discuss the influence of site disorder on the quantum phase transition of this model at Dc that separates the Néel phase, D Dc . We find that the long-range order in D CNPq, FAPEMIG, CAPES.

  4. ANTIFERROMAGNETIC TO PARAMAGNETIC PHASE TRANSITIONS IN BISMUTH FERRITE (BiFeO3 CERAMICS BY SOLID STATE REACTION

    Directory of Open Access Journals (Sweden)

    Chandrashekhar P. Bhole

    2012-07-01

    Full Text Available This paper describes the synthesis of multiferroic BiFeO3 ceramics was prepared by solid state reaction and high energy ball milling method. The structural studies was carried out by using an X-ray diffraction pattern and demonstrated that the BiFeO3 ceramic crystallizes in a rhombhohedral perovskite phase. The ferroelectric hystersis loop measured at room temperature demonstrates a lossy loop with unsaturated behavior and symbolize a partial reversal of polarization. A dielectric constant with temperature measurement for BiFeO3 ceramic represents an anomaly around 350°C for all frequencies and intimately associated with antiferromagnetic to paramagnetic phase transition (TN of BiFeO3.

  5. Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice with interactions between next-to-nearest neighbors

    International Nuclear Information System (INIS)

    Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice are studied on the basis of the replica algorithm by the Monte Carlo method and histogram analysis taking into account the interaction of next-to-nearest neighbors. The phase diagram of the dependence of the critical temperature on the intensity of interaction of the next-to-nearest neighbors is constructed. It is found that a second-order phase transition is realized in this model in the investigated interval of the intensities of interaction of next-to-nearest neighbors

  6. Charge-regulation phase transition on surface lattices of titratable sites adjacent to electrolyte solutions: An analog of the Ising antiferromagnet in a magnetic field

    Science.gov (United States)

    Shore, Joel D.; Thurston, George M.

    2015-12-01

    We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations

  7. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R.A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K.

    2015-09-01

    Ion irradiation induced modifications of the thermomagnetic properties of equiatomic FeRh thin films have been investigated. The application of 20 keV Ne{sup +} ions at different fluencies leads to broadening of the antiferromagnetic to ferromagnetic phase transition as well as a shift of the transition temperature towards lower temperatures with increasing ion fluence. Moreover, the ferromagnetic background at low temperatures generated by the ion irradiation leads to pronounced saturation magnetisation at 5 K. Complete erasure of the transition, i.e. ferromagnetic ordering through the whole temperature regime was achieved at a Ne{sup +} fluence of 3 × 10{sup 14} ions/cm{sup 2}. It does not coincide with the complete randomization of the chemical ordering of the crystal lattice.

  8. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation

    Science.gov (United States)

    Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R. A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K.

    2015-09-01

    Ion irradiation induced modifications of the thermomagnetic properties of equiatomic FeRh thin films have been investigated. The application of 20 keV Ne+ ions at different fluencies leads to broadening of the antiferromagnetic to ferromagnetic phase transition as well as a shift of the transition temperature towards lower temperatures with increasing ion fluence. Moreover, the ferromagnetic background at low temperatures generated by the ion irradiation leads to pronounced saturation magnetisation at 5 K. Complete erasure of the transition, i.e. ferromagnetic ordering through the whole temperature regime was achieved at a Ne+ fluence of 3 × 1014 ions/cm2. It does not coincide with the complete randomization of the chemical ordering of the crystal lattice.

  9. Quantum phase transitions and the 1/3 magnetization plateau in the spin-1/2 Ferromagnetic–Ferromagnetic–Antiferromagnetic chain

    International Nuclear Information System (INIS)

    The ground-state properties of the spin-1/2 Ferromagnetic–Ferromagnetic–Antiferromagnetic (F–F–AF) trimerized chain are investigated by the infinite time-evolving block decimation (iTEBD) method. A ground-state phase diagram including three different phases, i.e., a fully polarized phase, a 1/3 plateau phase, and a non-plateau phase, is obtained. All the quantum phase transitions (QPTs) can be described well by the model independent bipartite entanglement. QPTs between the non-plateau phase and the other two phases belong to the second-order category. Doubly degenerate entanglement spectrum and nontrivial string order are observed in the 1/3 plateau phase, which can be used to distinguish it from the other phases. By the scaling behavior of the bipartite entanglement, the central charge of the critical non-plateau phase is determined to be c≃ 1. - Highlights: • A rich ground-state phase diagram is obtained. • QPTs can be well described by singular behavior of entanglement. • The 1/3 magnetization plateau is characterized by entanglement plateau. • Doubly degenerate entanglement spectrum is observed in the 1/3 plateau phase. • Nontrivial string order is observed in the 1/3 plateau phase

  10. Quantum phase transitions and the 1/3 magnetization plateau in the spin-1/2 Ferromagnetic–Ferromagnetic–Antiferromagnetic chain

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guang-Hua, E-mail: liuguanghua@tjpu.edu.cn [Department of Physics, Tianjin Polytechnic University, Tianjin 300387 (China); Li, Wei [Department of Physics, Beihang University, Beijing 100191 (China); You, Wen-Long [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Su, Gang [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, College of Physical Sciences, University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Tian, Guang-Shan [School of Physics, Peking University, Beijing 100871 (China)

    2015-03-01

    The ground-state properties of the spin-1/2 Ferromagnetic–Ferromagnetic–Antiferromagnetic (F–F–AF) trimerized chain are investigated by the infinite time-evolving block decimation (iTEBD) method. A ground-state phase diagram including three different phases, i.e., a fully polarized phase, a 1/3 plateau phase, and a non-plateau phase, is obtained. All the quantum phase transitions (QPTs) can be described well by the model independent bipartite entanglement. QPTs between the non-plateau phase and the other two phases belong to the second-order category. Doubly degenerate entanglement spectrum and nontrivial string order are observed in the 1/3 plateau phase, which can be used to distinguish it from the other phases. By the scaling behavior of the bipartite entanglement, the central charge of the critical non-plateau phase is determined to be c≃ 1. - Highlights: • A rich ground-state phase diagram is obtained. • QPTs can be well described by singular behavior of entanglement. • The 1/3 magnetization plateau is characterized by entanglement plateau. • Doubly degenerate entanglement spectrum is observed in the 1/3 plateau phase. • Nontrivial string order is observed in the 1/3 plateau phase.

  11. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice

    Science.gov (United States)

    Huang, Yi-Zhen; Xi, Bin; Chen, Xi; Li, Wei; Wang, Zheng-Chuan; Su, Gang

    2016-06-01

    The quantum phase transition, scaling behaviors, and thermodynamics in the spin-1/2 quantum Heisenberg model with antiferromagnetic coupling J >0 in the armchair direction and ferromagnetic interaction J'ratio Q2 and spin stiffness ρ in two directions for various coupling ratios α =J'/J under different lattice sizes, we found that a quantum phase transition from the dimerized phase to the stripe phase occurs at the quantum critical point αc=-0.93 . Through the finite-size scaling analysis on Q2, ρx, and ρy, we determined the critical exponent related to the correlation length ν to be 0.7212(8), implying that this transition falls into a classical Heisenberg O(3) universality. A zero magnetization plateau is observed in the dimerized phase, whose width decreases with increasing α . A phase diagram in the coupling ratio α -magnetic field h plane is obtained, where four phases, including dimerized, stripe, canted stripe, and polarized, are identified. It is also unveiled that the temperature dependence of the specific heat C (T ) for different α 's intersects precisely at one point, similar to that of liquid 3He under different pressures and several magnetic compounds under various magnetic fields. The scaling behaviors of Q2, ρ , and C (T ) are carefully analyzed. The susceptibility is compared with the experimental data to give the magnetic parameters of both compounds.

  12. Phase separation of holes in antiferromagnets

    International Nuclear Information System (INIS)

    It is shown that dilute holes in an antiferromagnet are unstable against phase separation into a hole-rich phase and a no-hole phase. When the spin exchange interaction J exceeds a critical value Jc, one phase consists of all holes, the other all electrons. The argument is presented in detail for the t--J model but evidence of phase separation in other models is mentioned. 11 refs

  13. Simplified model of bifurcation of single-particle degrees of freedom in strongly correlated Fermi systems near point of antiferromagnetic phase transition

    CERN Document Server

    Zverev, M V; Clark, J W

    2001-01-01

    On the basis of analysis of the Landau-Pitaevskii one has determined that antiferromagnetic transition follows fermion condensation and rearrangement of single-particle degrees of freedom. It results in the spectrum of single-particle excitations. The derived results are used to explain structure of slit in the spectrum at T = 0 in two-dimensional high-temperature superconductors with a square lattice. They may be, as well, used to describe superfluid states of strongly correlated systems with fermion condensation

  14. Ordered Phase in the Fermionized Heisenberg Antiferromagnet

    OpenAIRE

    Azakov, S.; Dilaver, M.; Oztas, A. M.

    1999-01-01

    Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromagnet on a d-dimensional hypercubical lattice are studied within the fermionic representation when the constraint of single occupancy condition is taken into account by the method suggested by Popov and Fedotov. Using saddle point approximation in path integral approach we discuss not only the leading order but also the fluctuations around the saddle point at one-loop level. The influence of taking into acc...

  15. Spin-Flop Transition and a Tilted Canted Spin Structure in a Coupled Antiferromagnet

    Science.gov (United States)

    Shimahara, Hiroshi; Ito, Kazuhiro

    2016-04-01

    We study a uniaxial coupled Heisenberg antiferromagnet that consists of two subsystems of classical spins with small and large lengths and spin-flop transitions in a magnetic field parallel to the magnetic easy axis. It is proved that the anisotropy of inter-subsystem coupling stabilizes an asymmetric canted antiferromagnetic phase with a tilted direction of antiferromagnetism that is not perpendicular to the magnetic field. In contrast to the conventional first-order spin-flop transition, the spin-flop transition from the Néel phase to such a tilted canted antiferromagnetic (TCAF) phase is of the second order in the absence of simple anisotropic energies in the subsystems. The transition from the TCAF phase to the high-field saturated spin phase is of the second order in the strong coupling limit of the exchange interactions J1 between the small spins, whereas when J1 is finite, it becomes first-order. Therefore, in the former case, the TCAF phase converts the Néel phase continuously into the saturated phase. The transitions to the TCAF phase are accompanied by additional spontaneous symmetry breaking, causing the uniform magnetization to have a nonzero component perpendicular to the magnetic field.

  16. The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagome antiferromagnet

    CERN Document Server

    Cherepanov, V B; Podivilov, E V

    2001-01-01

    The problem of the Berezinskii-Kosterlitz-Thouless transition in the highly frustrated XY antiferromagnetic is solved. The transition temperature is found. It is shown that the spin correlation function exponentially decays with distance even in the low-temperature phase, in contrast to the order parameter correlation function, which decays algebraically with distance

  17. Phase transitions in the mixed quadratic-layer antiferromagnets with competing anisotropies K2Cosub(x)Fesub(1-x)F4

    International Nuclear Information System (INIS)

    The magnetic phases of the randomly mixed two-dimensional antiferromagnet K2Cosub(x)Fesub(1-x)F4 have been explored, utilizing neutron diffraction, Moessbauer absorption spectroscopy, and nuclear magnetic resonance techniques. Ordered phases similar to those found in K2FeF4 and K2CoF4 have been detected for low and high x, respectively. By virtue of the competition between the orthogonal anisotropies of the Fe2+ and Co2+ ions a third ordered so-called oblique phase is found for 0.20 2+ and Co2+. Studies have been undertaken of the critical behavior, the sublattice magnetization and the magnetization of individual ions, and the magnetic excitations, for compositions x and temperatures T covering all relevant parts of the phase diagram. In addition, the magnetic structure of a system which enters the oblique phase is investigated in an external magnetic field. Strong nonequilibrium behavior, related to random-field effects, has been observed

  18. Phase transitions

    CERN Document Server

    Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation o

  19. Spin dynamics and structural phase transitions in quasi-2D R sub 2 CuO sub 4 (R=Pr, Sm and Eu) antiferromagnetics

    CERN Document Server

    Golovenchits, E I

    2001-01-01

    One studied spin dynamics and dynamics of lattice in R sub 2 CuO sub 4 (R = Pr, Sm, and Eu) crystals within 20-250 GHz frequency range and within 50350 K temperature interval. One detected abrupt variation of absorption coefficient within wide range of frequencies above 120 GHz at 20, 80 and 150 K temperatures in R sub 2 CuO sub 4 (R = Pr, Sm, and Eu), respectively. Absorption jumpings result from structural phase transitions. Wide ranges of spin-wave excitations were observed in all examined crystals in high-temperature phase. Close to temperatures of phase transitions within wide range of frequencies including frequencies corresponding to ranges of spin-wave excitations one observed lines of a absorption caused by lattice dynamics

  20. Low temperature transformation from antiferromagnetic to ferromagnetic order in impurity system Ge:As near the insulator-metal phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V. [Ioffe Institute, 194021 St. Petersburg (Russian Federation); Makarova, T. L. [Ioffe Institute, 194021 St. Petersburg, Russia and Umea University, Universitetomradet 90187, Umea (Sweden)

    2014-08-20

    The low-temperature transformation from antiparallel to parallel spin orientation in a nonmagnetic compensated system Ge:As semiconductor near the metal-insulator phase transition has been experimentally observed. This effect is manifested in the temperature dependences of the impurity magnetic susceptibility obtained by integration of the spin resonance absorption line. These dependences show that the spin density falls in the medium temperature range (10-100 K) and grows at low temperatures. The effect is confirmed by the specific temperature features of the g-factor and inverse magnetic susceptibility. As the relative content of a compensating impurity (gallium) is made lower than 0.7, the transition temperature begins to decrease and, at a degree of compensation < 0.3, falls outside the temperature range under study (i.e., below 2 K)

  1. Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V2O3

    International Nuclear Information System (INIS)

    Magnetic correlations in all four phases of pure and doped vanadium sesquioxide (V2O3) have been examined by magnetic thermal-neutron scattering. Specifically, we have studied the antiferromagnetic and paramagnetic phases of metallic V2-yO3, the antiferromagnetic insulating and paramagnetic metallic phases of stoichiometric V2O3, and the antiferromagnetic and paramagnetic phases of insulating V1.944Cr0.056O3. While the antiferromagnetic insulator can be accounted for by a localized Heisenberg spin model, the long-range order in the antiferromagnetic metal is an incommensurate spin-density wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations with a open-quotes single lobeclose quotes spectrum in the Stoner electron-hole continuum. Furthermore, our results in metallic V2O3 represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the self-consistent renormalization theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for ℎωBT in the paramagnetic insulator carry substantial magnetic spectral weight. However, they are extremely short-ranged, extending only to the nearest neighbors. The phase transition to the antiferromagnetic insulator, from the paramagnetic metal and the paramagnetic insulator, introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short-range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate d orbitals at the Fermi level in V2O3. copyright 1998 The American Physical Society

  2. Microscopic theory of antiferromagnetic and double superconducting transitions in UPt3

    International Nuclear Information System (INIS)

    The antiferromagnetic and double superconducting transitions in UPt3 are studied by using a high-degeneracy model. Within the model, superconductivity is stimulated by long-range antiferromagnetic order. Two scenarios of the temperature behaviour are possible for the close-packed hexagonal structure. In the first scenario the double superconducting transition follows an antiferromagnetic transition (TN1 > Tc1 > Tc2). In the second scenario the superconducting transition follows two consecutive antiferromagnetic transitions (TN1>TN2>Tc. For both scenarios the superconducting gap is anisotropic and vanishes along lines on the Fermi surface. The specific heat has the T2 behaviour in the superconducting state. (author)

  3. Quantum phase competition in antiferromagnetic spin-1 ladders

    International Nuclear Information System (INIS)

    Motivated by recent chemical explorations into organic-radical-based higher-spin ladder systems, we study the ground-state properties of a wide class of antiferromagnetic spin-1 ladders. Numerical analysis featuring the level-spectroscopy technique reveals the rich phase diagram, correcting a preceding nonlinear-sigma-model prediction. A variational analysis well interprets the phase competition with particular emphasis on the re-entrant phase boundary on the way from single to coupled chains. (author)

  4. Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition

    Science.gov (United States)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2015-01-01

    The electronic, magnetic, thermodynamical, and transport properties of FeRh alloys are studied from first principles. We present a unified approach to the phase stability, an estimate of exchange interactions in various magnetic phases, and transport properties including the effect of temperature which are all based on the same electronic-structure model. Emphasis is put on the transition between the ferromagnetic (FM) and antiferromagnetic (AFM) phases. Such a study is motivated by a recent suggestion of FeRh as a room-temperature antiferromagnetic memory resistor. The theory predicts the order-disorder transformation from the hypothetical disordered bcc phase into ordered B2 phase. Comparison of exchange interactions in the magnetically ordered FM and AFM phases with corresponding spin-disordered counterparts allows us to identify relevant interactions which are precursors of magnetically ordered phases. The most important result is the explanation of a dramatic decrease of the resistivity accompanying the AFM to FM phase transition which is due to the spin disorder present in the system. The study of the anisotropic magnetoresistance in the AFM phase found recently experimentally is extended also to finite temperatures.

  5. Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films

    KAUST Repository

    Cossu, F.

    2013-06-21

    Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.

  6. Magnetization processes and transitions between two antiferromagnetic spin configurations in single-crystalline MnSn2

    Science.gov (United States)

    Duan, T. F.; Ren, W. J.; Liu, W.; Zhang, Z. D.

    2016-08-01

    The magnetic structure of MnSn2 and magnetic phase transitions in this compound have been investigated by magnetic measurements on single crystals. The results show that two antiferromagnetic (AFM) states exist below 325 K and that a transition between these two phases occurs at 74 K. Applying a magnetic field (H) has great influence on the transition temperature. An anomalous magnetization process at low fields occurs when the magnetic field applied along the [110] direction, which is ascribed to the contribution of the basal anisotropy. Based on the data for the magnetization processes and the phase transition of the present single crystal, the H-T phase diagram has been established.

  7. Spin waves in the block checkerboard antiferromagnetic phase

    Institute of Scientific and Technical Information of China (English)

    Lu Feng; Dai Xi

    2012-01-01

    Motivated by the discovery of a new family of 122 iron-based superconductors,we present the theoretical results on the ground state phase diagram,spin wave,and dynamic structure factor obtained from the extended J1-J2 Heisenberg model.In the reasonable physical parameter region of K2Fe4Ses,we find that the block checkerboard antiferromagnetic order phase is stable.There are two acoustic spin wave branches and six optical spin wave branches in the block checkerboard antiferromagnetic phase,which have analytic expressions at the high-symmetry points.To further compare the experimental data on neutron scattering,we investigate the saddlepoint structure of the magnetic excitation spectrum and the inelastic neutron scattering pattern based on linear spin wave theory.

  8. Antiferromagnetism and metal-insulator transition in high temperature superconductors

    International Nuclear Information System (INIS)

    The ground state of the three band Hubbard Hamiltonian for the CuO2 planes of high temperature superconductors is investigated using local ansatz approach which includes local correlations between holes. For sufficiently large Coulomb interaction, U, or charge transfer energy, Δ, one finds a transition from a nonmagnetic metal to an antiferromagnetic (AF) insulator. If the parameters determined by the local density approximation are used, the ground state is a charge-transfer antiferromagnet, with the magnetic moments of m=0.47μΒ and 0.56μΒ, for La2CuO4 and YBa2Cu3O6, respectively. Correlations and the presence of interoxygen hopping reduce drastically the stability of the AF long-range order which disappears at the doping of either 0.06 hole or 0.08 electron, respectively. The effective mass is enhanced by a factor less than two due to correlations. (author). 27 refs.; 5 figs

  9. Ground state and zero temperature phase diagrams of the XXZ antiferromagnetic spin- {1}/{2} chain

    Science.gov (United States)

    Zhou, P.

    1990-05-01

    An expression of the XXZ model is given from which the Ising, isotropic XY and Heisenberg models may be more properly obtained by varying only one anisotropy parameter. The ground state and spin configuration of the antiferromagnetic quasi-classical s = {1}/{2}XXZ chain in a magnetic field of arbitrary direction are studied. The phase diagrams with a longitudinal ( h⊥ = 0) and a transverse field ( h‖ = 0) are presented. Because we take into account an effect of anisotropy in the Zeeman interaction, the phase diagrams are quite different from those given by Kurmann, et al. [Physica A 112 (1982) 235]. A ferromagnetic-antiferromagnetic first order phase transition is indicated for the Ising case with h⊥=0.

  10. Small-scale phase separation in doped anisotropic antiferromagnets

    International Nuclear Information System (INIS)

    We analyse the possibility of nanoscale phase separation manifesting itself in the formation of ferromagnetic (FM) polarons (FM droplets) in the general situation of doped anisotropic three- and two-dimensional antiferromagnets. In these cases, we calculate the shape of the most energetically favourable droplets. We show that the binding energy and the volume of a FM droplet in the three-dimensional (3D) case depend upon only two universal parameters J-bar=(Jx+Jy+Jz)S2 and teff (txtytz)1/3, where J-bar and teff are effective antiferromagnetic (AFM) exchange and hopping integrals, respectively. In the two-dimensional (2D) case these parameters have the form J-bar=(Jx+Jy)S2 and teff (txty)1/2. The most favourable shape of a ferromagnetic droplet corresponds to an ellipse in the 2D case and to an ellipsoid in the 3D case

  11. Cascade of field-induced magnetic transitions in a frustrated antiferromagnetic metal

    OpenAIRE

    Coldea, A. I.; Seabra, L.; McCollam, A.; Carrington, A.; Malone, L.; Bangura, A. F.; Vignolles, D.; van Rhee, P.G.; McDonald, R. D.; Sorgel, T.; Jansen, M.; Shannon, N; Coldea, R.

    2014-01-01

    Frustrated magnets can exhibit many novel forms of order when exposed to high magnetic fields, however, much less is known about materials where frustration occurs in the presence of itinerant electrons. Here we report thermodynamic and transport measurements on micron-sized single crystals of the triangular-lattice metallic antiferromagnet 2H-AgNiO2, in magnetic fields of up to 90 T and temperatures down to 0.35 K. We observe a cascade of magnetic phase transitions at 13.5 20, 28 and 39T in ...

  12. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hills, V.; Wadley, P., E-mail: petewadley@gmail.com; Campion, R. P.; Beardsley, R.; Edmonds, K. W.; Gallagher, B. L. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Novak, V. [Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 53 Praha 6 (Czech Republic); Ouladdiaf, B. [Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Jungwirth, T. [Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 53 Praha 6 (Czech Republic); School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2015-05-07

    In this paper, we use neutron scattering and electrical transport to investigate the paramagnetic to antiferromagnetic phase transition in tetragonal CuMnAs films on GaP(001). X-ray diffraction and cross-sectional transmission electron microscopy measurements show that the films are chemically ordered with high structural quality. The temperature dependence of the structurally forbidden (100) neutron scattering peak is used to determine the Néel temperature, T{sub N}. We then demonstrate the presence of a clear peak in the temperature derivative of the resistivity around T{sub N}. The effect of disorder-induced broadening on the shape of the peak is discussed.

  13. SDW antiferromagnetic phase in the two-dimensional Hubbard model: Eliashberg approach

    Energy Technology Data Exchange (ETDEWEB)

    Szczes' niak, R. [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)], E-mail: szczesni@mim.pcz.czest.pl

    2009-01-19

    The two-dimensional Hubbard model was used for the description of the spin density wave (SDW) antiferromagnetic phase. The calculations were conducted in the framework of the Eliashberg formalism. The SDW phase that characterizes with the order parameter of the s-, extended s- or d-wave symmetry has been considered. The Eliashberg equations for the half-filled electron band have been constructed, with a use of which, it has been shown that only the SDW phase of the s-wave symmetry induces in the system. Next, the dependence of the s-wave SDW transition temperature on the value of the on-site Coulomb repulsion parameter was determined.

  14. Magnetic and calorimetric studies of antiferromagnetic transitions in erbium sesquisulfide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.R.; Chen, Y.Y.; Yao, Y.D.; Lin, Y.S.; Ou, M.N.; Taher, S.M.A.; Hamdeh, H.H.; Zhang, X.; Ho, J.C. E-mail: james.ho@wichita.edu; Gruber, J.B.John B

    2004-03-01

    Magnetic measurements reveal an antiferromagnetic transition in erbium sesquisulfide ErS{sub 1.5} (Er{sub 2}S{sub 3}). The Neel temperature T{sub N} decreases from approximately 3 K at low fields to below 1.8 K at 9000 G. A Curie-Weiss fit to the low-field data between 100 and 300 K yields an effective magnetic moment of 9.65 {mu}{sub B} per Er{sup 3+}. Zero-field calorimetric measurements between 0.7 and 8 K also show a corresponding specific heat peak at T{sub N}. Not expected, however, is the presence of a lower-temperature specific heat shoulder near 2 K. An entropy analysis indicates that both anomalies provide a total of R ln 2 as expected for the Er{sup 3+} ordering, suggesting that the two non-equivalent Er{sup 3+} sites in the monoclinic lattice have different transition temperatures near 3 and 2 K, respectively.

  15. On Julia sets concerning phase transitions

    Institute of Scientific and Technical Information of China (English)

    QIAO; Jianyong(乔建永)

    2003-01-01

    The sets of the points corresponding to the phase transitions of the Potts model on the diamondhierarchical lattice for antiferromagnetic coupling are studied. These sets are the Julia sets of a family ofrational mappings. It is shown that they may be disconnected sets. Furthermore, the topological structures ofthese sets are described completely.

  16. The phase-separated states in antiferromagnetic semiconductors with polarizable lattice

    OpenAIRE

    Nagaev, E. L.

    2000-01-01

    The possibility of the slab or stripe phase separation (alternating ferromagnetic highly- conductive and insulating antiferromagnetic layers) is proved for isotropic degenerate antiferromagnetic semiconductors. This type of phase separation competes with the droplet phase separation (ferromagnetic droplets in the antiferromagnetic host or vice versa). The interaction of electrons with optical phonons alone cannot cause phase-separated state with alternating highly-conductive and insulating re...

  17. Revealing novel quantum phases in quantum antiferromagnets on random lattices

    Directory of Open Access Journals (Sweden)

    R. Yu

    2009-01-01

    Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.

  18. Phase Diagram of Antiferromagnetically Exchange-Coupled Bilayer

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-Hua; ZHANG Guang-Fu; SUN Li-Yuan; Peter A. J. de Groot

    2008-01-01

    Magnetic hysteresis properties of antiferromagnetically exchange-coupled bilayer structures, in which the two magnetic layers have different magnetic parameters and thicknesses, are studied within the framework of the Stoner-Wohifarth model. Analytical expressions for the switching fields corresponding to the linear magnetic states are obtained. By adjusting the magnetic parameters or thicknesses of layers, nine different types of easyaxis hysteresis loops may exist. The phase diagram of easy-axis hysteresis loops is mapped in the k,1 and k,2 plane, where k,1 and k,2 are the ratios of magnetic anisotropy to the interlayer exchange coupling of the two magnetic layers, respectively.

  19. Geometric phase of a central spin coupled to an antiferromagnetic environment

    CERN Document Server

    Yuan, Xiao-Zhong; Zhu, Ka-Di

    2010-01-01

    Using the spin-wave approximation, we study the geometric phase (GP) of a central spin (signal qubit) coupled to an antiferromagnetic (AF) environment under the application of an external global magnetic field. The external magnetic field affects the GP of the qubit directly and also indirectly through its effect on the AF environment. We find that when the applied magnetic field is increased to the critical magnetic field point, the AF environment undergoes a spin-flop transition, a first-order phase transition, and at the same time the GP of the qubit changes abruptly to zero. This sensitive change of the GP of a signal qubit to the parameter change of a many-body environment near its critical point may serve as another efficient tool or witness to study the many-body phase transition. The influences of the AF environment temperature and crystal anisotropy field on the GP are also investigated.

  20. Hubbard one-particle Green function in the antiferromagnetic phase

    International Nuclear Information System (INIS)

    An analytic approach is presented of electronic one-particle spectra of the one-band Hubbard model at half filling in the antiferromagnetic phase. Starting from the strong-coupling regime U>t, a projection technique is used to set up self-consistent coupled equations for the electron Green function, which are valid down to values U∼t. The self-consistent equation for the hole propagator is a direct generalization of the one found from the t-J model. This gives further support to the open-quotes stringclose quotes picture, where propagation of holes creates strings of overturned spins with which the holes interact. Hopping of holes (or electrons) with up spin on the down sublattice is also taken into acount, as well as transitions between the lower and upper Hubbard bands. These are shown to change significantly the incoherent part of the t-J model spectra, by smearing out the shake-off peaks, reminiscent of higher bound string states due to multispin scattering. Coherent (quasiparticle) peaks exist at the band edges, on both sides of the insulating gap. With decreasing U the quasiparticle concept loses its meaning for wave vectors at the center of the magnetic Brillouin zone (MBZ). For large values of U the dispersion of the quasiparticle is found to scale with its band width, which is of order J. Extrema are always found at k=(π/2,π/2). The weight of the quasiparticle at this k value decreases logarithmically with increasing U. In the strong-coupling limit the spectrum tends to be symmetric, i.e., to become an even function of the frequency around the chemical potential, for any wave vector. For small values of U the dispersion at the edge of the MBZ flattens away. The spectral function in this regime, for wave vectors away from the edge of the MBZ, is concentrated mainly on one side of the chemical potential. copyright 1996 The American Physical Society

  1. A model with simultaneous first and second order phase transitions

    OpenAIRE

    Messager, Alain; Nachtergaele, Bruno

    2005-01-01

    We introduce a two dimensional nonlinear XY model with a second order phase transition driven by spin waves, together with a first order phase transition in the bond variables between two bond ordered phases, one with local ferromagnetic order and another with local antiferromagnetic order. We also prove that at the transition temperature the bond-ordered phases coexist with a disordered phase as predicted by Domany, Schick and Swendsen. This last result generalizes the result of Shlosman and...

  2. Multiple Lifshitz transitions driven by short-range antiferromagnetic correlations in the two-dimensional Kondo lattice model

    International Nuclear Information System (INIS)

    With a mean field approach, the heavy Fermi liquid in the two-dimensional Kondo lattice model is carefully considered in the presence of short-range antiferromagnetic correlations. As the ratio of the local Heisenberg superexchange coupling to the Kondo coupling increases, the Fermi surface structure changes dramatically. From the analysis of the ground state energy density, multiple Lifshitz type phase transitions occur at zero temperature.

  3. Disorder-induced phases in the S=1 antiferromagnetic Heisenberg chain

    Science.gov (United States)

    Lajkó, Péter; Carlon, Enrico; Rieger, Heiko; Iglói, Ferenc

    2005-09-01

    We use extensive density matrix renormalization group (DMRG) calculations to explore the phase diagram of the random S=1 antiferromagnetic Heisenberg chain with a power-law distribution of the exchange couplings. We use open chains and monitor the lowest gaps, the end-to-end correlation function and the string order parameter. For this distribution at weak disorder, the system is in the gapless Haldane phase with a disorder dependent dynamical exponent, z , and z=1 signals the border between the nonsingular and singular regions of the local susceptibility. For strong enough disorder, which approximately corresponds to a uniform distribution, a transition into the random singlet phase is detected, at which the string order parameter as well as the average end-to-end correlation function are vanishing and at the same time the dynamical exponent is divergent. Singularities of physical quantities are found to be somewhat different in the random singlet phase and in the critical point.

  4. Cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Chicago Univ., IL (United States)

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  5. Cosmological phase transitions

    International Nuclear Information System (INIS)

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions

  6. High Resolution Far Infrared Study of Antiferromagnetic Resonance Transitions in α-Fe2O3 (hematite)

    Science.gov (United States)

    Chou, Shin Grace; Plusquellic, David F.; Stutzman, Paul E.; Wang, Shuangzhen; Garboczi, Edward J.; Egelhoff, William F.

    2012-02-01

    In this study, we report high resolution optical measurements of the temperature dependence of the antiferromagnetic (AFM) transition in α-Fe2O3 (hematite) between (0.5 and 10) cm-1. The absorption peak position, over a large temperature range, is found to be in agreement with a modified spin-wave model at both the high and low temperature phases, where the temperature is above and below the Morin transition temperature, respectively. The high spectral resolution optical measurements as demonstrated in this study allow unprecedented zero-field spectral analysis of the zone center AFM magnon in a previously challenging spectral region, giving insights into the role of temperature and strain on the exchange and anisotropy interactions in the system. The results also suggest that the frequency-resolved measurement platform could be extended for room-temperature non-destructive examination and imaging applications for antiferromagnetic materials and devices.

  7. Cluster dynamical mean field theory study of antiferromagnetic transition in the square-lattice Hubbard model: Optical conductivity and electronic structure

    Science.gov (United States)

    Sato, Toshihiro; Tsunetsugu, Hirokazu

    2016-08-01

    We numerically study optical conductivity σ (ω ) near the "antiferromagnetic" phase transition in the square-lattice Hubbard model at half filling. We use a cluster dynamical mean field theory and calculate conductivity including vertex corrections and, to this end, we have reformulated the vertex corrections in the antiferromagnetic phase. We find that the vertex corrections change various important details in temperature and ω dependencies of conductivity in the square lattice, and this contrasts sharply the case of the Mott transition in the frustrated triangular lattice. Generally, the vertex corrections enhance variations in the ω dependence, and sharpen the Drude peak and a high-ω incoherent peak in the paramagnetic phase. They also enhance the dip in σ (ω ) at ω =0 in the antiferromagnetic phase. Therefore, the dc conductivity is enhanced in the paramagnetic phase and suppressed in the antiferromagnetic phase, but this change occurs slightly below the transition temperature. We also find a temperature region above the transition temperature in which the dc conductivity shows an insulating behavior but σ (ω ) retains the Drude peak, and this region is stabilized by the vertex corrections. We also investigate which fluctuations are important in the vertex corrections and analyze momentum dependence of the vertex function in detail.

  8. Specific features of nonlinear optical properties of Eu3+ doped BiFeO3 nanopowders near antiferromagnetic transition

    Science.gov (United States)

    El Bahraoui, T.; Sekkati, M.; Taibi, M.; Abd-Lefdil, M.; El-Naggar, A. M.; AlZayed, N. S.; Albassam, A. A.; Kityk, I. V.; Maciag, A.

    2016-01-01

    The monitoring of the Eu3+ doped BiFeO3 nanopowders was performed near the antiferromagnetic transformation by photoinduced optical second harmonic generation. As photoinduced laser beams we have used bicolor coherent excitations of the Er:glass laser emitting at 1540 nm with frequency repetition about 15 ns. The studies of the photoinduced SHG were performed versus temperature including the temperature range of ferromagnetic-ferroelectric transition (350 °C…390 °C). The optimal light polarization and intensity ratio were chosen; the sensitivity of the photoinduced SHG to the multiferroic phase transitions was explored.

  9. Interface Coupling Transition in a Thin EpitaxialAntiferromagnetic Film Interacting with a Ferromagnetic Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Finazzi, M.; Brambilla, A.; Biagioni, P.; Graf, J.; Gweon, G.-H.; Scholl, A.; Lanzara, A.; Duo, L.

    2006-09-07

    We report experimental evidence for a transition in theinterface coupling between an antiferromagnetic film and a ferromagneticsubstrate. The transition is observed in a thin epitaxial NiO film grownon top of Fe(001) as the film thickness is increased. Photoemissionelectron microscopy excited with linearly polarized x rays shows that theNiO film is antiferromagnetic at room temperature with in-plane uniaxialmagnetic anisotropy. The anisotropy axis is perpendicular to the Fesubstrate magnetization when the NiO thickness is less than about 15A,but rapidly becomes parallel to the Fe magnetization for a NiO coveragehigher than 25 A.

  10. Quantum phase transitions

    International Nuclear Information System (INIS)

    In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behaviour of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions is boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed at bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview on a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics

  11. Symmetry origin of the phase transitions and phase separation in manganites at low doping

    OpenAIRE

    Wang, ZD; Zhong, F

    1999-01-01

    We analyze the symmetry changes of paramagnetic to A-type antiferromagnetic and to ferromagnetic phase transitions in undoped and moderately doped LaMnO 3, respectively. We show that in orthorhombic-distorted perovskite manganites the phase separation at low doping is associated with the noncollinear nature of the magnetic orders permitted by symmetry. A simple model for the competition between the two phase transitions is put forward within the framework of the Landau theory of phase transit...

