WorldWideScience

Sample records for antiferromagnetic interlayer ordering

  1. Magnetic evolution of itinerant ferromagnetism and interlayer antiferromagnetism in cerium doped LaCo{sub 2}P{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yong; Kong, Yixiu; Liu, Kai; Zhang, Anmin [Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872 (China); He, Rui [Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614 (United States); Zhang, Qingming, E-mail: qmzhang@ruc.edu.cn [Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872 (China)

    2017-05-01

    ThCr{sub 2}Si{sub 2}-type phosphide ACo{sub 2}P{sub 2} (A=Eu, La, Pr, Nd, Ce) has the same structure as iron arsenides, but their magnetic behaviors are quite distinct. In this paper, we grew a series of La{sub 1−x}Ce{sub x}Co{sub 2}P{sub 2} single crystals (x=0.0 to1.0), made structural and magnetic characterizations. We found the introduction of cerium induces a rapid decrease of c-axis and a change from ferromagnetic to antiferromagnetic states. Compared to other trivalent doped compounds, the enhancement of ferromagnetism with doping is suppressed and the transition from ferromagnetism to antiferromagnetism appear earlier. By employing first-principles band-structure calculations, we identify the increase of Ce valence suppress the itinerant ferromagnetism and leading to formation of P-P bonding with the shortening of c-axis. The bonding effectively drives an increase of interlayer antiferromagnetic interaction, eventually leads to antiferromagnetic ordering of cobalt in high-doping region.

  2. Photo-induced antiferromagnetic interlayer coupling in Fe superlattices with iron silicide spacers

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, J.E.; Fullerton, E.E.; Kumar, S.; Lee, S.R.; Sowers, C.H.; Grimsditch, M.; Bader, S.D. [Argonne National Lab., IL (United States); Parker, F.T. [California Univ., San Diego, La Jolla, CA (United States). Center for Magnetic Recording Research

    1993-09-01

    Sputtered Fe/FeSi films possessing antiferromagnetic (AF) interlayer coupling at room temperature develop ferromagnetic remanence when cooled below 100K, but the AF coupling can be restored at low temperature by exposure to visible light of sufficient intensity (>10 mW/mm{sup 2}). We attribute these effects to charge carriers in the FeSi spacer layer which, when thermally or photo-generated, are capable of communicating spin information between the Fe layers.

  3. Longitudinal Spin Excitations and Magnetic Anisotropy in Antiferromagnetically Ordered BaFe_{2}As_{2}

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2013-12-01

    Full Text Available We report on a spin-polarized inelastic neutron-scattering study of spin waves in the antiferromagnetically ordered state of BaFe_{2}As_{2}. Three distinct excitation components are identified, with spins fluctuating along the c axis, perpendicular to the ordering direction in the ab plane and parallel to the ordering direction. While the first two “transverse” components can be described by a linear spin-wave theory with magnetic anisotropy and interlayer coupling, the third “longitudinal” component is generically incompatible with the local-moment picture. It points toward a contribution of itinerant electrons to the magnetism that is already in the parent compound of this family of Fe-based superconductors.

  4. Interlayer exchange coupling in Er|Tb superlattices mediated by short range incommensurate Er order

    International Nuclear Information System (INIS)

    Pfuhl, E; Brueckel, T; Voigt, J; Mattauch, S; Korolkov, D

    2010-01-01

    We study the magnetic correlations in Er|Tb superlattices by means of off-specular scattering of polarized neutrons. We show here the co-existence of inhomogeneous magnetic states: i) ferromagnetic order of moments within the Tb layers below 230 K (FM), correlation length of about 10 bilayer, ii) an incommensurate modulated magnetic order, restricted to single Er layers and iii) antiferromagnetic coupling of ferromagnetic layers below 70K (AFC). Polarised off-specular neutron scattering under grazing incidence reveals that i) magnetic fluctuations appear when the sample is cooled below 70 K, ii) these fluctuations lead to AFC, when the sample is cooled to 10 K, which iii) persists, when the sample is subsequently heated up to 45 K, while the order is not present during the cooling cycle. Also the short range incommensurate order changes accordingly, implying that the magnetic order in the Er layers mediates the interlayer coupling between ferromagnetic Tb layers.

  5. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    Directory of Open Access Journals (Sweden)

    Borovský Michal

    2016-01-01

    Full Text Available The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1. The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  6. Long range order in the ground state of two-dimensional antiferromagnets

    International Nuclear Information System (INIS)

    Neves, E.J.; Perez, J.F.

    1985-01-01

    The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt

  7. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný, J.

    2014-10-06

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  8. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Vý borný , K.; Zemen, J.; Mašek, J.; Manchon, Aurelien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.

    2014-01-01

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  9. Crystal Structure and Antiferromagnetic Ordering of Quasi-2D [Cu(HF2)(pyz)2]TaF6 (pyz=pyrazine)

    Science.gov (United States)

    Manson, J. L.; Schlueter, J. A.; McDonald, R. D.; Singleton, J.

    2010-04-01

    The crystal structure of the title compound was determined by X-ray diffraction at 90 and 295 K. Copper(II) ions are coordinated to four bridging pyz ligands to form square layers in the ab-plane. Bridging HF2- ligands join the layers together along the c-axis to afford a tetragonal, three-dimensional (3D) framework that contains TaF6- anions in every cavity. At 295 K, the pyz rings lie exactly perpendicular to the layers and cooling to 90 K induces a canting of those rings. Magnetically, the compound exhibits 2D antiferromagnetic correlations within the 2D layers with an exchange interaction of -13.1(1) K. Weak interlayer interactions, as mediated by Cu-F-H-F-Cu, leads to long-range magnetic order below 4.2 K. Pulsed-field magnetization data at 0.5 K show a concave curvature with increasing B and reveal a saturation magnetization at 35.4 T.

  10. Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice

    International Nuclear Information System (INIS)

    Ertaş Mehmet; Keskin Mustafa

    2013-01-01

    Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. (general)

  11. Interface states in stressed semiconductor heterojunction with antiferromagnetic ordering

    International Nuclear Information System (INIS)

    Kantser, V.G.

    1995-08-01

    The stressed heterojunctions with antiferromagnetic ordering in which the constituents have opposite band edge symmetry and their gaps have opposite signs have been investigated. The interface states have been shown to appear in these heterojunctions and they are spin-split. As a result if the Fermi level gets into one of the interface bands then it leads to magnetic ordering in the interface plane. That is if the interface magnetization effect can be observed. (author). 14 refs, 2 figs

  12. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  13. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    Science.gov (United States)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  14. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    OpenAIRE

    Vemulkar, T; Mansell, Rhodri; Petit, Dorothee Celine; Cowburn, Russell Paul; Lesniak, MS

    2015-01-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer...

  15. The phase diagrams and the order parameters of the diluted superlattice with antiferromagnetic interface coupling

    International Nuclear Information System (INIS)

    Oubelkacem, A.; El Aouad, N.; Bentaleb, M.; Laaboudi, B.; Saber, M.

    2004-01-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the magnetic properties of the diluted Ising superlattice consisting of two ferromagnetic materials A and B, with L a layers of diluted spins S a =((1)/(2)) and L b layers of diluted spins S b =1 with antiferromagnetic interface coupling are examined. For fixed values of the reduced exchange interactions and the concentration c of magnetic atoms, the phase diagrams, the two sublattice magnetizations and the total magnetization for the superlattice with the same spin S a =S b =((1)/(2)) and for S a =((1)/(2)), S b =1 are studied as a function of the temperature. We find a number of characteristic phenomena. In particular, the effect of the concentration c of magnetic atoms, the interlayer coupling and the layer thickness on both the compensation temperature and the magnetization profiles are clarified

  16. Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te

    Science.gov (United States)

    Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng

    2018-02-01

    Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.

  17. Antiferromagnetic ordering in GdRhIn{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Latka, K.; Rams, M. [Marian Smoluchowski Inst. of Physics, Jagiellonian Univ., Krakow (Poland); Kmiec, R.; Pacyna, A.W. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Zaremba, V.I. [Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv, Lviv (Ukraine); Inst. fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Univ. Muenster (Germany); Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Univ. Muenster (Germany)

    2004-09-01

    A polycrystalline sample of tetragonal GdRhIn{sub 5} (HoCoGa{sub 5} type, space group P4/mmm) was obtained by induction melting of the elements in a glassy carbon crucible in a water-cooled sample chamber and subsequent annealing at 670 K. X-ray powder data yielded the cell parameters a = 460.65(7), c = 743.52(12) pm. The magnetic and electronic properties of GdRhIn{sub 5} have been studied by magnetic susceptibility, electrical resistivity, and {sup 155}Gd Moessbauer spectroscopic measurements. Antiferromagnetic ordering is detected at 41.0(2) K. The results are discussed using a simple molecular field approximation. (orig.)

  18. Charge dynamics of the antiferromagnetically ordered Mott insulator

    International Nuclear Information System (INIS)

    Han, Xing-Jie; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xiang, Tao; Liu, Yu; Liu, Zhi-Yuan; Xie, Zhi-Yuan; Normand, B

    2016-01-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon–doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon–doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott–Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of

  19. Charge dynamics of the antiferromagnetically ordered Mott insulator

    Science.gov (United States)

    Han, Xing-Jie; Liu, Yu; Liu, Zhi-Yuan; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xie, Zhi-Yuan; Normand, B.; Xiang, Tao

    2016-10-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon-doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon-doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott-Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of the

  20. Antiferromagnetic Nd ordering in NdPd{sub 2}Ga{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Doenni, A.; Fischer, P.; Fauth, F.; Zolliker, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bauer, E. [Technische Univ., Vienna (Austria)

    1997-09-01

    The ternary intermetallic compound NdPd{sub 2}Ga{sub 3} was investigated by powder neutron diffraction: the crystal structure agrees well with the ordered hexagonal PrNi{sub 2}Al{sub 3}-type structure. The antiferromagnetic ordering below T{sub N} 6.5 K corresponds to a propagation vector k = [1/2,0,0]. The ordered magnetic Nd moments of (1.99 {+-} 0.04) {mu}{sub B} at saturation lie in the basal plane due to the crystal-electric field anisotropy and are oriented perpendicular to the propagation vector. (author) 1 fig., 1 tab., 2 refs.

  1. Varying Eu2+ magnetic order by chemical pressure in EuFe2(As1-xPx)2

    Science.gov (United States)

    Zapf, S.; Wu, D.; Bogani, L.; Jeevan, H. S.; Gegenwart, P.; Dressel, M.

    2011-10-01

    Based on low-field magnetization measurements on a series of single crystals, we present a scheme of the Eu2+ spin alignment in EuFe2(As1-xPx)2. We explain observations of the Eu2+ ordering previously reported, reconciling different existing phase diagrams. The magnetic moments of the Eu2+ ions are slightly canted, yielding a ferromagnetic contribution along the c direction that becomes stronger with pressure, until superconductivity sets in. The spin-density wave as well as the superconducting phase coexist with an antiferromagnetic interlayer coupling of the canted spins. Reducing the interlayer distance finally leads to a ferromagnetic Eu2+ interlayer coupling and to the suppression of superconductivity.

  2. Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    International Nuclear Information System (INIS)

    MacDougall, Gregory J.; Gout, Delphine J.; Zarestky, Jerel L.; Ehlers, Georg; Podlesnyak, Andrey A.; McGuire, Michael A.; Mandrus, David; Nagler, Stephen E.

    2011-01-01

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.

  3. The phase diagrams and the order parameters of the diluted transverse superlattice with antiferromagnetic interface coupling

    International Nuclear Information System (INIS)

    Oubelkacem, A.; El Aouad, N.; Benaboud, A.; Saber, M.

    2004-01-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the magnetic properties of the Ising superlattice consisting of two ferromagnetic materials A and B, with L a layers of diluted spins S a =((1)/(2)) and L b layers of diluted spins S b =1 in an applied transverse field Ω with antiferromagnetic interface coupling are examined. For fixed values of the reduced exchange interactions and the concentration c of magnetic atoms, the phase diagrams and the total magnetization for the superlattice are studied as a function of the transverse field and the temperature. We find a number of characteristic phenomena. In particular, the effect of the concentration c of magnetic atoms, the interlayer coupling and the transverse field on both the compensation temperature and the magnetization profiles are clarified. Some of them may be related to the experimental works of rare-earth (RE)/transition metal (TM) multilayer films

  4. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    Science.gov (United States)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  5. Spintronics of antiferromagnetic systems

    International Nuclear Information System (INIS)

    Gomonaj, E.V.; Loktev, V.M.

    2014-01-01

    Spintronics of antiferromagnetics is a new field that has developed in a fascinating research topic in physics of magnetism. Antiferromagnetics, like ferromagnetic materials experience the influence of spin-polarized current, even though they show no macroscopic magnetization. The mechanism of this phenomenon is related to spin-dependent interaction between free and localized electrons-sd-exchange. Due to the peculiarities of antiferromagnetic materials (complicated magnetic structure, essential role of the exchange interactions, lack of macroscopic magnetization) spintronics of antiferromagnets appeals to new theoretical and experimental approaches. The purpose of this review is to systemize and summarize the recent progress in this field. We start with a short introduction into the structure and dynamics of antiferromagnets and proceed with discussion of different microscopic and phenomenological theories for description of current-induced phenomena in ferro-/antiferromagnetic heterostructures. We also consider the problems of the reverse influence of antiferromagnetic ordering on current, and effectiveness of the fully antiferromagnetic spin valve. In addition, we shortly review and interpret the available experimental results.

  6. Antiferromagnetic spintronics

    Science.gov (United States)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  7. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.

    2018-02-15

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  8. Antiferromagnetic spintronics

    KAUST Repository

    Baltz, V.; Manchon, Aurelien; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and

  9. Polarized neutron powder diffraction studies of antiferromagnetic order in bulk and nanoparticle NiO

    DEFF Research Database (Denmark)

    Brok, Erik; Lefmann, Kim; Deen, Pascale P.

    2015-01-01

    surface contribution to the magnetic anisotropy. Here we explore the potential use of polarized neutron diffraction to reveal the magnetic structure in NiO bulk and nanoparticle powders by applying the XYZ-polarization analysis method. Our investigations address in particular the spin orientation in bulk....... The results show that polarization analyzed neutron powder diffraction is a viable method to investigate magnetic order in powders of antiferromagnetic nanoparticles.......In many materials it remains a challenge to reveal the nature of magnetic correlations, including antiferromagnetism and spin disorder. Revealing the spin structure in magnetic nanoparticles is further complicated by the large incoherent neutron scattering cross section from water adsorbed...

  10. Perspectives of antiferromagnetic spintronics

    Science.gov (United States)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  11. Influence of ion bombardment induced patterning of exchange bias in pinned artificial ferrimagnets on the interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Schmalhorst, Jan; Reiss, Guenter; Hoenik, V. [Thin Films and Nanostructures, Department of Physics, Univ. Bielefeld (Germany); Weis, Tanja; Engel, Dieter; Ehresmann, Arno [Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology, Kassel Univ. (Germany)

    2007-07-01

    Artificial ferrimagnets (AFi) have many applications as, e.g., pinned reference electrodes in magnetic tunnel junctions. It is known that the application of ion bombardment induced magnetic patterning with He ions on a single layer reference electrode of magnetic tunnel junctions is possible. For some applications a combination of ion bombardment induced magnetic patterning and artificial ferrimagnets as a reference electrode is desirable. The effect of ion bombardment induced magnetic patterning on pinned artificial ferrimagnets with a Ru interlayer which is frequently used in magnetic tunnel junctions as well as pinned AFis with a Cu interlayer has been tested. Special attention has been given to the question whether the antiferromagnetic interlayer exchange coupling can withstand the ion dose necessary to turn the exchange bias.

  12. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke [Faculty of Engineering, Ibaraki University 4-12-1, Nakanarusawa, Hitachi, Ibaraki, 316-8511 (Japan)

    2016-05-15

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  13. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.

    2017-05-30

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  14. Focused issue on antiferromagnetic spintronics: An overview (Part of a collection of reviews on antiferromagnetic spintronics)

    KAUST Repository

    Jungwirth, T.; Sinova, J.; Manchon, Aurelien; Marti, X.; Wunderlich, J.; Felser, C.

    2017-01-01

    This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.

  15. Evaluation of interlayer ferromagnetic coupling for stacked media by adding reference layer

    International Nuclear Information System (INIS)

    Tham, K K; Saito, S; Itagaki, N; Hinata, S; Takahashi, M; Hasegawa, D

    2011-01-01

    The trial for quantitative evaluation of interlayer ferromagnetic coupling between granular and cap layer in stacked media is reported. The evaluation is realized by analyzing M-H loop of stacked media with another reference layer added on the cap layer. The reference layer is antiferromagnetically coupled with the cap layer through non-magnetic spacer layer. In this experiment, Rh which leads to antiferromagnetic coupling constant along film normal direction of around 2 erg/cm 2 was used as non-magnetic spacer layer. According to the evaluation result done by this method, when thickness of the spacer Pd layer between granular layer and cap layer is increased to 1.1 nm, ferromagnetic coupling constant is weakened to 7.2 erg/cm 2 which results in reduction of saturation field.

  16. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal

    Science.gov (United States)

    Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin

    2017-07-01

    Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.

  17. Perspectives of antiferromagnetic spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  18. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.

    2012-01-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.

  19. Spin transport and spin torque in antiferromagnetic devices

    Science.gov (United States)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  20. Unconventional spin order in the triangular lattice system NaCrO2: A neutron scattering study

    International Nuclear Information System (INIS)

    Hsieh, D.; Qian, D.; Berger, R.F.; Cava, R.J.; Lynn, J.W.; Huang, Q.; Hasan, M.Z.

    2008-01-01

    We report high resolution neutron scattering measurements on the rhombohedrally stacked triangular antiferromagnet NaCrO 2 which has recently been shown to exhibit an unusually broad fluctuating cross-over regime extending far below the onset of spin freezing at T c . Our results show that at T c purely two-dimensional quasi-static spin correlations of the 120 o type exist. Below some cross-over temperature (T∼0.75T c ) a small incommensuration develops which helps resolve the inter-layer spin frustration and drives short-range three-dimensional magnetic order. This incommensuration assisted dimensional cross-over suggests that inter-layer frustration is responsible for stabilizing the rare 2D correlated phase above 0.75T c

  1. Perpendicularly magnetized CoFeB multilayers with tunable interlayer exchange for synthetic ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Pirro, P., E-mail: ppirro@physik.uni-kl.de [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Hamadeh, A.; Lavanant-Jambert, M. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Meyer, T. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Tao, B.; Rosario, E.; Lu, Y.; Hehn, M.; Mangin, S.; Petit Watelot, S. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France)

    2017-06-15

    Highlights: • MgO/CoFeB/Ta/CoFeB/MgO multilayers as synthetic ferrimagnets. • Comprehensive characterization by measurement of static and dynamic properties. • Different pinning for domain walls with different alignment of the individual layers. - Abstract: A study of the multilayer system MgO/CoFeB(1.1 nm)/Ta(t)/CoFeB(0.8 nm)/MgO is presented, where the two CoFeB layers are separated by a Ta interlayer of varying thickness t. The magnetization properties deduced from complementary techniques such as superconducting quantum interference magnetometry, ferromagnetic resonance frequency measurements and Brillouin light scattering spectroscopy can be tuned by changing the Ta thickness between t = 0.25 nm, 0.5 nm and 0.75 nm. For t = 0.5 nm, a ferromagnetic coupling is observed, whereas for t = 0.75 nm, the antiferromagnetic coupling needed to construct a synthetic ferrimagnet is realized. In the latter case, the shape of magnetic domain walls between two ferrimagnetic alignments or between a ferro- and a ferrimagnetic alignment is very different. This behavior can be interpreted as a result of the change in dipolar as well as interlayer exchange energy and domain wall pinning, which is an important conclusion for the realization of data storage devices based on synthetic ferri- and antiferromagnets.

  2. Magnetization study of interlayer exchange in semiconductor EuS-PbS ferromagnetic wedge multilayers

    International Nuclear Information System (INIS)

    Kowalczyk, L.; Osinniy, V.; Chernyshova, M.; Dziawa, P.; Boratynski, A.; Story, T.; Smits, C.J.P.; Swagten, H.J.M.; Sipatov, A.Yu.; Volobuev, V.V.

    2006-01-01

    Interlayer coupling was experimentally studied in semiconductor EuS-PbS ferromagnetic superlattice wedge structures grown on KCl (0 0 1) substrates with the wedges covering the semiconductor nonmagnetic PbS spacer layer thickness from 0.3 to 6 nm. Structural parameters of the wedges were examined by X-ray diffraction analysis of EuS-PbS superlattice period. Measurements of magnetic hysteresis loops of EuS-PbS structures were performed by both SQUID (for small terminal parts of the wedge) and MOKE (magneto-optical analysis along the wedge) magnetometry. A strong decrease of magnetic remanence and an increase of saturation field observed for EuS-PbS structures with the PbS spacer thickness decreasing below about 1.5 nm is discussed in terms of the influence of antiferromagnetic interlayer coupling

  3. Finite temperature CPN-1 model and long range Neel order

    International Nuclear Information System (INIS)

    Ichinose, Ikuo; Yamamoto, Hisashi.

    1989-09-01

    We study in d space-dimensions the finite temperature behavior of long range Neel order (LRNO) in CP N-1 model as a low energy effective field theory of the antiferromagnetic Heisenberg model. For d≤1, or d≤2 at any nonzero temperature, LRNO disappears, in agreement with Mermin-Wagner-Coleman's theorem. For d=3 in the weak coupling region, LRNO exists below the critical temperature T N (Neel temperature). T N decreases as the interlayer coupling becomes relatively weak compared with that within Cu-O layers. (author)

  4. Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach

    International Nuclear Information System (INIS)

    Liu Guibin; Liu Banggui

    2009-01-01

    We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature T N and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for T N and determine our temperature-dependent average spin from zero temperature to T N in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature T N = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero T N , and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.

  5. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  6. Coexistence of charge order and antiferromagnetism in (TMTTF){sub 2}SbF{sub 6}: NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, K., E-mail: knmr@phys.sci.hokudai.ac.jp; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.

    2015-03-01

    The electronic state of (TMTTF){sub 2}SbF{sub 6} was investigated by the {sup 1}H and {sup 13}C NMR measurements. The temperature dependence of T{sub 1}{sup −1} in {sup 1}H NMR shows a sharp peak associated with the antiferromagnetic transition at T{sub AF}=6 K. The temperature dependence of T{sub 1}{sup −1} is described by the power law T{sup 2.4} below T{sub AF}. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In {sup 13}C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μ{sub B} and 0.24 μ{sub B} at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μ{sub B} per dimer are quite different from 0.11 μ{sub B} of another AF (AFII) state in (TMTTF){sub 2}Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF){sub 2}SbF{sub 6}.

  7. Modification of interlayer exchange coupling in Fe/V/Fe trilayers using hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Skoryna, J., E-mail: jskoryna@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland); Marczyńska, A. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland); Lewandowski, M. [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85 St., 61-614 Poznań (Poland); Smardz, L. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St., 60-179 Poznań (Poland)

    2015-10-05

    Highlights: • Magnetic films and multilayers. • Thin films. • Hydrogen absorbing materials. • Magnetic measurements. • Exchange coupling. - Abstract: Fe/V/Fe trilayers with constant-thickness Fe and step-like wedged V sublayers were prepared at room temperature using UHV magnetron sputtering. The bottom Fe layer grows onto oxidised Si(1 0 0) substrate and shows relatively high coercivity. The top Fe layer grows on vanadium spacer and shows considerably lower coercivity. The planar growth of the Fe and V sublayers was confirmed in-situ by X-ray photoelectron spectroscopy. Results show that the Fe sublayers are weakly exchange coupled for d{sub V} > 1.4 nm. Results on the coercivity studies as a function of the V interlayer thickness show near d{sub V} ∼ 1.95 nm (∼2.45 nm) weak antiferromagnetic (ferromagnetic) coupling, respectively. The hydrogenation of the Fe/V/Fe trilayers leads to increase of the strength of the ferromagnetic interlayer exchange coupling.

  8. Collinear Order in Frustrated Quantum Antiferromagnet on Square Lattice (CuBr)LaNb2O7

    Science.gov (United States)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro; Yasuda, Jun; Baba, Yoichi; Nishi, Masakazu; Hirota, Kazuma; Narumi, Yasuo; Hagiwara, Masayuki; Kindo, Koichi; Saito, Takashi; Ajiro, Yoshitami; Yoshimura, Kazuyoshi

    2006-11-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional S = 1/2 square-lattice system (CuBr)LaNb2O7, prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb2O7. (CuBr)LaNb2O7 exhibits a second-order magnetic transition at 32 K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb2O7, despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q = (π, 0, π) with a reduced moment of 0.6μB. Mixed ferromagnetic nearest-neighbor (J1) and antiferromagnetic second-nearest-neighbor (J2) interactions are of comparable strength (J1/kB = -35.6 K and J2/kB = 41.3 K), placing the system in a more frustrated region of the CAF phase than ever reported.

  9. The 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings

    International Nuclear Information System (INIS)

    Zhan-Hai, Dong

    2009-01-01

    In order to look for the 120° order phase of triangular lattice Heisenberg antiferromagnet with long range couplings, the Hamiltonian is diagonalized with the Bogoliubov transformation within linear spin-wave approximation. It is found that when the long range spin couplings are taken into account, the transformation is valid only for certain regions in the spin coupling parameter space. These regions just correspond to the 120° (or Néel) ordered phase, which is very different from square lattice in terms of shape, size and topological property

  10. Antiferromagnetic ordering in the plumbide EuPdPb

    Energy Technology Data Exchange (ETDEWEB)

    Heletta, Lukas; Klenner, Steffen; Block, Theresa; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    The plumbide EuPdPb was synthesized in polycrystalline form by reaction of the elements in a sealed niobium ampoule in a muffle furnace. The structure was refined from single-crystal X-ray diffractometer data: TiNiSi type, Pnma, a = 752.4(2), b = 476.0(2), c = 826.8(2) pm, wR2 = 0.0485, 704 F{sup 2} values and 20 variables. The europium atoms are coordinated by two tilted and puckered Pd{sub 3}Pb{sub 3} hexagons (280-289 pm Pd-Pb) with pronounced Eu-Pd bonding (312-339 pm). Temperature-dependent magnetic susceptibility measurements show Curie-Weiss behaviour and an experimental magnetic moment of 7.35(1) μB per Eu atom. EuPdPb orders antiferromagnetically at T{sub N} = 13.8(5) K and shows a metamagnetic transition at a critical field of 15 kOe. {sup 151}Eu Moessbauer spectra confirm divalent europium (δ = -10.04(1) mm s{sup -1}) and show full magnetic hyperfine field splitting (B{sub hf} = 21.1(1) T) at 6 K.

  11. Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets.

    Science.gov (United States)

    Powalski, M; Uhrig, G S; Schmidt, K P

    2015-11-13

    A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.

  12. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  13. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  14. Tunable (δπ, δπ)-Type Antiferromagnetic Order in α-Fe(Te,Se) Superconductors

    Science.gov (United States)

    Bao, Wei; Qiu, Y.; Huang, Q.; Green, M. A.; Zajdel, P.; Fitzsimmons, M. R.; Zhernenkov, M.; Chang, S.; Fang, Minghu; Qian, B.; Vehstedt, E. K.; Yang, Jinhu; Pham, H. M.; Spinu, L.; Mao, Z. Q.

    2009-06-01

    The new α-Fe(Te,Se) superconductors share the common iron building block and ferminology with the LaFeAsO and BaFe2As2 families of superconductors. In contrast with the predicted commensurate spin-density-wave order at the nesting wave vector (π, 0), a completely different magnetic order with a composition tunable propagation vector (δπ, δπ) was determined for the parent compound Fe1+yTe in this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a short-range one even in the highest TC sample. An alternative to the prevailing nesting Fermi surface mechanism is required to understand the latest family of ferrous superconductors.

  15. Weyl magnons in pyrochlore antiferromagnets with an all-in-all-out order

    Science.gov (United States)

    Jian, Shao-Kai; Nie, Wenxing

    2018-03-01

    We investigate topological magnon band crossings of pyrochlore antiferromagnets with all-in-all-out (AIAO) magnetic order. By general symmetry analysis and spin-wave theory, we show that pyrochlore materials with AIAO orders can host Weyl magnons under external magnetic fields or uniaxial strains. Under a small magnetic field, the magnon bands of the pyrochlore with AIAO background can feature two opposite-charged Weyl points, which is the minimal number of Weyl points realizable in quantum materials, and has not been experimentally observed so far. We further show that breathing pyrochlores with AIAO orders can exhibit Weyl magnons upon uniaxial strains. These findings apply to any pyrochlore material supporting AIAO orders, irrespective of the forms of interactions. Specifically, we show that the Weyl magnons are robust against direct (positive) Dzyaloshinskii-Moriya interactions. Because of the ubiquitous AIAO orders in pyrochlore magnets including R2Ir2O7 , and experimentally achievable external strain and magnetic field, our predictions provide a promising arena to witness the Weyl magnons in quantum magnets.

  16. Collinear order in frustrated quantum antiferromagnet on square lattice (CuBr)LaNb2O7

    International Nuclear Information System (INIS)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro

    2006-01-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional s=1/2 square-lattice system (CuBr)LaNb 2 O 7 , prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb 2 O 7 . (CuBr)LaNb 2 O 7 exhibits a second-order magnetic transition at 32K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb 2 O 7 , despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q=(π, 0, π) with a reduced moment of 0.6μ B . Mixed ferromagnetic nearest-neighbor (J 1 ) and antiferromagnetic second-nearest-neighbor (J 2 ) interactions are of comparable strength (J 1 /k B =-35.6K and J 2 /k B =41.3K), placing the system in a more frustrated region of the CAF phase than ever reported. (author)

  17. Skyrmion dynamics in single-hole Neel ordered doped two-dimensional antiferromagnets with arbitrary spin

    International Nuclear Information System (INIS)

    Moura, A.R.; Pereira, A.R.; Moura-Melo, W.A.; Pires, A.S.T.

    2008-01-01

    We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Neel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the 'mass center' of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size

  18. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    Science.gov (United States)

    Guo, Jing; Simonson, Jack; Sun, Liling; Wu, Qi; Guo, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2014-03-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  19. Antiferromagnetic resonance excited by oscillating electric currents

    Science.gov (United States)

    Sluka, Volker

    2017-12-01

    In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.

  20. Annihilation of antiferromagnetic order in LiCoO2 by excess Li

    International Nuclear Information System (INIS)

    Sugiyama, Jun; Ikedo, Yutaka; Nozaki, Hiroshi; Mukai, Kazuhiko; Andreica, Daniel; Amato, Alex; Menetrier, Michel; Carlier, Dany; Delmas, Claude

    2009-01-01

    In order to elucidate the origin of antiferromagnetic (AF) order below 30 K in LiCoO 2 , in which all the Co 3+ ions are in a low-spin state with S=0, the magnetic nature of the Li-excess sample Li 1.04 Co 0.96 O 1.96 was studied by muon-spin spectroscopy in the temperature range between 1.8 and 100 K. Although disordered localized moments appeared below 25 K, static AF order was not detected even at 1.8 K. Moreover, a small amount of excess Li ions (4%) and oxygen vacancies (2%) was found to change ∼50% of the sample into a magnetically disordered phase at 1.8 K. The stoichiometric LiCoO 2 , which was prepared from the same starting materials to those for the Li-excess sample, showed an AF transition at 30 K, while the volume fraction of the AF phase was 10% even at 1.8 K. This therefore excludes the possible role of the excess Li + on the formation of static AF order.

  1. An innovation wall model based on interlayer ventilation

    International Nuclear Information System (INIS)

    Feng Jinmei; Lian Zhiwei; Hou Zhijian

    2008-01-01

    The thermal characteristics of the external wall are important to the energy consumption of the air conditioning system. Great attention should also be paid to the energy loss of the air exhaust. An innovation wall model based on interlayer ventilation is presented in this paper. The interlayer ventilation wall combines the wall and air exhaust of heating, ventilating and air conditioning (HVAC). The results of the experiment show that the energy loss of the exhaust air can be fully recovered by the interlayer ventilation wall. The cooling load can be reduced greatly because the temperature difference between the internal surface of the interlayer ventilation wall and the indoor air is very small. Clearly, the small temperature difference can enhance thermal comfort. In order to popularize the interlayer ventilation wall, technical and economical analysis is presented in this paper. Based on the buildings in the Shanghai area and a standard air conditioning system, a 4 years payback period for interlayer ventilation wall implementation was found according to the analysis

  2. Collinear order in the frustrated spin-(1)/(2) antiferromagnet Li{sub 2}CuW{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Tsirlin, Alexander A. [NICPB, Tallinn (Estonia); Nath, Ramesh; Ranjith, Kumar [Indian Institute of Science Education and Research, Trivandrum (India); Kasinathan, Deepa [MPI CPfS, Dresden (Germany); Skoulatos, Markos [Laboratory of Neutron Scattering, PSI, Villigen (Switzerland)

    2015-07-01

    Li{sub 2}CuW{sub 2}O{sub 8} is a three-dimensional spin-(1)/(2) antiferromagnet that features collinear spin order despite abundant magnetic frustration that would normally trigger a non-collinear incommensurate order, at least on the classical level. Using density-functional calculations, we establish the spin lattice comprising two non-coplanar triangular networks that introduce frustration along all three crystallographic directions. Magnetic susceptibility and heat capacity reveal a 1D-like magnetic response, which is, however, inconsistent with the naive spin-chain model. Moreover, the high saturation field of 29 T compared to the susceptibility maximum at as low as 8.5 K give strong evidence for the importance of interchain couplings and the magnetic frustration. Below T{sub N} ≅ 3.9 K, Li{sub 2}CuW{sub 2}O{sub 8} develops collinear magnetic order with parallel spins along a and c and antiparallel spins along b. The ordered moment is about 0.7 μ{sub B} according to neutron powder diffraction. This qualifies Li{sub 2}CuW{sub 2}O{sub 8} as a unique three-dimensional spin-(1)/(2) antiferromagnet, where collinear magnetic order is stabilized by quantum fluctuations.

  3. Preparation, physicochemical characterisation and magnetic properties of Cu-Al layered double hydroxides with CO 32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; Pigazo, Fernando; Rives, Vicente

    2006-03-01

    Layered double hydroxides with the hydrotalcite-like structure, containing Cu(II) and Al(III) in the layers, and different alkyl sulphonates in the interlayer, have been prepared and characterised by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Their magnetic properties have been also studied. Except for the sample containing octadecanesulphonate in the interlayer, for which an excess of sulphonate exists, pure crystalline phases have been obtained in the other cases. Upon heating, combustion of the organic chain takes place at lower temperature than for the corresponding sodium salts. A two-dimensional antiferromagnetic behaviour is observed at 200 K in all samples containing intercalated sulphonate. The χT value is lower for the samples containing interlayer sulphonates (with layer-layer distances in the 21-31 Å range), than for a carbonate-containing analogue (basal spacing 7.51 Å).