  12. Neutron Scattering Studies of the Anti-ferromagnetic Phase of Cd1-xMnxTe

    DEFF Research Database (Denmark)

    Giebultowicz, T.; Minor, W.; Buras, B.; Lebech, Bente; Galazka, R. R.

    1982-01-01

    Studies of the magnetic properties of crystals of the mixed semiconductors Cd1-xMnxTe indicate that: (i) for x ≤ 0.17 the crystals are paramagnetic at all temperatures, (ii) for 0.17 phase and (iii) for 0.60 antiferromagnetic ordering are observed at low...... the Brillouin function for S = 5/2, except above 3/4 of the ordering temperature. Above this temperature, the observed intensities are larger than expected from ordinary critical fluctuations near a second order phase transition. For x = 0.70, a detailed study has shown that this phenomenon suggests...

  13. Magnetic phase diagram of the low-anisotropy antiferromagnet Cs2FeCl5·H2O

    International Nuclear Information System (INIS)

    From magnetization and ac susceptibility measurements we obtain the complete magnetic phase diagram of single crystals of Cs2FeCl5·H2O for magnetic field up to 15 T. The magnetic field was applied along the directions parallel and perpendicular to the easy axis and the magnetization measured to temperatures down to 0.5 K. At zero magnetic field the antiferromagnetic ordering occurs at TN=6.63 K. For the field applied parallel to the easy axis the antiferromagnetic (AF) to the spin-flop (SF) transition occurs for fields from 1.4 T to 1.1 T depending on the temperature. The low temperature transition from the (SF) to the paramagnetic (P) phase occurs at 13.15 T. In the perpendicular configuration this transition occurs at fields around 13.5 T. From the extrapolation of the transition fields to zero temperature, we obtain a ratio of the anisotropy field HA to exchange field HE, α=HA/HE=(1.4±0.2)×10−2. A comparison with the phase diagram measured for MnF2 is included. - Highlights: • Complete phase diagram of Cs2FeCl5·H2O for magnetic fields up to 15 T. • Direct determination of the anisotropy ratio=HA/HE. • Partial phase diagram of the diluted sample. • Estimative of the high field transition value for MnF2

  14. Computing quantum phase transitions

    OpenAIRE

    Vojta, Thomas

    2007-01-01

    This article first gives a concise introduction to quantum phase transitions, emphasizing similarities with and differences to classical thermal transitions. After pointing out the computational challenges posed by quantum phase transitions, a number of successful computational approaches is discussed. The focus is on classical and quantum Monte Carlo methods, with the former being based on the quantum-to classical mapping while the latter directly attack the quantum problem. These methods ar...

  15. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W.; Neuhaus, J. [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  16. Cosmological phase transitions

    International Nuclear Information System (INIS)

    If the universe stated from conditions of high temperature and density, there should have been a series of phase transitions associated with spontaneous symmetry breaking. The cosmological phase transitions could have observable consequences in the present Universe. Some of the consequences including the formation of topological defects and cosmological inflation are reviewed here. One of the most important tools in building particle physics models is the use of spontaneous symmetry breaking (SSB). The proposal that there are underlying symmetries of nature that are not manifest in the vacuum is a crucial link in the unification of forces. Of particular interest for cosmology is the expectation that are the high temperatures of the big bang symmetries broken today will be restored, and that there are phase transitions to the broken state. The possibility that topological defects will be produced in the transition is the subject of this section. The possibility that the Universe will undergo inflation in a phase transition will be the subject of the next section. Before discussing the creation of topological defects in the phase transition, some general aspects of high-temperature restoration of symmetry and the development of the phase transition will be reviewed. 29 references, 1 figure, 1 table

  17. Phase transitions modern applications

    CERN Document Server

    Gitterman, Moshe

    2014-01-01

    This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.

  18. The SAT phase transition

    Institute of Scientific and Technical Information of China (English)

    许可; 李未

    1999-01-01

    Phase transition is an important feature of SAT problem. For random k-SAT model, it is proved that as r(ratio of clauses to variables) increases, the structure of solutions will undergo a sudden change like satisfiability phase transition when r reaches a threshold point (r=rcr). This phenomenon shows that the satisfying truth assignments suddenly shift from being relatively different from each other to being very similar to each other.##属性不符

  19. Successive phase transitions in the orthovanadate TmVO3

    Science.gov (United States)

    Sarkar, Tapati; Ivanov, Sergey A.; Bazuev, G. V.; Nordblad, Per; Mathieu, Roland

    2015-09-01

    Synthesis and crystal structure, magnetization and heat capacity measurements of phase pure polycrystalline TmVO3 are reported. TmVO3 was stabilized in the orthorhombic structure by thermal treatment of the precursor TmVO4 in a reducing atmosphere. Magnetization and heat capacity measurements reveal the presence of several successive structural and magnetic phase transitions in this compound. At T = 108 K, the sample undergoes a transition from a paramagnetic state to an antiferromagnetic state, followed by a second transition at 78 K which is related to spin and orbital reorientation. The heat capacity measurements reveal the presence of a third transition in the paramagnetic state (at T = 175 K), which corresponds to a structural phase transition and orbital ordering. At low temperatures (~15 K) and weak fields, there is an anomaly in the magnetization, which may be associated with antiferromagnetic short range ordering of the Tm3+ ions.

  20. Successive phase transitions in the orthovanadate TmVO3

    International Nuclear Information System (INIS)

    Synthesis and crystal structure, magnetization and heat capacity measurements of phase pure polycrystalline TmVO3 are reported. TmVO3 was stabilized in the orthorhombic structure by thermal treatment of the precursor TmVO4 in a reducing atmosphere. Magnetization and heat capacity measurements reveal the presence of several successive structural and magnetic phase transitions in this compound. At T = 108 K, the sample undergoes a transition from a paramagnetic state to an antiferromagnetic state, followed by a second transition at 78 K which is related to spin and orbital reorientation. The heat capacity measurements reveal the presence of a third transition in the paramagnetic state (at T = 175 K), which corresponds to a structural phase transition and orbital ordering. At low temperatures (∼15 K) and weak fields, there is an anomaly in the magnetization, which may be associated with antiferromagnetic short range ordering of the Tm3+ ions. (paper)

  1. Interplay of D-wave Superconductivity and Antiferromagnetism in the Cuprate Superconductors: Phase Separation and the Pseudogap Phase Diagram

    OpenAIRE

    Su, W. P.

    2005-01-01

    To understand the interplay of d-wave superconductivity and antiferromagnetism in the cuprates, we consider a two-dimensional extended Hubbard model with nearest neighbor attractive interaction. Free energy of the homogeneous (coexisting superconducting and antiferromagnetic) state calculated a s a function of the band filling shows a region of of phase separation. The phase separation caused by the intersite attractive force leads to novel insights into salient features of the pseudogap phas...

  2. Lifshitz transitions in magnetic phases of the periodic Anderson model

    International Nuclear Information System (INIS)

    We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons. (author)

  3. Supersymmetry "protected" topological phases of isostatic lattices and kagome antiferromagnets

    OpenAIRE

    Lawler, Michael J

    2015-01-01

    I generalize the theory of phonon topological band structures of isostatic lattices to frustrated antiferromagnets. I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs and its connection to local constraints satisfied by ground states. The Witten index of the SUSY model demands the Maxwell-Calladine index of mechanical structures. "Spontaneous supersymmetry breaking" is identified as the need to gap all modes in the bulk to create the...

  4. Magnetization behavior of nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1997-09-01

    The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.

  5. Magnetic thermal hysteresis due to paramagnetic-antiferromagnetic transition in Fe-24.4Mn-5.9Si-5.1Cr alloy

    Directory of Open Access Journals (Sweden)

    L. Wang

    2013-08-01

    Full Text Available Magnetic thermal hysteresis (MTH associated with a paramagnetic (PM-antiferromagnetic (AFM phase transition was found in an Fe-24.4Mn-5.9Si-5.1Cr shape-memory alloy. Aside from the magnetic field (H, the driving rate (v can also tune the critical temperature of the magnetic transition and cause an increase in MTH. The magnetic phase diagram obtained is discussed. The equation for MTH was deduced based on the Landau model for a PM-AFM transition that includes H and v dependence, which gives a reasonable account of the experimental results.

  6. Electroweak phase transitions

    International Nuclear Information System (INIS)

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T. In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field

  7. Noise and Phase Transitions

    Science.gov (United States)

    Chen, Zhi; Yu, Clare C.

    2006-03-01

    Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.

  8. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  9. Critical phase for the antiferromagnetic Z(5) model on a square lattice

    International Nuclear Information System (INIS)

    The existence of a critical phase for the antiferromagnetic Z(5) model on a square lattice is suggested based on results of Monte Carlo (MC) simulations and of Migdal Kadanoff Renormalization Group calculations (MKRG). The MKRG simulates a line of fixed points which it is interpreted as the locus of attraction of a critical phase. The MC simulations are compatible with this interpretation. (Author)

  10. Phase Transitions in Neutron Stars

    OpenAIRE

    Heiselberg, Henning; Hnorth-Jensen, Morten

    1998-01-01

    Phase transitions in neutron stars due to formation of quark matter, kaon condensates, etc. are discussed with particular attention to the order of these transitions. Observational consequences of phase transitions in pulsar angular velocities are examined.

  11. Finite-size effect of antiferromagnetic transition and electronic structure in LiFePO4

    OpenAIRE

    Shu, G. J.; Wu, M. W.; Chou, F. C.

    2012-01-01

    The finite-size effect on the antiferromagnetic (AF) transition and electronic configuration of iron has been observed in LiFePO4. Determination of the scaling behavior of the AF transition temperature (TN) versus the particle-size dimension (L) in the critical regime 1-TN(L)/TN(XTL)\\simL^-1 reveals that the activation nature of the AF ordering strongly depends on the surface energy. In addition, the effective magnetic moment that reflects the electronic configuration of iron in LiFePO4 is fo...

  12. Photoinduced phase transitions

    CERN Document Server

    Nasu, K

    2004-01-01

    A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called "photoinduced phase transition", and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.

  13. Elastically controlled magnetic phase transition in Ga-FeRh/BaTiO3(001) heterostructure

    Science.gov (United States)

    Suzuki, Ippei; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-01-01

    We demonstrate elastically induced ferromagnetic to antiferromagnetic phase transition of Ga-substituted FeRh thin films on BaTiO3(001). It is found that two abrupt changes of magnetization occur at the successive phase transitions from the tetragonal to orthorhombic and the orthorhombic to rhombohedral phases of BaTiO3. Magnetization and magnetoresistance together clearly reveal that a ferromagnetic to antiferromagnetic phase transition is induced due to the compressive lattice strain accompanied by the orthorhombic to rhombohedral structural phase transition, while the tetragonal to orthorhombic phase transition causes a change in the symmetry of the magnetic anisotropy in the ferromagnetic phase of FeRh.

  14. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    International Nuclear Information System (INIS)

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (TN) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the TN by adjusting the atomic cohesive energy. The TN is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numerical match between predictions and measurements reveals that the TN of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number

  15. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan; Zhang, Ting; Huang, Yongli [Key Laboratory of Low-Dimensional Materials and Application Technologies(Ministry of Education)Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Changqing [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-11-15

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numerical match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.

  16. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    International Nuclear Information System (INIS)

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  17. Emergence and Phase Transitions

    Science.gov (United States)

    Sikkema, Arnold

    2006-05-01

    Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.

  18. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  19. Understanding quantum phase transitions

    CERN Document Server

    Carr, Lincoln

    2010-01-01

    Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical meth

  20. Entanglement and quantum phase transitions

    OpenAIRE

    Gu, Shi-Jian; Tian, Guang-Shan; Lin, Hai-Qing

    2005-01-01

    We examine several well known quantum spin models and categorize behavior of pairwise entanglement at quantum phase transitions. A unified picture on the connection between the entanglement and quantum phase transition is given.

  1. Phase diagram of the BCC S=1/2 Heisenberg antiferromagnet with first and second neighbour exchange

    International Nuclear Information System (INIS)

    Full text: The occurrence of competing exchange interactions in magnetic materials can give rise to a rich variety of magnetic ordered states, and of phase transitions between them. Studies of such phenomena, within the classical 'molecular-field' approximation go back half a century or more. It is perhaps surprising that open questions remain, but, at least for quantum models, this is the case. In this work we use linked-cluster series expansions, both at T=0 and at high temperature, to analyse the phase structure of the spin-1/2 Heisenberg antiferromagnet on the body-centred-cubic lattice with first and second-neighbor exchange H= J1 Σ/ Si . Sj + J 2 Σ/[ij] Sk . Sl. At zero temperature we find a first-order quantum phase transition at J2 /J1 = 0.705 ± 0.005 between AF1 (Neel) and AF2 ordered phases. The high temperature series yield quite precise estimates of the critical line separating the AF1 and paramagnetic phases, and an apparent critical line for the AF2 phase, with a bicritical point at J2/J1 = 0.71, kBT / J1 = 0.34. The possibility that this latter transition is first-order cannot be excluded

  2. Quantum phase diagram of a frustrated antiferromagnet on the bilayer honeycomb lattice

    Science.gov (United States)

    Zhang, Hao; Lamas, Carlos A.; Arlego, Marcelo; Brenig, Wolfram

    2016-06-01

    We study the spin-1/2 Heisenberg antiferromagnet on a bilayer honeycomb lattice including interlayer frustration. Using a set of complementary approaches, namely, Schwinger bosons, dimer series expansion, bond operators, and exact diagonalization, we map out the quantum phase diagram. Analyzing ground-state energies and elementary excitation spectra, we find four distinct phases, corresponding to three collinear magnetic long-range ordered states, and one quantum disordered interlayer dimer phase. We detail that the latter phase is adiabatically connected to an exact singlet product ground state of the bilayer, which exists along a line of maximum interlayer frustration. The order within the remaining three phases will be clarified.

  3. Dimension changing phase transitions in instanton crystals

    International Nuclear Information System (INIS)

    We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3D→4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in http://dx.doi.org/10.1007/JHEP11(2012)047) we focus on lower dimensions — the 1D lattice of instantons in a harmonic potential V∝M22x22+M32x22+M42x42, and the zigzag-shaped lattice as a first stage of the 1D→2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons’ orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M2/M3/M4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements of a ℤ2, Klein, prismatic, or dihedral subgroup of the SU(2)/ℤ2, as well as irrational but link-periodic patterns. For the zigzag-shaped lattices, we detected 4 distinct orientation phases — the anti-ferromagnet, another abelian phase, and two non-abelian phases. Allowing the zigzag amplitude to vary as a function of increasing compression force, we obtained the phase diagrams for the straight and zigzag-shaped lattices in the (force,M3/M4), (chemical potential,M3/M4), and (density,M3/M4) planes. Some of the transitions between these phases are second-order while others are first-order. Our techniques can be applied to other types of non-abelian crystals

  4. Valence Bond Glass Phase in the Diluted Kagome Antiferromagnets

    OpenAIRE

    Singh, R. R. P.

    2010-01-01

    We present a theory for site dilution in the Valence Bond Crystal Phase of the Kagome Lattice Heisenberg Model. The presence of an empty site leads to strong singlet bond across the impurity. It also creates a free spin, which delocalizes inside the unit cell. Finite concentration of quenched impurities leads to a Valence Bond Glass phase. This phase has short-range Valence Bond order, no spin-gap, large spin susceptibilities, linear specific heat due to two-level systems, as well as singlet ...

  5. Resistivity, specific heat, and pressure dependent magnetization of multiple-transition antiferromagnet CeAu{sub 2}Ge{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Lung; Loehneysen, Hilbert von [Karlsruher Institut fuer Technologie, Physikalisches Institut, 76031 Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, 76021 Karlsruhe (Germany); Fritsch, Veronika; Kittler, Wolfram [Karlsruher Institut fuer Technologie, Physikalisches Institut, 76031 Karlsruhe (Germany)

    2012-07-01

    The resistivity and specific heat of a CeAu{sub 2}Ge{sub 2} single crystal grown from Au-Ge flux were measured between 1.8 and 200 K. Two transitions were observed in the specific heat at 11.5 and 14.5 K, confirming our recent susceptibility results. We observe three field-induced transitions in the magnetoresistance measured at 1.6 K in accordance with the B-T phase diagram constructed from magnetization. In addition, we have measured the magnetization under pressure. The antiferromagnetic transition temperature T{sub N} is linearly enhanced by pressure with a small rate of 0.067 K/kbar, which suggests that, if attributed to a pure volume effect, this compound is close to the maximum transition temperature of the Doniach phase diagram. The transition fields B{sub M} between the field-induced phases increase linearly upon applying pressure. The comparable Grueneisen parameters of T{sub N} and B{sub M} indicate that the energy scale depending on the sample's volume is determined by the antiferromagnetic correlations.

  6. Paramagnetic Metal—Antiferromagnetic Insulator Transition in π-d System λ-BETS2FeCl4, BETS = Bis(ethylenedithiotetraselenafulvalene

    Directory of Open Access Journals (Sweden)

    Hiroshi Akiba

    2012-07-01

    Full Text Available Quasi-two-dimensional organic conductor λ-BETS2FeCl4 (BETS = bis(ethylenedithiotetraselenafulvalene transforms from a paramagnetic metal (PM to an antiferromagnetic insulator (AFI at a transition temperature, TMI, of 8.3 K under zero magnetic field. To understand the mechanism of this PM-AFI phase transition, we studied the thermodynamic properties of λ-BETS2FeCl4. We observed, below TMI, a six-level Schottky hump in its specific heat and a broad shoulder in its magnetic susceptibility. Just below the transition temperature TMI, about 80% of 3d spin degree of freedom is sustained. These temperature dependences clarify that π and 3d spins do not cooperatively form the AF order at TMI. In λ-BETS2FexGa1−xCl4 system, the increasing Fe 3d spin density enhances the internal magnetic field caused by π spin antiferromagnetic (AF ordering, although the 3d spin itself maintains large entropy against the AF ordering. It was confirmed that the Fe 3d spin provided favorable conditions for this mysterious PM-AFI phase transition in the π electron system. We propose that this phase transition originates from the magnetic anisotropy introduced by the π-d interaction, which suppressed the low dimensional fluctuation in the π spin system.

  7. Spin Hamiltonian, order out of a Coulomb phase, and pseudocriticality in the frustrated pyrochlore Heisenberg antiferromagnet FeF3

    Science.gov (United States)

    Sadeghi, Azam; Alaei, Mojtaba; Shahbazi, Farhad; Gingras, Michel J. P.

    2015-04-01

    FeF3, with its half-filled Fe3 +3 d orbital, hence zero orbital angular momentum and S =5 /2 , is often put forward as a prototypical highly frustrated classical Heisenberg pyrochlore antiferromagnet. By employing ab initio density functional theory, we obtain an effective spin Hamiltonian for this material. This Hamiltonian contains nearest-neighbor antiferromagnetic Heisenberg, biquadratic, and Dzyaloshinskii-Moriya interactions as dominant terms and we use Monte Carlo simulations to investigate the nonzero temperature properties of this minimal model. We find that upon decreasing temperature, the system passes through a Coulomb phase, composed of short-range correlated coplanar states, before transforming into an "all-in/all-out" (AIAO) state via a very weakly first-order transition at a critical temperature Tc≈22 K, in good agreement with the experimental value for a reasonable set of Coulomb interaction U and Hund's coupling JH describing the material. Despite the transition being first order, the AIAO order parameter evolves below Tc with a power-law behavior characterized by a pseudo "critical exponent" β ≈0.18 in accord with experiment. We comment on the origin of this unusual β value.

  8. Cubic to hexagonal iron phase transition promoted by interstitial hydrogen

    OpenAIRE

    Castedo, A.; Sanchez, J.; Fullea, J.; de Andrade, M. C.; de Andres, P. L.

    2011-01-01

    Using ab-initio density functional theory we study the role of interstitial hydrogen on the energetics of the phase transformation of iron from bcc to hcp along Bain's pathway. The impurity creates an internal stress field that can be released through a tetragonal distortion of the lattice, promoting the bcc (ferromagnetic) $\\rightarrow$ fcc (frustrated antiferromagnetic) $\\rightarrow$ hcp (ferromagnetic) transition. The transformation between crystal systems is accompanied by a drastic magne...

  9. Investigation Of Mean-Field Equations Of ANNNI Model For The Phase Transition In UNi2Si2

    International Nuclear Information System (INIS)

    The phase transition from the uncompensated antiferromagnetic state to a simple antiferromagnet, experimentally observed in UNi2Si2 is a subject of intensive discussion in recent few years. We present a study of initial mean-field equations of Axial-Next-Next-Neighbour Ising (ANNNI) model applied to the transition. The temperature evolution of a magnetic phase diagram within ANNNI model is presented. Results are discussed in comparison with other previous investigations of this topic. (Authors)

  10. Dynamic Phase Transitions in Superconductivity

    OpenAIRE

    Ma, Tian; Wang, Shouhong

    2007-01-01

    In this Letter, the dynamic phase transitions of the time-dependent Ginzburg-Landau equations are analyzed using a newly developed dynamic transition theory and a new classification scheme of dynamics phase transitions. First, we demonstrate that there are two type of dynamic transitions, jump and continuous, dictated by the sign of a nondimensional parameter R. This parameter is computable, and depends on the material property, the applied field, and the geometry of domain that the sample oc...

  11. Room temperature write-read operations in antiferromagnetic memory

    OpenAIRE

    Moriyama, Takahiro; Matsuzaki, Noriko; Kim, Kab-Jin; Suzuki, Ippei; Taniyama, Tomoyasu; Ono, Teruo

    2015-01-01

    B2-ordered FeRh has been known to exhibit antiferromagnetic-ferromagnetic (AF-F) phase transitions in the vicinity of room temperature. Manipulation of the N\\'eel order via AF-F phase transition and recent experimental observation of the anisotropic magnetoresistance in antiferromagnetic FeRh has proven that FeRh is a promising candidate for antiferromagnetic memory material. In this work, we demonstrate sequential write and read operations in antiferromagnetic memory resistors made of B2-ord...

  12. The disordered-free-moment phase: a low-field disordered state in spin-gap antiferromagnets with site dilution

    OpenAIRE

    Yu, Rong; Roscilde, Tommaso; Haas, Stephan

    2006-01-01

    Site dilution of spin-gapped antiferromagnets leads to localized free moments, which can order antiferromagnetically in two and higher dimensions. Here we show how a weak magnetic field drives this order-by-disorder state into a novel disordered-free-moment phase, characterized by the formation of local singlets between neighboring moments and by localized moments aligned antiparallel to the field. This disordered phase is characterized by the absence of a gap, as it is the case in a Bose gla...

  13. Pressure-induced phase transitions in UN: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang, E-mail: zmei@anl.gov; Stan, Marius

    2014-03-05

    Highlights: • Isostructural and magnetic phase transitions were predicted by DFT in UN. • Thermodynamic properties of UN were well predicted by DFT. • Pressure–temperature phase diagram of UN was calculated from Gibbs energy. -- Abstract: We studied the structural behavior and phase stability of UN under high pressures up to 200 GPa and temperatures up to 1500 K using density functional theory calculations in the generalized gradient approximation. The results show that a pressure-induced structural transition from the cubic to the rhombohedral phase occurs at 23.5 GPa. The calculated structural and magnetic properties of the rhombohedral phase suggest that an isostructural transition occurs at 22.5 GPa. The low-pressure rhombohedral phase has a fcc-like structure. We predict that under further compression, an antiferromagnetic to nonmagnetic transition occurs. This phase transition has been not observed by experiment yet. To evaluate conditions under which other new phase transitions might occur, we studied the phase stability of UN at finite temperature by taking into account the lattice vibrational and thermal electronic contributions to Gibbs energy. Based on the Gibbs energy models, the pressure–temperature phase diagram of UN was studied and the phase boundaries of the antiferromagnetic rhombohedral phase were also determined. We predict that, although metastable, the antiferromagnetic rhombohedral phase might be stabilized at low-temperature by quenching from the high-pressure phase.

  14. Pressure-induced phase transitions in UN: A density functional theory study

    International Nuclear Information System (INIS)

    Highlights: • Isostructural and magnetic phase transitions were predicted by DFT in UN. • Thermodynamic properties of UN were well predicted by DFT. • Pressure–temperature phase diagram of UN was calculated from Gibbs energy. -- Abstract: We studied the structural behavior and phase stability of UN under high pressures up to 200 GPa and temperatures up to 1500 K using density functional theory calculations in the generalized gradient approximation. The results show that a pressure-induced structural transition from the cubic to the rhombohedral phase occurs at 23.5 GPa. The calculated structural and magnetic properties of the rhombohedral phase suggest that an isostructural transition occurs at 22.5 GPa. The low-pressure rhombohedral phase has a fcc-like structure. We predict that under further compression, an antiferromagnetic to nonmagnetic transition occurs. This phase transition has been not observed by experiment yet. To evaluate conditions under which other new phase transitions might occur, we studied the phase stability of UN at finite temperature by taking into account the lattice vibrational and thermal electronic contributions to Gibbs energy. Based on the Gibbs energy models, the pressure–temperature phase diagram of UN was studied and the phase boundaries of the antiferromagnetic rhombohedral phase were also determined. We predict that, although metastable, the antiferromagnetic rhombohedral phase might be stabilized at low-temperature by quenching from the high-pressure phase

  15. Anomaly in the phase diagram of the spin quantum 1/2 anisotropic Heisenberg antiferromagnet model with Dzyaloshinskii-Moriya interaction: A low temperature analysis

    Science.gov (United States)

    Parente, Walter E. F.; Pacobahyba, J. T. M.; Araújo, Ijanílio G.; Neto, Minos A.; Ricardo de Sousa, J.

    2015-11-01

    We will study phase diagram the quantum spin-1/2 anisotropic Heisenberg antiferromagnet model in the presence of a Dzyaloshinskii-Moriya interaction (D) and a uniform longitudinal (H) magnetic field, where we have observed an anomaly at low temperatures. Using the effective-field theory with a finite cluster N=2 spin (EFT-2) we calculate the phase diagram in the H - D plane on a simple cubic lattice (z=6). We analyzed the cases: anisotropic Heisenberg - case I: (Δ = 1), anisotropic Heisenberg - case II: (Δ = 0.5) and anisotropic Heisenberg - case III: (Δ = 0), where only second order phase transitions are observed.

  16. Spin-current probe for phase transition in an insulator.

    Science.gov (United States)

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'Diaye, Alpha T; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z Q; Saitoh, Eiji

    2016-01-01

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices. PMID:27573443

  17. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  18. Sequential write-read operations in FeRh antiferromagnetic memory

    Science.gov (United States)

    Moriyama, Takahiro; Matsuzaki, Noriko; Kim, Kab-Jin; Suzuki, Ippei; Taniyama, Tomoyasu; Ono, Teruo

    2015-09-01

    B2-ordered FeRh has been known to exhibit antiferromagnetic-ferromagnetic (AF-F) phase transitions in the vicinity of room temperature. Manipulation of the Néel order via AF-F phase transition and recent experimental observation of the anisotropic magnetoresistance in antiferromagnetic FeRh has proven that FeRh is a promising candidate for antiferromagnetic memory material. In this work, we demonstrate sequential write and read operations in antiferromagnetic memory resistors made of B2-orderd FeRh thin films by a magnetic field and electric current only, which open a realistic pathway towards operational antiferromagnetic memory devices.

  19. Antiferromagnetic transitions in `tetragonal-like' BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Gregory J [ORNL; Christen, Hans M [ORNL; Siemons, Wolter [ORNL; Biegalski, Michael D [ORNL; Zarestky, Jerel L [ORNL; Liang, Shuhua [ORNL; Dagotto, Elbio R [ORNL; Nagler, Stephen E [ORNL

    2012-01-01

    Recent studies have reported the existence of an epitaxially-stabilized tetragonal-like (`T-like') monoclinic phase in BiFeO3 thin-films with high levels of compressive strain. Though there is abundant evidence that structural and ferroelectric properties are di erent than in rhombohedral-like (`R-like') films with lower levels of strain, little information exists on magnetic properties. Here,we report a detailed neutron scattering study of a nearly phase-pure film of T-like BiFeO3. By tracking the temperature dependence and relative intensity of several superstructure peaks in the reciprocal lattice cell, we confirm antiferromagnetism with largely G-type character and T_N = 324 K. A minority magnetic phase with C-type character is also reported with T_N= 260 K. The co-existence of the two phases in T-like BiFeO3 and the difference in ordering temperatures between R-like and T-like systems is explained through simple Fe-O-Fe bond distance considerations.

  20. Antiferromagnetic transitions in 'tetragonal-like' BiFeO3

    International Nuclear Information System (INIS)

    Recent studies have reported the existence of an epitaxially-stabilized tetragonal-like ('T-like') monoclinic phase in BiFeO3 thin-films with high levels of compressive strain. Though there is abundant evidence that structural and ferroelectric properties are different than in rhombohedral-like ('R-like') films with lower levels of strain, little information exists on magnetic properties. Here,we report a detailed neutron scattering study of a nearly phase-pure film of T-like BiFeO3. By tracking the temperature dependence and relative intensity of several superstructure peaks in the reciprocal lattice cell, we confirm antiferromagnetism with largely G-type character and TN = 324 K. A minority magnetic phase with C-type character is also reported with TN = 260 K. The co-existence of the two phases in T-like BiFeO3 and the difference in ordering temperatures between R-like and T-like systems is explained through simple Fe-O-Fe bond distance considerations.

  1. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  2. Multiobjective Optimization and Phase Transitions

    CERN Document Server

    Seoane, Luís F

    2015-01-01

    Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.

  3. First-order superfluid-to-Mott-insulator phase transitions in spinor condensates

    Science.gov (United States)

    Jiang, J.; Zhao, L.; Wang, S.-T.; Chen, Z.; Tang, T.; Duan, L.-M.; Liu, Y.

    2016-06-01

    We observe evidence of first-order superfluid-to-Mott-insulator quantum phase transitions in a lattice-confined antiferromagnetic spinor Bose-Einstein condensate. The observed signatures include the hysteresis effect, significant heatings across the phase transitions, and changes in spin populations due to the formation of spin singlets in the Mott-insulator phase. The nature of the phase transitions is found to strongly depend on the ratio of the quadratic Zeeman energy to the spin-dependent interaction. Our observations are qualitatively understood by the mean field theory and suggest tuning the quadratic Zeeman energy is a new approach to realize superfluid-to-Mott-insulator phase transitions.

  4. The low-temperature phase of the Heisenberg antiferromagnet in a fermionic representation

    International Nuclear Information System (INIS)

    Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromagnet on a d-dimensional hypercubical lattice are studied within the fermionic representation when the constraint of a single occupancy condition is taken into account by the method suggested by Popov and Fedotov. Using a saddle point approximation in the path integral approach we discuss not only the leading order but also the fluctuations around the saddle point at one-loop level. The influence of taking into account the single occupancy condition is discussed at all steps. (author)

  5. Reentrance in the phase diagrams of the transverse Ising antiferromagnet in the presence of the longitudinal magnetic field on a simple cubic lattice

    International Nuclear Information System (INIS)

    In this paper, we study the critical behavior of the three-dimensional antiferromagnetic Ising model in both uniform longitudinal (H) and transverse (Ω) magnetic fields. Using the effective field theory (EFT) with finite cluster N = 1 spin (EFT) we calculate the phase diagrams in the H–T, Ω–T and Ω–H planes for a simple cubic lattice. We have only found second-order phase transitions for all values of fields and reentrant behavior was observed at low temperature. (paper)

  6. In-situ microscopy of the first-order magnetic phase transition in FeRh thin films

    OpenAIRE

    Baldasseroni, Chloe

    2013-01-01

    Simple ferromagnetic (FM) and antiferromagnetic (AF) materials such as Fe and Cr become paramagnetic when heated above some critical temperature, in what is known as a second-order phase transition. Less usual magnetic transitions are found in the magnetic world, for example a first-order magnetic phase transition from AF to FM with increasing temperature. Equiatomic FeRh has been known to exhibit such a transition for over 50 years, with a transition temperature slightly above room tempera...

  7. Phase Transitions in QCD

    OpenAIRE

    H. Satz(University of Bielefeld)

    2000-01-01

    At high temperatures or densities, hadronic matter shows different forms of critical behaviour: colour deconfinement, chiral symmetry restoration, and diquark condensation. I first discuss the conceptual basis of these phenomena and then consider the description of colour deconfinement in terms of symmetry breaking, through colour screening and as percolation transition.

  8. Phase transition in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph.; Duflot, V. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Duflot, V.; Gulminelli, F. [Laboratoire de Physique Corpusculaire, LPC-ISMRa, CNRS-IN2P3, 14 - Caen (France)

    2000-07-01

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  9. Phase transition in finite systems

    International Nuclear Information System (INIS)

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  10. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  11. First-order transition to a noncollinear antiferromagnetic structure in U2Rh3Si5

    International Nuclear Information System (INIS)

    We have determined the antiferromagnetic structure of monoclinic U2Rh3Si5 and the temperature dependence of the magnetically ordered moment μ via single-crystal neutron diffraction. The value of μ exhibits a sharp discontinuity at the ordering temperature TN=25.5 K, jumping from 1.6μB to zero within a narrow temperature interval [ΔTN=0.2 K, μ(9 K)=2.35μB]. This demonstrates the first-order nature of the transition. The magnetically ordered structure is a noncollinear arrangement of the eight uranium magnetic moments within the crystallographic unit cell. The moments are oriented parallel to nearest-neighbor U-Rh bonds, creating uniaxial (Ising-type) magnetic behavior, with canted local easy axes. The temperature dependence of the lattice parameters, as determined via high-resolution x-ray diffraction, exhibit pronounced discontinuities at TN. These data demonstrate a strong magnetoelastic coupling. copyright 1997 The American Physical Society

  12. Quantum Heisenberg antiferromagnets: a survey of the activity in Firenze

    International Nuclear Information System (INIS)

    Over the years the research group in Firenze has produced a number of theoretical results concerning the statistical mechanics of quantum antiferromagnetic models, which range from the theory of two-magnon Raman scattering to the characterization of the phase transitions in quantum low-dimensional antiferromagnetic models. Our research activity was steadily aimed to the understanding of experimental observations

  13. Optical investigation of magneto-structural phase transition in FeRh

    OpenAIRE

    Saidl, V.; Brajer, M.; Horak, L.; Reichlova, H.; Vyborny, K.; Veis, M.; Janda, T.; Trojanek, F.; Fina, I.; Marti, X.; Jungwirth, T.; Nemec, P.

    2015-01-01

    Magneto-structural phase transition in FeRh epitaxial layers was studied optically. It is shown that the transition between the low-temperature antiferromagnetic phase and the high-temperature ferromagnetic phase is accompanied by a rather large change of the optical response in the visible and near infrared spectral ranges. This phenomenon was used to measure the phase transition temperature in FeRh films with thicknesses from 6 to 100 nm and it was observed that the hysteretic transition re...

  14. Quantum Phase Transition, Dissipation, and Measurement

    OpenAIRE

    Chakravarty, Sudip

    2009-01-01

    A selected set of topics in quantum phase transition is discussed. It includes dissipative quantum phase transitions, the role of disorder, and the relevance of quantum phase transition to measurement theory in quantum mechanics.

  15. Structural and magnetic phase transitions in NdCoAsO under high pressures

    International Nuclear Information System (INIS)

    We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained antiferromagnetic and non-superconducting down to 10 K and up to the highest pressure achieved in this experiment, 53 GPa. A P-T phase diagram for NdCoAsO is presented from ambient conditions to P = 53 GPa and T = 10 K.

  16. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    International Nuclear Information System (INIS)

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1−xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase

  17. Phase transition in Liouville theory

    International Nuclear Information System (INIS)

    We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the ''plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for d>1 is conjectured to be due to our insistence on working at a fixed genus

  18. Berry Phases and Quantum Phase Transitions

    CERN Document Server

    Hamma, A

    2006-01-01

    We study the connection between Berry phases and quantum phase transitions of generic quantum many-body systems. Consider sequences of Berry phases associated to sequences of loops in the parameter space whose limit is a point. If the sequence of Berry phases does not converge to zero, then the limit point is a quantum critical point. Quantum critical points are associated to failures of adiabaticity. We discuss the remarkable example of the anisotropic XY spin chain in a transverse magnetic field and detect the XX region of criticality.