  4. Antiferromagnetic order in the Hubbard model on the Penrose lattice

    Science.gov (United States)

    Koga, Akihisa; Tsunetsugu, Hirokazu

    2017-12-01

    We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.

  5. Neutron scattering study of unstable magnetic long-range order in the random two-dimensional Ising antiferromagnets Rb/sub 2/Cosub(c)Mgsub(1-c)F/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, H; Suzuki, M [Ochanomizu Univ., Tokyo (Japan). Dept. of Physics; Hutchings, M T [UKAEA Atomic Energy Research Establishment, Harwell. Materials Physics Div.

    1979-01-01

    The spin correlation between two-dimensionally (2D) ordered antiferromagnetic layers in the random antiferromagnets Rb/sub 2/Cosub(c)Mgsub(1-c)F/sub 4/ depends strongly on the rate at which the sample is cooled through the Neel point Tsub(N) and decreases markedly with decreasing Co/sup 2 +/ ion concentration c. Preliminary data are presented which indicate that the order below sub(N) is metastable and relaxes to a fully correlated 3D ordered state on a finite, measurable, time-scale.

  6. Magnetic ordering of quasi-1 D S=1/2 Heisenberg antiferromagnet Cu benzoate at sub-mK temperatures

    International Nuclear Information System (INIS)

    Karaki, Y.; Masutomi, R.; Kubota, M.; Ishimoto, H.; Asano, T.; Ajiro, Y.

    2003-01-01

    We have measured the AC susceptibility of quasi-1D S=1/2 Heisenberg antiferromagnet Cu benzoate at temperatures down to 0.2 mK. A sharp susceptibility peak is observed at 0.8 mK under an earth field. This fact indicates a 3D ordering of linear chains coupled by a weak magnetic interaction between chains

  7. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    International Nuclear Information System (INIS)

    León, H.

    2013-01-01

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.

  8. Formation of interlayer gap and control of interlayer burr in dry drilling of stacked aluminum alloy plates

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2016-02-01

    Full Text Available In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly quality and assembly efficiency, is time-consuming and costly, and is not conducive to aircraft automatic assembly based on industrial robot. In this paper, the formation of drilling exit burr and the influence of interlayer gap on interlayer burr formation were studied, and the mechanism of interlayer gap formation in drilling stacked aluminum alloy plates was investigated, a simplified mathematical model of interlayer gap based on the theory of plates and shells and finite element method was established. The relationship between interlayer gap and interlayer burr, as well as the effect of feed rate and pressing force on interlayer burr height and interlayer gap was discussed. The result shows that theoretical interlayer gap has a positive correlation with interlayer burr height and preloading pressing force is an effective method to control interlayer burr formation.

  9. Low to High Spin-State Transition Induced by Charge Ordering in Antiferromagnetic YBaCo2O5

    International Nuclear Information System (INIS)

    Vogt, T.; Woodward, P. M.; Karen, P.; Hunter, B. A.; Henning, P.; Moodenbaugh, A. R.

    2000-01-01

    The oxygen-deficient double perovskite YBaCo 2 O 5 , containing corner-linked CoO 5 square pyramids as principal building units, undergoes a paramagnetic to antiferromagnetic spin ordering at 330 K. This is accompanied by a tetragonal to orthorhombic distortion. Below 220 K orbital ordering and long-range Co 2+ /Co 3+ charge ordering occur as well as a change in the Co 2+ spin state from low to high spin. This transition is shown to be very sensitive to the oxygen content of the sample. To our knowledge this is the first observation of a spin-state transition induced by long-range orbital and charge ordering. (c) 2000 The American Physical Society

  10. Antiferromagnetic ordering of Er2NiSi3 compound

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2014-01-01

    Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)

  11. Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order

    Science.gov (United States)

    Yang, Chun; Feiguin, Adrian

    We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.

  12. Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation

    International Nuclear Information System (INIS)

    Fan, J.D.; Malozovsky, Y.M.

    2013-01-01

    Highlights: • In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity. • The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity. • For pnictides the antiferromagnetism exists as a result of the nesting condition. • Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. -- Abstract: We consider the Hubbard model in terms of the perturbative diagrammatic approach (UN F ⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U>0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UN F ≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UN F < 1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one

  13. Enhanced superconducting transition temperature in hyper-interlayer-expanded FeSe despite the suppressed electronic nematic order and spin fluctuations

    Science.gov (United States)

    Hrovat, Matevž Majcen; Jeglič, Peter; Klanjšek, Martin; Hatakeda, Takehiro; Noji, Takashi; Tanabe, Yoichi; Urata, Takahiro; Huynh, Khuong K.; Koike, Yoji; Tanigaki, Katsumi; Arčon, Denis

    2015-09-01

    The superconducting critical temperature, Tc, of FeSe can be dramatically enhanced by intercalation of a molecular spacer layer. Here we report on a 77Se,7Li , and 1H nuclear magnetic resonance (NMR) study of the powdered hyper-interlayer-expanded Lix(C2H8N2) yFe2 -zSe2 with a nearly optimal Tc=45 K. The absence of any shift in the 7Li and 1H NMR spectra indicates a complete decoupling of interlayer units from the conduction electrons in FeSe layers, whereas nearly temperature-independent 7Li and 1H spin-lattice relaxation rates are consistent with the non-negligible concentration of Fe impurities present in the insulating interlayer space. On the other hand, the strong temperature dependence of 77Se NMR shift and spin-lattice relaxation rate, 1 /77T1 , is attributed to the holelike bands close to the Fermi energy. 1 /77T1 shows no additional anisotropy that would account for the onset of electronic nematic order down to Tc. Similarly, no enhancement in 1 /77T1 due to the spin fluctuations could be found in the normal state. Yet, a characteristic power-law dependence 1 /77T1∝T4.5 still complies with the Cooper pairing mediated by spin fluctuations.

  14. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    Science.gov (United States)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and

  15. Electronic energy spectra in antiferromagnetic media with broken reciprocity

    International Nuclear Information System (INIS)

    Vitebsky, I.; Edelkind, J.; Bogachek, E.N.; Scherbakov, A.G.; Landman, U.

    1997-01-01

    Electronic energy spectra var-epsilon(q) of antiferromagnetically ordered media may display nonreciprocity; that is, the energies corresponding to Bloch states with wave numbers q and -q may be different. In this paper a simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antiferromagnetically ordered crystals as well as periodical layered structures. copyright 1997 The American Physical Society

  16. Tuning of optical mode magnetic resonance in CoZr/Ru/CoZr synthetic antiferromagnetic trilayers by oblique sputtering

    Science.gov (United States)

    Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun

    2018-04-01

    CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.

  17. Single-site approximation for the s-f model of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Takahashi, Masao; Nolting, Wolfgang

    2001-01-01

    For the s-f model of an antiferromagnetic semiconductor, the effect of the antiferromagnetic ordering of the localized spins on the conduction-electron state is investigated over a wide range of exchange strengths by combining the effective-medium approach with the Green's function in the 2x2 sublattice Bloch function representation. The band splitting due to the reduced magnetic Brillouin zone occurs below the Neel temperature. There is a marked effect of the thermal fluctuation of the antiferromagnetically ordered localized spins on the conduction electron at the energies near the top (bottom) of the lower- (higher-) energy subband

  18. Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu

    2000-04-01

    The ground-state phase diagram of a half-filled anisotropic Kondo lattice model is calculated within a mean-field theory. For small transverse exchange coupling J perpendicular perpendicular c1 , the ground state shows an antiferromagnetic long-range order with finite staggered magnetizations of both localized spins and conduction electrons. When J perpendicular > J perpendicular c2 , the long-range order is destroyed and the system is in a disordered Kondo singlet state with a hybridization gap. Both ground states can describe the low-temperature phases of Kondo insulating compounds. Between these two distinct phases, there may be a coexistent regime as a result of the balance between local Kondo screening and magnetic interactions. (author)

  19. Unusual magnetic excitations in the weakly ordered spin- 12 chain antiferromagnet Sr2CuO3: Possible evidence for Goldstone magnon coupled with the amplitude mode

    International Nuclear Information System (INIS)

    Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; Gu, G. D.; Zaliznyak, I. A.

    2017-01-01

    We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr 2 CuO 3 , with extremely weak magnetic ordering. The ESR spectra at T > T N , in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below T N , we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.

  20. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-01-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  1. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  2. Pressure-induced structural transformations, orbital order and antiferromagnetism in La.sub.0.75./sub.Ca.sub.0.25./sub.MnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kozlenko, D. P.; Dang, N.T.; Kichanov, S.E.; Lukin, E.V.; Knížek, Karel; Jirák, Zdeněk; Dubrovinsky, L.S.; Voronin, V.I.; Savenko, B. N.

    2013-01-01

    Roč. 86, č. 8 (2013) ISSN 1434-6028 Institutional support: RVO:68378271 Keywords : X-ray diffraction * antiferromagnetism * orbital order Subject RIV: BE - Theoretical Physics Impact factor: 1.463, year: 2013

  3. Antiferromagnetic ordering in superconducting YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Sidis, Y.; Ulrich, C.; Bourges, P.

    2001-01-01

    Commensurate antiferromagnetic ordering has been observed in the superconducting high-T-c. cuprate YBa2Cu3O6.5 (T-c = 55 K) by polarized and unpolarized elastic neutron scattering. The magnetic peak intensity exhibits a marked enhancement at T-c. Zero-field muon-spin-resonance experiments...

  4. Electric control of antiferromagnets

    OpenAIRE

    Fina, I.; Marti, X.

    2016-01-01

    In the past five years, most of the paradigmatic concepts employed in spintronics have been replicated substituting ferromagnets by antiferromagnets in critical parts of the devices. The numerous research efforts directed to manipulate and probe the magnetic moments in antiferromagnets have been gradually established a new and independent field known as antiferromagnetic spintronics. In this paper, we focus on the electrical control and detection of antiferromagnetic moments at a constant tem...

  5. Antiferromagnetic ordering in reduced Al doped YBa2Cu3-xAlxO6+#delta# single crystals

    DEFF Research Database (Denmark)

    Brecht, E.; Casalta, H.; Schleger, P.

    1994-01-01

    In YBa2Cu3-AlxO6+delta single crystals antiferromagnetic AFII ordering has been observed below 18 K by neutron diffraction. The transition temperature T-2 to the AFI ordering increases with x and delta.......In YBa2Cu3-AlxO6+delta single crystals antiferromagnetic AFII ordering has been observed below 18 K by neutron diffraction. The transition temperature T-2 to the AFI ordering increases with x and delta....

  6. Study of synthetic ferrimagnet-synthetic antiferromagnet structures for magnetic sensor application

    Science.gov (United States)

    Guedes, A.; Mendes, M. J.; Freitas, P. P.; Martins, J. L.

    2006-04-01

    There has been a growing interest in using both synthetic ferrimagnet (SF) free and synthetic antiferromagnet (SAF) pinned layers for head and memory applications. In particular, for linear sensor applications, these structures lower the magnetostatic fields present at the free layer through the reduction of its effective thickness (teffSF). This allows higher sensitivity but at the expense of an increased offset field H0(Néel coupling field Hf+interlayer demagnetizing field HdSAF). In this work, results on a series of patterned 3×1 and 6×2 μm2 top-pinned SF-SAF spin valves are analyzed and compared with a three-dimensional micromagnetic simulation in order to clarify the role of the different ferromagnetic layers in the overall offset field and sensitivity. H0 varies as 1/teffSF[teffSF=(Mata-Mbtb)/MeffSF]. The magnetostatic field acting on the SF coming from the SAF (HdSAF) can act as a biasing field, partially counterbalancing the Néel coupling field (Hf) leading to a reduction of H0. In this work the offset field was reduced from an initial value of 25 Oe in a quasicompensated SAF to a value of -6 Oe, by unbalancing the SAF and consequently increasing its effective moment (teffSF=15 A˚).

  7. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  8. Long-range interactions in antiferromagnetic quantum spin chains

    Science.gov (United States)

    Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.

    2017-08-01

    We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.

  9. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  10. Relativistic Néel-order fields induced by electrical current in antiferromagnets

    Czech Academy of Sciences Publication Activity Database

    Železný, Jakub; Gao, H.; Výborný, Karel; Zemen, Jan; Mašek, Jan; Manchon, A.; Wunderlich, Joerg; Sinova, Jairo; Jungwirth, Tomáš

    2014-01-01

    Roč. 113, č. 15 (2014), , "157201-1"-"157201-5" ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets * current induced switching Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.512, year: 2014

  11. Electrical properties of a charge-transfer interlayer modified organic heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Salzmann, Ingo; Koch, Norbert [Humboldt-Universitaet zu Berlin (Germany). Institut f. Physik; Vollmer, Antje [HZB-BESSY, Berlin (Germany)

    2010-07-01

    We investigated the effect of a thin interlayer (ca. monolayer) of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) between prototypical hole and electron transport layers (HTL and ETL) on interface energetics and current transport. As HTL we used 4,4{sup '},4''-tris(N,N-diphenyl-amino)triphenylamine (TDATA) and tris (8-hydroxyquinoline)aluminium (Alq{sub 3}) as ETL, which are commonly employed in organic light emitting diodes. The hole injection barrier into TDATA is 0.5 eV, as measured by photoemission spectroscopy. Deposition of an F4-TCNQ interlayer on top of TDATA does not further change the energy level position. However, after applying the F4-TCNQ interlayer the energy levels of Alq3 deposited on top of TDATA are 0.15 eV closer to the Fermi-level than without the interlayer. Diodes fabricated without interlayer had a 0.6 V higher onset-voltage one order of magnitude lower current density than those with F4-TCNQ. These observations can be rationalized by an increased (non-radiative) electron-hole recombination rate at the modified organic heterojunction and a changed internal electric field distribution.

  12. Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian

    1988-01-01

    The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs

  13. Antiferromagnetic transition in graphene functionalized with nitroaniline

    Science.gov (United States)

    Komlev, Anton A.; Makarova, Tatiana L.; Lahderanta, Erkki; Semenikhin, Petr Valeryevich; Veinger, Anatoly I.; Kochman, Igor V.; Magnani, Giacomo; Bertoni, Giovanni; Pontiroli, Daniele; Ricco, Mauro

    2017-07-01

    Magnetic properties of graphene nanostructures functionalized with aromatic radicals were investigated by electron spin resonance (ESR) and superconducting quantum interference device (SQUID) techniques. Three types of functionalized graphene samples were investigated (functionalization was performed by 4-bromoaniline, 4-nitroaniline, or 4-chloroaniline). According to SQUID measurements, in case of functionalization by nitroaniline, sharp change in temperature dependence of magnetic susceptibility was observed near 120 K. Such behavior was explained as antiferromagnetic ordering. The same but more extended effect was observed in ESR measurements below 160 K. In the ESR measurements, only one resonance line with g-factor equal to 2.003 was observed. Based on the temperature dependencies of spin concentration and resonance position and intensity, the effect was explained as antiferromagnetic ordering along the extended defects on the basal planes of the graphene.

  14. Ising-like spin anisotropy and competing antiferromagnetic-ferromagnetic orders in GdBaCo2O5.5 single crystals.

    Science.gov (United States)

    Taskin, A A; Lavrov, A N; Ando, Yoichi

    2003-06-06

    In RBaCo2O5+x compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo2O5.5 single crystals and find a remarkable uniaxial anisotropy of Co3+ spins which is tightly linked with the chain oxygen ordering in GdO0.5 planes. Reflecting the underlying oxygen order, CoO2 planes also develop a spin-state order consisting of Co3+ ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.

  15. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.

    2017-01-01

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  16. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný, J.

    2017-01-10

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  17. Interlayer exchange coupling, dipolar coupling and magnetoresistance in Fe/MgO/Fe trilayers with a subnanometer MgO barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kozioł-Rachwał, A. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Skowroński, W.; Frankowski, M. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Chęciński, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ziętek, S.; Rzeszut, P. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ślęzak, M.; Matlak, K.; Ślęzak, T. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Stobiecki, T. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Korecki, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków (Poland)

    2017-02-15

    Fe/MgO/Fe trilayers with a subnanometer MgO tunnel barrier were grown by molecular beam epitaxy. Longitudinal magnetooptic Kerr effect measurements confirmed the existence of the antiferromagnetic interlayer exchange coupling (IEC) between the Fe layers for 2 Åantiferromagnetic (AFM) interlayer exchange coupling (IEC) between Fe layers in Fe/MgO/Fe. • After nanofabrication the effective AFM IEC is enhanced due to the dipolar coupling. • The dipolar coupling that appeared after the nanofabrication process modified the effective coupling between layers. • Non-zero magnetoresistance values registered for the Fe/MgO/Fe trilayers with the MgO spacers as thin as 3.4 Å.

  18. Soft modes in the easy plane pyrochlore antiferromagnet

    International Nuclear Information System (INIS)

    Champion, J D M; Holdsworth, P C W

    2004-01-01

    Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts

  19. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    Science.gov (United States)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  20. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    Science.gov (United States)

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  1. Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets

    International Nuclear Information System (INIS)

    Wal, A.J. van der.

    1979-01-01

    Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)

  2. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  3. Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films

    Science.gov (United States)

    White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.

    2013-07-01

    Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.

  4. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    Science.gov (United States)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  5. Anisotropic spin motive force in multi-layered Dirac fermion system, α-(BEDT-TTF)2I3

    International Nuclear Information System (INIS)

    Kubo, K; Morinari, T

    2015-01-01

    We investigate the anisotropic spin motive force in α-(BEDT-TTF) 2 I 3 , which is a multi-layered massless Dirac fermion system under pressure. Assuming the interlayer antiferromagnetic interaction and the interlayer anisotropic ferromagnetic interaction, we numerically examine the spin ordered state of the ground state using the steepest descent method. The anisotropic interaction leads to the anisotropic spin ordered state. We calculate the spin motive force produced by the anisotropic spin texture. The result quantitatively agrees with the experiment. (paper)

  6. Role of interlayer hydration in lincomycin sorption by smectite clays.

    Science.gov (United States)

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  7. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  8. Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration

    Science.gov (United States)

    Li, Hongliang; Song, Shaoxian; Dong, Xianshu; Min, Fanfei; Zhao, Yunliang; Peng, Chenliang; Nahmad, Yuri

    2018-04-01

    Swelling of montmorillonite (Mt) is an important factor for many industrial applications. In this study, crystalline swelling of alkali-metal- and alkaline-earth-metal-Mt has been studied through energy optimization and molecular dynamics simulations using the clay force field by Materials Studio 8.0. The delamination and exfoliation of Mt are primarily realized by crystalline swelling caused by the enhanced interlayer cation hydration. The initial position of the interlayer cations and water molecules is the dominated factor for the accuracy of the Mt simulations. Crystalline swelling can be carried out in alkali-metal-Mt and Mg-Mt but with difficulty in Ca-Mt, Sr-Mt and Ba-Mt. The crystalline swelling capacity values are in the order Na-Mt > K-Mt > Cs-Mt > Mg-Mt. This order of crystalline swelling of Mt in the same group can be attributed to the differences between the interlayer cation hydration strengths. In addition, the differences in the crystalline swelling between the alkali-metal-Mt and alkaline-earth-metal-Mt can be primarily attributed to the valence of the interlayer cations.

  9. Antiferromagnetism and d-wave superconductivity in (doped) Mott insulators: A wave function approach

    OpenAIRE

    Weng, Z. Y.; Zhou, Y.; Muthukumar, V. N.

    2003-01-01

    We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be ...

  10. Magnetoresistive properties of non-uniform state of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.

    1996-01-01

    The phenomenological model of magnetoresistive properties of magneto-non-single-phase state of alloyed magnetic semiconductors is considered using the concept derived for a description of magnetoresistive effects in layered and granular magnetic metals. By assuming that there exists a magneto-non-single state in the manganites having the perovskite structure, it is possible to describe, in the framework of above approach, large magnetoresistive effects of manganite phases with antiferromagnetic order and semiconductor-type conductivity as well as those with antiferromagnetic properties and metallic-type conductivity

  11. Antiferromagnetic CsCrF{sub 5} and canted antiferromagnetism in RbCrF{sub 5} and KCrF{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Jagličić, Zvonko, E-mail: zvonko.jaglicic@imfm.si [University of Ljubljana, Faculty of Civil and Geodetic Engineering, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Mazej, Zoran, E-mail: zoran.mazej@ijs.si [Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2017-07-15

    Highlights: • Cr(IV) ions are antiferromagnetically coupled within chains in ACrF{sub 5} (A = Cs, Rb, K). • Small structural difference causes huge difference in magnetic properties below 10 K. • Canted antiferromagnetism has been observed in RbCrF{sub 5} and KCrF{sub 5} at low temperature. - Abstract: In ACrF{sub 5} (A = Cs, Rb, K), Cr(IV) ions are coordinated by six fluoride ligands where the resulting CrF{sub 6} octahedra share cis vertexes to form infinite chains of ([Cr{sup IV}F{sub 5}]{sup −}){sub n}. The geometry of the latter in Cs compound differs from that in K and Rb compounds. The results of investigations of the magnetic behaviour of these compounds have shown that an antiferromagnetic superexchange interaction is present within the chains with J{sub Cs} = −10.2 cm{sup −1}, J{sub Rb} = −13.3 cm{sup −1}, and J{sub K} = −13.1 cm{sup −1}. Additional ferromagnetic-like long-range ordering has been observed in KCrF{sub 5} and RbCrF{sub 5} below 6 K which can be explained, in a correlation with their crystal structures, as canted antiferromagnetism.

  12. Antiferromagnetic skyrmions

    Science.gov (United States)

    Tretiakov, Oleg; Barker, Joseph

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.

  13. Effect of Dzyaloshinskii-Moriya on Magnetic orders of J_1-J_2 Antiferromagnetic Heisenberg model

    Directory of Open Access Journals (Sweden)

    Fariba Masoudi

    2017-11-01

    Full Text Available Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM interaction cants the spins of one on the subluttices. The ground state of model is classically degenerate for , including infinit numbers of vorticity vectors that are able to minimize the model. This phase is important because of the probability of the existence of quantum spin liquid in this region. To investigate the effect of quantum fluctuation on the stability of the classical phase diagram, linear spin wave theory of  Holstein-Primakoff is used. The results show that in the classical degeneracy regime, the quantum fluctuations for  cause spiral order in this region. The ground state of model remains disorder for, and this region is a good place for finding quantum spin liquid

  14. Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers

    International Nuclear Information System (INIS)

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2015-01-01

    The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)

  15. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    Science.gov (United States)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  16. Effective Hamiltonian and low-lying eigenenergy clustering patterns of four-sublattice antiferromagnets

    DEFF Research Database (Denmark)

    Zhang, N.G.; Henley, C.L.; Rischel, C.

    2002-01-01

    We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...

  17. Spin reorientation via antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  18. Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature

  19. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  20. High-order study of the quantum critical behavior of a frustrated spin-1/2 antiferromagnet on a stacked honeycomb bilayer

    Science.gov (United States)

    Bishop, R. F.; Li, P. H. Y.

    2017-12-01

    We study a frustrated spin-1/2 J1-J2-J3-J1⊥ Heisenberg antiferromagnet on an A A -stacked bilayer honeycomb lattice. In each layer we consider nearest-neighbor (NN), next-nearest-neighbor, and next-next-nearest-neighbor antiferromagnetic (AFM) exchange couplings J1,J2 , and J3, respectively. The two layers are coupled with an AFM NN exchange coupling J1⊥≡δ J1 . The model is studied for arbitrary values of δ along the line J3=J2≡α J1 that includes the most highly frustrated point at α =1/2 , where the classical ground state is macroscopically degenerate. The coupled cluster method is used at high orders of approximation to calculate the magnetic order parameter and the triplet spin gap. We are thereby able to give an accurate description of the quantum phase diagram of the model in the α δ plane in the window 0 ≤α ≤1 ,0 ≤δ ≤1 . This includes two AFM phases with Néel and striped order, and an intermediate gapped paramagnetic phase that exhibits various forms of valence-bond crystalline order. We obtain accurate estimations of the two phase boundaries, δ =δci(α) , or equivalently, α =αc i(δ ) , with i =1 (Néel) and 2 (striped). The two boundaries exhibit an "avoided crossing" behavior with both curves being re-entrant. Thus, in this α δ window, Néel order exists only for values of δ in the range δc1 (α ) , with δc1 0 for αc 1(0 ) ≈0.49 (1 ) , and striped order similarly exists only for values of δ in the range δc2 (α ) , with δc2 αc2(0) ≈0.600 (5 ) and δc2 0 for αc 2(0 ) >α >α2<≈0.56 (1 ) .

  1. Dual-mode ferromagnetic resonance in an FeCoB/Ru/FeCoB synthetic antiferromagnet with uniaxial anisotropy

    Science.gov (United States)

    Wang, Cuiling; Zhang, Shouheng; Qiao, Shizhu; Du, Honglei; Liu, Xiaomin; Sun, Ruicong; Chu, Xian-Ming; Miao, Guo-Xing; Dai, Youyong; Kang, Shishou; Yan, Shishen; Li, Shandong

    2018-05-01

    Dual-mode ferromagnetic resonance is observed in FeCoB/Ru/FeCoB trilayer synthetic antiferromagnets with uniaxial in-plane magnetic anisotropy. The optical mode is present in the (0-108 Oe) magnetic field range, where the top and bottom layer magnetizations are aligned in opposite directions. The strong acoustic mode appears, when the magnetic field exceeds the 300 Oe value, which corresponds to the flop transition in the trilayer. Magnetic field and angular dependences of resonant frequencies are studied for both optical (low-field) and acoustic (high field) modes. The low-field mode is found to be anisotropic but insensitive to the magnetic field value. In contrast, the high field mode is quasi-isotropic, but its resonant frequency is tunable by the value of the magnetic field. The coexistence of two modes of ferromagnetic resonance as well as switching between them with the increase in the magnetic field originates from the difference in the sign of interlayer coupling energy at the parallel and antiparallel configurations of the synthetic antiferromagnet. The dual-mode resonance in the studied trilayer structures provides greater flexibility in the design and functionalization of micro-inductors in monolithic microwave integrated circuits.

  2. Interplay between charge and antiferromagnetic ordering in Bi0.6-xPrxCa0.4MnO3 (0≤x≤0.6) perovskite manganite

    International Nuclear Information System (INIS)

    Yadav, Kamlesh; Singh, H.K.; Varma, G.D.

    2012-01-01

    Structure, magnetic and transport properties of polycrystalline Bi 0.6-x Pr x Ca 0.4 MnO 3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been studied. Systematic substitution of Pr at Bi site induces an interesting interplay between the charge ordering and antiferromagnetism. The charge ordering temperature (T CO ) decreases with increasing x. The antiferromagnetic (AFM) ordering temperature (T N ) increases sharply at both the extremes but remains nearly constant from x=0.2 to 0.4. At temperatures lower than T N a transition to the glassy state is observed. The nature of this glass like state appears to be controlled by the Pr content, and at lower values of x this is akin to a spin glass, while at higher x it has a characteristic of cluster glass. The Pr doping also leads to enhancement in the magnetic moment. In the present work it has been proposed that the local lattice distortion induced due to size mismatch between the A-site cations and 6s 2 character of Bi 3+ lone pair electron is responsible for the observed magnetic and electrical properties.

  3. How to manipulate magnetic states of antiferromagnets

    Science.gov (United States)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  4. Weyl magnons in breathing pyrochlore antiferromagnets

    Science.gov (United States)

    Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang

    2016-01-01

    Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053

  5. Role of the antiferromagnetic bulk spins in exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)

    2016-10-15

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  6. Role of the antiferromagnetic bulk spins in exchange bias

    International Nuclear Information System (INIS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-01-01

    This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.

  7. Magnetic correlations in the intermetallic antiferromagnet Nd3Co4Sn13

    Science.gov (United States)

    Wang, C. W.; Lin, J. W.; Lue, C. S.; Liu, H. F.; Kuo, C. N.; Mole, R. A.; Gardner, J. S.

    2017-11-01

    Specific heat, magnetic susceptibility, and neutron scattering have been used to investigate the nature of the spin system in the antiferromagnet Nd3Co4Sn13. At room temperature Nd3Co4Sn13 has a cubic, Pm-3n structure similar to Yb3Rh4Sn13. Antiferromagnetic interactions between, Nd3+ ions dominate the magnetic character of this sample and at 2.4 K the Nd spins enter a long range order state with a magnetic propagation vector q  =  (0 0 0) with an ordered moment of 1.78(2) µ B at 1.5 K. The magnetic Bragg intensity grows very slowly below 1 K, reaching ~2.4 µ B at 350 mK. The average magnetic Nd3+ configuration corresponds to the 3D irreducible representation Γ7. This magnetic structure can be viewed as three sublattices of antiferromagnetic spin chains coupled with each other in the 120°-configuration. A well-defined magnetic excitation was measured around the 1 1 1 zone centre and the resulting dispersion curve is appropriate for an antiferromagnet with a gap of 0.20(1) meV.

  8. Neutron diffraction study and theoretical analysis of the antiferromagnetic order and the diffuse scattering in the layered kagome system CaBaCo2Fe2O7

    Science.gov (United States)

    Reim, J. D.; Rosén, E.; Zaharko, O.; Mostovoy, M.; Robert, J.; Valldor, M.; Schweika, W.

    2018-04-01

    The hexagonal swedenborgite, CaBaCo2Fe2O7 , is a chiral frustrated antiferromagnet, in which magnetic ions form alternating kagome and triangular layers. We observe a long-range √{3 }×√{3 } antiferromagnetic order setting in below TN=160 K by neutron diffraction on single crystals of CaBaCo2Fe2O7 . Both magnetization and polarized neutron single crystal diffraction measurements show that close to TN spins lie predominantly in the a b plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya interactions. The ordered structure can be described and refined within the magnetic space group P 31 m' . Diffuse scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and coexistence of the √{3 }×√{3 } order with disorder. The coexistence can be explained by the freedom to vary spins without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken inversion symmetry of the lattice, in agreement with our symmetry analysis.

  9. Morphology of Si/tungsten-silicides/Si interlayers

    International Nuclear Information System (INIS)

    Theodore, N.; Secco d'Aragona, F.; Blackstone, S.

    1992-01-01

    Tungsten and tungsten-silicides are of interest for semiconductor technology because of their refractory nature, low electrical-resistivity and high electromigration-resistance. This paper presents the first formation of buried tungsten-silicide layers in silicon, by proximity adhesion. The interlayers, created by a combination of chemical vapor-deposition (CVD) and proximity-adhesion were studied using transmission electron-microscopy (TEM). The behavior of the layers in the presence and absence of an adjacent silicon-dioxide interlayer was also investigated. Buried silicide layers were successfully formed with or without the adjacent silicon-dioxide. The silicide formed continuous layers with single grains encompassing the width of the interlayer. Individual grains were globular, with cusps at grain boundaries. This caused interlayer-thicknesses to be non-uniform, with lower thickness values being present at the cusps. Occasional voids were observed at grain-boundary cusps. The voids were smaller and less frequent in the presence of an adjacent oxide-layer, due to flow of the oxide during proximity adhesion. Electron-diffraction revealed a predominance of tungsten-disilicide in the interlayers, with some free tungsten being present. Stresses in the silicide layers caused occasional glide dislocations to propagate into the silicon substrate beneath the interlayers. The dislocations propagate only ∼100 nm into the substrate and therefore should not be detrimental to use of the buried layers. Occasional precipitates were observed at the end of glide-loops. These possibly arise due to excess tungsten from the interlayer diffusion down the glide dislocation to finally precipitate out as tungsten-silicide

  10. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: khabib@ee.ucr.edu; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521-0204 (United States); Ge, Supeng [Department of Physics and Astronomy, University of California, Riverside, California 92521-0204 (United States)

    2013-12-09

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm{sup 2}. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.

  11. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K.; Ge, Supeng

    2013-01-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm 2 . For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described

  12. Enhancing the DEMO divertor target by interlayer engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R., E-mail: tom.barrett@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M. [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, M.; Reiser, J. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany)

    2015-10-15

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m{sup 2}. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m{sup 2} surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m{sup 2}.

  13. Enhancing the DEMO divertor target by interlayer engineering

    International Nuclear Information System (INIS)

    Barrett, T.R.; McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M.; Rieth, M.; Reiser, J.

    2015-01-01

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m"2. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m"2 surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m"2.

  14. Time-varying multiplex network: Intralayer and interlayer synchronization

    Science.gov (United States)

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  15. Spin-orbit torque in two-dimensional antiferromagnetic topological insulators

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2017-01-01

    We investigate spin transport in two-dimensional ferromagnetic (FTI) and antiferromagnetic (AFTI) topological insulators. In the presence of an in-plane magnetization AFTI supports zero energy modes, which enables topologically protected edge conduction at low energy. We address the nature of current-driven spin torque in these structures and study the impact of spin-independent disorder. Interestingly, upon strong disorder the spin torque develops an antidamping component (i.e., even upon magnetization reversal) along the edges, which could enable current-driven manipulation of the antiferromagnetic order parameter. This antidamping torque decreases when increasing the system size and when the system enters the trivial insulator regime.

  16. Spin-orbit torque in two-dimensional antiferromagnetic topological insulators

    KAUST Repository

    Ghosh, Sumit

    2017-01-24

    We investigate spin transport in two-dimensional ferromagnetic (FTI) and antiferromagnetic (AFTI) topological insulators. In the presence of an in-plane magnetization AFTI supports zero energy modes, which enables topologically protected edge conduction at low energy. We address the nature of current-driven spin torque in these structures and study the impact of spin-independent disorder. Interestingly, upon strong disorder the spin torque develops an antidamping component (i.e., even upon magnetization reversal) along the edges, which could enable current-driven manipulation of the antiferromagnetic order parameter. This antidamping torque decreases when increasing the system size and when the system enters the trivial insulator regime.

  17. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer

    International Nuclear Information System (INIS)

    Atasoy, Evren; Kahraman, Nizamettin

    2008-01-01

    Titanium and low carbon steel plates were joined through diffusion bonding using a silver interlayer at various temperatures for various diffusion times. In order to determine the strength of the resulting joints, tensile-shear tests and hardness tests were applied. Additionally, optical, scanning electron microscopy examinations and energy dispersive spectrometry elemental analyses were carried out to determine the interface properties of the joint. The work showed that the highest interface strength was obtained for the specimens joined at 850 deg. C for 90 min. It was seen from the hardness results that the highest hardness value was obtained for the interlayer material and the hardness values on the both sides of the interlayer decreased gradually as the distance from the joint increased. In energy dispersive spectrometry analyses, it was seen that the amount of silver in the interlayer decreased markedly depending on the temperature rise. In addition, increasing diffusion time also caused some slight decrease in the amount of silver

  18. Spiral phases of doped antiferromagnets

    International Nuclear Information System (INIS)

    Shraiman, B.I.; Siggia, E.D.

    1990-01-01

    The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs

  19. Nano-confined water in the interlayers of hydrocalumite: Reorientational dynamics probed by neutron spectroscopy and molecular dynamics computer simulations

    Science.gov (United States)

    Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.

    2008-12-01

    Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the

  20. Composite interlayer for diffusion bonding

    International Nuclear Information System (INIS)

    1976-01-01

    A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)

  1. Thermally assisted interlayer magnetic coupling through Ba_0_._0_5Sr_0_._9_5TiO_3 barriers

    International Nuclear Information System (INIS)

    Carreira, Santiago J.; Steren, Laura B.; Avilés Félix, Luis; Alejandro, Gabriela; Sirena, Martín

    2016-01-01

    We report on the interlayer exchange coupling across insulating barriers observed on Ni_8_0Fe_2_0/Ba_0_._0_5Sr_0_._9_5TiO_3/La_0_._6_6Sr_0_._3_3MnO_3 (Py/BST_0_._0_5/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO_3 (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate. An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST_0_._0_5. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.

  2. Diamond lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Oitmaa, J.

    2018-04-01

    We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S  =  1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.

  3. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  4. Antiferromagnetism and its relation to the superconducting phases of UPt3

    DEFF Research Database (Denmark)

    Isaacs, E.D.; Zschack, P.; Broholm, C.L.

    1995-01-01

    Using magnetic x-ray and neutron diffraction in UPt3, we find that a suppression of the antiferromagnetic scattering intensity in the superconducting phase is due to a reduction in the magnitude of the staggered moment with no change in symmetry. The existence of the suppression as well...... as the magnetic correlation lengths are not affected by the presence or absence of a visible splitting in the superconducting transition. The simplest models wherein antiferromagnetic order provides the symmetry-breaking field for the splitting do not provide a compete explanation of our results....

  5. Non-resonant precession of the neutron magnetic moment in antiferromagnets

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1995-01-01

    It is shown that the magnetic moment of a neutron moving in an antiferromagnet with a spiral-order magnetic field slowly precesses. Precession pitch strongly depends on the value and direction of the neutron velocity. 4 refs

  6. Nano-engineered composites: interlayer carbon nanotubes effect

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Glaucio, E-mail: carleyone@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Geraldo, Viviany; Oliveira, Sergio de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Avila, Antonio Ferreira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2013-11-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with Almost-Equal-To 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  7. Nano-engineered composites: interlayer carbon nanotubes effect

    International Nuclear Information System (INIS)

    Carley, Glaucio; Geraldo, Viviany; Oliveira, Sergio de; Avila, Antonio Ferreira

    2013-01-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  8. Dynamic selective switching in antiferromagnetically-coupled bilayers close to the spin reorientation transition

    International Nuclear Information System (INIS)

    Fernández-Pacheco, A.; Mansell, R.; Petit, D.; Lee, J. H.; Cowburn, R. P.; Ummelen, F. C.; Swagten, H. J. M.

    2014-01-01

    We have designed a bilayer synthetic antiferromagnet where the order of layer reversal can be selected by varying the sweep rate of the applied magnetic field. The system is formed by two ultra-thin ferromagnetic layers with different proximities to the spin reorientation transition, coupled antiferromagnetically using Ruderman-Kittel-Kasuya-Yosida interactions. The different dynamic magnetic reversal behavior of both layers produces a crossover in their switching fields for field rates in the kOe/s range. This effect is due to the different effective anisotropy of both layers, added to an appropriate asymmetric antiferromagnetic coupling between them. Field-rate controlled selective switching of perpendicular magnetic anisotropy layers as shown here can be exploited in sensing and memory applications.

  9. Antiferromagnetism and its origin in iron-based superconductors (Review Article)

    International Nuclear Information System (INIS)

    Ding, Ming-Cui; Zhang, Yu-Zhong; Lin, Hai-Qing

    2014-01-01

    In iron-based superconductors, unravelling the origin of the antiferromagnetism is a crucial step towards understanding the high-T c superconductivity as it is widely believed that the magnetic fluctuations play important roles in the formation of the Cooper pairs. Therefore, in this paper, we will briefly review experimental results related to the antiferromagnetic state in iron-based superconductors and focus on a review of the theoretical investigations which show applicability of the itinerant scenario to the observed antiferromagnetism and corresponding phase transitions in various families of the iron-based superconductors. A proposal of coupling between frustrated and un frustrated bands for understanding the reduced magnetic moment typically observed in iron pnictides is also reviewed. While all the above theoretical investigations do not rule out a possible existence of localized electrons in iron-based superconductors, these results strongly indicate a close relation between itinerant electrons and the magnetically ordered state and point out the importance of taking into account the orbital degrees of freedom.

  10. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    Science.gov (United States)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  11. Two-dimensional J.sub.eff./sub.=1/2 antiferromagnetic insulator unraveled from interlayer exchange coupling in artificial perovskite iridate superlattices

    Czech Academy of Sciences Publication Activity Database

    Hao, L.; Meyers, D.; Frederick, C.; Fabbris, G.; Yang, J.; Traynor, N.; Horák, L.; Kriegner, Dominik; Choi, Y.; Kim, J.-W.; Haskel, D.; Ryan, P.J.; Dean, M.P.M.; Liu, J.

    2017-01-01

    Roč. 119, č. 2 (2017), s. 1-6, č. článku 027204. ISSN 0031-9007 R&D Projects: GA ČR GB14-37427G; GA MŠk EF16_013/0001405 Grant - others:OP VVV - LNSM(XE) CZ.02.1.01/0.0/0.0/16_013/0001405 Institutional support: RVO:68378271 Keywords : Heisenberg-antiferromagnet * optical - properties * Sr 2 IrO 4 * lattice * oxides Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 8.462, year: 2016

  12. Mn55 NMR investigation of the correlation between antiferromagnetism and ferroelectricity in TbMn2O5

    Science.gov (United States)

    Baek, S.-H.; Reyes, A. P.; Hoch, M. J. R.; Moulton, W. G.; Kuhns, P. L.; Harter, A. G.; Hur, N.; Cheong, S.-W.

    2006-10-01

    The correlation between antiferromagnetism and ferroelectricity in magnetoelectric multiferroic TbMn2O5 has been investigated by zero-field Mn55 NMR. Antiferromagnetic transition near 40K is found to be first order. When an external field up to 7T is applied along the easy a axis, a dramatic change in the signal intensity is observed which is hysteretic in nature. Such effects are absent for H along the b and c axes. The observed field-induced signal enhancement is attributed to antiferromagnetic domain walls which are strongly coupled to ferroelectric domain walls. Experimental data suggest that this may be related to the field-induced ferromagnetic ordering of the Tb ion.

  13. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  14. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Dandan, E-mail: dandan.qu@partner.kit.edu [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zhou, Zhangjian, E-mail: zhouzhangjianustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Yum, Youngjin [School of Mechanical Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Aktaa, Jarir [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    A rapidly solidified foil-type Ti–Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu–Cr–Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu–Cr–Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  15. Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque

    Science.gov (United States)

    Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.

    2018-05-01

    Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.

  16. Ordering phenomena in a heterostructure of frustrated and unfrustrated triangular-lattice Ising layers

    Science.gov (United States)

    Žukovič, Milan; Tomita, Yusuke; Kamiya, Y.

    2017-07-01

    We study critical and magnetic properties of a bilayer Ising system consisting of two triangular planes A and B, with the antiferromagnetic (AF) coupling JA and the ferromagnetic (FM) one JB for the respective layers, which are coupled by the interlayer interaction JAB by using Monte Carlo simulations. When JA and JB are of the same order, the unfrustrated FM plane orders first at a high temperature Tc 1˜JB . The spontaneous FM order then exerts influence on the other frustrated AF plane as an effective magnetic field, which subsequently induces a ferrimagnetic order in this plane at low temperatures below Tc 2. When short-range order is developed in the AF plane while the influence of the FM plane is still small, there appears a preemptive Berezinskii-Kosterlitz-Thouless-type pseudocritical crossover regime just above the ferrimagnetic phase transition point, where the short-distance behavior up to a rather large length scale exponentially diverging in ∝JA/T is controlled by a line of Gaussian fixed points at T =0 . In the crossover region, a continuous variation in the effective critical exponent 4/9 ≲ηeff≲1/2 is observed. The phase diagram by changing the ratio JA/JB is also investigated.

  17. Glass-like recovery of antiferromagnetic spin ordering in a photo-excited manganite Pr0.7Ca0.3MnO3

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S. Y.; Langner, M. C.; Zhu, Y.; Chuang, Y. -D.; Rini, M.; Glover, T. E.; Hertlein, M. P.; Gonzalez, A.G. Cruz; Tahir, N.; Tomioka, Y.; Tokura, Y.; Hussain, Z.; Schoenlein, R. W.

    2014-01-16

    Electronic orderings of charges, orbitals and spins are observed in many strongly correlated electron materials, and revealing their dynamics is a critical step toward understanding the underlying physics of important emergent phenomena. Here we use time-resolved resonant soft x-ray scattering spectroscopy to probe the dynamics of antiferromagnetic spin ordering in the manganite Pr0:7Ca0:3MnO3 following ultrafast photo-exitation. Our studies reveal a glass-like recovery of the spin ordering and a crossover in the dimensionality of the restoring interaction from quasi-1D at low pump fluence to 3D at high pump fluence. This behavior arises from the metastable state created by photo-excitation, a state characterized by spin disordered metallic droplets within the larger charge- and spin-ordered insulating domains. Comparison with time-resolved resistivity measurements suggests that the collapse of spin ordering is correlated with the insulator-to-metal transition, but the recovery of the insulating phase does not depend on the re-establishment of the spin ordering.

  18. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  19. Thermally assisted interlayer magnetic coupling through Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3} barriers

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, Santiago J.; Steren, Laura B. [Centro Atómico Constituyentes, San Martín, Buenos Aires 1650 (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autonoma de Buenos Aires C1425FQB (Argentina); Avilés Félix, Luis; Alejandro, Gabriela [Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autonoma de Buenos Aires C1425FQB (Argentina); Centro Atómico Bariloche, Bariloche, Rio Negro 8400 (Argentina); Sirena, Martín [Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autonoma de Buenos Aires C1425FQB (Argentina); Centro Atómico Bariloche, Bariloche, Rio Negro 8400 (Argentina); Instituto Balseiro-CNEA & Univ. Nac. de Cuyo, Bariloche, Rio Negro 8400 (Argentina)

    2016-08-08

    We report on the interlayer exchange coupling across insulating barriers observed on Ni{sub 80}Fe{sub 20}/Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3}/La{sub 0.66}Sr{sub 0.33}MnO{sub 3} (Py/BST{sub 0.05}/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO{sub 3} (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate. An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST{sub 0.05}. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.

  20. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    Science.gov (United States)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., 10.1038/nphys4205" xlink:type="simple">Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  1. Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films

    KAUST Repository

    Cossu, Fabrizio; Colizzi, G.; Filippetti, A.; Fiorentini, Vincenzo; Schwingenschlö gl, Udo

    2013-01-01

    Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.

  2. Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films

    KAUST Repository

    Cossu, Fabrizio

    2013-06-21

    Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.

  3. Pressure-induced antiferromagnetic superconductivity in CeNiGe3: A Ge73-NQR study under pressure

    International Nuclear Information System (INIS)

    Harada, A.; Kawasaki, S.; Mukuda, H.; Kitaoka, Y.; Thamizhavel, A.; Okuda, Y.; Settai, R.; Onuki, Y.; Itoh, K.M.; Haller, E.E.; Harima, H.

    2007-01-01

    We report on antiferromagnetic (AF) properties of pressure-induced superconductivity in CeNiGe 3 via the Ge73 nuclear-quadrupole-resonance (NQR) measurements under pressure (P). The NQR-spectrum measurements have revealed that the incommensurate antiferromagnetic ordering is robust against increasing P with the increase of ordered moment and ordering temperature. Nevertheless the measurements of nuclear spin-lattice relaxation rate (1/T 1 ) have pointed to the onset of superconductivity as a consequence of Ce-4f electrons delocalized by applying P. The emergence of superconductivity under the development of AF order suggests that a novel type of superconducting mechanism works in this compound

  4. Role of interlayer coupling in ultra thin MoS2

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2012-01-01

    The effects of interlayer coupling on the vibrational and electronic properties of ultra thin MoS 2 were studied by ab initio calculations. For smaller slab thickness, the interlayer distance is significantly elongated because of reduced interlayer

  5. Role of interlayer coupling in ultra thin MoS2

    KAUST Repository

    Cheng, Yingchun

    2012-01-01

    The effects of interlayer coupling on the vibrational and electronic properties of ultra thin MoS 2 were studied by ab initio calculations. For smaller slab thickness, the interlayer distance is significantly elongated because of reduced interlayer coupling. This explains the anomalous thickness dependence of the lattice vibrations observed by Lee et al. (ACS Nano, 2010, 4, 2695). The absence of interlayer coupling in mono-layer MoS 2 induces a transition from direct to indirect band gap behaviour. Our results demonstrate a strong interplay between the intralayer chemical bonding and the interlayer van-der-Waals interaction. This journal is © 2012 The Royal Society of Chemistry.

  6. Ising antiferromagnet on the Archimedean lattices

    Science.gov (United States)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  7. Voltage-induced switching of an antiferromagnetically ordered topological Dirac semimetal

    Science.gov (United States)

    Kim, Youngseok; Kang, Kisung; Schleife, André; Gilbert, Matthew J.

    2018-04-01

    An antiferromagnetic semimetal has been recently identified as a new member of topological semimetals that may host three-dimensional symmetry-protected Dirac fermions. A reorientation of the Néel vector may break the underlying symmetry and open a gap in the quasiparticle spectrum, inducing the (semi)metal-insulator transition. Here, we predict that such a transition may be controlled by manipulating the chemical potential location of the material. We perform both analytical and numerical analysis on the thermodynamic potential of the model Hamiltonian and find that the gapped spectrum is preferred when the chemical potential is located at the Dirac point. As the chemical potential deviates from the Dirac point, the system shows a possible transition from the gapped to the gapless phase and switches the corresponding Néel vector configuration. We perform density functional theory calculations to verify our analysis using a realistic material and discuss a two terminal transport measurement as a possible route to identify the voltage-induced switching of the Néel vector.

  8. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  9. Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, K.D.G.I.; Amarasinghe, K.M.P.; Nismy, N.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Mills, C.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, Swinden Technology Centre, Rotherham, S60 3AR (United Kingdom); Silva, S.R.P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-09-30

    Polymer solar cells are fast gaining momentum as a potential solution towards low cost sustainable energy generation. However, the performance of architectures is known to be limited by the thin film nature of the active layer which, although required due to low charge carrier mobilities, limits the optical coupling to the active layer. The formation of periodic backgratings has been proposed as a solution to this problem. Here, we investigate the effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Analysis of device performance under standard conditions indicates higher power conversion efficiencies with the incorporation of the evaporated interlayer (5.7%) over a sol–gel processed interlayer (4.9%). This is driven by a more conformal coating as evidenced through two orders of magnitude higher electron mobilities (10{sup −5} versus 10{sup −7} cm{sup 2} V{sup −1} s{sup −1}) as well as the balanced electron and hole transport observed for the former architecture. It is believed that these results will catalyse further development of such device engineering concepts for improved optical coupling in thin film photovoltaics. - Highlights: • Effect of interlayers on backgrated photovoltaic devices is tested. • Evaporated interlayers lead to better device performance. • Better charge extraction is observed for evaporated interlayers.

  10. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  11. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  12. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  13. Frustrated antiferromagnets at high fields: Bose-Einstein condensation in degenerate spectra

    International Nuclear Information System (INIS)

    Jackeli, G.; Zhitomirsky, M.E.

    2004-01-01

    Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the J 1 -J 2 frustrated square-lattice antiferromagnet with J 2 =(1/2)J 1 and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into a partially magnetized state is treated via a mapping to a dilute gas of hard-core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave vectors at (π,π) and (π,0,0) for the two models. We predict a unique form for the magnetization curve ΔM=S-M≅μ (d-1)/2 (logμ) (d-1) , where μ is a distance from the quantum critical point

  14. Se interlayer in CIGS absorption layer for solar cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kyu; Sim, Jae-Kwan [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Kissinger, N.J. Suthan [Department of General Studies, Physics Group, Jubail University College, Royal Commission for Jubail, Jubail 10074 (Saudi Arabia); Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of)

    2015-06-05

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V{sub oc}. Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance.

  15. Se interlayer in CIGS absorption layer for solar cell devices

    International Nuclear Information System (INIS)

    Lee, Seung-Kyu; Sim, Jae-Kwan; Kissinger, N.J. Suthan; Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon; Lee, Cheul-Ro

    2015-01-01

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V oc . Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance

  16. All-Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling.

    Science.gov (United States)

    Liu, Hang; Sun, Jia-Tao; Fu, Hui-Xia; Sun, Pei-Jie; Feng, Y P; Meng, Sheng

    2017-07-19

    The magnetoelectric (ME) effect originating from the effective coupling between electric field and magnetism is an exciting frontier in nanoscale science such as magnetic tunneling junction (MTJ), ferroelectric/piezoelectric heterojunctions etc. The realization of switchable ME effect under external electric field in d0 semiconducting materials of single composition is needed especially for all-silicon spintronics applications because of its natural compatibility with current industry. We employ density functional theory (DFT) to reveal that the pristine Si(111)-3×3 R30° (Si3 hereafter) reconstructed surfaces of thin films with a thickness smaller than eleven bilayers support a sizeable linear ME effect with switchable direction of magnetic moment under external electric field. This is achieved through the interlayer exchange coupling effect in the antiferromagnetic regime, where the spin-up and spin-down magnetized density is located on opposite surfaces of Si3 thin films. The obtained coefficient for the linear ME effect can be four times larger than that of ferromagnetic Fe films, which fail to have the reversal switching capabilities. The larger ME effect originates from the spin-dependent screening of the spin-polarized Dirac fermion. The prediction will promote the realization of well-controlled and switchable data storage in all-silicon electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of interlayer on structure and performance of anode-supported SOFC single cells

    International Nuclear Information System (INIS)

    Eom, Tae Wook; Yang, Hae Kwang; Kim, Kyung Hwan; Yoon, Hyon Hee; Kim, Jong Sung; Park, Sang Joon

    2008-01-01

    To lower the operating temperatures in solid oxide fuel cell (SOFC) operations, anode-supported SOFC single cells with a single dip-coated interlayer were fabricated and the effect of the interlayer on the electrolyte structure and the electrical performance was investigated. For the preparation of SOFC single cells, yttria-stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode, and 50% YSZ-50% strontium-doped lanthanum manganite (LSM) cathode were used. In order to characterize the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized and the gas (air) permeability measurements were conducted for gas tightness estimation. When the interlayer was inserted onto NiO-YSZ anode, the surface roughness of anode was diminished by about 40% and dense crack-free electrolytes were obtained. The electrical performance was enhanced remarkably and the maximum power density was 0.57 W/cm 2 at 800 deg. C and 0.44 W/cm 2 at 700 deg. C. On the other hand, the effect of interlayer on the gas tightness was negligible. The characterization study revealed that the enhancement in the electrical performance was mainly attributed to the increase of ion transmission area of anode/electrolyte interface and the increase of ionic conductivity of dense crack-free electrolyte layer

  18. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets

    Science.gov (United States)

    Okuma, Nobuyuki

    2017-09-01

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  19. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets.

    Science.gov (United States)

    Okuma, Nobuyuki

    2017-09-08

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  20. Effect of interlayer composition diffusion bonding behavior of an ods nickel alloy

    International Nuclear Information System (INIS)

    Saha, R.K.; Khan, T.I.

    2005-01-01

    Oxide dispersion strengthened superalloys have been developed with excellent mechanical properties for use at elevated temperatures. However, in order to achieve commercial application an appropriate joining process is necessary which minimizes the disruption to the alloy microstructure. In transient liquid phase (TLP) diffusion Hardness, and bonding technique an interlayer containing melting point depressants is placed between the bonding surfaces and at the bonding temperature this interlayer melts and solidifies isothermally. In this study, TLP bonding technique , was used to join a Ni-based ODS alloy, MA 758, using a number of different nickel based interlayer compositions, namely, Ni-Cr-Fe-Si-B-Co, Ni-Cr-B, Ni-P and Ni-Cr-Si-B. These foils are ductile and melt quickly within a narrow temperature range producing strong, non-porous joints. The results showed that the hold time at the bonding temperature affected the rate of isothermal solidification during the TLP bonding process. Furthermore, the use of a post-bond heat treatment helped to homogenize the joint region. (author)

  1. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous; Dong, Zhihua; Warzywoda, Juliusz; Fan, Zhaoyang

    2017-01-01

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li_2S_8–Li_2S_6). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  2. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States); Dong, Zhihua [Hangzhou Dianzi University, No. 1158, 2nd Street, Xiasha Higher Education District, Hangzhou City, Zhejiang Province (China); Warzywoda, Juliusz [Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Fan, Zhaoyang, E-mail: zhaoyang.fan@ttu.edu [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States)

    2017-02-28

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li{sub 2}S{sub 8}–Li{sub 2}S{sub 6}). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  3. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  4. Thickness Dependent Interlayer Magnetoresistance in Multilayer Graphene Stacks

    Directory of Open Access Journals (Sweden)

    S. C. Bodepudi

    2016-01-01

    Full Text Available Chemical Vapor Deposition grown multilayer graphene (MLG exhibits large out-of-plane magnetoresistance due to interlayer magnetoresistance (ILMR effect. It is essential to identify the factors that influence this effect in order to explore its potential in magnetic sensing and data storage applications. It has been demonstrated before that the ILMR effect is sensitive to the interlayer coupling and the orientation of the magnetic field with respect to the out-of-plane (c-axis direction. In this work, we investigate the role of MLG thickness on ILMR effect. Our results show that the magnitude of ILMR effect increases with the number of graphene layers in the MLG stack. Surprisingly, thicker devices exhibit field induced resistance switching by a factor of at least ~107. This effect persists even at room temperature and to our knowledge such large magnetoresistance values have not been reported before in the literature at comparable fields and temperatures. In addition, an oscillatory MR effect is observed at higher field values. A physical explanation of this effect is presented, which is consistent with our experimental scenario.

  5. Improved efficiency in OLEDs with a thin Alq3 interlayer

    International Nuclear Information System (INIS)

    Lian Jiarong; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Zhou Yunfei; Zhou Xiang

    2007-01-01

    We demonstrate an improved efficiency in OLEDs with a thin Alq 3 interlayer, which is inserted into the hole-transport layer for adjusting the hole-injection and transport, and improving the hole-electron balance. The thin Alq 3 interlayer can effectively influence the electrical performance and electroluminescence (EL) efficiency of the devices. The devices with an optimum Alq 3 interlayer exhibit a maximum EL efficiency of around 3.3 cd/A, which is improved by a factor of two over the conventional devices (1.6 cd/A) without the interlayer

  6. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  7. Antiferromagnetism in reduced YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Casalta, H.; Schleger, P.; Montfrooij, W.; Andersen, N.H.; Lebech, B.; Liang Ruixing; Hardy, W.N.

    1995-01-01

    Magnetic ordering was investigated by neutron scattering in an YBa 2 Cu 3 O 6+x single crystal. We observed antiferromagnetic ordering (AFI) (T N =410 K for x=0.1 and T N =368 K for x=0.18), but found no evidence for a reordering down to 2 K (AFII). The magnetic structure factors are presented to emphasize the anisotropic character of the form factor. ((orig.))

  8. The thickness design of unintentionally doped GaN interlayer matched with background doping level for InGaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.; Zhu, J. J.; Liu, Z. S.; Yang, J.; Li, X.; Le, L. C.; He, X. G.; Liu, W.; Li, X. J.; Liang, F. [State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang, B. S.; Yang, H. [Key Laboratory of Nano-devices and Applications of CAS, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zhang, Y. T.; Du, G. T. [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130023 (China)

    2016-03-15

    In order to reduce the internal optical loss of InGaN laser diodes, an unintentionally doped GaN (u-GaN) interlayer is inserted between InGaN/GaN multiple quantum well active region and Al{sub 0.2}Ga{sub 0.8}N electron blocking layer. The thickness design of u-GaN interlayer matching up with background doping level for improving laser performance is studied. It is found that a suitably chosen u-GaN interlayer can well modulate the optical absorption loss and optical confinement factor. However, if the value of background doping concentration of u-GaN interlayer is too large, the output light power may decrease. The analysis of energy band diagram of a LD structure with 100 nm u-GaN interlayer shows that the width of n-side depletion region decreases when the background concentration increases, and may become even too small to cover whole MQW, resulting in a serious decrease of the output light power. It means that a suitable interlayer thickness design matching with the background doping level of u-GaN interlayer is significant for InGaN-based laser diodes.

  9. The thickness design of unintentionally doped GaN interlayer matched with background doping level for InGaN-based laser diodes

    Directory of Open Access Journals (Sweden)

    P. Chen

    2016-03-01

    Full Text Available In order to reduce the internal optical loss of InGaN laser diodes, an unintentionally doped GaN (u-GaN interlayer is inserted between InGaN/GaN multiple quantum well active region and Al0.2Ga0.8N electron blocking layer. The thickness design of u-GaN interlayer matching up with background doping level for improving laser performance is studied. It is found that a suitably chosen u-GaN interlayer can well modulate the optical absorption loss and optical confinement factor. However, if the value of background doping concentration of u-GaN interlayer is too large, the output light power may decrease. The analysis of energy band diagram of a LD structure with 100 nm u-GaN interlayer shows that the width of n-side depletion region decreases when the background concentration increases, and may become even too small to cover whole MQW, resulting in a serious decrease of the output light power. It means that a suitable interlayer thickness design matching with the background doping level of u-GaN interlayer is significant for InGaN-based laser diodes.

  10. A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs

  11. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  12. Characterization of the porous anodic alumina nanostructures with a metal interlayer on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chia-Hui; Chen, Hung-Ing; Hsiao, Jui-Ju; Wang, Jen-Cheng; Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw

    2014-04-15

    Porous anodic alumina (PAA) films produced by the anodization technique have made possible the mass production of porous nano-scale structures where the pore height and diameter are controllable. A metal interlayer is observed to have a significant influence on the characteristics of these PAA nanostructures. In this study, we investigate in-depth the effect of the current density on the properties of porous anodic alumina nanostructures with a metal interlayer. A thin film layer of tungsten (W) and titanium (Ti) was sandwiched between a porous anodic alumina film and a silicon (Si) substrate to form PAA/W/Si and PAA/Ti/Si structures. The material and optical characteristics of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates were studied using the scanning electron microscopy, X-ray diffraction (XRD), and temperature-dependent photoluminescence (PL) measurements. The current densities of the porous anodic alumina nanostructures with the metal interlayer are higher than for the PAA/Si, resulting in an increase of the growth rate of the oxide layer. It can be observed from the X-ray diffraction curves that there is more aluminum oxide inside the structure with the metal interlayer. Furthermore, it has been found that there is a reduction in the photoluminescence intensity of the oxygen vacancy with only one electron due to the formation of oxygen vacancies inside the aluminum oxide during the re-crystallization process. This leads to competition between the two kinds of different oxygen-deficient defect centers (F+ and F centers) in the carrier recombination mechanism from the PL spectra of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates. -- Highlights: • Study of porous anodic alumina (PAA) films with metal interlayers on silicon. • The highly ordered PAA film with a fairly regular nano-porous structure. • The luminescence properties of PAA films were

  13. High field magnetoresistance and de Haas-van Alphen effect in antiferromagnetic PrB6 and NdB6

    International Nuclear Information System (INIS)

    Onuki, Y.; Umezawa, A.; Kwok, W.K.; Crabtree, G.W.; Nishihara, M.; Yamazaki, T.; Omi, T.; Komatsubara, T.

    1987-08-01

    The transport properties and the de Haas-van Alphen (dHvA) effect have been measured for antiferromagnetic PrB 6 and NdB 6 . The number of conduction electrons is approximately one per unit cell. The magnetoresistance shows the existence of open orbits implying a multiply connected Fermi surface. The angular dependence of the magnetoresistance is roughly similar to that of the reference material, LaB 6 . The dHvA data in PrB 6 shows both paramagnetic and antiferromagnetic Fermi surfaces. The antiferromagnetic Fermi surface arises from new magnetic Brillouin zone boundaries and antiferromagnetic gaps introduced by the magnetic order, and the paramagnetic Fermi surface from magnetic breakdown through the small antiferromagnetic gaps in high field. Hybridization between the conduction electrons and the f electrons has been observed through the cyclotron masses, which in PrB 6 are three times larger than the corresponding masses of LaB 6 . In NdB 6 only the antiferromagnetic Fermi surface, quite different from those of LaB 6 and PrB 6 , has been observed. 26 refs., 10 figs., 3 tabs

  14. Antiferromagnetism in EuPdGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Albedah, Mohammed A. [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Al-Qadi, Khalid [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha (Qatar); Stadnik, Zbigniew M., E-mail: stadnik@uottawa.ca [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Przewoźnik, Janusz [Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków (Poland)

    2014-11-15

    Highlights: • We show that EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type structure with the lattice constants a = 4.4457(1) Å and c = 10.1703(2). • We demonstrate that EuPdGe{sub 3} is an antiferromagnet with the Néel temperature T{sub N} = 12.16(1) K. • The temperature dependence of the hyperfine magnetic field follows a S = 7/2 Brillouin function. • We find that the Debye temperature of the studied compound is 199(2) K. - Abstract: The results of X-ray diffraction, magnetic susceptibility and magnetization, and {sup 151}Eu Mössbauer spectroscopy measurements of polycrystalline EuPdGe{sub 3} are reported. EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type tetragonal structure (space group I4mm) with the lattice constants a=4.4457(1)Å and c=10.1703(2)Å. The results are consistent with EuPdGe{sub 3} being an antiferromagnet with the Néel temperature T{sub N}=12.16(1)K and with the Eu spins S=7/2 in the ab plane. The temperature dependence of the magnetic susceptibility above T{sub N} follows the modified Curie-Weiss law with the effective magnetic moment of 7.82(1) μ{sub B} per Eu atom and the paramagnetic Curie temperature of -5.3(1)K indicative of dominant antiferromagnetic interactions. The M(H) isotherms for temperatures approaching T{sub N} from above are indicative of dynamical short-range antiferromagnetic ordering in the sample. The temperature dependence of the hyperfine magnetic field follows a S=7/2 Brillouin function. The principal component of the electric field gradient tensor is shown to increase with decreasing temperature and is well described by a T{sup 3/2} power-law relation. The Debye temperature of EuPdGe{sub 3} determined from the Mössbauer data is 199(2) K.

  15. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current knowledge of the refined structure. The MD simulations provide detailed information on the position and mobility of the hydrogen and oxygen of interlayer water, as well as its self-diffusion coefficient, through the interlayer of 14 Å tobermorite. Comparison of the MD simulation results at 100 and 300 K demonstrates that water molecules in the interlayer maintain their structure but change their mobility. The dominant configuration and self-diffusion coefficient of interlayer water are obtained in this study. Copyright © 2013 Japan Concrete Institute.

  16. First principle calculations of charge ordering in manganites

    International Nuclear Information System (INIS)

    Baldomir, D.; Pardo, V.; Castro, J.; Iglesias, M.; Arias, J.E.; Rivas, J.

    2007-01-01

    Electronic structure calculations were performed on the compound La 0.5 Ca 0.5 MnO 3 to study the relationship between the magnetic ordering, the charge ordering and the geometry of the compound. Charge ordering is intimately related to the magnetic ordering. An antiferromagnetic ordering induces charge disproportionation via a Jahn-Teller distortion. A full disproportionation in Mn 3+ /Mn 4+ occurs for the experimental geometry and allows to predict the experimentally found antiferromagnetic insulating state

  17. Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet

    International Nuclear Information System (INIS)

    Basu, S.; Singh, A.

    1996-01-01

    A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy -J. Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets, is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on La 2 CuO 4 . copyright 1996 The American Physical Society

  18. Magnetic structures of (Co2-xNix)(OH)PO4 (x = 0.1,0.3) spin glass-like state in antiferromagnetically ordered phases

    International Nuclear Information System (INIS)

    Pedro, I de; Rojo, J M; Pizarro, J L; Fernandez, J RodrIguez; Marcos, J Sanchez; Fernandez-DIaz, M T; Arriortua, M I; Rojo, T

    2006-01-01

    Compounds of the general formula Co 2-x Ni x (OH)PO 4 (x = 0.1, 0.3) have been synthesized under mild hydrothermal conditions. Neutron powder diffraction, susceptibility and heat capacity measurements were carried out on polycrystalline samples. The cobalt-nickel compounds are ordered as three-dimensional antiferromagnets with ordering temperatures of 70 and 64 K for x = 0.1 and x = 0.3, respectively. The magnetic study shows a spin glass-like state below 11 and 5 K for Co 1.9 Ni 0.1 (OH)PO 4 and Co 1.7 Ni 0.3 (OH)PO 4 , respectively. Specific heat data present peaks at 68 and 61 K for Co 1.9 Ni 0.1 and Co 1.7 Ni 0.3 , respectively. These peaks show broad shoulders between approximately 15 and 40 K. The lack of any distinguishable anomaly below 10 K supports the spin glass nature of the low temperature transitions. Refinement of room temperature neutron diffraction data indicates that the Ni(II) ions are in octahedral co-ordination with the practical absence of these ions in the trigonal bipyramidal sites. The magnetic structures of Co 2-x Ni x (OH)PO 4 consist of ferromagnetic arrangements between the octahedral chains and trigonal bipyramidal dimers within the xz plane with the magnetic moments along the z axis. The ferromagnetic layers are disposed antiparallel to one another along the y direction establishing the three-dimensional antiferromagnetic order (T N ∼70 K for Co 1.9 Ni 0.1 and ∼64 K for Co 1.7 Ni 0.3 ). The different exchange pathways, the anisotropy of the Co(II) ions and the frustration of the magnetic moments in the trigonal bipyramidal geometry could be responsible for the freezing process

  19. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

    Science.gov (United States)

    Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai

    2017-12-01

    Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

  20. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    Science.gov (United States)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  1. Magnetic properties of Ni(II)-Mn(III) LDHs

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [LEMA, UMR 6157 CNRS-CEA, Universite Francois Rabelais, 3 place Jean Jaures, 41029 Blois (France); Zaghrioui, M.; Autret-Lambert, C. [LEMA, UMR 6157 CNRS-CEA, Universite Francois Rabelais, 3 place Jean Jaures, 41029 Blois (France); Delorme, F.; Seron, A. [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orleans Cedex 2 (France); Chartier, T.; Pignon, B. [LEMA, UMR 6157 CNRS-CEA, Universite Francois Rabelais, 3 place Jean Jaures, 41029 Blois (France)

    2012-11-15

    The synthesis of Ni{sub 1-x}Mn{sub x}(OH){sub 2}(CO{sub 3}){sub x/2}{center_dot}nH{sub 2}O Layered Double Hydroxides (LDHs) for x = 0.2, 0.25 and 0.33, their characterisation by electron microscopy, X-ray diffraction and their magnetic properties are reported in this study. When x increases, the crystallinity of the nanoparticles is improved. The low temperature magnetic behaviour of these compounds is characteristic of the competition between in plane ferromagnetic and interlayer antiferromagnetic interactions. The ferromagnetism is due to in plane Ni cations interaction and decreases when manganese content increases (Tc decreases from 26 to 15 K when x increases from 0.2 to 0.33). It was found that the substitution of Ni by Mn ions favours the in plane antiferromagnetic order. This study demonstrates that magnetic interactions occur in LDH with non magnetic interlayer anions. -- Highlights: Black-Right-Pointing-Pointer The synthesis of Ni{sub 1-x}Mn{sub x}(OH){sub 2}(CO{sub 3}){sub x/2}{center_dot}nH{sub 2}O Layered Double Hydroxides have been performed. Black-Right-Pointing-Pointer The low temperature magnetic behaviour of these compounds has been studied. Black-Right-Pointing-Pointer The substitution of Ni by Mn ions favours the in plane antiferromagnetic order.