  19. Phase transitions in field theory

    International Nuclear Information System (INIS)

    By means of an example for which the effective potential is explicitly calculable (up to the one loop approximation), it is discussed how a phase transition takes place as the temperature is increased and pass from spontaneously broken symmetry to a phase in which the symmetry is restored. (Author)

  20. Field-induced phase transitions in neutron-irradiated haematite

    International Nuclear Information System (INIS)

    Moessbauer spectra of three neutron-irradiated polycrystalline haematite (α-Fe2O3) samples have been recorded at 4.2 K in applied fields of up to 10 T. Field-induced phase transitions were observed, and were found to differ markedly from those that occur in non-irradiated haematite. In two lightly irradiated samples, transitions were detected from a state with Fe3+ spins near the [111] axis ('antiferromagnetic phase') to one where the spins are almost perpendicular to both the applied field and to the [111] axis ('weak ferromagnetic phase'). In the case of a heavily irradiated sample, in which the spins were initially in the weak ferromagnetic phase, the spins were observed to lie almost perpendicular to applied fields of greater than ∼ 4.5 T. The difference in behaviour in irradiated and non-irradiated haematite is attributed to a smaller difference in anisotropy energy, in the irradiated samples, between the antiferromagnetic and weak ferromagnetic phases at 4.2 K. (Author)

  1. Magnetic phase diagram of the low-anisotropy antiferromagnet Cs{sub 2}FeCl{sub 5}·H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.S., E-mail: freitas@if.usp.br; Paduan-Filho, A.; Becerra, C.C.

    2015-01-15

    From magnetization and ac susceptibility measurements we obtain the complete magnetic phase diagram of single crystals of Cs{sub 2}FeCl{sub 5}·H{sub 2}O for magnetic field up to 15 T. The magnetic field was applied along the directions parallel and perpendicular to the easy axis and the magnetization measured to temperatures down to 0.5 K. At zero magnetic field the antiferromagnetic ordering occurs at T{sub N}=6.63 K. For the field applied parallel to the easy axis the antiferromagnetic (AF) to the spin-flop (SF) transition occurs for fields from 1.4 T to 1.1 T depending on the temperature. The low temperature transition from the (SF) to the paramagnetic (P) phase occurs at 13.15 T. In the perpendicular configuration this transition occurs at fields around 13.5 T. From the extrapolation of the transition fields to zero temperature, we obtain a ratio of the anisotropy field H{sub A} to exchange field H{sub E}, α=H{sub A}/H{sub E}=(1.4±0.2)×10{sup −2}. A comparison with the phase diagram measured for MnF{sub 2} is included. - Highlights: • Complete phase diagram of Cs{sub 2}FeCl{sub 5}·H{sub 2}O for magnetic fields up to 15 T. • Direct determination of the anisotropy ratio=HA/HE. • Partial phase diagram of the diluted sample. • Estimative of the high field transition value for MnF{sub 2}.

  2. Incommensurate phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Currat, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-11-01

    We review the characteristic aspects of modulated crystals from the point of view of inelastic neutron scattering. We discuss the phenomenological Landau theory of the normal-to-incommensurate displacive instability and its predictions concerning the fluctuation spectrum of the modulated phase. General results on the form of the normal-mode eigenvectors and on the inelastic scattering channels through which they couple to the probe are established using the superspace approach. We illustrate these results on a simple discrete model symmetry and we review available inelastic neutron scattering data on several displacively modulated compounds. (author) 21 figs., 73 refs.

  3. Phase transition in black holes

    CERN Document Server

    Roychowdhury, Dibakar

    2014-01-01

    The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...

  4. How generic scale invariance influences quantum and classical phase transitions

    International Nuclear Information System (INIS)

    This review discusses a paradigm that has become of increasing importance in the theory of quantum phase transitions, namely, the coupling of the order-parameter fluctuations to other soft modes and the resulting impossibility of constructing a simple Landau-Ginzburg-Wilson theory in terms of the order parameter only. The soft modes in question are manifestations of generic scale invariance, i.e., the appearance of long-range order in whole regions in the phase diagram. The concept of generic scale invariance and its influence on critical behavior is explained using various examples, both classical and quantum mechanical. The peculiarities of quantum phase transitions are discussed, with emphasis on the fact that they are more susceptible to the effects of generic scale invariance than their classical counterparts. Explicit examples include the quantum ferromagnetic transition in metals, with or without quenched disorder; the metal-superconductor transition at zero temperature; and the quantum antiferromagnetic transition. Analogies with classical phase transitions in liquid crystals and classical fluids are pointed out, and a unifying conceptual framework is developed for all transitions that are influenced by generic scale invariance

  5. Phase transition in evolutionary games

    CERN Document Server

    Cao, Z J; Cao, Zhen; Hwa, Rudolph C

    1995-01-01

    The evolution of cooperative behaviour is studied in the deterministic version of the Prisoners' Dilemma on a two-dimensional lattice. The payoff parameter is set at the critical region 1.8 < b < 2.0 , where clusters of cooperators are formed in all spatial sizes. Using the factorial moments developed in particle and nuclear physics for the study of phase transition, the distribution of cooperators is studied as a function of the bin size covering varying numbers of lattice cells. From the scaling behaviour of the moments a scaling exponent is determined and is found to lie in the range where phase transitions are known to take place in physical systems. It is therefore inferred that when the payoff parameter is increased through the critical region the biological system of cooperators undergoes a phase transition to defectors. The universality of the critical behaviour is thus extended to include also this particular model of evolution dynamics.

  6. Field-Dependent Magnetic Phase Transitions in Mixed-Valent TmSe

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Shapiro, S. M.; Birgenau, R. J.

    1977-01-01

    A neutron diffraction study of the field-dependent magnetic ordering in TmSe is reported. The magnetic strucutre in zero field is antiferromagnetic fcc type I with TN=3.2 K. The magnetic phase diagram may be understood as a successive domain reorientation and metamagnetic transitions for T...

  7. Phase transitions precipitated by solitosynthesis

    CERN Document Server

    Kusenko, A

    1997-01-01

    Solitosynthesis of Q-balls in the false vacuum can result in a phase transition of a new kind. Formation and subsequent growth of Q-balls via the charge accretion proceeds until the solitons reach a critical charge, at which point it becomes energetically favorable for the Q-ball interior to expand filling space with the true vacuum phase. Solitosynthesis can destabilize a false vacuum even when the tunneling rate is negligible. In models with low-energy supersymmetry, where the Q-balls associated with baryon and lepton number conservation are generically present, solitosynthesis can precipitate transitions between the vacua with different VEV's of squarks and sleptons.

  8. Superunification, phase transitions and cosmology

    International Nuclear Information System (INIS)

    We survey the main features behind the idea of grand unification, both without and with (local) supersymmetry. We then study the high-temperature phase transitions in the theories so realized, and their relevance to the cosmology of the early universe. In particular, we review the basic ingredients of (super) grand unified models and we give the basic tools needed for the study of their phase transitions. After a short introduction to cosmology, we focus on the interplay between unified particle physics models and cosmology, with particular emphasis on the inflationary universe scenario. In the same perspective, new research directions, in the context of higher-dimensional theories, are also discussed. (author)

  9. Quantum phase transition in dimerised spin-1/2 chains

    Science.gov (United States)

    Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali

    2015-11-01

    Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

  10. Artificiality of multifractal phase transitions

    OpenAIRE

    Wolf, Martin; Schmiegel, Jürgen; Greiner, Martin

    1999-01-01

    A multifractal phase transition is associated to a nonanalyticity in the generalised dimensions. We show that its occurrence is an artifact of the asymptotic scaling behaviour of integral moments and that it is not observed in an analysis based on differential n-point correlation densities.

  11. Phase transitions in finite systems

    International Nuclear Information System (INIS)

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  12. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  13. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  14. Phase transitions in quantum chromodynamics

    CERN Document Server

    Meyer-Ortmanns, H

    1996-01-01

    The current understanding of finite temperature phase transitions in QCD is reviewed. A critical discussion of refined phase transition criteria in numerical lattice simulations and of analytical tools going beyond the mean-field level in effective continuum models for QCD is presented. Theoretical predictions about the order of the transitions are compared with possible experimental manifestations in heavy-ion collisions. Various places in phenomenological descriptions are pointed out, where more reliable data for QCD's equation of state would help in selecting the most realistic scenario among those proposed. Unanswered questions are raised about the relevance of calculations which assume thermodynamic equilibrium. Promising new approaches to implement nonequilibrium aspects in the thermodynamics of heavy-ion collisions are described.

  15. Magnetic structure and phase transition on NiO

    International Nuclear Information System (INIS)

    Neutron diffraction has been important technique to understand the magnetism. Louis Néel anticipated antiferromagnetic states theoretically and C. G. Shull et al. carried out neutron powder diffraction and found antiferromagnetic structure on transition metal monoxide TMO(TM=Mn, Fe, Co, and Ni). Since their pioneer works stimulated the research on various magnetic phenomena in condensed matter physics, many textbook explained TMOs as the introduction of antiferromagnetism with neutron powder diffraction. Many researchers who read the textbook thought their magnetic structure was already solved completely, but actually their magnetic moment directions have been unclear for so long time and one of most delicate problem in condensed matter physics. Crystal and magnetic transition occurred simultaneously by exchangestriction and magnetostriction that causes ferroelastic domain even though it was grown as single crystal. These twin domains induce the complicated condition on experiments and analysis of magnetic moment direction. R-3m crystal structure and magnetic propagating vector km=(0 0 1.5)h are well accepted for both MnO and NiO in the research community. Their magnetic moment direction is believed inside the hexagonal plane. However, MnO is 1st order phase transition while NiO is 2nd order phase transition experimentally. To explain the difference of magnetic structure and phase transition between MnO and NiO, we carried out time-of-flight neutron powder diffraction on NiO using SuperHRPD beamline in J-PARC, Japan. Even though we couldn’t observe monoclinic peak splitting which is too smaller than about Δd/d=0.02%, we constructed C2/m monoclinic structure with km=(0 1 0.5)m and assigned Γ2(Bg) magnetic structure on NiO by symmetry analysis. We argue that MnO magnetic moment direction is along 2-fold axis while NiO is inside mirror plane in C2/m. This different magnetic moment direction and symmetry will be responsible to 1st and 2nd order phase transition on

  16. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  17. Magnetic phase transition in iron-rhodium thin films probed by ferromagnetic resonance

    Science.gov (United States)

    Mancini, E.; Pressacco, F.; Haertinger, M.; Fullerton, E. E.; Suzuki, T.; Woltersdorf, G.; Back, C. H.

    2013-06-01

    We report the results of ferromagnetic (FMR) resonance measurements on epitaxial FeRh/MgO(0 0 1) samples across the phase transition from the antiferromagnetic (AF) state of FeRh to its ferromagnetic (F) state. From temperature-dependent measurements of position, width and amplitude of the FMR line the phase transition is studied in detail. Our measurements indicate that the AF to F phase transition of FeRh is first order in nature. In addition, the angular and frequency-dependent FMR measurements are used to determine the anisotropy constants and the Gilbert damping parameter of the epitaxial FeRh films.

  18. Phase diagram of uniaxial antiferromagnetic particles: Field perpendicular to the easy axis

    International Nuclear Information System (INIS)

    We consider a spherical uniaxial antiferromagnetic particle in the presence of an external magnetic field perpendicular to its easy axis. The model is described by a classical Heisenberg Hamiltonian including a single-ion uniaxial anisotropy, where the magnetic moments of the particle are represented by continuous spin vectors. We employ mean-field calculations and Monte Carlo simulations to determine the phase diagram of the system. The phase diagram in the plane field versus temperature is obtained for particles with radii ranging from three up to twelve spacing lattice units. We have seen that a particle with more than nine shells behaves as a true thermodynamic system. We find the explicit dependence of the zero temperature critical field and the Neel temperature on the diameter of the particle. At low temperatures, we have also shown that, for particles with three or more shells, the critical field follows a T2 law, which is in agreement with the predictions of the spin-wave theory, when the field is perpendicular to the easy axis

  19. Phase Transitions in the Universe

    CERN Document Server

    Gleiser, Marcello

    1998-01-01

    During the past two decades, cosmologists turned to particle physics in order to explore the physics of the very early Universe. The main link between the physics of the smallest and largest structures in the Universe is the idea of spontaneous symmetry breaking, familiar from condensed matter physics. Implementing this mechanism into cosmology leads to the interesting possibility that phase transitions related to the breaking of symmetries in high energy particle physics took place during the early history of the Universe. These cosmological phase transitions may help us understand many of the challenges faced by the standard hot Big Bang model of cosmology, while offering a unique window into the very early Universe and the physics of high energy particle interactions.

  20. 'Magnetic' phase transition in silver

    International Nuclear Information System (INIS)

    Experimental and theoretical investigations of the magnetic susceptibility near the phase transition into the Condon domain state in silver are presented. We report about the precursor of the Condon instability of an electron gas by using data of the measurement of the magnetic field-dependence of the susceptibility. Experimental results are explained theoretically within the framework of the Lifshitz-Kosevich-Shoenberg theory. A good agreement between the theory and the experiment is obtained when de Haas-van Alphen oscillations are only originated from 'belly' oscillations, and as a result of this, the spherical modelling of the Fermi surface in silver is justified. It is shown that the phase transition into the Condon domain state is the critical point of the liquid-gas type at which the isothermal susceptibility does not diverge but possesses a finite value due to the nonzero demagnetization factor

  1. Electroweak phase transition recent results

    CERN Document Server

    Csikor, Ferenc

    2000-01-01

    Recent results of four-dimensional (4d) lattice simulations on the finite temperature electroweak phase transition (EWPT) are discussed. The phase transition is of first order in the SU(2)-Higgs model below the end point Higgs mass 66.5$\\pm$1.4 GeV. For larger masses a rapid cross-over appears. This result completely agrees with the results of the dimensional reduction approach. Including the full Standard Model (SM) perturbatively the end point is at 72.1$\\pm$1.4 GeV. Combined with recent LEP Higgs mass lower bounds, this excludes any EWPT in the SM. A one-loop calculation of the static potential makes possible a precise comparison of the lattice and perturbative results. Recent 4d lattice studies of the Minimal Supersymmetric SM (MSSM) are also mentioned.

  2. Mechanical stresses upon phase transitions

    OpenAIRE

    Pedersen, Tom Peder Leervad

    2003-01-01

    Mechanical stress studies were carried out on three different groups of functional coatings using a purpose-built system. Functional coatings have become increasingly important in recent years due to their interesting technological applications. In this work three different groups of coatings were studied. Transition metal oxides are used as optical coatings, hard coatings, etc., phase change films find application in optical data storage technology, while optically switchable coatings have b...

  3. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs

    Czech Academy of Sciences Publication Activity Database

    Hills, V.; Wadley, P.; Campion, R. P.; Novák, Vít; Beardsley, R.; Edmonds, K. W.; Gallagher, B. L.; Ouladdiaf, B.; Jungwirth, Tomáš

    2015-01-01

    Roč. 117, č. 17 (2015), , "172608-1"-"172608-2". ISSN 0021-8979 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  4. Magnetic Phase Transitions of CeSb. II: Effects of Applied Magnetic Fields

    DEFF Research Database (Denmark)

    Meier, G.; Fischer, P.; Hälg, W.; Lebech, Bente; Rainford, B.D.; Vogt, O.

    1978-01-01

    For pt.I see ibid., vol.11, p.345 (1978). The metamagnetic phase transition and the associated phase diagram of the anomalous antiferromagnet CeSb were determined in a neutron diffraction study of the magnetic ordering of CeSb single crystals in applied magnetic fields parallel to the (001) and...... (011) directions (H<5 T). Because of the anisotropic exchange interactions that favours a (001) easy direction of magnetisation, the magnetic properties are similar to those of the Ising spin systems i.e. antiferromagnetism, ferrimagnetism and ferromagnetism occur at low temperatures and at increasing...... magnetic fields. The observed magnetic structures do not correspond to the stable configurations expected from the molecular field theory of the face-centred cubic lattice. The change from a first-order transition at the Neel temperature in zero field to second-order transition at high fields points to the...

  5. Structural dynamics in FeRh during a laser-induced metamagnetic phase transition

    Science.gov (United States)

    Quirin, Florian; Vattilana, Michael; Shymanovich, Uladzimir; El-Kamhawy, Abd-Elmoniem; Tarasevitch, Alexander; Hohlfeld, Julius; von der Linde, Dietrich; Sokolowski-Tinten, Klaus

    2012-01-01

    Time-resolved x-ray diffraction with ultrashort x-ray pulses from a laser-produced plasma is used to study the lattice response of FeRh during a femtosecond laser-induced antiferromagnetic (AFM) to ferromagnetic (FM) phase transition. Pump-probe measurements at initial sample temperatures below as well as above the AFM-to-FM transition temperature and for different laser pump fluences allowed to disentangle the various contributions driving lattice expansion. In particular, the data reveal that the structural changes associated with the magnetic phase transition occur on a time scale of a hundred picoseconds.

  6. Antiferromagnetic spintronics

    Science.gov (United States)

    Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J.

    2016-03-01

    Antiferromagnetic materials are internally magnetic, but the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets externally invisible. This implies that information stored in antiferromagnetic moments would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the antiferromagnetic element would not magnetically affect its neighbours, regardless of how densely the elements are arranged in the device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how to manipulate and detect the magnetic state of an antiferromagnet efficiently. In this Review we focus on recent works that have addressed this question. The field of antiferromagnetic spintronics can also be viewed from the general perspectives of spin transport, magnetic textures and dynamics, and materials research. We briefly mention this broader context, together with an outlook of future research and applications of antiferromagnetic spintronics.

  7. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  8. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  9. Dynamical constraints on phase transitions

    International Nuclear Information System (INIS)

    The numerical solutions of nonlocal and local Boltzmann kinetic equations for the simulation of central heavy ion reactions are parameterized in terms of time dependent thermodynamical variables in the Fermi liquid sense. This allows to discuss dynamical trajectories in phase space. The nonequilibrium state is characterized by non-isobaric, non-isochoric etc conditions, called iso-nothing conditions. Therefore a combination of thermodynamical observables is constructed which allows to locate instabilities and points of possible phase transition in a dynamical sense. We find two different mechanisms of instability, a short time surface - dominated instability and later a spinodal - dominated volume instability. The latter one occurs only if the incident energies are not exceeding much the Fermi energy and might be attributed to spinodal decomposition. Oppositely the fast surface explosion occurs far outside the spinodal and pertains also in the cases where the system develops too fast for suffering the spinodal decomposition and where the system approaches equilibrium outside the spinodal. (author)

  10. Study of the Static and Dynamic Magnetization across the First Order Phase Transition in FeRh Thin Films

    OpenAIRE

    Heidarian, Alireza

    2016-01-01

    The equiatomic FeRh alloy undergoes a first-order phase transition from an antiferromagnetic (AFM) to a ferromagnetic (FM) state at about 370 K with a small thermal hysteresis of about 10 K around the phase transition. The transition is accompanied by a unit cell volume expansion about 1% in the c lattice parameter. During the transition the new phase nucleates in the matrix of the original phase by reaching the critical temperature followed by a growth in size upon increasing temperature fur...

  11. Dynamic Phase Transitions in PVT Systems

    CERN Document Server

    Ma, Tian

    2007-01-01

    The main objective of this article are two-fold. First, we introduce some general principles on phase transition dynamics, including a new dynamic transition classification scheme, and a Ginzburg-Landau theory for modeling equilibrium phase transitions. Second, apply the general principles and the recently developed dynamic transition theory to study dynamic phase transitions of PVT systems. In particular, we establish a new time-dependent Ginzburg-Landau model, whose dynamic transition analysis is carried out. It is worth pointing out that the new dynamic transition theory, along with the dynamic classification scheme and new time-dependent Ginzburg Landau models for equilibrium phase transitions can be used in other phase transition problems, including e.g. the ferromagnetism and superfluidity, which will be reported elsewhere. In addition, the analysis for the PVT system in this article leads to a few physical predications, which are otherwise unclear from the physical point of view.

  12. Effects of strain and surfaces on the antiferromagnetic and ferromagnetic phases of thin film FeRh

    Science.gov (United States)

    Hellman, Frances; Bordel, Catherine; Baldasseroni, Chloe; Antonakos, Cory; Schneider, Oliver; Pal, Gunar; Valencia, Sergio; Unal, Akin; Kronast, Florian; Nemsak, Slavo; Fadley, Chuck; Borchers, Julie; Maranville, Brian

    2014-03-01

    FeRh undergoes an unusual antiferromagnetic (AFM) to ferromagnetic (FM) first order transition just above room temperature. This transition can be tuned by pressure, magnetic field, composition, and strain. The underlying source of the transition is still under much discussion, but it is clear from a variety of measurements that electronic structure, lattice, and magnetic excitations all play roles in contributing the underlying entropy difference and hence the competition between AFM and FM states. The surface and bottom interface of thin films are often found to be FM even while the bulk of the film is AFM. The source of this effect, along with the dependence of strain on both anisotropy and transition temperature will be presented and discussed. Thanks to DOE BES LBNL magnetism program for support.

  13. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  14. Structural and Magnetic Dynamics of a Laser Induced Phase Transition in FeRh

    Science.gov (United States)

    Mariager, S. O.; Pressacco, F.; Ingold, G.; Caviezel, A.; Möhr-Vorobeva, E.; Beaud, P.; Johnson, S. L.; Milne, C. J.; Mancini, E.; Moyerman, S.; Fullerton, E. E.; Feidenhans'L, R.; Back, C. H.; Quitmann, C.

    2012-02-01

    We use time-resolved x-ray diffraction and magneto-optical Kerr effect to study the laser-induced antiferromagnetic to ferromagnetic phase transition in FeRh. The structural response is given by the nucleation of independent ferromagnetic domains (τ1˜30ps). This is significantly faster than the magnetic response (τ2˜60ps) given by the subsequent domain realignment. X-ray diffraction shows that the two phases coexist on short time scales and that the phase transition is limited by the speed of sound. A nucleation model describing both the structural and magnetic dynamics is presented.

  15. Structural and magnetic dynamics of a laser induced phase transition in FeRh

    OpenAIRE

    Mariager, S. O.; Pressacco, F.; Ingold, G.; Mancini, E; Caviezel, A.; Möhr-Vorobeva, E.; Beaud, P.; Johnson, S. L.; Milne, C. J.; Moyerman, S.; Fullerton, E.; Feidenhans'l, R.; Back, C.H.; Quitmann, C.

    2011-01-01

    We use time-resolved x-ray diffraction and magnetic optical Kerr effect to study the laser induced antiferromagnetic to ferromagnetic phase transition in FeRh. The structural response is given by the nucleation of independent ferromagnetic domains (\\tau_1 ~ 30ps). This is significantly faster than the magnetic response (\\tau_2 ~ 60ps) given by the subsequent domain realignment. X-ray diffraction shows that the two phases co-exist on short time-scales and that the phase transition is limited b...

  16. Entanglement spectrum and quantum phase transitions in one-dimensional S=1 XXZ model with uniaxial single-ion anisotropy

    International Nuclear Information System (INIS)

    Quantum phase transitions (QPTs) in one-dimensional S=1 XXZ model with uniaxial single-ion anisotropy are investigated. Bipartite entanglement, entanglement spectrum, and Schmidt gap are found to be capable of describing all the QPTs, even the infinite-order Berezinskii–Kosterlitz–Thouless (BKT) transition. According to the singular behavior of the second-order derivative of ground-state energy, the QPT between XY2 and antiferromagnetic phases is a second-order but not a BKT transition. Energy level crossing, accompanied with discontinuous entanglement entropy and entanglement spectrum, is observed at the transition point between the large-D and antiferromagnetic phases, therefore it should be a first-order QPT. In addition, doubly degenerate entanglement spectrum in the Haldane phase is observed.

  17. Quark Deconfinement Phase Transition in Neutron Stars

    CERN Document Server

    Alaverdyan, G B

    2009-01-01

    The hadron-quark phase transition in the interior of compact stars is investigated, when the transition proceeds through a mixed phase. The hadronic phase is described in the framework of relativistic mean-field theory, when also the scalar-isovector delta-meson mean-field is taken into account. The changes of the parameters of phase transition caused by the presence of delta-meson field are explored. The results of calculation of structure of the mixed phase (Glendenning construction) are compared with the results of usual first-order phase transition (Maxwell construction).

  18. QCD Phase Transitions, Volume 15

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  19. Phase Transition Induced Fission in Lipid Vesicles

    OpenAIRE

    Leirer, C.; Wunderlich, B.; Myles, V.M.; Schneider, M F

    2009-01-01

    Abstract In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T

  20. Cloud regimes as phase transitions

    Science.gov (United States)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  1. Phases and phase transitions in disordered quantum systems

    OpenAIRE

    Vojta, Thomas

    2013-01-01

    These lecture notes give a pedagogical introduction to phase transitions in disordered quantum systems and to the exotic Griffiths phases induced in their vicinity. We first review some fundamental concepts in the physics of phase transitions. We then derive criteria governing under what conditions spatial disorder or randomness can change the properties of a phase transition. After introducing the strong-disorder renormalization group method, we discuss in detail some of the exotic phenomena...

  2. Antiferromagnetic and structural transitions in the superoxide KO2 from first principles: A 2p-electron system with spin-orbital-lattice coupling

    OpenAIRE

    Kim, MinJae; Kim, Beom Hyun; Choi, Hong Chul; B. I. Min

    2009-01-01

    KO2 exhibits concomitant antiferromagnetic (AFM) and structural transitions, both of which originate from the open-shell 2p electrons of O$_{2}^{-}$ molecules. The structural transition is accompanied by the coherent tilting of O$_{2}^{-}$ molecular axes. The interplay among the spin-orbital-lattice degrees of freedom in KO2 is investigated by employing the first-principles electronic structure theory and the kinetic-exchange interaction scheme. We have shown that the insulating nature of the...

  3. Quantum phase transitions out of the heavy Fermi liquid

    Energy Technology Data Exchange (ETDEWEB)

    Senthil, T. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Sachdev, Subir [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States)]. E-mail: subir.sachdev@yale.edu; Vojta, Matthias [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, 76128 Karlsruhe (Germany)

    2005-04-30

    We review recent work on the instability of the heavy Fermi liquid state (FL) of the Kondo lattice towards a magnetic metal in which the local moments are not part of the Fermi sea. Using insights drawn from the theory of deconfined quantum criticality of insulating antiferromagnets, we discuss the possibility of a direct second-order transition between the heavy Fermi liquid and such a magnetic metal. We suggest the presence of at least two distinct diverging time scales-the shorter one describes fluctuations associated with the reconstruction of the Fermi surface, while a longer one describes fluctuations of the magnetic order parameter. The intermediate time scale physics on the magnetic side is suggested to be that of a novel fractionalized Fermi liquid (FL*) state with deconfined neutral S=12 excitations. This could ultimately devolve into the magnetic phase with conventional order at one of the larger time scales. Experimental implications for this scenario are noted.

  4. Quantum phase transitions out of the heavy Fermi liquid

    International Nuclear Information System (INIS)

    We review recent work on the instability of the heavy Fermi liquid state (FL) of the Kondo lattice towards a magnetic metal in which the local moments are not part of the Fermi sea. Using insights drawn from the theory of deconfined quantum criticality of insulating antiferromagnets, we discuss the possibility of a direct second-order transition between the heavy Fermi liquid and such a magnetic metal. We suggest the presence of at least two distinct diverging time scales-the shorter one describes fluctuations associated with the reconstruction of the Fermi surface, while a longer one describes fluctuations of the magnetic order parameter. The intermediate time scale physics on the magnetic side is suggested to be that of a novel fractionalized Fermi liquid (FL*) state with deconfined neutral S=12 excitations. This could ultimately devolve into the magnetic phase with conventional order at one of the larger time scales. Experimental implications for this scenario are noted

  5. Random exchange interaction effects on the phase transitions in frustrated classical Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Li, W. C.; Song, X.; Feng, J. J.; Zeng, M.; Gao, X. S.; Qin, M. H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Jia, X. T. [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2015-07-07

    In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors.

  6. Random exchange interaction effects on the phase transitions in frustrated classical Heisenberg model

    International Nuclear Information System (INIS)

    In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors

  7. Magnetic Phase Transition in FeRh

    OpenAIRE

    Gu, R. Y.; Antropov, V.P.

    2005-01-01

    Density functional calculations are performed to investigate the phase transition in FeRh alloy. The effective exchange coupling, the critical temperature of magnetic phase transition and the adiabatic spin wave spectrum have been obtained. Different contributions to the free energy of different phases are estimated. It has been found that the antiferro-ferromagnetic transition in FeRh occurs mostly due to the spin wave excitations.

  8. Thermal behavior in the magnetic phase diagram of the easy axis antiferromagnet Cs2FeCl5·H2O

    Science.gov (United States)

    Freitas, R. S.; Paduan-Filho, A.; Becerra, C. C.

    2016-03-01

    The specific heat at a constant applied field C H(T) and at fixed temperatures C T(H) of single crystals of the low anisotropy antiferromagnet Cs2FeCl5·H2O was measured across the different boundaries of its magnetic phase diagram, in magnetic fields up to 9 T applied parallel and perpendicular to the easy axis direction and to temperatures down to 0.3 K. The specific heat data indicate that the critical behavior along the antiferromagnetic to paramagnetic phase boundary and the spin-flop to paramagnetic phase boundary, are basically the same. We also measured the specific heat when the first order antiferromagnetic to spin-flop phase boundary is crossed at a fixed temperature. The entropy of the different magnetic phases is discussed.

  9. Phase transitions in semidefinite relaxations.

    Science.gov (United States)

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  10. Phase-matched sum frequency generation of antiferromagnetic film in THz frequency field

    International Nuclear Information System (INIS)

    We report on a way to obtain a new source in THz frequency field based on sum frequency (SF) generation of an antiferromagnetic film (AFF). The continuous SF output windows versus the infrared signal wave frequencies are shown. We found that the highest SF outputs can be induced when the frequencies of the two signal waves are both situated at the vicinity of the same resonant frequency of AFF. In addition, the incident angles are in the smaller angle regions. An optimum interact length is defined which should be necessary for the choice of AFF thickness in the experiments. Finally, the frequencies of highest SF outputs can be modulated by controlling the external magnetic field strength. - Highlights: • SF generation of antiferromagnetic film. • New source available with the SF generation method in THz field. • SF conversion efficiency affected by incident frequencies, angles and thickness film

  11. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs

    Czech Academy of Sciences Publication Activity Database

    Wadley, P.; Novák, Vít; Campion, R. P.; Rinaldi, C.; Martí, Xavier; Reichlová, Helena; Železný, Jakub; Gazquez, J.; Roldan, M.A.; Varela, M.; Khalyavin, D.; Langridge, S.; Kriegner, D.; Máca, František; Mašek, Jan; Bertacco, R.; Holý, V.; Rushforth, A.W.; Edmonds, K. W.; Gallagher, B. L.; Foxon, C. T.; Wunderlich, Joerg; Jungwirth, Tomáš

    2013-01-01

    Roč. 4, Aug (2013), s. 2322. ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LG13058; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant ostatní: AVČR(CZ) Premium Academiae Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 10.742, year: 2013

  12. Magnetic Phase Transitions of CeSb. I

    DEFF Research Database (Denmark)

    Fischer, Pernille Hertz; Lebech, Bente; Meier, G.; Rainford, B. D.; Vogt, O.

    1978-01-01

    The magnetic ordering of the anomalous antiferromagnet CeSb, which has a NaCl crystal structure, was determined in zero applied magnetic field by means of neutron diffraction investigations of single crystals and powder. Below the Neel temperature TN of (16.1+or-0.1)K, there exist six partially...... disordered magnetic phases of antiphase domain type ((100) superstructures) with (100) orientation of the magnetic moments. At 4.4K, the ordered magnetic moment equals (2.10+or-0.04) mu B, which corresponds to the free-ion value of 2.14 mu mB for Ce3+. The temperature dependence of the ordered moment shows a...... first-order phase transition at TN. At approximately TN/2 there is a first-order phase transition to a FCC type IA low-temperature configuration. The unusual magnetic properties of CeSb, which result from anisotropic exchange and crystalline electric field effects, resemble those of certain actinide Na...

  13. Magnetization dynamics across the first order phase transition in FeRh thin films

    OpenAIRE

    Pressacco, Federico

    2014-01-01

    The metallic alloy FeRh undergoes a phase transition from an antiferromagnetic phase (AFP) to a ferromagnetic phase (FP) when heated above 400 K. The change in the magnetic order results in a change in the net magnetization of the system from zero up to 1.2 kA/m after increasing the system temperature. This is an uncommon character for a magnetic material since usually one observes a decrease of the magnetization upon heating. This discloses the possibility to apply FeRh to Heat-Assisted Magn...

  14. Magnetization dynamics across the first order phase transition in FeRh thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pressacco, Federico

    2014-08-01

    The metallic alloy FeRh undergoes a phase transition from an antiferromagnetic phase (AFP) to a ferromagnetic phase (FP) when heated above 400 K. The change in magnetic order results in a change in the net magnetization of the system from zero up to 1.2 kA/m after increasing the system temperature. This is an uncommon characteristic for a magnetic material since usually one observes a decrease of the magnetization upon heating. This discloses the possibility to apply FeRh to Heat-Assisted Magnetic Recording (HAMR) devices.

  15. Switchable thermal antenna by phase transition

    CERN Document Server

    Ben-Abdallah, Philippe; Besbes, Mondher

    2013-01-01

    We introduce a thermal antenna which can be actively switched by phase transition. The source makes use of periodically patterned vanadium dioxide, a metal-insulator phase transition material which supports a surface phonon-polariton (SPP) in the infrared range in its crystalline phase. Using electrodes properly registred with respect to the pattern, the phase transition of VO2 can be localy triggered within few microseconds and the SPP can be diffracted making the thermal emission highly directionnal. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  16. Phase-transitions and nuclear clusterization

    International Nuclear Information System (INIS)

    After reviewing some basic features of the temperature-governed phase-transitions in macroscopic systems and in atomic nuclei we consider non-thermal phase-transitions of nuclear structure in the example of cluster states. Phenomenological and semimicroscopical algebraic cluster models with identical interactions are applied to binary cluster systems of closed and non-closed shell clusters. Phase-transitions are observed in each case between the rotational (rigid molecule-like) and vibrational (shell-like) cluster states. The phase of this finite quantum system shows a quasi-dynamical symmetry. (author)

  17. Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh

    OpenAIRE

    Gruner, M. E.; Hoffmann, E.; Entel, P.

    2002-01-01

    Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange...

  18. Inhomogeneous nucleation in quark hadron phase transition

    CERN Document Server

    Shukla, P K; Sen-Gupta, S K; Gleiser, Marcello; Gleiser, Marcelo

    2000-01-01

    The effect of subcritical hadron bubbles on a first-order quark-hadron phase transition is studied. These subcritical hadron bubbles created due to thermal fluctuations introduce a finite amount of phase mixing (quark phase mixed with hadron phase) even at and above the critical temperature. For sufficiently strong transitions, as is expected to be the case for the quark-hadron transition, we show that the amount of phase mixing at the critical temperature remains much below the percolation threshold. Thus, as the system cools below the critical temperature, the transition proceeds through the nucleation of critical-size hadron bubbles from a metastable quark-gluon phase (QGP) within an inhomogeneous background populated by an equilibrium distribution of subcritical hadron bubbles. The inhomogenity of the medium is incorporated consistently by modelling the subcritical bubbles as Gaussian fluctuations, resulting in a large reduction of the nucleation barrier for the critical bubbles. Using the corrected nucle...

  19. Intersubband-transition-induced phase matching

    OpenAIRE

    Almogy, Gilad; Segev, Mordechai; Yariv, Amnon

    1994-01-01

    We suggest the use of the refractive-index changes associated with the intersubband transitions in quantum wells for phase matching in nonlinear materials. An improvement in the conversion efficiency of mid-IR second-harmonic generation by almost 2 orders of magnitude over non-phase-matched bulk GaAs is predicted. We also show that the linear phase contributions of intersubband transitions used for resonant enhancement of second-harmonic generation must be considered, as they could limit the ...