  2. Oscillatory interlayer magnetic coupling and induced magnetism in ...

    Indian Academy of Sciences (India)

    Unknown

    lating interlayer magnetic coupling (IMC) (Grunberg et al 1986; Parkin et al 1990; Unguris et al 1991) and giant magnetoresistance (GMR). Such oscillations in interlayer magnetic coupling and the saturation magnetoresistance were reported by Parkin et al (1990) with a period 15–. 20 Å in Fe/Cr, Co/Cr, Co/Ru multilayers.

  3. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  4. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  5. Pseudo-particles picture in single-hole-doped two-dimensional Neel ordered antiferromagnet

    International Nuclear Information System (INIS)

    Pereira, A R; Ercolessi, E; Pires, A S T

    2007-01-01

    Using the nonlinear σ model on a non-simply connected manifold, we consider the interaction effects between the elementary excitations (magnons and skyrmions) and static spin vacancy (hole) in two-dimensional quantum antiferromagnetic systems. Holes scatter magnons and trap skyrmions. The phase-shifts of the scattered magnons are obtained and used to calculate the zero point energy of spin waves measured with respect to the vacuum. It is suggested that this zero point energy lowers the energy cost of removing spins from the lattice. We also study the problems of the skyrmion-hole interactions and the skyrmion-hole (half-skyrmion-hole) bound states in the presence of magnons. We argue that two adjacent non-magnetic impurities are attracted when they are placed at the centre of half-skyrmions

  6. Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4

    Science.gov (United States)

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.

    2018-04-01

    Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.

  7. Frustrated Heisenberg Antiferromagnets on Cubic Lattices: Magnetic Structures, Exchange Gaps, and Non-Conventional Critical Behaviour

    OpenAIRE

    Ignatenko, A. N.; Irkhin, V. Yu.

    2016-01-01

    We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...

  8. Nuclear order in copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, K.N.; Lindgård, P-A.

    1990-01-01

    A new ordering vector k=(2π/a)(0, 2/3, 2/3) for fcc antiferromagnets has been found by neutron-diffraction experiments at nanokelvin temperatures in the nuclear-spin system of a 65Cu single crystal. The corresponding reflection together with the previously observed (100) Bragg peak show the prese......A new ordering vector k=(2π/a)(0, 2/3, 2/3) for fcc antiferromagnets has been found by neutron-diffraction experiments at nanokelvin temperatures in the nuclear-spin system of a 65Cu single crystal. The corresponding reflection together with the previously observed (100) Bragg peak show...

  9. Promoting information diffusion through interlayer recovery processes in multiplex networks

    Science.gov (United States)

    Wang, Xin; Li, Weihua; Liu, Longzhao; Pei, Sen; Tang, Shaoting; Zheng, Zhiming

    2017-09-01

    For information diffusion in multiplex networks, the effect of interlayer contagion on spreading dynamics has been explored in different settings. Nevertheless, the impact of interlayer recovery processes, i.e., the transition of nodes to stiflers in all layers after they become stiflers in any layer, still remains unclear. In this paper, we propose a modified ignorant-spreader-stifler model of rumor spreading equipped with an interlayer recovery mechanism. We find that the information diffusion can be effectively promoted for a range of interlayer recovery rates. By combining the mean-field approximation and the Markov chain approach, we derive the evolution equations of the diffusion process in two-layer homogeneous multiplex networks. The optimal interlayer recovery rate that achieves the maximal enhancement can be calculated by solving the equations numerically. In addition, we find that the promoting effect on a certain layer can be strengthened if information spreads more extensively within the counterpart layer. When applying the model to two-layer scale-free multiplex networks, with or without degree correlation, similar promoting effect is also observed in simulations. Our work indicates that the interlayer recovery process is beneficial to information diffusion in multiplex networks, which may have implications for designing efficient spreading strategies.

  10. Antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Martí, Xavier; Wadley, P.; Wunderlich, Joerg

    2016-01-01

    Roč. 11, č. 3 (2016), 231-241 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 38.986, year: 2016

  11. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    Science.gov (United States)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  12. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  13. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3

    KAUST Repository

    Wang, Hao

    2011-03-01

    We present results from an electronic structure investigation of the chromium halides CrCl3, CrBr3, and CrI3, as obtained by the linearized augmented plane wave method of density functional theory. Our interest focuses on the chloride. While all three halides display strong ferromagnetic coupling within the halide-Cr-halide triple layers, our emphasis is on differences in the interlayer magnetic coupling. In agreement with experimental results, our calculations indicate ferromagnetic ordering for CrBr3 as well as CrI3. The antiferromagnetic state of CrCl3 can be reproduced by introducing an on-site electron-electron repulsion. However, we observe that the ground state depends critically on the specific approach used. Our results show that a low temperature structural phase transition from monoclinic to trigonal is energetically favourable for CrCl3. © 2011 IOP Publishing Ltd.

  14. Density functional theory study of inter-layer coupling in bulk tin selenide

    Science.gov (United States)

    Song, Hong-Yue; Lü, Jing-Tao

    2018-03-01

    We study the inter-layer coupling in bulk tin selenide (SnSe) through density functional theory based calculations. Different approximations for the exchange-correlation functionals and the van der Waals interaction are employed. By performing comparison with graphite, MoS2 and black phosphorus, we analyze the inter-layer coupling from different points of view, including the binding energy, the low frequency inter-layer optical phonons, and the inter-layer charge transfer. We find that, there is a strong charge transfer between layers of SnSe, resulting in the strongest inter-layer coupling. Moreover, the charge transfer renders the inter-layer coupling in SnSe not of van der Waals type. Mechanical exfoliation has been used to fabricate mono- or few-layer graphene, MoS2 and black phosphorus. But, our results show that it may be difficult to apply similar technique to SnSe.

  15. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien

    2017-01-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque

  16. Impurity induced antiferromagnetic order in Haldane gap compound SrNi2-xMgxV2O8

    International Nuclear Information System (INIS)

    Pahari, B.; Ghoshray, K.; Ghoshray, A.; Samanta, T.; Das, I.

    2007-01-01

    The effect of nonmagnetic Mg 2+ doping in SrNi 2 V 2 O 8 , a Haldane gap system with a disordered ground state, was investigated using DC magnetic susceptibility and heat capacity measurements in polycrystalline samples of SrNi 2-x Mg x V 2 O 8 with x=0.03, 0.05, 0.07, 0.1 and 0.14. The results clearly reveal that the substitution of Ni 2+ (S=1) ion by Mg 2+ (S=0) ion induces a magnetic phase transition with the ordering temperatures lying in the range 3.4-4.3K, for the samples with lowest and highest value of x. The intrachain exchange constant (J/k B ) and the Haldane gap (Δ) for all the compounds were estimated to be ∼98+/-2 and 25K, respectively, which are close to that of the undoped compound. The magnetization data further suggest that the compounds exhibit metamagnetic behavior below T N , supporting a picture of antiferromagnet with significant magnetic anisotropy and competing intrachain and interchain interactions

  17. Transitions between localized and itinerant antiferromagnetism in the Ce(Pb,In) sub 3 and Ce(Pb,Tl) sub 3 systems

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S; Timlin, J; Crow, J E; Mihalisin, T; Schlottmann, P [Temple Univ., Philadelphia, PA (United States)

    1990-01-01

    CePb{sub 3} is an itinerant heavy fermion antiferromagnetic displaying an incommensurate magnetic structure and an extremely small ordered moment. CeIn{sub 3} and CeTl{sub 3}, on the other hand are well-localized, simple antiferromagnets with the full moments expected for crystal field doublet Ce{sup 3+} ion systems. The authors have performed specific heat, sysceptibility and resistivity measurements for both the Ce(Pb,In){sub 3} and Ce(Pb,Tl){sub 3} systems. These systems remain cubic Cu{sub 3}Au structures across the entire series. They display extremely interesting T{sub N} behavior which suggests that a continuous transition from itinerant to localized antiferromagnetic behavior occurs for the Ce(Pb,Tl){sub 3} system. In the Ce (Pb,In){sub 3} system both types of antiferromagnetism are present but they are separated by a concentration range ({approximately}10-40% Pb) over which antiferromagnetism does not exist. The behavior of these systems cannot be accounted for by a Kondo necklace approach that neglects the coherence of a heavy fermion lattice and resulting itinerant antiferromagnetism.

  18. Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies

    Science.gov (United States)

    Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg

    2018-03-01

    A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.

  19. Effect of interlayer bonding quality of asphalt layers on pavement performance

    Science.gov (United States)

    Jaskula, Piotr; Rys, Dawid

    2017-09-01

    The quality of interlayer bonding at the interfaces between the asphalt layers in flexible pavements affects the overall pavement performance. Lack or partial lack of interlayer bonding between asphalt layers can cause pavement’s premature failures such as rutting, slippage of the wearing course, cracking or simply a reduction in the calculated fatigue life of the pavement structure. This paper shows the case studies of investigation of actual or potential premature failure of newly reconstructed and constructed pavements where low quality of interlayer bonding has a dominant meaning. In situ and laboratory tests were performed and followed by analytical calculation of pavement structure where thicknesses of layers and maximum shear strengths obtained from the tests were used. During the investigation it was found out that a low quality of tack coat as well as the same aggregate gradation in the bonded asphalt mixtures were the main reasons behind the weak quality of interlayer bonding. Partial interlayer bonding has a strong influence on reduction of calculated fatigue life of pavement. The summary of the paper includes recommendations on how to avoid the low quality of interlayer bonding of asphalt layers.

  20. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    Science.gov (United States)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  1. SrFe1‑xMoxO2+δ : parasitic ferromagnetism in an infinite-layer iron oxide with defect structures induced by interlayer oxygen

    Science.gov (United States)

    Guo, Jianhui; Shi, Lei; Zhao, Jiyin; Wang, Yang; Yuan, Xueyou; Li, Yang; Wu, Liang

    2018-04-01

    The recent discovered compound SrFeO2 is an infinite-layer-structure iron oxide with unusual square-planar coordination of Fe2+ ions. In this study, SrFe1‑xMoxO2+δ (x parasitic ferromagnetism of the compound and its relationship to the defect structures are investigated. It is found that substitution of high-valent Mo6+ for Fe2+ results in excess oxygen anions O2‑ inserted at the interlayer sites for charge compensation, which further causes large atomic displacements along the c-axis. Due to the robust but flexible Fe-O-Fe framework, the samples are well crystallized within the ab-plane, but are significantly poorer crystallized along the c-axis. Defect structures including local lattice distortions and edge dislocations responsible for the lowered crystallinity are observed by high resolution transmission electron microscopy. Both the magnetic measurements and electron spin resonance spectra provide the evidence of a parasitic ferromagnetism (FM). The week FM interaction originated from the imperfect antiferromagnetic (AFM) ordering could be ascribed to the introduction of uncompensated magnetic moments due to substitution of Mo6+ (S = 0) for Fe2+ (S = 2) and the canted/frustrated spins resulted from defect structures.

  2. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  3. Magnon Spin Nernst Effect in Antiferromagnets

    Science.gov (United States)

    Zyuzin, Vladimir A.; Kovalev, Alexey A.

    2016-11-01

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  4. Magnon Spin Nernst Effect in Antiferromagnets.

    Science.gov (United States)

    Zyuzin, Vladimir A; Kovalev, Alexey A

    2016-11-18

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  5. Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Dai, Wei; Xu, Sheng [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Li, Hongji [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-04-07

    Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Ti interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.

  6. Magnetic Anisotropy by Rashba Spin-Orbit Coupling in Antiferromagnetic Thin Films

    Science.gov (United States)

    Ieda, Jun'ichi; Barnes, Stewart E.; Maekawa, Sadamichi

    2018-05-01

    Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The magnetic anisotropy energy (MAE) resulting from the Rashba spin-orbit and s-d type exchange interactions is determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the possibility of electrical-field control of the Néel vector.

  7. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.

    Science.gov (United States)

    Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee

    2017-09-01

    Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Behavior of tungsten coatings on CuCrZr heat sink with the different interlayers under high heat flux

    International Nuclear Information System (INIS)

    Chong, F.L.; Chen, J.L.; Li, J.G.; Zheng, X.B.; Hu, D.Y.; Ding, C.X.

    2007-01-01

    In recent years, tungsten coated CuCrZr by means of vacuum plasma spraying technology was studied at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Plasma spraying technology is a good integration way of armor material and heat sink, which overcomes the disadvantage of heavy weight and poor workability of tungsten, and offers the ability to coat large area, even complex shapes and in situ repair of damaged parts. But tungsten coated CuCrZr is a challenge due to the larger mismatch of their thermal expansion coefficients (CTE), which will induce the stress concentration on the joint interface of plasma facing component. In order to enhance the adhesion of W coating on CuCrZr substrate and avoid the thermal stress concentration, it is necessary to use a compliant interlayer. At present, titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were chosen as the compliant layers to insert between W coating and CuCrZr substrate. The adhesion strength was performed at RT. The behaviors of W/Cu mock up under high heat flux were carried out by means of the electron beam facility with actively cooling. The results indicated that the mock-ups with the interlayer architectures can withstand the higher heat flux compared to that with the sharp interface, which exhibited the effect of interlayers on reducing the maximum stress and enhancing the properties of resistant heat flux load, though the maximum surface temperature increased due to inserting the interlayers. Among three interlayers, W/Cu interlayer was much better due to its good heat removal capability and flexible W/Cu ratios. Meanwhile, the behaviors of W/Cu mock-ups with the different interlayers were analyzed and optimized by ANSYS finite element code. (authors)

  9. Studies of diluted antiferromagnets MnxMg1-xTiO3 with x=0.55 and 0.70 by muon spin relaxation method

    International Nuclear Information System (INIS)

    Fukaya, A.; Ito, A.; Torikai, E.; Nishiyama, K.; Nagamine, K.

    1997-01-01

    Longitudinal fields μSR measurements have been performed in order to probe the spin dynamics in the diluted antiferromagnets Mn x Mg 1-x TiO 3 with x=0.70 and 0.55. In the x=0.70 sample which forms the antiferromagnetic long-range order, the static and fluctuating fields coexist at the muon stopping site below T N . On the other hand, in the x=0.55 sample which shows the spin-glass behavior, the local fields fluctuate rather fast even below T SG . We infer that this drastic change occurs when Mn x Mg 1-x TiO 3 transforms from an antiferromagnetic system to a spin-glass system by dilution

  10. Antiferromagnetic domains in rare earth metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S B [Hull Univ. (UK). Dept. of Applied Physics

    1975-12-01

    Anomalies in the c-axis elastic properties of antiferromagnetic Dy, 50% Tb-Ho and 60% Gd-Y are reported. The anomalies are only present when the sample is cycled from the ferromagnetic to the antiferromagnetic state and are attributed to domains in the helical regime.

  11. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  12. Superconductivity in doped antiferromagnets

    International Nuclear Information System (INIS)

    Lagos, M.

    1990-09-01

    The antiferromagnetic S = 1/2 Heisenberg model is extended to account for the presence of holes. The holes move along a sublattice whose sites are located in between the spin sites. The spin-hole coupling arises from the modification of the exchange interaction between two neighbouring spins when the site between them is occupied by a hole. this physical picture leads to a generalized version of the so called t-J model Hamiltonian. The use of a recently developed method that introduces spin-O excitations for dealing with the Heisenberg antiferromagnetic model allows us to map the model Hamiltonian onto a Froelich one, with the spin-O magnetic excitations substituting phonons. The case of electrons moving along the spin sites is discussed as well. (author). 16 refs, 2 figs

  13. Antiferromagnetic Mott insulating state in the single-component molecular material Pd(tmdt)2

    Science.gov (United States)

    Takagi, Rina; Sari, Dita Puspita; Mohd-Tajudin, Saidah Sakinah; Ashi, Retno; Watanabe, Isao; Ishibashi, Shoji; Miyagawa, Kazuya; Ogura, Satomi; Zhou, Biao; Kobayashi, Akiko; Kanoda, Kazushi

    2017-12-01

    A family of compounds built by a single molecular species, M (tmdt) 2, with a metal ion, M , and organic ligands, tmdt, affords diverse electronic phases due to M -dependent interplays between d electrons in M , and π electrons in tmdt. We investigated the spin state in Pd (tmdt) 2 , a π -electron system without a d -electron contribution, through 1H nuclear magnetic resonance (NMR) and muon-spin resonance experiments. The temperature profiles of the NMR linewidth, relaxation rate, and asymmetry parameter in muon decay show an inhomogeneous antiferromagnetic order with moments distributed around ˜0.1 μB that onsets at above 100 K. This result provides an example of the antiferromagnetic order in a pure π -electron system in M (tmdt) 2, and it demonstrates that correlation among the π electrons is so strong as to give the Néel temperature over 100 K. The small and inhomogeneous moments are understandable as the crucial disorder effect in correlated electrons situated near the Mott transition.

  14. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-01-01

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO 4 ) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO 4 2− . In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg 3 (PO 4 ) 2 , AlPO 4 , MgO and MgAl 2 O 4 after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: ► The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. ► The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature. ► The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. ► The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  15. Effects of Electrospun Carbon Nanofibers’ Interlayers on High-Performance Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Tianji Gao

    2017-03-01

    Full Text Available Two different interlayers were introduced in lithium–sulfur batteries to improve the cycling stability with sulfur loading as high as 80% of total mass of cathode. Melamine was recommended as a nitrogen-rich (N-rich amine component to synthesize a modified polyacrylic acid (MPAA. The electrospun MPAA was carbonized into N-rich carbon nanofibers, which were used as cathode interlayers, while carbon nanofibers from PAA without melamine was used as an anode interlayer. At the rate of 0.1 C, the initial discharge capacity with two interlayers was 983 mAh g−1, and faded down to 651 mAh g−1 after 100 cycles with the coulombic efficiency of 95.4%. At the rate of 1 C, the discharge capacity was kept to 380 mAh g−1 after 600 cycles with a coulombic efficiency of 98.8%. It apparently demonstrated that the cathode interlayer is extremely effective at shutting down the migration of polysulfide ions. The anode interlayer induced the lithium ions to form uniform lithium metal deposits confined on the fiber surface and in the bulk to strengthen the cycling stability of the lithium metal anode.

  16. Anti-ferromagnetic Heisenberg model on bilayer honeycomb

    International Nuclear Information System (INIS)

    Shoja, M.; Shahbazi, F.

    2012-01-01

    Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.

  17. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    Science.gov (United States)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  18. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  19. Testing candidate interlayers for an enhanced water-cooled divertor target

    International Nuclear Information System (INIS)

    Hancock, David; Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William; Rieth, Michael; Reiser, Jens

    2015-01-01

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  20. Testing candidate interlayers for an enhanced water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  1. Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Matsushita, Shotaro; Hyodo, Junji; Okuyama, Yuji; Matsuka, Maki; Ishihara, Tatsumi; Matsumoto, Hiroshige

    2012-01-01

    Highlights: ► Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer conducted a large amount of protons. ► YbDC can work as cathode interlayer for proton conducting electrolyte cells. ► Cathode overpotential of the YbDC interlayer cells showed a plateau at about 400 mV. - Abstract: Introduction of doped ceria interlayer to cathode/electrolyte interface of the electrochemical cell with proton conducting electrolyte was investigated using thin Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer of about 500 nm thickness. YbDC interlayer conducted a large amount of protons as much as 170 mA cm −2 . It was also found that cathode overpotential of the YbDC interlayer cells consistently showed a plateau at about 400 mV, at which that of the non-interlayer cells did not show, suggesting a possibility that cathode reaction is changed by introducing the doped ceria interlayer. This result also indicates that the interlayer showed high activity for cathode reaction when enough cathodic bias was applied. Especially, the interlayer showed high activity for the improvement of poor cathode reaction between SrZr 0.9 Y 0.1 O 3−α (SZY-91) electrolyte and platinum cathode.

  2. Nuclear order in silver at pico-Kelvin temperature

    DEFF Research Database (Denmark)

    Siemensmeyer, K.; Clausen, K.N.; Lefmann, K.

    1997-01-01

    Nuclear order in silver is observed by neutron diffraction at pico-Kelvin temperatures. The structure is a type-I antiferromagnet with critical field of 100 mu T. The entropy-field phase diagram was determined using the spin-dependent absorption.......Nuclear order in silver is observed by neutron diffraction at pico-Kelvin temperatures. The structure is a type-I antiferromagnet with critical field of 100 mu T. The entropy-field phase diagram was determined using the spin-dependent absorption....

  3. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  4. Theoretical modeling of diluted antiferromagnetic systems

    International Nuclear Information System (INIS)

    Pozo, J; Elgueta, R; Acevedo, R

    2000-01-01

    Some magnetic properties of a Diluted Antiferromagnetic System (DAFS) are studied. The model of the two sub-networks for antiferromagnetism is used and a Heisenberg Hamiltonian type is proposed, where the square operators are expressed in terms of boson operators with the approach of spin waves. The behavior of the diluted system's fundamental state depends basically on the competition effect between the anisotropy field and the Weiss molecular field. The approach used allows the diluted system to be worked for strong anisotropies as well as when these are very weak

  5. Evolution of topological features in finite antiferromagnetic Heisenberg chains

    International Nuclear Information System (INIS)

    Chen Changfeng

    2003-01-01

    We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed

  6. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine

    2007-01-01

    The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles, the co...

  7. Quantum fluctuations in the competition among spin glass, antiferromagnetism and local pairing superconductivity

    International Nuclear Information System (INIS)

    Magalhaes, S.G.; Zimmer, F.M.; Kipper, C.J.; Calegari, E.J.

    2007-01-01

    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising SG model with a local BCS pairing interaction in the presence of a transverse magnetic field Γ. The spins in different sublattices interact with Gaussian random couplings with an antiferromagnetic mean. The problem is formulated in a Grassmann path integral formalism. The static ansatz and the replica symmetry are used to obtain the half-filling thermodynamic potential. The results are shown in phase diagrams that exhibit a complex transition line separating the PAIR phase from the others. This line is second order at high temperature which ends in a tricritical point. The presence of Γ affects deeply the transition lines

  8. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo_2V_2O_8

    International Nuclear Information System (INIS)

    Liu Juan-Juan; Wang Jin-Chen; Luo Wei; Sheng Jie-Ming; Bao Wei; He Zhang-Zhen; Danilkin, S. A.

    2016-01-01

    The magnetic structure of the spin-chain antiferromagnet SrCo_2V2O_8 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature T_N = 4.96 K. The moment of 2.16μ_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo_2V_2O_8 warrants SrCo_2V_2O_8 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism. (paper)

  9. Resilience of hidden order to symmetry-preserving disorder

    Science.gov (United States)

    Strinati, Marcello Calvanese; Rossini, Davide; Fazio, Rosario; Russomanno, Angelo

    2017-12-01

    We study the robustness of nonlocal string order in two paradigmatic disordered spin-chain models, a spin-1/2 cluster-Ising and a spin-1 XXZ Heisenberg chain. In the clean case, they both display a transition from antiferromagnetic to string order. Applying a disorder, which preserves the Hamiltonian symmetries, we find that the transition persists in both models. In the disordered cluster-Ising model, we can study the transition analytically—by applying the strongest coupling renormalization group —and numerically—by exploiting integrability to study the antiferromagnetic and string order parameters. We map the model into a quadratic fermion chain, where the transition appears as a change in the number of zero-energy edge modes. We also explore its zero-temperature-singularity behavior and find a transition from a nonsingular to a singular region, at a point that is different from the one separating nonlocal and local ordering. The disordered Heisenberg chain can be treated only numerically: by means of MPS-based simulations, we are able to locate the existence of a transition between antiferromagnetic and string-ordered phase, through the study of order parameters. Finally, we discuss possible connections of our findings with many-body localization.

  10. The influence of interlayer interactions on the mechanical properties of polymeric nanocomposites

    Directory of Open Access Journals (Sweden)

    Jabbarzadeh Mehrdad

    2015-01-01

    Full Text Available In this paper the influence of types of interlayer interactions on the elastic modules of multilayer graphene sheets (GS and nanocomposites is studied. The modeling and investigation of mechanical properties of graphite layers are performed using molecular mechanics (MM method. Initially, due to improving the model and decreasing the amount of computations, three types of elements such as beam, linear spring and nonlinear spring are used. To continue, the mechanical properties of multilayers and nanocomposites are compared using three types of interlayer interactions. Initially, nonlinear spring defined by Leonard Jones potential is used to define interlayer interactions (ordinary case. To continue, linear spring with certain stiffness, to obtain an equal linear spring and also to investigate the ultimate capacity of interlayer interactions in the force translation, by increasing the stiffness of linear springs, is employed (chemical change. Then once by omitting all Van der Waals interactions and defects creation in graphite layers, they are devoted to create covalent interlayer interactions (using Morse potential and another time, Van der Waals and covalent interlayer interactions are created spontaneously to study the properties of multilayers and nanocomposites (functionalization. The results are compared with other available literatures in this case to validate the modeling.

  11. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance

    International Nuclear Information System (INIS)

    Xiao, Huaqing; Wang, Shutao; Zhang, Shuo; Wang, Yihe; Xu, Qingfei; Hu, Wenjie; Zhou, Yan; Wang, Zhaojie; An, Changhua; Zhang, Jun

    2017-01-01

    Rational structural design for electrode materials is essential for fabricating high performance supercapacitors. In this work, we demonstrated a novel way to prepare incompact MoS_2 nanosheets assembled nanorods with the interlayer of MoS_2 nanosheets expanded to 0.89 nm, namely layer expanded MoS_2 nanorods (LE-MoS_2 NRs). The material was characterized by XRD, XPS and electron microscopes. The XRD data and HRTEM images confirmed the existence of expanded interlayer of MoS_2 nanosheets. N_2 adsorption-desorption isotherms of LE-MoS_2 NRs indicated high specific area up to 37.0 m"2 g"−"1. It was found that the expanded interlayer spacing can benefit the ion transportation within the MoS_2 interlayers. The as-prepared electrode material showed capacitance up to 231 F g"−"1 at 1 A g"−"1 charge-discharge current and cycling stability test indicated high capacitance of 177 F g"−"1 was retained after 1000 cycles. - Highlights: • High performance electrochemical supercapacitor electrode material. • Interlayer expanded MoS_2 to achieve enhanced capacitance. • Facile hydrothermal synthesis of interlayer expanded MoS_2. • MoS_2 nanosheets assembled incompact nanorods.

  12. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien; Saidaoui, Hamed Ben Mohamed; Ghosh, Sumit

    2015-01-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  13. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  14. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  15. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    International Nuclear Information System (INIS)

    Gottwald, Tobias

    2010-01-01

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  16. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  17. Paramagnetic fluctuations in Pr0.65Ca0.35MnO3 around the charge-ordering temperature

    International Nuclear Information System (INIS)

    Daoud-Aladine, A; Roessli, B; Gvasaliya, S N; Perca, C; Pinsard-Gaudart, L; Rodriguez-Carvajal, J; Revcolevschi, A

    2006-01-01

    We have studied the ferromagnetic and antiferromagnetic fluctuations in the charge-ordered Pr 0.65 Ca 0.35 MnO 3 antiferromagnet by triple-axis neutron spectrometry. Whereas ferromagnetic fluctuations are observed above and below the charge-ordering transition (T CO ), the antiferromagnetic fluctuations develop only below T CO . The dynamical exponent z of both ferromagnetic and antiferromagnetic fluctuations are determined. The ferromagnetic fluctuations are not completely suppressed below T CO and their correlation lengths are short-ranged at all temperatures. The results are discussed with respect to the Zener polaron model recently introduced to describe the charge-ordered state of Pr 0.6 Ca 0.40 MnO 3

  18. A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries

    Science.gov (United States)

    Zhao, Qian; Zhu, Qizhen; An, Yabin; Chen, Renjie; Sun, Ning; Wu, Feng; Xu, Bin

    2018-05-01

    To improve the cycling performance of the Li-S batteries, a 3D interwoven hollow interlayer with extremely high electrolyte adsorption capability up to 9.64 g g-1 was simply prepared by carbonization of cotton fabric (CCF). For comparison, an interlayer coated on separator was obtained by the slurry-coating method of powdery CCF. The key role of the adsorption capability is confirmed by comparing the electrochemical performance of Li-S batteries with these two interlayers. In the Li-S batteries with 3D CCF interlayer, massive dissolved polysulfides, together with the electrolyte, can be adsorbed and confined in the 3D CCF interlayer, providing substantial extra active sites and alleviating the shuttle effect effectively. As a result, the Li-S batteries with 3D CCF interlayer show much enhanced utilization of active materials (1346.9 mAh g-1 at 0.1C), prolonged cycle life (capacity retention of 80% after 100 cycles), and improved rate performance (553.2 mAh g-1 at 4C). Even for cathodes with high sulfur loading of 5 mg cm-2, the cells with 3D CCF interlayer perform a high capacity of 1085 mAh g-1 and retain 870.6 mAh g-1 after 75 cycles at 0.5 mA cm-2. These results not only provide a sustainable, low cost and easy-prepared 3D CCF interlayer, but also offer a promising strategy based on interlayer with high adsorption capability in designing high-performance Li-S batteries.

  19. First-order transitions, symmetry, and the element of-expansion

    International Nuclear Information System (INIS)

    Mukamel, D.; Krinsky, S.; Bak, P.

    1975-01-01

    The group theoretical method of Landau and Lifshitz was used to derive effective Hamiltonians for certain paramagnetic to antiferromagnetic transitions having order-parameters with n greater than or equal to 4 components. A renormalization group analysis in 4-epsilon dimensions was performed. The first-order nature of the order-disorder transitions in Cr(n = 12), Eu(n = 12), UO 2 (n = 6), and MnO(n = 8) can be explained by noting that the corresponding Hamiltonians possess no stable fixed points in 4-epsilon dimensions. It is predicted that all fcc type I(anti m perpendicular anti k), type II and type III(anti m perpendicular [100], anti k = [1/2 01]) antiferromagnetic transitions are first-order. The work is intended to serve as a guide in an experimental search for new examples of first-order transitions. A 2m-component Hamiltonian is also considered which possesses a unique, nonisotropic, stable fixed point for each value of 2m greater than or equal to 4. When 2m = 4, the Hamiltonian describes the paramagnetic to antiferromagnetic transitions in TbAu 2 , DyC 2 , Tb, Ho, Dy, and the structural transition in NbO 2 . If these transitions are second-order, it is predicted they all belong to the same universality class. For 2m = 6, the Hamiltonian describes the antiferromagnetic transitions in TbD 2 , Nd, K 2 IrCl 6 , and MnS 2 . These transitions belong to a single universality class

  20. Two-dimensional magnetism in the triangular antiferromagnet NiGa2S4

    International Nuclear Information System (INIS)

    Nambu, Yusuke

    2013-01-01

    At sufficiently low temperatures, electron spins in normal magnets generally order into some fashion, for instance, ferromagnetic and antiferromagnetic. Geometrical frustration and/or reduced dimensionality can suppress such conventional orders, and occasionally induce unknown states of matter. This is the case for the two-dimensional (2D) triangular antiferromagnet Ni(Ga 2 S 4 , in which S=1 nickel spins do not order, instead show an exotic magnetism. We found (1) a resonant critical slowing down toward T*=8.5 K followed by a viscous spin liquid behavior, and (2) a spin-size dependent ground state. To elucidate (1), spin dynamics ranging from 10 -13 to 10 0 seconds were quantitatively explored through the experimental techniques such as inelastic neutron scattering, backscattering, neutron spin echo, ac and nonlinear susceptibilities. The finding of (2) is evidenced by impurity effects. Integer spins substituted systems such as zinc and iron ions retain a quadratic temperature dependence of the magnetic specific heat as for the parent compound. However, substitutions of half-odd integer spins, cobalt and manganese ions, eventually induce a distinct behavior, indicating an importance of integer size of spins to stabilize the 2D magnetism realized in NiGa 2 S 4 . The article gives our experimental findings and as well as some relevant theoretical scenarios. (author)

  1. Nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch

    2008-01-01

    I denne Ph.D. afhandling studeres forskellige egenskaber ved antiferromagnetiske nanopartikler. I en ideel antiferromagnet er spinnene orienteret således at der ikke er et resulterende magnetisk moment. I nanopartikler af antiferromagnetiske materialer er denne kompensation på grund af forskellig...

  2. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    Science.gov (United States)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  3. Molecular modeling of the structure and dynamics of the interlayer and surface species of mixed-metal layered hydroxides: Chloride and water in hydrocalumite (Friedel's salt)

    Energy Technology Data Exchange (ETDEWEB)

    KALINICHEV,ANDREY G.; KIRKPATRICK,R. JAMES; CYGAN,RANDALL T

    2000-01-17

    The dynamical behavior of Cl{sup {minus}} and H{sub 2}O molecules in the interlayer and on the (001) surface of the Ca-aluminate hydrate hydrocalumite (Friedel's salt) over a range of temperatures from {minus}100 to 300 C is studied using the technique of isothermal-isobaric molecular dynamics computer simulations. This phase is currently the best available model compound for other, typically more disordered, mixed-metal layered hydroxides. The computed crystallographic parameters and density are in good agreement with available X-ray diffraction data and the force field developed for these simulations preserves the structure and density to within less than 2% of their measured values. In contrast to the highly ordered arrangement of the interlayer water molecules interpreted from the X-ray data, the simulations reveal significant dynamic disorder in water orientations. At all simulated temperatures, the interlayer water molecules undergo rapid librations (hindered hopping rotations) around an axis essentially perpendicular to the layers. This results in breaking and reformation of hydrogen bonds with the neighboring Cl{sup {minus}} anions and in a time-averaged nearly uniaxial symmetry at Cl{sup {minus}}, in good agreement with recent {sup 35}Cl NMR measurements. Power spectra of translational, vibrational, and vibrational motions of interlayer and surface Cl{sup {minus}} and H{sub 2}O were calculated as Fourier transforms of the atomic velocity autocorrelation functions and compared with the corresponding spectra and dynamics for a bulk aqueous solution. The ordered interlayer space has significant effects on the motions. Strong electrostatic attraction between interlayer water molecules and Ca atoms in the principal layer makes the Ca{hor_ellipsis}OH{sub 2} bond direction the preferred axis for interlayer water librations. The calculated diffusion coefficient of Cl{sup {minus}} as an outer-sphere surface complex is almost three times that of inner-sphere Cl

  4. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Directory of Open Access Journals (Sweden)

    Sposito Garrison

    2002-09-01

    Full Text Available Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  5. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Science.gov (United States)

    Sutton, Rebecca; Sposito, Garrison

    2002-01-01

    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  6. Slow relaxation of the magnetization observed in an antiferromagnetically ordered phase for SCM-based two-dimensional layered compounds.

    Science.gov (United States)

    Kagesawa, Koichi; Nishimura, Yuki; Yoshida, Hiroki; Breedlove, Brian K; Yamashita, Masahiro; Miyasaka, Hitoshi

    2017-03-07

    Two-dimensional layered compounds with different counteranions, [{Mn(salen)} 4 C6](BF 4 ) 2 ·2(CH 3 OH) (1) and [{Mn(salen)} 4 C6](PF 6 ) 2 ·2(CH 3 OH) (2) (salen 2- = N,N'-bis(salicylideneiminato), C6 2- = C 6 H 12 (COO) 2 2- ), were synthesized by assembling [Mn(salen)(H 2 O)]X (X - = BF 4 - and PF 6 - ) and C 6 H 12 (CO 2 - ) 2 (C6 2- ) in a methanol/2-propanol medium. The compounds have similar structures, which are composed of Mn(salen) out-of-plane dimers bridged by μ 4 -type C6 2- ions, forming a brick-wall-type network of [-{Mn 2 }-OCO-] chains alternately connected via C 6 H 12 linkers of C6 2- moieties. The counteranions for 1 and 2, i.e., BF 4 - and PF 6 - , respectively, are located between layers. Since the size of BF 4 - is smaller than that of PF 6 - , intra-layer inter-chain and inter-plane nearest-neighbor MnMn distances are shorter in 1 than in 2. The zigzag chain moiety of [-{Mn 2 }-OCO-] leads to a canted S = 2 spin arrangement with ferromagnetic coupling in the Mn III out-of-plane dimer moiety and antiferromagnetic coupling through -OCO- bridges. Due to strong uniaxial anisotropy of the Mn III ion, the [-{Mn 2 }-OCO-] chains could behave as a single-chain magnet (SCM), which exhibits slow relaxation of magnetization at low temperatures. Nevertheless, these compounds fall into an antiferromagnetic ground state at higher temperatures of T N = 4.6 and 3.8 K for 1 and 2, respectively, than active temperatures for SCM behavior. The spin flip field at 1.8 K is 2.7 and 1.8 kOe for 1 and 2, respectively, which is attributed to the inter-chain interactions tuned by the size of the counteranions. The relaxation times of magnetization become longer at the boundary between the antiferromagnetic phase and the paramagnetic phase.

  7. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Huaqing; Wang, Shutao; Zhang, Shuo; Wang, Yihe; Xu, Qingfei; Hu, Wenjie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Zhou, Yan, E-mail: yanzhou@upc.edu.cn [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Wang, Zhaojie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); An, Changhua [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Zhang, Jun, E-mail: zhangj@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China)

    2017-05-01

    Rational structural design for electrode materials is essential for fabricating high performance supercapacitors. In this work, we demonstrated a novel way to prepare incompact MoS{sub 2} nanosheets assembled nanorods with the interlayer of MoS{sub 2} nanosheets expanded to 0.89 nm, namely layer expanded MoS{sub 2} nanorods (LE-MoS{sub 2} NRs). The material was characterized by XRD, XPS and electron microscopes. The XRD data and HRTEM images confirmed the existence of expanded interlayer of MoS{sub 2} nanosheets. N{sub 2} adsorption-desorption isotherms of LE-MoS{sub 2} NRs indicated high specific area up to 37.0 m{sup 2} g{sup −1}. It was found that the expanded interlayer spacing can benefit the ion transportation within the MoS{sub 2} interlayers. The as-prepared electrode material showed capacitance up to 231 F g{sup −1} at 1 A g{sup −1} charge-discharge current and cycling stability test indicated high capacitance of 177 F g{sup −1} was retained after 1000 cycles. - Highlights: • High performance electrochemical supercapacitor electrode material. • Interlayer expanded MoS{sub 2} to achieve enhanced capacitance. • Facile hydrothermal synthesis of interlayer expanded MoS{sub 2}. • MoS{sub 2} nanosheets assembled incompact nanorods.

  8. Feasibility Study of Interlayer Slide Monitoring Using Postembedded Piezoceramic Smart Aggregates

    Directory of Open Access Journals (Sweden)

    Jianchao Wu

    2018-01-01

    Full Text Available Utilizing embedded transducers is an effective approach to monitor a landslide. However, for existing structures, sensors can only be postembedded, which involves drilling and grouting, and may change the original state of the structure, which calls for the need to study the effectiveness of postembedded transducers. The main focus of this paper is the feasibility study of the interlayer slide detection using postembedded piezoceramic smart aggregates (SAs. In this study, a small landslide structure that involves a weak layer is studied and two pairs of SAs were embedded in predetermined positions inside the structure. To study the difference, one pair of transducer was preembedded and the other pair was postembedded. Within each pair, one SA was employed as an actuator to generate stress waves, and another SA used as a sensor to detect wave responses. Active-sensing approach was developed to perform continuous monitoring during structural loading that was used to induce an interlayer slide. The occurrence of interlayer slide attenuates wave energy and decreases signal intensity. A wavelet-packed index was proposed to detect the occurrence and development of interlayer slide. Experimental results demonstrated that SA installation through postembedding process is an innovative yet effective approach to monitor interlayer slide.

  9. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah; Singh, Nirpendra; Schwingenschlö gl, Udo

    2017-01-01

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling

  10. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon; Monteiro, Paulo J.M.

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current

  11. Analytical results for a hole in an antiferromagnet

    International Nuclear Information System (INIS)

    Li, Y.M.; d'Ambrumenil, N.; Su, Z.B.

    1996-04-01

    The Green's function for a hole moving in an antiferromagnet is derived analytically in the long-wavelength limit. We find that the infrared divergence is eliminated in two and higher dimensions so that the quasiparticle weight is finite. Our results also suggest that the hole motion is polaronic in nature with a bandwidth proportional to t 2 /J exp[-c(t/J) 2 ] (c is a constant) for J/t >or approx 0.5. The connection of the long-wavelength approximation to the first-order approximation in the cumulant expansion is also clarified. (author). 23 refs, 2 figs

  12. Anomalous properties and coexistence of antiferromagnetism and superconductivity near a quantum critical point in rare-earth intermetallides

    International Nuclear Information System (INIS)

    Val’kov, V. V.; Zlotnikov, A. O.

    2013-01-01

    Mechanisms of the appearance of anomalous properties experimentally observed at the transition through the quantum critical point in rare-earth intermetallides have been studied. Quantum phase transitions are induced by the external pressure and are manifested as the destruction of the long-range antiferromagnetic order at zero temperature. The suppression of the long-range order is accompanied by an increase in the area of the Fermi surface, and the effective electron mass is strongly renormalized near the quantum critical point. It has been shown that such a renormalization is due to the reconstruction of the quasiparticle band, which is responsible for the formation of heavy fermions. It has been established that these features hold when the coexistence phase of antiferromagnetism and superconductivity is implemented near the quantum critical point.

  13. Images of interlayer Josephson vortices in single-layer cuprates

    International Nuclear Information System (INIS)

    Moler, K. A.; Kirtley, J. R.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Williams, J. M.; Schlueter, J. A.; Hinks, D.; Villard, G.; Maignan, A.; Nohara, M.; Takagi, H.

    2000-01-01

    The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 and three near-optimally doped cuprate superconductors: La 2-x Sr x CuO 4 , (Hg, Cu)Ba 2 CuO 4+δ , and Tl 2 Ba 2 CuO 6+δ

  14. Analytical modeling of effect of interlayer on effective moduli of layered graphene-polymer nanocomposites

    Institute of Scientific and Technical Information of China (English)

    C.C.Roach; Y.C.Lu

    2017-01-01

    Nanocomposites enhanced with two-dimensional,layered graphene fillers are a new class of engineering materials that exhibit superior properties and characteristics to composites with conventional fillers.However,the roles of "interlayers" in layered graphene fillers have yet to be fully explored.This paper examines the effect of interlayers on mechanical properties of layered graphene polymer composites.As an effective filler,the fundamental properties (in-plane Young's modulus EL1,out-of-plane Young's modulus EL2;shear modulus GL12,major Poisson's ratio 1L12) of the layered graphene were computed by using the Arridge's lamellar model.The effects of interlayers on effective moduli of layered graphene epoxy composites were examined through the Tandon-Weng model.The properties of the interlayer show noticeable impact on elastic properties of the composites,particular the out-of-plane properties (Young's modulus E2 and shear modulus G12).The interlayer spacing is seen to have much great influence on properties of the composites.As the interlayer spacing increases from 0.34 nm to 2 nm,all elastic properties of the composites have been greatly decreased.

  15. NMR studies of the helical antiferromagnetic compound EuCo2P2

    Science.gov (United States)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  16. Electrical switching of antiferromagnets via strongly spin-orbit coupled materials

    Science.gov (United States)

    Li, Xi-Lai; Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook

    2017-01-01

    Electrically controlled ultra-fast switching of an antiferromagnet (AFM) is shown to be realizable by interfacing it with a material of strong spin-orbit coupling. The proximity interaction between the sublattice magnetic moments of a layered AFM and the spin-polarized free electrons at the interface offers an efficient way to manipulate antiferromagnetic states. A quantitative analysis, using the combination with a topological insulator as an example, demonstrates highly reliable 90° and 180° rotations of AFM magnetic states under two different mechanisms of effective torque generation at the interface. The estimated switching speed and energy requirement are in the ps and aJ ranges, respectively, which are about two-three orders of magnitude better than the ferromagnetic counterparts. The observed differences in the magnetization dynamics may explain the disparate characteristic responses. Unlike the usual precessional/chiral motions in the ferromagnets, those of the AFMs can essentially be described as a damped oscillator with a more direct path. The impact of random thermal fluctuations is also examined.

  17. Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb2O4 with transition temperature up to 4.28 K

    Directory of Open Access Journals (Sweden)

    Haifeng eLi

    2014-07-01

    Full Text Available The Neel temperature of the new frustrated family of SrRE2O4 (RE = rare earth compounds is yet limited to 0.9 K, which more or less hampers a complete understanding of the magnetic frustrations and spin interactions. Here we report on a new frustrated member to the family, SrTb2O4 with a record TN = 4.28(2 K, and an experimental study of the magnetic interacting and frustrating mechanisms by polarized and unpolarized neutron scattering. The compound of SrTb2O4 displays an incommensurate antiferromagnetic (AFM order with a transverse wave vector Q = (0.5924(1, 0.0059(1, 0 albeit with partially-ordered moments, 1.92(6 uB at 0.5 K, stemming from only one of the two inequivalent Tb sites by virtue of their different octahedral distortions. The localized moments are confined to the bc plane, 11.9(66 degree away from the b axis by single-ion anisotropy. We reveal that this AFM order is dominated mainly by dipole-dipole interactions and disclose that the octahedral distortion, nearest-neighbour (NN ferromagnetic (FM arrangement, different next NN FM and AFM configurations, and in-plane anisotropic spin correlations are vital to the magnetic structure and associated multiple frustrations. The discovery of the thus far highest AFM transition temperature renders SrTb2O4 a new friendly frustrated platform in the family for exploring the nature of magnetic interactions and frustrations.

  18. Activation energies of diffusion for I and Cs in interlayer of smectite

    International Nuclear Information System (INIS)

    Sato, H.

    2009-01-01

    The apparent diffusivities (Da) and activation energies (ΔEa) for I - and Cs + ions in compacted Na-smectite with an interlayer space of only 2 water layers were measured at a dry density of 1.79 Mg/m 3 . In-diffusion experiments were carried out under the conditions that interlayer space, orientation of smectite stacks and dry density were controlled. Basal spacing was checked by X-ray diffractometry (XRD). All diffraction peaks to d(001) indicated basal spacing, of which interlayer space was equal to 2 water layers. The ΔEa of I - ions was at similar level as that for the ionic diffusivity of I - ions in free water (Do) at a dry density of 1.0 Mg/m 3 , but was 35.24 kJ/mol at a dry density of 1.79 Mg/m 3 . The ΔEa for Cs + ions was 46.27 kJ/mol which was higher than that for I? ions, at a dry density of 1.79 Mg/m 3 . Such high ΔEa for I - ions in the interlayer of smectite could be explained by the lowering in the activity (a H 2 O ) of interlayer water. Since Cs + ions sorb onto smectite by ion exchange, such high ΔEa for Cs + ions could be explained by the combined effects of the Cs+/Na+ ion exchange enthalpy (ΔH o ) in smectite and the lowering in the a H 2 O of interlayer water. (author)

  19. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice

    Science.gov (United States)

    Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun

    2018-05-01

    We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.

  20. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  1. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    Lakomskii, V.

    1998-01-01

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  2. Quantum Number Fractionalization in Antiferromagnets

    OpenAIRE

    Laughlin, R. B.; Giuliano, D.; Caracciolo, R.; White, O.

    1998-01-01

    This is a pedagogical introduction to the mathematics of 1-dimensional spin-1/2 antiferromagnets. Topics covered include the Haldane-Shastry Hamiltonian, vector ``supercharges'', conserved spin currents, spinons, the supersymmetric Kuramoto-Yokoyama Hamiltonian, and holons.

  3. Effect of humidity and interlayer cation on frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, H.; Katayama, I.; Sakuma, H.; Tamura, K.

    2016-12-01

    Smectite has been ubiquitously seen in fault gouge (Schleicher et al., 2006; Kuo et al., 2009; Si et al., 2014; Kameda, 2015) and is characteristic by low frictional coefficient (Saffer et al., 2001; Ikari et al., 2007); consequently, it has a key role in fault dynamics. The frictional strength of montmorillonite (a typical type of smectite) is affected by mainly two factors, 1) hydration state and 2) interlayer cation. Previous laboratory experiments have shown that the frictional strength of montmorillonite changes with hydration state (Ikari et al., 2007) and with interlayer cation (Behnsen and Faulkner, 2013). However, experimental study for frictional strengths of interlayer cation-exchanged montmorillonite under controlled hydration state has not been reported. We are developing humidity control system in biaxial friction testing machine and try to investigate the effect of relative humidity and interlayer cation on frictional strength of montmorillonite. The humidity control system consists of two units, 1) the pressure vessel (core holder) unit controlled by a constant temperature and 2) the vapor generating unit controlled by variable temperature. We control relative humidity around sample, which is calculated from the temperature around sample and the vapor pressure at vapor generating unit. Preliminary experiments under controlled humidity show frictional coefficient of montmorillonite decrease with increasing relative humidity. In the meeting, we will report the systematic study of frictional coefficient as function of relative humidity and interlayer cation species.

  4. Biperiodic oscillatory coupling with the thickness of an embedded Ni layer in Co/Cu/Co/Ni/Co (100) and selection rules for the periods

    NARCIS (Netherlands)

    de Vries, J.J.; Vorst, van de M.T.H.; Johnson, M.T.; Jungblut, R.; Reinders, A.; Bloemen, P.J.H.; Coehoorn, R.; Jonge, de W.J.M.

    1996-01-01

    A biperiodic oscillation of the strength of the antiferromagnetic interlayer coupling as a function of the thickness of an embedded Ni layer has been observed in an epitaxial Cu(100)/Co/Cu/Co/Ni/Co sample with the Cu interlayer and the Ni layer in the form of wedges. As the effect originates from

  5. Electric-field switching of two-dimensional van der Waals magnets

    Science.gov (United States)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  6. Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Ali Pinar, M. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Erdinc, Ahmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2006-04-24

    The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made.

  7. Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Ali Pinar, M.; Erdinc, Ahmet; Canko, Osman

    2006-01-01

    The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made

  8. The low-temperature phase of the Heisenberg antiferromagnet in a fermionic representation

    International Nuclear Information System (INIS)

    Azakov, S.; Dilaver, M.; Oztas, A.M.

    1999-09-01

    Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromagnet on a d-dimensional hypercubical lattice are studied within the fermionic representation when the constraint of a single occupancy condition is taken into account by the method suggested by Popov and Fedotov. Using a saddle point approximation in the path integral approach we discuss not only the leading order but also the fluctuations around the saddle point at one-loop level. The influence of taking into account the single occupancy condition is discussed at all steps. (author)

  9. Significance of Al doping for antiferromagnetic AFII ordering in YBa2Cu3-xAlxO6+#delta# materials: A single-crystal neutron-diffraction study

    DEFF Research Database (Denmark)

    Brecht, E.; Schmahl, W.W.; Fuess, H.

    1995-01-01

    -doped single crystals show two magnetic transitions, the first between the paramagnetic state and the AFI phase, and a second transition at low temperatures between the AFI and the AFII phase. The Neel temperature T-N of the antiferromagnetic AFI phase is found to be insensitive to the Al content x as well...... as the O content 6+delta in the x-delta region investigated so far. In a limited temperature interval the order parameter shows the components of both the AFI and AFII phases indicating competing interactions. For some crystals a complete reordering to the AFII phase at 4.2 K can be observed. Although...... the antiferromagnetic ordering pattern is different for the AFI and AFII phase, the ordered moments on the Cu sites are within the experimental error ([S](Cu(2)) approximate to 0.56 mu(B), [S](Cu(1)) approximate to 0 mu(B)) identical in the two phases. Comparison of Al-doped crystals with pure crystals of the same...

  10. Atrazine sorption by hydroxy-interlayered clays and their organic complexes.

    Science.gov (United States)

    Indraratne, Srimathie P; Farenhorst, Annemieke; Goh, Tee Boon

    2008-01-01

    This study examined the sorption of atrazine by hydroxy-Fe interlayered montmorillonite (FeMt) and its hydroquinone (FeMtHQ), citrate (FeMtCt) and catechol (FeMtCC) complexes as well as by hydroxy-Al interlayered montmorillonite (AlMt) and its hydroquinone (AlMtHQ) and citrate (AlMtCt) complexes. Found among the clays were sorption distribution coefficients (K(d)) ranging from 24 to 123 mL g(-1) and maximum sorption (M) ranging from 2.2 to 16.8 microg g(-1). Both K(d) and M decreased in the order of FeMtCC > FeMtHQ > AlMtHQ > (AlMt = FeMt) > (AlMtCt = FeMtCt). The pH was negatively correlated with both K(d) (r = -0.90, p 0.96, p 0.94, p AlMt). This suggests that functional groups of Fe-OH and Al-OH in FeMt and AlMt reduced the available sorption sites for atrazine by making complexes with citrate ions while forming FeMtCt and AlMtCt. The atrazine was sorbed through the hydrophobic interactions with organic compound surfaces as well as through H-bonding and ionic bonding with clay-mineral surfaces.

  11. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  12. Modification of magnetoresistance and magnetic properties of Ni thin films by adding Dy interlayer

    Science.gov (United States)

    Vorobiov, S. I.; Shabelnyk, T. M.; Shutylieva, O. V.; Pazukha, I. M.; Chornous, A. M.

    2018-03-01

    The paper reports the influence of dysprosium (Dy) interlayer addition on structure, magnetoresistance and magnetic properties of nickel (Ni) thin films. Trilayer film systems Ni/Dy/Ni have been prepared by alternate electron-beam evaporation. It is demonstrated that all as-prepared and annealed Ni thin films have face-centered cubic structure. The composition of the samples after addition of the Dy interlayer corresponds to the combination of face-centered cubic (Ni) and hexagonal close-packed (Dy) structures. The structure of Ni/Dy/Ni film systems changes from amorphous to polycrystalline when Dy interlayer thickness (t Dy) is more than 15 nm. The value of magnetoresistance increases with the adding the Dy interlayer in both longitudinal and transverse geometries, meanwhile the anisotropic character of magnetoresistance field dependences retained. The saturation and reversal magnetizations are reduced with the increasing of the Dy thickness interlayer, while the coercivity takes the minimum value at t Dy = 15 nm. The following increasing of t Dy leads to increasing of coercivity near to three times. This result indicates the influence of the crystal structure on the magnetic properties of Ni thin films at adding Dy interlayer.

  13. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    Science.gov (United States)

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  14. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  15. Effects of a Ta interlayer on the phase transition of TiSi2 on Si(111)

    Science.gov (United States)

    Jeon, Hyeongtag; Jung, Bokhee; Kim, Young Do; Yang, Woochul; Nemanich, R. J.

    2000-09-01

    This study examines the effects of a thin Ta interlayer on the formation of TiSi2 on Si(111) substrate. The Ta interlayer was introduced by depositing Ta and Ti films sequentially on an atomically clean Si(111) substrate in an ultrahigh vacuum (UHV) system. Samples of 100 Å Ti with 5 and 10 Å Ta interlayers were compared to similar structures without an interlayer. After deposition, the substrates were annealed for 10 min, in situ, at temperatures between 500 and 750 °C in 50 °C increments. The TiSi2 formation with and without the Ta interlayer was analyzed with an X-ray diffractometer, Auger electron spectroscopy (AES), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a four-point probe. The AES analysis data showed a 1:2 ratio of Ti:Si in the Ti-silicide layer and indicated that the Ta layer remained at the interface between TiSi2 and the Si(111) substrate. The C 49-C 54 TiSi2 phase transition temperature was lowered by ˜200 °C. The C 49-C 54 TiSi2 phase transition temperature was 550 °C for the samples with a Ta interlayer and was 750 °C for the samples with no Ta interlayer. The sheet resistance of the Ta interlayered Ti silicide showed lower values of resistivity at low temperatures which indicated the change in phase transition temperature. The C 54 TiSi2 displayed different crystal orientation when the Ta interlayer was employed. The SEM and TEM micrographs showed that the TiSi2 with a Ta interlayer significantly suppressed the tendency to islanding and surface agglomeration.

  16. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah; Singh, Nirpendra; Schwingenschlö gl, Udo

    2016-01-01

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  17. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah Mohammed Abdullah

    2017-01-08

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  18. Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2

    KAUST Repository

    Alsaleh, Najebah M.

    2016-09-26

    The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

  19. Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Soo Yook, Kyoung [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of); Lee, Jun Yeob, E-mail: leej17@dankook.ac.k [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of)

    2010-10-15

    The effect of the polyvinylidenefluoride (PVDF) interlayer on the hole injection and the device performances of the green phosphorescent organic light-emitting diodes (PHOLEDs) was investigated. The hole current density of the hole only device was improved and the power efficiency of the green PHOLEDs was enhanced from 10.5 to 12.5 lm/W by the PVDF interlayer. The reduction of the interfacial energy barrier was responsible for the high hole current density in the PVDF interlayer based green PHOLEDs.

  20. Prospect for antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Jungwirth, Tomáš

    2015-01-01

    Roč. 51, č. 4 (2015), s. 2900104 ISSN 0018-9464 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  1. Influence of various thickness metallic interlayers on opto-electric and mechanical properties of AZO thin films on PET substrates

    Science.gov (United States)

    Chang, R. C.; Li, T. C.; Lin, C. W.

    2012-02-01

    Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.

  2. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    International Nuclear Information System (INIS)

    Prados, C; Pina, E; Hernando, A; Montone, A

    2002-01-01

    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores

  3. Antiferromagnetic phase of the gapless semiconductor V3Al

    Science.gov (United States)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  4. Antiferromagnetic MnN layer on the MnGa(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2016-12-30

    Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  5. Standard Guide for Selection of Test Methods for Interlayer Materials for Aerospace Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide summarizes the standard test methods available for determining physical and mechanical characteristics of interlayer materials used in multi-ply aerospace transparent enclosures. 1.2 Interlayer materials are used to laminate glass-to-glass, glass-to-plastic, and plastic-to-plastic. Interlayer materials are basically transparent adhesives with high-quality optical properties. They can also serve as an energy absorbing medium, a fail-safe membrane to contain cockpit pressure and to prevent entry of impact debris; a strain insulator to accommodate different thermal expansion rates of members being laminated and as an adherent to prevent spalling of inner surface ply material fragments. The relative importance of an interlayer characteristic will be a function of the prime use it serves in its particular application. 1.3 This guide, as a summary of various methods in Section 2, is intended to facilitate the selection of tests that can be applied to interlayer materials. 1.4 The test methods list...

  6. Random-field effects on the order in the diluted weakly anisotropic antiferromagnet K2NixZn1-xF4

    DEFF Research Database (Denmark)

    Dikken, B. J.; Arts, A. F. M.; Wijn, H. W. de

    1984-01-01

    With the use of neutron diffraction, the effects of random fields are studied in the diluted quadratic-layer antiferromagnet K2NixZn1-xF4 for x=0.96, 0.85, and 0.75. Upon cooling in external fields as small as H∼0.1 T, the systems quench into a nonequilibrium domain state characterized...

  7. Spin waves in antiferromagnetic FeF2

    DEFF Research Database (Denmark)

    Hutchings, M T; Rainford, B.D.; Guggenheim, H J

    1970-01-01

    Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...

  8. Antiferromagnetic Ordering in Quasi-Triangular Localized Spin System, β'-Et2Me2P[Pd(dmit)2]2, Studied by 13C NMR

    Science.gov (United States)

    Otsuka, Kei; Iikubo, Hideaki; Kogure, Takayuki; Takano, Yoshiki; Hiraki, Ko-ichi; Takahashi, Toshihiro; Cui, Hengbo; Kato, Reizo

    2014-05-01

    We performed 13C NMR measurements of a selectively 13C isotope-labeled single-crystal sample of a frustrated spin system, β'-Et2Me2P[Pd(dmit)2]2. A long-range antiferromagnetic (AF) ordering below 17 K was confirmed by the observation of NMR spectrum broadening and well split resonance lines at lower temperatures. NMR spectra in the AF state can be well explained by a two sublattice model. From the analysis of the angular dependence of the NMR spectrum, we clarified the magnetic structure in the AF state, where the easy and hard axes are the crystallographic c*- and b-axes, respectively, and the effective localized moments are quite small, ˜0.28 μB/dimer. This suggests a strong quantum fluctuation effect due to magnetic frustrations in a quasi-triangular spin-1/2 system.

  9. Cluster-Glass Phase in Pyrochlore X Y Antiferromagnets with Quenched Disorder

    Science.gov (United States)

    Andrade, Eric C.; Hoyos, José A.; Rachel, Stephan; Vojta, Matthias

    2018-03-01

    We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state from a classically degenerate manifold. In the presence of randomness, however, different orders can be chosen locally depending on details of the disorder configuration. Using a combination of analytical considerations and classical Monte Carlo simulations, we argue that any long-range-ordered magnetic state is destroyed beyond a critical level of randomness where the system breaks into magnetic domains due to random exchange anisotropies, becoming, therefore, a glass of spin clusters, in accordance with the available experimental data. These random anisotropies originate from off-diagonal exchange couplings in the microscopic Hamiltonian, establishing their relevance to other magnets with strong spin-orbit coupling.

  10. Magnetostructural correlations in the antiferromagnetic Co2-x Cux(OH)AsO4 (x=0 and 0.3) phases

    International Nuclear Information System (INIS)

    Pedro, I. de; Rojo, J.M.; Pizarro, J.L.; Rodriguez Fernandez, J.; Arriortua, M.I.; Rojo, T.

    2011-01-01

    The Co 2-x Cu x (OH)AsO 4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) A, b=8.559(2) A, c=6.039(1) A and a=8.316(1) A, b=8.523(2) A, c=6.047(1) A for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O 5 -trigonal bipyramid dimers and M(2)O 6 -octahedral chains (M=Co and Cu) are present. Co 2 (OH)AsO 4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co 2+ is partially substituted by Cu 2+ ions, Co 1.7 Cu 0.3 (OH)AsO 4 , the ferromagnetic component observed in Co 2 (OH)AsO 4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx 2 -y 2 orbital and the absence of overlap between neighbour ions. - Graphical abstract: Schematic drawing of the Co 2-x Cu x (OH)AsO 4 (x=0 and 0.3) crystal structure view along the |0 1 0| direction. Polyhedra are occupied by the M(II) ions (M=Co and Cu) and the AsO 4 groups are represented by tetrahedra. Open circles correspond to the oxygen atoms, and small circles show the hydrogen atoms. Highlights: → Synthesis of a new adamite-type compound, Co 1.7 Cu 0.3 (OH)AsO 4 . → Single crystal structure, spectroscopic characterization and magnetic properties. → Unusual dependence on the magnetic field for

  11. Magnetic behaviour of the honeycomb antiferromagnet BaNi{sub 2}V{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Klyushina, Ekaterina; Lake, Bella [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Berlin (Germany); Islam, Nazmul; Klemke, Bastian [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Schneidewind, Astrid; Park, Jitae [Heinz Maier-Leibnitz Zentrum, TU Muenchen, Garching (Germany); Mansson, Martin [Paul Scherrer Institute (Switzerland)

    2016-07-01

    Here we present our recent investigations of a spin-1 honeycomb antiferromagnetic BaNi{sub 2}V{sub 2}O{sub 8} which is a highly 2D antiferromagnet with XY anisotropy making this compound a potential candidate for the Berezinsky-Kosterliz-Thouless topological phase transition. Single crystal inelastic neutron scattering measurements in the honeycomb plane at 4 K reveal that the magnetic excitations extend from 0.3-26 meV and consist of two anisotropy-split gapped modes with gaps of 0.3 meV and 3.3 meV arising from the anisotropy within the a-b plane and XY anisotropy respectively. The excitations agree well with simulations based on linear spin - wave theory and are completely dispersionless in the out-of-plane direction suggesting negligible interplane coupling in spite of the long range magnetic order below T{sub N} = 48 K. A detailed investigation of the order parameter and correlation length are presented and compared to various theories.

  12. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Ceccatto, H.A.; Gazza, C.J.; Trumper, A.E.

    1992-07-01

    The Schwinger boson approach to quantum helimagnets is discussed. It is shown that in order to get quantitative agreement with exact results on finite lattices, parity-breaking pairing of bosons must be allowed. The so-called J 1 - J 2 - J 3 model is studied, particularly on the special line J 2 = 2J 3 . A quantum disordered phase is found between the Neel and spiral phases, though notably only in the strong quantum limit S = 1/2, and for the third-neighbor coupling J 3 ≥ 0.038 J 1 . For spins S≥1 the spiral phase goes continuously to an antiferromagnetic order. (author). 19 refs, 3 figs

  13. Novel magnetic hydrogen sensing: a case study using antiferromagnetic haematite nanoparticles

    International Nuclear Information System (INIS)

    Punnoose, Alex; Reddy, K M; Thurber, Aaron; Hays, Jason; Engelhard, Mark H

    2007-01-01

    Hydrogen sensing is a critical component of safety to address widespread public perceptions of the hazards of production, storage, transportation and use of hydrogen in proposed future automobiles and in various other applications. A nanoscale magnetic hydrogen sensor is proposed based on the experimental observation of systematically varying the saturation magnetization and remanence of nanoscale antiferromagnetic haematite with hydrogen flow. The saturation magnetization and remanence of the nanoscale haematite sample showed an increase of one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1-10% range and at 575 K, suggesting that a practical magnetic hydrogen sensor could be developed using this material and the novel magnetic sensing method. Thermogravimetric analysis of the haematite sample shows significant mass loss when hydrogen gas is introduced. X-ray diffraction and x-ray photoelectron spectroscopy studies ruled out any impurity phase formation as a result of gas-sample interaction. This work thus facilitates the use of the magnetic properties of an antiferromagnetic material as gas sensing parameters, thus exploring the concept of 'magnetic gas sensing'

  14. Tunable states of interlayer cations in two-dimensional materials

    International Nuclear Information System (INIS)

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-01-01

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed

  15. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  16. Antiferromagnetic spinor condensates in a bichromatic superlattice

    Science.gov (United States)

    Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei

    2017-04-01

    A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.

  17. Thermal conductivity of the vortex lattice state involving the antiferromagnetism around the core

    International Nuclear Information System (INIS)

    Takigawa, Mitsuaki; Ichioka, Masanori; Machida, Kazushige

    2004-01-01

    The thermal conductivity κ xx is the difference between higher and lower temperature regions, because the spatially-resolved thermal conductivity κ xx (r) is localized around the vortex core at lower temperature and delocalized at higher temperature. On one hand, much attention is focused on the spin and charge ordering around the vortex. When the antiferromagnetism appears around the core, the energy gap suppresses the density of states on the Fermi energy, and the zero-energy peak at the vortex core splits or vanishes. The κ xx under the Neel temperature is suppressed by the antiferromagnetism. We solve the Bogoliubov-de Gennes equation self-consistently by two-dimensional extended Hubbard model including the repulsive interaction U, and calculate the κ xx on the basis of the linear response theory. The picture of the spatial variation of the thermal conductivity κ(r) through the spin resolved local DOS well explains recent experiments

  18. Order by Quenched Disorder in the Model Triangular Antiferromagnet RbFe (MoO4 )2

    Science.gov (United States)

    Smirnov, A. I.; Soldatov, T. A.; Petrenko, O. A.; Takata, A.; Kida, T.; Hagiwara, M.; Shapiro, A. Ya.; Zhitomirsky, M. E.