  20. The Cosmological QCD Phase Transition Revisited

    OpenAIRE

    Schettler, Simon; Boeckel, Tillmann; Schaffner-Bielich, Jurgen

    2010-01-01

    The QCD phase diagram might exhibit a first order phase transition for large baryochemical potentials. We explore the cosmological implications of such a QCD phase transition in the early universe. We propose that the large baryon-asymmetry is diluted by a little inflation where the universe is trapped in a false vacuum state of QCD. The little inflation is stopped by bubble nucleation which leads to primordial production of the seeds of extragalactic magnetic fields, primordial black holes a...

  1. Ising metamagnet driven by propagating magnetic field wave: Nonequilibrium phases and transitions

    International Nuclear Information System (INIS)

    The nonequilibrium responses of Ising metamagnet (layered antiferromagnet) to the propagating magnetic wave are studied by Monte Carlo simulation. Here, the spatio-temporal variations of magnetic field keep the system away from equilibrium. The sublattice magnetisations show dynamical symmetry breaking in the low temperature ordered phase. The nonequilibrium phase transitions are studied from the temperature dependences of dynamic staggered order parameter, its derivative and the dynamic specific heat. The transitions are marked by the peak position of dynamic specific heat and the position of dip of the derivative of dynamic staggered order parameter. It is observed that, for lower values of the amplitudes of the propagating magnetic field, if the system is cooled from a high temperature, it undergoes a phase transition showing sharp peak of dynamic specific heat and sharp dip of the derivative of the dynamic staggered order parameter. However, for higher values of the amplitude of the propagating magnetic field, system exhibits multiple phase transitions. A comprehensive phase diagram is also plotted. The transition, for vanishingly small value of the amplitude of the propagating wave, is very close to that for equilibrium ferro–para phase transition of cubic Ising ferromagnet. - Highlights: • Ising metamagnet. • Driven by propagating magnetic field wave. • Studied by Monte Carlo Simulation. • Nonequlibrium phase transition is studied. • The phase diagram is drawn

  2. Interplay between chiral and deconfinement phase transitions

    Directory of Open Access Journals (Sweden)

    Mukherjee T.K.

    2011-04-01

    Full Text Available By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu-Jona-Lasinio (NJL model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,µ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T^{mathcal{X}}_c$ is smaller than that of the dressed Polyakov loop $T^{mathcal{D}}_c$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T^{u,d}_{CEP}$ and $T^{s}_{CEP}$ at finite density. We also explain the feature of $T^{mathcal{X}}_c$ = $T^{mathcal{D}}_c$ in the case of 1st and 2nd order phase transitions, and $T^{mathcal{X}}_c$ < $T^{mathcal{D}}_c$ in the case of crossover, and expect this feature is general and can be extended to full QCD theory.

  3. Study of the 1-K phase transition in the heavy-electron compound UCu5 by muon spin resonance and neutron scattering

    International Nuclear Information System (INIS)

    The 1-K phase transition in UCu5, showing up in specific-heat data within the antiferromagnetic state below TN≅15 K, was investigated. Neither the average internal fields seen by the μ+ nor the magnetic and nuclear Bragg reflections in the neutron-diffraction data reflect the phase transition while the muon relaxation rates increase drastically below 1.2 K. These results are interpreted in terms of some additional small-moment magnetic order or spin-density-wave phenomenon, implying the coexistence of two rather independent electronic subsystems, one involving ''heavy'' electrons, associated with the weak magnetism, and the other associated with the ''conventional'' antiferromagnetic order

  4. Phase transitions in QCD and string theory

    International Nuclear Information System (INIS)

    We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. (orig.)

  5. Dynamics of weak first order phase transitions

    CERN Document Server

    Gleiser, Marcello

    1994-01-01

    The dynamics of weak vs. strong first order phase transitions is investigated numerically for 2+1 dimensional scalar field models. It is argued that the change from a weak to a strong transition is itself a (second order) phase transition, with the order parameter being the equilibrium fractional population difference between the two phases at the critical temperature, and the control parameter being the coefficient of the cubic coupling in the free-energy density. The critical point is identified, and a power law controlling the relaxation dynamics at this point is obtained. Possible applications are briefly discussed.

  6. Phase transitions in copper(II) orthovanadate

    International Nuclear Information System (INIS)

    Data on the polymorphs of copper(II) orthovanadate are reported. The Cu3V2O8 phase synthesized in this laboratory exhibits phase transitions between 460deg and 560degC. These phase transitions are identified through detailed DTA and high temperature XRD techniques; it is observed that these structural transitions are rapid and reversible. The crystal structure of Cu3V2O8 is similar to that of Mg3V2O8, Zn3V2O8, Co3V2O8 and Ni3V2O8. (author). 12 refs., 3 figs., 1 tab

  7. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  8. Phase transitions in dissipative Josephson chains

    International Nuclear Information System (INIS)

    The authors of this paper study the zero temperature phase transitions of a chain of Josephson junctions, taking into account the quantum fluctuations due to the charging energy and the effects of an Ohmic dissipation. The authors map the problem onto a generalized coulomb gas model, which then is transformed into a sine-Gordon field theory. Apart from the expected dipole unbinding transition, which describes a transition between globally superconducting and resistive behavior, the authors find a quadrupole unbinding transition at a critical strength of the dissipation. This transition separates two superconducting states characterized by different local properties

  9. Antiferromagnetic spin chain behavior and a transition to 3D magnetic order in Cu(D,L-alanine)2: Roles of H-bonds

    Science.gov (United States)

    Calvo, Rafael; Sartoris, Rosana P.; Calvo, Hernán L.; Chagas, Edson F.; Rapp, Raul E.

    2016-05-01

    We study the spin chain behavior, a transition to 3D magnetic order and the magnitudes of the exchange interactions for the metal-amino acid complex Cu(D,L-alanine)2•H2O, a model compound to investigate exchange couplings supported by chemical paths characteristic of biomolecules. Thermal and magnetic data were obtained as a function of temperature (T) and magnetic field (B0). The magnetic contribution to the specific heat, measured between 0.48 and 30 K, displays above 1.8 K a 1D spin-chain behavior that can be fitted with an intrachain antiferromagnetic (AFM) exchange coupling constant 2J0=(-2.12±0.08) cm-1 (defined as ℋex(i,i+1) = -2J0SiṡSi+1), between neighbor coppers at 4.49 Å along chains connected by non-covalent and H-bonds. We also observe a narrow specific heat peak at 0.89 K indicating a phase transition to a 3D magnetically ordered phase. Magnetization curves at fixed T = 2, 4 and 7 K with B0 between 0 and 9 T, and at T between 2 and 300 K with several fixed values of B0 were globally fitted by an intrachain AFM exchange coupling constant 2J0=(-2.27±0.02) cm-1 and g = 2.091±0.005. Interchain interactions J1 between coppers in neighbor chains connected through long chemical paths with total length of 9.51 Å cannot be estimated from magnetization curves. However, observation of the phase transition in the specific heat data allows estimating the range 0.1≤|2J1|≤0.4 cm-1, covering the predictions of various approximations. We analyze the magnitudes of 2J0 and 2J1 in terms of the structure of the corresponding chemical paths. The main contribution in supporting the intrachain interaction is assigned to H-bonds while the interchain interactions are supported by paths containing H-bonds and carboxylate bridges, with the role of the H-bonds being predominant. We compare the obtained intrachain coupling with studies of compounds showing similar behavior and discuss the validity of the approximations allowing to calculate the interchain

  10. Phase transition phenomenon: A compound measure analysis

    Science.gov (United States)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  11. Quantum Phase Transitions in Quantum Dots

    OpenAIRE

    Rau, I. G.; Amasha, S.; Oreg, Y.; Goldhaber-Gordon, D.

    2013-01-01

    This review article describes theoretical and experimental advances in using quantum dots as a system for studying impurity quantum phase transitions and the non-Fermi liquid behavior at the quantum critical point.

  12. The fishnet as anti-ferromagnetic phase of world sheet Ising spins

    International Nuclear Information System (INIS)

    We identify the strong coupling fishnet diagram with a certain Ising spin configuration in the light cone world sheet description of planar TrPHI3 field theory. Then, using a mean field formalism, we take the remaining planar diagrams into account in an average way. Since the fishnet spin configuration is regular but non-uniform, we introduce two mean fields phi,phi' where the fishnet diagram is the case phi=1, phi'=0. For general values of these fields, the system is then approximated as a light-cone quantized string with a field dependent effective string tension Teff(phi,phi'). We also calculate the world sheet energy density E(phi,phi'), and find the field values that minimize it in the presence of a transverse space infra-red cutoff ε>0. The criterion for string formation is that the tension in this minimum energy state remains non-zero as ε→0. In the most simple-minded implementation of the mean field method, which neglects all short range correlations of the Ising spins, we find, in this limit, that the tension vanishes for weak and moderate coupling, but for very large coupling does indeed stay non-zero. However, a more elaborate treatment, taking temporal correlations into account (but still neglecting spatial correlations), removes this 'phase transition' and the string tension of the minimum energy state vanishes for all values of the coupling when ε→0. Our mean field analysis thus suggests that the 'fishnet phase' of TrPHI3 theory is unstable, and there is no string formation for any value of the coupling. This is probably a reasonable outcome given the instability of the underlying theory. It is encouraging for our method, that an approach designed for a string description can predict, where appropriate, the absence of string formation within an intuitive and simple approximation

  13. The AFM-FM phase transition in FeRh investigated using XMCD

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, Christian; Duerr, Hermann A.; Eberhardt, Wolfgang [BESSY, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Back, Christian [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstr. 31, 93040 Regensburg (Germany); Radu, Ilie [BESSY, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstr. 31, 93040 Regensburg (Germany); Thiele, Jan-Ulrich [Hitachi Global Storage Technologies, 3403 Yerba Buena Road, San Jose, CA 95135 (United States)

    2008-07-01

    The phase transition from antiferromagnetic to ferromagnetic ordering in FeRh is investigated in an element specific way by means of X-ray absorption spectroscopy. Dichroism sum rules allow us to determine spin and orbital moments of the two elements. Increasing the temperature from 300 to 450 Kelvin, the magnetic moments in Fe and Rh both evolve from zero to their final value, while the ratio of Rh to Fe moments stays constant. We attribute this to a coexistence of the AFM and FM phases.

  14. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support this...... evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  15. Giant atomic displacement at a magnetic phase transition in metastable Mn3O4

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Shigeto [Stanford University; Moreira Dos Santos, Antonio F [ORNL; Shapiro, Max C [Stanford University; Molaison, Jamie J [ORNL; Pradhan, Neelam [ORNL; Guthrie, Malcolm [Carnegie Institution of Washington; Tulk, Christopher A [ORNL; Fisher, Ian R [Stanford University; Mao, Wendy [Stanford University

    2013-01-01

    We present x-ray, neutron scattering, and heat capacity data that reveal a coupled first-order magnetic and structural phase transition of the metastable mixed-valence postspinel compound Mn3O4 at 210 K. Powder neutron diffraction measurements reveal a magnetic structure in which Mn3+ spins align antiferromagnetically along the edge-sharing a axis, with a magnetic propagation vector k = [1/2,0,0]. In contrast, the Mn2+ spins, which are geometrically frustrated, do not order until a much lower temperature. Although the Mn2+ spins do not directly participate in the magnetic phase transition at 210 K, structural refinements reveal a large atomic shift at this phase transition, corresponding to a physical motion of approximately 0.25 angstrom, even though the crystal symmetry remains unchanged. This "giant" response is due to the coupled effect of built-in strain in the metastable postspinel structure with the orbital realignment of the Mn3+ ion.

  16. Elastic anomalies at the magnetic phase transitions of TbTe3

    Science.gov (United States)

    Saint-Paul, M.; Guttin, C.; Lejay, P.; Leynaud, O.; Monceau, P.

    2016-08-01

    We report sound velocity and ultrasonic attenuation measurements in the vicinity of the successive magnetic phase transitions Tmag1~6.5 K, Tmag2~5.8 K and Tmag3~5.3 K in the charge density wave TbTe3 compound. A detailed investigation of the critical contributions to the temperature dependences of the sound velocity and ultrasonic attenuation is presented. Anisotropic stress dependences ∂Tmag1 / ∂σ found at the antiferromagnetic phase transition Tmag1 is associated with the layered structure of this compound. An abrupt step-like increase in the velocity and a sharp peak in the attenuation are observed with the longitudinal and shear modes at the lock-in magnetic phase transition Tmag3=5.3 K. The critical velocity and attenuation behaviors in the high temperature paramagnetic above Tmag1 are described in terms of a phenomenological dynamic scaling expression.

  17. Electrochemical control of the phase transition of ultrathin FeRh films

    Science.gov (United States)

    Jiang, M.; Chen, X. Z.; Zhou, X. J.; Cui, B.; Yan, Y. N.; Wu, H. Q.; Pan, F.; Song, C.

    2016-05-01

    We investigate the electrical manipulation of the phase transition in ultrathin FeRh films through a combination of ionic liquid and oxide gating. The 5 nm-thick FeRh films show an antiferromagnetic-ferromagnetic transition at around 275 K with in-plane magnetic field of 70 kOe. A negative gate voltage seriously suppresses the transition temperature to ˜248 K, while a positive gate voltage does the opposite but with a smaller tuning amplitude. The formation of electric double layer associated with a large electric field induces the migration of oxygen ions between the oxide gate and the FeRh layer, producing the variation of Fe moments in antiferromagnetic FeRh accompanied by the modulation of the transition temperature. Such a modulation only occurs within several nanometers thick scale in the vicinity of FeRh surface. The reversible control of FeRh phase transition by electric field might pave the way for non-volatile memories with low power consumption.

  18. Phase Transitions, Diffraction Studies and Marginal Dimensionality

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    Continuous phase transitions and the associated critical phenomena have been one of the most active areas of research in condensed matter physics for several decades. This short review is only one cut through this huge subject and the author has chosen to emphasize diffraction studies as a basic...... experimental method and illustrate how diffraction experiments have revealed the role of dimensionality in the general classification of phase transitions...

  19. Modelling of phase transitions: do it yourself

    International Nuclear Information System (INIS)

    We present the basics of a powerful contemporary statistical mechanical technique that can be used by students to explore first-order phase transitions by themselves and for models of their own construction. The technique is a generalization of the well-known Peierls argument and is applicable to various models on a lattice. We illustrate the technique with the help of two simple models that were recently used to simulate phase transitions on surfaces. (paper)

  20. Modelling of phase transitions: do it yourself

    Science.gov (United States)

    Medved', I.; Huckaby, D. A.; Trník, A.; Valovičová, L'

    2013-01-01

    We present the basics of a powerful contemporary statistical mechanical technique that can be used by students to explore first-order phase transitions by themselves and for models of their own construction. The technique is a generalization of the well-known Peierls argument and is applicable to various models on a lattice. We illustrate the technique with the help of two simple models that were recently used to simulate phase transitions on surfaces.

  1. Thin film dynamics with surfactant phase transition

    OpenAIRE

    Köpf, M. H.; Gurevich, S. V.; Friedrich, R.

    2009-01-01

    A thin liquid film covered with an insoluble surfactant in the vicinity of a first-order phase transition is discussed. Within the lubrication approximation we derive two coupled equations to describe the height profile of the film and the surfactant density. Thermodynamics of the surfactant is incorporated via a Cahn-Hilliard type free-energy functional which can be chosen to describe a transition between two stable phases of different surfactant density. Within this model, a linear stabilit...

  2. Interplay between chiral and deconfinement phase transitions

    CERN Document Server

    Xu, Fukun; Chen, Huan; Huang, Mei

    2011-01-01

    By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu--Jona-Lasinio (NJL) model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole $(T,\\mu)$ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T_c^{\\chi}$ is smaller than that of the dressed Polyakov loop $T_c^{{\\cal D}}$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T_{CEP}^{u,d}$ and $T_{CEP}^{s}$ a...

  3. Phase transitions in two dimensions

    International Nuclear Information System (INIS)

    Although a two-dimensional solid with long-range translational order cannot existin the thermodynamic limit (N → ∞, V →∞, N/V finite) macroscopic samples of two-dimensional solids can exist. In this work, stability of the phase was determined by the usuar method of equating the pressure and chemical potential of the phases. (A.C.A.S.)

  4. Molecular markers of phase transition in locusts

    Institute of Scientific and Technical Information of China (English)

    ARNOLD DE LOOF; ILSE CLAEYS; GERT SIMONET; PETER VERLEYEN; TIM VANDERSMISSEN; FILIP SAS; JURGEN HUYBRECHTS

    2006-01-01

    The changes accompanying the transition from the gregarious to the solitary phase state in locusts are so drastic that for a long time these phases were considered as distinct species. It was Boris Uvarov who introduced the concept of polyphenism. Decades of research revealed that phase transition implies changes in morphometry, the color of the cuticle, behavior and several aspects of physiology. In particular, in the recent decade, quite a number of molecular studies have been undertaken to uncover phase-related differences.They resulted in novel insights into the role of corazonin, neuroparsins, some protease inhibitors, phenylacetonitrile and so on. The advent of EST-databases of locusts (e.g. Kang et al., 2004) is a most encouraging novel development in physiological and behavioral locust research. Yet, the answer to the most intriguing question, namely whether or not there is a primordial molecular inducer of phase transition, is probably not within reach in the very near future.

  5. Thermal phase mixing during first order phase transitions

    CERN Document Server

    Borrill, J; Borrill, Julian; Gleiser, Marcelo

    1995-01-01

    The dynamics of first order phase transitions are studied in the context of (3+1)-dimensional scalar field theories. Particular attention is paid to the question of quantifying the strength of the transition, and how `weak' and `strong' transitions have different dynamics. We propose a model with two available low temperature phases separated by an energy barrier so that one of them becomes metastable below the critical temperature T_c. The system is initially prepared in this phase and is coupled to a thermal bath. Investigating the system at its critical temperature, we find that `strong' transitions are characterized by the system remaining localized within its initial phase, while `weak' transitions are characterized by considerable phase mixing. Always at T_c, we argue that the two regimes are themselves separated by a (second order) phase transition, with an order parameter given by the fractional population difference between the two phases and a control parameter given by the strength of the scalar fi...

  6. The deconfinement phase transition in asymmetric matter

    International Nuclear Information System (INIS)

    We study the phase transition of asymmetric hadronic matter to a quark-gluon plasma within the framework of a simple two-phase model. The analysis is performed in a system with two conserved charges (baryon number and isospin) using the stability conditions on the free energy, the conservation laws and Gibbs' criteria for phase equilibrium. The EOS is obtained in a separate description for the hadronic phase and for the quark-gluon plasma. For the hadrons, a relativistic mean-field model calibrated to the properties of nuclear matter is used, and a bag-model type EOS is used for the quarks and gluons. The model is applied to the deconfinement phase transition that may occur in matter created in ultra-relativistic collisions of heavy ions. Based on the two-dimensional coexistence surface (binodal), various phase separation scenarios and the Maxwell construction through the mixed phase are discussed. In the framework of the two-phase model the phase transition in asymmetric matter is continuous (second-order by Ehrenfest's definition) in contrast to the discontinuous (first-order) transition of symmetric systems. (orig.)

  7. Contemporary Research of Dynamically Induced Phase Transitions

    Science.gov (United States)

    Hull, Lawrence

    2015-06-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions. Supported by the DoD/DOE Joint Munitions Technology Development Program.

  8. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  9. Variational analysis of the deconfinement phase transition

    International Nuclear Information System (INIS)

    We study the deconfining phase transition in 3+1 dimensional pure SU(N) Yang-Mills theory using a gauge invariant variational calculation. We generalize the variational ansatz to mixed states (density matrices) and minimize the free energy. For N ≥ 3 we find a first order phase transition with the transition temperature of Tc ≅450 MeV. Below Tc the Polyakov loop has vanishing expectation value, while above Tc , its average value is nonzero. According to the standard lore this corresponds to the deconfining transition. Within the accuracy of our approximation the entropy of the system in the low temperature phase vanishes. The latent heat is not small but, rather, is of the order of the nonperturbative vacuum energy. (author)

  10. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  11. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energie...

  12. Magnetic phase transitions in low dimension quantum spin systems

    International Nuclear Information System (INIS)

    In this PhD thesis, three low dimensional spin systems are studied by means of elastic and inelastic neutron scattering. Macroscopic measurements in the DMACuCl3 compound indicate the coexistence of two kinds of dimers: antiferromagnetic and ferromagnetic. The magnetic structure determined by our neutron diffraction survey at H = 0 shows irrevocably the existence of these two kinds of dimers. It has been shown that the Ising-like compound BaCo2V2O8 should be the first realization of a system in which a longitudinal spin density wave (LSDW) magnetic order occurs when a magnetic field is applied. In a first time, we have determined the magnetic structure in zero magnetic field. Then, we focused on the effect of a magnetic field on the propagation vector, showing an entrance in the LSDW phase at Hc = 3.9 T. The magnetic structure refined above this critical field confirms that BaCo2V2O8 is the first compound in which occurs a LSDW phase. In the organic compound DF5PNN, it has been shown that this compound is well described at low temperature by spin chains with alternating couplings. However, the crystallographic structure determined at room temperature implies that the interactions are uniform. By means of neutron diffraction, we characterized a structural transition at low temperature (Tc = 450 mK) making the system evolve from C2/c space group to Pc. This transition explains the alternating behavior of the interactions. We have also evidenced a field-induced structural transition (Hc = 1.1 T). Above this field, the system is back to the C2/c space group, implying that the interactions are back to uniform. We have confirmed this by studying the magnetic excitations. (author)

  13. Multiple phase transitions and magnetoresistance of HoFe{sub 4}Ge{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: liujing@iastate.edu; Pecharsky, V.K.; Gschneidner, K.A.

    2015-05-15

    Highlights: • Three magnetic transitions at T{sub N} = 51 K, T{sub f1} = 42 K, and T{sub f2} = 15 K. • Kinetically arrested phase below a freezing point of ∼11 K. • First-order metamagnetic transition at critical field ∼22 kOe below 35 K. • A large magnetoresistance of ∼30% at a field change of 30 kOe near 15 K. - Abstract: A systematic study of the structural, magnetic, heat capacity, electrical resistivity and magnetoresistance properties of HoFe{sub 4}Ge{sub 2} has been performed. The temperature dependencies of the magnetization and heat capacity show three magnetic transitions at T{sub N} = 51 K, T{sub f1} = 42 K, and T{sub f2} = 15 K. The high temperature transition is antiferromagnetic ordering and the two low temperature phase transitions are due to rearrangements of the magnetic structure. A kinetically arrested phase is observed below a freezing point of ∼11 K. Below 35 K, the behavior of the isothermal magnetization reflects a first-order metamagnetic phase transition. Multiple phase transitions are also manifested in the electrical resistivity behavior. For a field change of 30 kOe, a large magnetoresistance of ∼30% is observed near T{sub f2} (15 K)

  14. End point of the electroweak phase transition

    CERN Document Server

    Csikor, Ferenc; Heitger, J; Aoki, Y; Ukawa, A

    1999-01-01

    We study the hot electroweak phase transition (EWPT) by 4-dimensional lattice simulations on lattices with symmetric and asymmetric lattice spacings and give the phase diagram. A continuum extrapolation is done. We find first order phase transition for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. Above this end point a rapid cross-over occurs. Our result agrees with that of the dimensional reduction approach. It also indicates that the fermionic sector of the Standard Model (SM) may be included perturbatively. We get for the SM end point $72.4 the SM.

  15. Thermochromic phase transitions in two aromatic tetrachlorocuprates

    Science.gov (United States)

    Mostafa, M. Fareed; Abdel-Kader, M. M.; Arafat, S. S.; Kandeel, E. M.

    1991-06-01

    Bis(para-toluidinium)2 tetrachlorocuprate and bis(para-chloroanilinium)2 tetrachlorocuprate crystallize in a perovskite-related layer structure. The former crystallizes in an orthorhombic unit cell with a = 6.911 Å, b = 7.052 Å and c = 33.182 Å. It undergoes a thermochromic first order phase transition from a yellow low temperature phase to a dark orange high temperature phase at T = 300 ± 3K with a 10° thermal hysteresis. The latter compound undergoes two thermochromic transitions expressed by the relation. Orange Phase (I) rightleftarrows294 K Yellow Phase (II) rightleftarrows214K Green Phase (III). Both compounds are ferromagnetic at low temperture with exchange interactions J/k = 17.5° and 20° for the two compounds respectively.

  16. Phase transitions in warm, asymmetric nuclear matter

    CERN Document Server

    Müller, H; Mueller, Horst; Serot, Brian D

    1995-01-01

    A relativistic mean-field model of nuclear matter with arbitrary proton fraction is studied at finite temperature. An analysis is performed of the liquid-gas phase transition in a system with two conserved charges (baryon number and isospin) using the stability conditions on the free energy, the conservation laws, and Gibbs' criteria for phase equilibrium. For a binary system with two phases, the coexistence surface (binodal) is two-dimensional. The Maxwell construction through the phase-separation region is discussed, and it is shown that the stable configuration can be determined uniquely at every density. Moreover, because of the greater dimensionality of the binodal surface, the liquid-gas phase transition is continuous (second order by Ehrenfest's definition), rather than discontinuous (first order), as in familiar one-component systems. Using a mean-field equation of state calibrated to the properties of nuclear matter and finite nuclei, various phase-separation scenarios are considered. The model is th...

  17. Phase transitions and entropies for synchronizing oscillators.

    Science.gov (United States)

    Bier, Martin; Lisowski, Bartosz; Gudowska-Nowak, Ewa

    2016-01-01

    We study a generic model of coupled oscillators. In the model there is competition between phase synchronization and diffusive effects. For a model with a finite number of states we derive how a phase transition occurs when the coupling parameter is varied. The phase transition is characterized by a symmetry breaking and a discontinuity in the first derivative of the order parameter. We quantitatively account for how the synchronized pulse is a low-entropy structure that facilitates the production of more entropy by the system as a whole. For a model with many states we apply a continuum approximation and derive a potential Burgers' equation for a propagating pulse. No phase transition occurs in that case. However, positive entropy production by diffusive effects still exceeds negative entropy production by the shock formation. PMID:26871059

  18. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T

  19. Random fields at a nonequilibrium phase transition.

    Science.gov (United States)

    Barghathi, Hatem; Vojta, Thomas

    2012-10-26

    We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by large-scale Monte Carlo simulations. PMID:23215170

  20. Phase Transitions in Operational Risk

    OpenAIRE

    Kartik Anand; Reimer K\\"uhn

    2006-01-01

    In this paper we explore the functional correlation approach to operational risk. We consider networks with heterogeneous a-priori conditional and unconditional failure probability. In the limit of sparse connectivity, self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium conditions, expressions for the stationary states are also obtained. The consequences of the analytical theory developed are analyzed using phase diagrams. We find co-exi...

  1. Dimensional Reduction in Quantum Dipolar Antiferromagnets

    Science.gov (United States)

    Babkevich, P.; Jeong, M.; Matsumoto, Y.; Kovacevic, I.; Finco, A.; Toft-Petersen, R.; Ritter, C.; Mânsson, M.; Nakatsuji, S.; Rønnow, H. M.

    2016-05-01

    We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled antiferromagnet LiYbF4 . For the thermal transition, the order-parameter critical exponent is found to be 0.20(1) and the specific-heat critical exponent -0.25 (1 ) . The exponents agree with the 2D X Y /h4 universality class despite the lack of apparent two-dimensionality in the structure. The order-parameter exponent for the quantum phase transitions is found to be 0.35(1) corresponding to (2 +1 )D . These results are in line with those found for LiErF4 which has the same crystal structure, but largely different TN, crystal field environment and hyperfine interactions. Our results therefore experimentally establish that the dimensional reduction is universal to quantum dipolar antiferromagnets on a distorted diamond lattice.

  2. Phase transitions, diffuse scattering and segregation kinetics in the colossal magnetoresistance material (Pr70Ca30)MnO3

    International Nuclear Information System (INIS)

    Complete text of publication follows. Charge, antiferromagnetic and antiferromagnetic ordering in (Pr70Ca30)MnO3 have been studied using the Wide-Angle Neutron diffractometer (WAND) installed at the High Flux Isotope Reactor of ORNL. The WAND is equipped with a newly developed curved 3He one-dimensional position-sensitive detector which covers a 125 deg angular range, and can be used as a flat-cone geometry diffractometer and/or as a fast diffractometer. The phase transitions from the paramagnetic to the charge-ordering and antiferromagnetic states in zero field with decreasing temperature, and the further transition to the ferromagnetic state in magnetic fields up to ST have been clearly confirmed. Diffuse scattering observed over a wide reciprocal space around the fundamental reflections is significantly reduced upon cooling and under magnetic fields. The relaxation process from the metastable-ferromagnetic metal to the charge-ordered and antiferromagnetic insulator has been furthermore studied. The time-dependence of their intensities suggests that the system is percolatively phase-separated. All of these results are discussed in connection with the characteristic colossal magnetoresistance of this material. (author)

  3. Classical and quantum anisotropic Heisenberg antiferromagnets

    Directory of Open Access Journals (Sweden)

    W. Selke

    2009-01-01

    Full Text Available We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and quartic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid and biconical (corresponding, in the quantum lattice gas description, to supersolid phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.

  4. Phase transitions in the pseudo-binary compounds Ho1-xTbxB2C2

    International Nuclear Information System (INIS)

    We have performed specific heat experiments on Ho1-xTbxB2C2 (0 ≤ x ≤ 1.0) in order to clarify the similarity and difference between anomalous antiferromagnetic phases of HoB2C2 and TbB2C2. HoB2C2 undergoes an antiferromagnetic (AFM) transition at TN=5.9 K and an antiferroquadrupolar (AFQ) transition at TQ=4.5 K. TbB2C2 shows only an AFM transition at TN=21.7 K. Although TN changes gradually with increasing x, TQ hardly decreases up to x=0.6. This unusual result indicates that the Tb atoms seem to support the AFQ order in HoB2C2. However, judging from an entropy change at TQ, it is supposed that the Tb atoms do not participate in the AFQ order. (author)

  5. Magnetization studies of first-order magnetostructural phase transition in polycrystalline FeRh thin films

    Science.gov (United States)

    Lu, Wei; Huang, Ping; Chen, Zhe; He, Chenchong; Wang, Yuxin; Yan, Biao

    2012-10-01

    The nucleation and growth of the transformed phase in the matrix of the original phase played an important role in the progress of magnetic transition. In spite of extensive investigations in B2 ordered FeRh alloy systems, until now few studies have been conducted for clarifying the nucleation and growth mechanism of the antiferromagnetic-ferromagnetic phase transition in FeRh alloys. In this work, B2 ordered polycrystalline FeRh thin films were fabricated on glass substrates by a sputtering technique and subsequent heat treatment. The as-deposited film shows a nonmagnetic property because of its face centred cubic structure. After annealing, the polycrystalline FeRh thin films show a clear first-order magnetostructural phase transition. The FeRh thin film shows an overall activation energy of about 228.6 kJ mol-1 for the entire first-order magnetostructural phase transition process. Results suggest that the first-order magnetostructural phase transition in ordered FeRh thin films follows the Johnson-Mehl-Avrami model with characteristic exponent n in the range 1-4, indicating that the phase transition process is a multi-step process characterized by different nucleation and growth mechanisms of the new ferromagnetic phase. The results obtained in this study will shed light on the underlying physics of the first-order magnetostructural phase transition of ordered FeRh alloys. The applicability of the concepts used in this study to the FeRh system shows universality and can be applied to other material systems where there is a first-order magnetostructural phase transition such as in manganites.

  6. Phase transitions in warm, asymmetric nuclear matter

    International Nuclear Information System (INIS)

    A relativistic mean-field model of nuclear matter with arbitrary proton fraction is studied at finite temperature. An analysis is performed of the liquid-gas phase transition in a system with two conserved charges (baryon number and isospin) using the stability conditions on the free energy, the conservation laws, and Gibbs' criteria for phase equilibrium. For a binary system with two phases, the coexistence surface (binodal) is two dimensional. The Maxwell construction through the phase-separation region is discussed, and it is shown that the stable configuration can be determined uniquely at every density. Moreover, because of the greater dimensionality of the binodal surface, the liquid-gas phase transition is continuous (second order by Ehrenfest's definition), rather than discontinuous (first order), as in familiar one-component systems. Using a mean-field equation of state calibrated to the properties of nuclear matter and finite nuclei, various phase-separation scenarios are considered. The model is then applied to the liquid-gas phase transition that may occur in the warm, dilute matter produced in energetic heavy-ion collisions. In asymmetric matter, instabilities that produce a liquid-gas phase separation arise from fluctuations in the proton concentration (chemical instability), rather than from fluctuations in the baryon density (mechanical instability)

  7. Critical behavior in the electroweak phase transition

    CERN Document Server

    Gleiser, Marcello

    1993-01-01

    We examine the behavior of the standard-model electroweak phase transition in the early Universe. We argue that close to the critical temperature it is possible to estimate the {\\it effective} infrared corrections to the 1-loop potential using well known $\\varepsilon$-expansion results from the theory of critical phenomena in 3 spatial dimensions. The theory with the $\\varepsilon$-corrected potential exhibits much larger fluctuations in the spatial correlations of the order parameter, considerably weakening the strength of the transition.

  8. Quantum phase transitions with dynamical flavors

    CERN Document Server

    Bea, Yago; Ramallo, Alfonso V

    2016-01-01

    We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.

  9. The diamagnetic phase transition in Magnetars

    CERN Document Server

    Wang, Zhaojun; Zhu, Chunhua; Wu, Baoshan

    2016-01-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen (dHvA) effect and diamagnetic phase transition which is associated with magnetic domain formation. The "magnetic interaction" between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in "low-field" magnetar, the depinning phase transition of domain wall motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magne...

  10. Non-equilibrium dynamics and phase transitions

    CERN Document Server

    Janik, Romuald A; Soltanpanahi, Hesam

    2015-01-01

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths.

  11. Simple explanation for the reentrant magnetic phase transition in Pr0.5Sr0.41Ca0.09MnO3 perovskite

    Indian Academy of Sciences (India)

    B T Cong; P N A Huy; N H Long; D D Long

    2003-01-01

    The reentrant magnetic phase transition in Pr0.5Sr0.41Ca0.09MnO3 perovskite is explained using the Ising spin model on the square lattice with mixed ferromagnetic and antiferromagnetic exchange interactions. It is shown using numerical calculations that this effect is strongly affected by the external magnetic field and lattice disorder.

  12. Late-time cosmological phase transitions

    International Nuclear Information System (INIS)

    It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z approx-gt 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies (ΔT/T) approx-lt 10-5 can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of ∼100M pc for large-scale structure as well as ∼1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs

  13. Radiation-induced phase transition of paraffins

    International Nuclear Information System (INIS)

    When irradiated by the 500 kV electron at a dose of about 1.5 x 10-3 C/cm2, normal paraffins exhibit a solid-solid phase transition; a transition from a triclinic form to an orthorhombic one in n-C22H46 and n-C24H50 and from a monoclinic form to an orthorhombic one in n-C28H58, n-C36H74 and n-C44H90. The transition to a phase with high energy (orthorhombic phase) accommodates the radiation-induced stresses. The excess strain energy produced by cross-links in crystals is assumed to be equal to the enthalpy change of the phase transition, and the number of cross-links required to induce the phase transition is estimated at one per volume of about ten molecular chains. To compare with irradiated crystals, mixed crystals are prepared from solutions of binary mixtures of n-C23H48 and n-C24H50 and of n-C24H50 and n-C25H52. When the content of impurities (n-C23H48 or n-C25H52) reaches 10% in molar fraction, the crystal form of mixed crystals changes from the stable triclinic one to the unstable orthorhombic one. Thus, the number of lattice imperfections of mixed lattice is also estimated at one per volume of ten molecules. It is concluded from the above two estimations that the phase transition occurs when the content of lattice imperfections reaches the value of one per ten molecular chains and the value does not depend on the type of imperfections in these paraffins. (author)

  14. Magnetization reversal of giant perpendicular magnetic anisotropy at the magnetic-phase transition in FeRh films on MgO

    Science.gov (United States)

    Odkhuu, Dorj

    2016-02-01

    Based on first-principles calculations, we demonstrate that substitutions of transition metals Ru and Ir, neighboring and same group elements in the periodic table, for the Rh site in the vicinity of surface can induce a substantially large perpendicular magnetic anisotropy (PMA), up to an order of magnitude of 20 erg /cm2 , in FeRh films on MgO. The main driving mechanism for this huge PMA is the interplay between the dx y and dx2-y2 orbital states of the substitutional 4 d and 5 d transition metal atoms with large spin-orbit coupling. Further investigations demonstrate that magnetization direction of PMA undergoes a transition into an in-plane magnetization at the antiferromagnet → ferromagnet phase transition, which provides a viable route for achieving large and switchable PMA associated with the magnetic-phase transition in antiferromagnet spintronics.