    2017-07-01

    We observe a disappearance of the 1 /3 magnetization plateau and a striking change of the magnetic configuration under a moderate doping of the model triangular antiferromagnet RbFe (MoO4 )2 . The reason is an effective lifting of degeneracy of mean-field ground states by a random potential of impurities, which compensates, in the low-temperature limit, the fluctuation contribution to free energy. These results provide a direct experimental confirmation of the fluctuation origin of the ground state in a real frustrated system. The change of the ground state to a least collinear configuration reveals an effective positive biquadratic exchange provided by the structural disorder. On heating, doped samples regain the structure of a pure compound, thus allowing for an investigation of the remarkable competition between thermal and structural disorder.

  19. Importance of interlayer pair tunneling: A variational perspective

    International Nuclear Information System (INIS)

    Medhi, Amal; Basu, Saurabh

    2011-01-01

    We study the effect of interlayer pair tunneling in a bilayer superconductor where each layer is described by a two dimensional t-J model and the two layers are connected by the Josephson pair tunneling term. We study this model using a grand canonical variational Monte Carlo (GVMC) method, for which we develop a new algorithm to perform Monte Carlo simulation of a system with fluctuating particle number. The variational wavefunction is taken to be the product of two Gutzwiller projected d-wave BCS wavefunctions with variable particle densities, one for each layer. We calculate the energy of the above state as a function of the d-wave superconducting gap parameter, Δ. We find that the interlayer pair tunneling energy, E perpendicular shows interesting variation with Δ. E perpendicular tends to enhance the optimal value of Δ, thereby the superconducting pairing. However the magnitude of the tunneling energy is found to be too small to have any appreciable effect on the physical properties. While the result is supported by early experiments and hence may appear known to the community, the current work presents a new approach to the problem and confirms the diminished role of interlayer pair tunneling by directly calculating its contribution to superconducting condensation energy.

  20. Antiferromagnetism of nuclear matter in the model with effective Gogny interaction

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2006-01-01

    The possibility of ferromagnetic (FM) antiferromagnetic (AFM) phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi-liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter undergoes a phase transition to the AFM spin state. The self-consistent equations of spin-polarized nuclear matter have no solutions corresponding to FM spin ordering and, hence, the FM transition does not appear. The AFM spin state properties are investigated [ru

  1. Unconventional antiferromagnetic correlations of the doped Haldane gapsystem Y 2 BaNi 1 - x Zn x O 5

    Science.gov (United States)

    Villar, V.; Mélin, R.; Paulsen, C.; Souletie, J.; Janod, E.; Payen, C.

    2002-01-01

    We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ(T) C/(Θ + T) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the ``impurity'' susceptibility (T) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T (T) = Cimp 1 + Timp/T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T (T) = A ln(T/Tc), where Tc increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility (T) which suggests the existence of antiferromagnetic correlations at very low temperature.

  2. Concepts of antiferromagnetic spintronics

    Czech Academy of Sciences Publication Activity Database

    Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo

    2017-01-01

    Roč. 11, č. 4 (2017), 1-8, č. článku 1700022. ISSN 1862-6254 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.032, year: 2016

  3. Model calculation of thermal conductivity in antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.

    2015-11-01

    A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.

  4. Er2Ti2O7: Evidence of quantum order by disorder in a frustrated antiferromagnet

    DEFF Research Database (Denmark)

    Champion, J.D.M.; Harris, M.J.; Holdsworth, P.C.W.

    2003-01-01

    Er(2)Ti(2)O(7) has been suggested to be a realization of the frustrated XY pyrochlore lattice antiferromagnet, for which theory predicts fluctuation-induced symmetry breaking in a highly degenerate ground state manifold. We present a theoretical analysis of the classical model compared...

  5. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  6. Thermal decomposition of hydrotalcite with chromate, molybdate or sulphate in the interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Ray L. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia)]. E-mail: r.frost@qut.edu.au; Musumeci, Anthony W. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Bostrom, Thor [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Adebajo, Moses O. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Weier, Matt L. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Martens, Wayde [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia)

    2005-05-15

    The thermal decomposition of hydrotalcites with chromate, molybdate and sulphate in the interlayer has been studied using thermogravimetric analysis coupled to a mass spectrometer measuring the gas evolution. X-ray diffraction shows the hydrotalcites have a d(0 0 3) spacing of 7.98 A with very small differences in the d-spacing between the three hydrotalcites. XRD was also used to determine the products of the thermal decomposition. For the sulphate-hydrotalcite decomposition the products were MgO and a spinel MgAl{sub 2}O{sub 4}, for the chromate interlayered hydrotalcite MgO, Cr{sub 2}O{sub 3} and spinel. For the molybdate interlayered hydrotalcite the products were MgO, spinel and MgMoO{sub 4}. EDX analyses enabled the formula of the hydrotalcites to be determined. Two processes are observed in the thermal decomposition namely dehydration and dehydroxylation and for the case of the sulphate interlayered hydrotalcite, a third process is the loss of sulphate. Both the dehydration and dehydroxylation take place in three steps each for each of the hydrotalcites.

  7. [mu]SR magnetic response in frustrated antiferromagnets of type RMn[sub 2] (R = rare earth)

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. (Physics Dept., TU Munich, Garching (Germany)); Asch, L. (Physics Dept., TU Munich, Garching (Germany)); Kratzer, A. (Physics Dept., TU Munich, Garching (Germany)); Kalvius, G.M. (Physics Dept., TU Munich, Garching (Germany)); Muench, K.H. (Physics Dept., TU Munich, Garching (Germany)); Ballou, R. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Deportes, J. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Waeppling, R. (Dept. of Physics, Univ. of Uppsala (Sweden)); Litterst, F.J. (Inst. for Metal Physics, TU Braunschweig (Germany)); Klauss, H.H. (Inst. for Metal Physics, TU Braunschweig (Germany)); Niedermayer, C. (Faculty for Physics, Univ. Konstanz (Germany)); Chappert, J. (CEA/DRFMC, CEN Grenoble, 38 (France))

    1994-07-01

    Zero, longitudinal and transverse field [mu]SR was carried out in the antiferromagnets YMn[sub 2], Y[sub 0.95] Tb[sub 0.15] Mn[sub 2], Y[sub 0.9]Tb[sub 0.1]Mn[sub 2], Y[sub 0.99] Sc[sub 0.01] Mn[sub 2], Y[sub 0.98]Sc[sub 0.02]Mn[sub 2] and TbMn[sub 2]. The dynamics of Mn magnetic moments above T[sub N] is typical for an itinerant antiferromagnet. Within a certain temperature range above T[sub N] part of the material enters a randomly ordered (spin glass like) magnetic state as an out-come of frustration. At temperatures above [approx] 150 K the muon spin relaxation rate indicates that the muon has become mobile. (orig.)

  8. Effect of quasiparticles on interlayer transport in highly anisotropic layered superconductors

    International Nuclear Information System (INIS)

    Artemenko, S.N.; Bulaevskii, L.N.; Maley, M.P.; Vinokur, V.M.

    1999-01-01

    We have performed a microscopic calculation of the dielectric response function in highly anisotropic layered superconductors and used the developed approach to obtain the frequency-dependent London penetration length and conductivity in the case of d-wave pairing for currents perpendicular to the layers. We consider a BCS model with coherent interlayer tunneling of electrons and take into account contributions from both superconducting electrons and quasiparticles to the dielectric response. We show that quasiparticles change the low-temperature behavior of the penetration length in the intermediate frequency range where the frequency is smaller than the superconducting order parameter but larger than the inverse quasiparticle scattering time. The obtained results are used to describe the low-temperature behavior of the Josephson plasma resonance, in particular the temperature dependence of the resonance frequency and the resonance linewidth in zero external magnetic field. We compare our results with the available experimental data for Tl 2 Ba 2 CuO 6 and Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) and show that results of a BCS model with coherent interlayer tunneling for the dc c-axis resistivity in the superconducting state are inconsistent with experimental data for underdoped and optimally doped Bi-2212 crystals. copyright 1999 The American Physical Society

  9. Magnetic properties of Ruddlesden-Popper phases Sr3 -xYx(Fe1.25Ni0.75) O7 -δ : A combined experimental and theoretical investigation

    Science.gov (United States)

    Keshavarz, Samara; Kontos, Sofia; Wardecki, Dariusz; Kvashnin, Yaroslav O.; Pereiro, Manuel; Panda, Swarup K.; Sanyal, Biplab; Eriksson, Olle; Grins, Jekabs; Svensson, Gunnar; Gunnarsson, Klas; Svedlindh, Peter

    2018-04-01

    We present a comprehensive study of the magnetic properties of Sr3 -xYx(Fe1.25Ni0.75) O7 -δ (0 ≤x ≤0.75 ). Experimentally, the magnetic properties are investigated using superconducting quantum interference device (SQUID) magnetometry and neutron powder diffraction (NPD). This is complemented by a theoretical study based on density functional theory as well as the Heisenberg exchange parameters. Experimental results show an increase in the Néel temperature (TN) with an increase of Y concentrations and O occupancy. The NPD data reveal that all samples are antiferromagnetically ordered at low temperatures, which has been confirmed by our theoretical simulations for the selected samples. Our first-principles calculations suggest that the three-dimensional magnetic order is stabilized due to finite interlayer exchange couplings. The latter give rise to finite interlayer spin-spin correlations, which disappear above TN.

  10. Effect of samaria-doped ceria (SDC) interlayer on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ/SDC composite oxygen electrode for reversible solid oxide fuel cells

    International Nuclear Information System (INIS)

    Shimura, Kazuki; Nishino, Hanako; Kakinuma, Katsuyoshi; Brito, Manuel E.; Uchida, Hiroyuki

    2017-01-01

    In order to establish clear criteria for designing highly active and highly durable oxygen electrode for reversible solid oxide fuel cells, we have focused on the effect of samaria-doped ceria (SDC) interlayers prepared on YSZ solid electrolyte surface on the performances of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF)-SDC composite oxygen electrode. Symmetrical cells with the configuration, LSCF-SDC|SDC interlayer|YSZ|SDC interlayer|LSCF-SDC, were constructed. We prepared two kinds of SDC interlayers, one from a mixed solution of cerium 2-ethylhexanoate (denoted as octoate) and samarium octoates (o-interlayer) and another from a mixed solution of cerium and samarium nitrates (n-interlayer). The LSCF-SDC electrodes with o-interlayer and n-interlayer exhibited very similar performances in both the anodic and cathodic reactions at 900 °C. When temperature was decreased to 800 °C, an increase in overpotentials was observed. However, the LSCF-SDC electrode with o-interlayer exhibited superior performance to that with n-interlayer. It was found that the entire surface of the YSZ electrolyte disk was well covered with a dense o-interlayer of uniform thickness. Such an interlayer enables uniform transport of oxide ions to and from the LSCF-SDC electrode, resulting in an enlarged effective reaction zone (ERZ). The I-E performance of the LSCF-SDC|o-interlayer|YSZ cell was found to be comparable to that of the identical electrode prepared on a dense SDC sintered electrolyte disk (as a reference). This observation supports our views regarding the essential role of a dense interlayer with uniform thickness in enhancing the performance of reversible solid oxide cells.

  11. The Effect of Interlayer Materials on the Joint Properties of Diffusion-Bonded Aluminium and Magnesium

    Directory of Open Access Journals (Sweden)

    Stefan Habisch

    2018-02-01

    Full Text Available Diffusion bonding is a well-known technology for a wide range of advanced joining applications, due to the possibility of bonding different materials within a defined temperature-time-contact pressure regime in solid state. For this study, aluminium alloys AA 6060, AA 6082, AA 7020, AA 7075 and magnesium alloy AZ 31 B are used to produce dissimilar metal joints. Titanium and silver were investigated as interlayer materials. SEM and EDXS-analysis, micro-hardness measurements and tensile testing were carried out to examine the influence of the interlayers on the diffusion zone microstructures and to characterize the joint properties. The results showed that the highest joint strength of 48 N/mm2 was reached using an aluminium alloy of the 6000 series with a titanium interlayer. For both interlayer materials, intermetallic Al-Mg compounds were still formed, but the width and the level of hardness across the diffusion zone was significantly reduced compared to Al-Mg joints without interlayer.

  12. Direct evidence of spin frustration in the fcc antiferromagnet NiS sub 2

    CERN Document Server

    Matsuura, M; Endoh, Y; Hirota, K; Yamada, K

    2002-01-01

    NiS sub 2 is a well-known Mott insulator with anomalous antiferromagnetic long-range order of coexistent type I (Q sub M =(1,0,0), T sub N sub 1 =40 K) and type II (Q sub M =(1/2,1/2,1/2), T sub N sub 2 =30 K). Extensive neutron-scattering measurements reveal that magnetism in NiS sub 2 is governed by geometrical spin frustration, resulting in magnetic diffuse scattering extending along the fcc zone boundary. Although the diffuse scattering exists at temperatures as high as 250 K (6T sub N sub 1), it disappears rapidly below T sub N sub 2 , associated with minor crystal distortion. We observed a clear energy gap in addition to the low-energy spin-wave excitation at significantly below 30 K, and obtain evidence that degeneracy due to the coexistence of the two types of antiferromagnetism is relieved in the ground state via the reduction in symmetry due to distortion. (orig.)

  13. Room-temperature antiferromagnetic memory resistor.

    Science.gov (United States)

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  14. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    Science.gov (United States)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  15. Magnetic ordering of four particle exchange model in BCC 3He

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Okada, Isamu

    1978-01-01

    The low temperature magnetic ordering of BCC 3 He within the mean field approximation was studied. A model including four particle exchange interactions was considered. Two types of cyclic quadrupole exchange process, planar and folded, were taken into account. Assuming four sublattices, it was considered to minimize the spin energy with respect to the classical spin vector and to find out four ordered states at the absolute zero point. They are antiferromagnetic (AF), weak ferromagnetic (WF) and two kinds of simple cubic antiferromagnetic states (SCAF). The condition for the existence of each ordered state is given, and the free energies of the ordered states are calculated in the mean field approximation. The transition between AF or SCAF and the paramagnetic states is of the first order. The phase diagram is drawn in the parameter space. The phase diagram was obtained numerically at Hetherington and Willard's value and at its neighbouring values. The difference between the present result and HW's is that of magnetic field direction in the perpendicular simple cubic antiferromagnetic states. The second order transition disappears, and the WF state changes gradually into AF state. With respect to the first order transition, the transition temperature increases with magnetic field. In this case, a critical magnetic field exists. (Kato, T

  16. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  17. Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.

    Science.gov (United States)

    An, Jihwan; Kim, Young-Beom; Gür, Turgut M; Prinz, Fritz B

    2012-12-01

    Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.

  18. Interlayer excitons in a bulk van der Waals semiconductor.

    Science.gov (United States)

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  19. Scattering of neutrons and critical phenomena in antiferromagnetic fermi liquid

    International Nuclear Information System (INIS)

    Akhiezer, I.A.; Barannik, E.A.

    1980-01-01

    The scattering of slow neutrons in an antiferromagnetic with collectivized magnetic electrons is considered and it is shown to significantly differ from the neutron scattering in an antiferromagnetic with localized magnetic electrons. The behaviour of scattering cross sections and fluctuation correlators near the Neel point is studied. These magnitudes are shown to increase with the critical index r=-1 [ru

  20. Catalytic effect of Al and AlN interlayer on the growth and properties of containing carbon films

    International Nuclear Information System (INIS)

    Zhou, Bing; Liu, Zhubo; Tang, Bin; Rogachev, A.V.

    2015-01-01

    Highlights: • DLC and CN x bilayers with Al (AlN) interlayer were fabricated by cathode arc technique. • Complete diffusion of Al and C atoms occurs at the interface of Al/DLC (CN x ) bilayer. • Al/CN x bilayer presents a higher content of Csp 3 /Csp 2 bonds. • The hardness of Al/DLC bilayer decreases but increases for the other bilayers. • Morphology of the bilayers was explained by growth mechanism of DLC and surface state of substrate. - Abstract: Diamond-like carbon (DLC) and carbon nitride (CN x ) bilayer films with Al and AlN interlayer were fabricated by pulse cathode arc technique. The structure, composition, morphology and mechanical properties of the films were investigated by Raman, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Knoop sclerometer and surface profilometer. The results indicated that the complete diffusion between C and Al atoms occurs in the Al/DLC and Al/CN x bilayer. Al interlayer induces the increase of the size and ordering of Csp 2 clusters in the films but AlN interlayer increases the disordering degree of Csp 2 clusters. XPS results showed that a higher content of Csp 3 /Csp 2 bonds presents in the Al/CN x bilayer, and Al and AlN interlayer decreases the atomic ratio of N/C. AFM with phase contrast mode illustrated the morphologic characteristics of the bilayer films. All the bilayers show a nano-structural surface. The morphology changes of the bilayer were well explained by the surface state of the substrate and the growth mechanism of DLC films. The hardness of Al/DLC bilayer decreases but it increases for the other bilayers compared to the corresponding DLC (CN x ) monolayer. The internal stress of the bilayer is significantly lower than that of the monolayer except for the AlN/CN x bilayer. These studies could make the difference at the time of choosing a suitable functional film for certain application

  1. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Zhuang, Hao; Jiang, Xin, E-mail: xin.jiang@uni-siegen.de

    2015-12-30

    Graphical abstract: - Highlights: • Novel diamond/beta-silicon carbide composite gradient interlayers were synthesized. • The interlayer features a cross-sectional gradient with increasing diamond content. • Diamond top layers and the interlayers were deposited in one single process. • The adhesion of the diamond film is drastically improved by employing the interlayer. • The stress was suppressed by manipulating the distribution of diamond and silicon carbide. - Abstract: Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co{sub 2}Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  2. On the Stress Transfer of Nanoscale Interlayer with Surface Effects

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    2018-01-01

    Full Text Available An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.

  3. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOX barriers

    Science.gov (United States)

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.; Huang, S.; Kato, H.; Bi, C.; Xu, M.; LeRoy, B. J.; Wang, W. G.

    2018-02-01

    Perpendicular magnetic tunnel junctions with GdOX tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here, we investigate the quality of the GdOX barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlOX and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence including sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.

  4. Analysis on groundwater evolution and interlayer oxidation zone position at the southern margin of Yilin basin

    International Nuclear Information System (INIS)

    Zhang Guanghui

    2007-01-01

    This paper discusses the development and evolution history of groundwater and its reworking to the interlayer oxidation zone, hydrogeochemical zonation of interlayer oxidation zone, mechanism of water-rock interaction and transportation pattern of uranium in the water in Yili Basin. It is suggested that groundwater is one of the important factors to control the development of interlayer oxidation zone and uranium mineralization. (authors)

  5. Magnetic behaviour of interacting antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Markovich, V; Jung, G; Gorodetsky, G; Puzniak, R; Wisniewski, A; Skourski, Y; Mogilyanski, D

    2012-01-01

    Magnetic properties of interacting La 0.2 Ca 0.8 MnO 3 nanoparticles have been investigated. The field-induced transition from antiferromagnetic (AFM) to ferromagnetic (FM) state in the La 0.2 Ca 0.8 MnO 3 bulk has been observed at exceptionally high magnetic fields. For large particles, the field-induced transition widens while magnetization progressively decreases. In small particles the transition is almost fully suppressed. The thermoremanence and isothermoremanence curves constitute fingerprints of irreversible magnetization originating from nanoparticle shells. We have ascribed the magnetic behaviour of nanoparticles to a core-shell scenario with two main magnetic contributions; one attributed to the formation of a collective state formed by FM clusters in frustrated coordination at the surfaces of interacting AFM nanoparticles and the other associated with inner core behaviour as a two-dimensional diluted antiferromagnet. (paper)

  6. INTERLAYER OPTICAL CONDUCTIVITY OF A SUPERCONDUCTING BILAYER

    NARCIS (Netherlands)

    GARTSTEIN, YN; RICE, MJ; VANDERMAREL, D

    1994-01-01

    We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer conductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tunneling. The effect of the superconducting transition on the normal-state absorption band is to

  7. Development of magnetic order in superconducting systems

    International Nuclear Information System (INIS)

    Moncton, D.E.; Shirane, G.; Thomlinson, W.

    1979-08-01

    Two different classes of rare-earth (RE) ternary superconductors (RERh 4 B 4 and REMo 6 S 8 , X=S, Se) have provided the first instances in which chemically ordered sublattices of magnetic ions exist in superconductors. Neutron scattering studies show that simple, conventional antiferromagnetism coexists with superconductivity in a number of systems, while destruction of superconductivity occurs with the onset of ferromagnetism. The magnetic structural details are summarized for the coexistent antiferromagnets, and review measurements on the superconducting → ferromagnetic transition in ErRh 4 B 4

  8. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  9. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment

    Science.gov (United States)

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.

    2015-10-01

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.

  10. A neutron scattering study on the antiferromagnet in an exchange biased systems

    Energy Technology Data Exchange (ETDEWEB)

    Solina, Danica; Lott, Dieter; Fenske, Jochen; Schreyer, Andreas [Institute of Materials Research, GKSS Research Centre, Geesthacht (Germany); Schmidt, Wolfgang [Institut-Laue-Langevin, Grenoble (France); Wu, Yu-Chang; Lai, Chih-Huang [Department of Materials Science and Engineering, National Tsing Hua University, HsinChu (China)

    2008-07-01

    The magnetic structure of single crystal antiferromagnetic PtMn that biases CoFe has been studied using neutron scattering. Polarized neutron reflection (PNR) was used to determine the switching behaviour of the ferromagnetic layer and polarized neutron diffraction (PND) to probe the magnetic configuration of the anti-ferromagnetic layer. PNR suggests a combination of rotation and domain formation. Changes were observed in the PND patterns taken at points around the hysteresis loop. The diffraction data has been simulated with a 'twisting' of part of the anti-ferromagnetic layer as the ferromagnetic layer changes.

  11. Zero Modes and Global Antiferromagnetism in Strained Graphene

    Directory of Open Access Journals (Sweden)

    Bitan Roy

    2014-05-01

    Full Text Available A novel magnetic ground state is reported for the Hubbard Hamiltonian in strained graphene. When the chemical potential lies close to the Dirac point, the ground state exhibits locally both the Néel and ferromagnetic orders, even for weak Hubbard interaction. Whereas the Néel order parameter remains of the same sign in the entire system, the magnetization at the boundary takes the opposite sign from the bulk. The total magnetization vanishes this way, and the magnetic ground state is globally only an antiferromagnet. This peculiar ordering stems from the nature of the strain-induced single-particle zero-energy states, which have support on one sublattice of the honeycomb lattice in the bulk, and on the other sublattice near the boundary of a finite system. We support our claim with the self-consistent numerical calculation of the order parameters, as well as by the Monte Carlo simulations of the Hubbard model in both uniformly and nonuniformly strained honeycomb lattice. The present result is contrasted with the magnetic ground state of the same Hubbard model in the presence of a true magnetic field (and for vanishing Zeeman coupling, which is exclusively Néel ordered, with zero local magnetization everywhere in the system.

  12. Influence of in-situ deposited SiNx interlayer on crystal quality of GaN epitaxial films

    Science.gov (United States)

    Fan, Teng; Jia, Wei; Tong, Guangyun; Zhai, Guangmei; Li, Tianbao; Dong, Hailiang; Xu, Bingshe

    2018-05-01

    GaN epitaxial films with SiNx interlayers were prepared by metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. The influences of deposition times and locations of SiNx interlayers on crystal quality of GaN epitaxial films were studied. Under the optimal growth time of 120 s for the SiNx interlayer, the dislocation density of GaN film is reduced to 4.05 × 108 cm-2 proved by high resolution X-ray diffraction results. It is found that when the SiNx interlayer deposits on the GaN nucleation islands, the subsequent GaN film has the lowest dislocation density of only 2.89 × 108 cm-2. Moreover, a model is proposed to illustrate the morphological evolution and associated propagation processes of TDs in GaN epi-layers with SiNx interlayers for different deposition times and locations.

  13. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  14. Synchronization and Inter-Layer Interactions of Noise-Driven Neural Networks.

    Science.gov (United States)

    Yuniati, Anis; Mai, Te-Lun; Chen, Chi-Ming

    2017-01-01

    In this study, we used the Hodgkin-Huxley (HH) model of neurons to investigate the phase diagram of a developing single-layer neural network and that of a network consisting of two weakly coupled neural layers. These networks are noise driven and learn through the spike-timing-dependent plasticity (STDP) or the inverse STDP rules. We described how these networks transited from a non-synchronous background activity state (BAS) to a synchronous firing state (SFS) by varying the network connectivity and the learning efficacy. In particular, we studied the interaction between a SFS layer and a BAS layer, and investigated how synchronous firing dynamics was induced in the BAS layer. We further investigated the effect of the inter-layer interaction on a BAS to SFS repair mechanism by considering three types of neuron positioning (random, grid, and lognormal distributions) and two types of inter-layer connections (random and preferential connections). Among these scenarios, we concluded that the repair mechanism has the largest effect for a network with the lognormal neuron positioning and the preferential inter-layer connections.

  15. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet

    Science.gov (United States)

    Guo, Jianchao; Li, Chengming; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Hua, Chenyi; Yan, Xiongbo

    2016-05-01

    The addition of titanium (Ti) interlayer was verified to reduce the residual stress of diamond films by self-fracturing and facilitate the harvest of a crack-free free-standing diamond film prepared by direct current (DC) arc plasma jet. In this study, the evolution of the Ti interlayer between large-area diamond film and substrate was studied and modeled in detail. The evolution of the interlayer was found to be relevant to the distribution of the DC arc plasma, which can be divided into three areas (arc center, arc main, and arc edge). The formation rate of titanium carbide (TiC) in the arc main was faster than in the other two areas and resulted in the preferred generation of crack in the diamond film in the arc main during cooling. Sandwich structures were formed along with the growth of TiC until the complete transformation of the Ti interlayer. The interlayer released stress via self-fracture. Avoiding uneven fragile regions that formed locally in the interlayer and achieving cooperatively released stress are crucial for the preparation of large crack-free diamond films.

  16. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 thin films

    Science.gov (United States)

    Ward, T. Zac; Wong, A. T.; Takamura, Yayoi; Herklotz, Andreas

    2015-03-01

    Antiferromagnets (AFM) are a promising alternative to ferromagnets (FM) in spintronic applications. The reason stems from the fact that at high data storage densities stray fields could destroy FM set states while AFMs would be relatively insensitive to this data corruption. This work presents the first ever example of antiferromagnetic La0.4Sr0.6MnO3 thin films stabilized in different strain states. Strain is found to drive different types of AFM ordering, and these variations in ordering type are shown to have a profound impact on both the magnitude and character of the materials' resistive response to magnetic field direction, or anisotropic magnetoresistance (AMR) behavior (one standard of spintronic suitability). The compressively strained film shows the highest recorded AMR response in an ohmic AFM device of 63%, while the tensile strained film shows a typical AFM AMR of 0.6%. These findings demonstrate the necessity of understanding electron ordering in AFM spintronic applications and provide a new benchmark for AMR response. This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  17. High-frequency effects in antiferromagnetic Sr3Ir2O7

    Science.gov (United States)

    Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.

  18. Formation conditions and prospecting criteria for sandstone uranium deposit of interlayer oxidation type

    International Nuclear Information System (INIS)

    Huang Shijie

    1994-01-01

    This paper comprehensively analyses the geotectonic setting and favourable conditions, such as structure of the basin, sedimentary facies and paleogeography, geomorphology and climate, hydrodynamics and hydrogeochemistry, the development of interlayered oxidation etc, necessary for the formation of sandstone uranium deposit of interlayered oxidation type. The following prospecting criteria is proposed, namely: abundant uranium source, arid climate, stable big basin, flat-lying sandstone bed, big alluvial fan, little change in sedimentary facies, intercalation of sandstone and mudstone beds, shallow burying of sandstone bed, well-aquiferous sandstone bed, high permeability of sandstone bed, development of interlayered oxidation, and high content of reductant in sandstone. In addition, the 6 in 1 hydrogenic genetic model is proposed

  19. Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)(2)O-4 spinels

    DEFF Research Database (Denmark)

    Zaharko, O.; Cervellino, A.; Tsurkan, V.

    2010-01-01

    Using neutron powder diffraction and Monte Carlo simulations we show that a spin-liquid regime emerges at all compositions in the diamond-lattice antiferromagnets Co(Al1−xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbor exchange coupling J2 is gradually superseded...... by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third......-neighbor exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1−xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher...

  20. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2.

    Science.gov (United States)

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2016-02-10

    van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

  1. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    Science.gov (United States)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  2. The distinguishing characteristics of interlayer oxidation zone and burial ancient ground oxidation zone

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Zhou Wenbin

    1998-01-01

    The author discusses the main characteristics of interlayer oxidation zones and the burial ancient ground oxidation zones of Uranium deposit No. 512 in Xinjiang Uigur municipality. The epigenetic genesis, depending on some aquifer, the tongue-like in section, having the zonation along dip direction and having certain mineral assemblage are the typical features for interlayer oxidation zones

  3. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    Science.gov (United States)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  4. C-V Calculations in CdS/CdTe Thin Films Solar Cells with a CdSxTe1-x Interlayer

    Directory of Open Access Journals (Sweden)

    A. Gonzalez-Cisneros

    2013-01-01

    Full Text Available In CdS/CdTe solar cells, chemical interdiffusion at the interface gives rise to the formation of an interlayer of the ternary compound CdSxCdTe1-x. In this work, we evaluate the effects of this interlayer in CdS/CdTe photovoltaic cells in order to improve theoretical results describing experimental C-V (capacitance versus voltage characteristics. We extended our previous theoretical methodology developed on the basis of three cardinal equations (Castillo-Alvarado et al., 2010. The present results provide a better fit to experimental data obtained from CdS/CdTe solar cells grown in our laboratory by the chemical bath deposition (for CdS film and the close-spaced vapor transport (for CdTe film techniques.

  5. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    Science.gov (United States)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  6. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Guo, Pengqian; Liu, Dequan; Liu, Zhengjiao; Shang, Xiaonan; Liu, Qiming; He, Deyan

    2017-01-01

    Highlights: •Dual functional MoS 2 /graphene interlayer was first used as an efficient polysulfide-trapping shield for lithium-sulfur batteries. •MoS 2 /graphene interlayer shows strong chemical interactions with LiPSs. •MoS 2 /graphene interlayer forms a 3D network to facilitate electron and ion transfer during the discharge-charge processes. •The resultant lithium-sulfur batteries exhibit a superior rate capacity and improved cycling capacity. -- Abstract: A dual functional interlayer consisted of composited two-dimensional MoS 2 and graphene has been developed as an efficient polysulfide barrier for lithium-sulfur batteries (LSBs). With such a configuration, LSBs show a superior rate capacity and improved cycling capacity. The excellent electrochemical performance can be attributed to the strong bonding interactions between the MoS 2 /graphene interlayer and the formed lithium polysulfides (LiPSs) as well as the good electrical conductivity of the MoS 2 /graphene composite. The MoS 2 /graphene interlayer can physically block LiPSs by the graphene nanosheets and chemically suppress the dissolution of LiPSs by the polar MoS 2 nanoflowers. Such a dual functional interlayer further provides a good contact with the surface of the sulfur cathode, acts as an upper current collector and greatly improves the sulfur utilization and the rate capability of LSBs.

  7. Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Delrieu, J.M.

    1981-08-01

    The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff

  8. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    Science.gov (United States)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  9. Two-magnon Raman scattering in a spin density wave antiferromagnet

    OpenAIRE

    Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin

    1996-01-01

    We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...

  10. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun

    2017-12-27

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  11. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun; Zhang, Chenhui; Wang, Zhenyu; Zhu, Jian; Wen, Zhiwei; Zhao, Xingzhong; Zhang, Xixiang; Xu, Jun; Lu, Zhouguang

    2017-01-01

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  12. Exchange of interlayer cations in micaceous minerals. Final report, February 1, 1967--August 31, 1976

    International Nuclear Information System (INIS)

    Scott, A.D.

    1976-08-01

    Laboratory experiments were carried out to establish a comprehensive understanding of the processes and factors governing the sorption and release of interlayer cations in micaceous minerals. A diverse approach with several lines of work was used to delineate the effects of different procedures, solution compositions and mineral properties. It was soon clear that the major factors controlling the exchange of interlayer cations are the blocking effects of dissolved fixable cations and the limiting effects of small particles. By using sodium tetraphenylboron to reduce the blocking effects and by excluding particles that were smaller than 2 μm, however, the subtle effects of many other factors were brought out. The redox status of structural iron, the hydroxyl groups, the interlayer spacing and the layer charge of the minerals are indicative of the type of factors involved and the fact that they are mainly interactive in nature. One conclusion from this work is that most experimental results for interlayer cation exchange are bound to reflect some combination of the controlling factors. More important, however, was the observation that proper management of interlayer cation exchange can make micaceous minerals a good sink for cesium and source of potassium

  13. Exchange of interlayer cations in micaceous minerals. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Scott, A.D.

    1975-01-01

    Information pertaining to the sorption and exchange of interlayer cations in micaceous minerals was developed along several lines. Cs sorption experiments with different minerals and particle sizes established the periods required for maximum sorption at different temperatures and downgraded the impact anticipated from a contraction of particle edges by Cs. Added interlayer Cs in even highly charged minerals (degraded muscovite) proved to be very exchangeable in air-dry, clay size particles. Heat treatments greatly retarded the exchange of this sorbed Cs and by doing so have circumvented the commonly observed small particle effects. Structural Fe in micas was shown to be susceptible to oxidation by various Br 2 treatments but these treatments also removed a lot of K that must be accounted for in a determination of changes in interlayer K exchangeability. Changes in the rate of interlayer K exchange were induced in some micaceous minerals by adding H 2 O 2 but not in others. Specific effects of heat treatments on dioctahedral and trioctahedral micas were examined in great detail. Interlayer cation exchange experiments with different concentrations of Na and Al have produced predictable results. (U.S.)

  14. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    ,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...

  15. Spin Dynamics and Critical Fluctuations in a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1975-01-01

    A comprehensive elastic- and inelastic-neutron-scattering study of the binary mixed antiferromagnet Rb2Mn0.5Ni0.5F4 has been carried out. The pure materials, Rb2MnF4 and Rb2NiF4 are [2d] near-Heisenberg antiferromagnets of the K2NiF4 type. Elastic-scattering experiments demonstrate that the Mn...