  15. A μSR study of the 1 K phase transition in the heavy electron compound UCu5

    International Nuclear Information System (INIS)

    The 1 K phase transition in UCu5, which shows up in specific heat data within the antiferromagnetic state below TN=16 K, was investigated by zero field μSR. The data reveal a pronounced increase in the internal field spread at the μ+ sites below 1.2 K while the average fields seem to be unaffected. These results are compatible with the onset of a charge density wave state below 1.2 K. (orig.)

  16. Some phase transition studies under shock waves

    International Nuclear Information System (INIS)

    Experimental studies on pressure-induced phase transitions are generally conducted using both static- and shock-loading techniques. Comparison of these results is interesting as the presence of shear and high strain rate under shock compression may alter the mechanism of a transition and also its onset pressure. Recently we have carried out an gas-gun experiments to study phase transitions in GeO2, Ti and Zr. In Ti and Zr, our objective has been to understand the causes of the reported scatter in the pressure of shock induced α -> ω transition (6.0 - 11.9 GPa). Our experiments on Zr show that the initial oxygen content of the sample has a large influence on the transition pressure. For example no α to ω transition is seen up to 11 GPa in Zr samples containing oxygen concentration above 1600 ppm. Unlike that in static experiments, the effect of shear is found to be small up to 9 GPa in inclined impact experiments in Ti. The microscopic nature of the α -> ω transition in Zr has also been examined using selected area electron diffraction measurements

  17. Queueing phase transition: theory of translation

    OpenAIRE

    Romano, M. Carmen; Thiel, Marco; Stansfield, Ian; Grebogi, Celso

    2009-01-01

    We study the current of particles on a lattice, where to each site a different hopping probability has been associated and the particles can move only in one direction. We show that the queueing of the particles behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of mRNAs. We show that the first-order phase transition, uncovered in thi...

  18. Phase Transition in Loop Quantum Gravity

    OpenAIRE

    Mäkelä, Jarmo

    2016-01-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature $T_C$. In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature $T_C$ may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect...

  19. Phase transition in loop quantum gravity

    Science.gov (United States)

    Mäkelä, Jarmo

    2016-04-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature TC . In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature TC may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole, the characteristic temperature TC corresponds to the Hawking temperature of the hole.

  20. Phase Transition in Loop Quantum Gravity

    CERN Document Server

    Mäkelä, Jarmo

    2016-01-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature $T_C$. In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature $T_C$ may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole the characteristic temperature $T_C$ corresponds to the Hawking temperature of the hole.

  1. Network traffic behaviour near phase transition point

    Science.gov (United States)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  2. Hall effect across the quantum phase transition of CeCu6-xAux

    International Nuclear Information System (INIS)

    While CeCu6 is a Pauli-paramagnetic heavy-fermion (HF) system, Au doping introduces long-range incommensurate antiferromagnetism for x>xc∼0.1. At the critical concentration xc, the system experiences a quantum phase transition (QPT). Here, both unusual magnetic fluctuations, studied by inelastic neutron scattering, and non-Fermi-liquid behavior, i.e. to anomalous low-temperature thermodynamic and transport properties have been observed. We report on Hall effect measurements that probe the electronic structure of heavy fermions across the critical concentration xc of the QPT

  3. PHASE TRANSITION IN SEQUENCE UNIQUE RECONSTRUCTION

    Institute of Scientific and Technical Information of China (English)

    Li XIA; Chan ZHOU

    2007-01-01

    In this paper,sequence unique reconstruction refers to the property that a sequence is uniquely reconstructable from all its K-tuples.We propose and study the phase transition behavior of the probability P(K)of unique reconstruction with regard to tuple size K in random sequences (iid model).Based on Monte Carlo experiments,artificial proteins generated from iid model exhibit a phase transition when P(K)abruptly jumps from a low value phase(e.g.<0.1)to a high value phase (e.g.>0.9).With a generalization to any alphabet,we prove that for a random sequence of length L,as L is large enough,P(K)undergoes a sharp phase transition when P≤0.1015 where p=P(two random letters match).Besides,formulas are derived to estimate the transition points,which may be of practical use in sequencing DNA by hybridization.Concluded from our study,most proteins do not deviate greatly from random sequences in the sense of sequence unique reconstruction,while there are some "stubborn" proteins which only become uniquely reconstructable at a very large K and probably have biological implications.

  4. Endpoint of the hot electroweak phase transition

    CERN Document Server

    Csikor, Ferenc; Heitger, J

    1999-01-01

    We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. The Monte-Carlo analysis is done on lattices with different lattice spacings ($a$). A systematic extrapolation $a \\to 0$ is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. At this endpoint the phase transition is of second order, whereas above it only a rapid cross-over can be seen. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the Standard Model is $72.4 \\pm 1.7$ GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any electroweak phase transition in the Standard Model.

  5. Electronic structure and phonon spectrum of binary iron-based superconductor FeSe in both nonmagnetic and striped antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei, E-mail: wangweiphysics@yahoo.com.cn [School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China); Sun Jiafa [Information College of Huaibei Normal University, Huaibei, Anhui 235000 (China); Li Suwen; Lu Hongyan [School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China)

    2012-01-15

    Phonon softening in orthorhombic striped antiferromagnetic phase of FeSe. A large frequency gap exists in orthorhombic striped antiferromagnetic phase of FeSe. Magnetic phonons are still not responsible for superconductivity of FeSe. Using first-principles calculations, we investigate electronic structure and phonon spectrum of binary iron-based superconductor FeSe in both tetragonal nonmagnetic (NM) phase and orthorhombic striped antiferromagnetic (SAF) phase. It is found that the softening of atomic vibration modes and main electron-phonon coupling contribution from low-frequency Eliashberg spectral function {alpha}{sup 2}F({omega}) in SAF phase of FeSe lead to the enhancement of electron-phonon coupling strength {lambda}{sub ep} and logarithmically average frequency {omega}{sub ln}. However, the obtained superconducting T{sub c} in SAF phase just increases up to 0.34 K, even though Coulomb pseudopotential {mu}{sup Asterisk-Operator} is limited to zero. As a result, our magnetic phonons calculation still rules out phonon mediated superconductivity, although the electron-phonon coupling through the spin channel play an important role in FeSe.

  6. Transition to turbulence in pipe flow as a phase transition

    Science.gov (United States)

    Vasudevan, Mukund; Hof, Björn

    2015-11-01

    In pipe flow, turbulence first arises in the form of localized turbulent patches called puffs. The flow undergoes a transition to sustained turbulence via spatio-temporal intermittency, with puffs splitting, decaying and merging in the background laminar flow. However, the due to mean advection of the puffs and the long timescales involved (~107 advective time units), it is not possible to study the transition in typical laboratory set-ups. So far, it has only been possible to indirectly estimate the critical point for the transition. Here, we exploit the stochastic memoryless nature of the puff decay and splitting processes to construct a pipe flow set-up, that is periodic in a statistical sense. It then becomes possible to study the flow for sufficiently long times and characterize the transition in detail. We present measurements of the turbulent fraction as a function of Reynolds number which in turn allows a direct estimate of the critical point. We present evidence that the transition has features of a phase transition of second order.

  7. Deconfinement phase transition in neutron star matter

    Institute of Scientific and Technical Information of China (English)

    LI Ang; PENG Guang-Xiong; Lombardo U

    2009-01-01

    The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot,we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density,and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.

  8. Explore QCD phase transition with thermal photons

    International Nuclear Information System (INIS)

    This pilot study was to assess the high temperature and zero baryon density region of quantum chromodynamics (QCD) phase diagram with thermal photon emission, where the nature of QCD phase transition is ambiguous. Based on a (3+1)-D ideal hydrodynamical model to describe macroscopically the collision system, thermal photons emitted from Pb+Pb collisions at 2.76 TeV are investigated. The result reveals that photons from heavy ion collisions at high energy and centrality are possible to distinguish the structure of the hot dense matter, in QGP phase or hadronic phase, thus may provide an approach to explore the nature of this finite-temperature QCD transition (that is, first-order, second-order or analytic crossover). (authors)

  9. Exploring the Fragile Antiferromagnetic Superconducting Phase in CeCoIn5

    DEFF Research Database (Denmark)

    Blackburn, E.; Das, P.; Eskildsen, M.R.;

    2010-01-01

    CeCoIn5 is a heavy fermion type-II superconductor showing clear signs of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis...

  10. Some neutron scattering studies on magnetic and molecular phase transitions

    International Nuclear Information System (INIS)

    In this thesis neutron-scattering investigations on two different systems are described. The first study is concerned with the magnetic ordering phenomena in pseudo two-dimensional (d = 2), two-component antiferromagnets K2Mnsub(1-x)Msub(x)F4 (M = Fe, Co), as a function of the composition x and temperature T. For one of the samples in this series, K2Musub(0.978)Fesub(0.022)F4, the influence of an external magnetic field on the ordering characteristics was studied in addition. The second study deals with the rotational motions of the NH4+ groups in NH4ZnF3 in relation with the structural phase transition at Tsub(c) = 115.1 K. The experimental techniques were chosen according to the requirements of each of these two subjects. The former study was carried out by observing the elastic magnetic neutron scattering with a double-axis diffractometer, whereas for the latter study time-of-flight (TOF) techniques were applied to observe the inelastic and quasi-elastic incoherent neutron scattering by the protons of the rotating NH4+ groups. (Auth.)

  11. Phase transition to a commensurate magnetic structure in PrMn{sub 2}O{sub 5} oxide

    Energy Technology Data Exchange (ETDEWEB)

    Men’shenin, V. V., E-mail: menshenin@imp.uran.ru [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2015-06-15

    On the basis of the experimentally obtained structure of the magnetic phase of the PrMn{sub 2}O{sub 5} oxide, it is found that in the temperature interval from 18 to 25 K, a transition to this phase should be analytically described by a two-component order parameter and that the effective Hamiltonian of the system should contain two independent fourth-order invariants with respect to the components of this parameter. With the use of the results of renormalization group analysis of phase transitions with this effective Hamiltonian, which are known from the literature, it is established that a second-order transition occurs. It is shown that the commensurate antiferromagnetic phase resulting from this transition has no electric polarization because this polarization is forbidden by the symmetry of the system.

  12. Magnetic Bose glass phases of coupled antiferromagnetic dimers with site dilution

    OpenAIRE

    Yu, Rong; Nohadani, Omid; Haas, Stephan; Roscilde, Tommaso

    2010-01-01

    We numerically investigate the phase diagram of two-dimensional site-diluted coupled dimer systems in an external magnetic field. We show that this phase diagram is characterized by the presence of an extended Bose glass, not accessible to mean-field approximation, and stemming from the localization of two distinct species of bosonic quasiparticles appearing in the ground state. On the one hand, non-magnetic impurities doped into the dimer-singlet phase of a weakly coupled dimer system are kn...

  13. Coupled magnetic, structural, and electronic phase transitions in FeRh

    Science.gov (United States)

    Lewis, L. H.; Marrows, C. H.; Langridge, S.

    2016-08-01

    The B2-ordered intermetallic magnetic compound FeRh exhibits a thermodynamically first-order phase transition in the vicinity of room temperature that makes it a highly intriguing subject for both fundamental and applied study. On heating through the transition the magnetic character changes from antiferromagnetic to ferromagnetic order with an accompanying large increase in the electrical conductivity and an abrupt expansion in the lattice structure. Accompanying these effects is a very large entropy change comprising both magnetic and lattice contributions. As well as being driven by temperature, these coupled phase transitions may be driven by the application or removal of a magnetic field, or, because of the extremely strong lattice-spin interactions present in this compound, by an applied strain (pressure), and combinations thereof. In addition to these driving factors, the transition temperature can also be tuned by both compositional and finite size effects. Building from historical work on bulk forms of FeRh, the effects of extrinsic and intrinsic parameter variation on the coupled magnetic, structural, and electronic phase transitions are reviewed here, with special attention directed to phenomena that manifest themselves in thin films. Overall, the rich manner in which the physical properties of FeRh change at the phase transition has potential for a wide range of technological applications in areas such as thermally-assisted magnetic recording media, CFC-free magnetic cooling, sensors for energy management, and novel spintronic devices.

  14. Phase diagram of the Ising antiferromagnet with nearest-neighbor and next-nearest-neighbor interactions on a square lattice

    International Nuclear Information System (INIS)

    The phase diagram of the Ising model in the presence of nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions on a square lattice is studied within the framework of the differential operator technique. The Hamiltonian is solved by effective-field theory in finite cluster (we have chosen N=4 spins). We have proposed a functional for the free energy (similar to Landau expansion) to obtain the phase diagram in the (T,α) space (α=J2/J1), where the transition line from the superantiferromagnetic (SAF) to the paramagnetic (P) phase is of first-order in the range 1/2<α<0.95 in contrast to previous study of CVM (Cluster Variational Method) that predict first-order transition for α=1.0. Our results for α=1.0 are in accordance with MC (Monte Carlo) simulations, that predict a second-order transition

  15. Hysteresis in the phase transition of chocolate

    Science.gov (United States)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  16. QCD phase transition and primordial density perturbations

    CERN Document Server

    Ignatius, J; Schwarz, Dominik J.

    2000-01-01

    We analyze the effect of primordial density perturbations on the cosmic QCD phase transition. According to our results hadron bubbles nucleate at the cold perturbations. We call this mechanism inhomogeneous nucleation. We find the typical distance between bubble centers to be a few meters. This exceeds the estimates from homogeneous nucleation by two orders of magnitude. The resulting baryon inhomogeneities may affect primordial nucleosynthesis.

  17. Passive Supporters of Terrorism and Phase Transitions

    CERN Document Server

    August, Friedrich; Delitzscher, Sascha; Hiller, Gerald; Krueger, Tyll

    2010-01-01

    We discuss some social contagion processes to describe the formation and spread of radical opinions. The dynamics of opinion spread involves local threshold processes as well as mean field effects. We calculate and observe phase transitions in the dynamical variables resulting in a rapidly increasing number of passive supporters. This strongly indicates that military solutions are inappropriate.

  18. Phase Transition Critical Flavor Number of QCD

    OpenAIRE

    Ndili, F. N.

    2005-01-01

    We present an entirely perturbative QCD determination of the critical phase transition flavor number $N^{cr}_{f}$ of QCD. The results obtained are compared with various determinations of $N^{cr}_{f}$ by non-pertrubative methods, including lattice QCD. The wider physics implication of the existence of the Banks-Zaks regime of QCD with only weakly interacting quarks, is discussed briefly.

  19. The nature of explosive percolation phase transition

    International Nuclear Information System (INIS)

    In this Letter, we show that the explosive percolation is a novel continuous phase transition. The order-parameter-distribution histogram at the percolation threshold is studied in Erdős–Rényi networks, scale-free networks, and square lattice. In finite system, two well-defined Gaussian-like peaks coexist, and the valley between the two peaks is suppressed with the system size increasing. This finite-size effect always appears in typical first-order phase transition. However, both of the two peaks shift to zero point in a power law manner, which indicates the explosive percolation is continuous in the thermodynamic limit. The nature of explosive percolation in all the three structures belongs to this novel continuous phase transition. Various scaling exponents concerning the order-parameter-distribution are obtained. -- Highlights: ► The explosive percolation is a novel continuous phase transition. ► The order-parameter-distribution histogram at the percolation threshold is studied. ► Two well-defined peaks coexist, and the valley in between is suppressed. ► However, both of the two peaks shift to zero point in a power law manner. ► Various scaling exponents concerning the order-parameter-distribution are obtained.

  20. Phenomenological models of cosmic phase transitions. 2

    International Nuclear Information System (INIS)

    Classical nucleation theory is applied to follow the thermal history of a homogeneous and isotropic universe during a first-order phase transition. The dependence of possible supercooling and reheating scenarios on the surface tension and growth velocity of bubbles is discussed. (author)

  1. Vol. 3: Statistical Physics and Phase Transitions

    International Nuclear Information System (INIS)

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to statistical physics and phase transition theory

  2. Black Hole Phase Transition in Massive Gravity

    Science.gov (United States)

    Ning, Shou-Li; Liu, Wen-Biao

    2016-07-01

    In massive gravity, some new phenomena of black hole phase transition are found. There are more than one critical points under appropriate parameter values and the Gibbs free energy near critical points also has some new properties. Moreover, the Maxwell equal area rule is also investigated and the coexistence curve of the black hole is given.

  3. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  4. Supersymmetric Kosterlitz-Thouless phase transition

    International Nuclear Information System (INIS)

    Supersymmetry is introduced in the Coulomb gas, namely the statistical theory for a set of interacting vortices and antivortices. The equivalence of this theory to the supersymmetric Sine-Gordon model is established. Mean-field considerations applied to this supersymmetric Coulomb gas lead to a phase transition of the kind described by Kosterlitz and Thouless. 12 references

  5. Chaos: Butterflies also Generate Phase Transitions

    Science.gov (United States)

    Leplaideur, Renaud

    2015-10-01

    We exhibit examples of mixing subshifts of finite type and of continuous potentials such that there are phase transitions but the pressure is always strictly convex. More surprisingly, we show that the pressure can be analytic on some interval although there exist several equilibrium states.

  6. Finite temperature field theory and phase transitions

    International Nuclear Information System (INIS)

    These lectures review phases and phase transitions of the Standard Model, with emphasis on those aspects which are amenable to a first principle study. Model calculations and theoretical idea of practical applicability are discussed as well. Contents: 1. Overview; 2. Field Theory at Finite Temperature and Density; 3. Critical Phenomena; 4. Electroweak Interactions at Finite Temperature; 5. Thermodynamics of Four Fermions models; 6. The Phases of QCD; 7. QCD at Finite Temperature, μB = 0; 8. QCD at Finite Temperature, μB ≠ 0. (author)

  7. Phase transitions in algebraic cluster models

    International Nuclear Information System (INIS)

    Complete text of publication follows. There has been much interest recently in phase transitions in various nuclear systems. The phases are defined as (local) minima of the potential energy surface (PES) defined in terms of parameters characterizing the nuclear system. Phase transitions occur when some relevant parameter is changed gradually and the system moves from one phase to another one. In the analysis of such systems the key questions are the number of phases and the order of phase transition between them. Algebraic nuclear structure models are especially interesting from the phase transition point of view, because the different phases may be characterized by different symmetries of the system. Much work has been done recently on models based on the interacting boson approximation (IBA). In these studies the potential energy surface is constructed from the algebraic Hamiltonian by its geometric mapping using the coherent state formalism. Inspired by these studies we performed a similar analysis of a family of algebraic cluster models based on the semimicroscopic algebraic cluster model (SACM). This model has two dynamical symmetries: the SU(3) and SO(4) limits are believed to correspond to vibration around a spherical equilibrium shape and static dipole deformation, respectively. The semimicroscopic nature of this model is reflected by the fact that a fully antisymmetrized microscopic model space is combined with a phenomenologic Hamiltonian that describes excitations of the (typically) two-cluster system. The microscopic model space is necessary to take into account the Pauli exclusion principle acting between the nucleons of the closely interacting clusters. In practice this means that the number of excitation quanta in the relative motion of the clusters has to exceed a certain number n0 characterizing the system. This is clearly a novelty with respect to other algebraic models, and it complicates the formalism considerably. We thus introduced as a

  8. Phase transition to QGP matter : confined vs deconfined matter

    CERN Multimedia

    Maire, Antonin

    2015-01-01

    Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.

  9. Phase transitions and large amplitude oscillations

    International Nuclear Information System (INIS)

    We studied the way how do large amplitude oscillations propagate in a one-dimensional viscous compressible flow governed by the Navier-Stokes equations. The model used a barotropic state law. This allows phase transitions, like in Van der Waals fluid. The oscillations obey to an integro-differential Cauchy problem of a new type. Due to the translational invariance, one consider here the solutions which do not depend on the (slow) space variable. They actually depend on a fast variable, and obey to a differential equation dw/dt = -grad I(W) on an infinite-dimensional manifold, where I denotes the internal energy per unit mass. Stable steady states correspond to local minima of I. It follows that states belonging to the spinodal phase are unstable with respect to large amplitude oscillations. It also gives an evidence for instability of stationary phase transitions when the pressures, although taking equal values in both phases, differ from the Maxwell value. This result was well known in a different context, when the capillarity is taken in account in the model but cannot be obtained in our case by using only a straightforward linearization technique for the Navier-Stokes equations, because of the strongly nonlinear nature of a phase transition. (author). 5 refs, 2 figs

  10. Phase transitions in a lattice population model

    International Nuclear Information System (INIS)

    We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions

  11. The comfortable driving model revisited: traffic phases and phase transitions

    International Nuclear Information System (INIS)

    We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast them with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner’s three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides ‘hard’ rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow to a wide moving jam often involves an intermediate transition: first from free flow to synchronized flow and then from synchronized flow to a wide moving jam. This is supported by the fact that the so-called F → S transition (from free flow to synchronized traffic) is much more likely than a direct F → J transition. The model under consideration has a functional relationship between traffic flow and traffic density. The fundamental hypothesis of the three-phase traffic theory, however, postulates that the steady states of synchronized flow occupy a two-dimensional region in the flow–density plane. Due to the obvious discrepancy between the model investigated here and the postulate of the three-phase traffic theory, the good agreement that we found could not be expected. For a more detailed analysis, we also studied vehicle dynamics at a microscopic level and provide a comparison of real detector data with simulated data of the identical highway segment. (paper)

  12. Surface magnetic phase transitions in Dy/Lu superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Goff, J.P.; Sarthour, R.S. [Oxford Physics, Clarendon Laboratory, Parks Road, Oxford, OX (United Kingdom); Micheletti, C. [SISSA, Via Beirut 2, I-34014 Trieste (Italy); Langridge, S. [The ISIS Facility, Rutherford-Appleton Laboratory, Didcot, OX (United Kingdom); Wilkins, C.J.T. [Department of Physics, Southampton University Southampton, SO (United Kingdom); Ward, R.C.C.; Wells, M.R. [Oxford Physics, Clarendon Laboratory, Parks Road, Oxford, OX (United Kingdom)

    1999-06-01

    Dy/Lu superlattices comprising ferromagnetic Dy blocks coupled antiferromagnetically across the Lu blocks may be modelled as a chain of XY spins with antiferromagnetic exchange and six-fold anisotropy. We have calculated the stable magnetic phases for the cases of large anisotropy and a field applied along an easy direction. For an infinite chain an intermediate phase (1, 5,...) is predicted, where the notation gives the angle between the moment and the applied field in units of {pi}/3. Furthermore, the effects of surface reconstruction are determined for finite chains. A [Dy{sub 20}Lu{sub 12}]{sub 20} superlattice has been studied using bulk magnetization and polarized neutron reflectivity. The (1, 5,...) phase has been identified and the results provide direct evidence in support of the theoretical predictions. Dipolar forces are shown to account for the magnitude of the observed exchange coupling. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition

    CERN Document Server

    Clark, Logan W; Chin, Cheng

    2016-01-01

    The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...

  14. Pseudogap formation and quantum phase transition in strongly-correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Chern, Chyh-Hong, E-mail: chchern@ntu.edu.tw

    2014-11-15

    Pseudogap formation is a ubiquitous phenomenon in strongly-correlated superconductors, for example cuprates, heavy-fermion superconductors, and iron pnictides. As the system is cooled, an energy gap opens in the excitation spectrum before entering the superconducting phase. The origin of formation and the relevancy to the superconductivity remain unclear, which is the most challenging problem in condensed matter physics. Here, using the cuprate as a model, we demonstrate that the formation of pseudogap is due to a massive gauge interaction between electrons, where the mass of the gauge boson, determining the interaction length scale, is the consequence of the remnant antiferromagnetic fluctuation inherited from the parent compounds. Extracting from experimental data, we predict that there is a quantum phase transition belonging to the 2D XY universality class at the critical doping where pseudogap transition vanishes.

  15. Ultrafast lattice dynamics in FeRh during a laser-induced magnetic phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Quirin, Florian; Vattilana, Michael; Shymanovich, Uladzimir; El-Kamhawy, Abd-Elmonien; Nicoul, Matthieu; Tarasevitch, Alexander; Linde, Dietrich von der; Sokolowski-Tinten, Klaus [Universitaet Duisburg-Essen, Duisburg (Germany)

    2011-07-01

    FeRh exhibits an anti-ferromagnetic to ferromagnetic phase transition upon heating to temperatures above 353 K, which is accompanied by an iso-structural increase in volume of about 1%. Recent results of time-resolved magneto-optical experiments gave indication that after intense optical excitation ferromagnetic order starts to build up on sub-ps time-scales. We have used time-resolved X-ray diffraction with fs X-ray pulses from a laser-produced plasma to directly follow the lattice response of FeRh after optical excitation. From experimental data obtained at different starting temperatures below and above the phase transition temperature we have to conclude that the fast changes of the magnetic properties do not lead to the corresponding structural changes as under equilibrium conditions.

  16. The Phase Transition to Eternal Inflation

    OpenAIRE

    Creminelli, Paolo; Dubovsky, Sergei; Nicolis, Alberto; Senatore, Leonardo; Zaldarriaga, Matias

    2008-01-01

    For slow-roll inflation we study the phase transition to the eternal regime. Starting from a finite inflationary volume, we consider the volume of the universe at reheating as order parameter. We show that there exists a critical value for the classical inflaton speed, \\dot\\phi^2/H^4 = 3/(2 \\pi^2), where the probability distribution for the reheating volume undergoes a sharp transition. In particular, for sub-critical inflaton speeds all distribution moments become infinite. We show that at t...

  17. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  18. Magnetic phase transitions in Er7Rh3 studied on single crystals

    International Nuclear Information System (INIS)

    Highlights: • Magnetic and electrical properties of Er7Rh3 were studied on single crystals. • The magnetic phase diagram along the c-axis was constructed. • The field-induced magnetic transitions in Er7Rh3 can be explained by the magnetic structure with two magnetic propagation vectors. • The anomalies of electrical resistivity can also be described by the magnetic structure in Er7Rh3. - Abstract: Magnetic phase transitions in Er7Rh3 with the Th7Fe3 type hexagonal structure have been studied on single crystals by measuring magnetization, magnetic susceptibility and electrical resistivity. Er7Rh3 possesses antiferromagnetic state below TN = 13 K. In the ordered state, the two successive magnetic transitions at Tt1 = 6.2 K and Tt2 = 4.5 K were observed. Several field-induced magnetic transitions were also observed along the a- and c-axes below TN; magnetic field H – temperature T phase diagram along the c-axis was constructed. The field-induced magnetic transitions in Er7Rh3 can be explained by the magnetic structure with two magnetic propagation vectors which were derived by the previous neutron diffraction studies. Electrical resistivity shows humps just below the magnetic transition temperatures, TN and Tt1 due to the super-zone gap formation at the Fermi level; these anomalies can also be described by the magnetic structure changes in Er7Rh3

  19. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro

    2013-01-01

    As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...

  20. Long range anti-ferromagnetic spin model for prebiotic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Nokura, Kazuo [Shonan Institute of Technology, Fujisawa 251-8511 (Japan)

    2003-11-28

    I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states.

  1. Long range anti-ferromagnetic spin model for prebiotic evolution

    International Nuclear Information System (INIS)

    I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states

  2. Thermalon mediated phase transitions in Gauss-Bonnet gravity

    CERN Document Server

    Hennigar, Robie A; Mbarek, Saoussen

    2015-01-01

    Thermalons can mediate phase transitions between different vacua in higher curvature gravity, potentially changing the asymptotic structure of the spacetime. Treating the cosmological constant as a dynamical parameter, we study these phase transitions in the context of extended thermodynamic phase space. We find that in addition to the AdS to dS phase transitions previously studied, thermal AdS space can undergo a phase transition to an asymptotically flat black hole geometry. In the context of AdS to AdS transitions, we comment on the similarities and differences between thermalon transitions and the Hawking-Page transition.

  3. Phase transition to turbulence in a pipe

    Science.gov (United States)

    Goldenfeld, Nigel

    Leo Kadanoff taught us much about phase transitions, turbulence and collective behavior. Here I explore the transition to turbulence in a pipe, showing how a collective mode determines the universality class. Near the transition, turbulent puffs decay either directly or through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Direct numerical simulations reveal that a collective mode, a so-called zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations, as represented by Reynolds stress. This zonal flow imposes a shear on the turbulent fluctuations that tends to suppress their anisotropy, leading to a Landau theory of predator-prey type, in the directed percolation universality class. Stochastic simulations of this model reproduce the functional form and phenomenology of pipe flow experiments. Talk based on work performed with Hong-Yan Shih and Tsung-Lin Hsieh. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.

  4. Phase Transitions in Models of Bird Flocking

    CERN Document Server

    Christodoulidi, H; Bountis, T

    2013-01-01

    The aim of the present paper is to elucidate the transition from collective to random behavior exhibited by various mathematical models of bird flocking. In particular, we compare Vicsek's model [Viscek et al., Phys. Rev. Lett. 75, 1226 -- 1229 (1995)] with one based on topological considerations. The latter model is found to exhibit a first order phase transition from flocking to decoherence, as the 'noise parameter' of the problem is increased, whereas Viscek's model gives a second order transition. Refining the topological model in such a way that birds are influenced mostly by the birds in front of them, less by the ones at their sides and not at all by those behind them (because they do not see them), we find a behavior that lies in between the two models. Finally, we propose a novel mechanism for preserving the flock's cohesion, without imposing artificial boundary conditions or attracting forces.

  5. Studies of the phase transitions in UAs with neutron scattering

    International Nuclear Information System (INIS)

    Uranium arsenide is known to order with the type-I antiferromagnetic (AF) structure at approx. 126 K, and exhibit a first-order transition to the type-IA AF structure at T/sub N//2. We have now reexamined these transitions with a single crystal. Above T/sub N/ UAs exhibits critical scattering suggesting a tendency to order with an incommensurate wavevector, but then suddenly orders with the AF-I structure. The analysis of the data shows the need to consider anisotropic exchange interactions of cubic symmetry between U moments

  6. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios. PMID:26565451

  7. Phase transitions: An overview with a view

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, M. [Dartmouth Coll., Hanover, NH (United States)

    1997-10-01

    The dynamics of phase transitions plays a crucial role in the so- called interface between high energy particle physics and cosmology. Many of the interesting results generated during the last fifteen years or so rely on simplified assumptions concerning the complex mechanisms typical of nonequilibrium field theories. After reviewing well-known results concerning the dynamics of first and second order phase transitions, I argue that much is yet to be understood, in particular in situations where homogeneous nucleation theory does not apply. I present a method to deal with departures from homogeneous nucleation, and compare its efficacy with numerical simulations. Finally, I discuss the interesting problem of matching numerical simulations of stochastic field theories with continuum models.

  8. Dynamics at a smeared phase transition

    International Nuclear Information System (INIS)

    We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times

  9. Dynamics at a smeared phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, Bernard [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States); Sknepnek, Rastko [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States); Vojta, Thomas [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2005-03-18

    We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times.

  10. Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$

    CERN Document Server

    Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi

    2016-01-01

    Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.

  11. Structural phase transitions in monolayer molybdenum dichalcogenides

    Science.gov (United States)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo

    2015-03-01

    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  12. Network traffic behaviour near phase transition point

    OpenAIRE

    Anna T. Lawniczak; Tang, Xiongwen

    2005-01-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnection) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dyn...

  13. Quantum Phase Transitions in the BKL Universe

    CERN Document Server

    D'Odorico, Giulio

    2015-01-01

    We study quantum corrections to the classical Bianchi I and Bianchi IX universes. The modified dynamics is well-motivated from the asymptotic safety program where the short-distance behavior of gravity is governed by a non-trivial renormalization group fixed point. The correction terms induce a phase transition in the dynamics of the model, changing the classical, chaotic Kasner oscillations into a uniform approach to a point singularity. The resulting implications for the microscopic structure of spacetime are discussed.

  14. Gravitation, phase transitions, and the big bang

    International Nuclear Information System (INIS)

    Introduced here is a model of the early universe based on the possibility of a first-order phase transition involving gravity, and arrived at by a consideration of instabilities in the semiclassical theory. The evolution of the system is very different from the standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential importance of semiclassical finite-temperature gravitational effects. Baryosynthesis and monopole production in this scenario are also outlined

  15. Phase transitions in algebraic cluster models

    International Nuclear Information System (INIS)

    We study the phase transitions of two algebraic cluster models, which have similar interactions, but differ from each other in their model spaces. The semimicroscopical model incorporates the Pauli exclusion principle, while the phenomenological one does not. The appearance of the quasidynamical SU(3) symmetry is also investigated in the presence of an explicitly symmetry-breaking interaction. Examples of binary cluster configurations with two, one, or zero closed-shell clusters are studied

  16. Unprovability and phase transitions in Ramsey theory

    OpenAIRE

    De Smet, Michiel

    2011-01-01

    The first mathematically interesting, first-order arithmetical example of incompleteness was given in the late seventies and is know as the Paris-Harrington principle. It is a strengthened form of the finite Ramsey theorem which can not be proved, nor refuted in Peano Arithmetic. In this dissertation we investigate several other unprovable statements of Ramseyan nature and determine the threshold functions for the related phase transitions. Chapter 1 sketches out the historical development...

  17. Thermalon mediated phase transitions in Gauss-Bonnet gravity

    OpenAIRE

    Hennigar, Robie; Mann, Robert; Mbarek, Saoussen

    2015-01-01

    Thermalons can mediate phase transitions between different vacua in higher curvature gravity, potentially changing the asymptotic structure of the spacetime. Treating the cosmological constant as a dynamical parameter, we study these phase transitions in the context of extended thermodynamic phase space. We find that in addition to the AdS to dS phase transitions previously studied, thermal AdS space can undergo a phase transition to an asymptotically flat black hole geometry. In the context ...

  18. Phase Transitions in Delaunay Potts Models

    Science.gov (United States)

    Adams, Stefan; Eyers, Michael

    2016-01-01

    We establish phase transitions for certain classes of continuum Delaunay multi-type particle systems (continuum Potts models) with infinite range repulsive interaction between particles of different type. In one class of the Delaunay Potts models studied the repulsive interaction is a triangle (multi-body) interaction whereas in the second class the interaction is between pairs (edges) of the Delaunay graph. The result for the edge model is an extension of finite range results in Bertin et al. (J Stat Phys 114(1-2):79-100, 2004) for the Delaunay graph and in Georgii and Häggström (Commun Math Phys 181:507-528, 1996) for continuum Potts models to an infinite range repulsion decaying with the edge length. This is a proof of an old conjecture of Lebowitz and Lieb. The repulsive triangle interactions have infinite range as well and depend on the underlying geometry and thus are a first step towards studying phase transitions for geometry-dependent multi-body systems. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transitions manifest themselves in the percolation of the corresponding random-cluster model. Our proofs rely on recent studies (Dereudre et al. in Probab Theory Relat Fields 153:643-670, 2012) of Gibbs measures for geometry-dependent interactions.

  19. Topology and phase transitions I. Preliminary results

    International Nuclear Information System (INIS)

    In this first paper, we demonstrate a theorem that establishes a first step toward proving a necessary topological condition for the occurrence of first- or second-order phase transitions: we prove that the topology of certain submanifolds of configuration space must necessarily change at the phase transition point. The theorem applies to smooth, finite-range and confining potentials V bounded below, describing systems confined in finite regions of space with continuously varying coordinates. The relevant configuration space submanifolds are both the level sets {Σv:=VN-1(v)}velementofR of the potential function VN and the configuration space submanifolds enclosed by the Σv defined by {Mv:=VN-1((-∞,v])}velementofR, which are labeled by the potential energy value v, and where N is the number of degrees of freedom. The proof of the theorem proceeds by showing that, under the assumption of diffeomorphicity of the equipotential hypersurfaces {Σv}velementofR, as well as of the {Mv}velementofR, in an arbitrary interval of values for v-bar =v/N, the Helmholtz free energy is uniformly convergent in N to its thermodynamic limit, at least within the class of twice differentiable functions, in the corresponding interval of temperature. This preliminary theorem is essential to prove another theorem-in (paper II)-which makes a stronger statement about the relevance of topology for phase transitions

  20. Phase Transitions in Model Active Systems

    Science.gov (United States)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  1. Phase transitions in spin-1/2 Ising and classical planar models: series studies

    International Nuclear Information System (INIS)

    Phase transitions in a variety of model systems are studied by means of high- and low-temperature series expansion. The high-extension of the Englert linked-cluster expansion method, completely renormalized in the sense of DeDominicis, while twelfth-order low-temperature series were derived by using the shadow lattice technique. The first model system studied was a (3d) spin-1/2 Ising with competing ferromagnetic nn and antiferromagnetic nnn interactions on a bcc lattice. Both high- and low-temperature series were analyzed by standard Pade methods. The resulting phase diagram is consistent with the predictions of renormalization and Monte Carlo calculations, i.e., near the mean-field bicritical point in the strong antiferromagnetic regime, the paramagnetic-AF2 transition is driven first-order by fluctuations, in disagreement, however, with the predictions by Landau theory of a continuous transition. The remainder of the study deals with model systems belonging to a global class of two-dimensional classical models which display a non-conventional phase transition of the ''Kosterlitz-Thouless'' type: the spin-infinity XY and the plane rotator models, on a triangular lattice. The twelfth-order high-temperature series for the correlation length and susceptibility were analyzed by the n-fit method of analysis, tailored to detect essential singularities of the form Aexp(bt-/sup v/), where t = 1-K/K/sub c/. Test function analysis showed the method of analysis to be effective for analysing functions in which corrections to the leading singularity are included. The series analysis yielded the results nu = 0.5 =/- 0.1 and eta = 0.27 =/- 0.03 which are in good agreement with the Kosterlitz-Thouless predictions nu = 1/2 and eta = 1/4

  2. Capturing the Magnetic and Structural Phase Transition of Ferh using Extreme Ultraviolet Light

    Science.gov (United States)

    Zusin, Dmitriy; Grychtol, Patrik; Gentry, Christian; Murnane, Margaret; Kapteyn, Henry; Canton, Sophie; Knut, Ronny; Shaw, Justin; Nembach, Hans; Silva, Thomas; Ceballos, Alejandro; Bordel, Catherine; Fischer, Peter; Hellman, Frances

    2015-03-01

    The temperature dependent transition from the anti-ferromagnetic to the ferromagnetic phase in FeRh is accompanied by a modification of its crystal lattice. The interplay between the magnetic and the structural transition is a matter of strong debate. It is important to better understand the mechanism(s) of the transition since it can be induced by femtosecond laser pulses and, unlike slower (nanosecond) magnetic phase transitions, does not seem to be limited by heat transfer. In this work, we use extreme ultraviolet light generated by a tabletop high harmonics source to perform element-selective investigations of the temperature-dependent magneto-optical response of a thin film FeRh sample. We study the optically induced phase transition using two ultrafast pump-probe spectroscopy approaches: by monitoring the time-resolved transversal magneto-optical Kerr effect (T-MOKE) and the transient change in reflectivity. PF acknowledges support from BES MSD DOE # DE-AC02-05-CH11231 and LFRIR program (# 2012K1A4A3053565) through NRF Korea funded by MEST, and JILA from DOE # DE-FG02-09ER4665.

  3. Berry Phases, Quantum Phase Transitions and Chern Numbers

    OpenAIRE

    Contreras, H. A.; Reyes-Lega, A. F.

    2007-01-01

    We study the relation between Chern numbers and Quantum Phase Transitions (QPT) in the XY spin-chain model. By coupling the spin chain to a single spin, it is possible to study topological invariants associated to the coupling Hamiltonian. These invariants contain global information, in addition to the usual one (obtained by integrating the Berry connection around a closed loop). We compute these invariants (Chern numbers) and discuss their relation to QPT. In particular we show that Chern nu...

  4. Phase transitions and dark matter problems

    International Nuclear Information System (INIS)

    The possible relationships between phase transitions in the early universe and dark matter problems are discussed. It is shown that there are at least 3 distinct cosmological dark matter problems 1) halos; 2) galaxy formation and clustering; and 3) Ω = 1, each emphasizing different attributes for the dark matter. At least some of the dark matter must by baryonic but if problems 2 and 3 are real they seem to also require non-baryonic material. However, if seeds are generated at the quark-hadron-chiral symmetry transition then alternatives to the standard scenarios may occur. At present no simple simultaneous solution (neither ''hot'', ''warm'', nor ''cold'') exists for all 3 problems, but non-standard solutions with strings, decaying particles or light not tracing to mass may work. An alternative interpretation of the relationship of the cluster-cluster and galaxy-galaxy correlation functions using renormalized scaling is mentioned. In this interpretation galaxies are more strongly correlated and the cluster-cluster function is not expected to go negative until > or approx. 200 Mpc. Possible phase transition origins for the cluster-cluster renormalized scale are presented as ways to obtain a dimension 1.2 fractal. (orig.)

  5. Transitional Bubble in Periodic Flow Phase Shift

    Science.gov (United States)

    Talan, M.; Hourmouziadis, Jean

    2004-01-01

    One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point

  6. High pressure phase transitions in Europous oxide

    International Nuclear Information System (INIS)

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  7. Phase transitions in least-effort communications

    International Nuclear Information System (INIS)

    We critically examine a model that attempts to explain the emergence of power laws (e.g., Zipf's law) in human language. The model is based on the principle of least effort in communications—specifically, the overall effort is balanced between the speaker effort and listener effort, with some trade-off. It has been shown that an information-theoretic interpretation of this principle is sufficiently rich to explain the emergence of Zipf's law in the vicinity of the transition between referentially useless systems (one signal for all referable objects) and indexical reference systems (one signal per object). The phase transition is defined in the space of communication accuracy (information content) expressed in terms of the trade-off parameter. Our study explicitly solves the continuous optimization problem, subsuming a recent, more specific result obtained within a discrete space. The obtained results contrast Zipf's law found by heuristic search (that attained only local minima) in the vicinity of the transition between referentially useless systems and indexical reference systems, with an inverse-factorial (sub-logarithmic) law found at the transition that corresponds to global minima. The inverse-factorial law is observed to be the most representative frequency distribution among optimal solutions

  8. Imprints of cosmic phase transition in inflationary gravitational waves

    International Nuclear Information System (INIS)

    We discuss the effects of cosmic phase transition on the spectrum of primordial gravitational waves generated during inflation. The energy density of the scalar condensation responsible for the phase transition may become sizable at the epoch of phase transition, which significantly affects the evolution of the universe. As a result, the amplitudes of the gravitational waves at high frequency modes are suppressed. Thus the gravitational wave spectrum can be a probe of phase transition in the early universe.

  9. Phase transitions in systems of magnetic dipoles on a square lattice with quenched disorder

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Juan J., E-mail: jjalonso@uma.e [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071-Malaga (Spain)

    2010-05-15

    We study by Monte Carlo simulations the effect of quenched orientational disorder in systems of interacting classical dipoles on a square lattice. Each dipole can lie along any of the two perpendicular axes that form an angle psi with the principal axes of the lattice. We choose psi at random and without bias from the interval [-DELTA,DELTA] for each site of the lattice. For 0<=DELTA<=pi/4 we find a thermally driven second order transition between a paramagnetic and a dipolar antiferromagnetic order phase and critical exponents that change continuously with DELTA. Near the case of maximum disorder DELTAapproxpi/4 we still find a second order transition at a finite temperature T{sub c} but our results point to weak instead of strong long-ranged dipolar order for temperatures below T{sub c}.

  10. Supersymmetry breaking as a quantum phase transition

    International Nuclear Information System (INIS)

    We explore supersymmetry breaking in the light of a rich fixed-point structure of two-dimensional supersymmetric Wess-Zumino models with one supercharge using the functional renormalization group. We relate the dynamical breaking of supersymmetry to a renormalization group relevant control parameter of the superpotential which is a common relevant direction of all fixed points of the system. Supersymmetry breaking can thus be understood as a quantum phase transition analogous to similar transitions in correlated fermion systems. Supersymmetry gives rise to a new superscaling relation between the critical exponent associated with the control parameter and the anomalous dimension of the field - a scaling relation which is not known in standard spin systems.

  11. Supersymmetry breaking as a quantum phase transition

    CERN Document Server

    Gies, Holger; Wipf, Andreas

    2009-01-01

    We explore supersymmetry breaking in the light of a rich fixed-point structure of two-dimensional supersymmetric Wess-Zumino models with one supercharge using the functional renormalization group (RG). We relate the dynamical breaking of supersymmetry to an RG relevant control parameter of the superpotential which is a common relevant direction of all fixed points of the system. Supersymmetry breaking can thus be understood as a quantum phase transition analogously to similar transitions in correlated fermion systems. Supersymmetry gives rise to a new superscaling relation between the critical exponent associated with the control parameter and the anomalous dimension of the field -- a scaling relation which is not known in standard spin systems.

  12. Locating phase transitions in computationally hard problems

    Indian Academy of Sciences (India)

    B Ashok; T K Patra

    2010-09-01

    We discuss how phase-transitions may be detected in computationally hard problems in the context of anytime algorithms. Treating the computational time, value and utility functions involved in the search results in analogy with quantities in statistical physics, we indicate how the onset of a computationally hard regime can be detected and the transit to higher quality solutions be quantified by an appropriate response function. The existence of a dynamical critical exponent is shown, enabling one to predict the onset of critical slowing down, rather than finding it after the event, in the specific case of a travelling salesman problem (TSP). This can be used as a means of improving efficiency and speed in searches, and avoiding needless computations.

  13. Phase transitions in paradigm shift models.

    Directory of Open Access Journals (Sweden)

    Huiseung Chae

    Full Text Available Two general models for paradigm shifts, deterministic propagation model (DM and stochastic propagation model (SM, are proposed to describe paradigm shifts and the adoption of new technological levels. By defining the order parameter m based on the diversity of ideas, Δ, it is studied when and how the phase transition or the disappearance of a dominant paradigm occurs as a cost C in DM or an innovation probability α in SM increases. In addition, we also investigate how the propagation processes affect the transition nature. From analytical calculations and numerical simulations m is shown to satisfy the scaling relation m=1-f(C/N for DM with the number of agents N. In contrast, m in SM scales as m=1-f(α(aN.

  14. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  15. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  16. Collective flow and QCD phase transition

    CERN Document Server

    Sorge, H

    1999-01-01

    In the first part I discuss the sensitivity of collective matter expansion in ultrarelativistic heavy-ion collisions to the transition between quark and hadronic matter (physics of the softest point of the Equation of State). A kink in the centrality dependence of elliptic flow has been suggested as a signature for the phase transition in hot QCD matter. Indeed, preliminary data of NA49 presented at this conference show first indications for the predicted kink. In the second part I have a look at the present theories of heavy-ion reactions. These remarks may also be seen as a critical comment to B. Mueller's summary talk (nucl-th/9906029) presented at this conference.

  17. Kuramoto-type phase transition with metronomes

    International Nuclear Information System (INIS)

    Metronomes placed on the perimeter of a disc-shaped platform, which can freely rotate in a horizontal plane, are used for a simple classroom illustration of the Kuramoto-type phase transition. The rotating platform induces a global coupling between the metronomes, and the strength of this coupling can be varied by tilting the metronomes’ swinging plane relative to the radial direction on the disc. As a function of the tilting angle, a transition from spontaneously synchronized to unsynchronized states is observable. By varying the number of metronomes on the disc, finite-size effects are also exemplified. A realistic theoretical model is introduced and used to reproduce the observed results. Computer simulations of this model allow a detailed investigation of the emerging collective behaviour in this system. (paper)

  18. Diffraction studies of ordered phases and phase transitions

    International Nuclear Information System (INIS)

    Two investigations are reported here. First, monolayers of CF4 physisorbed on the (001) face of graphite have been studied by means of X-ray diffraction experiments carried out at the electron storage ring DORIS in Hamburg. The exfoliated graphite substrate UCAR-ZYX was used in order to obtain a large area for adsorption and hence a large sample. Four two-dimensional solid phases of the CF4 films were seen, including a structure which is 2x2 commensurate relative to the substrate. On compression (by variation of coverage or temperature), this phase transforms to a uniaxially compressed structure ('stripe' phase). Further, at higher coverages a hexagonal structure was seen, incommensurate relative to the substrate, and at low temperatures and coverages, a complicated structure emerged, giving three close diffraction peaks in the powder pattern. Data are presented characterizing the meltings and commensurate to incommensurate transitions. Complementary to the synchrotron X-ray data, a presentation of the theory of synchrotron radiation is given. The second investigation was of the ferromagnetic phase transitions in the randomly diluted, dipolar coupled uniaxial ferromagnets LiTbsub(.3)Ysub(.7)F4 and LiHosub(.3)Ysub(.7)F4 by neutron diffraction at the RIS0 DR 3 reactor. (orig.)

  19. Dynamical phase transitions in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Rotter Ingrid

    2012-02-01

    Full Text Available The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points, the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model and those of highly excited nuclear states (described by random ensembles differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  20. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  1. Is ''metamictization'' of zircon a phase transition?

    International Nuclear Information System (INIS)

    Metamictization is the transition from the crystalline to an aperiodic or amorphous state due to alpha-decay event damage from constituent radionuclides (238U, 235U, and 232Th) and their daughters. However, this transformation in minerals is part of a larger class of radiation-induced transformations to the amorphous state that has received considerable recent attention as a result of ion- and electron-beam experiments on metals, intermetallics, simple oxides, and complex ceramics and minerals. Diffuse X-ray scattering from single crystals of metamict zircon reveals residual crystallinity even at high fluences (up to 7.2 x 1018 α-decay events/g). The experimental evidence does not suggest that radiation-induced amorphization is a phase transition. The observations are in good agreement with a nonconvergent, heterogeneous model of amorphization in which damage production is a random process of cascade formation and overlap at increasing fluence. Instead of an amorphization transition, the existence of a percolation transition is postulated. At the level of radiation damage near the percolation point, the heterogeneous strain broadening of X-ray diffraction profiles is reduced whereas the particle-size broadening increases. Simultaneously, the macroscopic swelling of the zircon becomes larger than the maximum expansion of the unit-cell parameters. A suitable empirical parameter that characterizes this transition is the flux, Ds, at which the macroscopic expansion is identical to the maximum expansion of the crystallographic unit cell. In zircon, Ds = 3.5·1018 α-decay events/g

  2. Lagrangian phase transitions in nonequilibrium thermodynamic systems

    International Nuclear Information System (INIS)

    In previous papers we have introduced a natural nonequilibrium free energy by considering the functional describing the large fluctuations of stationary nonequilibrium states. While in equilibrium this functional is always convex, in nonequilibrium this is not necessarily the case. We show that in nonequilibrium a new type of singularity can appear that is interpreted as a phase transition. In particular, this phenomenon occurs for the one-dimensional boundary driven weakly asymmetric exclusion process when the drift due to the external field is opposite to that due to the external reservoirs and is strong enough. (letter)

  3. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  4. A Note on Holography and Phase Transitions

    Directory of Open Access Journals (Sweden)

    Marc Bellon

    2011-01-01

    Full Text Available Focusing on the connection between the Landau theory of second-order phase transitions and the holographic approach to critical phenomena, we study diverse field theories in an anti de Sitter black hole background. Through simple analytical approximations, solutions to the equations of motion can be obtained in closed form which give rather good approximations of the results obtained using more involved numerical methods. The agreement we find stems from rather elementary considerations on perturbation of Schrödinger equations.

  5. Deconfining phase transition in lattice QCD

    International Nuclear Information System (INIS)

    We present the first results obtained from the sixteen-processor version of the parallel supercomputer being built at Columbia. The color-deconfining phase transition has been studied fo pure SU(3) gauge theory on lattices with a spatial volume of 163 sites and temporal sizes of 10, 12, and 14 sites. The values found for the critical coupling are 6.07, 6.26, and 6.36, respectively. These results are in agreement with the perturbative predictions of the renormalization group, suggesting that lattice QCD calculations with the parameter β at least as large as 6.07 may approximate the continuum limit

  6. Metal-insulator transition and phase separation in doped AA-stacked graphene bilayers

    OpenAIRE

    Sboychakov, A. O.; Rakhmanov, A. L.; Rozhkov, A. V.; Nori, Franco

    2013-01-01

    We investigate the doping of AA-stacked graphene bilayers. Applying a mean field theory at zero temperature we find that, at half-filling, the bilayer is an antiferromagnetic insulator. Upon doping, the homogeneous phase becomes unstable with respect to phase separation. The separated phases are an undoped antiferromagnetic insulator and a metal with a non-zero concentration of charge carriers. At sufficiently high doping, the insulating areas shrink and disappear, and the system becomes a ho...

  7. Temperature controlled motion of an antiferromagnet- ferromagnet interface within a dopant-graded FeRh epilayer

    OpenAIRE

    Le Graët, C; Charlton, T. R.; Mclaren, M.; Loving, M; Morley, S.A.; Kinane, C.J.; Brydson, R.M.D.; Lewis, L. H.; Langridge, S.; Marrows, C. H.

    2015-01-01

    Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed ...

  8. Phase transitions and structures of methylammonium compounds

    International Nuclear Information System (INIS)

    The structures of CD3ND3Cl, CD3ND3I, CD3ND3BF4, (CD3ND3)2SnCl6, and CD3ND3SnBr3 crystals were studied with time-of-flight type high-resolution powder diffractometers using spallation pulsed neutron sources. The orientations of the CD3ND3 cations, including the positions of the D atoms, were determined at all the room temperature phases and at the low temperature phases of CD3ND3I and (CD3ND3)2SnCl6. The heat capacity experiments were also performed for both protonated and deuterated analogs of these compounds. From both structural and thermodynamic points of view, it was found that the transitions are mainly associated with the order-disorder change of the orientations of the CD3ND3 cations. (author)

  9. Topological phase transitions in superradiance lattices

    CERN Document Server

    Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao

    2015-01-01

    The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...

  10. Phase transitions in fluids and biological systems

    Science.gov (United States)

    Sipos, Maksim

    metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.

  11. Phase transitions in a frustrated XY model with zig-zag couplings

    International Nuclear Information System (INIS)

    We study a new generalized version of the square-lattice frustrated XY model where unequal ferromagnetic and antiferromagnetic couplings are arranged in a zig-zag pattern. The ratio between the couplings ρ can be used to tune the system, continuously, from the isotropic square-lattice to the triangular-lattice frustrated XY model. The model can be physically realized as a Josephson-junction array with two different couplings, in a magnetic field corresponding to half-flux quanta per plaquette. Mean-field approximation, Ginzburg-Landau expansion and finite-size scaling of Monte Carlo simulations are used to study the phase diagram and critical behaviour. Depending on the value of ρ, two separate transitions or a transition line in the universality class of the XY-Ising model, with combined Z2 and U(1) symmetries, takes place. In particular, the phase transitions of the standard square-lattice and triangular-lattice frustrated XY models correspond to two different cuts through the same transition line. Estimates of the chiral (Z2) critical exponents on this transition line deviate significantly from the pure Ising values, consistent with that along the critical line of the XY-Ising model. This suggest that a frustrated XY model or Josephson-junction array with a zig-zag coupling modulation can provide a physical realization of the XY-Ising model critical line. (author). 32 refs, 9 figs

  12. Electronic phase transitions in ultrathin magnetite films

    International Nuclear Information System (INIS)

    Magnetite (Fe3O4) shows singular electronic and magnetic properties, resulting from complex electron–electron and electron–phonon interactions that involve the interplay of charge, orbital and spin degrees of freedom. The Verwey transition is a manifestation of these interactions, with a puzzling connection between the low temperature charge ordered state and the dynamic charge fluctuations still present above the transition temperature. Here we explore how these rich physical phenomena are affected by thin film geometries, particularly focusing on the ultimate size limit defined by thicknesses below the minimum bulk unit cell. On one hand, we address the influence of extended defects, such as surfaces or antiphase domains, on the novel features exhibited by thin films. On the other, we try to isolate the effect of the reduced thickness on the electronic and magnetic properties. We will show that a distinct phase diagram and novel charge distributions emerge under reduced dimensions, while holding the local high magnetic moments. Altogether, thin film geometries offer unique possibilities to understand the complex interplay of short- and long-range orders in the Verwey transition. Furthermore, they arise as interesting candidates for the exploitation of the rich physics of magnetite in devices that demand nanoscale geometries, additionally offering novel functionalities based on their distinct properties with respect to the bulk form. (topical review)

  13. Does sex induce a phase transition?

    Science.gov (United States)

    de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.

    2008-05-01

    We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.

  14. Nuclear binding near a quantum phase transition

    CERN Document Server

    Elhatisari, Serdar; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam

    2016-01-01

    How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. The existence of the nearby first-order ...

  15. New angles on the border of antiferromagnetism in NiS2 and URu2Si2

    International Nuclear Information System (INIS)

    Following the border of antiferromagnetism (AF) to zero temperature is a promising route to unconventional metallic and superconducting phases. Many interesting examples of antiferromagnetic quantum phase transitions can only be reached by pressure tuning. The range of quantitative experimental probes, which can be realised in a high-pressure environment is limited. However, advances have recently been made in neutron scattering, where elliptically shaped neutron guides now increase the beam intensity directed to mm size sample for high pressure studies. This has been demonstrated on the simple antiferromagnet NiS2. Neutron scattering also allows highly accurate measurements of the lattice constant via the Larmor diffraction technique, which proved extremely useful in studying the high-pressure phase diagram of the itinerant helimagnet MnSi. We now combined Larmor diffraction with conventional diffraction measurements to investigate the pressure-temperature phase diagram of URu2Si2 up to 20 kbar. URu2Si2 offers a further spectacular example for the presence of unconventional phases in the vicinity of antiferromagnetism. In this compound, antiferromagnetism is replaced below approximately 5 kbar by the mysterious 'hidden order' (HO) and unconventional superconductivity. Our measurements allow the observation of magnetic order and changes in the a- and c-axis lattice constants across the phase transitions in the same experiment. The results contain clear indications of a first-order transition and strong differences between the AF phase and the HO phase in the coupling to the lattice.

  16. Gravitational waves from the electroweak phase transition

    International Nuclear Information System (INIS)

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10−4 Hz, and give intensities as high as h2ΩGW ∼ 10−8

  17. Aspects of the cosmological electroweak phase transition

    International Nuclear Information System (INIS)

    We study the decay of the metastable symmetric phase in the standard model at finite temperature. For the SU(2)-Higgs model the two wave function correction terms Zφ(φ2,T) and Zχ(φ2,T) of Higgs and Goldstone boson fields are calculated to one-loop order. We find that the derivative expansion of the effective action is reliable for Higgs masses smaller than the W-boson mass. We propose a new procedure to evaluate the decay rate by first integrating out the vector field and the components of the scalar fields with non-zero Matsubara frequencies. The static part of the scalar field is treated in the saddle point approximation. As a by-product we obtain a formula for the decay rate of a homogeneous unstable state. The course of the cosmological electroweak phase transition is evaluated numerically for different Higgs boson masses and non-vanishing magnetic mass of the gauge boson. For Higgs masses above ∼ 60 GeV the latent heat can reheat the system to the critical temperature, which qualitatively changes the nature of the transition. (orig.)

  18. Search for phase transitions changing molecular chirality

    International Nuclear Information System (INIS)

    Since Pasteur discovered in 1848 that biological molecules possess a rotatory power, the origin of the chiral purity in living organisms has been a constant preoccupation in biology, but the problem is not solved yet. In particular, the appeal to weak interactions, a fundamental physical process which is known to violate parity, has not permitted so far to establish any firm relation between parity nonconservation and the complete dissymmetry between mirror image biological molecules. The main difficulty resides in the weakness of the physical forces, and can be overcome only when some amplification process can be proved to be at work. Recently such a mechanism was proposed, which does not seem to ask for any ad hoc new concept: due to the attractive character of the parity violating force in electro-weak interactions, a phase transition leading eventually to enantiometric purity is predicted. Phase transitions at low temperature have already been detected in biological materials, but no signature concerning the parity aspect was obtained. We undertook this year in Lyon a series of experiments to measure the rotatory power of solutions containing organic dissymmetric molecules, in order to observe if it varies with temperature. Our first measures involved cystine, which possesses a high rotatory power. No variation of this quantity was observed down to .6K. Lower temperatures will be attained in a next step. (author). 4 refs

  19. Exotic phase transitions in RERhSn compounds

    International Nuclear Information System (INIS)

    Crystal and magnetic properties of three equiatomic ternary RERhSn compounds (RE = Ce, Nd, Gd) have been studied by means of X-ray diffraction, ac, and dc magnetic susceptibility measurements, as well as using Moessbauer spectroscopy with 119Sn and 155Gd resonances. CeRhSn does not order magnetically down to 2 K while NdRhSn undergoes ferromagnetic transition at TC = 10.3 K and GdRhSn orders antiferromagnetically below TN = 16 K. Our CeRhSn and NdRhSn samples become superconductive below 6.5 K and 6.9 K respectively. (author)

  20. Phase transitions in high excited nuclear matter

    International Nuclear Information System (INIS)

    This work is a study of the mechanism of thermal multifragmentation, which takes place in collisions of light relativistic projectiles with heavy targets. This is a new multibody decay process of very hot nuclei (target spectator) with emission of a number of intermediate mass fragments (IMF, 2 4He and 12C with Au. The main results are the following: - The mean IMF multiplicity () saturates at 2.2 ± 0.2.This fact cannot be rendered by the traditional approach with the intranuclear cascade (INC) followed by Statistical Multifragmentation Models (SMM). Considering the expansion phase between two parts of the calculations, the excitation energies and the residual masses are empirically modified to obtain agreement with the measured IMF- multiplicities. The mean excitation energy is found to be around 500 MeV for the beam energies above 5 GeV. This modified model is denoted as INC + α + SMM where α indicates the preequilibrium processes. - The expansion is driven by the thermal pressure. It is larger for 4He and 12C induced collisions because of higher initial temperature. The kinetic energy spectra of IMF become harder and the expansion flow is visible. The total flow energy of the system is estimated to be around 115 MeV both for the He and the carbon beams. - The analysis of the data reveals very interesting information on the fragment space distribution inside the break-up volume. Heavier IMF are formed predominately in the interior of the fragmenting nucleus possibly due to a density gradient. This conclusion is in contrast to the predictions of the Statistical Multifragmentation Model (SMM). - This study of the multifragmentation using a range of projectiles demonstrates a transition from pure '' thermal decay '' (for p + Au collisions) to disintegration '' completed by '' the onset of a collective flow for the heavier projectiles. Nevertheless, in case of reaction caused by fast protons the decay mechanism should be considered as a thermal multifragmentation

  1. Phase transitions in high density matter

    International Nuclear Information System (INIS)

    When matter is compressed unlimitedly, different phase states such as superfluid, solid and so on appear phase after phase. We can bring forth the essential feature of the colorful phenomena observed in the high-density matter systems (neutron stars and nuclei e.g.) by studying those transition phenomena theoretically. Some recent topics are presented here to transmit the thrilling sense of the theoretical study activities. How to find equation of sate of asymmetric nuclear matter from radioisotope beam experiments? Do rod-like or plate-like nuclei (pasta nuclei) appear in neutron stars? How will it be if superfluid (color superconductor) exists in neutron stars? Those questions are picked up in the text starting with what the high-density matter is. Then the ambiguous property and attractiveness of the many-body problem are described. Finally it is mentioned that the high-density matter provides, in addition to the many-body problem itself, difficult issues of the finite size effect and nonequilibrium problems when the practical system is considered. (S. Funahashi)

  2. QCD PHASE TRANSITIONS-VOLUME 15.

    Energy Technology Data Exchange (ETDEWEB)

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  3. Unconventional exchange bias effect driven by phase separation in basically antiferromagnetic Sm0.1Ca0.6Sr0.3MnO3

    International Nuclear Information System (INIS)

    Highlights: • Sm0.1Ca0.6Sr0.3MnO3 displays negative exchange bias (NEB) effect at low temperatures. • The NEB increases rapidly with increasing Hcool up to 100 Oe, but is almost Hcool independent at H > 0.5 kOe. • The sign of the EB changes with temperature from NEB at T < 40 K to a positive one at T ⩾ 40 K. • The atypical magnetic properties are related to two different interfaces appearing between coexisting magnetic phases. - Abstract: Magnetic investigations, focused on the uncommon behavior of the exchange bias (EB) effect, have been performed for basically antiferromagnetic (AFM) electron doped manganite Sm0.1Ca0.6Sr0.3MnO3. The studied system in the ground state exhibits a heterogeneous spin configuration consisting of the C-type antiferromagnetic phase with the Néel temperature TN-C ≈ 150 K, the G-type AFM phase with the Néel temperature TN-G ≈ 70 K, and a FM-like phase with very weak spontaneous magnetic moment. The phase separation, into two different AFM phases and a FM-like phase at the temperatures below TN-G, leads to unusual magnetic properties, such as: narrowing of magnetic hysteresis loops in field cooling process, unconventional EB effect associated with spontaneous magnetization at temperatures below TN-C, strong magnetic field dependence of the negative exchange bias at fields below 100 Oe turning into practically field independent one for fields above 0.5 kOe, significant shift of EB with temperature with a change of the sign from negative at 10 K to positive above 40 K. The atypical magnetic properties are discussed and related to two different interfaces appearing between coexisting magnetic phases

  4. Scaling theory of topological phase transitions

    Science.gov (United States)

    Chen, Wei

    2016-02-01

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.

  5. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tevzadze, Alexander G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128 (Georgia); Kisslinger, Leonard; Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Brandenburg, Axel, E-mail: aleko@tevza.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  6. Information Dynamics at a Phase Transition

    CERN Document Server

    Sowinski, Damian

    2016-01-01

    We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and processing of information is maximized at criticality.

  7. Subset sum phase transitions and data compression

    CERN Document Server

    Merhav, Neri

    2011-01-01

    We propose a rigorous analysis approach for the subset sum problem in the context of lossless data compression, where the phase transition of the subset sum problem is directly related to the passage between ambiguous and non-ambiguous decompression, for a compression scheme that is based on specifying the sequence composition. The proposed analysis lends itself to straightforward extensions in several directions of interest, including non-binary alphabets, incorporation of side information at the decoder (Slepian-Wolf coding), and coding schemes based on multiple subset sums. It is also demonstrated that the proposed technique can be used to analyze the critical behavior in a more involved situation where the sequence composition is not specified by the encoder.

  8. Scaling theory of topological phase transitions.

    Science.gov (United States)

    Chen, Wei

    2016-02-10

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined. PMID:26790004

  9. Phase Transitions in Networks of Memristive Elements

    Science.gov (United States)

    Sheldon, Forrest; di Ventra, Massimiliano

    The memory features of memristive elements (resistors with memory), analogous to those found in biological synapses, have spurred the development of neuromorphic systems based on them (see, e.g.,). In turn, this requires a fundamental understanding of the collective dynamics of networks of memristive systems. Here, we study an experimentally-inspired model of disordered memristive networks in the limit of a slowly ramped voltage and show through simulations that these networks undergo a first-order phase transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON/OFF ratio. We provide also a mean-field theory that reproduces many features of the transition and particularly examine the role of boundary conditions and current- vs. voltage-controlled networks. The dynamics of the mean-field theory suggest a distribution of conductance jumps which may be accessible experimentally. We finally discuss the ability of these networks to support massively-parallel computation. Work supported in part by the Center for Memory and Recording Research at UCSD.

  10. The Deconfinement Phase Transition in the Interior of Neutron Stars

    CERN Document Server

    Zhou, Xia

    2010-01-01

    The decon?nement phase transition which happens in the interior of neutron stars are investigated. Coupled with the spin evolution of the stars, the effect of entropy production and deconfinement heat generation during the deconfinement phase transition in the mixed phase of the neutron stars are discussed. The entropy production of deconfinement phase transition can be act as a signature of phase transition, but less important and does not significantly change the thermal evolution of neutron stars. The deconfinement heat can change the thermal evolution of neutron star distinctly.

  11. Survey of CRISM Transition Phase Observations

    Science.gov (United States)

    Seelos, F. P.; Murchie, S. L.; Choo, T. H.; McGovern, J. A.

    2006-12-01

    The Mars Reconnaissance Orbiter (MRO) transition phase extends from the end of aerobraking (08/30/06) to the start of the Primary Science Phase (PSP) (11/08/2006). Within this timeframe, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) will acquire Mars scene observations in association with the deployment of the telescope cover (09/27/06) and during the operational checkout of the full science payload (09/29/06 - 10/05/06). The CRISM cover opening sequence includes scene observations that will be used to verify deployment and to validate the on-orbit instrument wavelength calibration. The limited cover opening observation set consists of: 1. A hyperspectral nadir scan acquired as the cover is deployed (first light) 2. A single targeted (gimbaled) hyperspectral observation in the northern plains 3. A restricted duration nadir multispectral strip The high level objectives for the science payload checkout are to obtain observations in support of in-flight wavelength, radiometric, and geometric instrument calibration, to acquire data that will contribute to the development of a first-order hyperspectral atmospheric correction, and to exercise numerous spacecraft and instrument observing modes and strategies that will be employed during PSP. The science payload checkout also enables a unique collaboration between the Mars Express OMEGA and CRISM teams, with both spectrometers slated to observe common target locations with a minimal time offset for the purpose of instrument cross-calibration. The priority CRISM observations for the payload checkout include: 1. Multispectral nadir and hyperspectral off-nadir targeted observations in support of the cross-calibration experiment with OMEGA 2. Terminator-to-terminator multispectral data acquisition demonstrating the strategy that will be used to construct the global multispectral survey map 3. Terminator-to-terminator atmospheric emission phase function (EPF) data acquisition demonstrating the observation

  12. Percolation properties of the antiferromagnetic Blume-Capel model in the presence of a magnetic field

    Science.gov (United States)

    Pawłowski, G.

    2009-04-01

    The problem of order-order and order-disorder transitions in the system described by the 2D antiferromagnetic Blume-Capel model in the presence of a magnetic field is studied by the Wang and Landau flat-histogram simulation method and by the classical Monte Carlo. Anomalous thermodynamic characteristics in low temperatures indicate different type orderings in finite temperatures. The existence of pure antiferromagnetic phases as well as mixed state is shown by detailed phenomenological analysis of the system. The border lines on the phase diagram between various orderings are determined by the complementary microscopic study of the percolation problem for c(2×2) elementary structures of antiferromagnetic ordered phases. This new approach has also shown a full agreement between the percolation threshold for the cluster of mixed phase and the critical temperature of the ordered system.

  13. Studies on magnetic-field-induced first-order transitions

    Indian Academy of Sciences (India)

    P Chaddah

    2006-07-01

    We shall discuss magnetization and transport measurements in materials exhibiting a broad first-order transition. The phase transitions would be caused by varying magnetic field as well as temperature, and we concentrate on ferro- to antiferromagnetic transitions in magnetic materials. We distinguish between metastable supercooled phases and metastable glassy phase.

  14. Moessbauer investigation of magnetic and structural phase transitions in Fe{sub 1+x}Te

    Energy Technology Data Exchange (ETDEWEB)

    Materne, Philipp; Doerr, Mathias; Goltz, Til; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Coz, Cevriye; Roessler, Sahana; Wirth, Steffen; Schwarz, Ulrich [Max Planck Institute for Chemical Physics of Solids, Noethnizer Strasse 40, 01187, Dresden (Germany); Roessler, Ulrich K. [IFW Dresden, Postfach 270016, 01171 Dresden (Germany)

    2012-07-01

    Fe{sub 1+x}Te, the antiferromagnetic parent compound of the Fe-chalcogenide superconductors, displays separated magnetic (T{sub N}) and structural (T{sub s}) transitions with T{sub N} > T{sub s} for x > 0.12. Such behavior, namely the magnetic transition preceeding the structural transition upon cooling, is uncommon for the parent systems of pnictide superconductors. We performed Moessbauer spectroscopy on samples with two representative levels of iron excess: (i) Fe{sub 1.06}Te with simultaneous magnetic and structural transitions at T{sub N} = T{sub s} =69 K and (ii) Fe{sub 1.13}Te with separated transitions at T{sub N} = 57 K followed by T{sub s} =46 K. Moessbauer data, analyzed by taking into account two different Fe-sites clearly, display a precursor magnetic state which is only present in Fe{sub 1.13}Te. Further, a complex magnetic phase has been observed in the temperature range 75 K >or similar T >or similar 40 K in Fe{sub 1.13}Te. We discuss our Moessbauer results in the context of recently published thermodynamic and neutron scattering data on Fe{sub 1+x}Te.