  16. Canted antiferromagnetic and optical properties of nanostructures of Mn2O3 prepared by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Javed, Qurat-ul-ain; Feng-Ping Wang; Rafique, M. Yasir; Toufiq, Arbab Mohammad; Iqbal, M. Zubair

    2012-01-01

    We have reported new magnetic and optical properties of Mn 2 O 3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV—visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn 2 O 3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn 2 O 3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at T N = 83 K. Furthermore, the Mn 2 O 3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remnant magnetization (1.52 emu/g). The UV—visible spectrophotometry was used to determine the transmittance behaviour of Mn 2 O 3 nanostructures. A direct optical band gap of 1.2 eV was acquired by using the Davis—Mott model. The UV—visible spectrum indicates that the absorption is prominent in the visible region, and transparency is more than 80% in the UV region

  17. Nature of Interlayer Binding and Stacking of sp–sp 2 Hybridized Carbon Layers: A Quantum Monte Carlo Study

    International Nuclear Information System (INIS)

    Shin, Hyeondeok; Lee, Hoonkyung; Heinonen, Olle; Benali, Anouar; Kwon, Yongkyung

    2017-01-01

    α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult to model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.

  18. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  19. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  20. Orphan Spins in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.

    Science.gov (United States)

    Stock, C; Rodriguez, E E; Lee, N; Demmel, F; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Green, M A; Rodriguez-Rivera, J A; Kim, J W; Zhang, L; Cheong, S-W

    2017-12-22

    CaFe_{2}O_{4} is an anisotropic S=5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe_{2}O_{4}.

  1. Orphan Spins in the S =5/2 Antiferromagnet CaFe2O4

    Science.gov (United States)

    Stock, C.; Rodriguez, E. E.; Lee, N.; Demmel, F.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Green, M. A.; Rodriguez-Rivera, J. A.; Kim, J. W.; Zhang, L.; Cheong, S.-W.

    2017-12-01

    CaFe2O4 is an anisotropic S =5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe2 O4 .

  2. Neutron diffraction study of antiferromagnetic ErNi3Ga9 in magnetic fields

    Science.gov (United States)

    Ninomiya, Hiroki; Sato, Takaaki; Matsumoto, Yuji; Moyoshi, Taketo; Nakao, Akiko; Ohishi, Kazuki; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya; Ohara, Shigeo

    2018-05-01

    We report specific heat, magnetization, magnetoresistance, and neutron diffraction measurements of single crystals of ErNi3Ga9. This compound crystalizes in a chiral structure with space group R 32 . The erbium ions form a two-dimensional honeycomb structure. ErNi3Ga9 displays antiferromagnetic order below 6.4 K. We determined that the magnetic structure is slightly amplitude-modulated as well as antiferromagnetic with q = (0 , 0 , 0.5) . The magnetic properties are described by an Ising-like model in which the magnetic moment is always along the c-axis owing to the large uniaxial anisotropy caused by the crystalline electric field effect in the low temperature region. When the magnetic field is applied along the c-axis, a metamagnetic transition is observed around 12 kOe at 2 K. ErNi3Ga9 possesses crystal chirality, but the antisymmetric magnetic interaction, the so-called Dzyaloshinskii-Moriya (DM) interaction, does not contribute to the magnetic structure, because the magnetic moments are parallel to the DM-vector.

  3. Critical Behaviour of Pure and Site-Random Two Dimensional Antiferromagnets

    DEFF Research Database (Denmark)

    Birgenau, R. J.; Als-Nielsen, Jens Aage; Shirane, G.

    1977-01-01

    Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T......Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T...

  4. Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain

    International Nuclear Information System (INIS)

    Wu, F; Wang, W Z

    2006-01-01

    Using the exact diagonalization technique, we study the properties of the ground state of a spin-1/2 antiferromagnetic Heisenberg model for a zigzag polymer chain with side radicals connected to the even sites. We consider the nearest-neighbour exchange J and the next-nearest-neighbour exchange αJ along the main chain, and J 1 between the even site on the main chain and the radical site. For small α the ground state is ferrimagnetic. For α>α c1 , the ground state is a spiral phase, which is characterized by a peak of the static structure factor S(q) locating at an incommensurate value q max . For α>α c2 , the ground state is antiferromagnetic. With increasing J 1 , α c1 decreases while α c2 has a maximum at about J 1 = 0.5. For very small J 1 and α = 0.5, the spin configuration on the main chain is a product of nearest-neighbour singlets. In the antiferromagnetic phase, if J 1 is large enough the even site and the radical site form a singlet with exchange-decoupling from the odd site while the odd sites approximately form an antiferromagnetic chain

  5. Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    C. Wang

    2014-11-01

    Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.

  6. THE CHARACTERIZATION OF THE Ca-K GEOPOLYMER/SOLIDIFIED FLUID FLY-ASH INTERLAYER

    Directory of Open Access Journals (Sweden)

    Ivana Perna

    2016-12-01

    Full Text Available A Ca-K geopolymer matrix based on clay material and blast-furnace slag was filled with aggregates, ash pellets made from fluid fly ash, and the interlayer formed between the two components was studied. The scanning electron-microscopy investigation of the inseparable interlayer demonstrated that the pellets were not only enveloped in a geopolymer matrix but also incorporated through a thin, yet identifiable, surface pellet layer. The migration of calcium and potassium ions was detected and that changes in the quantity of these ions arise from their mobility. The interlayer on the edges of ash pellets was also studied by infrared analysis, which in this layer proved bands belonging to both participants, the matrix and the pellets. Based on the results, two different materials prepared from wastes could be used for the preparation of a new composite material and thus facilitate waste-material disposal.

  7. Aminopropyl-modified magnesium-phyllosilicates: layered solids with tailored interlayer access and reactivity.

    Science.gov (United States)

    Ferreira, Ricardo B; da Silva, César R; Pastore, Heloise O

    2008-12-16

    Despite its wide application, the synthesis of aminopropyl-modified magnesium-phyllosilicates was known only in the case where every silicon atom bore an organic pending group. This paper shows the preparation of aminopropyl-modified talc where tailored amounts of silicon atoms are bound to an aminopropyl group. The decrease in the concentration of the organoamino group leaves a proportional concentration of interlayer SiOH groups that can be used to react with other silylation agents. The amino group reacts with CO2, forming a carbamate functionality; it seems that the presence of this group avoids delamination in water as performed for the parent compound. Bearing in mind that the aminopropyl group can be changed by other groups, the present synthesis strategy demonstrates ways to produce solids with controlled surface properties with interlayer amino and SiOH groups in variable concentrations, allowing formation of several other interlayer functionalities.

  8. Antiferromagnetic exchange coupling measurements on single Co clusters

    Science.gov (United States)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  9. Magnetic field effects of tow-leg Heisenberg antiferromagnetic ladders: Thermodynamic properties

    International Nuclear Information System (INIS)

    Wang Xiaoqun; Yu Lu

    2000-05-01

    Using the recently developed transfer-matrix renormalization group method, we have studied the thermodynamic properties of two-leg antiferromagnetic ladders in the magnetic field. Based on different behavior of magnetization, we found disordered spin liquid, Luttinger liquid, spin-polarized phases and a classical regime depending on magnetic field and temperature. Our calculations in Luttinger liquid regime suggest that both the divergence of the NMR relaxation rate and the anomalous specific heat behavior observed on Cu 2 (C 5 H 12 N 2 ) 2 Cl 4 are due to quasi-one-dimensional effect rather than three-dimensional ordering. (author)

  10. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO 4

    Science.gov (United States)

    Smith, R.; Reyes, A. P.; Ashey, R.; Caldwell, T.; Prokofiev, A.; Assmus, W.; Teitel'baum, G.

    2006-05-01

    Our 51V NMR measurements in the LiCuVO 4 single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the 51V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  11. Mn2Au: Body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitataxy

    Czech Academy of Sciences Publication Activity Database

    Wu, H.C.; Liao, Z.M.; Sofin, R.G.S.; Feng, G.; Ma, X.M.; Shick, Alexander; Mryasov, O. N.; Shvets, I.V.

    2012-01-01

    Roč. 24, č. 47 (2012), s. 6374-6379 ISSN 0935-9648 Institutional research plan: CEZ:AV0Z10100520 Keywords : antiferromagnets * antiferromagnetic spintronics * exchange bias * molecular beam epitaxy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 14.829, year: 2012

  12. Analogies between antiferromagnets and antiferroelectrics

    International Nuclear Information System (INIS)

    Enz, C.P.; Matthias, B.T.

    1980-01-01

    Ferro- and antiferromagnetism in the Laves phase TiBesub(2-x) Cusub(x) occurs for 0.1 4 H 2 PO 4 and its solid solutions with TlH 2 PO 4 and with the ferroelectric KH 2 PO 4 are discussed as function of deuteration and of pressure. Another analogy as function of pressure is established with the antiferroelectric perovskite PbZrO 3 . (author)

  13. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability

    Science.gov (United States)

    Huang, Li-Bo; Su, Pei-Yang; Liu, Jun-Min; Huang, Jian-Feng; Chen, Yi-Fan; Qin, Su; Guo, Jing; Xu, Yao-Wei; Su, Cheng-Yong

    2018-02-01

    This work proposes a new perovskite solar cell structure by inserting a polymer interlayer between perovskite and hole transporting material (HTM) to minimize the interface losses via interface engineering. The multifunctional interlayers improve the photovoltaic efficiency and device stability by shielding perovskite from moisture, suppressing charge combination, and promoting hole transport. The five different polymer layers are utilized to investigate the relationships of polymer structure, layer morphology and cell performance systematically. It is found that a reliable power conversion efficiency exceeding 19.0% is realized based on P3HT/spiro-OMeTAD composite structure, surpassing that of pure spiro-OMeTAD (15.0%). Moreover, the device with P3HT interlayer shows more brilliant long-term stability than that without interlayer when exposed into moisture. The enhanced device performance based on P3HT interlayer compared with the other polymers can be ascribed to the long hydrophobic alkyl chains and the small molecule monomers of P3HT, which contribute to self-assembly of the polymers into insulating layers and formation of the efficient π-π stacking in polymer/spiro-OMeTAD interface simultaneously. This study provides a practical route for the integration of a new class of easily-accessible, solution-processed interfacial polymer materials for high-performance and long-time stable PSC.

  14. Critical behavior of AC antiferromagnetic and ferromagnetic susceptibilities of a spin-1/2 metamagnetic Ising system

    International Nuclear Information System (INIS)

    Gulpinar, Gul; Vatansever, Erol

    2012-01-01

    In this study, the temperature variations of the equilibrium and the non-equilibrium antiferromagnetic and ferromagnetic susceptibilities of a metamagnetic system are examined near the critical point. The kinetic equations describing the time dependencies of the total and staggered magnetizations are derived by utilizing linear response theory. In order to obtain dynamic magnetic relaxation behavior of the system, the stationary solutions of the kinetic equations in existence of sinusoidal staggered and physical external magnetic fields are performed. In addition, the static and dynamical mean field critical exponents are calculated in order to formulate the critical behavior of antiferromagnetic and ferromagnetic magnetic response of a metamagnetic system. Finally, a comparison of the findings of this study with previous theoretical and experimental studies is represented and it is shown that a good agreement is found with our results. - Highlights: ► Staggered dynamic susceptibility diverges as T→T N in the low frequency region. ► Dynamic total susceptibility exhibits a finite jump discontinuity as T→T N while wτ 2 ⪡1. ► The slope of the staggered magnetic dispersion curve chances in sign as T→T N .

  15. Effect of cuprous halide interlayers on the device performance of ZnPc/C60 organic solar cells

    International Nuclear Information System (INIS)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu

    2014-01-01

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C 60 -based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C 60 -based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer

  16. Theory of antiferromagnetic pairing in cuprate superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.

    2006-01-01

    A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed

  17. Interlayer quality dependent graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul, 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Ramay, Shahid Mahmood [Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2017-01-15

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  18. Interlayer quality dependent graphene spin valve

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Iqbal, Muhammad Waqas; Murtaza, Ghulam; Ramay, Shahid Mahmood

    2017-01-01

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  19. Structure and thermal evolution of Mg-Al layered double hydroxide containing interlayer organic glyphosate anions

    Energy Technology Data Exchange (ETDEWEB)

    Li Feng; Zhang Lihong; Evans, David G.; Forano, Claude; Duan Xue

    2004-12-15

    Layered double hydroxide (LDH) with the Mg{sup 2+}/Al{sup 3+} molar ratio of 2.0 containing interlayer organic pesticide glyphosate anions (MgAl-Gly-LDH) has been synthesized by the use of anion exchange and coprecipitation routes. Intercalation experiments with glyphosate (Gly) reveal a correlation between the temperatures for thermal treatments and the types of reaction it undergoes with Gly. The grafting of the Gly anion onto hydroxylated sheets of LDH by moderate thermal treatments (hydrothermal treatments and calcinations) was confirmed by a combination of several techniques, including powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA-DTG), and {sup 31}P nuclear magnetic resonance (NMR). The thermal decomposition of MgAl-Gly-LDH results in the removal of loosely held interlayer water, grafting reaction between the interlayer anions and hydroxyl groups on the lattice of LDH, dehydroxylation of the lattice and decomposition of the interlayer species in succession, thus leading to a variety of crystallographic transitions.

  20. Tunable electric properties of bilayer InSe with different interlayer distances and external electric field

    Science.gov (United States)

    Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming

    2018-03-01

    Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.

  1. Structural behavior of window laminated glass plies using new interlayer materials

    Directory of Open Access Journals (Sweden)

    Mostafa El-Shami

    2018-01-01

    Full Text Available In most cases for the structural design of architectural glazing systems under a wide range of environmental conditions, the designers follow procedures provided by model building codes to design window glass. These codes commonly use design charts to determine design strength based on nominal glass thickness and aspect ratio. Glass plies are the principal components of laminated glass (LG where a thin ply of elastomeric material Polyvinyl butyral (PVB is used to bond glass plies (normally two plies to form the LG. Because of the reduction in LG design strength by most building codes and design guidelines, designers avoid architectural LG applications, other than for safety consideration. In this research a higher order mathematical model based on Mindlin plate theory is presented. LG was modeled using finite element methodology with new interlayer (NI. It consists of two plies of PVB with a hard ply of film material in between. In the FEM, properties of PVB/film material can be easily controlled regardless of their thicknesses. The finite element model (FEM was extended to account the design recommendations of ASTM (2012 to develop the design charts for LG with NI. The current FEM was verified and used to study the stresses transformation through NI. Design charts for samples of LG with NI were developed and presented. It has been found that using NI enhances the total behavior of LG and reflects on the design charts for this type of interlayer material.

  2. Barrier height enhancement of metal/semiconductor contact by an enzyme biofilm interlayer

    Science.gov (United States)

    Ocak, Yusuf Selim; Gul Guven, Reyhan; Tombak, Ahmet; Kilicoglu, Tahsin; Guven, Kemal; Dogru, Mehmet

    2013-06-01

    A metal/interlayer/semiconductor (Al/enzyme/p-Si) MIS device was fabricated using α-amylase enzyme as a thin biofilm interlayer. It was observed that the device showed an excellent rectifying behavior and the barrier height value of 0.78 eV for Al/α-amylase/p-Si was meaningfully larger than the one of 0.58 eV for conventional Al/p-Si metal/semiconductor (MS) contact. Enhancement of the interfacial potential barrier of Al/p-Si MS diode was realized using enzyme interlayer by influencing the space charge region of Si semiconductor. The electrical properties of the structure were executed by the help of current-voltage and capacitance-voltage measurements. The photovoltaic properties of the structure were executed under a solar simulator with AM1.5 global filter between 40 and 100 mW/cm2 illumination conditions. It was also reported that the α-amylase enzyme produced from Bacillus licheniformis had a 3.65 eV band gap value obtained from optical method.

  3. Improving efficiency of pentacene/C60 based solar cells with mixed interlayers

    International Nuclear Information System (INIS)

    Hung, Kuang-Teng; Huang, Kuan-Ta; Hsiao, Chu-Yun; Shih, Chuan-Feng

    2011-01-01

    This work presents a modified architecture for conventional pentacene/fullerene (C 60 ) solar cells by inserting alternately deposited C 60 /pentacene interlayers (∼ 1-2 nm per layer). The cell parameters, the incident photon-to-current efficiency spectra and the atomic force microscopy were used to characterize devices that had different numbers of inserting layers. The power conversion efficiency (PCE) increased markedly from 0.77 to 1.60% as the number of the inserted pairs increased from zero to three. The PCE further increased to 1.73% after post-annealing. The interlayers formed an interpenetrating network, enlarging the area over which excitons dissociate. When the number of interlayers and post-annealing conditions were optimized, the resistance and the surface roughness were minimized. When the number of pairs was increased to five, cell performance was degraded. The mechanism by which the properties of the solar cells are related to the inserted layers is presented.

  4. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures

    Science.gov (United States)

    Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming

    2018-05-01

    We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.

  5. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    Science.gov (United States)

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  6. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder

    Science.gov (United States)

    Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  7. Intra- and inter-layer charge redistribution in biased bilayer graphene

    Directory of Open Access Journals (Sweden)

    Rui-Ning Wang

    2016-03-01

    Full Text Available We investigate the spatial redistribution of the electron density in bilayer graphene in the presence of an interlayer bias within density functional theory. It is found that the interlayer charge redistribution is inhomogeneous between the upper and bottom layers and the transferred charge from the upper layer to the bottom layer linearly increases with the external voltage which further makes the gap at K point linearly increase. However, the band gap will saturate to 0.29 eV in the strong-field regime, but it displays a linear field dependence at the weak-field limit. Due to the AB-stacked way, two carbon atoms per unit cell in the same layer are different and there is also a charge transfer between them, making the widths of π valence bands reduced. In the bottom layer, the charge transfers from the direct atoms which directly face another carbon atom to the indirect atoms facing the center of the hexagon on the opposite layer, while the charge transfers from the indirect atoms to the direct atoms in the upper layer. Furthermore, there is a diploe between the upper and bottom layers which results in the reduction of the interlayer hopping interaction.

  8. Effects of the F₄TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors.

    Science.gov (United States)

    Fan, Ching-Lin; Lin, Wei-Chun; Chang, Hsiang-Sheng; Lin, Yu-Zuo; Huang, Bohr-Ran

    2016-01-13

    In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F₄TCNQ)-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F₄TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F₄TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F₄TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window.

  9. Nuclear order in copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, K.N.; Lindgård, P.-A.

    1990-01-01

    The new antiferromagnetic reflection (02/32/3) has been found by neutron diffraction experiments at nanokelvin temperatures in the nuclear spin system of a 65CU single crystal. The corresponding three-sublattice structure has not been observed previously in any fcc antiferromagnet.......The new antiferromagnetic reflection (02/32/3) has been found by neutron diffraction experiments at nanokelvin temperatures in the nuclear spin system of a 65CU single crystal. The corresponding three-sublattice structure has not been observed previously in any fcc antiferromagnet....

  10. Thermoinduced magnetization in nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine

    2004-01-01

    We show that there is a thermoinduced contribution to the magnetic moment of nanoparticles of antiferromagnetic materials. It arises from thermal excitations of the uniform spin-precession mode, and it has the unusual property that its magnitude increases with increasing temperature. This has...

  11. Dirac Fermions in an Antiferromagnetic Semimetal

    Science.gov (United States)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.

    Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry  and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both  and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.

  12. Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries

    Science.gov (United States)

    Yang, Kai; Zhong, Lei; Guan, Ruiteng; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2018-05-01

    Lithium-sulfur (Li-S) batteries have remarkably high theoretical specific capacity as promising candidates for next-generation energy storage. However, the "polysulfides shuttle" effect hampers its commercial application. Here, we use a kind of rice paper as a raw material to get inorganic oxides doping carbon felt by the facile carbonization method, and then modified by a simple coating process using poly (fluorenyl ether ketone) and Super P slurry. The special structure of the carbon felt derived from rice paper and its modified layer endow the final electronic conductive interlayer with inherent polysulfides absorbents and ion Coulombic repulsion functions, respectively, which show synergistic effect for trapping polysulfides. As an interlayer of Li-S batteries, the obtained carbon felt/poly (fluorenyl ether ketone)& Super P (CFSS) interlayer shows excellent electrochemical performance in improving specific capacity and decreasing polarization. The batteries with CFSS interlayer exhibit a high capacity of 837 mA h g-1 at 2.0 C and a high initial capacity of 1073.4 mA h g-1 and good capacity retention of 824.5 mA h g-1 after 500 cycles at 0.5 C. CFSS interlayer also shows excellent anti-self-discharge performance. Therefore, the simple and economical CFSS interlayer can be considered as a promising component for high performance Li-S batteries.

  13. Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys

    International Nuclear Information System (INIS)

    Nishihara, Y.; Yamaguchi, Y.; Kohara, T.; Tokumoto, M.

    1985-01-01

    The magnetic and superconducting properties of bcc Cr-Re alloys with up to 40 at. % Re were studied via measurements of the magnetic susceptibility, electrical resistivity, and nuclear magnetic resonance of the Re nuclei. Antiferromagnetic order coexists with superconductivity above 18 at. % Re. The results were analyzed with the coexistence model of spin-density waves and superconductivity. In the Re-concentration range greater than 18 at. %, about 10% of the Fermi surface satisfies the nesting condition and the rest of it contributes to form the superconducting gap. This model also explains the increase in the superconducting transition temperature and the decrease in the magnetic susceptibility by annealing as a competing effect between spin-density waves and superconductivity

  14. ZnFe{sub 2}O{sub 4} antiferromagnetic structure redetermination

    Energy Technology Data Exchange (ETDEWEB)

    Kremenović, Aleksandar, E-mail: akremenovic@rgf.bg.ac.rs [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Antić, Bratislav [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Vulić, Predrag [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Blanuša, Jovan [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Tomic, Aleksandra [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027 (United States)

    2017-03-15

    Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. Antiferromagnetic structure non-collinear model is established within C{sub a}2 space group having four different crystallographic/magnetic sites for 32 Fe{sup 3+} spins within magnetic unit cell. - Highlights: • Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. • Antiferromagnetic non-collinear structure model is established within C{sub a}2 space group. • Four different crystallographic/magnetic sites contain 32 Fe{sup 3+} spins within magnetic unit cell.

  15. Interlayer vortices and edge dislocations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Kuklov, A.B.; Krakovsky, A.; Birman, J.L.

    1995-01-01

    The interaction of an edge dislocation made of half the superconducting plane with a magnetic interlayer vortex is considered within the framework of the Lawrence-Doniach model with negative as well as positive Josephson interlayer coupling. In the first case the binding energy of the vortex and the dislocation has been calculated by employing a variational procedure. The current distribution around the bound vortex turns out to be asymmetric. In the second case the dislocation carries a spontaneous magnetic half vortex, whose binding energy with the dislocation turns out to be infinite. The half-vortex energy has been calculated by the same variational procedure. Implications of the possible presence of such half vortices for the properties of high-temperature sueprconductors are discussed. We suggest employing artificially made superconductor-ferromagnet superlattices with the half plane removed to observe fractional vortices

  16. TEM characterization of a Cr/Ti/TiC graded interlayer for magnetron-sputtered TiC/a-C:H nanocomposite coatings

    International Nuclear Information System (INIS)

    Galvan, D.; Pei, Y.T.; De Hosson, J.Th.M.

    2005-01-01

    A TiC/a-C:H nanocomposite coating is deposited on top of a Cr/Ti/TiC graded interlayer. Cross-section transmission electron microscopy is employed to investigate the detailed structure of the interlayer and the coating. Five different phases are formed as a consequence of the compositional gradient within the interlayer: pure Cr, a solid solution of Ti in Cr, a Ti/Cr amorphous/nanocrystalline phase, α-Ti and TiC. Solid state amorphization occurs during the interlayer deposition to give a dispersion of TiCr β-phase nanocrystals in an amorphous matrix. The TiC phase is textured and contains numerous stacking faults as a result of the growth in under-stoichiometric carbon concentration. C-enriched columnar boundaries are present within the coating, originating from the TiC column boundaries of the interlayer. The work indicates that an interlayer of amorphous/nanocrystalline Ti/Cr phase would reduce the presence of growth defects such as columnar boundaries within nanocomposite TiC/a-C:H coatings

  17. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  18. Interlayer Trions in the MoS2/WS2 van der Waals Heterostructure

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2018-01-01

    and experimentally. In contrast, studies of charged trions have so far been limited to the intralayer type. Here we investigate the complete set of interlayer excitations in a MoS2/WS2 heterostructure using a novel ab initio method, which allows for a consistent treatment of both excitons and trions at the same...... theoretical footing. Our calculations predict the existence of bound interlayer trions below the neutral interlayer excitons. We obtain binding energies of 18/28 meV for the positive/negative interlayer trions with both electrons/holes located on the same layer. In contrast, a negligible binding energy...... is found for trions which have the two equally charged particles on different layers. Our results advance the understanding of electronic excitations in doped van der Waals heterostructures and their effect on the optical properties....

  19. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  20. Control of interlayer physics in 2H transition metal dichalcogenides

    Science.gov (United States)

    Wang, Kuang-Chung; Stanev, Teodor K.; Valencia, Daniel; Charles, James; Henning, Alex; Sangwan, Vinod K.; Lahiri, Aritra; Mejia, Daniel; Sarangapani, Prasad; Povolotskyi, Michael; Afzalian, Aryan; Maassen, Jesse; Klimeck, Gerhard; Hersam, Mark C.; Lauhon, Lincoln J.; Stern, Nathaniel P.; Kubis, Tillmann

    2017-12-01

    It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers—depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

  1. Effect of cuprous halide interlayers on the device performance of ZnPc/C{sub 60} organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2014-10-15

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C{sub 60}-based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C{sub 60}-based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer.

  2. New antiferromagnetic semiconductor CuCr1.5Sb0.5S4

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Koroleva, L.I.; Mikheev, M.G.; Odintsov, A.G.; Filimonov, D.S.

    1993-01-01

    New halcogenide compound with spinel-antiferromagnetic semiconductor CuCr 1.5 Sb 0.5 S 4 are obtained and studied for the first time. Magnetic properties of this compound, namely, magnetization linear dependence, maximum on PHI(T) curve in the low-temperature area and realization of the Curie-Weis law for paramagnetic susceptibility with negative paramagnetic temperature testiby to the fact that this compound is antiferromagnetic

  3. NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Reyes, A.P. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Ashey, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Caldwell, T. [NHMFL, Los Alamos, NM 87545 (United States); Prokofiev, A. [Goethe University, 60054 Frankfurt (Germany); Assmus, W. [Goethe University, 60054 Frankfurt (Germany); Teitel' baum, G. [E.K.Zavoiskii Institute for Technical Physics of the RAS, Sibirskii Trakt 10/7, Kazan 420029 (Russian Federation)]. E-mail: grteit@kfti.knc.ru

    2006-05-01

    Our {sup 51}V NMR measurements in the LiCuVO{sub 4} single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the {sup 51}V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.

  4. Magnetic properties of the strongly correlated chain antiferromagnet KTb(WO4)2

    International Nuclear Information System (INIS)

    Khatsko, E.; Loginov, A.; Cherny, A.; Rykova, A.

    2006-01-01

    The susceptibility and magnetization of a single crystal of KTb(WO 4 ) 2 has been measured in the temperature range 0.5-80 K in magnetic fields up to 6 T. It is shown that KTb(WO 4 ) 2 is an Ising magnet with only one component of the magnetic moment. The three-dimensional phase transition to the antiferromagnetically ordered state has been found below 0.7 K. This transition can be described in the molecular field two-level approximation. The principal exchange constant has been estimated. By using experimental data the magnetic structure of KTb(WO 4 ) 2 is proposed

  5. Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J.

    2013-07-01

    Metal-oxides have been used as interlayers at the anode-organic interface in organic photovoltaic cells (OPVs) to increase the open-circuit voltage (VOC). We examine the role of MoOx in determining the maximum VOC in a planar heterojunction OPV and find that the interlayer strongly affects the temperature dependence of VOC. Boron subphthalocyanine chloride (SubPc)-C60 OPVs that contain no interlayer show a maximum VOC of 1.2 V at low temperature, while those with MoOx show no saturation, reaching VOC > 1.4 V. We propose that the MoOx-SubPc interface forms a Schottky junction that provides an additional contribution to VOC at low temperature.

  6. Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet

    DEFF Research Database (Denmark)

    Lefmann, K.; Hedegård, P.

    1994-01-01

    In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...

  7. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    International Nuclear Information System (INIS)

    Maluangnont, Tosapol; Arsa, Pornanan; Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong; Gotoh, Kazuma; Sooknoi, Tawan

    2016-01-01

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O 2− sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K 0.8 Zn 0.4 Ti 1.6 O 4 as an example. The low basicity (0.04 mmol CO 2 /g) and low desorption temperature (50–300 °C) shown by CO 2 − TPD suggests that O 2− sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO 2 . The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C 16 acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O 2− sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast 1 H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C 31 ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at Ti IV sites was also illustrated. - Graphical abstract: Interlayer basic sites in lepidocrocite titanate, K 0.8 Zn 0.4 Ti 1.6 O 4 , lead to an intercalation of palmitic acid with a layer expansion. Display Omitted - Highlights: • K 0.8 Zn 0.4 Ti 1.6 O 4 intercalates palmitic acid, forming the occluded potassium salt. • The interlayer expansion is evidenced by PXRD patterns and TEM image. • Two types of basic sites are deduced from ultrafast 1 H MAS NMR. • Lepidocrocite titanate catalyses ketonization of palmitic acid to palmitone and

  8. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    Science.gov (United States)

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  9. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer

    Institute of Scientific and Technical Information of China (English)

    Haipeng Li; Liancheng Sun; Yongguang Zhang; Taizhe Tan; Gongkai Wang; Zhumabay Bakenov

    2017-01-01

    The high-energy lithium/sulfur (Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 mAh/g.However,the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation.In this contribution,a three-dimensional (3D) reduced graphene oxide/activated carbon (RGO/AC) film,synthesized by a simple hydrothermal method and convenient mechanical pressing,is sandwiched between the separator and the sulfur-based cathode,acting as a functional interlayer to capture and trap polysulfide species.Consequently,the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 mAh/g and a reversible capacity of 655 mAh/g even after 100 cycles.The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer.Therefore,the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.

  10. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  11. Magnetic behavior of the diluted antiferromagnet Mn0.39Zn0.61F2 at strong fields

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Ferreira, J.M.; Montenegro, F.C.; Ramos, C.A.

    2001-01-01

    The magnetic phase boundaries of the random-field Ising model (RFIM) system Mn 0.39 Zn 0.61 F 2 are determined using magnetization measurements, under finite DC applied fields (H). At low fields (H<12 kOe), our results support a critical phase boundary, separating an ordered antiferromagnetic (AF) phase from the paramagnetic (P) one. For intermediate fields (12< H<18 kOe), the AF ordering coexists with a spin-flop (SF) clustering. For higher H, a spin-flop phase dominates the upper part of the (H,T) phase diagram

  12. Application of heat treatment and dispersive strengthening concept in interlayer deposition to enhance diamond film adherence

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chiiruey [Tatung Inst. of Technol., Taipei (Taiwan, Province of China). Dept. of Mech. Eng.; Kuo Chengtzu; Chang Rueyming [Institute of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050 (Taiwan, Province of China)

    1997-10-31

    Two different deposition processes were carried out to enhance adherence of diamond films on WC+3-5%Co substrate with Ti-Si as the interlayer. One process can be called two-step diamond deposition process. Another process can be called interlayer heat treatment process. Diamond films were deposited by a microwave plasma chemical vapor deposition system. Ti and Si interlayer are deposited by DC sputter and an E-gun, respectively. Film morphologies, interface structure and film quality were examined by SEM, XRD, Auger electron spectroscopy and Raman spectroscopy. The residual stresses and adhesion strengths of the films were determined by Raman spectroscopy and indentation adhesion testing, respectively. Comparing the regular one-step diamond deposition process with the present two different new processes, the average dP/dX values, which are a measure of the adherence of the film, are 354 kgf/mm, 494 kgf/mm and 787 kgf/mm, respectively. In other words, the interlayer heat treatment process gives the best film adherence on average. For the two-step diamond deposition process, the interlayer thickness and the percent diamond surface coverage of the first diamond deposition step are the main parameters, and there exists an optimum Ti thickness and percent diamond coverage for the best film adherence. The main contribution to better film adherence is not a large difference in residual stress, but is due to the following reasons. The interlayer heat treatment can transform amorphous Si to polycrystalline Si, and may form strong TiC and SiC bonding. The polycrystalline Si and the diamond particles from the first diamond deposition step can be an effective seeds to enhance diamond nucleation. (orig.) 11 refs.

  13. Room-temperature antiferromagnetic memory resistor

    Czech Academy of Sciences Publication Activity Database

    Martí, Xavier; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, P.; Paull, R.J.; Clarkson, J.D.; Kudrnovský, Josef; Turek, Ilja; Kuneš, Jan; Yi, D.; Chu, J.-H.; Nelson, C.T.; You, L.; Arenholz, E.; Salahuddin, S.; Fontcuberta, J.; Jungwirth, Tomáš; Ramesh, R.

    2014-01-01

    Roč. 13, č. 4 (2014), s. 367-374 ISSN 1476-1122 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR(CZ) GAP204/11/1228 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 ; RVO:68081723 Keywords : spintronics * antiferromagnets * memories Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 36.503, year: 2014

  14. Antiferromagnetic ground state in NpCoGe

    Czech Academy of Sciences Publication Activity Database

    Colineau, E.; Griveau, J.C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, Alexander; Caciuffo, R.

    2014-01-01

    Roč. 89, č. 11 (2014), "115135-1"-"115135-11" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : neptunium * anti-ferromagnetism * quantum critical phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  15. μSR Study of the Unusual Magnetic Ordering in the Frustrated Antiferromagnet Zn(CrxGa1-x)2O4

    International Nuclear Information System (INIS)

    Kikuchi, H.; Fukushima, H.; Higemoto, W.; Nishiyama, K.

    2001-01-01

    μSR spectra on the spin frustrating spinel antiferromagnet Zn(Cr x Ga 1-x ) 2 O 4 (x=0.9,1.0) have been measured. For x=1.0 compound, both the relaxation rate and the initial asymmetry showed distinct anomalies at the Neel temperature. The magnetic susceptibility for the x=0.9 compound was known to have a faint peak at around 12 K, whose origin was not clear so far. Our μSR study revealed that this temperature is the onset temperature of development of the magnetic correlation accompanied by appreciable spin fluctuations.

  16. Spin ordering in three-leg ladders in Ludwigite systems

    International Nuclear Information System (INIS)

    Vallejo, E.; Avignon, M.