  15. Competition between Magnetic and Structural Transition in CrN

    OpenAIRE

    Filippetti, A.; Pickett, W. E.; Klein, B. M.

    1998-01-01

    CrN is observed to undergo a paramagnetic to antiferromagnetic transition accompanied by a shear distortion from cubic NaCl-type to orthorhombic structure. Our first-principle plane wave and ultrasoft pseudopotential calculations confirm that the distorted antiferromagnetic phase with spin configuration arranged in double ferromagnetic sheets along [110] is the most stable. Antiferromagnetic ordering leads to a large depletion of states around Fermi level, but it does not open a gap. Simultan...

  16. Towards the nuclear matter - quark matter phase transition

    International Nuclear Information System (INIS)

    The conjectured first order phase transition from cold nuclear to cold quark matter is considered. It is found that non-perturbative effects due to instantons may have a 'smoothing-out' effect on the transition. (author)

  17. Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings

    Institute of Scientific and Technical Information of China (English)

    熊永臣; 王为忠; 杨俊涛; 黄海铭

    2015-01-01

    The quantum phase transition and the electronic transport in triangular quantum dot system are investigated using the numerical renormalization group method. We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t . For small t , three dots form a local spin doublet. As t increases, due to the competition between V and t , there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet. When t is absent, the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage. While for sufficient t , the antiferromagnetic spin correlation between dots is enhanced, and the conductance is strongly suppressed for the bonding state is almost doubly occupied.

  18. Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings

    International Nuclear Information System (INIS)

    The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method. We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t. For small t, three dots form a local spin doublet. As t increases, due to the competition between V and t, there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet. When t is absent, the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage. While for sufficient t, the antiferromagnetic spin correlation between dots is enhanced, and the conductance is strongly suppressed for the bonding state is almost doubly occupied. (paper)

  19. Diffusion-limited kinetics of the antiferromagnetic to ferrimagnetic λ-transition in Fe1-xS

    Science.gov (United States)

    Herbert, F. William; Krishnamoorthy, Aravind; Yildiz, Bilge; Van Vliet, Krystyn J.

    2015-03-01

    Fe1-xS (0.08 ≤ x ≤ 0.11) exhibits a simultaneous magneto-structural "λ-transition" at approximately 200 °C. Time-dependent magnetization measurements demonstrate the λ-transition can be accurately modeled by a stretched exponential function, consistent with a nucleation-free, continuous reordering of the vacancy-bearing sublattice. The experimental result is supported by kinetic Monte Carlo simulations that confirm the activation energy for the transition to be 1.1 ± 0.1 eV—representing the iron vacancy migration energy in ordered Fe1-xS. A mechanistic understanding of the λ-transition enables potential functional uses of Fe1-xS such as thermally activated magnetic memory, switches, or storage.

  20. Quantum phase transitions in Bose-Fermi systems

    International Nuclear Information System (INIS)

    Research highlights: → We study quantum phase transitions in a system of N bosons and a single-j fermion. → Classical order parameters and correlation diagrams of quantum levels are determined. → The odd fermion strongly influences the location and nature of the phase transition. → Experimental evidence for the U(5)-SU(3) transition in odd-even nuclei is presented. - Abstract: Quantum phase transitions in a system of N bosons with angular momentum L = 0, 2 (s, d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  1. Soliton Confinement and the Excitation Spectrum of Spin-Peierls Antiferromagnets

    OpenAIRE

    Affleck, Ian

    1997-01-01

    The excitation spectrum of spin-Peierls antiferromagnets is discussed taking into acount phonon dynamics but treating inter-chain elastic couplings in mean field theory. This gives a ladder of soliton -anti-soliton boundstates, with no soliton continuum, until soliton deconfinement takes place at a transition into a non-dimerized phase.

  2. Hall effect across the quantum phase transition of CeCu{sub 6-x}Au{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Bartolf, H. [Physikalisches Institut, Universitaet Karlsruhe, Wolfgang-Gaede-St. 1, D-76128 Karlsruhe (Germany); Pfleiderer, C. [Physikalisches Institut, Universitaet Karlsruhe, Wolfgang-Gaede-St. 1, D-76128 Karlsruhe (Germany); Forschungszentrum Karlsruhe, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Stockert, O. [Max-Planck-Institut fuer chemische Physik fester Stoffe, D-01187 Dresden (Germany); Vojta, M. [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128 Karlsruhe (Germany); Loehneysen, H. von [Physikalisches Institut, Universitaet Karlsruhe, Wolfgang-Gaede-St. 1, D-76128 Karlsruhe (Germany) and Forschungszentrum Karlsruhe, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany)]. E-mail: h.vl@phys.uni-karlsruhe.de

    2005-04-30

    While CeCu{sub 6} is a Pauli-paramagnetic heavy-fermion (HF) system, Au doping introduces long-range incommensurate antiferromagnetism for x>x{sub c}{approx}0.1. At the critical concentration x{sub c}, the system experiences a quantum phase transition (QPT). Here, both unusual magnetic fluctuations, studied by inelastic neutron scattering, and non-Fermi-liquid behavior, i.e. to anomalous low-temperature thermodynamic and transport properties have been observed. We report on Hall effect measurements that probe the electronic structure of heavy fermions across the critical concentration x{sub c} of the QPT.

  3. Rare region effects at classical, quantum and nonequilibrium phase transitions

    International Nuclear Information System (INIS)

    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process. (topical review)

  4. Rare region effects at classical, quantum and nonequilibrium phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Vojta, Thomas [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2006-06-02

    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process. (topical review)

  5. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  6. Tunable spin selective transport and quantum phase transition in parallel double dot system

    Science.gov (United States)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao

    2016-02-01

    We study theoretically the spin selective transport and the quantum phase transition (QPT) in a double dot device by means of the numerical renormalization group technique. When the gate voltage ε is in the Kondo regime and the interdot hopping t is large enough, a first order QPT between local spin singlet and Sz=1 of the triplet is observed as the magnetic field B increases. Beyond the Kondo regime, the QPTs depend closely on ε and t, and perfect spin filter is found, where the effect of spin filtering could easily be manipulated by tuning external parameters. We show that the interplay between the Zeeman effect and the antiferromagnetic interdot hopping, and occupancy switching are responsible for the QPT and the spin selective transport.

  7. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    OpenAIRE

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can h...

  8. Gravitational waves from global second order phase transitions

    International Nuclear Information System (INIS)

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation

  9. Emergent Geometric Hamiltonian and Insulator-Superfluid Phase Transitions

    OpenAIRE

    Zhou, Fei

    2005-01-01

    I argue that certain bosonic insulator-superfluid phase transitions as an interaction constant varies are driven by emergent geometric properties of insulating states. The {\\em renormalized} chemical potential and distribution of disordered bosons define the geometric aspect of an effective low energy Hamiltonian which I employ to study various resonating states and quantum phase transitions. In a mean field approximation, I also demonstrate that the quantum phase transitions are in the unive...

  10. Quantum phase transition and entanglement in Li atom system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.

  11. Primordial Magnetic Fields from Cosmological First Order Phase Transitions

    OpenAIRE

    Sigl, Guenter; Olinto, Angela; Jedamzik, Karsten

    1996-01-01

    We give an improved estimate of primordial magnetic fields generated during cosmological first order phase transitions. We examine the charge distribution at the nucleated bubble wall and its dynamics. We consider instabilities on the bubble walls developing during the phase transition. It is found that damping of these instabilities due to viscosity and heat conductivity caused by particle diffusion can be important in the QCD phase transition, but is probably negligible in the electroweak t...

  12. Phase-separation transitions in asymmetric lipid bilayers

    OpenAIRE

    Shimobayashi, Shunsuke F.; Ichikawa, Masatoshi; Taniguchi, Takashi

    2015-01-01

    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically co...

  13. Quantum phase transitions[87.15.By Structure and bonding;

    Energy Technology Data Exchange (ETDEWEB)

    Vojta, Matthias [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, Postfach 6980, D-76128 Karlsruhe (Germany)

    2003-12-01

    In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behaviour of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions is boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed at bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview on a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics.

  14. Upper critical fields of superconductor-antiferromagnet superlattices

    International Nuclear Information System (INIS)

    Nucleation of the superconducting phase in proximity coupled superconductor-antiferromagnetic (SC/AF) multilayers is studied theoretically. Assuming that both superconducting and antiferromagnetic metals are dirty the superconducting transition temperature, Tc, and upper critical fields, Hc2parallel(T) and Hc2perpendicular(T), as functions from the system parameters have been calculated. Comparison of the results for the SC/AF structures and for the SC/ferromagnetic multilayers shows that the values of the Tc, Hc2parallel(T) and Hc2perpendicular(T) are more sensitive to the ferromagnetic exchange field than to the antiferromagnetic one. The main difference in the values of the critical fields is obtained for the structures formed by thin superconducting layers. The finite effect on the superconducting properties of the multilayers does not depend on the strength of the magnetism only, but on the scattering mechanism of the electrons at the interfaces too. The advantage of the antiferromagnetic interaction for nucleation of the SC phase will be lost if nearly all Cooper pairs are destroyed due to the interface scattering

  15. Phase transition of holographic entanglement entropy in massive gravity

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2016-05-01

    Full Text Available The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy–temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy–temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  16. Phase transition of holographic entanglement entropy in massive gravity

    Science.gov (United States)

    Zeng, Xiao-Xiong; Zhang, Hongbao; Li, Li-Fang

    2016-05-01

    The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy-temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy-temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  17. Phase transition of holographic entanglement entropy in massive gravity

    CERN Document Server

    Zeng, Xiao-Xiong; Li, Li-Fang

    2015-01-01

    The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculate the minimal surface area for a black hole and black brane respectively. In the entanglement entropy$-$temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy$-$temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  18. Nonlinear piezoelectric coefficients of ferroelectrics in the phase transition region

    Energy Technology Data Exchange (ETDEWEB)

    Iushin, N.K.; Smirnov, S.I.; Turovets, A.G.; Linnik, V.G.; Agishev, B.A.

    1987-03-01

    Changes in the nonlinear piezoelectric coefficients in ferroelectrics in the phase transition region are investigated experimentally using triglycine sulfate, lead germanate, potassium-lithium tantalate, and cadmium pyroniobate crystals, characterized by phase transitions of the second kind, and also gadolinium and terbium molybdate crystals, characterized by a ferroelectric phase transition of the first kind. In the crystals studied, a significant increase in nonlinear piezoelectric coefficients is observed near the phase transition temperature, which makes these crystals attractive materials for use as the elements of nonlinear acoustoelectronic instruments. 9 references.

  19. Excited state quantum phase transitions in many-body systems

    International Nuclear Information System (INIS)

    Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions

  20. Raman study of thermochromic phase transition in tungsten trioxide nanowires

    Science.gov (United States)

    Lu, Dong Yu; Chen, Jian; Chen, Huan Jun; Gong, Li; Deng, Shao Zhi; Xu, Ning Sheng; Liu, Yu Long

    2007-01-01

    Tungsten trioxide (WO3) nanowires were synthesized by thermal evaporation of tungsten powder in two steps: tungsten suboxide (WO3-x) nanowires were synthesized, and then oxidized in O2 ambient and transformed into WO3 nanowires. Raman spectroscopy was applied to study the thermochromic phase transition of one-dimensional WO3 nanowires. From the temperature dependence of the characteristic mode at 33cm-1 in WO3, the phase transition temperature was determined. It was found that the phase transition of WO3 nanowires was reversible and the phase transition temperatures were even lower than that of WO3 nanopowder.

  1. Mesoscale modeling of phase transition dynamics of thermoresponsive polymers

    CERN Document Server

    Li, Zhen; Li, Xuejin; Karniadakis, George Em

    2015-01-01

    We present a non-isothermal mesoscopic model for investigation of the phase transition dynamics of thermoresponsive polymers. Since this model conserves energy in the simulations, it is able to correctly capture not only the transient behavior of polymer precipitation from solvent, but also the energy variation associated with the phase transition process. Simulations provide dynamic details of the thermally induced phase transition and confirm two different mechanisms dominating the phase transition dynamics. A shift of endothermic peak with concentration is observed and the underlying mechanism is explored.

  2. An investigation of phase transitions in solid methane and deuterated derivatives to pressures of 3 kbar

    International Nuclear Information System (INIS)

    The first part of this thesis is an experimental investigation of the interaction responsible for the I-II transition and the second part comprises three theoretical studies of several of the properties of phase I and II. The first chapter of part I, is a general introduction to a thermodynamic treatment of the isotope effect in an orientational phase transition. The thermodynamic approach yields a corresponding state model for the phase diagrams of the five isotopes of methane (CH4, CHD3, CH2D2, CH3D and CD4). In the remaining two chapters of part I, the corresponding state relation mentioned above is applied to the I-II transition of methane in order to obtain an experimental value for the effective exponent n of the dependence on intermolecular separation of the ordering anisotropic interaction. Part II starts with a derivation of a quasi-classical approximation to the statistical density matrix of a free spherical top. While the orientational system is treated classically, the consequences of the other characteristic of the methane molecules are considered, i.e. the high approximately odd symmetry of the molecule (the octupole field in phase II is odd under spatial inversion). It is argued that the renormalization group analysis of critical phenomena in certain highly complicated antiferromagnetic systems may be equally well applied to the I-II transition in methane. Finally, the study of the quantum effect in phase II is resumed. The spin lattice relaxation time at very low temperature is calculated from first principles using an orientational dynamical process of purely quantum-mechanical nature. (Auth.)

  3. Ultrafast measurements of the magnetic and structural phase transition of FeRh in the extreme ultraviolet range

    Science.gov (United States)

    Zusin, Dmitriy; Grychtol, Patrik; Turgut, Emrah; Kapteyn, Henry; Murnane, Margaret; Knut, Ronny; Shaw, Justin; Nembach, Hans; Silva, Thomas; Ceballos, Alejandro; Bordel, Catherine; Fischer, Peter; Hellman, Frances

    2014-03-01

    The temperature dependent transition from the anti-ferromagnetic to the ferromagnetic phase in FeRh is accompanied by a modification of its crystal lattice. In spite of extensive investigations, the interplay between the magnetic and the structural transition is still a matter of strong debate. A better understanding of the phase transition mechanism(s) is important, since the transition can be induced by femtosecond laser pulses and does not seem to be limited by heat transfer, as is the case in magnetic phase transitions that occur on longer (nanosecond) time scales. In this work, we use extreme ultraviolet radiation generated by a tabletop high harmonics source to perform element-selective investigations of the temperature-dependent magneto-optical response of a thin film FeRh sample. We study the optically induced phase transition using two ultrafast pump-probe spectroscopy approaches: by monitoring the time-resolved transversal magneto-optical Kerr effect (T-MOKE) and the transient change in reflectivity. P.F. acknowledges support from BES MSD DOE # DE-AC02-05-CH11231 and JILA from DOE # DE-FG02-09ER4665.

  4. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  5. Ultrafast dynamics of the magnetic phase transition on FeRh

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Ilie [Institut fuer Experimentelle Physik, Universitaet Regensburg (Germany); BESSY GmbH, Berlin (Germany); Weber, Alexander; Ramm, Paul; Back, Christian [Institut fuer Experimentelle Physik, Universitaet Regensburg (Germany); Stamm, Christian; Kachel, Torsten; Pontius, Niko; Duerr, Hermann [BESSY GmbH, Berlin (Germany); Thiele, Jan [Hitachi Global Storage Technologies, San Jose (United States)

    2007-07-01

    The laser-induced dynamics of the antiferromagnetic (AFM) to ferromagnetic (FM) phase transition of the FeRh alloy is studied by two complementary experimental techniques: the time-resolved magnetooptical Kerr effect (MOKE) and the time-resolved X-ray circular magnetic dichroism (XMCD). The transient MOKE data reveal an ultrafast onset of the FM ordering within 500 fs after femtosecond laser excitation. This result points to an electronically-driven AFM-FM transition since the lattice heating and the resulting lattice expansion evolve on a longer time scale. From the time-resolved XMCD spectra we obtain a similar dynamics for the Fe and Rh magnetic moments with a rise-time of 100 ps, which seems to contradict the dynamic MOKE data. The possible origin of this discrepancy will be discussed in terms of excitation and detection mechanisms in MOKE and XMCD. Due to the large magnetic moment of FeRh established in the FM state, one can use the ultrafast phase transition to trigger a coherent magnetization precession of a thin ferromagnetic film in contact with FeRh. Here, we present first pump-probe MOKE measurements of such a double layer system of CoPd/FeRh, that show two oscillatory components at 60 GHz and 80 GHz.

  6. Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation

    International Nuclear Information System (INIS)

    Highlights: • In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity. • The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity. • For pnictides the antiferromagnetism exists as a result of the nesting condition. • Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. -- Abstract: We consider the Hubbard model in terms of the perturbative diagrammatic approach (UNF⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U>0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UNF≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UNF < 1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one and

  7. Phase transitions in a vortex gas

    CERN Document Server

    Shah, P A

    1994-01-01

    It has been shown recently that the motion of solitons at couplings around a critical coupling can be reduced to the dynamics of particles (the zeros of the Higgs field) on a curved manifold with potential. The curvature gives a velocity dependent force, and the magnitude of the potential is proportional to the distance from a critical coupling. In this paper we apply this approximation to determining the equation of state of a gas of vortices in the Abelian Higgs model. We derive a virial expansion using certain known integrals of the metric, and the second virial coefficient is calculated, determining the behaviour of the gas at low densities. A formula for determining higher order coefficients is given. At low densities and temperatures T \\gg \\l the equation of state is of the Van der Waals form (P+b\\frac{N^{2}}{A^{2}})(A-aN) = NT with a=4\\pi and b=-4.89\\pi\\l where \\l is a measure of the distance from critical coupling. It is found that there is no phase transition in a low density type-II gas, but there i...

  8. Swarms, Phase Transitions, and Collective Intelligence

    CERN Document Server

    Millonas, M M

    1993-01-01

    A spacially extended model of the collective behavior of a large number of locally acting organisms is proposed in which organisms move probabilistically between local cells in space, but with weights dependent on local morphogenetic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding flow of the organisms constitutes the collective behavior of the group. Such models have various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. It is hoped that the present model might serve as a paradigmatic example of a complex cooperative system in nature. In particular swarm models c...

  9. ATLAS Transition Region Upgrade at Phase-1

    CERN Document Server

    Song, H; The ATLAS collaboration

    2014-01-01

    This report presents the L1 Muon trigger transition region (1.0<|ƞ|<1.3) upgrade of ATLAS Detector at phase-1. The high fake trigger rate in the Endcap region 1.0<|ƞ|<2.4 would become a serious problem for the ATLAS L1 Muon trigger system at high luminosity. For the region 1.3<|ƞ|<2.4, covered by the Small Wheel, ATLAS is enhancing the present muon trigger by adding local fake rejection and track angle measurement capabilities. To reduce the rate in the remaining ƞ interval it has been proposed a similar enhancement by adding at the edge of the inner barrel a structure of 3-layers RPCs of a new generation. These RPCs will be based on a thinner gas gap and electrodes with respect to the ATLAS standards, a new high performance Front End, integrating fast TDC capabilities, and a new low profile and light mechanical structure allowing the installation in the tiny space available.This design effectively suppresses fake triggers by making the coincidence with both end-cap and interaction point...

  10. Phase transitions in models of human cooperation

    Science.gov (United States)

    Perc, Matjaž

    2016-08-01

    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  11. Neutron scattering studies of three one-dimensional antiferromagnets

    CERN Document Server

    Kenzelmann, M

    2001-01-01

    observed in the disordered phase of spin-1/2 chains. The magnetic order of the one-dimensional spin-1/2 XY antiferromagnet Cs sub 2 CoCl sub 4 was investigated using neutron diffraction. The magnetic structure has an ordering wave-vector (0, 0.5, 0.5) for T < 217 mK and the magnetic structure is a non-linear structure with the magnetic moments at a small angle to the b axis. Above a field of H = 2.1 T the magnetic order collapses in an apparent first order phase transition, suggesting a transition to a spin-liquid phase. Low-dimensional magnets with low-spin quantum numbers are ideal model systems for investigating strongly interacting macroscopic quantum ground states and their non-linear spin excitations. This thesis describes neutron scattering experiments of three one-dimensional low-spin antiferromagnets where strong quantum fluctuations lead to highly-correlated ground states and unconventional cooperative spin excitations. The excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain CsNi...

  12. The Wilson Flow and the finite temperature phase transition

    OpenAIRE

    Wandelt, Michèle; Knechtli, Francesco; Günther, Michael

    2016-01-01

    We consider the determination of the finite temperature phase transition in the Yang--Mills SU(3) gauge theory. We compute the difference of the spatial and temporal energy density at a physical Wilson flow time. This difference is zero in the confined phase and becomes non zero in the deconfined phase. We locate the phase transition by using a new technique based on an exponential smoothing spline. This method is an alternative to the determination of the phase transition based on the Polyak...

  13. The Wilson Flow and the finite temperature phase transition

    CERN Document Server

    Wandelt, Michèle; Günther, Michael

    2016-01-01

    We consider the determination of the finite temperature phase transition in the Yang--Mills SU(3) gauge theory. We compute the difference of the spatial and temporal energy density at a physical Wilson flow time. This difference is zero in the confined phase and becomes non zero in the deconfined phase. We locate the phase transition by using a new technique based on an exponential smoothing spline. This method is an alternative to the determination of the phase transition based on the Polyakov loop susceptibility and can also be used with dynamical fermions.

  14. Highly birefringent crystal for Raman transitions with phase modulators

    Science.gov (United States)

    Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo

    2016-05-01

    We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.

  15. Van der Waals phase transition in the framework of holography

    CERN Document Server

    Zeng, Xiao-Xiong

    2015-01-01

    Phase structure of the quintessence Reissner-Nordstr\\"{o}m-AdS black hole is probed with the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the similar Van der Waals-like phase transition. To reinforce the conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  16. Structural and Magnetic Phase Transitions in Manganese Arsenide Thin-Films Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Jaeckel, Felix Till

    that the evolution of electrical resistivity in the coexistence regime of alpha- and beta-phase can be understood in terms of a simple model. These measurements allow accurate extraction of the order-parameter "phase fraction" and thus permit us to study the hysteresis of the phase transition in detail. Major features in the hysteresis can be correlated to the ordering observed in the array of alpha- and beta-stripes. As the continuous ferromagnetic film breaks up into isolated stripes of alpha-phase, a hysteresis in the out-of-plane magnetization is detected from measurements of the anomalous Hall effect. The appearance of out-of-plane domains can be understood from simple shape-anisotropy arguments. Remarkably, an anomaly of the Hall effect at low fields persists far into the beta-phase. Signatures of the more elusive beta- to gamma-transition are found in the temperature-dependence of resistivity, the out-of-plane lattice constant, and reflectance difference spectra. The transition temperature is significantly lowered compared to the bulk, consistent with the strained state of the material. The negative temperature coefficient of resistivity, as well as its anisotropic changes, lend support to the idea of an antiferromagnetic order within the beta-phase.

  17. Cosmological Consequences of QCD Phase Transition(s) in Early Universe

    CERN Document Server

    Tawfik, A

    2008-01-01

    We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.

  18. Unconventional phase transitions in a constrained single polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Klushin, L I [Department of Physics, American University of Beirut, PO Box 11-0236, Beirut 1107 2020 (Lebanon); Skvortsov, A M, E-mail: leo@aub.edu.lb, E-mail: astarling@yandex.ru [Chemical-Pharmaceutical Academy, Prof. Popova 14, 197022 St Petersburg (Russian Federation)

    2011-11-25

    Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of {beta}-structure formation, the model of coil-globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid-liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

  19. Pressure-Induced Mott Transition Followed by a 24-K Superconducting Phase in BaFe2S3

    Science.gov (United States)

    Yamauchi, Touru; Hirata, Yasuyuki; Ueda, Yutaka; Ohgushi, Kenya

    2015-12-01

    We performed high-pressure study for a Mott insulator BaFe2S3 , by measuring dc resistivity and ac susceptibility up to 15 GPa. We found that the antiferromagnetic insulating state at the ambient pressure is transformed into a metallic state at the critical pressure, Pc=10 GPa , and the superconductivity with the optimum Tc=24 K emerges above Pc. Furthermore, we found that the metal-insulator transition (Mott transition) boundary terminates at a critical point around 10 GPa and 75 K. The obtained pressure-temperature (P -T ) phase diagram is similar to those of the organic and fullerene compounds; namely, BaFe2S3 is the first inorganic superconductor in the vicinity of bandwidth control type Mott transition.

  20. 77 FR 63410 - SBIR/STTR Phase I to Phase II Transition Benchmarks

    Science.gov (United States)

    2012-10-16

    ... ADMINISTRATION SBIR/STTR Phase I to Phase II Transition Benchmarks AGENCY: U.S. Small Business Administration... Phase I to Phase II Transition Benchmarks. SUMMARY: The Small Business Administration (SBA) is..., Office of Innovation, Small Business Administration, 409 Third Street SW., Washington, DC...

  1. On the theory of phase transitions in polypeptides

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2008-01-01

    We suggest a theoretical method based on the statistical mechanics for treating the alpha-helix <-> random coil transition in polypeptides. This process is considered as a first-order-like phase transition. The developed theory is free of model parameters and is based solely on fundamental physical...... principles. We apply the developed formalism for the description of thermodynamical properties of alanine polypeptides of different length. We analyze the essential thermodynamical properties of the system such as heat capacity, phase transition temperature and latent heat of the phase transition...

  2. Liquid-Gas Phase Transition in Nuclear Equation of State

    CERN Document Server

    Lee, S J

    1997-01-01

    A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.

  3. Multipartite entanglement characterization of a quantum phase transition

    OpenAIRE

    Costantini, G.; Facchi, P.; G. Florio; Pascazio, S.

    2006-01-01

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  4. On the nature of phase transition in solid electrolytes

    International Nuclear Information System (INIS)

    An attempt is made to precisely measure the solid electrolyte RbAg4I5 conductivity in the vicinity of the phase transition at 208 deg K. Polycrystalline samples obtained by common technique have been used as well as single RbAg4I5 crystals grown from the acetone solution of AgI and RbI. The dependence of conductivity on inverse temperature is given for different samples. The phase transition of the single crystals is accompanied by a jump (approximately 12%) of conductivity. This transfer is reversible, since no hysteresis is found in the +-0.3 deg K vicinity of the phase transition temperature. Polycrystalline samples display no pronounces jump of conductivity, but the conductivity curve has two bends, i.e. the phase transition is ''diffused''. The activation energy before the transition differs from that after the transition

  5. Pressure-induced phase transitions and metallization in VO2

    Science.gov (United States)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  6. Magnetic phase transitions and entropy change in layered NdMn1.7Cr0.3Si2

    International Nuclear Information System (INIS)

    A giant magnetocaloric effect has been observed around the Curie temperature, TC ∼ 42 K, in NdMn1.7Cr0.3Si2 with no discernible thermal and magnetic hysteresis losses. Below 400 K, three magnetic phase transitions take place around 380 K, 320 K and 42 K. Detailed high resolution synchrotron and neutron powder diffraction (10–400 K) confirmed the magnetic transitions and phases as follows: TNintra ∼ 380 K denotes the transition from paramagnetism to intralayer antiferromagnetism (AFl), TNinter ∼ 320 K represents the transition from the AFl structure to the canted antiferromagnetic spin structure (AFmc), while TC ∼ 42 K denotes the first order magnetic transition from AFmc to canted ferromagnetism (Fmc + F(Nd)) due to ordering of the Mn and Nd sub-lattices. The maximum values of the magnetic entropy change and the adiabatic temperature change, around TC for a field change of 5 T are evaluated to be −ΔSMmax ∼ 15.9 J kg−1 K−1 and ΔTadmax ∼ 5 K, respectively. The first order magnetic transition associated with the low levels of hysteresis losses (thermal 1.7Cr0.3Si2 offers potential as a candidate for magnetic refrigerator applications in the temperature region below 45 K

  7. Phase transitions and domain structures in multiferroics

    Science.gov (United States)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  8. High pressure phase transitions for CdSe

    Indian Academy of Sciences (India)

    Bo Kong; Ti-Xian Zeng; Zhu-Wen Zhou; De-Liang Chen; Xiao-Wei Sun

    2014-05-01

    The structure and pressure-induced phase transitions for CdSe are investigated using first-principles calculations. The pressure-induced phase transition sequence WZ/ZB $\\to$ Rs $\\to$ $\\to$ CsCl for CdSe is drawn reasonably for the fist time, the corresponding transition pressures are 3.8, 29 and 107 GPa, respectively and the intermediate states between the structure and the CsCl structure should exist.

  9. Antiferromagnetic order and spin glass behavior in Dy{sub 2}CuIn{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Siouris, I.M., E-mail: jsiou@pme.duth.gr [Democritus University of Thrace (DUTH), Production and Management Engineering Department, Materials Laboratory, 67100 Xanthi (Greece); Kremer, R.K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Hoelzel, M. [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), 85748 Garching (Germany)

    2011-11-15

    The magnetic properties of the intermetallic compound Dy{sub 2}CuIn{sub 3} have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at T{sub N}=19.5 K and an additional frequency dependent transition at T{sub ds}{approx}9 K. Neutron diffraction studies confirm the ordered transition at 19.5{+-}1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment {mu}=2.63(4){mu}{sub B}/Dy{sup 3+} parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions. - Highlights: > Dy{sub 2}CuIn{sub 3} is characterized by the dominance of antiferromagnetic (AF) interactions. > Geometric frustration and crystal field effects prevent the formation of the full magnetic moment on the Dy ions. > Two magnetic regimes are recognized: an AF state and a mixed AF-glassy state. > The antiferromagnetic structure of the compound has been determined.

  10. Magnetic phase transitions in R2Ni3Si5

    International Nuclear Information System (INIS)

    Neutron diffraction has been used to investigate the magnetic and crystal structures in R2Ni3Si5 (R = Pr, Nd, Tb, Dy, Ho). Our high-resolution data indicate that this system crystallizes in the Ibam space group. Pr orders antiferromagnetically at TN =8.8 K, with a magnetic unit cell that is double the chemical unit cell along the b direction. The magnetic and chemical unit cells are the same for the Nd spins, which order at 9.6 K. Tb first orders with an incommensurately modulated structure at 19 K, and then changes to a commensurate structure at 12.2 K. An incommensurate structure is also observed for Dy, which orders at 9 K, with a lock-in transition at ∝4 K. The Ho system has an incommensurate structure with an ordering temperature of 6.9 K. (orig.)

  11. Phase transition of Bose—Einstein condensate under decoherence

    International Nuclear Information System (INIS)

    The effect of decoherence on the phase transition of a Bose—Einstein condensate in a symmetric double-well potential is determined by the mean atom number difference. It still has two phases, the tunneling phase and the self-trapping phase, even under decoherence. The density matrix and the operator fidelity also show very different behaviors in the two phases. This suggests that operator fidelity can be used to characterize the phase transition of this Bose—Einstein condensate model, even under decoherence. (condensed matter: structural, mechanical, and thermal properties)

  12. Pressure-induced phase transitions and metallization in VO2

    OpenAIRE

    Bai, Ligang; Li, Quan; Corr, Serena A; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-01-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M1,P21/c) and the high-temperature rutile phase (R,P42/mnm) of VO2 undergo phase transitions to a distorted M1 monoclinic phase (M1′,P21/c) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, Pnnm) abo...

  13. Diamagnetic phase transitions in two-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)

    2014-11-15

    A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.

  14. Phase transition and PTCR effect in erbium doped BT ceramics

    International Nuclear Information System (INIS)

    Highlights: ► Erbium influence the dielectric response BaTiO3 ceramics. ► Features of the phase transition are not explained by phenomenological models. ► Relaxation parameters do not show influence on ferroelectric–paraelectric phase transition. ► Dielectric anomaly on BET phase transition is associated with the PTCR effect. - Abstract: In this work the dielectric behaviour and main features of the phase transition of BaTiO3 and Ba0.99Er0.01TiO3 ceramics were carefully investigated. The temperature and frequency dependences of the dielectric properties of erbium doped BaTiO3 ceramics were measured in the 25–225 °C and 100 Hz to 10 MHz ranges, respectively. From this study, a dielectric anomaly in the ferroelectric–paraelectric phase transition of the Ba0.99Er0.01TiO3 ceramic was observed. The features of the samples phase transition were analysed by using Curie–Weiss, Santos–Eiras’ and order parameter local phenomenological models. In the BaTiO3 system, all models showed a normal phase transition, while was not possible to establish the character of the phase transition in the Ba0.99Er0.01TiO3 system. The relaxation parameters of conductive processes for the study ferroelectric materials, analysed in the time domain, did not show any influence on the ferroelectric–paraelectric phase transition. Finally, it was demonstrated that the anomaly observed on the phase transition of the erbium doped BaTiO3 ceramics is associated with the processes that results in the PTCR effect.

  15. Phase transition and PTCR effect in erbium doped BT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Leyet, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Instituto Federal de Educacao Ciencia e Tecnologia (IFAM), Av. 7 de Setembro 1975, Centro, Manaus 69020-120, AM (Brazil); Pena, R.; Zulueta, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Guerrero, F. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Anglada-Rivera, J. [CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Romaguera, Y. [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Perez de la Cruz, J., E-mail: jcruz@inescporto.pt [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer Erbium influence the dielectric response BaTiO{sub 3} ceramics. Black-Right-Pointing-Pointer Features of the phase transition are not explained by phenomenological models. Black-Right-Pointing-Pointer Relaxation parameters do not show influence on ferroelectric-paraelectric phase transition. Black-Right-Pointing-Pointer Dielectric anomaly on BET phase transition is associated with the PTCR effect. - Abstract: In this work the dielectric behaviour and main features of the phase transition of BaTiO{sub 3} and Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramics were carefully investigated. The temperature and frequency dependences of the dielectric properties of erbium doped BaTiO{sub 3} ceramics were measured in the 25-225 Degree-Sign C and 100 Hz to 10 MHz ranges, respectively. From this study, a dielectric anomaly in the ferroelectric-paraelectric phase transition of the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramic was observed. The features of the samples phase transition were analysed by using Curie-Weiss, Santos-Eiras' and order parameter local phenomenological models. In the BaTiO{sub 3} system, all models showed a normal phase transition, while was not possible to establish the character of the phase transition in the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} system. The relaxation parameters of conductive processes for the study ferroelectric materials, analysed in the time domain, did not show any influence on the ferroelectric-paraelectric phase transition. Finally, it was demonstrated that the anomaly observed on the phase transition of the erbium doped BaTiO{sub 3} ceramics is associated with the processes that results in the PTCR effect.

  16. Bilayer Quantum Hall Systems: Spin-Pseudospin Symmetry Breaking and Quantum Phase Transitions

    OpenAIRE

    Sarma, Sankar Das; Demler, Eugene

    2000-01-01

    We discuss and review recent advances in our understaning of quantum Hall systems where additional quantum numbers associated with spin and/or layer (pseudospin) indices play crucial roles in creating exotic quantum phases. Among the novel quantum phases we discuss are the recently discovered canted antiferromagnetic phase, the spontaneous interlayer coherent phase, and various spin Bose glass phases. We describe the theoretical models used in studying these novel phases and the various exper...

  17. Magnetic study of phase transitions in magnetite

    Czech Academy of Sciences Publication Activity Database

    Švindrych, Z.; Janů, Zdeněk; Hadač, J.

    Praha : MATFYZPRESS, 2007, s. 42-46. ISBN 978-80-7378-025-8. [WDS´07 (Week of Doktoral Students). Praha (CZ), 05.06.2007-08.06.2007] Institutional research plan: CEZ:AV0Z10100520 Keywords : metal-insulator transitions and other electronic transitions * spin glasses and other random magnets * dynamic properties Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Stabilization of dielectric anomaly near the magnetic phase transition in Ca2+ doped BiFeO3 multifunctional ceramics

    International Nuclear Information System (INIS)

    Highlights: ► Stabilization of hitherto unreported dielectric peak near magnetic transition in Bi1−xCaxFeO3. ► The phenomenon is predominantly due to “skin effect” confined to top few layers of the sample. ► There is enhancement in magneto-electric coupling as a function of dopant concentration. ► New and easy measurement method to show presence of magneto-electric coupling is proposed. -- Abstract: Stabilization of a prominent peak in the variation of dielectric constant in Ca2+ doped BiFeO3 ceramics near the antiferromagnetic to paramagnetic phase transition is reported. Temperature dependent dielectric data also shows perceptible frequency dispersion starting from temperatures well below the Neel temperature. This observation has been explained in terms of “skin effect”. Clear signature of magneto-electric coupling is shown using the P–E loops measurement of magnetically poled samples. The presence of magneto-electric coupling is explained in terms of the modulation of canted spin structure. Using Rietveld refinement of X-ray and neutron data, it is shown that the rhombohedral distortion decreases with increasing Ca2+ content. Analysis of SQUID–VSM magnetic hysteresis data proves the occurrence of structure induced anti-ferromagnetic to weak ferromagnetic transition. Significance of these observations for future applications of divalent doped BiFeO3 ceramics is also discussed

  19. Quantum phase transitions of topological insulators without gap closing.

    Science.gov (United States)

    Rachel, Stephan

    2016-10-12

    We consider two-dimensional Chern insulators and time-reversal invariant topological insulators and discuss the effect of perturbations breaking either particle-number conservation or time-reversal symmetry. The appearance of trivial mass terms is expected to cause quantum phase transitions into trivial phases when such a perturbation overweighs the topological term. These phase transitions are usually associated with a bulk-gap closing. In contrast, the chiral Chern insulator is unaffected by particle-number breaking perturbations. Moreover, the [Formula: see text] topological insulator undergoes phase transitions into topologically trivial phases without bulk-gap closing in the presence of any of such perturbations. In certain cases, these phase transitions can be circumvented and the protection restored by another U(1) symmetry, e.g. due to spin conservation. These findings are discussed in the context of interacting topological insulators. PMID:27530509

  20. In-situ microscopy of the first-order magnetic phase transition in FeRh thin films

    Science.gov (United States)

    Baldasseroni, Chloe

    Simple ferromagnetic (FM) and antiferromagnetic (AF) materials such as Fe and Cr become paramagnetic when heated above some critical temperature, in what is known as a second-order phase transition. Less usual magnetic transitions are found in the magnetic world, for example a first-order magnetic phase transition from AF to FM with increasing temperature. Equiatomic FeRh has been known to exhibit such a transition for over 50 years, with a transition temperature slightly above room temperature. Interest in this material has been renewed in the recent years due to its potential application for heat-assisted magnetic recording, as well as a test system for fundamental studies of the physics of magnetic phase transitions. Similarly to crystallization, this AF-FM transition is expected to proceed by nucleation of magnetic domains but the features of the first-order hysteretic transition have been difficult to study with macroscopic measurements and very few microscopic studies have been performed. In this work, FeRh thin films were synthesized by magnetron sputtering and structurally and magnetically characterized. A membrane-based heating device was designed to enable temperature-dependent microscopy measurements, providing a thermally uniform and well-controlled sample area. Synchrotron x-ray magnetic microscopy was used to study the temperature-driven AF-FM phase transition in epitaxial FeRh thin films in zero field. Using magnetic microscopy with x-ray magnetic circular dichroism, the different stages of nucleation, growth and coalescence of FM domains were observed across the transition and details of the nucleation were identified. The FM phase nucleates into single domain islands and the width of the transition of the individual nuclei upon heating is sharper than that of the macroscopic transition. Using magnetic microscopy with x-ray magnetic linear dichroism, the evolution of the AF phase was studied. Differences in the morphology of AF and FM phases were

  1. Quantum phase transition in field-induced ordering phases of anisotropic Haldane systems

    International Nuclear Information System (INIS)

    Being motivated by the novel phase transition found in the Haldane compound, Ni(C5H14N2)2N3(PF6), we have investigated the field-induced quantum phase transitions in the anisotropic S=1 Haldane system by means of the density matrix renormalization group method. With increasing magnetic fields, in addition to the Haldane to ordered phase transition, the spin-reorientation transition between the ordered phases is predicted to occur in the case where the magnetic field is inclined from the principal axes of the anisotropy. Physical consequences of this transition are discussed in connection with the experimental result

  2. Kinetic arrest induced antiferromagnetic order in hexagonal FeMnP0.75Si0.25 alloy

    International Nuclear Information System (INIS)

    The magnetic state of the FeMnP0.75Si0.25 alloy was investigated by first principles calculations. The coexistence of ferromagnetic and antiferromagnetic phases in FeMnP0.75Si0.25 with the same hexagonal crystal structure was revealed. It was found that kinetic arrest during the transition from the high temperature disordered paramagnetic phase to the low temperature ordered ferromagnetic phase results in the intermediate metastable and partially disordered antiferromagnetic phase. We propose that the ratio of the ferromagnetic and antiferromagnetic phases in the FeMnP0.75Si0.25 sample can be tuned by adjusting the kinetic process of atomic diffusion. The investigations suggest that careful control of the kinetic diffusion process provides another tuning parameter to design candidate magnetocaloric materials

  3. Phase Transitions In M-Theory And F-Theory

    OpenAIRE

    Witten, Edward

    1996-01-01

    Phase transitions are studied in $M$-theory and $F$-theory. In $M$-theory compactification to five dimensions on a Calabi-Yau, there are topology-changing transitions similar to those seen in conformal field theory, but the non-geometrical phases known in conformal field theory are absent. At boundaries of moduli space where such phases might have been expected, the moduli space ends, by a conventional or unconventional physical mechanism. The unconventional mechanisms, which roughly involve ...

  4. Ferroelectric phase transition in monoclinic TlS

    Science.gov (United States)

    Kashida, S.; Nakamura, K.; Katayama, S.

    1992-04-01

    The dielectric property of newly found monoclinic thallium monosulfide (TlS) has been investigated in the temperature range from 285 to 380 K. The dielectric constants show anomalous increases at 3186 and 341.1 K suggesting the occurrence of successive phase transitions. A study of the polarization hysteresis loop shows that this compound is ferroelectric in the room temperature phase. The nature of the phase transitions is probed by calorimetric and X-ray measurements.

  5. Phase transition in the assignment problem for random matrices

    Science.gov (United States)

    Esteve, J. G.; Falceto, F.

    2005-12-01

    We report an analytic and numerical study of a phase transition in a P problem (the assignment problem) that separates two phases whose representatives are the simple matching problem (an easy P problem) and the traveling-salesman problem (a NP-complete problem). Like other phase transitions found in combinatoric problems (K-satisfiability, number partitioning) this can help to understand the nature of the difficulties in solving NP problems an to find more accurate algorithms for them.

  6. Electronic and vibrational Raman spectroscopy of Nd0.5Sr0.5MnO3 through the phase transitions

    Indian Academy of Sciences (India)

    Md Motin Seikh; A K Sood; Chandrabhas Narayana

    2005-01-01

    Raman scattering experiments have been carried out on single crystals of Nd0.5Sr0.5MnO3 as a function of temperature in the range of 320–50 K, covering the paramagnetic insulator–ferromagnetic metal transition at 250 K and the charge-ordering antiferromagnetic transition at 150 K. The diffusive electronic Raman scattering response is seen in the paramagnetic phase which continue to exist even in the ferromagnetic phase, eventually disappearing below 150 K. We understand the existence of diffusive response in the ferromagnetic phase to the coexistence of the different electronic phases. The frequency and linewidth of the phonons across the transitions show significant changes, which cannot be accounted for only by anharmonic interactions.

  7. Micellar structures in lyotropic liquid crystals and phase transitions

    Science.gov (United States)

    Saupe, A.; Xu, S. Y.; Plumley, Sulakshana; Zhu, Y. K.; Photinos, P.

    1991-05-01

    The formation of micellar nematics is discussed with emphasis on the transitions between nematic phases and nematic-smectic transitions. Phase diagrams for MTAB/l-decanol/D,O systems show a direct transition between uniaxial nematics. Electrical conductivity and birefringence measurements on a mixture of sodium decylsulfate. 1-decanol, D,O demonstrate, on the other hand, the existence of a biaxial nemantic range that separates the Uniaxial nematics. On a mixture of cesium perflouroctanoate and H 2O the electrical conductivity and rotational viscosity are used to discuss the relevant features of nematic-lamellar-smectic transitions. The formation of elongated ribbon-like micelles at the nematic-smectic transition is suggested. Transitions between different nematic phases in the MTAB system may be connected with a structural change from long micelles with a fairly circular cross section to similar micelles with a more elliptical cross section.

  8. Possible double magnetic phase transition in Dy5CuPb3

    Science.gov (United States)

    Tran, V. H.; Gulay, L. D.

    2006-03-01

    We have investigated the magnetic and transport properties of Dy5CuPb3 by magnetic susceptibility, electrical resistivity, magnetoresistance and thermoelectric power measurements. The compound crystallises in the hexagonal Hf5CuSn3-type structure (space group P63/mcm) and probably undergoes two successive magnetic transitions at TC=45.0±0.5 K and TN=6.5±0.5 K. The experimental data are indicative of a ferri- and antiferromagnetic types of the transitions, respectively. We attribute the double magnetic phase transition and the reduction of the magnetisation values at low temperatures to associate with the two non-equivalent magnetic sublattices of the Dy ions. We observed a large magnetoresistance value of -24% at temperatures in between TN and TC. The investigated compound has a negative thermoelectric power of -17 μV/K at 300 K. We interpret the overall behaviour of the S(T)-curve to two different mechanisms: magnetic and charge carrier diffusion.

  9. Different scenarios of topological phase transitions in homogeneous neutron matter

    CERN Document Server

    Pankratov, S S; Zverev, M V

    2012-01-01

    We study different scenarios of topological phase transitions in the vicinity of \\pi^0 condensation point in neutron matter. The transitions occur between the Fermi liquid state and a topologically different one with two sheets of the Fermi surface. Two possibilities of a rearrangement of quasiparticle degrees of freedom are shown: the first order topological phase transition and the second order one. The order of the phase transition is found to be strongly dependent on the value of the critical wave vector of the soft \\pi^0 mode. The thermodynamics of the system is also studied. It is shown that the topology of the quasiparticle momentum distribution is mainly determined by the neutron matter density, while the temperature T is essential in a narrow density region. A simple explanation of the first order topological phase transition at T=0 is given.

  10. Primordial Magnetic Fields from Cosmological First Order Phase Transitions

    CERN Document Server

    Sigl, G; Jedamzik, K; Sigl, Guenter; Olinto, Angela; Jedamzik, Karsten

    1996-01-01

    We give an improved estimate of primordial magnetic fields generated during cosmological first order phase transitions. We examine the charge distribution at the nucleated bubble wall and its dynamics. We consider instabilities on the bubble walls developing during the phase transition. It is found that damping of these instabilities due to viscosity and heat conductivity caused by particle diffusion can be important in the QCD phase transition, but is probably negligible in the electroweak transition. We show how such instabilities together with the surface charge densities on bubble walls excite magnetic fields within a certain range of wavelengths. We discuss how these magnetic seed fields may be amplified by MHD effects in the turbulent fluid. The strength and spectrum of the primordial magnetic field at the present time for the cases where this mechanism was operative during the electroweak or the QCD phase transition are estimated. On a 10 Mpc comoving scale, field strengths of the order 10**(-29) G for...

  11. The Electroweak Phase Transition in the Inert Doublet Model

    CERN Document Server

    Blinov, Nikita; Stefaniak, Tim

    2015-01-01

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  12. The electroweak phase transition in the Inert Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, Nikita [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States); Theory Department, TRIUMF,4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Profumo, Stefano; Stefaniak, Tim [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States)

    2015-07-21

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  13. Dynamics of Phase Transitions by Hysteresis Methods I

    CERN Document Server

    Berg, B A; Meyer-Ortmanns, H; Velytsky, A; Berg, Bernd A.; Heller, Urs M.; Meyer-Ortmanns, Hildegard; Velytsky, Alexander

    2004-01-01

    In studies of the QCD deconfining phase transition or crossover by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. Motivated by this, we look at hysteresis methods to study the dynamics of phase transitions. Our systems are temperature driven through the phase transition using updating procedures in the Glauber universality class. Hysteresis calculations are presented for a number of observables, including the (internal) energy, properties of Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d Potts models, which provide a rich collection of phase transitions with a number of rigorously known properties. Comparing with equilibrium configurations we find a scenario where the dynamics of the transition leads to a spinodal decomposition which dominates the statistical properties of the configurations. One may expect an enhancement of low energy gluon production due to spinodal decomposition of the Polyako...

  14. Chern-Simons diffusion rate across different phase transitions

    Science.gov (United States)

    Rougemont, Romulo; Finazzo, Stefano Ivo

    2016-05-01

    We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate ΓCS divided by the product of the entropy density s and temperature T behaves across different kinds of phase transitions in the class of bottom-up nonconformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, ΓCS/s T jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, ΓCS/s T behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. In all the cases, ΓCS/s T increases with decreasing T . The behavior of the Chern-Simons diffusion rate across different phase transitions is expected to play a relevant role for the chiral magnetic effect around the QCD critical end point, which is a second order phase transition point connecting a crossover band to a line of first order phase transition. Our findings in the present work add to the literature the first predictions for the Chern-Simons diffusion rate across second order and crossover transitions in strongly coupled nonconformal, non-Abelian gauge theories.

  15. Ferrofluid nucleus phase transitions in an external uniform magnetic field

    OpenAIRE

    Tanygin, B. M.; Shulyma, S. I.; Kovalenko, V. F.; Petrychuk, M.V.

    2015-01-01

    The phase transition between a massive dense phase and a diluted superparamagnetic phase has been studied by means of a direct molecular dynamics simulation. The equilibrium structures of the ferrofluid aggregate nucleus are obtained for different values of a temperature and an external magnetic field magnitude. An approximate match of experiment and simulation has been shown for the ferrofluid phase diagram coordinates "field-temperature". The provided phase coexistence curve has an opposite...

  16. Structural and magnetic phase transitions in CeCu6 -xTx (T =Ag ,Pd )

    Science.gov (United States)

    Poudel, L.; de la Cruz, C.; Payzant, E. A.; May, A. F.; Koehler, M.; Garlea, V. O.; Taylor, A. E.; Parker, D. S.; Cao, H. B.; McGuire, M. A.; Tian, W.; Matsuda, M.; Jeen, H.; Lee, H. N.; Hong, T.; Calder, S.; Zhou, H. D.; Lumsden, M. D.; Keppens, V.; Mandrus, D.; Christianson, A. D.

    2015-12-01

    The structural and the magnetic properties of CeCu6 -xAgx (0 ≤x ≤0.85 ) and CeCu6 -xPdx (0 ≤x ≤0.4 ) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6 -xAgx and CeCu6 -xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (P n m a ) to a monoclinic (P 21/c ) phase at 240 K. In CeCu6 -xAgx , the structural phase transition temperature (Ts) decreases linearly with Ag concentration and extrapolates to zero at xS ≈0.1 . The structural transition in CeCu6 -xPdx remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6 -xAgx and CeCu6 -xPdx , exhibit a magnetic quantum critical point (QCP), at x ≈0.2 and x ≈0.05 , respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ10 δ2), where δ1˜0.62 ,δ2˜0.25 ,x =0.125 for CeCu6 -xPdx and δ1˜0.64 ,δ2˜0.3 ,x =0.3 for CeCu6 -xAgx . The magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.

  17. Temperature controlled motion of an antiferromagnet- ferromagnet interface within a dopant-graded FeRh epilayer

    Science.gov (United States)

    Le Graët, C.; Charlton, T. R.; McLaren, M.; Loving, M.; Morley, S. A.; Kinane, C. J.; Brydson, R. M. D.; Lewis, L. H.; Langridge, S.; Marrows, C. H.

    2015-04-01

    Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.

  18. Temperature controlled motion of an antiferromagnet- ferromagnet interface within a dopant-graded FeRh epilayer

    Directory of Open Access Journals (Sweden)

    C. Le Graët

    2015-04-01

    Full Text Available Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.

  19. Deviatoric stress-induced phase transitions in diamantane

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Lin, Yu [Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Dahl, Jeremy E. P.; Carlson, Robert M. K. [Stanford Institute for Materials and Energy Science, Stanford, California 94305 (United States); Mao, Wendy L. [Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Science, Stanford, California 94305 (United States); Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-10-21

    The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressure medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.

  20. High-pressure phase transitions - Examples of classical predictability

    Science.gov (United States)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  1. Photothermoelectric (PTE) Versus Photopyroelectric (PPE) Detection of Phase Transitions

    Science.gov (United States)

    Dadarlat, D.; Guilmeau, E.; Hadj Sahraoui, A.; Tudoran, C.; Surducan, V.; Bourgès, C.; Lemoine, P.

    2016-05-01

    The photopyroelectric (PPE) technique is one of the photothermal (PT) methods mostly used for phase transitions investigations. In this paper, we want to compare the PPE results with those obtained using another, recently developed PT method [the photothermoelectric (PTE) calorimetry] for the same purpose of detecting phase transitions. The well-known ferro-paraelectric phase transition of TGS, taking place at a convenient temperature (about 49 {}^{circ }hbox {C}), has been selected for demonstration. A comparison of the two PPE and PTE methods, both in the back detection configuration (in the special case of optically opaque sample and thermally thick regime for both sensors and sample) shows that they are equally suitable for phase transitions detection. Performing a proper calibration, the amplitude and phase of the signals can be used in order to obtain the critical behaviour of all sample's static and dynamic thermal parameters.

  2. Phase-separation transitions in asymmetric lipid bilayers

    CERN Document Server

    Shimobayashi, Shunsuke F; Taniguchi, Takashi

    2015-01-01

    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically confirmed the transitions using the time-dependent Ginzburg-Landau model describing phase separation and the bending elastic membrane, which is quantitatively consistent with experimental results by fixing one free parameter. Our findings suggest that the local spontaneous curvature due to the asymmetric composition plays an essential role in the thermodynamic stabilization of micro-phase separation in lipid bilayers.

  3. Phase transition of pure zirconia under irradiation: A textbook example

    International Nuclear Information System (INIS)

    One of the most important goals in ceramic and materials science is to be able to design materials with specific properties. Irradiation seems to be a powerful tool for the design of advanced ceramics because of its ability to modify over different scales the microstructure of solids. Nowadays, it is clearly proved that irradiation induces order-disorder phase transitions in metallic alloys and in some ceramics. In this paper, we show that a displacive phase transition can also be induced by irradiation. Based on many experimental facts, a microscopic model is proposed to explain the displacive phase transition observed in this material after irradiation. Defects, produced in the oxygen sublattice, induce important strain fields on a nanometric scale. This strain field can be handled as a secondary order parameter within the Landau theory approach, leading to a decrease of the phase transition temperature and thus quenching the high temperature tetragonal phase

  4. Effect of Co and Ni substitution on the two magnetostructural phase transitions in Fe1.12Te

    Science.gov (United States)

    Koz, Cevriye; Rößler, Sahana; Tsirlin, Alexander A.; Zor, Ceren; Armaǧan, Gerçek; Wirth, Steffen; Schwarz, Ulrich

    2016-01-01

    Here we present the results of high-resolution x-ray diffraction experiments along with specific heat, resistivity, and magnetization measurements of chemically well-characterized Fe1.12 -xMxTe (M =Co , Ni) samples. The motivation is to investigate how the two coupled magnetostructural phase transitions in the antiferromagnetic parent compound Fe1.12Te of chalcogenide superconductors can be tuned. While the two-step magnetostructural transition (tetragonal-to-orthorhombic followed by orthorhombic-to-monoclinic) persists in Fe1.10Co0.02Te , only one, tetragonal-to-orthorhombic transition was observed in Fe1.10Ni0.02Te . Upon increasing the Co and Ni substitution, the structural phase transitions and the long-range magnetic order are systematically suppressed without any sign of superconductivity. For high substitution levels (x ≥0.05 ), a spin-glass-like behavior was observed and the low-temperature structure remains tetragonal. From our results, it can be inferred that the electron doping strongly suppresses the magnetostructural phase transitions.

  5. Weakly First Order Cosmological Phase Transitions and Fermion Production

    CERN Document Server

    Gleiser, Marcello; Gleiser, Marcelo; Trodden, Mark

    2001-01-01

    We study weakly first order cosmological phase transitions in finite temperature field theories. Focusing on the standard electroweak theory and its minimal supersymmetric extension, we identify the regimes of Higgs masses for which the phase transition in these models proceeds by significant phase mixing and the coarsening of the subsequent domain network. This dynamics is distinct from that for strongly first order transitions, which proceed by the nucleation and propagation of critical bubbles. We describe how electroweak baryogenesis might take place in these models, explaining how our new picture can relax the sphaleron washout bound of traditional scenarios.

  6. Phase transition of quantum-corrected Schwarzschild black hole

    International Nuclear Information System (INIS)

    We study the thermodynamic phase transition of a quantum-corrected Schwarzschild black hole. The modified metric affects the critical temperature which is slightly less than the conventional one. The space without black holes is not the hot flat space but the hot curved space due to vacuum fluctuations so that there appears a type of Gross-Perry-Yaffe phase transition even for the very small size of black hole, which is impossible for the thermodynamics of the conventional Schwarzschild black hole. We discuss physical consequences of the new phase transition in this framework.

  7. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  8. Theory of Coupled Phase Transitions: Phase Separation and Variation of Order Parameter

    OpenAIRE

    Zhong, Fan

    1998-01-01

    A simplified Ginzburg-Landau theory is presented to study generally a coupling of a first-order phase transition (FOPT) to a second-order phase transition (SOPT). We show analytically that, due to the coupling between the two phase transitions, the SOPT may exhibit a FOPT-like phase separation in which an ordered phase is separated from a disordered one. This phase separation results in a distinct behavior in the variation of the order parameter of the SOPT, namely, it is primarily the propor...

  9. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    Science.gov (United States)

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways. PMID:26367463

  10. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    Science.gov (United States)

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

  11. Effect of dimensionality on vapor-liquid phase transition

    Science.gov (United States)

    Singh, Sudhir Kumar

    2014-04-01

    Dimensionality play significant role on `phase transitions'. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions `phase transition' properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor-liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  12. A strictly hyperbolic equilibrium phase transition model

    Energy Technology Data Exchange (ETDEWEB)

    Allaire, G [Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau (France); Faccanoni, G; Kokh, S. [CEA Saclay, DEN, DANS, DM2S, F-91191 Gif Sur Yvette, (France)

    2007-01-15

    This Note is concerned with the strict hyperbolicity of the compressible Euler equations equipped with an equation of state that describes the thermodynamical equilibrium between the liquid phase and the vapor phase of a fluid. The proof is valid for a very wide class of fluids. The argument only relies on smoothness assumptions and on the classical thermodynamical stability assumptions, that requires a definite negative Hessian matrix for each phase entropy as a function of the specific volume and internal energy. (authors)

  13. Resonating Valence Bond states for low dimensional S=1 antiferromagnets

    Science.gov (United States)

    Liu, Zheng-Xin; Zhou, Yi; Ng, Tai-Kai

    2014-03-01

    We study S = 1 spin liquid states in low dimensions. We show that the resonating-valence-bond (RVB) picture of S = 1 / 2 spin liquid state can be generalized to S = 1 case. For S = 1 system, a many-body singlet (with even site number) can be decomposed into superposition of products of two-body singlets. In other words, the product states of two-body singlets, called the singlet pair states (SPSs), are over complete to span the Hilbert space of many-body singlets. Furthermore, we generalized fermionic representation and the corresponding mean field theory and Gutzwiller projected stats to S = 1 models. We applied our theory to study 1D anti-ferromagnetic bilinear-biquadratic model and show that both the ground states (including the phase transition point) and the excited states can be understood excellently well within the framework. Our method can be applied to 2D S = 1 antiferromagnets.

  14. GGA+U study on phase transition, optoelectronic and magnetic properties of AmO{sub 2} with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bendjedid, A.; Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Baltache, H. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Azam, Sikander; Khan, Saleem Ayaz [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2015-12-15

    In this work, we have investigated the structural, phase transition, optoelectronic and magnetic properties of AmO{sub 2} using the full potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The exchange-correlation potential was treated with the generalized gradient approximation (GGA). Moreover, the GGA+U approximation (where U denotes the Hubbard Coulomb energy U term) is employed to treat the f electrons properly. The structurally stable AmO{sub 2} compound is the Fm3m phase and at a pressure between 40 and 60 GPa underwent a phase transition to the Pnma phase. Our present calculations have considered ferromagnetic and simple antiferromagnetic ground states and the AF state is favored. However, the experimental situation suggests a complex magnetic structure, perhaps involving multipolar ordering. Our band structure calculation with GGA and GGA+U predicted the metallic behavior of AmO{sub 2}; however, with the spin–orbit coupling (SOC) added to the Coulomb energy U term, semiconducting ground states with antiferromagnetism is correctly predicted. The projected density of states from the energy-band structure indicates that the band gap opening is governed by the partially filled Am “5f” state, and the calculated gap is approximately 1.29 eV. Moreover, the optical properties reveal strong response of AmO{sub 2} in the UV region. - Highlights: • AmO{sub 2} is antiferromagnetic and stable in the Fm3m phase under ambient conditions. • It makes structural transition from the Fm3m to the Pnma phase at 55.91 GPa. • Columbic repulsion parameter U correctly predicted the electronic state of AmO{sub 2}. • This compound absorbs strongly in the UV region.

  15. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    The diameter (df) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  16. Phase transitions in K-doped MoO2

    International Nuclear Information System (INIS)

    K0.05MoO2 has been studied by x-ray and neutron diffractometry, electrical resistivity, magnetization, heat capacity, and thermal expansion measurements. The compound displays two phase transitions, a first-order phase transition near room temperature and a second-order transition near 54 K. Below the transition at 54 K, a weak magnetic anomaly is observed and the electrical resistivity is well described by a power-law temperature dependence with exponent near 0.5. The phase transitions in the K-doped MoO2 compound have been discussed for the first time using neutron diffraction, high resolution thermal expansion, and heat capacity measurements as a function of temperature.

  17. Phase transition in extended thermodynamic phase space and charged Horava-Lifshitz black holes

    OpenAIRE

    Poshteh, Mohammad Bagher Jahani; Riazi, Nematollah

    2016-01-01

    For charged black holes in Horava-Lifshitz gravity, it is shown that a second order phase transition takes place in extended phase space. We study the behavior of specific heat and free energy at the point of transition in canonical and grand canonical ensembles and show that the black hole falls into a state which is locally and globally stable. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature...

  18. Phase Transition in Hierarchy Model of Bonabeau

    Science.gov (United States)

    Stauffer, Dietrich

    The model of Bonabeau explains the emergence of social hierarchies from the memory of fights in an initially egalitarian society. Introducing a feedback from the social inequality into the probability to win a fight, we find a sharp transition between an egalitarian society at low population density and a hierarchical society at high population density.

  19. Zero temperature phase transitions in quantum Heisenberg ferromagnets

    International Nuclear Information System (INIS)

    The purpose of this work is to understand the zero temperature phases and the phase transitions of Heisenberg spin systems which can have an extensive, spontaneous magnetic moment, this entails a study of quantum transitions with an order parameter which is also a non-abelian conserved charge. To this end, we introduce and study a new class of lattice models of quantum rotors. We compute their mean-field phase diagrams and present continuum, quantum field-theoretic descriptions of their low energy properties in different regimes. We argue that, in spatial dimension d=1, the phase transitions in itinerant Fermi systems are in the same universality class as the corresponding transitions in certain rotor models. We discuss implications of our results for itinerant fermions systems in higher d and for other physical systems. Copyright copyright 1996 Academic Press, Inc

  20. Statistical Physics and Dynamical Systems: Models of Phase Transitions

    OpenAIRE

    Patwardhan, Ajay

    2007-01-01

    This paper explores the connection between dynamical system properties and statistical physics of ensembles of such systems. Simple models are used to give novel phase transitions; particularly for finite N particle systems with many physically interesting examples.

  1. Gravitational waves from a very strong electroweak phase transition

    CERN Document Server

    Leitao, Leonardo

    2015-01-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model which can give very strongly first-order phase transitions. We concentrate on the possibility that the phase transition fronts either propagate as detonations or run away. We compute the bubble wall velocity taking into account the friction and hydrodynamics due to the presence of the plasma, and we track the development of the phase transition up to the percolation time. We calculate the contribution to the gravitational wave spectrum from bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. The sound waves are generally the strongest source. Since this mechanism is diminished in the presence of runaway walls, the models with the best prospects of detection at...

  2. Foundations of Statistical Mechanics and Theory of Phase Transition

    CERN Document Server

    Belokolos, E D

    1997-01-01

    A new formulation of statistical mechanics is put forward according to which a random variable characterizing a macroscopic body is postulated to be infinitely divisible. It leads to a parametric representation of partition function of an arbitrary macroscopic body, a possibility to describe a macroscopic body under excitation by a gas of some elementary quasiparticles etc. A phase transition is defined as such a state of a macroscopic body that its random variable is stable in sense of Lévy. From this definition it follows by deduction all general properties of phase transitions: existence of the renormalization semigroup, the singularity classification for thermodynamic functions, the phase transition universality and universality classes. On this basis we has also built a 2-parameter scaling theory of phase transitions, a thermodynamic function for the Ising model etc.

  3. Dynamical symmetries and causality in non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte

    2015-01-01

    Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  4. Phase transition in Potts model with invisible states

    International Nuclear Information System (INIS)

    We study phase transition in the ferromagnetic Potts model with invisible states that are added as redundant states by mean-field calculation and Monte Carlo simulation. Invisible states affect the entropy and free energy, although they do not contribute to the internal energy. A second-order phase transition takes place at finite temperature in the standard q-state ferromagnetic Potts model on two-dimensional lattice for q=2,3, and 4. However, our present model on two-dimensional lattice undergoes a first-order phase transition with spontaneous q-fold symmetry breaking (q=2,3, and 4) due to entropy effect of invisible states. The model is fundamental for the analysis of a first-order phase transition with spontaneous discrete symmetry breaking. (author)

  5. Strange quark matter:Business as usual or phase transition?

    OpenAIRE

    Torrieri, Giorgio

    2011-01-01

    We give an overview of some results presented at the Strange Quark Matter 2011 conference in Krakow, and interpret them in light of the search of the search for a QCD deconfinement phase transition in heavy ion collisions

  6. d-Dimensional exactly solvable model for structural phase transition

    International Nuclear Information System (INIS)

    The approximating Hamiltonian method is used to prove the exact solvability of a lattice type gphi4 model with the interacting constant g=lambda/N. The thermodynamical properties of the phase transition in this model is studied as well

  7. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  8. Integrability and Quantum Phase Transitions in Interacting Boson Models

    CERN Document Server

    Dukelsky, J; García-Ramos, J E; Pittel, S

    2003-01-01

    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.

  9. Entanglement and quantum phase transition in the extended Hubbard model

    OpenAIRE

    Gu, Shi-Jian; Deng, Shu-Sa; Li, You-Quan; Lin, Hai-Qing

    2004-01-01

    We study quantum entanglement in one-dimensional correlated fermionic system. Our results show, for the first time, that entanglement can be used to identify quantum phase transitions in fermionic systems.

  10. Thermodynamic properties and phase transitions in CO2 molecular clusters

    Science.gov (United States)

    Etters, R. D.; Flurchick, K.; Pan, R. P.; Chandrasekharan, V.

    1981-01-01

    The thermodynamic properties of (CO2)N molecular aggregates of size N between 2 and 13 have been investigated. These crystallites exhibit well defined orientational order-disorder rotational transitions accompanied by a structural transition into a plastic crystallite phase. In addition, they exhibit melting and disassociation transitions. It is shown that the interpretation of experimental data, based upon dimer properties, depends crucially on these results. Equilibrium structures and orientations are also given.

  11. Research for the energy turnaround. Phase transitions actively shape. Contributions

    International Nuclear Information System (INIS)

    The Annual Conference 2014 of the Renewable Energy Research Association was held in Berlin on 6 and 7 November 2014. This book documents the contributions of the conference on research for the energy turnaround, phase transitions actively shape. After an introduction and two contributions to the political framework, the contributions to the economic phases of the energy transition, the phase of the current turn, the phases of social energy revolution, the stages of heat turnaround (Waermewende), and the stages of the mobility turn deal with the stages of development of the energy system. Finally, the Research Association Renewable Energy is briefly presented.

  12. Phase Transition and Absence Of Ghosts in Rigid QED

    OpenAIRE

    Awada, Moustafa; Zoller, David

    1994-01-01

    Ordinary QED formulated in the Feynman's space-time picture is equivalent to a one dimensional field theory. In the large N limit there is no phase transition in such a theory. In this letter, we show a phase transition does exist in a generalization of QED characterized by the addition of the curvature of the world line (rigidity) to the Feynman's space-time action. The large distance scale of the disordered phase essentially coincides with ordinary QED, while the ordered phase is strongly c...

  13. Phase Transitions in a Forest-Fire Model

    OpenAIRE

    Clar, Siegfried; Schenk, Klaus; Schwabl, Franz

    1997-01-01

    We investigate a forest-fire model with the density of empty sites as control parameter. The model exhibits three phases, separated by one first-order phase transition and one 'mixed' phase transition which shows critical behavior on only one side and hysteresis. The critical behavior is found to be that of the self-organized critical forest-fire model [B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992)], whereas in the adjacent phase one finds the spiral waves of the Bak et al. fore...

  14. Probing phase transitions of vortex matter by Josephson plasma resonance

    International Nuclear Information System (INIS)

    The Josephson plasma resonance is the most powerful means to study the vortex state in high-Tc superconductors. In this paper we report the detailed and quantitative study of the interlayer quantum phase coherence in the vortex liquid, Bragg glass and vortex glass phases of Bi2Sr2CaCu2O8+δ by the Josephson plasma resonance. We also provide a quantitative discussion on the nature of the phase transitions among these vortex phases. (author)

  15. Phase transition in L-alaninium oxalate by photoacoustics

    Indian Academy of Sciences (India)

    M Sivabarathy; S Natarajan; S K Ramakrishnan; K Ramachandran

    2004-10-01

    Phase transition in L-alaninium oxalate is studied by using TG, DTA and photoacoustic spectroscopy. A sharp transition at 378 K by photoacoustics is observed whereas at the same temperature the endothermic energy change observed by TG and DTA is not very sharp. This is discussed in detail with reference to the other known data for the organic crystals.

  16. Change in Order of Phase Transitions on Fractal Lattices

    OpenAIRE

    Windus, Alastair L; Jensen, Henrik Jeldtoft

    2008-01-01

    We re-examine a population model which exhibits a continuous absorbing phase transition which belongs to directed percolation in 1+1 dimensions and a first order transition in 2+1 dimensions and above. Studying the model on fractal lattices, we examine at what fractal dimension 1

  17. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie;

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formatio...

  18. The QCD phase transitions: From mechanism to observables

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.

  19. Formation of Black Holes in First Order Phase Transitions

    OpenAIRE

    Khlopov, M. Yu.; R. V. Konoplich(Physics Dept.New York University, N.Y., USA); Rubin, S. G.; Sakharov, A. S.

    1998-01-01

    A new mechanism of black hole formation in a first order phase transition is proposed. In vacuum bubble collisions the interaction of bubble walls leads to the formation of nontrivial vacuum configuration. The consequent collapse of this vacuum configuration induces the black hole formation with high probability. Observational constraints on the spectrum of primordial black holes allow to obtain new nontrivial restrictions on parameters of inflation models with first order phase transitions.

  20. Phase transitions a brief account with modern applications

    CERN Document Server

    Gitterman, Moshe

    2004-01-01

    This book presents a short, fairly simple course on the basic theoryof phase transitions and its modern applications. In physics, theseapplications include such modern developments as Bose- Einsteincondensation of atoms, high temperature superconductivity, andvortices in superconductors, while in other fields they include smallworld phenomena and scale-free systems (such as stock markets and theInternet). The advantage of treating all these topics together lies inshowing their connection with one another and with the general theoryof phase transitions.