    2007-01-01

    We study the spin ordering in a three-leg ladder present in Ludwigite systems formed of localized spins interacting with an extra electron per rung. We also consider the competition with super exchange interactions resulting in a very rich phase diagram. Among the phases we find the possibility of ferromagnetic rungs ordered antiferromagnetically and a zigzag spin ordering linked to the formation of a charge ordering as observed

  17. Effect of applied orthorhombic lattice distortion on the antiferromagnetic phase of CeAuSb2

    Science.gov (United States)

    Park, Joonbum; Sakai, Hideaki; Erten, Onur; Mackenzie, Andrew P.; Hicks, Clifford W.

    2018-01-01

    We study the response of the antiferromagnetism of CeAuSb2 to orthorhombic lattice distortion applied through in-plane uniaxial pressure. The response to pressure applied along a 〈110 〉 lattice direction shows a first-order transition at zero pressure, which shows that the magnetic order spontaneously lifts the (110 ) /(1 1 ¯0 ) symmetry of the unstressed lattice. Sufficient 〈100 〉 pressure appears to rotate the principal axes of the order from 〈110 〉 to 〈100 〉 . At low 〈100 〉 pressure, the transition at TN is weakly first order; however, it becomes continuous above a threshold 〈100 〉 pressure. We discuss the possibility that this behavior is driven by order parameter fluctuations, with the restoration of a continuous transition being a result of reducing the point-group symmetry of the lattice.

  18. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.

    2010-02-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  19. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.; Schuster, Cosima B.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2010-01-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  20. Magnetic Transport in Spin Antiferromagnets for Spintronics Applications

    Directory of Open Access Journals (Sweden)

    Mohamed Azzouz

    2017-10-01

    Full Text Available Had magnetic monopoles been ubiquitous as electrons are, we would probably have had a different form of matter, and power plants based on currents of these magnetic charges would have been a familiar scene of modern technology. Magnetic dipoles do exist, however, and in principle one could wonder if we can use them to generate magnetic currents. In the present work, we address the issue of generating magnetic currents and magnetic thermal currents in electrically-insulating low-dimensional Heisenberg antiferromagnets by invoking the (broken electricity-magnetism duality symmetry. The ground state of these materials is a spin-liquid state that can be described well via the Jordan–Wigner fermions, which permit an easy definition of the magnetic particle and thermal currents. The magnetic and magnetic thermal conductivities are calculated in the present work using the bond–mean field theory. The spin-liquid states in these antiferromagnets are either gapless or gapped liquids of spinless fermions whose flow defines a current just as the one defined for electrons in a Fermi liquid. The driving force for the magnetic current is a magnetic field with a gradient along the magnetic conductor. We predict the generation of a magneto-motive force and realization of magnetic circuits using low-dimensional Heisenberg antiferromagnets. The present work is also about claiming that what the experiments in spintronics attempt to do is trying to treat the magnetic degrees of freedoms on the same footing as the electronic ones.

  1. On the magnetism of Heisenberg double-layer antiferromagnets

    International Nuclear Information System (INIS)

    Uijen, C.M.J. van.

    1980-01-01

    The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)

  2. Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2016-01-01

    Full Text Available In this paper, the top-contact (TC pentacene-based organic thin-film transistor (OTFT with a tetrafluorotetracyanoquinodimethane (F4TCNQ-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F4TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F4TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F4TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window.

  3. Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors

    Science.gov (United States)

    Fan, Ching-Lin; Lin, Wei-Chun; Chang, Hsiang-Sheng; Lin, Yu-Zuo; Huang, Bohr-Ran

    2016-01-01

    In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F4TCNQ)-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F4TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F4TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F4TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window. PMID:28787845

  4. A new manganese-based single-molecule magnet with a record-high antiferromagnetic phase transition temperature

    International Nuclear Information System (INIS)

    Cui Yan; Li Yan-Rong; Li Rui-Yuan; Wang Yun-Ping

    2014-01-01

    We perform both dc and ac magnetic measurements on the single crystal of Mn 3 O(Et-sao) 3 (ClO 4 )(MeOH) 3 single-molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction

  5. Narrow and broad solitons in the antiferromagnetic chains of CsCoCl3 and TMMC

    International Nuclear Information System (INIS)

    Boucher, J.P.; Regnault, L.P.; Pires, A.; Rossat-Mignod, J.; Henry, Y.; Bouillot, J.; Stirling, W.G.; Renard, J.P.

    1984-06-01

    The two quasi one-dimensional (1D) compounds CsCoCl 3 and (CH 3 ) 4 NMnCl 3 (TMMC) are almost ideal systems in which to study soliton excitations. Both they have antiferromagnetic (AF) couplings in the chains and at low temperature they exhibit an Ising symmetry favourable for the occurence of solitons. This symmetry is an intrinsic property of CsCoCl 3 while in TMMC it is only achieved by the application of an external magnetic field H perpendicular to the chains. In the lD short range order regime two energetically equivalent configurations are expected for the spins. Solitons can be seen as Bloch walls separating ordered domains and allowing the spins to pass from one configuration to the other. In the case of a ''strong'' Ising symmetry (CsCoCl 3 ) the walls are reduced to one lattice unit (''narrow'' solitons) while in the case of a ''weak'' Ising symmetry (TMMC) the walls extend over several lattice units (10 to 30) (''broad'' solitons). To maintain a paramagnetic state, these walls move rapidly along the chains inducing characteristic fluctuations. The investigation of these two compounds, CsCoCl 3 and TMMC illustrates the advantage of antiferromagnets as the AF mode yields an accurate determination of the soliton regime. Narrow and broad solitons are observed to behave very similarly

  6. Interlayer magnetotransport study in electron-doped Sm2 ...

    Indian Academy of Sciences (India)

    Vol. 66, No. 1. — journal of. January 2006 physics pp. 305–312. Interlayer magnetotransport study ... Hc2. More recently, because of the layered structure which forms intrinsic tun- ... get plate-like single crystals with surfaces flux-free and shiny. ... on the 'natural' surface of the annealed crystals, with two contacts on top of the.

  7. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers.

    Science.gov (United States)

    Jasieniak, Jacek J; Treat, Neil D; McNeill, Christopher R; de Villers, Bertrand J Tremolet; Della Gaspera, Enrico; Chabinyc, Michael L

    2016-05-01

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  9. Observation of Antiferromagnetic Resonance in an Organic Superconductor

    DEFF Research Database (Denmark)

    Torrance, J. B.; Pedersen, H. J.; Bechgaard, K.

    1982-01-01

    Anomalous microwave absorption has been observed in the organic superconductor TMTSF2AsF6 (TMTSF: tetramethyltetraselenafulvalene) below its metal-nonmetal transition near 12 K. This absorption is unambiguously identified as antiferromagnetic resonance by the excellent agreement between a spin...

  10. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    Science.gov (United States)

    Maluangnont, Tosapol; Arsa, Pornanan; Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong; Gotoh, Kazuma; Sooknoi, Tawan

    2016-06-01

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O2- sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K0.8Zn0.4Ti1.6O4 as an example. The low basicity (0.04 mmol CO2/g) and low desorption temperature (50-300 °C) shown by CO2- TPD suggests that O2- sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO2. The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C16 acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O2- sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast 1H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C31 ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at TiIV sites was also illustrated.

  11. Excitations in a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Birgeneau, R. J.; Walker, L. R.; Guggenheim, H. J.

    1975-01-01

    Inelastic neutron scattering studies of the magnetic excitations in the planar Heisenberg random antiferromagnet Rb2Mn0.5Ni0.5F4 at 7K are reported. Two well-defined bands of excitations are observed. A simple mean crystal model is found to predict accurately the measured dispersion relations using...

  12. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

    Science.gov (United States)

    Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P.

    2015-01-01

    A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators. PMID:26486931

  13. Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4)

    International Nuclear Information System (INIS)

    Sibille, Romain; Mesbah, Adel; Mazet, Thomas; Malaman, Bernard; Capelli, Silvia; François, Michel

    2012-01-01

    Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ) layered organic–inorganic compounds based on manganese(II) and terephthalate molecules (C 8 H 4 O 4 2− ) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its χT product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J≈−7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Néel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: ► Magnetic study of Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ). ► Two compounds with common features (interlayer linker/distance, S=5/2 spin). ► Magnetic measurements quantitatively analyzed to deduce exchange constants. ► Magnetic structures determined from neutron powder diffraction experiments.

  14. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    Energy Technology Data Exchange (ETDEWEB)

    Maluangnont, Tosapol, E-mail: tosapol.ma@kmitl.ac.th [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Catalytic Chemistry Research Unit, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Arsa, Pornanan [Catalytic Chemistry Research Unit, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Gotoh, Kazuma [Graduate School of Natural Science & Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530 (Japan); Sooknoi, Tawan, E-mail: kstawan@gmail.com [Catalytic Chemistry Research Unit, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2016-06-15

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O{sup 2−} sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K{sub 0.8}Zn{sub 0.4}Ti{sub 1.6}O{sub 4} as an example. The low basicity (0.04 mmol CO{sub 2}/g) and low desorption temperature (50–300 °C) shown by CO{sub 2}− TPD suggests that O{sup 2−} sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO{sub 2}. The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C{sub 16} acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O{sup 2−} sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast {sup 1}H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C{sub 31} ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at Ti{sup IV} sites was also illustrated. - Graphical abstract: Interlayer basic sites in lepidocrocite titanate, K{sub 0.8}Zn{sub 0.4}Ti{sub 1.6}O{sub 4}, lead to an intercalation of palmitic acid with a layer expansion. Display Omitted - Highlights: • K{sub 0.8}Zn{sub 0.4}Ti{sub 1.6}O{sub 4} intercalates palmitic acid, forming the occluded potassium salt. • The interlayer expansion is evidenced by PXRD patterns and TEM image. • Two types of basic sites are deduced from ultrafast

  15. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

    Science.gov (United States)

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping

    2017-10-01

    Graphene oxide membranes—partially oxidized, stacked sheets of graphene—can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes—that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)—are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-π interaction with the graphene sheet than Na+ has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  16. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    Science.gov (United States)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that

  17. Enhancement of charge carrier recombination efficiency by utilizing a hole-blocking interlayer in white OLEDs

    International Nuclear Information System (INIS)

    Wang Qi; Yu Junsheng; Zhao Juan; Li Ming; Lu Zhiyun

    2013-01-01

    Charge carrier balance and recombination are essential factors relating to the performance of white organic light-emitting devices (WOLEDs). In this study, we discussed the contribution of charge carrier balance in the interlayer-based WOLEDs. By varying the interlayer thickness, the mechanisms of electroluminescent spectral alteration, energy transfer, and especially, charge carrier transport and balance in the devices were investigated and revealed in detail. With a 5 nm thick interlayer tailoring charge carrier transport and recombination, WOLEDs yielded a high power efficiency, current efficiency and external quantum efficiency of 36.1 lm W −1 , 47.1 cd A −1 and 18.3%, respectively. Additionally, single-carrier devices and quantitative analysis were subsequently carried out, demonstrating that the enhancement of carrier recombination efficiency corresponds to the optimization of device performance. (paper)

  18. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    Science.gov (United States)

    de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-06-01

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  19. Antiferromagnetic and superconducting gaps and their interrelation in high-Tc cuprates

    International Nuclear Information System (INIS)

    Arrigoni, E.; Zacher, M.G.; Eckl, T.; Hanke, W.

    2003-01-01

    We propose a phenomenological model, comprising a microscopic SO(5) model plus the on-site Hubbard interaction U (projected SO(5) model) to understand the interrelation between the d-wave-gap modulation observed by recent angle-resolved photoemission experiments in the insulating antiferromagnet Ca 2 CuO 2 Cl 2 and the d-wave gap of high-T c superconducting materials. The on-site interaction U is important in order to produce a Mott gap of the correct order of magnitude, which would be absent in an exact SO(5) theory. The projected SO(5)-model explains the gap characteristics, namely both the symmetry and the different order of magnitude of the gap modulations between the AF and the SCc phases. Furthermore, it is shown that the projected SO(5) theory can provide an explanation for a recent observation [E. Pavarini et al., Phys. Rev. Lett. 87, 47003 (2001)], i. e. that the maximum T c observed in a large variety of high-T c cuprates scales with the next-nearest-neighbor hopping matrix element t'. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Numerical analyses of the effect of SG-interlayer shear stiffness on the structural performance of reinforced glass beams

    DEFF Research Database (Denmark)

    Louter, C.; Nielsen, Jens Henrik

    2013-01-01

    This paper focuses on the numerical modelling of SentryGlas-laminated reinforced glass beams. In these beams, which have been experimentally investigated in preceding research, a stainless steel reinforcement section is laminated at the inner recessed edge of a triple-layer glass beam by means...... of SentryGlas (SG) interlayer sheets. The current contribution numerically investigates the effect of the SG-interlayer shear stiffness on the overall structural response of the beams. This is done by means of a 3D finite element model in which the individual glass layers, the SG......-interlayers and the reinforcement are incorporated. In the model, the glass parts are allowed to crack, but all other parts are assumed linear elastic throughout the analyses. By changing the shear modulus of the SG-interlayer in multiple analyses, its contribution to the overall structural performance of the beams - especially...

  1. Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4

    Science.gov (United States)

    Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.

    2016-07-01

    CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.

  2. Gapped paramagnetic state in a frustrated spin-1/2 Heisenberg antiferromagnet on the cross-striped square lattice

    Science.gov (United States)

    Li, P. H. Y.; Bishop, R. F.

    2018-03-01

    We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.

  3. Magnetic properties of CsCrCl/sub 3/, an antiferromagnetic chain compound with single-ion anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Day, P; Gregson, A K; Leech, D H [Oxford Univ. (UK). Inorganic Chemistry Lab.; Hutchings, M T [UKAEA Atomic Energy Research Establishment, Harwell. Materials Physics Div.; Rainford, B D [Imperial Coll. of Science and Technology, London (UK). Dept. of Physics

    1979-01-01

    The magnetic structure and excitations of the linear chain hexagonal perovskite salt CsCrCl/sub 3/ have been studied by susceptibility, powder and single crystal neutron diffraction, and coherent inelastic neutron scattering. Below the Neel temperature, Tsub(N) = 16 K, the spins lie in the basal plane with antiferromagnetic ordering along the c-axis chains. At 4.5 K there is strong dispersion of the spin-wave energy along c but no measurable dispersion perpendicular to c.

  4. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2009-09-05

    A membrane electrode assembly (MEA) was designed by incorporating an interlayer between the catalyst layer and the gas diffusion layer (GDL) to improve the low relative humidity (RH) performance of proton exchange membrane fuel cells (PEMFCs). On the top of the micro-porous layer of the GDL, a thin layer of doped polyaniline (PANI) was deposited to retain moisture content in order to maintain the electrolyte moist, especially when the fuel cell is working at lower RH conditions, which is typical for automotive applications. The surface morphology and wetting angle characteristics of the GDLs coated with doped PANI samples were examined using FESEM and Goniometer, respectively. The surface modified GDLs fabricated into MEAs were evaluated in single cell PEMFC between 50 and 100% RH conditions using H{sub 2} and O{sub 2} as reactants at ambient pressure. It was observed that the MEA with camphor sulfonic acid doped PANI interlayer showed an excellent fuel cell performance at all RH conditions including that at 50% at 80 C using H{sub 2} and O{sub 2}. (author)

  5. Efficient rate control scheme using modified inter-layer dependency ...

    Indian Academy of Sciences (India)

    The IRC from the prior art is modified to achieve better rate control per layer by recursive updates for mean absolute difference values of eachbasic unit. Proposed modified inter-layer dependency shows improvement in the PSNR for enhancement layers while the updated IRC enforces better IRC for all the layers.

  6. Selfenergy effect on the magnetic ordering transition in the mono- and bilayer honeycomb Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Honerkamp, Carsten [Institute for Theoretical Solid State Physics, RWTH Aachen University (Germany); JARA - Fundamentals of Future Information Technology, Aachen (Germany)

    2017-11-15

    We investigate the impact of electron self-energy corrections on potential antiferromagnetic ordering instabilities in mono- and bilayer graphene, modeled by a Hubbard-type lattice model with onsite interactions among the electrons, using a self-consistent random phase approximation (RPA). In qualitative agreement with earlier studies we find that the electronic interactions cause non-Fermi liquid behavior at low energies. In self-consistent RPA, the transition scales for antiferromagnetic ordering are renormalized significantly by these self-energy effects, both for interaction-driven and temperature-driven cases. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  8. REVIEWS OF TOPICAL PROBLEMS: Broken symmetry and magnetoacoustic effects in ferroand antiferromagnetics

    Science.gov (United States)

    Turov, Evgenii A.; Shavrov, Vladimir G.

    1983-07-01

    This review of some aspects of the magnetoacoustics of ferro- and antiferromagnetic materials has been written in connection with the 25th anniversary of the rise of this field of physics of magnetic phenomena. Primary attention is paid to relatively new problems that have not been reflected in the existing monographs and reviews. The topic is a group of linear magnetoacoustic effects that manifest spontaneous symmetry breaking caused by magnetic ordering in a system of two coupled fields: the magnetization field M (r) and the deformation field uij(r). To some extent these effects are analogous to the Higgs effect in the theory of elementary particles (the Higgs mechanism of the origin of the mass of a particle) or the Meissner effect in the theory of superconductivity. A direct analog of the stated effects is the so-called magnetoelastic gap in the magnon spectrum, while an analog of an accompanying effect is the softening of the quasiacoustic modes interacting with it (up to the vanishing of the corresponding dynamic elastic moduli). However, a characteristic feature of such effects in crystalline (anisotropic) magnetic materials is that they are manifested mainly near points of magnetic (spin-reorientation) phase transitions. This review treats the coupled magnetoelastic waves in ferro- and antiferromagnetic materials of different types that show phase transitions with respect to temperature, magnetic field, or pressure.

  9. Reciprocal propagation of surface modes in an antiferromagnetic film

    International Nuclear Information System (INIS)

    Oliveira, F.A.; Amato, M.A.

    1987-09-01

    Linear response theory is used to evaluate the Green's functions describing the fluctuations in an antiferromagnetic film at zero applied field. It is shown the similarities between the dielectric and magnetic excitations. (Author) [pt

  10. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  11. Magnetic ordering of GdMn2

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Ritter, C.; Ballou, R.; Deportes, J.

    1999-01-01

    Complete text of publication follows. GdMn 2 crystallizes in the C15 cubic Laves phase structure. Within this structure Mn atoms lie at the vertices of regular tetrahedra stacked in the diamond arrangement connected by sharing vertices, leading to a strong geometric frustration. An antiferromagnetic magnetic order sets in below T N ∼ 105 K. It gives rise to a large magnetovolume effect (ΔV/V ∼ 1%). Thermal expansion data show two anomalies at 105 K and 35 K. The second anomaly was often interpreted as the ferromagnetic ordering of Gd sublattice. Moessbauer data indicate however, that Gd sublattice orders at T N ∼ 105 K as the Mn moments. Elastic neutron scattering measurements were performed using short wavelength neutron beam (λ = 0.5 A) on D9 at ILL. No magnetic contribution to the nuclear peaks was found excluding thereby any K = [0 0 0] component. However antiferromagnetic peaks indexed by a propagation vector [2/3 2/3 0] were observed leading to a non collinear magnetic arrangement of both Mn and Gd sublattices. The results are discussed by invoking the geometric frustration associated with the Mn atomic packing and the singlet state of the Gd ions. (author)

  12. Very high S-band microwave absorption of carbon nanotube buckypapers with Mn nanoparticle interlayers

    Science.gov (United States)

    Lu, Shaowei; Bai, Yaoyao; Wang, Jijie; Zhang, Lu; Tian, Caijiao; Ma, Keming; Wang, Xiaoqiang

    2018-03-01

    Flexible and high-performance electromagnetic absorbing materials of multi-walled carbon nanotube (MWCNT) buckypapers with Mn nanoparticles (NPSs) interlayer were fabricated via monodisperse solutions through layer by layer vacuum filtration method. The morphology and element composition of buckypapers were characterized by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The formation of flexible MWCNT buckypapers with Mn NPS (0-30 wt. %) interlayer was attributed to nanostructure and morphology of the samples. When the blended Mn NPS content in buckypapers is 20 wt. %, there are evidently two larger absorption peaks (-13.2 dB at 3.41 GHz, -15.6 dB at 3.52 GHz) of the buckypaper with an absorbing thickness of 0.1 mm. The fundamental microwave absorption mechanism of the buckypapers is discussed. This work opens a new pathway towards tuning microwave absorbers performance and this method can be extended to exploit other excellent microwave absorbers with interlayer.

  13. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  14. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  15. Thermoelectric properties of layered antiferromagnetic CuCrSe2

    International Nuclear Information System (INIS)

    Tewari, Girish C.; Tripathi, T.S.; Yamauchi, Hisao; Karppinen, Maarit

    2014-01-01

    Here we study thermoelectric and magnetic properties of CuCrSe 2 samples sintered at various temperatures. Structural analysis with XRD shows an order-disorder transition for Cr atoms when the sintering temperature is increased above 1273 K. Metal-like electrical resistivity and anomalously large Seebeck coefficient are found about room temperature. Analysis of electrical conductivity and Seebeck coefficient of the partially-disordered phase suggests hopping conduction of charge carriers. For both the ordered and disordered phases magnetic susceptibility follows Curie–Weiss temperature dependence at high temperatures above 150 K and shows an antiferromagnetic transition around 55 K. For the disordered phase, the effective magnetic moment is determined at 3.62 μ B ; this low value in comparison to the spin only value for Cr 3+ of 3.89 μ B indicates spin fluctuations in the paramagnetic state. The thermal conductivity in these phases is low and dominated by the lattice contribution. Values for the thermoelectric figure of merit (ZT) at room temperature are estimated to be 0.17 and 0.05 for the ordered and disordered phases, respectively. - Highlights: • Thermoelectric and magnetic properties of CuCrSe 2 samples are investigated. • The properties strongly depend on the degree of order of chromium atoms. • The degree of order is controlled by the sintering temperature. • Room-temperature figure of merit is estimated at 0.17 for the ordered phase. • For the disordered phase the figure of merit is lower

  16. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer

    Science.gov (United States)

    Yan, Lingjia; Luo, Nannan; Kong, Weibang; Luo, Shu; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping

    2018-06-01

    Ultrathin and lightweight MoS2/carbon nanotube (CNT) interlayers are developed to effectively trap polysulfides in high-performance lithium-sulfur (Li-S) batteries. The MoS2/CNT interlayer is constructed by loading MoS2 nanosheets onto a cross-stacked CNT film. The CNT film with excellent conductivity and superior mechanical properties provides the Li-S batteries with a uniform conductive network, a supporting skeleton for the MoS2 nanosheets, as well as a physical barrier for the polysulfides. Moreover, chemical interactions and bonding between the MoS2 nanosheets and the polysulfides are evident. The electrode with the MoS2/CNT interlayer delivers an attractive specific capacity of 784 mA h g-1 at a high capacity rate of 10 C. In addition, the electrode demonstrates a high initial capacity of 1237 mA h g-1 and a capacity fade as low as -0.061% per cycle over 500 charge/discharge cycles at 0.2 C. The problem of self-discharge can also be suppressed with the introduction of the MoS2/CNT interlayer. The simple fabrication procedure, which is suitable for commercialization, and the outstanding electrochemical performance of the cells with the MoS2/CNT interlayer demonstrate a great potential for the development of high-performance Li-S batteries.

  17. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} (0 ≤ x ≤ 0.6)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J. C.; Tong, P., E-mail: tongpeng@issp.ac.cn; Lin, S.; Wang, B. S.; Song, W. H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tong, W.; Zou, Y. M. [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Y. P., E-mail: ypsun@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-02-23

    The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings are involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.

  18. Magnetic structure and dispersion relation of the S =1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8 in a transverse magnetic field

    Science.gov (United States)

    Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.

    2017-07-01

    BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.

  19. Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets

    Science.gov (United States)

    Qaiumzadeh, Alireza; Ado, Ivan A.; Duine, Rembert A.; Titov, Mikhail; Brataas, Arne

    2018-05-01

    In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferromagnets, the DM interaction is not suppressed even at low temperatures. The material parameters control both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward controlling the DM interaction in AFM materials by means of doping and electric fields.

  20. Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus.

    Science.gov (United States)

    Ling, Xi; Liang, Liangbo; Huang, Shengxi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-06-10

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and, thus, their frequencies show a stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that in the temperature range -150 to 30 °C, the breathing modes have a weak anharmonic behavior, in contrast to the HF Raman modes that exhibit strong anharmonicity.

  1. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Tamboli, Adele C., E-mail: Adele.Tamboli@nrel.gov; Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States); Perl, Emmett E. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560 (United States)

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  2. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  3. Small-scale phase separation in doped anisotropic antiferromagnets

    International Nuclear Information System (INIS)

    Kagan, M Yu; Kugel, K I; Rakhmanov, A L; Pazhitnykh, K S

    2006-01-01

    We analyse the possibility of nanoscale phase separation manifesting itself in the formation of ferromagnetic (FM) polarons (FM droplets) in the general situation of doped anisotropic three- and two-dimensional antiferromagnets. In these cases, we calculate the shape of the most energetically favourable droplets. We show that the binding energy and the volume of a FM droplet in the three-dimensional (3D) case depend upon only two universal parameters J-bar=(J x +J y +J z )S 2 and t eff (t x t y t z ) 1/3 , where J-bar and t eff are effective antiferromagnetic (AFM) exchange and hopping integrals, respectively. In the two-dimensional (2D) case these parameters have the form J-bar=(J x +J y )S 2 and t eff (t x t y ) 1/2 . The most favourable shape of a ferromagnetic droplet corresponds to an ellipse in the 2D case and to an ellipsoid in the 3D case

  4. Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2.

    Science.gov (United States)

    Liu, J Y; Hu, J; Graf, D; Zou, T; Zhu, M; Shi, Y; Che, S; Radmanesh, S M A; Lau, C N; Spinu, L; Cao, H B; Ke, X; Mao, Z Q

    2017-09-21

    Relativistic fermions in topological quantum materials are characterized by linear energy-momentum dispersion near band crossing points. Under magnetic fields, relativistic fermions acquire Berry phase of π in cyclotron motion, leading to a zeroth Landau level (LL) at the crossing point, a signature unique to relativistic fermions. Here we report the unusual interlayer quantum transport behavior resulting from the zeroth LL mode observed in the time reversal symmetry breaking type II Weyl semimetal YbMnBi 2 . The interlayer magnetoresistivity and Hall conductivity of this material are found to exhibit surprising angular dependences under high fields, which can be well fitted by a model, which considers the interlayer quantum tunneling transport of the zeroth LL's Weyl fermions. Our results shed light on the unusual role of zeroth LLl mode in transport.The transport behavior of the carriers residing in the lowest Landau level is hard to observe in most topological materials. Here, Liu et al. report a surprising angular dependence of the interlayer magnetoresistivity and Hall conductivity arising from the lowest Landau level under high magnetic field in type II Weyl semimetal YbMnBi 2 .

  5. Observation of non-linear effects in a quasi-one-dimensional antiferromagnet: magnetic excitations in CsVCl sub 3

    CERN Document Server

    Inami, T; Tanaka, H

    1997-01-01

    The spin dynamics of the hexagonal ABX sub 3 -type quasi-one-dimensional antiferromagnet CsVCl sub 3 is investigated by means of an inelastic neutron scattering technique. In good qualitative agreement with a recent spin-wave calculation including higher-order terms, a large scattering cross-section arising from two-magnon excitations is observed at the one-dimensional antiferromagnetic zone centre. In addition, we measured spin-wave excitations between the chains precisely and revealed that the spin-wave dispersion curves are modified in energy and in intensity on account of the anticrossing between the one-magnon branches and two-magnon continuum. These results demonstrate that anharmonic terms are important in the spin dynamics of CsVCl sub 3 even at low temperatures. We also measured the temperature dependence of the magnetic excitations and found that far above the Neel temperature the two-magnon process gives a considerable contribution to the inelastic spectrum. (author)

  6. Novel spin excitation in the high field phase of an S=1 antiferromagnetic chain

    International Nuclear Information System (INIS)

    Hagiwara, M.; Kashiwagi, T.; Kimura, S.; Honda, Z.; Kindo, K.

    2007-01-01

    We report the results of high-field multi-frequency ESR experiment on the S=1 Heisenberg antiferromagnetic chain Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) for the fields up to about 55T and the frequencies up to about 2THz. We have found that excitation branches above the critical field (H c ) where the energy gap closes change into one branch around 15T which becomes close to the paramagnetic line at high fields. The branch above 15T fits well the conventional antiferromagnetic resonance mode with easy planar anisotropy. We compare the results with those in a weakly coupled antiferromagnetic dimer compound KCuCl 3 and discuss the origin of the branches observed above H c

  7. Specific heat study of quasi-one-dimensional antiferromagnetic model for an organic polymer chain

    International Nuclear Information System (INIS)

    Qu Shaohua; Zhu Lin

    2008-01-01

    The specific heat of an infinite one-dimensional polymer chain bearing periodically arranged side radicals connected to the even sites is studied by means of quantum transfer-matrix method based on a Ising-Heisenberg model. In the absence of the exchange interactions between side radicals and the main chain, the curves of specific heat show a round peak due to the antiferromagnetic excitations for the all antiferromagnetic interactions along the polymer chain. Considering the exchange interactions between the side radicals and the main chain, the curves of the specific heat show double-peak structure for ferromagnetic interactions between the radicals and main chain, indicating that a competition between ferromagnetic and antiferromagnetic interactions and the possibility of the occurrence of the stable ferrimagnetic state along the polymer chain

  8. Viscoelastic Waves Simulation in a Blocky Medium with Fluid-Saturated Interlayers Using High-Performance Computing

    Science.gov (United States)

    Sadovskii, Vladimir; Sadovskaya, Oxana

    2017-04-01

    A thermodynamically consistent approach to the description of linear and nonlinear wave processes in a blocky medium, which consists of a large number of elastic blocks interacting with each other via pliant interlayers, is proposed. The mechanical properties of interlayers are defined by means of the rheological schemes of different levels of complexity. Elastic interaction between the blocks is considered in the framework of the linear elasticity theory [1]. The effects of viscoelastic shear in the interblock interlayers are taken into consideration using the Pointing-Thomson rheological scheme. The model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. On the basis of the Biot equations for a fluid-saturated porous medium, a new mathematical model of a blocky medium is worked out, in which the interlayers provide a convective fluid motion due to the external perturbations. The collapse of pores is modeled within the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact [2], which is used to describe the behavior of materials with different resistance to tension and compression. Thermodynamic consistency of the equations in interlayers with the equations in blocks guarantees fulfillment of the energy conservation law for a blocky medium in a whole, i.e. kinetic and potential energy of the system is the sum of kinetic and potential energies of the blocks and interlayers. As a result of discretization of the equations of the model, robust computational algorithm is constructed, that is stable because of the thermodynamic consistency of the finite difference equations at a discrete level. The splitting method by the spatial variables and the Godunov gap decay scheme are used in the blocks, the

  9. Solitary Magnons in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.

    Science.gov (United States)

    Stock, C; Rodriguez, E E; Lee, N; Green, M A; Demmel, F; Ewings, R A; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Rodriguez-Rivera, J A; Cheong, S-W

    2016-07-01

    CaFe_{2}O_{4} is a S=5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c-axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ∼1  ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ∼1-2 c-axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A+B orders as well as localization of spin excitations in a classical magnet.

  10. Reduction-responsive interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry for drug controlled release

    Science.gov (United States)

    Dai, Yu; Wang, Hongquan; Zhang, Xiaojin

    2017-12-01

    To improve the stability of polymeric micelles, here we describe interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry. The formation of interlayer-crosslinked micelles was investigated and confirmed by proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The morphology of un-crosslinked micelles and crosslinked micelles observed by transmission electron microscope is both uniform nano-sized spheres (approximately 20 nm). The crosslinking enhances the stability of polymeric micelles and improves the drug loading capacity of polymeric micelles. The interlayer-crosslinked micelles prepared from star-shaped copolymer and a crosslinker containing a disulfide bond are reduction-responsive and can release the drug quickly in the presence of the reducing agents such as glutathione (GSH).

  11. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Science.gov (United States)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  12. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk [School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET (United Kingdom); Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin [Miba Coating Group: Teer Coatings Ltd, West-Stone-House, West-Stone, Berry-Hill-Industrial-Estate, WR9 9AS, Droitwich (United Kingdom)

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  13. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  14. Metallic and antiferromagnetic fixed points from gravity

    Science.gov (United States)

    Paul, Chandrima

    2018-06-01

    We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.

  15. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  16. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  17. Topotactic conversion of β-helix-layered silicate into AST-type zeolite through successive interlayer modifications.

    Science.gov (United States)

    Asakura, Yusuke; Takayama, Ryosuke; Shibue, Toshimichi; Kuroda, Kazuyuki

    2014-02-10

    AST-type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (β-helix-layered silicate; HLS) by using N,N-dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1) hydrochloric acid/ethanol and 2) dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup-like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three-dimensional networks by simple interlayer condensation by judicious choice of amide molecules. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural, optical and vibrational properties of Cr2O3 with ferromagnetic and antiferromagnetic order: A combined experimental and density functional theory study

    Science.gov (United States)

    Larbi, T.; Ouni, B.; Gantassi, A.; Doll, K.; Amlouk, M.; Manoubi, T.

    2017-12-01

    Chromium oxide (Cr2O3) thin films have been synthesized on glass substrates by the spray pyrolysis technique. The structural, morphological and optical properties of the sample have been studied by X-ray diffraction (XRD), Raman spectroscopy, FTIR spectroscopy, scanning probe microscopy and UV-vis spectroscopy respectively. X-ray diffraction results reveal that as deposited film is polycrystalline with a rhombohedral corundum structure and a preferential orientation of the crystallites along the (1 0 4) direction. IR and Raman spectra were recorded in the 100-900 cm-1 range and the observed modes were analysed and assigned to different normal modes of vibration. The direct optical band gap energy value calculated from the transmittance spectra of as-deposited thin film is about 3.38 eV. We employ first principles calculations based on density functional theory (DFT) with the B3LYP hybrid functional and a coupled perturbed Hartree-Fock/Kohn-Sham approach (CPHF/KS). We study the electronic structure, optimum geometry, and IR and Raman spectra of ferromagnetically and antiferromagnetically ordered Cr2O3. The computed results are consistent with the experimental measurements, and provide complete vibrational assignment, for the characterization of Cr2O3 thin film materials which can be used in photocatalysis and gas sensors.

  19. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    Science.gov (United States)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  20. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs