Magnetic Properties of the S=2 Heisenberg Antiferromagnetic Chain Compound MnCl3(bpy)
International Nuclear Information System (INIS)
Hagiwara, M; Idutsu, Y; Honda, Z; Yamamoto, S
2012-01-01
We report the results of magnetic susceptibilities at temperatures between 2 and 300 K, and magnetization in magnetic fields of up to 52 T on polycrystalline samples of MnCl 3 (bpy) (bpy=2, 2'-bipyridine) and the comparison with numerical calculations. This compound is one of the rare examples of the spin 2 quasi-one-dimensional Heisenberg antiferromagnet, and the magnetic properties of tiny single crystal samples were reported previously. The temperature dependence of magnetic susceptibility and the magnetization curve after subtracting the contribution of magnetic impurity are well fitted to those calculated by a quantum Monte Carlo method with the intrachain exchange constant J/k B =31.2 K and the g-value g=2.02 which are comparable to reported values (J/k B =34.8±1.6 K and g=2.04±0.04).
Neutron-scattering studies of the S=2 antiferromagnetic chain MnCl3(C10D8N2)
International Nuclear Information System (INIS)
Granroth, G.E.; Nagler, S.E.; Coldea, R.; Eccleston, R.S.; Ward, B.H.; Talham, D.R.; Meisel, M.W.
2002-01-01
Quasi-elastic and inelastic neutron scattering studies of the quasi-one-dimensional S=2 antiferromagnet MnCl 3 (C 10 D 8 N 2 ) are reported. The quasi-elastic measurements exhibit a broad peak at Q∼0.69 A -1 , which is consistent with short-range antiferromagnetic coupling between neighboring Mn 3+ ions. Inelastic experiments, at 150 mK and Q=0.70 A -1 , reveal decreased magnetic scattering at energies less than 0.2 meV when compared to similar studies at 20 K. These results provide microscopic evidence for the presence of a Haldane gap and are consistent with the bulk magnetization measurements of Granroth et al. (orig.)
Granroth, G E; Coldea, R; Eccleston, R S; Ward, B H; Talham, D R; Meisel, M W
2002-01-01
Quasi-elastic and inelastic neutron scattering studies of the quasi-one-dimensional S=2 antiferromagnet MnCl sub 3 (C sub 1 sub 0 D sub 8 N sub 2) are reported. The quasi-elastic measurements exhibit a broad peak at Q approx 0.69 A sup - sup 1 , which is consistent with short-range antiferromagnetic coupling between neighboring Mn sup 3 sup + ions. Inelastic experiments, at 150 mK and Q=0.70 A sup - sup 1 , reveal decreased magnetic scattering at energies less than 0.2 meV when compared to similar studies at 20 K. These results provide microscopic evidence for the presence of a Haldane gap and are consistent with the bulk magnetization measurements of Granroth et al. (orig.)
Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain
Hao, Xiang; Zhu, Shiqun
2008-01-01
The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...
Solitons in one-dimensional antiferromagnetic chains
International Nuclear Information System (INIS)
Pires, A.S.T.; Talim, S.L.; Costa, B.V.
1989-01-01
We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions
Long-range interactions in antiferromagnetic quantum spin chains
Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.
2017-08-01
We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.
Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain
International Nuclear Information System (INIS)
Daniel, M.; Amuda, R.
1994-11-01
We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs
International Nuclear Information System (INIS)
Gurewitz, E.
1976-12-01
The crystallographic structure of KFeCl 3 and KFeBr 3 consists of (FeCl) - octahedra packed in isolated zigzagging chains. These compounds order antiferromagnetically at Tsub(N) approximately 16 deg K and Tsub(N) approximately 9.5 deg K, respectively. Below Tsub(N) the Fe 2+ magnetic moments within a chain are ferromagnetically coupled, parallel to the chain axis, while the chains are coupled antiferromagnetically. In the temperatures Tsub(N) 3 has magnetic correlations within the chains only, whereas the correlations between the chains are negligible. Moessbauer effect measurements at these temperatures show a distinct hyperfine magnetic splitting, characteristic of relaxation phenomena. Cs 2 MnCl 4 , Rb 2 MnCl 4 and Rb 3 Mn 2 Cl 7 belong to the Asub(n+1)Bsub(n)Xsub(3n+1) family of compounds, with the Dsub(4h)sup(17) space group. These compounds order antiferromagnetically at Tsub(N) approximately 55 deg K for Cs 2 MnCl 4 and Rb 2 MnCl 4 , and Tsub(N) approximately 64.5 deg K for Rb 3 Mn 2 Cl 7 . Below Tsub(N) each Mn 2+ moment is along the c-axis and is coupled antiferromagnetically to the moments of its nearest neighbours (nn). These compounds behave like a two-dimensional antiferromagnet at T >= Tsub(N). Neutron scans of the reciprocal space exhibit rods of reflections along c vectorsup(*). The negligible interactions between next nn sets of MnCl 2 layers, a distance c vector apart, yield both in Rb 2 MnCl 4 and in Rb 3 Mn 2 Cl 7 , two distinctive magnetic structures (polytypes) below Tsub(N). (author)
Static and dynamic behaviour of antiferromagnetic linear chains
International Nuclear Information System (INIS)
Henkens, L.S.J.M.
1977-01-01
This thesis deals with an experimental study of the static and dynamic behaviour of s=1/2 heisenberg antiferromagnetic linear chains in the temperature range of 0,05K 4 , CuSeO 4 .5H 2 O, and CuBeF 4 .5H 2 O, all of which are isomorphic salts
High-field spin dynamics of antiferromagnetic quantum spin chains
DEFF Research Database (Denmark)
Enderle, M.; Regnault, L.P.; Broholm, C.
2000-01-01
present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
Evolution of topological features in finite antiferromagnetic Heisenberg chains
International Nuclear Information System (INIS)
Chen Changfeng
2003-01-01
We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed
Specific heat study of quasi-one-dimensional antiferromagnetic model for an organic polymer chain
International Nuclear Information System (INIS)
Qu Shaohua; Zhu Lin
2008-01-01
The specific heat of an infinite one-dimensional polymer chain bearing periodically arranged side radicals connected to the even sites is studied by means of quantum transfer-matrix method based on a Ising-Heisenberg model. In the absence of the exchange interactions between side radicals and the main chain, the curves of specific heat show a round peak due to the antiferromagnetic excitations for the all antiferromagnetic interactions along the polymer chain. Considering the exchange interactions between the side radicals and the main chain, the curves of the specific heat show double-peak structure for ferromagnetic interactions between the radicals and main chain, indicating that a competition between ferromagnetic and antiferromagnetic interactions and the possibility of the occurrence of the stable ferrimagnetic state along the polymer chain
The finite temperature density matrix and two-point correlations in the antiferromagnetic XXZ chain
Göhmann, Frank; Hasenclever, Nils P.; Seel, Alexander
2005-10-01
We derive finite temperature versions of integral formulae for the two-point correlation functions in the antiferromagnetic XXZ chain. The derivation is based on the summation of density matrix elements characterizing a finite chain segment of length m. On this occasion we also supply a proof of the basic integral formula for the density matrix presented in an earlier publication.
Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs
Quasi-one-dimensional Heisenberg antiferromagnetic model for an organic polymeric chain
International Nuclear Information System (INIS)
Wu, F; Wang, W Z
2006-01-01
Using the exact diagonalization technique, we study the properties of the ground state of a spin-1/2 antiferromagnetic Heisenberg model for a zigzag polymer chain with side radicals connected to the even sites. We consider the nearest-neighbour exchange J and the next-nearest-neighbour exchange αJ along the main chain, and J 1 between the even site on the main chain and the radical site. For small α the ground state is ferrimagnetic. For α>α c1 , the ground state is a spiral phase, which is characterized by a peak of the static structure factor S(q) locating at an incommensurate value q max . For α>α c2 , the ground state is antiferromagnetic. With increasing J 1 , α c1 decreases while α c2 has a maximum at about J 1 = 0.5. For very small J 1 and α = 0.5, the spin configuration on the main chain is a product of nearest-neighbour singlets. In the antiferromagnetic phase, if J 1 is large enough the even site and the radical site form a singlet with exchange-decoupling from the odd site while the odd sites approximately form an antiferromagnetic chain
Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain
DEFF Research Database (Denmark)
Stone, M.B.; Reich, D.H.; Broholm, C.
2003-01-01
Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k(B)T/Jless than or equal to0.025 for H=0 and H=8.7 T, where...
Energy Technology Data Exchange (ETDEWEB)
Bukharov, A A; Ovchinnikov, A S; Baranov, N V [Department of Physics, Ural State University, Ekaterinburg, 620083 (Russian Federation); Inoue, K [Institute for Advanced Materials Research, Hiroshima University, Hiroshima (Japan)
2010-11-03
Using Monte Carlo simulations we investigate magnetic hysteresis in two- and three-dimensional systems of weakly antiferromagnetically coupled spin chains based on a scenario of domain wall (kink) motion within the chains. By adapting the model of walkers to simulate the domain wall dynamics and using the Ising-like dipole-dipole model, we study the effects of interchain coupling, temperature and anisotropy axis direction on hysteresis curves.
Novel spin excitation in the high field phase of an S=1 antiferromagnetic chain
International Nuclear Information System (INIS)
Hagiwara, M.; Kashiwagi, T.; Kimura, S.; Honda, Z.; Kindo, K.
2007-01-01
We report the results of high-field multi-frequency ESR experiment on the S=1 Heisenberg antiferromagnetic chain Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) for the fields up to about 55T and the frequencies up to about 2THz. We have found that excitation branches above the critical field (H c ) where the energy gap closes change into one branch around 15T which becomes close to the paramagnetic line at high fields. The branch above 15T fits well the conventional antiferromagnetic resonance mode with easy planar anisotropy. We compare the results with those in a weakly coupled antiferromagnetic dimer compound KCuCl 3 and discuss the origin of the branches observed above H c
Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies
International Nuclear Information System (INIS)
Peters, D; Selke, W; McCulloch, I P
2010-01-01
Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.
Gutzwiller approach for elementary excitations in S = 1 antiferromagnetic chains
International Nuclear Information System (INIS)
Liu, Zheng-Xin; Zhou, Yi; Ng, Tai-Kai
2014-01-01
In a previous paper (Liu et al 2012 Phys. Rev. B 85 195144), a variational Monte Carlo method (based on Gutzwiller projected states) was generalized to S = 1 systems. This method provided very good trial ground states for the gapped phases of an S = 1 bilinear-biquadratic (BLBQ) Heisenberg chain. In this paper, we extend the approach to study the low-lying elementary excitations in S = 1 chains. We calculate the one-magnon and two-magnon excitation spectra of the BLBQ Heisenberg chain and the results agree very well with recent data in the literature. In our approach, the difference of the excitation spectrum between the Haldane phase and the dimer phase (such as the even/odd size effect) can be understood from their different topologies of the corresponding mean field theory. We especially study the Takhtajan–Babujian critical point. Despite the fact that the ‘elementary excitations’ are spin-1 magnons, which are different from the spin-1/2 spinons in Bethe solution, we show that the excitation spectrum, critical exponent (η=0.74) and central charge (c = 1.45) calculated from our theory agree well with the Bethe ansatz solution and conformal field theory predictions. (paper)
International Nuclear Information System (INIS)
Lou Jizhong; Qin Shaojin; Su Zhaobin; Dai Jianhui; Yu Lu
2000-06-01
We analyze the logarithmic corrections due to ferromagnetic impurity ending bonds of open spin 1/2 antiferromagnetic chains, using the density matrix renormalization group technique. A universal finite size scaling ∼ 1/L log L for impurity contributions in the quasi-degenerate ground state energy is demonstrated for a zigzag spin 1/2 chain at the critical next nearest neighbor coupling and the standard Heisenberg spin 1/2 chain, in the long chain limit. Using an exact solution for the latter case it is argued that one can extract the impurity contributions to the entropy and specific heat from the scaling analysis. It is also shown that a pure spin 3/2 open Heisenberg chain belongs to the same universality class. (author)
Thermal conductivity of a quantum spin-1/2 antiferromagnetic chain with magnetic impurities
International Nuclear Information System (INIS)
Zviagin, A.A.
2008-01-01
We present an exact theory that describes how magnetic impurities change the behavior of the thermal conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic impurities and a large concentration of impurities with similar values of the couplings to the host chain (a weak disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope of that behavior becomes smaller, compared to the homogeneous case. The strong disorder in the distribution of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity, compared to the linear-in-T dependence of the homogeneous chain and the chain with weak disorder. Recent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin systems manifest qualitative agreement with our results
Narrow and broad solitons in the antiferromagnetic chains of CsCoCl3 and TMMC
International Nuclear Information System (INIS)
Boucher, J.P.; Regnault, L.P.; Pires, A.; Rossat-Mignod, J.; Henry, Y.; Bouillot, J.; Stirling, W.G.; Renard, J.P.
1984-06-01
The two quasi one-dimensional (1D) compounds CsCoCl 3 and (CH 3 ) 4 NMnCl 3 (TMMC) are almost ideal systems in which to study soliton excitations. Both they have antiferromagnetic (AF) couplings in the chains and at low temperature they exhibit an Ising symmetry favourable for the occurence of solitons. This symmetry is an intrinsic property of CsCoCl 3 while in TMMC it is only achieved by the application of an external magnetic field H perpendicular to the chains. In the lD short range order regime two energetically equivalent configurations are expected for the spins. Solitons can be seen as Bloch walls separating ordered domains and allowing the spins to pass from one configuration to the other. In the case of a ''strong'' Ising symmetry (CsCoCl 3 ) the walls are reduced to one lattice unit (''narrow'' solitons) while in the case of a ''weak'' Ising symmetry (TMMC) the walls extend over several lattice units (10 to 30) (''broad'' solitons). To maintain a paramagnetic state, these walls move rapidly along the chains inducing characteristic fluctuations. The investigation of these two compounds, CsCoCl 3 and TMMC illustrates the advantage of antiferromagnets as the AF mode yields an accurate determination of the soliton regime. Narrow and broad solitons are observed to behave very similarly
Renormalization-group studies of antiferromagnetic chains. I. Nearest-neighbor interactions
International Nuclear Information System (INIS)
Rabin, J.M.
1980-01-01
The real-space renormalization-group method introduced by workers at the Stanford Linear Accelerator Center (SLAC) is used to study one-dimensional antiferromagnetic chains at zero temperature. Calculations using three-site blocks (for the Heisenberg-Ising model) and two-site blocks (for the isotropic Heisenberg model) are compared with exact results. In connection with the two-site calculation a duality transformation is introduced under which the isotropic Heisenberg model is self-dual. Such duality transformations can be defined for models other than those considered here, and may be useful in various block-spin calculations
International Nuclear Information System (INIS)
Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.; Tun, Z.; Coldea, Radu; Enderle, M.
2002-01-01
We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl 3 . Measurements over a wide range of wave-vector transfers along the chain confirm that above T N CsNiCl 3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length ζ = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl 3 for T ∼< 12 K, possibly caused by multiply frustrated interchain interactions.
Neutron scattering from (CD3ND3)2MnCl4
International Nuclear Information System (INIS)
Lehner, N.
1978-12-01
For the perovskite-type crystal (CD 3 ND 3 ) 2 MnCl 4 neutron scattering experiments were performed concerning the magnetic behaviour, critical phenomena and lattice dynamics. The crystal is built up from layers, resulting in a quasi two-dimensional antiferromagnetic order, whereas the lattice dynamics shows a more three-dimensional behaviour; this can be explained by long-range Coulomb forces. Only the correlation lengths, which were determined by critical scattering, show a pronounced anisotropy. (orig.) [de
Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains
Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian
2017-11-01
We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.
Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field
International Nuclear Information System (INIS)
Sato, Masahiro; Oshikawa, Masaki
2002-01-01
We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)
Magnetic properties of CsCrCl/sub 3/, an antiferromagnetic chain compound with single-ion anisotropy
Energy Technology Data Exchange (ETDEWEB)
Day, P; Gregson, A K; Leech, D H [Oxford Univ. (UK). Inorganic Chemistry Lab.; Hutchings, M T [UKAEA Atomic Energy Research Establishment, Harwell. Materials Physics Div.; Rainford, B D [Imperial Coll. of Science and Technology, London (UK). Dept. of Physics
1979-01-01
The magnetic structure and excitations of the linear chain hexagonal perovskite salt CsCrCl/sub 3/ have been studied by susceptibility, powder and single crystal neutron diffraction, and coherent inelastic neutron scattering. Below the Neel temperature, Tsub(N) = 16 K, the spins lie in the basal plane with antiferromagnetic ordering along the c-axis chains. At 4.5 K there is strong dispersion of the spin-wave energy along c but no measurable dispersion perpendicular to c.
S =1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain in a zinc-verdazyl complex
Yamaguchi, Hironori; Shinpuku, Yasuhiro; Shimokawa, Tokuro; Iwase, Kenji; Ono, Toshio; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Hosokoshi, Yuko
2015-02-01
We successfully synthesized the zinc-verdazyl complex [Zn(hfac)2].(o -Py -V ) [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate; o -Py-V = 3-(2-pyridyl)-1,5-diphenylverdazyl], which is an ideal model compound with an S = 1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain (F-AF AHC). Ab initio molecular-orbital (MO) calculations indicate that two dominant interactions JF and JAF form the S = 1/2 F-AF AHC in this compound. The magnetic susceptibility and magnetic specific heat of the compound exhibit thermally activated behavior below approximately 1 K. Furthermore, its magnetization curve is observed up to the saturation field and directly indicates a zero-field excitation gap of 0.5 T. These experimental results provide evidence for the existence of a Haldane gap. We successfully explain the results in terms of the S = 1/2 F-AF AHC through quantum Monte Carlo calculations with | JAF/JF|=0.22 . The ab initio MO calculations also indicate a weak AF interchain interaction J' and that the coupled F-AF AHCs form a honeycomb lattice. The J' dependence of the Haldane gap is calculated, and the actual value of J' is determined to be less than 0.01 | JF| .
Nuclear spin relaxation in a spin-1/2 antiferromagnetic Heisenberg chain at high fields
International Nuclear Information System (INIS)
Lyo, S.K.
1981-01-01
The proton spin relaxation rate is calculated in the one-dimensional spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato)-copper (II), α-CuNSal by using a fermion representation for magnons above the critical field where the magnon spectrum develops a gap. The one-magnon process which is dominant below the critical field is shown to be absent in the presence of a gap in contrast to a previous theory. Instead, we find that the three-magnon rate is large enough to explain the data at low fields. The two-magnon off-resonance damping which enters the expression for the three-magnon rate is calculated by solving the two-magnon scattering exactly, leading to a much smaller value of the rate than that predicted by the Born approximation. Also, in an unsuccessful attempt to resolve the discrepancy between the recently calculated two-magnon rate (dominant at high fields) and the data of α-CuNSal reported by Azevedo et al., we carry out the vertex correction for the spin-density correlation function by summing the RPA series as well as the exchange ladders for the polarization part. We find that, although the exchange enhancement is significantly large, it is nearly canceled out by the RPA correction, and the net effect of the vertex correction is small. This result agrees with the recent data of the similar spin-1/2 antiferromagnetic Heisenberg chain system CuSO 4 x5H 2 O reported by Groen et al. On the other hand, it disagrees with a recent calculation of the two-magnon rate based on a boson representation of spins. To resolve this discrepancy we examine the effect of the boson self-energy correction on the two-magnon rate. The boson spectral shift is found to be quite large in the region where the cited two-boson rate deviates from the two-fermion rate. As a result the two-boson rate is significantly reduced, leading to reasonable agreement with the two-fermion rate
Bernot, K.; Luzon, J.; Caneschi, A.; Gatteschi, D.; Sessoli, R.; Bogani, L.; Vindigni, A.; Rettori, A.; Pini, M. G.
2009-04-01
We investigate theoretically and experimentally the static magnetic properties of single crystals of the molecular-based single-chain magnet of formula [Dy(hfac)3NIT(C6H4OPh)]∞ comprising alternating Dy3+ and organic radicals. The magnetic molar susceptibility χM displays a strong angular variation for sample rotations around two directions perpendicular to the chain axis. A peculiar inversion between maxima and minima in the angular dependence of χM occurs on increasing temperature. Using information regarding the monomeric building block as well as an ab initio estimation of the magnetic anisotropy of the Dy3+ ion, this “anisotropy-inversion” phenomenon can be assigned to weak one-dimensional ferromagnetism along the chain axis. This indicates that antiferromagnetic next-nearest-neighbor interactions between Dy3+ ions dominate, despite the large Dy-Dy separation, over the nearest-neighbor interactions between the radicals and the Dy3+ ions. Measurements of the field dependence of the magnetization, both along and perpendicularly to the chain, and of the angular dependence of χM in a strong magnetic field confirm such an interpretation. Transfer-matrix simulations of the experimental measurements are performed using a classical one-dimensional spin model with antiferromagnetic Heisenberg exchange interaction and noncollinear uniaxial single-ion anisotropies favoring a canted antiferromagnetic spin arrangement, with a net magnetic moment along the chain axis. The fine agreement obtained with experimental data provides estimates of the Hamiltonian parameters, essential for further study of the dynamics of rare-earth-based molecular chains.
An S=1/2 impurity spin in the antiferromagnetic S=1 bond-alternating chain
Energy Technology Data Exchange (ETDEWEB)
Ogawa, Nobuyuki [Gifu National College of Technology, Dept. of Fundamental Science, Gifu (Japan); Hikihara, Toshiya [National Inst. for Materials Science, Computational Material Research Group, Tsukuba, Ibaraki (Japan); Kaburagi, Makoto [Kobe Univ., Faculty of Cross-Cultural Studies, Kobe, Hyogo (Japan); Tonegawa, Takashi [Fukui Univ. of Technology, Dept. of Mechanical Engineering, Fukui (Japan)
2002-06-01
We explore low-lying excited states as well as the ground state of the antiferromagnetic S=1 bond-alternating chain with an S=1/2 impurity spin. For the case where the ground-state phase of the host system is the Haldane phase, we review a numerical analysis of the electron-spin-resonance experimental results on the NENP: Cu{sup 2+} system. For the case where the ground-state phase of the host system is the dimer phase, on the other hand, we calculate, using the exact-diagonalization method, the dependences of the energy differences between the ground and low-lying excited states upon both the impurity-host exchange constant and the single-ion-type anisotropy constant, and also calculate, using the density-matrix renormalization-group method, the external-magnetic-field dependence of the impurity-spin magnetization in the ground state. In these calculations, we keep the NTENP: Cu{sup 2+} system in mind to choose the value of the bond-alternation parameter. We find that a few low-lying excited states which are expected from the valence-bond-solid picture appear as the impurity states in the energy gap between the singlet ground and triplet first-excited states (the dimer gap). Furthermore, for certain values of the above constants, we find that the impurity-spin magnetization shows a clear jump at a magnetic field which is in the dimer-gap region or in the magnetization-plateau region of the host system, and also that the impurity-spin magnetization has a magnetic-field region where it decreases as a function of the magnetic field. (author)
Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.
2018-05-01
We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
International Nuclear Information System (INIS)
Law, J M; Benner, H; Kremer, R K
2013-01-01
The temperature dependence of the spin susceptibilities of S = 1, 3/2 , 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH 3 ) 4 N[MnCl 3
DEFF Research Database (Denmark)
Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas
2011-01-01
,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...
Magnetic properties of the strongly correlated chain antiferromagnet KTb(WO4)2
International Nuclear Information System (INIS)
Khatsko, E.; Loginov, A.; Cherny, A.; Rykova, A.
2006-01-01
The susceptibility and magnetization of a single crystal of KTb(WO 4 ) 2 has been measured in the temperature range 0.5-80 K in magnetic fields up to 6 T. It is shown that KTb(WO 4 ) 2 is an Ising magnet with only one component of the magnetic moment. The three-dimensional phase transition to the antiferromagnetically ordered state has been found below 0.7 K. This transition can be described in the molecular field two-level approximation. The principal exchange constant has been estimated. By using experimental data the magnetic structure of KTb(WO 4 ) 2 is proposed
International Nuclear Information System (INIS)
Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; Gu, G. D.; Zaliznyak, I. A.
2017-01-01
We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr 2 CuO 3 , with extremely weak magnetic ordering. The ESR spectra at T > T N , in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below T N , we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.
Monthus, Cécile
2018-03-01
For the line of critical antiferromagnetic XXZ chains with coupling J > 0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.
Magnetization plateaus in the spin-1/2 antiferromagnetic Heisenberg model on a kagome-strip chain
Morita, Katsuhiro; Sugimoto, Takanori; Sota, Shigetoshi; Tohyama, Takami
2018-01-01
The spin-1/2 Heisenberg model on a kagome lattice is a typical frustrated quantum spin system. The basic structure of a kagome lattice is also present in the kagome-strip lattice in one dimension, where a similar type of frustration is expected. We thus study the magnetization plateaus of the spin-1/2 Heisenberg model on a kagome-strip chain with three-independent antiferromagnetic exchange interactions using the density-matrix renormalization-group method. In a certain range of exchange parameters, we find twelve kinds of magnetization plateaus, nine of which have magnetic structures breaking translational and/or reflection symmetry spontaneously. The structures are classified by an array of five-site unit cells with specific bond-spin correlations. In a case with a nontrivial plateau, namely a 3/10 plateau, we find long-period magnetic structure with a period of four unit cells.
Effective S =2 antiferromagnetic spin chain in the salt (o -MePy-V)FeCl4
Iwasaki, Y.; Kida, T.; Hagiwara, M.; Kawakami, T.; Hosokoshi, Y.; Tamekuni, Y.; Yamaguchi, H.
2018-02-01
We present a model compound for the S =2 antiferromagnetic (AF) spin chain composed of the salt (o -MePy-V ) FeCl4 . Ab initio molecular-orbital calculations indicate the formation of a partially stacked two-dimensional (2D) spin model comprising five types of exchange interactions between S =1 /2 and S =5 /2 spins, which locate on verdazyl radical and Fe ion, respectively. The magnetic properties of the synthesized crystals indicate that the dominant interaction between the S =1 /2 and S =5 /2 spins stabilizes an S =2 spin in the low-temperature region, and an effective S =2 AF chain is formed for T ≪10 K and H chain. At higher fields above quantitatively 4 T, the magnetization curve assumes two-thirds of the full saturation value for fields between 4 and 20 T, and approaches saturation at ˜40 T. The spin model in the high-field region can be considered as a quasi-2D S =1 /2 honeycomb lattice under an effective internal field caused by the fully polarized S =5 /2 spin.
DEFF Research Database (Denmark)
Lefmann, K.; Rischel, C.
1996-01-01
We present a numerical diagonalization study of two one-dimensional S=1/2 antiferromagnetic Heisenberg chains, having nearest-neighbor and Haldane-Shastry (1/r(2)) interactions, respectively. We have obtained the T=0 dynamical correlation function, S-alpha alpha(q,omega), for chains of length N=8......-28. We have studied S-zz(q,omega) for the Heisenberg chain in zero field, and from finite-size scaling we have obtained a limiting behavior that for large omega deviates from the conjecture proposed earlier by Muller ct al. For both chains we describe the behavior of S-zz(q,omega) and S...
Energy Technology Data Exchange (ETDEWEB)
Klyushina, Ekaterina; Lake, Bella [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Tiegel, Alexander; Manmana, Salvatore [Georg-August-Universitaet Goettingen (Germany); Islam, Nazmul; Klemke, Bastian [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany); Park, Jitae [Heinz Maier-Leibnitz Zentrum, TU Muenchen, Garching (Germany); Honecker, Andreas [Universite de Cergy-Pontoise (France)
2016-07-01
Highly dimerized quantum magnets have attracted a great deal of attention in the recently due to the unconventional temperature behavior of their magnetic excitations. Here we present our investigations of the highly dimerized antiferromagnet-ferromagnetic 1D chain BaCu{sub 2}V{sub 2}O{sub 8} both at base and at finite temperatures. The single crystal inelastic neutron scattering measurements at base temperature reveal that there are two excitation branches which disperse along the L direction over the energy range of 36-46 meV. The comparison with DMRG simulations indicates that the antiferromagnetic dimers are coupled ferromagnetically along the c axis. The line shape of the excitations at the dispersion minima was found to become asymmetry with increasing temperature. Thus unconventional thermal behavior also exists in dimer compounds with ferromagnetic interdimer coupling.
Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.
2018-01-01
Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.
Baltz, V.; Manchon, Aurelien; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.
2018-01-01
Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and
Baltz, V.
2018-02-15
Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and
Tretiakov, Oleg; Barker, Joseph
Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; Martí, Xavier; Wadley, P.; Wunderlich, Joerg
2016-01-01
Roč. 11, č. 3 (2016), 231-241 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 38.986, year: 2016
International Nuclear Information System (INIS)
Wang Qin; Chen Hong; Zheng Hang
2007-01-01
The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization
Neutron scattering studies on phase transitions in (CD3ND3)2CuCl4 and MnCl2.4H2O
International Nuclear Information System (INIS)
Steijger, J.J.M.
1982-10-01
In this thesis the results of neutron scattering experiments and measurements of the susceptibility on some compounds which display magnetic and/or structural phase transitions, are described. Following an introductory chapter, chapter 2 shows that neutron scattering can be used as a tool for unravelling problems in crystallographic and magnetic structure. The qualitative different scattering patterns for scatters are described. In chapters 3 and 4 an investigation on the layered ferromagnets (CH 3 NH 3 ) 2 CuCl 4 and (CD 3 ND 3 ) 2 CuCl 4 is described. In these materials the copper ions, which carry the magnetic moment, are more closely spaced in the ab-planes, and consequently the magnetic interactions in these planes are stronger than those in the direction perpendicular to these planes by about a factor of 10 5 . Chapter 5 presents a discussion and a calculation of demagnetizing and dipole fields. The second part of this thesis is concerned with the transition from the antiferromagnetic to the paramagnetic phase in MnCl 2 .4H 2 O in the presence of a magnetic field applied perpendicular to the preferred direction of the magnetic moments. The theory is reviewed in chapter 6 and in chapter 7 the correction procedure for inhomogeneous internal fields is applied to the measurements on MnCl 2 .4H 2 O. (Auth./C.F.)
Energy Technology Data Exchange (ETDEWEB)
Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl
2014-03-01
Heisenberg antiferromagnetic chains based on Ni{sup 2+} ions with integer spin S=1 exhibit intriguing behavior, e.g. the Haldane gap phase and the large-D phase. The predicted transitions between the two phases and the Neel phase has generated search for real candidate systems. Crucial to this search is the interplay between the ‘in-plane anisotropy’, i.e. the rhombic zero-field splitting (ZFS) E-term, and the ‘planar anisotropy’, i.e. the axial ZFS D-term. This paper clarifies intricate properties of orthorhombic ZFS Hamiltonians (H{sub ZFS}) and inconsistencies revealed by critical survey of pertinent studies. Reporting the non-standard (D, E) sets with λ=E/D out of the standard range (0, 1/3) alongside the standard sets with λ∝(0, 1/3) indicates that these properties are not recognized. We show that direct comparisons of the non-standard and standard sets are meaningless and lead to incorrect conclusions on the strength of the ‘in-plane anisotropy’ (E) as compared with the ‘planar anisotropy’ (D). To remedy such problems, the ZFSP sets reported for the large-D phase candidate systems are reanalyzed using orthorhombic standardization. The six physically equivalent ZFSP sets are determined in the conventional (D, E) and Stevens (b{sub 2}{sup 0}, b{sub 2}{sup 2}) notation. These considerations help understanding intricacies inherent in orthorhombic H{sub ZFS} and provide consistent data for future modeling of ZFS parameters in the large-D phase and Haldane gap systems.
Electric control of antiferromagnets
Fina, I.; Marti, X.
2016-01-01
In the past five years, most of the paradigmatic concepts employed in spintronics have been replicated substituting ferromagnets by antiferromagnets in critical parts of the devices. The numerous research efforts directed to manipulate and probe the magnetic moments in antiferromagnets have been gradually established a new and independent field known as antiferromagnetic spintronics. In this paper, we focus on the electrical control and detection of antiferromagnetic moments at a constant tem...
Perspectives of antiferromagnetic spintronics
Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel
2018-04-01
Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.
Perspectives of antiferromagnetic spintronics
Energy Technology Data Exchange (ETDEWEB)
Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel
2018-04-01
Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.
Structure and properties of Mn4Cl9: An antiferromagnetic binary hyperhalogen
Li, Yawei; Zhang, Shunhong; Wang, Qian; Jena, Puru
2013-02-01
Calculations based on density functional theory show that the structure of Mn4Cl9 anion is that of a Mn atom at the core surrounded by three MnCl3 moieties. Since Mn is predominantly divalent and MnCl3 is known to be a superhalogen with a vertical detachment energy (VDE) of 5.27 eV, Mn4Cl9 can be viewed as a hyperhalogen with the formula unit Mn(MnCl3)3. Indeed, the calculated VDE of Mn4Cl9 anion, namely 6.76 eV, is larger than that of MnCl3 anion. More importantly, unlike previously discovered hyperhalogens, Mn4Cl9 is the first such hyperhalogen species composed of only two constituent atoms. We further show that Mn4Cl9 can be used as a ligand to design molecules with even higher VDEs. For example, Li[Mn(MnCl3)3]2 anion has a VDE of 7.26 eV. These negatively charged clusters are antiferromagnetic with most of the magnetic moments localized at the Mn sites. Our studies show new pathways for creating binary hyperhalogens.
Spintronics of antiferromagnetic systems
International Nuclear Information System (INIS)
Gomonaj, E.V.; Loktev, V.M.
2014-01-01
Spintronics of antiferromagnetics is a new field that has developed in a fascinating research topic in physics of magnetism. Antiferromagnetics, like ferromagnetic materials experience the influence of spin-polarized current, even though they show no macroscopic magnetization. The mechanism of this phenomenon is related to spin-dependent interaction between free and localized electrons-sd-exchange. Due to the peculiarities of antiferromagnetic materials (complicated magnetic structure, essential role of the exchange interactions, lack of macroscopic magnetization) spintronics of antiferromagnets appeals to new theoretical and experimental approaches. The purpose of this review is to systemize and summarize the recent progress in this field. We start with a short introduction into the structure and dynamics of antiferromagnets and proceed with discussion of different microscopic and phenomenological theories for description of current-induced phenomena in ferro-/antiferromagnetic heterostructures. We also consider the problems of the reverse influence of antiferromagnetic ordering on current, and effectiveness of the fully antiferromagnetic spin valve. In addition, we shortly review and interpret the available experimental results.
Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan
2014-04-07
Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed.
Antiferromagnetic spin-orbitronics
Manchon, Aurelien; Saidaoui, Hamed Ben Mohamed; Ghosh, Sumit
2015-01-01
Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.
Nanoparticles of antiferromagnetic materials
DEFF Research Database (Denmark)
Madsen, Daniel Esmarch
2008-01-01
I denne Ph.D. afhandling studeres forskellige egenskaber ved antiferromagnetiske nanopartikler. I en ideel antiferromagnet er spinnene orienteret således at der ikke er et resulterende magnetisk moment. I nanopartikler af antiferromagnetiske materialer er denne kompensation på grund af forskellig...
Antiferromagnetic spin-orbitronics
Manchon, Aurelien
2015-05-01
Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.
Prospect for antiferromagnetic spintronics
Czech Academy of Sciences Publication Activity Database
Martí, Xavier; Fina, I.; Jungwirth, Tomáš
2015-01-01
Roč. 51, č. 4 (2015), s. 2900104 ISSN 0018-9464 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015
Superconductivity in doped antiferromagnets
International Nuclear Information System (INIS)
Lagos, M.
1990-09-01
The antiferromagnetic S = 1/2 Heisenberg model is extended to account for the presence of holes. The holes move along a sublattice whose sites are located in between the spin sites. The spin-hole coupling arises from the modification of the exchange interaction between two neighbouring spins when the site between them is occupied by a hole. this physical picture leads to a generalized version of the so called t-J model Hamiltonian. The use of a recently developed method that introduces spin-O excitations for dealing with the Heisenberg antiferromagnetic model allows us to map the model Hamiltonian onto a Froelich one, with the spin-O magnetic excitations substituting phonons. The case of electrons moving along the spin sites is discussed as well. (author). 16 refs, 2 figs
Concepts of antiferromagnetic spintronics
Czech Academy of Sciences Publication Activity Database
Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo
2017-01-01
Roč. 11, č. 4 (2017), 1-8, č. článku 1700022. ISSN 1862-6254 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.032, year: 2016
Cardiovascular effects of MnDPDP and MnCl2 in dogs with acute ischaemic heart failure
International Nuclear Information System (INIS)
Karlsson, J.O.G.; Pedersen, H.K.; Sager, G.; Refsum, H.; Nycomed Imaging AS, Oslo
1997-01-01
Purpose: To examine the cardiovascular effects of MnDPDP in a model of acute heart failure in the dog, and to compare these effects with those of MnCl 2 . Material and Methods: The study involved slow i.v. infusion of either 10, 60 and 300 μmol/kg of MnDPDP, or 1, 6 and 30 μmol/kg MnCl 2 , in increasing doses to groups of 5 dogs. Acute ischaemic heart failure was first induced by injection of polystyrene microspheres (50±10 μm) into the left coronary artery until a stable left ventricular end-diastolic pressure of approximately 20 mm Hg was achieved. The following test parameters were measured: Left ventricular end-diastolic pressure; the first derivatives of maximum rate of left ventricular contraction and relaxation; mean aortic pressure; pulmonary artery pressure; right atrial pressure; cardiac ouput; heart rate; QT-time; PQ-time; QRS-width; and plasma catecholamines. Results: Slow infusion of MnDPDP at doses up to and including 12 times the clinical dose was well tolerated in dogs without further depression of cardiovascular function during acute ischaemic heart failure. At 300 μmol/kg, i.e. 60 times the human dose, only minor haemodynamic and electrophysiological effects were seen, and these were similar to those seen after administration of 30 μmol/kg MnCl 2 . (orig./AJ)
Spin reorientation via antiferromagnetic coupling
Energy Technology Data Exchange (ETDEWEB)
Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)
2014-05-07
Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.
Diamond lattice Heisenberg antiferromagnet
Oitmaa, J.
2018-04-01
We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S = 1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.
Taguchi, Masaya; Suzuki, Atsushi; Tanaka, Hiroki; Oku, Takeo
2018-01-01
Perovskite-type CH3NH3PbI3-based photovoltaic devices were fabricated and characterized. Effects of manganese (Mn), yttrium (Y) compounds addition into the perovskite crystal on the photovoltaic properties were investigated. Also, the effects of poly(methyl methacrylate) (PMMA) addition on perovskite layer on the photovoltaic properties were investigated. When 3 % MnCl2 was added, the short circuit current density and conversion efficiency were improved by promoting the crystal growth of perovskite phase. The photoelectric conversion efficiency for 0.9 mg mL-1 PMMA added was 7.36 %. Open circuit voltage and fill factor were improved by 5 % YCl3 addition.
Quantum Number Fractionalization in Antiferromagnets
Laughlin, R. B.; Giuliano, D.; Caracciolo, R.; White, O.
1998-01-01
This is a pedagogical introduction to the mathematics of 1-dimensional spin-1/2 antiferromagnets. Topics covered include the Haldane-Shastry Hamiltonian, vector ``supercharges'', conserved spin currents, spinons, the supersymmetric Kuramoto-Yokoyama Hamiltonian, and holons.
Hernandez, I
2003-01-01
This work investigates the photoluminescence (PL) properties of the cubic chloroperovskite NH sub 4 MnCl sub 3. Like in most concentrated materials, the Mn sup 2 sup + PL which is located at 2.10 eV at T = 10 K strongly depends on the temperature. Optical absorption (OA), emission, and excitation spectroscopy, as well as lifetime measurements, performed on NH sub 4 MnCl sub 3 indicate that the PL is mainly intrinsic at T = 10 K and consists of a broad band located at 2.10 eV. Above this temperature, the PL gradually transforms to extrinsic PL due to exciton migration and subsequent trapping. Further temperature increase above 100 K yields transfer to killers of excitation which are responsible for the PL quenching, and hence the absence of PL at ambient conditions. The exciton traps are identified with perturbed Mn sup 2 sup + sites with the effective activation energy of 52 meV, whilst the activation energy for energy transfer is 47 meV. The existence of these traps has been directly revealed by time-resolve...
Žukovič, M.; Borovský, M.; Bobák, A.
2018-05-01
We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.
A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs
How to manipulate magnetic states of antiferromagnets
Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng
2018-03-01
Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.
Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers
International Nuclear Information System (INIS)
Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi
2015-01-01
The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)
Jungwirth, T.
2017-05-30
This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.
Jungwirth, T.; Sinova, J.; Manchon, Aurelien; Marti, X.; Wunderlich, J.; Felser, C.
2017-01-01
This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.
Spin Structure Analyses of Antiferromagnets
International Nuclear Information System (INIS)
Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong
2010-05-01
We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies
Analogies between antiferromagnets and antiferroelectrics
International Nuclear Information System (INIS)
Enz, C.P.; Matthias, B.T.
1980-01-01
Ferro- and antiferromagnetism in the Laves phase TiBesub(2-x) Cusub(x) occurs for 0.1 4 H 2 PO 4 and its solid solutions with TlH 2 PO 4 and with the ferroelectric KH 2 PO 4 are discussed as function of deuteration and of pressure. Another analogy as function of pressure is established with the antiferroelectric perovskite PbZrO 3 . (author)
International Nuclear Information System (INIS)
Jiang Jianjun; Liu Yongjun; Tang Fei; Yang Cuihong
2011-01-01
We investigated the properties of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain using the spin-wave theory. The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the model are calculated to be compared with the corresponding properties of the mixed spin (1, 1/2) chain for a range of α. The results demonstrate that all the properties show similar behaviours in the small α limit, so the properties of the mixed spin (1, 1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. -- Research Highlights: →The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain are calculated. →In the small α limit, the properties of the mixed spin (1,1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. →The spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain may be of interest for some real quasi-one-dimensional molecular magnetic materials.
International Nuclear Information System (INIS)
Rodriguez Barquero, L.; Arcos Merino, J. M. los; Grau Malonda, A.
1992-01-01
Procedures for liquid scintillation sample preparation of manganese dimethylbutirate, decanoate and palmitate, labelled with 54 Mn are described. their quenching effect, spectral evolution and counting stability along several weeks are analysed in liquid scintillation measurements with Toluene. HISafe II. PCS, instagel. Dioxane-naphtalene and Toluene-alcohol. For comparison, Inorganic 54 MnCl-2 samples are also studied, resulting in acceptable counting stability but showing greater quenching and signs of little spectral degradation against the organic samples. (Author)
Spin diffusion and torques in disordered antiferromagnets
Manchon, Aurelien
2017-02-01
We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.
Spin diffusion and torques in disordered antiferromagnets
Manchon, Aurelien
2017-01-01
We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.
International Nuclear Information System (INIS)
Skreb, Y.; Nagy, B.
1984-01-01
The interactions between the effects of manganese chloride and X-rays were studied in synchronized populations of V79 Chinese hamster fibroblasts. The cells were selected by shaking off asynchronous cultures for detachment of mitotic cells which were plated in petri dishes and exposed to various treatments. Irradiation was carried out with a Philips RT-100 X-ray unit. A final concentration of 0.25 mM MnCl 2 was used. The main parameter was the colony forming ability of the surviving cell fraction. When MnCl 2 was administered over 1 h, its toxicity was low regardless of the phase of the cell cycle. Administered separately, 2 Gy irradiation produced only a slight decrease in survival, less marked in the S phase. However, the two agents together induced a synergistic inhibition of the surviving fraction in the S phase when the metal was given immediately after irradiation. If manganese wad administered 3 h after irradiation the two inhibitory effects apparently remained only additive. It seems that MnCl 2 can impair some repair processes starting immediately after irradiation. (orig.)
Spiral phases of doped antiferromagnets
International Nuclear Information System (INIS)
Shraiman, B.I.; Siggia, E.D.
1990-01-01
The dipole density field describing the holls in a doped antiferromagnet is considered for law hole density in the semiclassical limit. This yields a phase in which the order parameter is planar and spirals round a fixed direction. The single spiral state breaks the continuous spin rotational symmetry and exhibits long-range order at zero temperature. In it there is a global spin direction as rotation axis. The double spiral state, in which there are two perpendicular directions, is isotropic in both spin and real space. Several results of microscopic calculations, carried out to understand the electronic states, quantum fluctuations, lattice effects and normal mode dynamics, are recapitulated. 8 refs
Antiferromagnetic CsCrF{sub 5} and canted antiferromagnetism in RbCrF{sub 5} and KCrF{sub 5}
Energy Technology Data Exchange (ETDEWEB)
Jagličić, Zvonko, E-mail: zvonko.jaglicic@imfm.si [University of Ljubljana, Faculty of Civil and Geodetic Engineering, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana (Slovenia); Mazej, Zoran, E-mail: zoran.mazej@ijs.si [Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)
2017-07-15
Highlights: • Cr(IV) ions are antiferromagnetically coupled within chains in ACrF{sub 5} (A = Cs, Rb, K). • Small structural difference causes huge difference in magnetic properties below 10 K. • Canted antiferromagnetism has been observed in RbCrF{sub 5} and KCrF{sub 5} at low temperature. - Abstract: In ACrF{sub 5} (A = Cs, Rb, K), Cr(IV) ions are coordinated by six fluoride ligands where the resulting CrF{sub 6} octahedra share cis vertexes to form infinite chains of ([Cr{sup IV}F{sub 5}]{sup −}){sub n}. The geometry of the latter in Cs compound differs from that in K and Rb compounds. The results of investigations of the magnetic behaviour of these compounds have shown that an antiferromagnetic superexchange interaction is present within the chains with J{sub Cs} = −10.2 cm{sup −1}, J{sub Rb} = −13.3 cm{sup −1}, and J{sub K} = −13.1 cm{sup −1}. Additional ferromagnetic-like long-range ordering has been observed in KCrF{sub 5} and RbCrF{sub 5} below 6 K which can be explained, in a correlation with their crystal structures, as canted antiferromagnetism.
Magnetic ordering of quasi-1 D S=1/2 Heisenberg antiferromagnet Cu benzoate at sub-mK temperatures
International Nuclear Information System (INIS)
Karaki, Y.; Masutomi, R.; Kubota, M.; Ishimoto, H.; Asano, T.; Ajiro, Y.
2003-01-01
We have measured the AC susceptibility of quasi-1D S=1/2 Heisenberg antiferromagnet Cu benzoate at temperatures down to 0.2 mK. A sharp susceptibility peak is observed at 0.8 mK under an earth field. This fact indicates a 3D ordering of linear chains coupled by a weak magnetic interaction between chains
Chen, Ping; Fu, Xiaolong; Hu, Peng; Xiao, Chengjian; Ren, Xingbi; Xia, Xiulong; Wang, Heyi
2017-07-08
The conventional packed column gas chromatographic analysis of hydrogen isotopes has low column efficiency, broad peak and long retention time. In this work, a γ -Al 2 O 3 with MnCl 2 coated capillary packed column was tested at cryogenic temperature. The systematic column efficiency analysis and the hydrogen isotopes analytical technique research had been carried out. The results showed that, the γ -Al 2 O 3 with MnCl 2 coating could greatly improve the surface degree of order, pore structure and adsorption properties. Also the o -H 2 peak and p -H 2 peak were eluted in a single area. The γ -Al 2 O 3 with MnCl 2 coating was packed into a 0.53 mm inner diameter and 1.0 m long fused silica capillary column. It had a good linear relationship used this column with thermal conductivity detector (TCD) to detect the volume concentrations of hydrogen isotopes from 1 to 10 mL/L, and the relative error was less than 5% for low concentration sample testing. For H 2 , HD and D 2 , the retention times can be shortened to 39, 46 and 60 s, respectively. The limits of detection were reduced to 0.046, 0.067 and 0.072 mL/L, respectively. Compared with conventional packed column, capillary packed column had sharper peak form, higher separation degree of adjacent components, shorter retention time and lower detection limits. The above results indicate that the capillary packed column with TCD detector can be used for fast detection of low concentration of hydrogen isotopes and their online analysis.
International Nuclear Information System (INIS)
Rodriguez, L.; Los Arcos, J.M.; Grau, A.
1992-01-01
Procedures for scintillation sample preparation of manganose dimethylbutirate, decanoate and palmitate, labelled with 54 Mn are described. Their quenching effect, spectral evolution and counting stability along several weeks are analysed in liquid scintillation measurements with Toluene, HlSafe II, PCS, Instagel, Dioxane-naphtalene and Toluene-alcohol. For comparison, inorganic 54 MnCl 2 samples are also studied, resulting in acceptable counting stability but showing greater quenching and signs of little spectral degradation against the organic samples. (author) 14 fig. 15 ref
International Nuclear Information System (INIS)
Ortiz M, A.; Cruz Z, E.; Furetta, C.; Kitis, G.
2009-10-01
Production of crystalline materials suitable thermoluminescent properties over a wide range of doses is becoming more important to evaluate different radiation fields. However, the thermoluminescence response and the structure of the glow curves may be modified by the participation of defects to low irradiation temperature. In this work it is analyzed the effect of the irradiation temperature, 77 and 200 K on the thermoluminescence response of crystal NaCl:XCl 2 :MnCl 2 (X=Ca, Cd) doubly doped. The glow curves obtained were analyzed using a deconvolution program of CGCD, and the response linearity was analyzed by supra linearity index. (Author)
Directory of Open Access Journals (Sweden)
Borovský Michal
2016-01-01
Full Text Available The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1. The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
Dynamic rotor mode in antiferromagnetic nanoparticles
DEFF Research Database (Denmark)
Lefmann, Kim; Jacobsen, H.; Garde, J.
2015-01-01
We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...
Antiferromagnetic resonance excited by oscillating electric currents
Sluka, Volker
2017-12-01
In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.
Magnon Spin Nernst Effect in Antiferromagnets
Zyuzin, Vladimir A.; Kovalev, Alexey A.
2016-11-01
We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.
Magnon Spin Nernst Effect in Antiferromagnets.
Zyuzin, Vladimir A; Kovalev, Alexey A
2016-11-18
We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.
Spinon Attraction in Spin-1/2 Antiferromagnetic Chains
International Nuclear Information System (INIS)
Bernevig, B. A.; Giuliano, D.; Laughlin, R. B.
2001-01-01
We derive the representation of the two-spinon wave function for the Haldane-Shastry model in terms of the spinon coordinates. This result allows us to rigorously analyze spinon interaction and its physical effects. We show that spinons attract one another. The attraction gets stronger as the size of the system is increased and, in the thermodynamic limit, determines the power law with which the susceptibility diverges
International Nuclear Information System (INIS)
Korostynska, O; Ortoneda-Pedrola, M; Mason, A; Al-Shamma'a, A I
2014-01-01
A novel electromagnetic wave sensor operating at GHz frequencies for real-time chlorides concentration analysis is reported. The sensor response to deionized water, NaCl, KCl, MnCl 2 and CuCl solutions at various concentrations was tested. The sensing element, in the form of a silver pattern antenna that emits an electromagnetic field, was printed on a polyimide flexible laminate substrate to form a sensor to suit a broad range of applications, where a sensor could be placed in water reservoirs or fluid-carrying pipes for continuous analysis. The developed system confirmed the viability of using microwaves for real-time chloride solutions monitoring as the reflected signals represented by S 11 parameters were unique with clearly observed shifts in the resonant frequencies and amplitude changes when placed in direct contact with 20 µl of each solution. (paper)
Theoretical modeling of diluted antiferromagnetic systems
International Nuclear Information System (INIS)
Pozo, J; Elgueta, R; Acevedo, R
2000-01-01
Some magnetic properties of a Diluted Antiferromagnetic System (DAFS) are studied. The model of the two sub-networks for antiferromagnetism is used and a Heisenberg Hamiltonian type is proposed, where the square operators are expressed in terms of boson operators with the approach of spin waves. The behavior of the diluted system's fundamental state depends basically on the competition effect between the anisotropy field and the Weiss molecular field. The approach used allows the diluted system to be worked for strong anisotropies as well as when these are very weak
Robust spin transfer torque in antiferromagnetic tunnel junctions
Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurelien
2017-01-01
We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque
Control and manipulation of antiferromagnetic skyrmions in racetrack
Xia, Haiyan; Jin, Chendong; Song, Chengkun; Wang, Jinshuai; Wang, Jianbo; Liu, Qingfang
2017-12-01
Controllable manipulations of magnetic skyrmions are essential for next-generation spintronic devices. Here, the duplication and merging of skyrmions, as well as logical AND and OR functions, are designed in antiferromagnetic (AFM) materials with a cusp or smooth Y-junction structures. The operational time are in the dozens of picoseconds, enabling ultrafast information processing. A key factor for the successful operation is the relatively complex Y-junction structures, where domain walls propagate through in a controlled manner, without significant risks of pinning, vanishing or unwanted depinning of existing domain walls, as well as the nucleation of new domain walls. The motions of a multi-bit, namely the motion of an AFM skyrmion-chain in racetrack, are also investigated. Those micromagnetic simulations may contribute to future AFM skyrmion-based spintronic devices, such as nanotrack memory, logic gates and other information processes.
Hole pairing induced by antiferromagnetic spin fluctuations
International Nuclear Information System (INIS)
Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.
1987-08-01
The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs
Antiferromagnetism in chromium alloy single crystals
DEFF Research Database (Denmark)
Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.
1965-01-01
The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...
The electronic structure of antiferromagnetic chromium
DEFF Research Database (Denmark)
Skriver, Hans Lomholt
1981-01-01
The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...
Metallic and antiferromagnetic fixed points from gravity
Paul, Chandrima
2018-06-01
We consider SU(2) × U(1) gauge theory coupled to matter field in adjoints and study RG group flow. We constructed Callan-Symanzik equation and subsequent β functions and study the fixed points. We find there are two fixed points, showing metallic and antiferromagnetic behavior. We have shown that metallic phase develops an instability if certain parametric conditions are satisfied.
Shape-induced anisotropy in antiferromagnetic nanoparticles
International Nuclear Information System (INIS)
Gomonay, O.; Kondovych, S.; Loktev, V.
2014-01-01
High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces
Thermoinduced magnetization in nanoparticles of antiferromagnetic materials
DEFF Research Database (Denmark)
Mørup, Steen; Frandsen, Cathrine
2004-01-01
We show that there is a thermoinduced contribution to the magnetic moment of nanoparticles of antiferromagnetic materials. It arises from thermal excitations of the uniform spin-precession mode, and it has the unusual property that its magnitude increases with increasing temperature. This has...
Magnetic correlations in the intermetallic antiferromagnet Nd3Co4Sn13
Wang, C. W.; Lin, J. W.; Lue, C. S.; Liu, H. F.; Kuo, C. N.; Mole, R. A.; Gardner, J. S.
2017-11-01
Specific heat, magnetic susceptibility, and neutron scattering have been used to investigate the nature of the spin system in the antiferromagnet Nd3Co4Sn13. At room temperature Nd3Co4Sn13 has a cubic, Pm-3n structure similar to Yb3Rh4Sn13. Antiferromagnetic interactions between, Nd3+ ions dominate the magnetic character of this sample and at 2.4 K the Nd spins enter a long range order state with a magnetic propagation vector q = (0 0 0) with an ordered moment of 1.78(2) µ B at 1.5 K. The magnetic Bragg intensity grows very slowly below 1 K, reaching ~2.4 µ B at 350 mK. The average magnetic Nd3+ configuration corresponds to the 3D irreducible representation Γ7. This magnetic structure can be viewed as three sublattices of antiferromagnetic spin chains coupled with each other in the 120°-configuration. A well-defined magnetic excitation was measured around the 1 1 1 zone centre and the resulting dispersion curve is appropriate for an antiferromagnet with a gap of 0.20(1) meV.
International Nuclear Information System (INIS)
Liu Juan-Juan; Wang Jin-Chen; Luo Wei; Sheng Jie-Ming; Bao Wei; He Zhang-Zhen; Danilkin, S. A.
2016-01-01
The magnetic structure of the spin-chain antiferromagnet SrCo_2V2O_8 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature T_N = 4.96 K. The moment of 2.16μ_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo_2V_2O_8 warrants SrCo_2V_2O_8 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism. (paper)
Theory of antiferromagnetic pairing in cuprate superconductors
International Nuclear Information System (INIS)
Plakida, N.M.
2006-01-01
A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed
Magnetic behaviour of interacting antiferromagnetic nanoparticles
International Nuclear Information System (INIS)
Markovich, V; Jung, G; Gorodetsky, G; Puzniak, R; Wisniewski, A; Skourski, Y; Mogilyanski, D
2012-01-01
Magnetic properties of interacting La 0.2 Ca 0.8 MnO 3 nanoparticles have been investigated. The field-induced transition from antiferromagnetic (AFM) to ferromagnetic (FM) state in the La 0.2 Ca 0.8 MnO 3 bulk has been observed at exceptionally high magnetic fields. For large particles, the field-induced transition widens while magnetization progressively decreases. In small particles the transition is almost fully suppressed. The thermoremanence and isothermoremanence curves constitute fingerprints of irreversible magnetization originating from nanoparticle shells. We have ascribed the magnetic behaviour of nanoparticles to a core-shell scenario with two main magnetic contributions; one attributed to the formation of a collective state formed by FM clusters in frustrated coordination at the surfaces of interacting AFM nanoparticles and the other associated with inner core behaviour as a two-dimensional diluted antiferromagnet. (paper)
Weyl magnons in breathing pyrochlore antiferromagnets
Li, Fei-Ye; Li, Yao-Dong; Kim, Yong Baek; Balents, Leon; Yu, Yue; Chen, Gang
2016-01-01
Frustrated quantum magnets not only provide exotic ground states and unusual magnetic structures, but also support unconventional excitations in many cases. Using a physically relevant spin model for a breathing pyrochlore lattice, we discuss the presence of topological linear band crossings of magnons in antiferromagnets. These are the analogues of Weyl fermions in electronic systems, which we dub Weyl magnons. The bulk Weyl magnon implies the presence of chiral magnon surface states forming arcs at finite energy. We argue that such antiferromagnets present a unique example, in which Weyl points can be manipulated in situ in the laboratory by applied fields. We discuss their appearance specifically in the breathing pyrochlore lattice, and give some general discussion of conditions to find Weyl magnons, and how they may be probed experimentally. Our work may inspire a re-examination of the magnetic excitations in many magnetically ordered systems. PMID:27650053
Antiferromagnetic transition in graphene functionalized with nitroaniline
Komlev, Anton A.; Makarova, Tatiana L.; Lahderanta, Erkki; Semenikhin, Petr Valeryevich; Veinger, Anatoly I.; Kochman, Igor V.; Magnani, Giacomo; Bertoni, Giovanni; Pontiroli, Daniele; Ricco, Mauro
2017-07-01
Magnetic properties of graphene nanostructures functionalized with aromatic radicals were investigated by electron spin resonance (ESR) and superconducting quantum interference device (SQUID) techniques. Three types of functionalized graphene samples were investigated (functionalization was performed by 4-bromoaniline, 4-nitroaniline, or 4-chloroaniline). According to SQUID measurements, in case of functionalization by nitroaniline, sharp change in temperature dependence of magnetic susceptibility was observed near 120 K. Such behavior was explained as antiferromagnetic ordering. The same but more extended effect was observed in ESR measurements below 160 K. In the ESR measurements, only one resonance line with g-factor equal to 2.003 was observed. Based on the temperature dependencies of spin concentration and resonance position and intensity, the effect was explained as antiferromagnetic ordering along the extended defects on the basal planes of the graphene.
Heat-driven spin torques in antiferromagnets
Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe
2018-04-01
Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.
Spin Transport in Ferromagnetic and Antiferromagnetic Textures
Akosa, Collins A.
2016-12-07
In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.
Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes
International Nuclear Information System (INIS)
Zhang, D.L.; Xu, X.G.; Wu, Y.; Li, X.Q.; Miao, J.; Jiang, Y.
2012-01-01
We study dual-synthetic antiferromagnets (DSyAFs) using Co 2 FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm 3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices. - Graphical abstract: Display Omitted Highlights: ► Co 2 FeAl can be applied in room temperature dual-synthetic antiferromagnets. ► Co 2 FeAl dual-synthetic antiferromagnets have a good thermal stability up to 400 °C. ► The Co 2 FeAl has B2-ordered structure in annealed dual-synthetic antiferromagnets.
Noncollinear antiferromagnetic Mn3Sn films
Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.
2018-05-01
Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.
Model calculation of thermal conductivity in antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.
2015-11-01
A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.
Ising model on tangled chain - 1: Free energy and entropy
International Nuclear Information System (INIS)
Mejdani, R.
1993-04-01
In this paper we have considered an Ising model defined on tangled chain, in which more bonds have been added to those of pure Ising chain. to understand their competition, particularly between ferromagnetic and antiferromagnetic bonds, we have studied, using the transfer matrix method, some simple analytical calculations and an iterative algorithm, the behaviour of the free energy and entropy, particularly in the zero-field and zero temperature limit, for different configurations of the ferromagnetic tangled chain and different types of addition interaction (ferromagnetic or antiferromagnetic). We found that the condition J=J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. Our results indicate also the existence of non-zero entropy at zero temperature. (author). 17 refs, 8 figs
Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust spin transfer torque in antiferromagnetic tunnel junctions
Saidaoui, Hamed Ben Mohamed
2017-04-18
We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.
Voltage Control of Antiferromagnetic Phases at Near-Terahertz Frequencies
Barra, Anthony; Domann, John; Kim, Ki Wook; Carman, Greg
2018-03-01
A method to control antiferromagnetism using voltage-induced strain is proposed and theoretically examined. Voltage-induced magnetoelastic anisotropy is shown to provide sufficient torque to switch an antiferromagnetic domain 90° either from out of plane to in plane or between in-plane axes. Numerical results indicate that strain-mediated antiferromagnetic switching can occur in an 80-nm nanopatterned disk at frequencies approaching 1 THz but that the switching speed heavily depends on the system's mechanical design. Furthermore, the energy cost to induce magnetic switching is only 450 aJ, indicating that magnetoelastic control of antiferromagnetism is substantially more energy efficient than other approaches.
Mussardo, G.; Giudici, G.; Viti, J.
2017-03-01
In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues n i of the occupation number operators at each site of a chain of length M. The n i ’s take value in the interval [2,q] and may be regarded as S z eigenvalues in the spin representation j = (q - 2)/2. The distinctive interaction of the model is based on the coprimality matrix \\boldsymbolΦ : for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers n i and n i+1 of neighbouring sites share a common divisor, while for the anti-ferromagnetic case it assigns a lower energy to configurations where n i and n i+1 are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into different classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit q\\to ∞ .
Anisotropic magnetoresistance in an antiferromagnetic semiconductor
Czech Academy of Sciences Publication Activity Database
Fina, I.; Martí, Xavier; Yi, D.; Liu, J.; Chu, J.-H.; Rayan-Serrao, C.; Suresha, S.; Shick, Alexander; Železný, Jakub; Jungwirth, Tomáš; Fontcuberta, J.; Ramesh, R.
2014-01-01
Roč. 5, SEP (2014), "4671-1"-"4671-7" ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G; GA ČR(CZ) GAP204/10/0330 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : antiferromagnets * semiconductors * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 11.470, year: 2014
Room-temperature antiferromagnetic memory resistor
Czech Academy of Sciences Publication Activity Database
Martí, Xavier; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, P.; Paull, R.J.; Clarkson, J.D.; Kudrnovský, Josef; Turek, Ilja; Kuneš, Jan; Yi, D.; Chu, J.-H.; Nelson, C.T.; You, L.; Arenholz, E.; Salahuddin, S.; Fontcuberta, J.; Jungwirth, Tomáš; Ramesh, R.
2014-01-01
Roč. 13, č. 4 (2014), s. 367-374 ISSN 1476-1122 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR(CZ) GAP204/11/1228 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 ; RVO:68081723 Keywords : spintronics * antiferromagnets * memories Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 36.503, year: 2014
Dirac Fermions in an Antiferromagnetic Semimetal
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.
Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.
Antiferromagnetic domains in rare earth metals and alloys
Energy Technology Data Exchange (ETDEWEB)
Palmer, S B [Hull Univ. (UK). Dept. of Applied Physics
1975-12-01
Anomalies in the c-axis elastic properties of antiferromagnetic Dy, 50% Tb-Ho and 60% Gd-Y are reported. The anomalies are only present when the sample is cycled from the ferromagnetic to the antiferromagnetic state and are attributed to domains in the helical regime.
Spin transport and spin torque in antiferromagnetic devices
Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.
2018-03-01
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.
Scattering of neutrons and critical phenomena in antiferromagnetic fermi liquid
International Nuclear Information System (INIS)
Akhiezer, I.A.; Barannik, E.A.
1980-01-01
The scattering of slow neutrons in an antiferromagnetic with collectivized magnetic electrons is considered and it is shown to significantly differ from the neutron scattering in an antiferromagnetic with localized magnetic electrons. The behaviour of scattering cross sections and fluctuation correlators near the Neel point is studied. These magnitudes are shown to increase with the critical index r=-1 [ru
Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model
International Nuclear Information System (INIS)
Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian
1988-01-01
The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs
Experimental and theoretical studies of nanoparticles of antiferromagnetic materials
DEFF Research Database (Denmark)
Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine
2007-01-01
The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles, the co...
Directory of Open Access Journals (Sweden)
Takashi Yanagisawa
2015-01-01
Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.
Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet
Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.
Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.
Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model
International Nuclear Information System (INIS)
Si-Lakhal, B.; Abada, A.
2003-11-01
Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)
Ising antiferromagnet on the Archimedean lattices
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Antiferromagnetic spinor condensates in a bichromatic superlattice
Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei
2017-04-01
A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.
Magnetostriction and magnetoelastic domains in antiferromagnets
International Nuclear Information System (INIS)
Gomonay, Helen; Loktev, Vadim M.
2002-01-01
The problem of the observable equilibrium domain structure (DS) in pure antiferromagnets is investigated with the use of continuous elasticity theory. It is shown that the difference between the bulk and surface magnetoelastic strains causes imaginary 'incompatibility elastic charges' analogous to the surface 'magnetic' charges in ferromagnets. The corresponding long-range field is shown to contribute to the 'stray' energy of the sample that governs the appearance of the DS, the contribution from the 'elastic charges' being proportional to the sample volume. Competition between the elastic 'stray' field, which favours inhomogeneous strain distribution, and an external field, which tends to make the sample homogeneous, provides a reversible reconstruction of the DS under the action of the external magnetic field. (author)
DEFF Research Database (Denmark)
García Lastra, Juan Maria; García-Fernández, P.; Calle-Vallejo, F.
2014-01-01
→ C4v → Oh local transformations occurring in the 10–50 K temperature range for the MnCl65– complex formed in KCl:Mn+ that mimic the behavior of BaTiO3. From Boltzmann analysis of the vibronic levels derived from ab initio calculations and considering decoherence introduced by random strains......, the present calculations reproduce the experimental phase sequence and transition temperatures. Furthermore, our calculations show that the off-center instability in KCl:Mn+ would be suppressed by reducing by only 1% the lattice parameter, a situation that then becomes comparable to that found for BaTiO3...
International Nuclear Information System (INIS)
Gao, P.; Zhang, X.F.; Wang, L.W.; Wang, R.Z.; Li, D.P.; Liang, Z.W.; Cai, A.F.
2016-01-01
Graphical abstract: A MnCl_2/CaCl_2–NH_3 two-stage solid sorption freezing cycle driven by the engine exhaust gas is proposed for refrigerated trucks. - Highlights: • A two-stage adsorption freezing system is designed and constructed for the refrigerated truck. • Composite adsorbents of MnCl_2 and CaCl_2 with the matrix of ENG-TSA are developed. • The average refrigerating capacity of 2.2 kW in the adsorption process is obtained. • The chilled air outlet temperature of the evaporator is controlled at about −5 °C. • The COP is 0.13 when the heating and refrigerating temperatures are 230 °C and −5 °C. - Abstract: A novel MnCl_2/CaCl_2–NH_3 two-stage solid sorption freezing cycle is designed and established for the refrigerated truck with the rated power of 80 kW. The conventional sorption/desorption process and the resorption process are combined in the two-stage cycle. Theoretical analysis shows that such a cycle could adapt to the low heat source temperature and the high cooling temperature of the sorption beds very well, which is quite essential for the truck when the running speed and the load are low in summer. The expanded natural graphite treated with sulfuric acid (ENG-TSA) is chosen as the matrix, and composite adsorbents of MnCl_2/ENG-TSA and CaCl_2/ENG-TSA are developed. The hot air heated by the electric heater is used to simulate the engine exhaust gas to drive the system. When the hot air, the ambient air and the refrigerating temperature are 230 °C, 30 °C and −5 °C, respectively, the average refrigerating capacity is 2.2 kW in the sorption process. Correspondingly, the COP and SCP are 0.13 and 91.7 W/kg, respectively. The average refrigerating capacity of 1.1 kW in one cycle is gotten, which could meet the required refrigerating capacity of the light refrigerated truck at the low engine load engine in summer.
Directory of Open Access Journals (Sweden)
Mariam Alaverdashvili
2017-05-01
Full Text Available Manganese-enhanced magnetic resonance imaging (MEMRI has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg. The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are
NMR evidence of a gapless chiral phase in the S=1 zigzag antiferromagnet CaV2O4
International Nuclear Information System (INIS)
Fukushima, Hiroyuki; Kikuchi, Hikomitsu; Chiba, Meiro; Fujii, Yutaka; Yamamoto, Yoshiyuki; Hori, Hidenobu
2002-01-01
We have performed magnetic susceptibility and 51 V NMR experiments with CaV 2 O 4 , a model substance for a frustrated S=1 spin chain with competing nearest neighbor (NN) and next-nearest neighbor (NNN) antiferromagnetic interactions. We report on the analysis of the magnetic susceptibility and the 51 V NMR experiments suggesting a gapless nature of CaV 2 O 4 . The absence of a spin gap is in clear contrast to the case of a non-frustrated spin chains which usually have a Haldane gap. (author)
Frustrated lattices of Ising chains
International Nuclear Information System (INIS)
Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A
2012-01-01
The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)
Reciprocal propagation of surface modes in an antiferromagnetic film
International Nuclear Information System (INIS)
Oliveira, F.A.; Amato, M.A.
1987-09-01
Linear response theory is used to evaluate the Green's functions describing the fluctuations in an antiferromagnetic film at zero applied field. It is shown the similarities between the dielectric and magnetic excitations. (Author) [pt
Electronic energy spectra in antiferromagnetic media with broken reciprocity
International Nuclear Information System (INIS)
Vitebsky, I.; Edelkind, J.; Bogachek, E.N.; Scherbakov, A.G.; Landman, U.
1997-01-01
Electronic energy spectra var-epsilon(q) of antiferromagnetically ordered media may display nonreciprocity; that is, the energies corresponding to Bloch states with wave numbers q and -q may be different. In this paper a simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antiferromagnetically ordered crystals as well as periodical layered structures. copyright 1997 The American Physical Society
Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers
International Nuclear Information System (INIS)
Prados, C; Pina, E; Hernando, A; Montone, A
2002-01-01
The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores
Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet
International Nuclear Information System (INIS)
Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.
2014-01-01
It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative
Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design
Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand
2018-04-01
Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.
Helical waves in easy-plane antiferromagnets
Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook
2017-12-01
Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.
Antiferromagnetism and magnetoleasticity of UNiAl
International Nuclear Information System (INIS)
Sechovsky, V.; Honda, F.; Svoboda, P.; Prokes, K.; Chernyavsky, O.; Doerr, M.; Rotter, M.; Loewenhaupt, M.
2003-01-01
We report on a thermal-expansion (TE) and magnetostriction (MS) study of the antiferromagnet UNiAl at temperatures 2-90 K and in magnetic fields up to 16.5 T applied along the c-axis. The TE along the c-axis (in 0 T) exhibits a broad valley centered around 35 K. This anomaly is nearly removed in 16.5 T. For T≤7 K a sharp metamagnetic transition (MT) observed in UNiAl at 11.4 T and it is accompanied by abrupt MS effects of +1.3x10 -4 and -1.8x10 -4 along the a- and c-axis, respectively. In fields above the MT a negligible additional negative MS is induced along c-axis whereas the a-axis and consequently the volume expand considerably, which indicates a field-induced enhancement of the U magnetic moment. T>7 K, the MT becomes gradually smeared out but a non-negligible MS is observed even for T>T N . In the light of these results the TE anomaly measured in zero field may be attributed to AF that survives at temperatures far above T N
Weyl magnons in noncoplanar stacked kagome antiferromagnets
Owerre, S. A.
2018-03-01
Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.
Antiferromagnetic Skyrmion: Stability, Creation and Manipulation
Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
2016-04-01
Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials.
Dilute antiferromagnetism in magnetically doped phosphorene
Directory of Open Access Journals (Sweden)
Andrew Allerdt
2017-11-01
Full Text Available We study the competition between Kondo physics and indirect exchange on monolayer black phos-phorous using a realistic description of the band structure in combination with the density matrixrenormalization group (DMRG method. The Hamiltonian is reduced to a one-dimensional problemvia an exact canonical transformation that makes it amenable to DMRG calculations, yielding exactresults that fully incorporate the many-body physics. We find that a perturbative description of theproblem is not appropriate and cannot account for the slow decay of the correlations and the completelack of ferromagnetism. In addition, at some particular distances, the impurities decouple formingtheir own independent Kondo states. This can be predicted from the nodes of the Lindhard function.Our results indicate a possible route toward realizing dilute anti-ferromagnetism in phosphorene. Received: 19 September 2017, Accepted: 12 October 2017; Edited by: K. Hallberg; DOI: http://dx.doi.org/10.4279/PIP.090008 Cite as: A Allerdt, A E Feiguin, Papers in Physics 9, 090008 (2017
Room-temperature antiferromagnetic memory resistor.
Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Quantum disordered phase in a doped antiferromagnet
International Nuclear Information System (INIS)
Kuebert, C.; Muramatsu, A.
1995-01-01
A quantitative description of the transition to a quantum disordered phase in a doped antiferromagnet is obtained for the long-wavelength limit of the spin-fermion model, which is given by the O(3) non-linear σ model, a free fermionic part and current-current interactions. By choosing local spin quantization axes for the fermionic spinor we show that the low-energy limit of the model is equivalent to a U(1) gauge theory, where both the bosonic and fermionic degrees of freedom are minimally coupled to a vector gauge field. Within a large-N expansion, the strength of the gauge fields is found to be determined by the gap in the spin-wave spectrum, which is dynamically generated. The explicit doping dependence of the spin-gap is determined as a function of the parameters of the original model. As a consequence of the above, the gauge-fields mediate a long-range interaction among dopant holes and S-1/2 magnetic excitations only in the quantum disordered phase. The possible bound-states in this regime correspond to charge-spin separation and pairing
Energy Technology Data Exchange (ETDEWEB)
Hutchings, M T; Ikeda, H; Milne, J M
1979-09-28
Using inelastic neutron scattering techniques, the spin wave energy dispersion in the (010) plane of the distorted perovskite KCuF/sub 3/, which exhibits many magnetic properties of the spin-1/2 one-dimensional antiferromagnet, has been investigated at 4.7 K (T/sub N/ = 39 K). The measurements confirm the very strong exchange interaction between the spins in the (001) direction, and show that in this direction the expression for the excitation energies of the spin-1/2 antiferromagnetic chain given by J des Cloizeaux and J J Pearson is obeyed. The exchange interaction between these chains is found to be only 1.6% of that within the chains.
Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators
Bègue, F.; Pujol, P.; Ramazashvili, R.
2018-01-01
We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.
Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.
Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B
2016-10-20
Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.
International Nuclear Information System (INIS)
Rogge, R.B.; Gaulin, B.D.; Harrison, A.
1992-01-01
Neutron scattering measurements have been performed on a single crystal sample of CsCo 0.83 Mg 0.17 Br 3 , a quasi-one-dimensional, Ising-like antiferromagnet. Residual three-dimensional interactions between the dilute magnetic chains precipitate a phase transition to long range order at T N ∼ 8.5 K, and short range correlations persist as high as 40 K. Relatively high energy inelastic scattering from both ''bulk'' spin wave modes and ''end'' modes is observed from the finite chains. The low energy inelastic spectrum is dominated by soliton scattering due to anti-phase domain walls propagating along the finite chains
Dynamics of Coupled Quantum Spin Chains
International Nuclear Information System (INIS)
Schulz, H.J.
1996-01-01
Static and dynamical properties of weakly coupled antiferromagnetic spin chains are treated using a mean-field approximation for the interchain coupling and exact results for the resulting effective one-dimensional problem. Results for staggered magnetization, Nacute eel temperature, and spin wave excitations are in agreement with experiments on KCuF 3 . The existence of a narrow longitudinal mode is predicted. The results are in agreement with general scaling arguments, contrary to spin wave theory. copyright 1996 The American Physical Society
Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.
2015-09-01
Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.
Role of the antiferromagnetic bulk spins in exchange bias
Energy Technology Data Exchange (ETDEWEB)
Schuller, Ivan K. [Center for Advanced Nanoscience and Physics Department, University of California San Diego, La Jolla, CA 92093 (United States); Morales, Rafael, E-mail: rafael.morales@ehu.es [Department of Chemical-Physics & BCMaterials, University of the Basque Country UPV/EHU (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Batlle, Xavier [Departament Física Fonamental and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, c/ Martí i Franqués s/n, 08028 Barcelona, Catalonia (Spain); Nowak, Ulrich [Department of Physics, University of Konstanz, 78464 Konstanz (Germany); Güntherodt, Gernot [Physics Institute (IIA), RWTH Aachen University, Campus RWTH-Melaten, 52074 Aachen (Germany)
2016-10-15
This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
Role of the antiferromagnetic bulk spins in exchange bias
International Nuclear Information System (INIS)
Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot
2016-01-01
This “Critical Focused Issue” presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice. - Highlights: • We address the role of bulk antiferromagnetic spins in the exchange bias phenomenon. • Significant experiments on how bulk AFM spins determine exchange bias are highlighted. • We explain the model that accounts for experimental results.
Antiferromagnetic phase of the gapless semiconductor V3Al
Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.
2015-03-01
Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.
Anti-ferromagnetic Heisenberg model on bilayer honeycomb
International Nuclear Information System (INIS)
Shoja, M.; Shahbazi, F.
2012-01-01
Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.
Spin waves in antiferromagnetic FeF2
DEFF Research Database (Denmark)
Hutchings, M T; Rainford, B.D.; Guggenheim, H J
1970-01-01
Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...
Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers
Manchon, Aurelien
2017-01-01
We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.
Magnetoresistive properties of non-uniform state of antiferromagnetic semiconductors
International Nuclear Information System (INIS)
Krivoruchko, V.N.
1996-01-01
The phenomenological model of magnetoresistive properties of magneto-non-single-phase state of alloyed magnetic semiconductors is considered using the concept derived for a description of magnetoresistive effects in layered and granular magnetic metals. By assuming that there exists a magneto-non-single state in the manganites having the perovskite structure, it is possible to describe, in the framework of above approach, large magnetoresistive effects of manganite phases with antiferromagnetic order and semiconductor-type conductivity as well as those with antiferromagnetic properties and metallic-type conductivity
DEFF Research Database (Denmark)
Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.
2002-01-01
We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....
Specific heat of S=1 quasi-1D antiferromagnet NDMAP in magnetic fields
International Nuclear Information System (INIS)
Tsujii, H.; Honda, Z.; Andraka, B.; Katsumata, K.; Takano, Y.
2003-01-01
NDMAP, Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ), is a quasi-one-dimensional S=1 Heisenberg antiferromagnet with Haldane-gap energies of 22 and 5.5 K for excitations polarized parallel and perpendicular to the chain c-axis, respectively. We have extended the specific-heat measurements by Honda et al. in this compound to 150 mK in temperature and 18 T in magnetic field, employing a novel relaxation calorimeter. The experiment provides an accurate determination of the exponent for the transition line for the field-assisted ordered phase. In addition, a new feature has been found in the phase diagram at around 14 T
Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip
International Nuclear Information System (INIS)
Cador, Olivier; Gatteschi, Dante; Sessoli, Roberta; Barra, Anne-Laure; Timco, Grigore A.; Winpenny, Richard E.P.
2005-01-01
The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site
Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip
Energy Technology Data Exchange (ETDEWEB)
Cador, Olivier [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Gatteschi, Dante [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Sessoli, Roberta [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy)]. E-mail: roberta.sessoli@unifi.it; Barra, Anne-Laure [Laboratoire des Champs Magnetiques Intenses-CNRS, F-38042 Grenoble Cede 9 (France); Timco, Grigore A. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Winpenny, Richard E.P. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
2005-04-15
The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site.
133Cs NMR investigation of 2D frustrated Heisenberg antiferromagnet, Cs2CuCl4
Vachon, M.-A.; Kundhikanjana, W.; Straub, A.; Mitrovic, V. F.; Reyes, A. P.; Kuhns, P.; Coldea, R.; Tylczynski, Z.
2006-10-01
We report 133Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs2CuCl4 down to 2 K and up to 15 T. We show that 133Cs NMR is a good probe of the magnetic degrees of freedom in this material. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (\\skew3\\hat{b} axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.
Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4
Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.
2016-07-01
CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.
Energy Technology Data Exchange (ETDEWEB)
Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L. (Florence Univ. (IT)); Rey, P. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (FR). Dept. de Recherche Fondamentale)
1988-12-01
The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals.
International Nuclear Information System (INIS)
Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L.; Rey, P.
1988-01-01
The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals
Field-controlled spin current in frustrated spin chains
Directory of Open Access Journals (Sweden)
A.K. Kolezhuk
2009-01-01
Full Text Available We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-S chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.
Excitations in a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Birgeneau, R. J.; Walker, L. R.; Guggenheim, H. J.
1975-01-01
Inelastic neutron scattering studies of the magnetic excitations in the planar Heisenberg random antiferromagnet Rb2Mn0.5Ni0.5F4 at 7K are reported. Two well-defined bands of excitations are observed. A simple mean crystal model is found to predict accurately the measured dispersion relations using...
Observation of Antiferromagnetic Resonance in an Organic Superconductor
DEFF Research Database (Denmark)
Torrance, J. B.; Pedersen, H. J.; Bechgaard, K.
1982-01-01
Anomalous microwave absorption has been observed in the organic superconductor TMTSF2AsF6 (TMTSF: tetramethyltetraselenafulvalene) below its metal-nonmetal transition near 12 K. This absorption is unambiguously identified as antiferromagnetic resonance by the excellent agreement between a spin...
Antiferromagnetic ground state in NpCoGe
Czech Academy of Sciences Publication Activity Database
Colineau, E.; Griveau, J.C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, Alexander; Caciuffo, R.
2014-01-01
Roč. 89, č. 11 (2014), "115135-1"-"115135-11" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : neptunium * anti-ferromagnetism * quantum critical phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
On the magnetism of Heisenberg double-layer antiferromagnets
International Nuclear Information System (INIS)
Uijen, C.M.J. van.
1980-01-01
The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)
235U NMR study of the itinerant antiferromagnet USb2
International Nuclear Information System (INIS)
Kato, Harukazu; Sakai, Hironori; Ikushima, Kenji; Kambe, Shinsaku; Tokunaga, Yo; Aoki, Dai; Haga, Yoshinori; O-bar nuki, Yoshichika; Yasuoka, Hiroshi; Walstedt, Russell E.
2005-01-01
We have succeeded in resolving a 235 U antiferromagnetic nuclear magnetic resonance (AFNMR) signal using 235 U-enriched samples of USb 2 . The uranium hyperfine field and coupling constant estimated for this compound are consistent with those from other experiments. This is the first reported observation of 235 U NMR in conducting host material
NdRhSn: A ferromagnet with an antiferromagnetic precursor
Czech Academy of Sciences Publication Activity Database
Mihalik, M.; Prokleška, J.; Kamarád, Jiří; Prokeš, K.; Isnard, O.; McIntyre, G. J.; Dönni, A.; Yoshii, S.; Kitazawa, H.; Sechovský, V.; de Boer, F.R.
2011-01-01
Roč. 83, č. 10 (2011), "104403-1"-"104403-10" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : NdRhSn * ferromagnet * antiferromagnetic precursor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011
Ferro- and antiferro-magnetism in (Np, Pu)BC
Czech Academy of Sciences Publication Activity Database
Klimczuk, T.; Shick, Alexander; Kozub, Agnieszka L.; Griveau, J.C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.
2015-01-01
Roč. 3, č. 4 (2015), "041803-1"-"041803-9" ISSN 2166-532X R&D Projects: GA ČR GA15-07172S Institutional support: RVO:68378271 Keywords : ferromagetism * antiferromagnetism * magnetic anisotropy * strong electron correlations * spin-orbit coupling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.323, year: 2015
Kagesawa, Koichi; Nishimura, Yuki; Yoshida, Hiroki; Breedlove, Brian K; Yamashita, Masahiro; Miyasaka, Hitoshi
2017-03-07
Two-dimensional layered compounds with different counteranions, [{Mn(salen)} 4 C6](BF 4 ) 2 ·2(CH 3 OH) (1) and [{Mn(salen)} 4 C6](PF 6 ) 2 ·2(CH 3 OH) (2) (salen 2- = N,N'-bis(salicylideneiminato), C6 2- = C 6 H 12 (COO) 2 2- ), were synthesized by assembling [Mn(salen)(H 2 O)]X (X - = BF 4 - and PF 6 - ) and C 6 H 12 (CO 2 - ) 2 (C6 2- ) in a methanol/2-propanol medium. The compounds have similar structures, which are composed of Mn(salen) out-of-plane dimers bridged by μ 4 -type C6 2- ions, forming a brick-wall-type network of [-{Mn 2 }-OCO-] chains alternately connected via C 6 H 12 linkers of C6 2- moieties. The counteranions for 1 and 2, i.e., BF 4 - and PF 6 - , respectively, are located between layers. Since the size of BF 4 - is smaller than that of PF 6 - , intra-layer inter-chain and inter-plane nearest-neighbor MnMn distances are shorter in 1 than in 2. The zigzag chain moiety of [-{Mn 2 }-OCO-] leads to a canted S = 2 spin arrangement with ferromagnetic coupling in the Mn III out-of-plane dimer moiety and antiferromagnetic coupling through -OCO- bridges. Due to strong uniaxial anisotropy of the Mn III ion, the [-{Mn 2 }-OCO-] chains could behave as a single-chain magnet (SCM), which exhibits slow relaxation of magnetization at low temperatures. Nevertheless, these compounds fall into an antiferromagnetic ground state at higher temperatures of T N = 4.6 and 3.8 K for 1 and 2, respectively, than active temperatures for SCM behavior. The spin flip field at 1.8 K is 2.7 and 1.8 kOe for 1 and 2, respectively, which is attributed to the inter-chain interactions tuned by the size of the counteranions. The relaxation times of magnetization become longer at the boundary between the antiferromagnetic phase and the paramagnetic phase.
Quantum criticality among entangled spin chains
Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.
2018-03-01
An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.
Quasi-1D s=1/2 antiferromagnet Cs2CuCl4 in a magnetic field
DEFF Research Database (Denmark)
Coldea, R.; Tennant, D.A.; Cowley, R.A.
1997-01-01
than the field (similar or equal to 8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S = 1/2 HAF, and Talstra and Haldane......Magnetic excitations of the quasi-1D S = 1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have beer measured as a function of magnetic field using neutron scattering. For T Fields greater than B-c = 1.66 T, but less...... for the related l/r(2) chain (the Haldane-Shastry model). This behavior is inconsistent with linear spin-wave theory....
Antiferromagnetic exchange coupling measurements on single Co clusters
Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.
2009-03-01
We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)
Soft modes in the easy plane pyrochlore antiferromagnet
International Nuclear Information System (INIS)
Champion, J D M; Holdsworth, P C W
2004-01-01
Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts
Antiferromagnetic ordering of Er2NiSi3 compound
International Nuclear Information System (INIS)
Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.
2014-01-01
Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)
Energy Technology Data Exchange (ETDEWEB)
Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)
1997-09-01
The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.
Spintronic materials and devices based on antiferromagnetic metals
Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.
2017-01-01
In this paper, we review our recent experimental developments on antiferromagnet (AFM) spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring i...
Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications
Vemulkar, T; Mansell, Rhodri; Petit, Dorothee Celine; Cowburn, Russell Paul; Lesniak, MS
2015-01-01
Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer...
International Nuclear Information System (INIS)
Loeffler, J.; Wagner, W.; Svygenhoven, H. van; Meier, J.; Doudin, B.; Ansermet, J.P.
1997-01-01
The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs
Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films
Energy Technology Data Exchange (ETDEWEB)
Kim, Ki Yeon; Lee, Jeong Soo
2008-02-15
This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.
Fractional excitations in the square-lattice quantum antiferromagnet
DEFF Research Database (Denmark)
Piazza, B. Dalla; Mourigal, M.; Christensen, Niels Bech
2015-01-01
-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wavevector, these fractional excitations are bound and form conventional magnons. Our results establish...... the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration....
Long range anti-ferromagnetic spin model for prebiotic evolution
International Nuclear Information System (INIS)
Nokura, Kazuo
2003-01-01
I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states
Superconductivity and antiferromagnetism in heavy-electron systems
International Nuclear Information System (INIS)
Konno, R.; Ueda, K.
1989-01-01
Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed
Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn
Czech Academy of Sciences Publication Activity Database
Galceran, R.; Fina, I.; Cisneros-Fernandez, J.; Bozzo, B.; Frontera, C.; Lopez-Mir, L.; Deniz, H.; Park, K.W.; Park, B.G.; Balcells, J.; Martí, Xavier; Jungwirth, Tomáš; Martínez, B.
2016-01-01
Roč. 6, Oct (2016), 1-6, č. článku 35471. ISSN 2045-2322 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.259, year: 2016
Antiferromagnetism in reduced YBa2Cu3O6+x
International Nuclear Information System (INIS)
Casalta, H.; Schleger, P.; Montfrooij, W.; Andersen, N.H.; Lebech, B.; Liang Ruixing; Hardy, W.N.
1995-01-01
Magnetic ordering was investigated by neutron scattering in an YBa 2 Cu 3 O 6+x single crystal. We observed antiferromagnetic ordering (AFI) (T N =410 K for x=0.1 and T N =368 K for x=0.18), but found no evidence for a reordering down to 2 K (AFII). The magnetic structure factors are presented to emphasize the anisotropic character of the form factor. ((orig.))
Interface states in stressed semiconductor heterojunction with antiferromagnetic ordering
International Nuclear Information System (INIS)
Kantser, V.G.
1995-08-01
The stressed heterojunctions with antiferromagnetic ordering in which the constituents have opposite band edge symmetry and their gaps have opposite signs have been investigated. The interface states have been shown to appear in these heterojunctions and they are spin-split. As a result if the Fermi level gets into one of the interface bands then it leads to magnetic ordering in the interface plane. That is if the interface magnetization effect can be observed. (author). 14 refs, 2 figs
Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets
Shimahara, Hiroshi
2018-04-01
We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.
Magnetic Transport in Spin Antiferromagnets for Spintronics Applications
Directory of Open Access Journals (Sweden)
Mohamed Azzouz
2017-10-01
Full Text Available Had magnetic monopoles been ubiquitous as electrons are, we would probably have had a different form of matter, and power plants based on currents of these magnetic charges would have been a familiar scene of modern technology. Magnetic dipoles do exist, however, and in principle one could wonder if we can use them to generate magnetic currents. In the present work, we address the issue of generating magnetic currents and magnetic thermal currents in electrically-insulating low-dimensional Heisenberg antiferromagnets by invoking the (broken electricity-magnetism duality symmetry. The ground state of these materials is a spin-liquid state that can be described well via the Jordan–Wigner fermions, which permit an easy definition of the magnetic particle and thermal currents. The magnetic and magnetic thermal conductivities are calculated in the present work using the bond–mean field theory. The spin-liquid states in these antiferromagnets are either gapless or gapped liquids of spinless fermions whose flow defines a current just as the one defined for electrons in a Fermi liquid. The driving force for the magnetic current is a magnetic field with a gradient along the magnetic conductor. We predict the generation of a magneto-motive force and realization of magnetic circuits using low-dimensional Heisenberg antiferromagnets. The present work is also about claiming that what the experiments in spintronics attempt to do is trying to treat the magnetic degrees of freedoms on the same footing as the electronic ones.
Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points
Energy Technology Data Exchange (ETDEWEB)
Fischer, I.A.
2006-07-01
This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We
International Nuclear Information System (INIS)
Yoshida, Makoto; Ohta, Hitoshi; Ito, Toshimitsu; Ajiro, Yoshitami
2006-01-01
We have performed high field and multi-frequency ESR measurements of finite length S=1 antiferromagnetic chains in Y 2 BaNi 0.96 Mg 0.04 O 5 . Owing to the high spectral resolution by high fields and high frequencies, observed ESR signals can be separated into the contributions of the finite chains with various chain lengths. Our results clearly show that the edge spins actually interact with each other through the quantum spin chain and the interaction depends on the chain length N. (author)
Magnetocaloric effect in quantum spin-s chains
Directory of Open Access Journals (Sweden)
A. Honecker
2009-01-01
Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.
Wong, Chun Wa; Yasui, Kosuke
2005-01-01
The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...
The spatially anisotropic triangular lattice antiferromagnet: Popov-Fedotov method
International Nuclear Information System (INIS)
Nga, Pham Thi Thanh; Trang, Phan Thu; Thang, Nguyen Toan
2017-01-01
We present an analysis of the antiferromagnetic Heisenberg model on an triangular lattice with spatially anisotropic J 1 - J 2 exchange interactions. We apply the Popov-Fedotov method based on introducing an imaginary valued chemical potential to enforce the auxiliary fermion constraint exactly. The staggered magnetization, magnon spectra, free energy are computed in one loop approximation and compared using two different constraints: exact and on average. In the limit of zero temperature the results are identical, whereas at higher temperature significant differences are found. The comparisons with the results obtained by other methods are discussed. (paper)
Antiferromagnetism in EuPdGe{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Albedah, Mohammed A. [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Al-Qadi, Khalid [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha (Qatar); Stadnik, Zbigniew M., E-mail: stadnik@uottawa.ca [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Przewoźnik, Janusz [Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków (Poland)
2014-11-15
Highlights: • We show that EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type structure with the lattice constants a = 4.4457(1) Å and c = 10.1703(2). • We demonstrate that EuPdGe{sub 3} is an antiferromagnet with the Néel temperature T{sub N} = 12.16(1) K. • The temperature dependence of the hyperfine magnetic field follows a S = 7/2 Brillouin function. • We find that the Debye temperature of the studied compound is 199(2) K. - Abstract: The results of X-ray diffraction, magnetic susceptibility and magnetization, and {sup 151}Eu Mössbauer spectroscopy measurements of polycrystalline EuPdGe{sub 3} are reported. EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type tetragonal structure (space group I4mm) with the lattice constants a=4.4457(1)Å and c=10.1703(2)Å. The results are consistent with EuPdGe{sub 3} being an antiferromagnet with the Néel temperature T{sub N}=12.16(1)K and with the Eu spins S=7/2 in the ab plane. The temperature dependence of the magnetic susceptibility above T{sub N} follows the modified Curie-Weiss law with the effective magnetic moment of 7.82(1) μ{sub B} per Eu atom and the paramagnetic Curie temperature of -5.3(1)K indicative of dominant antiferromagnetic interactions. The M(H) isotherms for temperatures approaching T{sub N} from above are indicative of dynamical short-range antiferromagnetic ordering in the sample. The temperature dependence of the hyperfine magnetic field follows a S=7/2 Brillouin function. The principal component of the electric field gradient tensor is shown to increase with decreasing temperature and is well described by a T{sup 3/2} power-law relation. The Debye temperature of EuPdGe{sub 3} determined from the Mössbauer data is 199(2) K.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices
Energy Technology Data Exchange (ETDEWEB)
Takamura, Y.; Biegalski, M.B.; Christen, H.M.
2009-10-22
Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.
Quantum phase transitions of a disordered antiferromagnetic topological insulator
Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.
2014-01-01
We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.
Microscopic theory of coexistence of superconductivity and antiferromagnetism
International Nuclear Information System (INIS)
Ashkenazi, J.; Kuper, C.G.; Ron, A.
1983-01-01
A theory of the coexistence of superconductivity and antiferromagnetism is presented. We study the role of the ''diagonal'' exchange coupling between magnetic ions and conduction electrons, using Eliashberg's formalism. This coupling generates a spatial displacement of the Cooper-paired states, and thus reduces the pairing strength. The reduction is linear in the exchange integral and the staggered magnetization. The theory agrees well with experiment for Dy/sub 1.2/Mo 6 S 8 and Tb/sub 1.2/Mo 6 S 8
Analytical results for a hole in an antiferromagnet
International Nuclear Information System (INIS)
Li, Y.M.; d'Ambrumenil, N.; Su, Z.B.
1996-04-01
The Green's function for a hole moving in an antiferromagnet is derived analytically in the long-wavelength limit. We find that the infrared divergence is eliminated in two and higher dimensions so that the quasiparticle weight is finite. Our results also suggest that the hole motion is polaronic in nature with a bandwidth proportional to t 2 /J exp[-c(t/J) 2 ] (c is a constant) for J/t >or approx 0.5. The connection of the long-wavelength approximation to the first-order approximation in the cumulant expansion is also clarified. (author). 23 refs, 2 figs
Collective impurity effects in the Heisenberg triangular antiferromagnet
International Nuclear Information System (INIS)
Maryasin, V S; Zhitomirsky, M E
2015-01-01
We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity behavior are predicted. The first one is related to presence of uncompensated magnetic moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic susceptibility. These moments exhibit an anomalous growth with the impurity concentration, which we attribute to the clustering mechanism. In an external magnetic field, impurities lead to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of the conical state. We analytically demonstrate that vacancies spontaneously generate a positive biquadratic exchange, which is responsible for the above degeneracy lifting
Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.
2017-07-01
BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.
Quantum discord and quantum phase transition in spin chains
Dillenschneider, Raoul
2008-01-01
Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The observations are in agreement with the information provided by the concurrence which measures the entanglement of the many-body system.
Antiferromagnetism and d-wave superconductivity in the Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Krahl, H.C.
2007-07-25
The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)
Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}
Directory of Open Access Journals (Sweden)
C. Wang
2014-11-01
Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.
Stability of the antiferromagnetic state in the electron doped iridates
Bhowal, Sayantika; Moradi Kurdestany, Jamshid; Satpathy, Sashi
2018-06-01
Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin–orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2‑x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.
Small-scale phase separation in doped anisotropic antiferromagnets
International Nuclear Information System (INIS)
Kagan, M Yu; Kugel, K I; Rakhmanov, A L; Pazhitnykh, K S
2006-01-01
We analyse the possibility of nanoscale phase separation manifesting itself in the formation of ferromagnetic (FM) polarons (FM droplets) in the general situation of doped anisotropic three- and two-dimensional antiferromagnets. In these cases, we calculate the shape of the most energetically favourable droplets. We show that the binding energy and the volume of a FM droplet in the three-dimensional (3D) case depend upon only two universal parameters J-bar=(J x +J y +J z )S 2 and t eff (t x t y t z ) 1/3 , where J-bar and t eff are effective antiferromagnetic (AFM) exchange and hopping integrals, respectively. In the two-dimensional (2D) case these parameters have the form J-bar=(J x +J y )S 2 and t eff (t x t y ) 1/2 . The most favourable shape of a ferromagnetic droplet corresponds to an ellipse in the 2D case and to an ellipsoid in the 3D case
Electrical control of antiferromagnetic metal up to 15 nm
Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng
2016-08-01
Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.
Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium
Directory of Open Access Journals (Sweden)
Iuliia Liubimova
2017-06-01
Full Text Available Magnetic and thermal hysteresis (difference in magnetic properties on cooling and heating have been studied in polycrystalline Dy (dysprosium between 80 and 250 K using measurements of the reversible Villari effect and alternating current (AC susceptibility. We argue that measurement of the reversible Villari effect in the antiferromagnetic phase is a more sensitive method to detect magnetic hysteresis than the registration of conventional B(H loops. We found that the Villari point, recently reported in the antiferromagnetic phase of Dy at 166 K, controls the essential features of magnetic hysteresis and AC susceptibility on heating from the ferromagnetic state: (i thermal hysteresis in AC susceptibility and in the reversible Villari effect disappears abruptly at the temperature of the Villari point; (ii the imaginary part of AC susceptibility is strongly frequency dependent, but only up to the temperature of the Villari point; (iii the imaginary part of the susceptibility drops sharply also at the Villari point. We attribute these effects observed at the Villari point to the disappearance of the residual ferromagnetic phase. The strong influence of the Villari point on several magnetic properties allows this temperature to be ranked almost as important as the Curie and Néel temperatures in Dy and likely also for other rare earth elements and their alloys.
The Heisenberg antiferromagnet on the square-kagomé lattice
Directory of Open Access Journals (Sweden)
J. Richter
2009-01-01
Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.
Effects of interfacial frustration in ferromagnet/antiferromagnet bilayers
Urazhdin, Sergei; Ma, Tianyu
While the ferromagnet (F)/antiferromagnet (AF) bilayers have been extensively studied in the context of exchange bias, and more recently in the context of antiferromagnetic spintronics, the fundamental understanding of the nature of the magnetic state in this system is still a subject a debate. We will present measurements of magnetization aging in several F/AF systems based on AF=FeMn, CoO, and NiO, universally observed in all of these systems when AF layers are sufficiently thin. Quite generally, the aging curves are well-described by the power law with a small exponent. We show that the aging characteristics such as the dependence on temperature and the magnetic history are inconsistent with the Arrhenius activation, disproving the granular models of exchange bias. Furthermore, we show that the aging characteristics qualitatively change across the exchange bias blocking temperature, demonstrating that the latter is similar to the glass transition temperature, and is not simply of a characteristic activation temperature of the AF domains. We discuss the our findings in the context of frustration due to the random effective exchange field at the F/AF interface. supported by NSF DMR.
The effect of spin dilution on magnetism of the linear chain system β ...
Indian Academy of Sciences (India)
one-dimensional alternating exchange Heisenberg antiferromagnetism (HAF) is observed ... is seen in the magnetic chains for all Zn concentrations (x ≤ 0.3). ... ion (3d8) while a lot of attention has been focussed on compounds of copper and ... but they attributed the gap to arise from the dimerization of the Cu ions. Pom-.
Multiparticle states in the S = 1 chain system CsNiCl_{3}
DEFF Research Database (Denmark)
Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.
2001-01-01
A continuum of magnetic states has been observed by neutron scattering from the spin-1 chain compound CsNiCl3 in its disordered gapped one-dimensional phase. Results using both triple-axis and time-of-flight spectrometers show that around the antiferromagnetic point Q(c) = pi, the continuum lies...
Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He
International Nuclear Information System (INIS)
Roger, M.; Delrieu, J.M.
1981-08-01
The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff
Mn2Au: Body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitataxy
Czech Academy of Sciences Publication Activity Database
Wu, H.C.; Liao, Z.M.; Sofin, R.G.S.; Feng, G.; Ma, X.M.; Shick, Alexander; Mryasov, O. N.; Shvets, I.V.
2012-01-01
Roč. 24, č. 47 (2012), s. 6374-6379 ISSN 0935-9648 Institutional research plan: CEZ:AV0Z10100520 Keywords : antiferromagnets * antiferromagnetic spintronics * exchange bias * molecular beam epitaxy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 14.829, year: 2012
Long range order in the ground state of two-dimensional antiferromagnets
International Nuclear Information System (INIS)
Neves, E.J.; Perez, J.F.
1985-01-01
The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt
Solitary Magnons in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Green, M A; Demmel, F; Ewings, R A; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Rodriguez-Rivera, J A; Cheong, S-W
2016-07-01
CaFe_{2}O_{4} is a S=5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c-axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ∼1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ∼1-2 c-axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A+B orders as well as localization of spin excitations in a classical magnet.
Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes
Saidaoui, Hamed Ben Mohamed
2014-05-28
Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.
Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes
Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier
2014-01-01
Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.
Disorder effects in the S=1 antiferromagnetic spin ladder CaV{sub 2}O{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Guitarra, S.R. [Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Quito (Ecuador); Caneiro, A. [Instituto Balseiro - Centro Atómico Bariloche, 8400 Bariloche (Argentina); Niebieskikwiat, D., E-mail: dniebieskikwiat@usfq.edu.ec [Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Quito (Ecuador)
2015-10-15
We study the physical properties of the antiferromagnetic spin ladder CaV{sub 2}O{sub 4} (CVO) and the Y-doped related compound Ca{sub 0.9}Y{sub 0.1}V{sub 2}O{sub 4}. In the latter, X-ray diffraction demonstrates the segregation of a small amount of a vanadium–perovskite impurity phase, leading to the formation of V vacancies within the main CVO-type structure. The 1D character of this calcium–vanadite enhances the influence of the vacancies on the electric and magnetic properties of Ca{sub 0.9}Y{sub 0.1}V{sub 2}O{sub 4}. Electrical transport is characterized by a variable-range hopping mechanism determined by the charging energy of nm-sized segments of V chains delimited by V vacancies, i.e. a Coulomb gap is formed at the Fermi level. These vacancies also locally affect the magnetic correlations, breaking the long-range AFM order observed in CaV{sub 2}O{sub 4} and producing exchange bias when the Y-doped sample is cooled with an applied magnetic field. - Highlights: • We study disorder effects in the quasi-1D antiferromagnetic spin ladder CaV{sub 2}O{sub 4}. • V vacancies in CaV{sub 2}O{sub 4} lead to variable-range hopping electrical transport. • The charging energy of nm-sized V chains determine the transport mechanism exponents. • V vacancies break the long-range AFM order of CaV{sub 2}O{sub 4}. • Local magnetic correlations in the vicinity of the defects produce exchange bias.
Charge dynamics of the antiferromagnetically ordered Mott insulator
International Nuclear Information System (INIS)
Han, Xing-Jie; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xiang, Tao; Liu, Yu; Liu, Zhi-Yuan; Xie, Zhi-Yuan; Normand, B
2016-01-01
We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon–doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon–doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott–Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of
Charge dynamics of the antiferromagnetically ordered Mott insulator
Han, Xing-Jie; Liu, Yu; Liu, Zhi-Yuan; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xie, Zhi-Yuan; Normand, B.; Xiang, Tao
2016-10-01
We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon-doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon-doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott-Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of the
Sequential structural and antiferromagnetic transitions in BaFe2Se3 under pressure
Zhang, Yang; Lin, Ling-Fang; Zhang, Jun-Jie; Dagotto, Elbio; Dong, Shuai
2018-01-01
The discovery of superconductivity in the two-leg ladder compound BaFe2S3 has established the 123-type iron chalcogenides as a novel and interesting subgroup of the iron-based superconductor family. However, in this 123 series, BaFe2Se3 is an exceptional member, with a magnetic order and crystalline structure different from all others. Recently, an exciting experiment reported the emergence of superconductivity in BaFe2Se3 at high pressure [J. Ying et al., Phys. Rev. B 95, 241109(R) (2017), 10.1103/PhysRevB.95.241109]. In this paper, we report a first-principles study of BaFe2Se3 . Our analysis unveils a variety of qualitative differences between BaFe2S3 and BaFe2Se3 , including in the latter an unexpected chain of transitions with increasing pressure. First, by gradually reducing the tilting angle of iron ladders, the crystalline structure smoothly transforms from P n m a to C m c m at ˜6 GPa. Second, the system becomes metallic at 10.4 GPa. Third, its unique ambient-pressure Block antiferromagnetic ground state is replaced by the more common stripe (so-called CX-type) antiferromagnetic order at ˜12 GPa, the same magnetic state as the 123-S ladder. This transition is found at a pressure very similar to the experimental superconducting transition. Finally, all magnetic moments vanish at 30 GPa. This reported theoretical diagram of the complete phase evolution is important because of the technical challenges to capture many physical properties in high-pressure experiments. The information obtained in our calculations suggests different characteristics for superconductivity in BaFe2Se3 and BaFe2S3 : in 123-S pairing occurs when magnetic moments vanish, while in 123-Se the transition region from Block- to CX-type magnetism appears to catalyze superconductivity. Finally, an additional superconducting dome above ˜30 GPa is expected to occur.
International Nuclear Information System (INIS)
Fan, J.D.; Malozovsky, Y.M.
2013-01-01
Highlights: • In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity. • The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity. • For pnictides the antiferromagnetism exists as a result of the nesting condition. • Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. -- Abstract: We consider the Hubbard model in terms of the perturbative diagrammatic approach (UN F ⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U>0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UN F ≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UN F < 1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one
Antiferromagnetic order in the Hubbard model on the Penrose lattice
Koga, Akihisa; Tsunetsugu, Hirokazu
2017-12-01
We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.
NMR relaxation rate in quasi one-dimensional antiferromagnets
Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.
We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.
Magnetocaloric properties of a frustrated Blume-Capel antiferromagnet
Directory of Open Access Journals (Sweden)
Žukovič Milan
2014-07-01
Full Text Available Low-temperature magnetization processes and magnetocaloric properties of a geometrically frustrated spin-1 Blume-Capel model on a triangular lattice are studied by Monte Carlo simulations. The model is found to display qualitatively different behavior depending on the sign of the single-ion anisotropy D. For positive values of D we observe two magnetization plateaus, similar to the spin-1/2 Ising antiferromagnet, and negative isothermal entropy changes for any field intensity. For a range of small negative values of D there are four magnetization plateaus and the entropy changes can be either negative or positive, depending on the field. If D is negative but large in absolute value then the entropy changes are solely positive.
Antiferromagnetic ordering in GdRhIn{sub 5}
Energy Technology Data Exchange (ETDEWEB)
Latka, K.; Rams, M. [Marian Smoluchowski Inst. of Physics, Jagiellonian Univ., Krakow (Poland); Kmiec, R.; Pacyna, A.W. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Zaremba, V.I. [Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv, Lviv (Ukraine); Inst. fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Univ. Muenster (Germany); Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Univ. Muenster (Germany)
2004-09-01
A polycrystalline sample of tetragonal GdRhIn{sub 5} (HoCoGa{sub 5} type, space group P4/mmm) was obtained by induction melting of the elements in a glassy carbon crucible in a water-cooled sample chamber and subsequent annealing at 670 K. X-ray powder data yielded the cell parameters a = 460.65(7), c = 743.52(12) pm. The magnetic and electronic properties of GdRhIn{sub 5} have been studied by magnetic susceptibility, electrical resistivity, and {sup 155}Gd Moessbauer spectroscopic measurements. Antiferromagnetic ordering is detected at 41.0(2) K. The results are discussed using a simple molecular field approximation. (orig.)
Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion
International Nuclear Information System (INIS)
Tomasello, R; Puliafito, V; Martinez, E; Manchon, A; Ricci, M; Carpentieri, M; Finocchio, G
2017-01-01
A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s −1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions. (paper)
Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion
Tomasello, R
2017-06-20
A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s−1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.
Equivalence of the O( n) vector ferromagnetic and antiferromagnetic models
Sousa, J. Ricardo de
The effective-field renormalization group (EFRG) approach is used to find the Néel temperature ( TN) of the O( n) vector model with antiferromagnetic (AF) interaction. The EFRG method is illustrated by employing approximations in which clusters with one ( N‧=1) and two ( N=2) spins are used. The critical temperature TN is obtained as a function of component ( n) and coordination ( z) numbers. For all values of n and z we show that TN= Tc, where Tc is the Curie temperature for the ferromagnetic (F) case. As a comparison, the results of the quantum Heisenberg model ( n=3) with F and AF interactions are also presented, and we find that TN> Tc, which is different from the classical result Tc= TN.
Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior
International Nuclear Information System (INIS)
Buyers, W.J.L.; Holden, T.M.; Svensson, E.C.; Lander, G.H.
1977-11-01
Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the [001] domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along the spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons
Magnetization reversal in weak ferrimagnets and canted antiferromagnets
International Nuclear Information System (INIS)
Kageyama, H.; Khomskii, D.I.; Levitin, R.Z.; Markina, M.M.; Okuyama, T.; Uchimoto, T.; Vasil'ev, A.N.
2003-01-01
In some ferrimagnets the total magnetization vanishes at a certain compensation temperature T*. In weak magnetic fields, the magnetization can change sign at T* (the magnetization reversal). Much rarer is observation of ferrimagnetic-like response in canted antiferromagnets, where the weak ferromagnetic moment is due to the tilting of the sublattice magnetizations. The latter phenomenon was observed in nickel (II) formate dihydrate Ni(HCOO) 2 ·2H 2 O. The observed weak magnetic moment increases initially below T N =15.5 K, equals zero at T*=8.5 K and increases again at lowering temperature. The sign of the low-field magnetization at any given temperature is determined by the sample's magnetic prehistory and the signs are opposite to each other at T N
International Nuclear Information System (INIS)
Zhang, Guo-Feng
2007-01-01
Thermal entanglement of a two-qubit Heisenberg chain in the presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as the quantum channel are investigated. It is found that the DM interaction can excite entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of the input; its dependences on the temperature, DM interaction, and spin coupling constant are given in detail. Entanglement teleportation will be better realized via an antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of the DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of whether the spin chains are antiferromagnetic or ferromagnetic
Energy Technology Data Exchange (ETDEWEB)
Gong, W. J.; Liu, W., E-mail: wliu@imr.ac.cn; Feng, J. N.; Zhang, Z. D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Kim, D. S.; Choi, C. J. [Functional Materials Division, Korea Institute of Materials Science, 531 Changwon- daero, Changwon 631-831 (Korea, Republic of)
2014-04-07
The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.
A neutron scattering study on the antiferromagnet in an exchange biased systems
Energy Technology Data Exchange (ETDEWEB)
Solina, Danica; Lott, Dieter; Fenske, Jochen; Schreyer, Andreas [Institute of Materials Research, GKSS Research Centre, Geesthacht (Germany); Schmidt, Wolfgang [Institut-Laue-Langevin, Grenoble (France); Wu, Yu-Chang; Lai, Chih-Huang [Department of Materials Science and Engineering, National Tsing Hua University, HsinChu (China)
2008-07-01
The magnetic structure of single crystal antiferromagnetic PtMn that biases CoFe has been studied using neutron scattering. Polarized neutron reflection (PNR) was used to determine the switching behaviour of the ferromagnetic layer and polarized neutron diffraction (PND) to probe the magnetic configuration of the anti-ferromagnetic layer. PNR suggests a combination of rotation and domain formation. Changes were observed in the PND patterns taken at points around the hysteresis loop. The diffraction data has been simulated with a 'twisting' of part of the anti-ferromagnetic layer as the ferromagnetic layer changes.
Single-site approximation for the s-f model of antiferromagnetic semiconductors
International Nuclear Information System (INIS)
Takahashi, Masao; Nolting, Wolfgang
2001-01-01
For the s-f model of an antiferromagnetic semiconductor, the effect of the antiferromagnetic ordering of the localized spins on the conduction-electron state is investigated over a wide range of exchange strengths by combining the effective-medium approach with the Green's function in the 2x2 sublattice Bloch function representation. The band splitting due to the reduced magnetic Brillouin zone occurs below the Neel temperature. There is a marked effect of the thermal fluctuation of the antiferromagnetically ordered localized spins on the conduction electron at the energies near the top (bottom) of the lower- (higher-) energy subband
Energy Technology Data Exchange (ETDEWEB)
Abdelbaky, Mohammed S.M. [Departments of Physical and Analytical Chemistry and Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo (Spain); Amghouz, Zakariae [Scientific and Technical Services, University of Oviedo-CINN, 33006 Oviedo (Spain); Department of Materials Science and Metallurgical Engineering, University of Oviedo, Campus Universitario, 33203 Gijón (Spain); Blanco, David Martínez [Scientific and Technical Services, University of Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago; García, José R. [Departments of Physical and Analytical Chemistry and Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo (Spain)
2017-04-15
Novel metal phosphonate [CuLi(PPA)] [H{sub 3}PPA=3-phosphonopropionic acid] was synthesized hydrothermally and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. It crystallizes in the space group C2/c, with cell parameters a=21.617(2) Å, b=4.9269(2) Å, c=14.342(1) Å, β=132.3(2)°, and Z=8. Its framework is built up from a main trimer, acting as a secondary building unit (SBU), which is formed by vertex-shared between two (LiO{sub 4}) and one (Cu(1)O{sub 4}) polyhedra. These units repeat along b-axis forming infinite inorganic chains, these chains are in turn cross-linked by corner sharing with (Cu(2)O{sub 4}) polyhedra to produce inorganic layers lying in the bc-plane. The neighboring layers are connected through the PPA ligand, leading to a 3D pillared-layered structure. The topological analysis reveals that the compound exhibits 3,4,10-c net. Finally, magnetic susceptibility measurement of this compound over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic intrachain interactions. - Graphical abstract: Hydrothermal synthesis and structural characterization of a novel lithium-copper phosphonate, formulated as [CuLi(PPA)] (H{sub 3}PPA=3-phosphonopropionic acid), have been reported. This compound has a 3D pillared-layered structure with 3,4,10-c net topology. The magnetic susceptibility data over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic interactions. - Highlights: • Novel metal phosphonate, [CuLi(PPA)] (1), has been synthesized and characterized. • Compound 1 has a 3D pillared-layered structure with 3,4,10-c net topology. • Magnetic susceptibility data reveals the occurrence of weak antiferromagnetic interactions.
Ising model on tangled chain - 2: Magnetization and susceptibility
International Nuclear Information System (INIS)
Mejdani, R.
1993-05-01
In the preceding paper we have considered an Ising model defined on tangled chain to study the behaviour of the free energy and entropy, particularly in the zero-field and zero-temperature limit. In this paper, following the main line and basing on some results of the previous work, we shall study in the ''language'' of state configurations the behaviour of the magnetization and the susceptibility for different conditions of the model, to understand better the competition between the ferromagnetic bonds along the chain and the antiferromagnetic additional bonds across the chain. Particularly interesting is the behaviour of the susceptibility in the zero-field and zero-temperature limit. Exact solutions for the magnetization and susceptibility, generated by analytical calculations and iterative algorithms, are described. The additional bonds, introduced as a form of perfectly disorder, indicate a particular effect on the spin correlation. We found that the condition J=-J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. (author). 16 refs, 14 figs
Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons
International Nuclear Information System (INIS)
Gauyacq, J-P; Lorente, N
2014-01-01
Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)
Magnetostructural correlations in the antiferromagnetic Co2-x Cux(OH)AsO4 (x=0 and 0.3) phases
International Nuclear Information System (INIS)
Pedro, I. de; Rojo, J.M.; Pizarro, J.L.; Rodriguez Fernandez, J.; Arriortua, M.I.; Rojo, T.
2011-01-01
The Co 2-x Cu x (OH)AsO 4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) A, b=8.559(2) A, c=6.039(1) A and a=8.316(1) A, b=8.523(2) A, c=6.047(1) A for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O 5 -trigonal bipyramid dimers and M(2)O 6 -octahedral chains (M=Co and Cu) are present. Co 2 (OH)AsO 4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co 2+ is partially substituted by Cu 2+ ions, Co 1.7 Cu 0.3 (OH)AsO 4 , the ferromagnetic component observed in Co 2 (OH)AsO 4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx 2 -y 2 orbital and the absence of overlap between neighbour ions. - Graphical abstract: Schematic drawing of the Co 2-x Cu x (OH)AsO 4 (x=0 and 0.3) crystal structure view along the |0 1 0| direction. Polyhedra are occupied by the M(II) ions (M=Co and Cu) and the AsO 4 groups are represented by tetrahedra. Open circles correspond to the oxygen atoms, and small circles show the hydrogen atoms. Highlights: → Synthesis of a new adamite-type compound, Co 1.7 Cu 0.3 (OH)AsO 4 . → Single crystal structure, spectroscopic characterization and magnetic properties. → Unusual dependence on the magnetic field for
International Nuclear Information System (INIS)
Bailey, D.
1998-04-01
The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
International Nuclear Information System (INIS)
Gottwald, Tobias
2010-01-01
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Tobias
2010-08-27
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
International Nuclear Information System (INIS)
Sarmento, E.F.
1981-01-01
Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt
Topological term of the antiferromagnetic Heisenberg model in 2+1 dimension
International Nuclear Information System (INIS)
Wu Ke; Yu Lu; Zhu Chuanjie
1988-05-01
It is shown in this note that the two different ways of introducing the topological term in the discussion of the spin 1/2 antiferromagnetic Heisenberg model are identical to each other. (author). 12 refs
One- and Two- Magnon Excitations in a One-Dimensional Antiferromagnet in a Magnetic Field
DEFF Research Database (Denmark)
Heilmann, I.U.; Kjems, Jørgen; Endoh, Y.
1981-01-01
We have carried out a comprehensive experimental and theoretical study of the inelastic scattering in the one-dimensional near-Heisenberg antiferromagnet (CD3)4NMnCl3 (TMMC) at low temperatures, 0.3...
Non-resonant precession of the neutron magnetic moment in antiferromagnets
International Nuclear Information System (INIS)
Skoblin, A.A.
1995-01-01
It is shown that the magnetic moment of a neutron moving in an antiferromagnet with a spiral-order magnetic field slowly precesses. Precession pitch strongly depends on the value and direction of the neutron velocity. 4 refs
Spin-state transfer in laterally coupled quantum-dot chains with disorders
International Nuclear Information System (INIS)
Yang Song; Bayat, Abolfazl; Bose, Sougato
2010-01-01
Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even when time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.
Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy
International Nuclear Information System (INIS)
León, H.
2013-01-01
The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.
New antiferromagnetic semiconductor CuCr1.5Sb0.5S4
International Nuclear Information System (INIS)
Kesler, Ya.A.; Koroleva, L.I.; Mikheev, M.G.; Odintsov, A.G.; Filimonov, D.S.
1993-01-01
New halcogenide compound with spinel-antiferromagnetic semiconductor CuCr 1.5 Sb 0.5 S 4 are obtained and studied for the first time. Magnetic properties of this compound, namely, magnetization linear dependence, maximum on PHI(T) curve in the low-temperature area and realization of the Curie-Weis law for paramagnetic susceptibility with negative paramagnetic temperature testiby to the fact that this compound is antiferromagnetic
Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets
International Nuclear Information System (INIS)
Wal, A.J. van der.
1979-01-01
Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)
External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films
International Nuclear Information System (INIS)
Tarasenko, S.V.
1995-01-01
It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs
Spin Dynamics and Critical Fluctuations in a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1975-01-01
A comprehensive elastic- and inelastic-neutron-scattering study of the binary mixed antiferromagnet Rb2Mn0.5Ni0.5F4 has been carried out. The pure materials, Rb2MnF4 and Rb2NiF4 are [2d] near-Heisenberg antiferromagnets of the K2NiF4 type. Elastic-scattering experiments demonstrate that the Mn...
Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2
Directory of Open Access Journals (Sweden)
Ekkehard Krüger
2016-09-01
Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.
Ignatenko, A. N.; Irkhin, V. Yu.
2016-01-01
We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...
Two-magnon Raman scattering in a spin density wave antiferromagnet
Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin
1996-01-01
We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...
Antiferromagnetism and d-wave superconductivity in (doped) Mott insulators: A wave function approach
Weng, Z. Y.; Zhou, Y.; Muthukumar, V. N.
2003-01-01
We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be ...
Hole spectral functions in lightly doped quantum antiferromagnets
Kar, Satyaki; Manousakis, Efstratios
2011-11-01
We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.
Magnetoelectric antiferromagnets as platforms for the manipulation of solitons
Zarzuela, Ricardo; Kim, Se Kwon; Tserkovnyak, Yaroslav
2018-01-01
We study the magnetic dynamics of magnetoelectric antiferromagnetic thin films, where an unconventional boundary ferromagnetism coexists with the bulk Néel phase below the Néel temperature. The spin exchange between the two order parameters yields an effective low-energy theory that is formally equivalent to that of a ferrimagnet. Dynamics of domain walls and skyrmions are analyzed within the collective-variable approach, from which we conclude that they behave as massive particles moving in a viscous medium subjected to a gyrotropic force. We find that the film thickness can be used as a control parameter for the motion of these solitons. In this regard, it is shown that an external magnetic field can drive the dynamics of domain walls, whose terminal velocity is tunable with the sample thickness. Furthermore, the classification of the skyrmion dynamics is sensitive to the spatial modulation of the sample thickness, which can be easily engineered with the present (thin-film) deposition techniques. Current-driven spin transfer can trigger drifting orbits of skyrmions, which can be utilized as racetracks for these magnetic textures.
Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.
Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong
2018-04-01
The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.
Monte Carlo study of one hole in a quantum antiferromagnet
International Nuclear Information System (INIS)
Sorella, S.
1992-01-01
Using the standard Quantum Monte Carlo technique for the Hubbard model, I present here a numerical investigation of the hole propagation in a Quantum Antiferromagnet. The calculation is very well stabilized, using selected sized systems and special use of the trial wavefunction that satisfy the close shell condition in presence of an arbitrarily weak Zeeman magnetic field, vanishing in the thermodynamic limit. In this paper the author investigates the question of vanishing or nonvanishing quasiparticle weight, in order to clarify whether the Mott insulator should behave just as conventional insulator with an upper and lower Hubbard band. By comparing the present finite size scaling with several techniques predicting a finite quasiparticle weight the data seem more consistent with a vanishing quasiparticle weight, i.e., as recently suggested by P.W. Anderson the Hubbard-Mott insulator should be characterized by non-trivial excitations which cannot be interpreted in a simple quasi-particle picture. However it cannot be excluded, based only on numerical grounds, that a very small but non vanishing quasiparticle weight should survive in the thermodynamic limit
High magnetic field magnetization of a new triangular lattice antiferromagnet
Energy Technology Data Exchange (ETDEWEB)
Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-23
In CsV(MoO_{4})_{2}, the magnetic V^{3+} ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO_{4})_{2} by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V^{3+} (3d^{2}) ions. Apparently we need higher field to reach 1/3 value or full moment.
Zero Modes and Global Antiferromagnetism in Strained Graphene
Directory of Open Access Journals (Sweden)
Bitan Roy
2014-05-01
Full Text Available A novel magnetic ground state is reported for the Hubbard Hamiltonian in strained graphene. When the chemical potential lies close to the Dirac point, the ground state exhibits locally both the Néel and ferromagnetic orders, even for weak Hubbard interaction. Whereas the Néel order parameter remains of the same sign in the entire system, the magnetization at the boundary takes the opposite sign from the bulk. The total magnetization vanishes this way, and the magnetic ground state is globally only an antiferromagnet. This peculiar ordering stems from the nature of the strain-induced single-particle zero-energy states, which have support on one sublattice of the honeycomb lattice in the bulk, and on the other sublattice near the boundary of a finite system. We support our claim with the self-consistent numerical calculation of the order parameters, as well as by the Monte Carlo simulations of the Hubbard model in both uniformly and nonuniformly strained honeycomb lattice. The present result is contrasted with the magnetic ground state of the same Hubbard model in the presence of a true magnetic field (and for vanishing Zeeman coupling, which is exclusively Néel ordered, with zero local magnetization everywhere in the system.
Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures
Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.
2018-03-01
We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.
Spintronic materials and devices based on antiferromagnetic metals
Directory of Open Access Journals (Sweden)
Y.Y. Wang
2017-04-01
Full Text Available In this paper, we review our recent experimental developments on antiferromagnet (AFM spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring is realized by adopting ionic liquid. In addition, promising spin-orbit effects in AFM as well as spin transfer via AFM spin waves reported by different groups have also been reviewed, indicating that the AFM can serve as an efficient spin current source. To explore the crucial role of AFM acting as efficient generators, transmitters, and detectors of spin currents is an emerging topic in the field of magnetism today. AFM metals are now ready to join the rapidly developing fields of basic and applied spintronics, enriching this area of solid-state physics and microelectronics.
Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet
International Nuclear Information System (INIS)
MacDougall, Gregory J.; Gout, Delphine J.; Zarestky, Jerel L.; Ehlers, Georg; Podlesnyak, Andrey A.; McGuire, Michael A.; Mandrus, David; Nagler, Stephen E.
2011-01-01
Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.
Antiferromagnetic ordering in the plumbide EuPdPb
Energy Technology Data Exchange (ETDEWEB)
Heletta, Lukas; Klenner, Steffen; Block, Theresa; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie
2017-07-01
The plumbide EuPdPb was synthesized in polycrystalline form by reaction of the elements in a sealed niobium ampoule in a muffle furnace. The structure was refined from single-crystal X-ray diffractometer data: TiNiSi type, Pnma, a = 752.4(2), b = 476.0(2), c = 826.8(2) pm, wR2 = 0.0485, 704 F{sup 2} values and 20 variables. The europium atoms are coordinated by two tilted and puckered Pd{sub 3}Pb{sub 3} hexagons (280-289 pm Pd-Pb) with pronounced Eu-Pd bonding (312-339 pm). Temperature-dependent magnetic susceptibility measurements show Curie-Weiss behaviour and an experimental magnetic moment of 7.35(1) μB per Eu atom. EuPdPb orders antiferromagnetically at T{sub N} = 13.8(5) K and shows a metamagnetic transition at a critical field of 15 kOe. {sup 151}Eu Moessbauer spectra confirm divalent europium (δ = -10.04(1) mm s{sup -1}) and show full magnetic hyperfine field splitting (B{sub hf} = 21.1(1) T) at 6 K.
... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...
Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS2 chain
Jian, Shao-Kai; Xian, Zhuo-Yu; Yao, Hong
2018-05-01
We show that the quantum critical point (QCP) between a diffusive metal and ferromagnetic (or antiferromagnetic) phases in the SYK chain has a gravitational description corresponding to the double-trace deformation in an AdS2 chain. Specifically, by studying a double-trace deformation of a Z2 scalar in an AdS2 chain where the Z2 scalar is dual to the order parameter in the SYK chain, we find that the susceptibility and renormalization group equation describing the QCP in the SYK chain can be exactly reproduced in the holographic model. Our results suggest that the infrared geometry in the gravity theory dual to the diffusive metal of the SYK chain is also an AdS2 chain. We further show that the transition in SYK model captures universal information about double-trace deformation in generic black holes with near horizon AdS2 space-time.
Synthesis, crystal structure and magnetic properties of an alternating manganese chain
International Nuclear Information System (INIS)
Ramos Silva, Manuela; Matos Beja, Ana; Antonio Paixao, Jose; Martin-Gil, Jesus
2006-01-01
A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Mn(II) ions assemble in alternating chains with Mn-Mn distances of 3.8432(13) and 4.4428(14) A. A 3D network of hydrogen bonds links the chains together. The temperature dependence of the magnetic susceptibility reveals that this compound undergoes a magnetic transition and exhibits an antiferromagnetic interaction in the low-temperature phase with two alternating exchange interactions of -2.32(1) and -5.55(1) cm -1 . - Graphical abstract: Portion of the dimeric manganese chain showing the two alternating exchange interactions paths
Thermoelectric properties of layered antiferromagnetic CuCrSe2
International Nuclear Information System (INIS)
Tewari, Girish C.; Tripathi, T.S.; Yamauchi, Hisao; Karppinen, Maarit
2014-01-01
Here we study thermoelectric and magnetic properties of CuCrSe 2 samples sintered at various temperatures. Structural analysis with XRD shows an order-disorder transition for Cr atoms when the sintering temperature is increased above 1273 K. Metal-like electrical resistivity and anomalously large Seebeck coefficient are found about room temperature. Analysis of electrical conductivity and Seebeck coefficient of the partially-disordered phase suggests hopping conduction of charge carriers. For both the ordered and disordered phases magnetic susceptibility follows Curie–Weiss temperature dependence at high temperatures above 150 K and shows an antiferromagnetic transition around 55 K. For the disordered phase, the effective magnetic moment is determined at 3.62 μ B ; this low value in comparison to the spin only value for Cr 3+ of 3.89 μ B indicates spin fluctuations in the paramagnetic state. The thermal conductivity in these phases is low and dominated by the lattice contribution. Values for the thermoelectric figure of merit (ZT) at room temperature are estimated to be 0.17 and 0.05 for the ordered and disordered phases, respectively. - Highlights: • Thermoelectric and magnetic properties of CuCrSe 2 samples are investigated. • The properties strongly depend on the degree of order of chromium atoms. • The degree of order is controlled by the sintering temperature. • Room-temperature figure of merit is estimated at 0.17 for the ordered phase. • For the disordered phase the figure of merit is lower
Theory of the upper critical field in antiferromagnetic superconductors
International Nuclear Information System (INIS)
Ro, C.; Levin, K.
1984-01-01
We compute the temperature T dependence of the upper critical field H/sub c/2(T) in antiferromagnetic (AF) superconductors. Using a strong-coupling formalism we explicitly treat the effects of the molecular field H/sub Q/, inelastic and elastic spin-fluctuation scattering and magnetic as well as nonmagnetic impurities. A sum rule is used to relate the T dependence of H/sub Q/ to that of the spin-fluctuation scattering. The decreased pair breaking observed below the Neel temperature in SmRh 4 B 4 and the increased pair breaking seen in the AF Chevrel compounds will both occur in our theory for a reasonable choice of parameters. For larger values of the dimensionless spin-exchange coupling constant N(0)J/sup c/f, spin-fluctuation-scattering effects dominate over those of H/sub Q/ and decreased pair breaking is observed below T/sub N/. For smaller values of the coupling constant, the converse is true. Impurity scattering is treated in a self-consistent fashion. As a consequence, the molecular field H/sub Q/ is altered by nonmagnetic impurities. This leads to important pair-breaking effects in H/sub c/2. A physical manifestation of this pair breaking is a qualitative change in the shape of the H/sub c/2 versus T curve, as nonmagnetic impurities are added. We give detailed predictions for the expected effects of these impurities on H/sub c/2 which can be tested experimentally
Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in [Department of Physics, Indian institute of Technology Guwahati, Guwahati 781 039 (India)
2015-08-15
We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.
Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles
Directory of Open Access Journals (Sweden)
Patta Ravikumar
2015-08-01
Full Text Available We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μB/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (TC around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high TC and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.
Pairing-induced kinetic energy lowering in doped antiferromagnets
International Nuclear Information System (INIS)
Wrobel, P; Eder, R; Fulde, P
2003-01-01
We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap
Magnetic and elastic properties of the antiferromagnet uranium mononitride
International Nuclear Information System (INIS)
Van Doorn, C.F.
1976-10-01
The magnetic and elastic properties of antiferromagnetic uranium mononitride single crystals are studied in the thesis from the measurements of the temperature dependences of the magnetic susceptibility, electrical resistivity and elastic constants. The elastic constants C 11 , C 12 and C 44 were determined in the temperature interval 4 to 300 K by ultrasonic measurements of the five possible wave velocities in the [100] and [110] directions. A test for internal consistency was also made. A dip of about 9 percent occurs in C 11 at a temperature of 5 to 6 K lower than the Neel temperature T(N) (equals about 53 K). Starting at T(N), a renormalization in C 44 is proportional to the square of the sublattice magnetization also occurs. Both these results agree with model calculations which include spin-phonon interactions. The investigation of this anomaly was extended by measuring the electrical resistivity of a sample cut from the same crystal as that on which the elasticity was measured. No anomalous behavior was observed at the temperature where C 11 displays its anomaly. However, a discontinuity in the temperature derivative of the resistance was found at T(N). The possible effect of a magnetic field on the resistivity, as well as on the elasticity, was investigated without any measurable effect. The magnetic susceptibility was measured with a Foner magnetometer between 4 and 1 000 K. It was found that above the Neel temperature the paramagnetic susceptibility followed a revised Curie-Weiss law. In an attempt to ascertain the ionic state of the 5f-uranium ion in UN, use was made of the experimentally determined Weiss constant, spin disorder resistivity and Knight shift. A calculation was made that gave a good representation of the ratio of the experimental susceptibilities along the [100] and [110] directions in the ordered region [af
Energy Technology Data Exchange (ETDEWEB)
Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei
2017-08-15
Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.
Magnetic ordering in arrays of one-dimensional nanoparticle chains
International Nuclear Information System (INIS)
Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J
2009-01-01
The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.
International Nuclear Information System (INIS)
Azevedo, L.J.; Narath, A.; Richards, P.M.; Soos, Z.G.
1980-01-01
Proton spin-lattice relaxation rates in the one-dimensional (1D) spin-1/2 Heisenberg antiferromagnet α-bis (N-methylsalicylaldiminato) copper (II), α-CuNSal, have been measured in applied fields up to 125 kOe in the temperature range 1-- 4 K. The strong coupling of protons close to the antiferromagnetic (AF) chain serves as a convenient probe to study the dynamics of the AF chain through the field-induced antiferromagnetic to ferromagnetic (F) phase transition. The magnetization of the AF chain, as measured by the proton field shift, is in close agreement with calculations by Bonner and Fisher and yields an exchange interaction J/k/sub B/=3.04 +- 0.04 K. The proton relaxation rate has isotropic (hyperfine coupled) and anisotropic (dipolar) components. We identify the isotropic relaxation rate with a creation or destruction of one-spin excitations (magnons) and the anisotropic rate with two-magnon processes. The measured one-magnon relaxation rate shows an enhancement near the critical field for the AF → F transition and a strong decrease of more than four decades as the critical field is exceeded. A no-adjustable-parameter calculation based on the fermion model quantitatively agrees with the measured one-magnon relaxation rate, both above and below the critical field H/sub c/. The enhanced relaxation at H/sub c/ is correctly predicted as a consequence of the divergence of the 1D density of magnon states, where a gap in the spin-wave spectrum exists. Above H/sub c/ a finite magnon lifetime must be included in order to produce a nonzero one-magnon relaxation rate. This is also calculated with no adjustable parameters. The two-magnon relaxation rate also shows a decrease as the critical field is exceeded and the calculated relaxation rate agrees well with experiment at low temperatures, provided, however, that one uses a boson rather than fermion picture
Inami, T; Tanaka, H
1997-01-01
The spin dynamics of the hexagonal ABX sub 3 -type quasi-one-dimensional antiferromagnet CsVCl sub 3 is investigated by means of an inelastic neutron scattering technique. In good qualitative agreement with a recent spin-wave calculation including higher-order terms, a large scattering cross-section arising from two-magnon excitations is observed at the one-dimensional antiferromagnetic zone centre. In addition, we measured spin-wave excitations between the chains precisely and revealed that the spin-wave dispersion curves are modified in energy and in intensity on account of the anticrossing between the one-magnon branches and two-magnon continuum. These results demonstrate that anharmonic terms are important in the spin dynamics of CsVCl sub 3 even at low temperatures. We also measured the temperature dependence of the magnetic excitations and found that far above the Neel temperature the two-magnon process gives a considerable contribution to the inelastic spectrum. (author)
Collinear order in the frustrated spin-(1)/(2) antiferromagnet Li{sub 2}CuW{sub 2}O{sub 8}
Energy Technology Data Exchange (ETDEWEB)
Tsirlin, Alexander A. [NICPB, Tallinn (Estonia); Nath, Ramesh; Ranjith, Kumar [Indian Institute of Science Education and Research, Trivandrum (India); Kasinathan, Deepa [MPI CPfS, Dresden (Germany); Skoulatos, Markos [Laboratory of Neutron Scattering, PSI, Villigen (Switzerland)
2015-07-01
Li{sub 2}CuW{sub 2}O{sub 8} is a three-dimensional spin-(1)/(2) antiferromagnet that features collinear spin order despite abundant magnetic frustration that would normally trigger a non-collinear incommensurate order, at least on the classical level. Using density-functional calculations, we establish the spin lattice comprising two non-coplanar triangular networks that introduce frustration along all three crystallographic directions. Magnetic susceptibility and heat capacity reveal a 1D-like magnetic response, which is, however, inconsistent with the naive spin-chain model. Moreover, the high saturation field of 29 T compared to the susceptibility maximum at as low as 8.5 K give strong evidence for the importance of interchain couplings and the magnetic frustration. Below T{sub N} ≅ 3.9 K, Li{sub 2}CuW{sub 2}O{sub 8} develops collinear magnetic order with parallel spins along a and c and antiparallel spins along b. The ordered moment is about 0.7 μ{sub B} according to neutron powder diffraction. This qualifies Li{sub 2}CuW{sub 2}O{sub 8} as a unique three-dimensional spin-(1)/(2) antiferromagnet, where collinear magnetic order is stabilized by quantum fluctuations.
Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study
Directory of Open Access Journals (Sweden)
Bi-Ru Wu
2014-08-01
Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.
Massive Triplet Excitations in a Magnetized Anisotropic Haldane Spin Chain
International Nuclear Information System (INIS)
Zheludev, Andrey I.; Honda, Z.; Broholm, C.L.; Katsumada, K.; Shapiro, S.M.; Kolezhuk, A.; Park, S.; Qiu, Y.
2003-01-01
Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet Ni(C 5 D 14 N 2 ) 2 N 3 (PF 6 ) are performed at mK temperatures in magnetic fields of almost twice the critical field H c applied perpendicular to the spin chains. Above H c a reopening of the spin gap is clearly observed. In the high-field Neel-ordered state the spectrum is dominated by three distinct excitation branches. A theoretical model consistently describing the experimental data is proposed.
Quantum quench in an atomic one-dimensional Ising chain.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C
2013-08-02
We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.
Dynamical quadrupole structure factor of frustrated ferromagnetic chain
Onishi, Hiroaki
2018-05-01
We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.
International Nuclear Information System (INIS)
Zhao-Sen, Liu; Vladimir, Sechovský; Martin, Diviš
2011-01-01
A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell. We study the magnetic properties in the presence and absence of an external magnetic field. Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the field direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Wang, Kangkang; Smith, Arthur R
2012-11-14
Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.
Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets
Železný, J.
2014-10-06
We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.
International Nuclear Information System (INIS)
Fernández-Pacheco, A.; Mansell, R.; Petit, D.; Lee, J. H.; Cowburn, R. P.; Ummelen, F. C.; Swagten, H. J. M.
2014-01-01
We have designed a bilayer synthetic antiferromagnet where the order of layer reversal can be selected by varying the sweep rate of the applied magnetic field. The system is formed by two ultra-thin ferromagnetic layers with different proximities to the spin reorientation transition, coupled antiferromagnetically using Ruderman-Kittel-Kasuya-Yosida interactions. The different dynamic magnetic reversal behavior of both layers produces a crossover in their switching fields for field rates in the kOe/s range. This effect is due to the different effective anisotropy of both layers, added to an appropriate asymmetric antiferromagnetic coupling between them. Field-rate controlled selective switching of perpendicular magnetic anisotropy layers as shown here can be exploited in sensing and memory applications.
Antiferromagnetic spin phase transition in nuclear matter with effective Gogny interaction
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2004-01-01
The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter with the D1S effective force undergoes a phase transition to the antiferromagnetic spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin polarized nuclear matter with the D1S force have no solutions corresponding to ferromagnetic spin ordering (the same direction of neutron and proton spins) and, hence, the ferromagnetic transition does not appear. The dependence of the antiferromagnetic spin polarization parameter as a function of density is found at zero temperature
Quantum oscillations in antiferromagnetic CaFe2As2 on the brink of superconductivity
International Nuclear Information System (INIS)
Harrison, N; McDonald, R D; Mielke, C H; Bauer, E D; Ronning, F; Thompson, J D
2009-01-01
We report quantum oscillation measurements on CaFe 2 As 2 under strong magnetic fields-recently reported to become superconducting under pressures of as little as a kilobar. The largest observed carrier pocket occupies less than 0.05% of the paramagnetic Brillouin zone volume-consistent with Fermi surface reconstruction caused by antiferromagnetism. On comparing several alkaline earth AFe 2 As 2 antiferromagnets (with A = Ca, Sr and Ba), the dependences of the Fermi surface cross-sectional area F α and the effective mass m α * of the primary observed pocket on the antiferromagnetic/structural transition temperature T s are both found to be consistent with the case for quasiparticles in a conventional spin-density wave model. These findings suggest that the recently proposed strain-enhanced superconductivity in these materials occurs within a broadly conventional spin-density wave phase. (fast track communication)
Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets
Železný , J.; Gao, H.; Vý borný , K.; Zemen, J.; Mašek, J.; Manchon, Aurelien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.
2014-01-01
We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.
Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.
2018-05-01
Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.
Semiquantitative theory for high-field low-temperature properties of a distorted diamond spin chain
Directory of Open Access Journals (Sweden)
O. Derzhko
2012-12-01
Full Text Available We consider the antiferromagnetic Heisenberg model on a distorted diamond chain and use the localized-magnon picture adapted to a distorted geometry to discuss some of its high-field low-temperature properties. More specifically, in our study we assume that the partition function for a slightly distorted geometry has the same form as for ideal geometry, though with slightly dispersive one-magnon energies. We also discuss the relevance of such a description to azurite.
Spin-orbit torque in two-dimensional antiferromagnetic topological insulators
Ghosh, Sumit; Manchon, Aurelien
2017-01-01
We investigate spin transport in two-dimensional ferromagnetic (FTI) and antiferromagnetic (AFTI) topological insulators. In the presence of an in-plane magnetization AFTI supports zero energy modes, which enables topologically protected edge conduction at low energy. We address the nature of current-driven spin torque in these structures and study the impact of spin-independent disorder. Interestingly, upon strong disorder the spin torque develops an antidamping component (i.e., even upon magnetization reversal) along the edges, which could enable current-driven manipulation of the antiferromagnetic order parameter. This antidamping torque decreases when increasing the system size and when the system enters the trivial insulator regime.
Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets
Folven, E.; Linder, J.; Gomonay, O. V.; Scholl, A.; Doran, A.; Young, A. T.; Retterer, S. T.; Malik, V. K.; Tybell, T.; Takamura, Y.; Grepstad, J. K.
2015-09-01
Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in L a0.7S r0.3Mn O3 thin films and LaFe O3/L a0.7S r0.3Mn O3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. The data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.
Critical Behaviour of Pure and Site-Random Two Dimensional Antiferromagnets
DEFF Research Database (Denmark)
Birgenau, R. J.; Als-Nielsen, Jens Aage; Shirane, G.
1977-01-01
Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T......Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T...
Antiferromagnetism and its relation to the superconducting phases of UPt3
DEFF Research Database (Denmark)
Isaacs, E.D.; Zschack, P.; Broholm, C.L.
1995-01-01
Using magnetic x-ray and neutron diffraction in UPt3, we find that a suppression of the antiferromagnetic scattering intensity in the superconducting phase is due to a reduction in the magnitude of the staggered moment with no change in symmetry. The existence of the suppression as well...... as the magnetic correlation lengths are not affected by the presence or absence of a visible splitting in the superconducting transition. The simplest models wherein antiferromagnetic order provides the symmetry-breaking field for the splitting do not provide a compete explanation of our results....
Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP
DEFF Research Database (Denmark)
Knorr, K.; Loidl, A.; Kjems, Jørgen
1981-01-01
The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....
Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun
2018-05-01
We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.
ZnFe{sub 2}O{sub 4} antiferromagnetic structure redetermination
Energy Technology Data Exchange (ETDEWEB)
Kremenović, Aleksandar, E-mail: akremenovic@rgf.bg.ac.rs [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Antić, Bratislav [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Vulić, Predrag [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Blanuša, Jovan [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Tomic, Aleksandra [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027 (United States)
2017-03-15
Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. Antiferromagnetic structure non-collinear model is established within C{sub a}2 space group having four different crystallographic/magnetic sites for 32 Fe{sup 3+} spins within magnetic unit cell. - Highlights: • Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. • Antiferromagnetic non-collinear structure model is established within C{sub a}2 space group. • Four different crystallographic/magnetic sites contain 32 Fe{sup 3+} spins within magnetic unit cell.
DEFF Research Database (Denmark)
Zhang, N.G.; Henley, C.L.; Rischel, C.
2002-01-01
We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...
Spin-orbit torque in two-dimensional antiferromagnetic topological insulators
Ghosh, Sumit
2017-01-24
We investigate spin transport in two-dimensional ferromagnetic (FTI) and antiferromagnetic (AFTI) topological insulators. In the presence of an in-plane magnetization AFTI supports zero energy modes, which enables topologically protected edge conduction at low energy. We address the nature of current-driven spin torque in these structures and study the impact of spin-independent disorder. Interestingly, upon strong disorder the spin torque develops an antidamping component (i.e., even upon magnetization reversal) along the edges, which could enable current-driven manipulation of the antiferromagnetic order parameter. This antidamping torque decreases when increasing the system size and when the system enters the trivial insulator regime.
Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films
White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.
2013-07-01
Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.
Polarized neutron powder diffraction studies of antiferromagnetic order in bulk and nanoparticle NiO
DEFF Research Database (Denmark)
Brok, Erik; Lefmann, Kim; Deen, Pascale P.
2015-01-01
surface contribution to the magnetic anisotropy. Here we explore the potential use of polarized neutron diffraction to reveal the magnetic structure in NiO bulk and nanoparticle powders by applying the XYZ-polarization analysis method. Our investigations address in particular the spin orientation in bulk....... The results show that polarization analyzed neutron powder diffraction is a viable method to investigate magnetic order in powders of antiferromagnetic nanoparticles.......In many materials it remains a challenge to reveal the nature of magnetic correlations, including antiferromagnetism and spin disorder. Revealing the spin structure in magnetic nanoparticles is further complicated by the large incoherent neutron scattering cross section from water adsorbed...
Ground-state candidate for the classical dipolar kagome Ising antiferromagnet
Chioar, I. A.; Rougemaille, N.; Canals, B.
2016-06-01
We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.
Energy Technology Data Exchange (ETDEWEB)
Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)
2016-02-08
Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.
International Nuclear Information System (INIS)
Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng; Luo, Weidong
2016-01-01
Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations
International Nuclear Information System (INIS)
Malrieu, Jean-Paul
2012-01-01
Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.
Malrieu, Jean-Paul
2012-06-01
Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.
Statistically interacting quasiparticles in Ising chains
International Nuclear Information System (INIS)
Lu Ping; Vanasse, Jared; Piecuch, Christopher; Karbach, Michael; Mueller, Gerhard
2008-01-01
The exclusion statistics of two complementary sets of quasiparticles, generated from opposite ends of the spectrum, are identified for Ising chains with spin s = 1/2, 1. In the s = 1/2 case the two sets are antiferromagnetic domain walls (solitons) and ferromagnetic domains (strings). In the s = 1 case they are soliton pairs and nested strings, respectively. The Ising model is equivalent to a system of two species of solitons for s = 1/2 and to a system of six species of soliton pairs for s = 1. Solitons exist on single bonds but soliton pairs may be spread across many bonds. The thermodynamics of a system of domains spanning up to M lattice sites is amenable to exact analysis and shown to become equivalent, in the limit M → ∞, to the thermodynamics of the s = 1/2 Ising chain. A relation is presented between the solitons in the Ising limit and the spinons in the XX limit of the s = 1/2 XXZ chain
Taskin, A A; Lavrov, A N; Ando, Yoichi
2003-06-06
In RBaCo2O5+x compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo2O5.5 single crystals and find a remarkable uniaxial anisotropy of Co3+ spins which is tightly linked with the chain oxygen ordering in GdO0.5 planes. Reflecting the underlying oxygen order, CoO2 planes also develop a spin-state order consisting of Co3+ ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
Hung, Yu-Ming
This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then
International Nuclear Information System (INIS)
Balogh, Brian.
1991-01-01
Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)
Construction and study of exact ground states for a class of quantum antiferromagnets
International Nuclear Information System (INIS)
Fannes, M.
1989-01-01
Techniques of quantum probability are used to construct the exact ground states for a class of quantum spin systems in one dimension. This class in particular contains the antiferromagnetic models introduced by various authors under the name of VBS-models. The construction permits a detailed study of these ground states. (A.C.A.S.) [pt
Electronic structure of the antiferromagnetic phase of Sr2Co2O5
International Nuclear Information System (INIS)
Pardo, V.; Botta, P.M.; Baldomir, D.; Rivas, J.; Pineiro, A.; Calle, C. de la; Alonso, J.A.; Arias, J.E.
2008-01-01
Ab initio calculations analyze the properties of the G-type antiferromagnetic Sr 2 Co 2 O 5 as a high-spin system. The description of the electronic structure is given; all the Co atoms are in a high-spin state with a small unquenched orbital angular momentum. Thermal analysis on a polycrystalline sample shows a magnetic phase transition at high temperatures
Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.
2017-09-01
Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.
Železný, J.
2017-01-10
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
Antiferromagnetic MnN layer on the MnGa(001) surface
Energy Technology Data Exchange (ETDEWEB)
Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru
2016-12-30
Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.
Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers
Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter
2015-01-01
A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the
Okuma, Nobuyuki
2017-09-01
We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.
Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.
2017-01-01
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6
Chang, Kai-Wei; Chen, Peng-Jen
2018-05-01
Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.
DEFF Research Database (Denmark)
Gammelmark, Søren; Eckardt, André
2013-01-01
felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...
Kohlhepp, J.T.; Wieldraaijer, H.; Jonge, de W.J.M.
2006-01-01
Manganese (Mn) grows coherent and with an expanded metastable face-centered-tetragonal (e-fct) structure on ultrathin fct Co(001)/Cu(001) template layers. From the temp. dependence of the obsd. unidirectional Mn/Co interface exchange anisotropy, an antiferromagnetic state with a blocking temp.
Okuma, Nobuyuki
2017-09-08
We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.
Spin-transfer torques in antiferromagnetic textures: efficiency and quantification method
Czech Academy of Sciences Publication Activity Database
Yamane, Y.; Ieda, J.; Sinova, Jairo
2016-01-01
Roč. 94, č. 5 (2016), 1-8, č. článku 054409. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spin-transfer torques * antiferromagnets Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.836, year: 2016
Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque
Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.
2018-05-01
Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.
Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.
2017-07-01
Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.
DEFF Research Database (Denmark)
Donolato, M.; Gobbi, M.; Cantoni, M.
2010-01-01
magnetoresistance effect and hence an electrical signal. In this paper we use micromagnetic simulations to calculate the output signal of a particularly shaped device in the presence of a single synthetic antiferromagnetic nanoparticle. The calculated magnetoresistive signal is in good agreement with corresponding...
(Anti)-ferromagnetic coupling in Fe/Si multilayers from polarized neutron reflectomy
Fredrikze, H.; Graaf, van der A; Valkier, M.; Kohlhepp, J.T.; Broeder, den F.J.A.
1997-01-01
Polarized neutron reflectometry data on Fe/Si multilayers are interpreted using strongly depth-dependent magnetization in the Fe layers. This behaviour is ascribed to a depth-dependent mixture of ferromagnetic and anti-ferromagnetic coupled regions in the sample.
High-frequency effects in antiferromagnetic Sr3Ir2O7
Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.
Field-induced phase transitions in antiferromagnetic systems
International Nuclear Information System (INIS)
Smeets, J.P.M.
1984-05-01
Neutron scattering experiments and magnetization measurements are carried out on cobalt bromide hexahydrate, of which 48% of the water molecules are replaced by deuterium oxide molecules. Results were compared with data obtained from non-deuterated cobalt bromide hexahydrate. Neutron scattering experiments showed the importance of the deuterium fraction. Interplay exists between the crystallographic system and the magnetic system, which is influenced by changing the deuterium fraction. Neutron scattering and magnetization experiments on partially deuterated RbFeCl 3 .2H 2 O and CsFeCl 3 .2H 2 O were performed to study the magnetic phase transitions in these quasi one-dimensional Ising compounds. The observed behaviour in the various phases can be described by the nucleation theory of chain reversals. (Auth.)
Helimagnetism and weak ferromagnetism in edge-shared chain cuprates
International Nuclear Information System (INIS)
Drechsler, S.-L.; Richter, J.; Kuzian, R.; Malek, J.; Tristan, N.; Buechner, B.; Moskvin, A.S.; Gippius, A.A.; Vasiliev, A.; Volkova, O.; Prokofiev, A.; Rakoto, H.; Broto, J.-M.; Schnelle, W.; Schmitt, M.; Ormeci, A.; Loison, C.; Rosner, H.
2007-01-01
The present understanding of a novel growing class of chain cuprates with intriguing magnetic properties is reviewed. Among them, several undoped edge-shared CuO 2 chain compounds show at low temperature a clear tendency to helicoidal magnetical ordering with acute pitch angles and sometimes also to weak ferromagnetism. Our analysis is based on the isotropic 1D frustrated J 1 -J 2 Heisenberg model with ferromagnetic (FM) 1st neighbor and antiferromagnetic 2nd neighbor exchange. The achieved assignment is supported by microscopic calculations of the electronic and magnetic structure. We consider Na(Li)Cu 2 O 2 , LiVCuO 4 as the best studied helimagnets, Li 2 ZrCuO 4 and other systems close to a FM quantum critical point, as well as Li 2 CuO 2 with FM inchain ordering. The interplay of frustrated inchain couplings, anisotropy and interchain exchange is discussed
CHAINS-PC, Decay Chain Atomic Densities
International Nuclear Information System (INIS)
1994-01-01
1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain
International Nuclear Information System (INIS)
Li Yanchao
2010-01-01
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J 3 anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
International Nuclear Information System (INIS)
Čisárová, Jana; Strečka, Jozef
2014-01-01
Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons is found. The investigated spin–electron model is exactly solvable by the use of a transfer-matrix method after tracing out the degrees of freedom of mobile electrons delocalized over a couple of interstitial (decorating) sites. The exact ground-state phase diagram reveals an existence of five phases with different number of mobile electrons per unit cell, two of which are ferromagnetic, two are paramagnetic and one is antiferromagnetic. We have studied in particular the dependencies of compressibility and specific heat on temperature and electron density. - Highlights: • A coupled spin–electron chain composed of Ising spins and mobile electrons is exactly solved. • Quantum paramagnetic, ferromagnetic and antiferromagnetic ground states are found. • A compressibility shows a non-monotonous dependence on temperature and electron density. • Thermal dependences of specific heat display two distinct peaks
International Nuclear Information System (INIS)
Cui Yan; Li Yan-Rong; Li Rui-Yuan; Wang Yun-Ping
2014-01-01
We perform both dc and ac magnetic measurements on the single crystal of Mn 3 O(Et-sao) 3 (ClO 4 )(MeOH) 3 single-molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction
Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8
Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.
2012-09-01
Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.
Magnetic Anisotropy by Rashba Spin-Orbit Coupling in Antiferromagnetic Thin Films
Ieda, Jun'ichi; Barnes, Stewart E.; Maekawa, Sadamichi
2018-05-01
Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The magnetic anisotropy energy (MAE) resulting from the Rashba spin-orbit and s-d type exchange interactions is determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the possibility of electrical-field control of the Néel vector.
Electronic and optical properties of antiferromagnetic iron doped NiO - A first principles study
Petersen, John E.; Twagirayezu, Fidele; Scolfaro, Luisa M.; Borges, Pablo D.; Geerts, Wilhelmus J.
2017-05-01
Antiferromagnetic NiO is a candidate for next generation high-speed and scaled RRAM devices. Here, electronic and optical properties of antiferromagnetic NiO: Fe 25% in the rock salt structure are studied and compared to intrinsic NiO. From density of states and complex dielectric function analysis, the first optical transition is found to be at lower frequency than intrinsic NiO due to an Fe impurity level being the valence band maximum. The resulting effects on refractive index, reflectivity, absorption, optical conductivity and loss function for Fe-doped NiO are compared to those of intrinsic NiO, and notable differences are analyzed. The electronic component of the static dielectric constant of NiO: Fe 25% is calculated to be about 2% less than that of intrinsic NiO.
Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films
Cossu, Fabrizio; Colizzi, G.; Filippetti, A.; Fiorentini, Vincenzo; Schwingenschlö gl, Udo
2013-01-01
Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.
International Nuclear Information System (INIS)
Magalhaes, S.G.; Zimmer, F.M.; Kipper, C.J.; Calegari, E.J.
2007-01-01
The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising SG model with a local BCS pairing interaction in the presence of a transverse magnetic field Γ. The spins in different sublattices interact with Gaussian random couplings with an antiferromagnetic mean. The problem is formulated in a Grassmann path integral formalism. The static ansatz and the replica symmetry are used to obtain the half-filling thermodynamic potential. The results are shown in phase diagrams that exhibit a complex transition line separating the PAIR phase from the others. This line is second order at high temperature which ends in a tricritical point. The presence of Γ affects deeply the transition lines
Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets
Qaiumzadeh, Alireza; Ado, Ivan A.; Duine, Rembert A.; Titov, Mikhail; Brataas, Arne
2018-05-01
In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferromagnets, the DM interaction is not suppressed even at low temperatures. The material parameters control both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward controlling the DM interaction in AFM materials by means of doping and electric fields.
Thermal conductivity of the vortex lattice state involving the antiferromagnetism around the core
International Nuclear Information System (INIS)
Takigawa, Mitsuaki; Ichioka, Masanori; Machida, Kazushige
2004-01-01
The thermal conductivity κ xx is the difference between higher and lower temperature regions, because the spatially-resolved thermal conductivity κ xx (r) is localized around the vortex core at lower temperature and delocalized at higher temperature. On one hand, much attention is focused on the spin and charge ordering around the vortex. When the antiferromagnetism appears around the core, the energy gap suppresses the density of states on the Fermi energy, and the zero-energy peak at the vortex core splits or vanishes. The κ xx under the Neel temperature is suppressed by the antiferromagnetism. We solve the Bogoliubov-de Gennes equation self-consistently by two-dimensional extended Hubbard model including the repulsive interaction U, and calculate the κ xx on the basis of the linear response theory. The picture of the spatial variation of the thermal conductivity κ(r) through the spin resolved local DOS well explains recent experiments
Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films
Cossu, Fabrizio
2013-06-21
Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.
Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4
Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.
2018-04-01
Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.
Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet
International Nuclear Information System (INIS)
Basu, S.; Singh, A.
1996-01-01
A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy -J. Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets, is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on La 2 CuO 4 . copyright 1996 The American Physical Society
Dipolar Antiferromagnetism and Quantum Criticality in LiErF4
International Nuclear Information System (INIS)
Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik
2012-01-01
Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.
All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal
Chen, Binbin; Xu, Haoran; Ma, Chao; Mattauch, Stefan; Lan, Da; Jin, Feng; Guo, Zhuang; Wan, Siyuan; Chen, Pingfan; Gao, Guanyin; Chen, Feng; Su, Yixi; Wu, Wenbin
2017-07-01
Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.
International Nuclear Information System (INIS)
Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.
2011-01-01
We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.
Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In
Sala, G.; Mašková, S.; Stone, M. B.
2017-10-01
We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.
Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers
Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P.
2015-01-01
A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators. PMID:26486931
Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.
1995-01-01
Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to
International Nuclear Information System (INIS)
Ertaş Mehmet; Keskin Mustafa
2013-01-01
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. (general)
International Nuclear Information System (INIS)
Perez, J.F.; Pontin, L.F.; Segundo, J.A.B.
1985-01-01
Using a method proposed by van Hemmen the free energy of the Curie-Weiss version of the site-dilute antiferromagnetic Ising model is computed, in the presence of an uniform magnetic field. The solution displays an exact correspondence between this model and the Curie-Weiss version of the Ising model in the presence of a random magnetic field. The phase diagrams are discussed and a tricritical point is shown to exist. (Author) [pt
Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q
Czech Academy of Sciences Publication Activity Database
Huang, Y.; Chen, K.; Deng, Y.; Jacobsen, J. L.; Kotecký, R.; Salas, J.; Sokal, Alan D.; Swart, Jan M.
2013-01-01
Roč. 87, Č. 1 (2013), 12136-1-12136-5 ISSN 1539-3755 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Monte Carlo simulation * two-dimensional lattices * q-state Potts Subject RIV: BE - Theoretical Physics Impact factor: 2.326, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/swart-two-dimensional potts antiferromagnets with a phase transition at arbitrarily large q.pdf
Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster
International Nuclear Information System (INIS)
Deb, Moumita; Ghosh, Asim Kumar
2016-01-01
Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu_3WO_6.
International Nuclear Information System (INIS)
Vasconcelos Dos Santos, R.J.; Coutinho, S.
1995-01-01
The effect of a local field acting on decorating classical D-vector bond spins of an antiferromagnetic Ising model on the square lattice is studied for both the annealed isotropic and the axial decorated cases. In both models the effect on the phase diagrams of the transversal and the longitudinal components of the local field acting on the decorating spins are fully analyzed and discussed
Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films
Czech Academy of Sciences Publication Activity Database
Wadley, P.; Edmonds, K. W.; Shahedkhah, M.R.; Campion, R. P.; Gallagher, B. L.; Železný, Jakub; Kuneš, Jan; Novák, Vít; Jungwirth, Tomáš; Saidl, Vít; Němec, P.; Maccherozzi, F.; Dhesi, S.S.
2017-01-01
Roč. 7, Sep (2017), 1-6, č. článku 11147. ISSN 2045-2322 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : antiferromagnetic spintronics * exchange coupling Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
Czech Academy of Sciences Publication Activity Database
Kriegner, D.; Výborný, Karel; Olejník, Kamil; Reichlová, Helena; Novák, Vít; Martí, Xavier; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V.V.; Springholz, G.; Holý, V.; Jungwirth, Tomáš
2016-01-01
Roč. 7, Jun (2016), 1-7, č. článku 11623. ISSN 2041-1723 R&D Projects: GA ČR GA15-13436S; GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 12.124, year: 2016
Cluster-Bethe-Lattice study of a planar antiferromagnet: Rb2NiF4
International Nuclear Information System (INIS)
Cruz, G.A.C. de la; Silva, C.E.T.G. da
1979-01-01
A discussion of the Cluster-Bethe-Lattice method is presented for a planar antiferromagnet for which the hamiltonian parameters are known and the one-magnon density of states may be computed exactly. All the square clusters of 1 to 121 atoms are studied both connected to and isolated from the Bethe lattices. It is shown that, even for the largest cluster treated, the approximation is still far from the exact result. It is discussed the limitations of the method [pt
High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques
Czech Academy of Sciences Publication Activity Database
Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo
2016-01-01
Roč. 117, č. 1 (2016), 1-5, č. článku 017202. ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * domain walls * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016
Antiferromagnetism of nuclear matter in the model with effective Gogny interaction
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2006-01-01
The possibility of ferromagnetic (FM) antiferromagnetic (AFM) phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi-liquid theory with the effective Gogny interaction. It is shown that at some critical density nuclear matter undergoes a phase transition to the AFM spin state. The self-consistent equations of spin-polarized nuclear matter have no solutions corresponding to FM spin ordering and, hence, the FM transition does not appear. The AFM spin state properties are investigated [ru
Pressure induced superconductivity in the antiferromagnetic Dirac material BaMnBi2
Huimin Chen; Lin Li; Qinqing Zhu; Jinhu Yang; Bin Chen; Qianhui Mao; Jianhua Du; Hangdong Wang; Minghu Fang
2017-01-01
The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi2 with T c of ~4?K at 2.6?GPa. Both the higher upper critical field, ? 0 H...
Photo-induced antiferromagnetic interlayer coupling in Fe superlattices with iron silicide spacers
Energy Technology Data Exchange (ETDEWEB)
Mattson, J.E.; Fullerton, E.E.; Kumar, S.; Lee, S.R.; Sowers, C.H.; Grimsditch, M.; Bader, S.D. [Argonne National Lab., IL (United States); Parker, F.T. [California Univ., San Diego, La Jolla, CA (United States). Center for Magnetic Recording Research
1993-09-01
Sputtered Fe/FeSi films possessing antiferromagnetic (AF) interlayer coupling at room temperature develop ferromagnetic remanence when cooled below 100K, but the AF coupling can be restored at low temperature by exposure to visible light of sufficient intensity (>10 mW/mm{sup 2}). We attribute these effects to charge carriers in the FeSi spacer layer which, when thermally or photo-generated, are capable of communicating spin information between the Fe layers.
su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame
International Nuclear Information System (INIS)
Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin
2008-01-01
The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics
Critical phase for the antiferromagnetic Z(5) model on a square lattice
International Nuclear Information System (INIS)
Baltar, V.L.; Carneiro, G.M.; Pol, M.E.; Zagury, N.
1983-04-01
The existence of a critical phase for the antiferromagnetic Z(5) model on a square lattice is suggested based on results of Monte Carlo (MC) simulations and of Migdal Kadanoff Renormalization Group calculations (MKRG). The MKRG simulates a line of fixed points which it is interpreted as the locus of attraction of a critical phase. The MC simulations are compatible with this interpretation. (Author) [pt
Susceptibility and specific heat of the Heisenberg antiferromagnet on the Kagome lattice
International Nuclear Information System (INIS)
Bernhard, B.H.; Canals, B.; Lacroix, C.
2001-01-01
The dynamic susceptibility of the S=((1)/(2)) Heisenberg antiferromagnet is calculated on the Kagome lattice by means of a Green's function decoupling scheme. The spin-spin correlation functions decrease exponentially with distance. The specific heat exhibits a single-peak structure with a T 2 dependence at low temperature and the correct high-temperature behaviour. The calculated total change in entropy indicates a ground-state entropy of 0.46 ln 2
A critical scattering study of the helical antiferromagnets Ho and Dy
International Nuclear Information System (INIS)
Gaulin, B.D.; Hagen, M.; Child, H.R.
1988-01-01
We have measured the frequency integrated magnetic critical scattering of neutrons from paramagnetic Dy and Ho. Analysis of these data show the paramagnetic to helical antiferromagnetic phase transitions are characterized by the critical exponents ν = 0.57 +- 0.05 and γ = 1.05 = +- .07 for Dy and ν = 0.57 +- .04 and γ = 1.14 = +- .10 for Ho. 3 refs., 2 figs., 1 tab
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
International Nuclear Information System (INIS)
Moura, A.R.; Pereira, A.R.; Moura-Melo, W.A.; Pires, A.S.T.
2008-01-01
We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Neel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the 'mass center' of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size
Phase transition induced for external field in tree-dimensional isotropic Heisenberg antiferromagnet
Neto, Minos A.; Viana, J. Roberto; Salmon, Octavio D. R.; Filho, E. Bublitz; de Sousa, J. Ricardo
2017-01-01
In this paper, we report mean-field and effective-field renormalization group calculations on the isotropic Heisenberg antiferromagnetic model under a longitudinal magnetic field. As is already known, these methods, denoted by MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic certain Bravais lattice. Our attention has been on the obtantion of the critical frontier in the plane of temperature versus magnetic field, for the simple cubic ...
Energy of the amplitude mode in the bicubic antiferromagnet: Series expansion results
Oitmaa, J.
2018-05-01
Series expansion methods are used to study the quantum critical behavior of the bicubic spin-1/2 antiferromagnet. Excitation energies are computed throughout the Brillouin zone, for both the Néel and dimer phases. We compute the energy of the amplitude/Higgs mode and show that it becomes degenerate with the magnon modes at the quantum critical point, as expected on general symmetry grounds.
Entropy-driven phase transition in low-temperature antiferromagnetic Potts models
Czech Academy of Sciences Publication Activity Database
Kotecký, R.; Sokal, A.D.; Swart, Jan M.
2014-01-01
Roč. 330, č. 3 (2014), s. 1339-1394 ISSN 0010-3616 R&D Projects: GA ČR GA201/09/1931; GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Antiferromagnetic Potts model * proper coloring * plane quadrangulation * phase transition * diced lattice Subject RIV: BA - General Mathematics Impact factor: 2.086, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/swart-0429507.pdf
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
Czech Academy of Sciences Publication Activity Database
Olejník, Kamil; Schuler, V.; Martí, Xavier; Novák, Vít; Kašpar, Zdeněk; Wadley, P.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Garces, J.; Baumgartner, M.; Gambardella, P.; Jungwirth, Tomáš
2017-01-01
Roč. 8, May (2017), 1-7, č. článku 15434. ISSN 2041-1723 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 12.124, year: 2016
Optical determination of the Neel vector in a CuMnAs thin-film antiferromagnet
Czech Academy of Sciences Publication Activity Database
Saidl, Vít; Němec, P.; Wadley, P.; Hills, V.; Campion, R. P.; Novák, Vít; Edmonds, K. W.; Maccherozzi, F.; Dhesi, S.S.; Gallagher, B. L.; Trojánek, F.; Kuneš, Jan; Železný, Jakub; Malý, P.; Jungwirth, Tomáš
2017-01-01
Roč. 11, č. 2 (2017), s. 91-96 ISSN 1749-4885 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : magneto-optics * spintronics * antiferromagnets Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 37.852, year: 2016
Low-temperature spin transport in a S = 1 one-dimensional antiferromagnet
International Nuclear Information System (INIS)
Pires, A S T; Lima, L S
2009-01-01
We study spin transport in the insulating antiferromagnet with S = 1 in one dimension. The spin conductivity is calculated, at zero temperature, using a modified spin wave theory and the Kubo formalism, within the ladder approximation. Two-magnon processes provide the dominant contribution to the spin conductivity. At finite temperature, free magnons are activated, and turn the system into a perfect spin conductor, i.e., the spin conductivity has a Drude form with infinite scattering time.
Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks
Czech Academy of Sciences Publication Activity Database
Martí, X.; Park, B.G.; Wunderlich, Joerg; Reichlová, Helena; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Jungwirth, Tomáš
2012-01-01
Roč. 108, č. 1 (2012), , , "017201-1"-"017201-4" ISSN 0031-9007 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : tunneling magnetoresistance * antiferromagnetic spintronics * exchange bias Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.943, year: 2012
Energy Technology Data Exchange (ETDEWEB)
Chang, Cheng-Hsun-Tony; Chang, Shin-Chen [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Tsay, Jyh-Shen, E-mail: jstsay@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Yao, Yeong-Der [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)
2017-05-31
Highlights: • An antiferromagnetic grain model on exchange bias phenomena is proposed. • Grain size and grain density are considered. • For smaller grain size, the dependence of t{sub CoO} on T{sub B} showed a less pronounced variation. • An increased grain density is responsible for the enhancement in the exchange bias fields. - Abstract: The emergence and optimization of devices that can be applied to spintronics have attracted considerable interest, and both experimental and theoretical approaches have been used in studies of exchange bias phenomena. A survey of the literature indicates that great efforts have been devoted to improving exchange bias fields, while only limited attempts have been made to control the temperature dependence of exchange bias. In this study, the influence of antiferromagnetic grains on exchange bias phenomena in CoO/Co bilayers on a semiconductor surface was investigated. Based on an antiferromagnetic grain model, a correlation between grain size, grain density, blocking temperature, and the exchange bias field was established. For crystallites with a smaller median diameter, the dependence of the thickness of the CoO layer on blocking temperature showed a less pronounced variation. This is due to the larger thermal agitation of the atomic spin moments in the grain, which causes a weaker exchange coupling between atomic spin moments. The enhanced density of antiferromagnetic/ferromagnetic pinning sites resulting from an increased grain density is responsible for the enhancement in the exchange bias fields. The results reported herein provide insights into our knowledge related to controlling the temperature dependence of exchange bias and related mechanisms.
Relativistic Néel-order fields induced by electrical current in antiferromagnets
Czech Academy of Sciences Publication Activity Database
Železný, Jakub; Gao, H.; Výborný, Karel; Zemen, Jan; Mašek, Jan; Manchon, A.; Wunderlich, Joerg; Sinova, Jairo; Jungwirth, Tomáš
2014-01-01
Roč. 113, č. 15 (2014), , "157201-1"-"157201-5" ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets * current induced switching Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.512, year: 2014
International Nuclear Information System (INIS)
Pedro, I de; Rojo, J M; Pizarro, J L; Fernandez, J RodrIguez; Marcos, J Sanchez; Fernandez-DIaz, M T; Arriortua, M I; Rojo, T
2006-01-01
Compounds of the general formula Co 2-x Ni x (OH)PO 4 (x = 0.1, 0.3) have been synthesized under mild hydrothermal conditions. Neutron powder diffraction, susceptibility and heat capacity measurements were carried out on polycrystalline samples. The cobalt-nickel compounds are ordered as three-dimensional antiferromagnets with ordering temperatures of 70 and 64 K for x = 0.1 and x = 0.3, respectively. The magnetic study shows a spin glass-like state below 11 and 5 K for Co 1.9 Ni 0.1 (OH)PO 4 and Co 1.7 Ni 0.3 (OH)PO 4 , respectively. Specific heat data present peaks at 68 and 61 K for Co 1.9 Ni 0.1 and Co 1.7 Ni 0.3 , respectively. These peaks show broad shoulders between approximately 15 and 40 K. The lack of any distinguishable anomaly below 10 K supports the spin glass nature of the low temperature transitions. Refinement of room temperature neutron diffraction data indicates that the Ni(II) ions are in octahedral co-ordination with the practical absence of these ions in the trigonal bipyramidal sites. The magnetic structures of Co 2-x Ni x (OH)PO 4 consist of ferromagnetic arrangements between the octahedral chains and trigonal bipyramidal dimers within the xz plane with the magnetic moments along the z axis. The ferromagnetic layers are disposed antiparallel to one another along the y direction establishing the three-dimensional antiferromagnetic order (T N ∼70 K for Co 1.9 Ni 0.1 and ∼64 K for Co 1.7 Ni 0.3 ). The different exchange pathways, the anisotropy of the Co(II) ions and the frustration of the magnetic moments in the trigonal bipyramidal geometry could be responsible for the freezing process
International Nuclear Information System (INIS)
Wang Xiguang; Guo Guanghua; Zhang Guangfu
2011-01-01
The demagnetization processes of antiferromagnetically exchange-coupled hard/soft/hard trilayer structures have been studied based on the discrete one-dimensional atomic chain model and the linear partial domain-wall model. It is found that, when the magnetic anisotropy of soft layer is taken into account, the changes of the soft layer thickness and the interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible magnetic exchange-spring process. For the trilayer structures with very thin soft layer, the demagnetization process exhibits typical reversible exchange-spring behavior. However, as the thickness of soft layer is increased, there is a crossover point t c , after which the process becomes irreversible. Similarly, there is also a critical interfacial exchange coupling constant A sh c , above which the exchange-spring process is reversible. When A sh sh c , the irreversible exchange-spring process is achieved. The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling A sh and soft layer thickness N s . - Research highlights: → A differing magnetic exchange-spring process is found in antiferromagnetically exchange-coupled hard/soft/hard trilayers if the magnetic anisotropy of the soft layers is taken into account. → The change of the soft layer thickness may lead to a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The change of the soft-hard interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling and soft layer thickness.
Field-dependent antiferromagnetism and ferromagnetism of the two copper sublattices in Sr2Cu3O4Cl2
International Nuclear Information System (INIS)
Kastner, M.A.; Aharony, A.; Birgeneau, R.J.; Chou, F.C.; Entin-Wohlman, O.; Greven, M.; Harris, A.B.; Kim, Y.J.; Lee, Y.S.; Parks, M.E.; Zhu, Q.
1999-01-01
The Cu 3 O 4 layer in Sr 2 Cu 3 O 4 Cl 2 is a variant of the square CuO 2 lattice of the high-temperature superconductors, in which the center of every second plaquette contains an extra Cu 2+ ion. The ions that make up the conventional CuO 2 network, called CuI, have CuI-CuI exchange energy ∼130meV, and order antiferromagnetically at about 380 K; the CuII-CuII exchange is only ∼10meV, and the CuII close-quote s order at ∼40K. A study is reported here of the dependence of the magnetization on field, temperature, and crystallographic orientation for this interesting system. We show that the small permanent ferromagnetic moment, that appears when the CuI spins order, and the unusual spin rotation transitions seen most clearly for one particular direction of the magnetic field, are the result of several small bond-dependent anisotropic terms in the spin Hamiltonian that are revealed because of the frustration of the isotropic Heisenberg interaction between CuI and CuII spins. These include a term which favors collinearity of the CuI and CuII spins, which originates from quantum fluctuations, and also the pseudodipolar interaction. Some of these small interactions also come into play in other lamellar cuprates, connected with the high-T c superconductivity materials, and in many spin-chain and spin-ladder compounds. copyright 1999 The American Physical Society
International Nuclear Information System (INIS)
Javed, Qurat-ul-ain; Feng-Ping Wang; Rafique, M. Yasir; Toufiq, Arbab Mohammad; Iqbal, M. Zubair
2012-01-01
We have reported new magnetic and optical properties of Mn 2 O 3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV—visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn 2 O 3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn 2 O 3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at T N = 83 K. Furthermore, the Mn 2 O 3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remnant magnetization (1.52 emu/g). The UV—visible spectrophotometry was used to determine the transmittance behaviour of Mn 2 O 3 nanostructures. A direct optical band gap of 1.2 eV was acquired by using the Davis—Mott model. The UV—visible spectrum indicates that the absorption is prominent in the visible region, and transparency is more than 80% in the UV region
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-05-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.
Antiferromagnetism and its origin in iron-based superconductors (Review Article)
International Nuclear Information System (INIS)
Ding, Ming-Cui; Zhang, Yu-Zhong; Lin, Hai-Qing
2014-01-01
In iron-based superconductors, unravelling the origin of the antiferromagnetism is a crucial step towards understanding the high-T c superconductivity as it is widely believed that the magnetic fluctuations play important roles in the formation of the Cooper pairs. Therefore, in this paper, we will briefly review experimental results related to the antiferromagnetic state in iron-based superconductors and focus on a review of the theoretical investigations which show applicability of the itinerant scenario to the observed antiferromagnetism and corresponding phase transitions in various families of the iron-based superconductors. A proposal of coupling between frustrated and un frustrated bands for understanding the reduced magnetic moment typically observed in iron pnictides is also reviewed. While all the above theoretical investigations do not rule out a possible existence of localized electrons in iron-based superconductors, these results strongly indicate a close relation between itinerant electrons and the magnetically ordered state and point out the importance of taking into account the orbital degrees of freedom.
Wu, Haokaifeng; Sudoh, Iori; Xu, Ruihan; Si, Wenshuo; Vaz, C. A. F.; Kim, Jun-young; Vallejo-Fernandez, Gonzalo; Hirohata, Atsufumi
2018-05-01
Polycrystalline Mn3Ga layers with thickness in the range from 6–20 nm were deposited at room temperature by a high target utilisation sputtering. To investigate the onset of exchange-bias, a ferromagnetic Co0.6Fe0.4 layer (3.3–9 nm thick) capped with 5 nm Ta, were subsequently deposited. X-ray diffraction measurements confirm the presence of Mn3Ga (0 0 0 2) and (0 0 0 4) peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga thickness. These results in combination with x-ray reflectivity measurements confirm that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated to be . Such a binary antiferromagnetic Heusler alloy is compatible with the current memory fabrication process and hence has a great potential for antiferromagnetic spintronics.
Hugdal, Henning G.; Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle
2018-05-01
We study the effective interactions between Dirac fermions on the surface of a three-dimensional topological insulator due to the proximity coupling to the magnetic fluctuations in a ferromagnetic or antiferromagnetic insulator. Our results show that the magnetic fluctuations can mediate attractive interactions between Dirac fermions of both Amperean and BCS types. In the ferromagnetic case, we find pairing between fermions with parallel momenta, so-called Amperean pairing, whenever the effective Lagrangian for the magnetic fluctuations does not contain a quadratic term. The pairing interaction also increases with increasing Fermi momentum and is in agreement with previous studies in the limit of high chemical potential. If a quadratic term is present, the pairing is instead of BCS type above a certain chemical potential. In the antiferromagnetic case, BCS pairing occurs when the ferromagnetic coupling between magnons on the same sublattice exceeds the antiferromagnetic coupling between magnons on different sublattices. Outside this region in parameter space, we again find that Amperean pairing is realized.
Circular dichroism and Raman optical activity in antiferromagnetic transition metal fluorides
International Nuclear Information System (INIS)
Hoffman, K.R.; Lockwood, D.J.; Yen, W.M.
2005-01-01
The Raman optical activity (ROA) of magnons in rutile-structure antiferromagnetic FeF 2 (T N = 78 K) has been studied as a function of temperature and applied magnetic field. For exciting light incident along the c axis, ROA is observed for magnons but not for phonons. In zero field, a small splitting (0.09 cm -1 ) of the two acoustic-magnon branches is observed for the first time by inelastic light scattering. The splitting in applied magnetic field is found to reduce with increasing temperature in accordance with theory. No ROA was detected for two-magnon excitations. In optical absorption measurements performed over thirty years ago, a very small circular dichroism (CD) was observed in the magnon sidebands of other simple rutile antiferromagnetic fluorides (MnF 2 and CoF 2 ). The origin of this CD was not understood at the time. The Raman studies of the one-magnon Raman scattering in FeF 2 have demonstrated that in zero field the degeneracy of the antiferromagnetic magnon branches is lifted by a weak magnetic dipole-dipole interaction, as predicted by Pincus and Loudon and by White four decades ago. The source of the observed CD in the magnon sidebands can now be traced to this same magnetic-dipole induced splitting
Frustrated antiferromagnets at high fields: Bose-Einstein condensation in degenerate spectra
International Nuclear Information System (INIS)
Jackeli, G.; Zhitomirsky, M.E.
2004-01-01
Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the J 1 -J 2 frustrated square-lattice antiferromagnet with J 2 =(1/2)J 1 and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into a partially magnetized state is treated via a mapping to a dilute gas of hard-core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave vectors at (π,π) and (π,0,0) for the two models. We predict a unique form for the magnetization curve ΔM=S-M≅μ (d-1)/2 (logμ) (d-1) , where μ is a distance from the quantum critical point
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-01-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346
International Nuclear Information System (INIS)
Berrocal, Teresa; Mesa, Jose L.; Pizarro, Jose L.; Urtiaga, Miren K.; Arriortua, Maria I.; Rojo, Teofilo
2006-01-01
Fe 2 (AsO 4 )F has been synthesized under mild hydrothermal conditions in the form of single crystals. The compound crystallizes in C2/c monoclinic space group with the unit cell parameters a=13.214(1), b=6.623(1), c=10.045(1)A and β=116.90(2) deg. with Z=8. The crystal structure consists of a three-dimensional framework constructed by two kinds of chains, A and B, with 50% of population. In the chains, the environments for the iron(II) cations show penta- and hexa-coordination. The chains establish an angle of approximately 120 deg. between them. The disordered fluoride anions in these chains given rise to [Fe(1)O 4 F(1) 0.5 (F(2) 0.5 ) 2 ] and [Fe(2)O 4 (F(1) 0.5 ) 2 F(2) 0.5 ] edge-shared polyhedra in which the fluoride anions have occupancy factors of 50% over two distinct crystallographic sites. The IR spectrum shows the characteristic bands of the (AsO 4 ) 3- groups. From the diffuse reflectance spectrum a D q parameter of 650cm -1 has been calculated for the Fe(II) d 6 high spin cation. The Mossbauer spectrum in the paramagnetic state shows a doublet that has been fitted, according to the existence of two crystallographically independent iron environments, with two Lorentzian doublets. Magnetic measurements performed between room temperature and 5K exhibit a maximum at 22.6K, characteristic of antiferromagnetic interactions with a estimated 'J'-exchange parameter of -1.2K
Haldane-gap excitations in the low-Hc one-dimensional quantum antiferromagnet Ni(C5D14N2)2N3(PF6)
International Nuclear Information System (INIS)
Zheludev, A.; Chen, Y.; Broholm, C. L.; Honda, Z.; Katsumata, K.
2001-01-01
Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet Ni(C 5 D 14 N 2 ) 2 N 3 (PF 6 ), that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δ x =0.42(3) meV, Δ y =0.52(6) meV, and Δ z =1.9(1) meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are measured. The dispersion relation is studied for momentum transfers both along and perpendicular to the chains' direction. The in-chain exchange constant J=2.8 meV is found to be much larger than interchain coupling, J y =1.8(4)x10 -3 meV and J x =4(3)x10 -4 meV, along the b and a axes, respectively. The results are discussed in the context of future experiments in high magnetic fields
Sustainable Supply Chain Design
DEFF Research Database (Denmark)
Bals, Lydia; Tate, Wendy
A significant conceptual and practical challenge is how to integrate triple bottom line (TBL; including economic, social and environmental) sustainability into global supply chains. Although this integration is necessary to slow down global resource depletion, understanding is limited of how...... to implement TBL goals across the supply chain. In supply chain design, the classic economic perspective still dominates, although the idea of the TBL is more widely disseminated. The purpose of this research is to add to the sustainable supply chain management literature (SSCM) research agenda...... by incorporating the physical chain, and the (information and financial) support chains into supply chain design. This manuscript tackles issues of what the chains are designed for and how they are designed structurally. Four sustainable businesses are used as illustrative case examples of innovative supply chain...
DEFF Research Database (Denmark)
Sørensen, Olav Jull
The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...
Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si
Lou, Paul C.; Kumar, Sandeep
2018-04-01
Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.
Chain transitivity in hyperspaces
International Nuclear Information System (INIS)
Fernández, Leobardo; Good, Chris; Puljiz, Mate; Ramírez, Ártico
2015-01-01
Given a non-empty compact metric space X and a continuous function f: X → X, we study the dynamics of the induced maps on the hyperspace of non-empty compact subsets of X and on various other invariant subspaces thereof, in particular symmetric products. We show how some important dynamical properties transfer across induced systems. These amongst others include, chain transitivity, chain (weakly) mixing, chain recurrence, exactness by chains. From our main theorem we derive an ε-chain version of Furstenberg’s celebrated 2 implies n Theorem. We also show the implications our results have for dynamics on continua.
Abdulla, Parosh Aziz; Henda, Noomene Ben; Mayr, Richard
2007-01-01
We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In part...
Low-frequency response in antiferromagnetically coupled Fe/Cr multilayers
International Nuclear Information System (INIS)
Aliev, F.G.; Guerrero, R.; Martinez, J.L.; Moshchalkov, V.V.; Bruynseraede, Y.; Villar, R.
2001-01-01
We have studied the magnetic field dependences of the real (χ) and imaginary (χ') contributions to the low-frequency magnetic susceptibility in epitaxial antiferromagnetically coupled [Fe(Cr(1 0 0)] n (n=10-50) multilayers. For the magnetic field directed along (1 1 0), the magnetic susceptibility shows on orientation phase transition. For the magnetic field either along the easy or the hard axes we observe a strong enhancement of the χ'(H) (i.e. magnetic losses) at low magnetic fields (H<50 Oe), which we relate to AC field-induced domain wall movement. This response is strongly dependent on frequency and temperature
International Nuclear Information System (INIS)
Sarmento, E.F.
1980-01-01
Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt
Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment
Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.
2015-10-01
In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.
Role of disorder in the multi-critical region of d-wave superconductivity and antiferromagnetism
International Nuclear Information System (INIS)
Yanase, Youichi; Ogata, Masao
2007-01-01
We investigate the disorder-induced microscopic inhomogeneity in the multi-critical region of d-wave superconductivity and antiferromagnetism on the basis of the microscopic t-t ' -U-V model. We find that a small amount of point disorder induces the nano-scale inhomogeneity of spin and superconducting fluctuations when the coherence length of superconductivity is remarkably short as in the under-doped cuprates. Then, the two fluctuations spatially segregate to avoid their competition. We show the remarkable electron-hole asymmetry in high-T c cuprates where the quite different spatial structure is expected in the electron-doped materials
Spin gap and antiferromagnetic correlations in the kondo insulator CeNiSn
DEFF Research Database (Denmark)
Mason, T.E.; Aeppli, G.; Ramirez, A.P.
1992-01-01
Neutron scattering measurements show that the crossover (at T less than or similar to 10 K) from metallic heavy-fermion to semiconducting behavior coincides with the formation of a gap in the magnetic excitation spectrum of CeNiSn. In contrast to the simple band picture of an insulator, the gap...... is well defined only at particular values of the momentum transfer Q. While substantial antiferromagnetic correlations in the a-c plane characterize the low-T state, the corresponding zero-frequency response function is Q independent....
Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn2Bi2
Kawaguchi, N.; Urata, T.; Hatano, T.; Iida, K.; Ikuta, H.
2018-04-01
We found a large and unique magnetoresistance (MR) effect for CaMn2Bi2 . When the magnetic field was applied along the crystallographic c axis at low temperatures, the resistivity increased with the magnetic field and the MR ratio reached several hundred percent, but then it decreased with further increasing the applied field. In addition, the angle dependence measurement revealed a strong anisotropy. This compound is an antiferromagnetic semiconductor with a narrow band gap, and Mn atoms form a corrugated honeycomb lattice. Therefore, a frustration among the magnetic moments is expected, and we propose that our observations can be understood by a nonmonotonic modulation of magnetic fluctuation under the magnetic field.
Antiferromagnetic exchange in meta-phenylene bridged bis(tris-o-iminosemiquinonato)metal complexes
International Nuclear Information System (INIS)
Dei, A.; Gatteschi, D.; Sangregorio, C.; Sorace, L.; Vaz, M.G.F.
2004-01-01
By reaction of the ligand N,N' bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine (1), with Fe, Co or Mn salts, three complexes were synthesized where the bis-bidentate ligand is in the bis-semiquinonato oxidation state. Although the m-phenylene linker is known to afford ferromagnetic coupling in diradicals, the antiferromagnetic interaction of intramolecular origin we observed is not unexpected, given the large torsion angles between the semiquinonato and the m-phenylene planes
Antiferromagnetic exchange in meta-phenylene bridged bis(tris-o-iminosemiquinonato)metal complexes
Energy Technology Data Exchange (ETDEWEB)
Dei, A. E-mail: andrea.dei@unifi.it; Gatteschi, D.; Sangregorio, C.; Sorace, L.; Vaz, M.G.F
2004-05-01
By reaction of the ligand N,N' bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine (1), with Fe, Co or Mn salts, three complexes were synthesized where the bis-bidentate ligand is in the bis-semiquinonato oxidation state. Although the m-phenylene linker is known to afford ferromagnetic coupling in diradicals, the antiferromagnetic interaction of intramolecular origin we observed is not unexpected, given the large torsion angles between the semiquinonato and the m-phenylene planes.
Magnetic field effects of tow-leg Heisenberg antiferromagnetic ladders: Thermodynamic properties
International Nuclear Information System (INIS)
Wang Xiaoqun; Yu Lu
2000-05-01
Using the recently developed transfer-matrix renormalization group method, we have studied the thermodynamic properties of two-leg antiferromagnetic ladders in the magnetic field. Based on different behavior of magnetization, we found disordered spin liquid, Luttinger liquid, spin-polarized phases and a classical regime depending on magnetic field and temperature. Our calculations in Luttinger liquid regime suggest that both the divergence of the NMR relaxation rate and the anomalous specific heat behavior observed on Cu 2 (C 5 H 12 N 2 ) 2 Cl 4 are due to quasi-one-dimensional effect rather than three-dimensional ordering. (author)
Magnetic study of a few antiferromagnets in very-strong pulsed fields (450 kOE)
International Nuclear Information System (INIS)
Krebs, J.
1968-01-01
In this thesis we describe a pulsed field device with which we obtain magnetization curves up to 450 kOE at all temperatures between 1. 6 and 300. We have studied the 'spin-flopping'(and therefore the anisotropy) in MnF 2 versus temperature, below the Neel point. We have also studied the antiferromagnets MnSO 4 . and MnSO 4 .H 2 O which have revealed saturation fields respectively of 250 kOE and 320 kOE. (author) [fr
Itinerant-electron antiferromagnetism precursor to superconductivity in an organic conductor
International Nuclear Information System (INIS)
Walsh, W.M. Jr.; Wudl, F.; Aharon-Shalom, E.; Rupp, L.W. Jr.; Vandenberg, J.M.; Andres, K.; Torrance, J.B.
1982-01-01
Below 5.5 K minimally strained crystals of (TMTSF) 2 ClO 4 (TMTSF: tetramethyltetraselenafulvalene) exhibit vanishing spin-resonance intensity and reduced conductivity at low microwave power. More intense microwave electric fields along the needle axis nonlinearly restore both the resonance signal and the conductivity, indicating the presence of charged spin-density waves. Very anisotropic antiferromagnetic resonances are observed at 1.6 K, confirming that an intinerant spin-density-wave state precedes the onset of superconductivity at 1.3 K
Numerical study of ground state and low lying excitations of quantum antiferromagnets
International Nuclear Information System (INIS)
Trivedi, N.; Ceperley, D.M.
1989-01-01
The authors have studied, via Green function Monte Carlo (GFMC), the S = 1/2 Heisenberg quantum antiferromagnet in two dimensions on a square lattice. They obtain the ground state energy with only statistical errors E 0 /J = -0.6692(2), the staggered magnetization m † = 0.31(2), and from the long wave length behavior of the structure factor, the spin wave velocity c/c o = 1.14(5). They show that the ground state wave function has long range pair correlations arising from the zero point motion of spin waves
Czech Academy of Sciences Publication Activity Database
Železný, Jakub; Gao, H.; Manchon, A.; Freimuth, F.; Mokrousov, Y.; Zemen, J.; Mašek, Jan; Sinova, Jairo; Jungwirth, Tomáš
2017-01-01
Roč. 95, č. 1 (2017), 1-18, č. článku 014403. ISSN 2469-9950 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016
Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet
Czech Academy of Sciences Publication Activity Database
Šmejkal, Libor; Železný, Jakub; Sinova, Jairo; Jungwirth, Tomáš
2017-01-01
Roč. 118, č. 10 (2017), 1-5, č. článku 106402. ISSN 0031-9007 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : spintronics * topological Dirac fermions * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 8.462, year: 2016
Antiferromagnetic Nd ordering in NdPd{sub 2}Ga{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Doenni, A.; Fischer, P.; Fauth, F.; Zolliker, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bauer, E. [Technische Univ., Vienna (Austria)
1997-09-01
The ternary intermetallic compound NdPd{sub 2}Ga{sub 3} was investigated by powder neutron diffraction: the crystal structure agrees well with the ordered hexagonal PrNi{sub 2}Al{sub 3}-type structure. The antiferromagnetic ordering below T{sub N} 6.5 K corresponds to a propagation vector k = [1/2,0,0]. The ordered magnetic Nd moments of (1.99 {+-} 0.04) {mu}{sub B} at saturation lie in the basal plane due to the crystal-electric field anisotropy and are oriented perpendicular to the propagation vector. (author) 1 fig., 1 tab., 2 refs.
International Nuclear Information System (INIS)
Machado, S.F.; Espirito Santo Univ., Vitoria; Tsallis, C.
1983-01-01
Within a mean field approximation, the influences of anisotropy (in the spin space) and external uniaxial stress on the Heisenberg antiferromagnet in the presence of magnetic field are discussed. The phase diagram evolution (as function of anisotropy and stress) which is obtained, enables a satisfactory overall interpretation of recent experiments on Mn(Br sub(1-x) Cl sub(x)) 2 .4H 2 O, K 2 [FeCl 5 (H 2 O)], CoCl 2 .6H 2 O and (C 2 H 5 NH 3 ) 2 CuCl 4 . (Author) [pt
Troiani, Filippo; Affronte, Marco; Carretta, Stefano; Santini, Paolo; Amoretti, Giuseppe
2005-05-20
We propose a scheme for the implementation of quantum gates which is based on the qubit encoding in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link would result in an effective coupling that vanishes as far as the system is kept in the computational space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown to allow the performing of single-qubit and two-qubit gates without an individual addressing of the rings by means of local magnetic fields.
Optimized RVB states of the 2-d antiferromagnet: ground state and excitation spectrum
Chen, Yong-Cong; Xiu, Kai
1993-10-01
The Gutzwiller projection of the Schwinger-boson mean-field solution of the 2-d spin- {1}/{2} antiferromagnet in a square lattice is shown to produce the optimized, parameter-free RVB ground state. We get -0.6688 J/site and 0.311 for the energy and the staggered magnetization. The spectrum of the excited states is found to be linear and gapless near k≅0. Our calculation suggests, upon breaking of the rotational symmetry, ɛ k≅2JZ r1-γ 2k with Zr≅1.23.
Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model
Energy Technology Data Exchange (ETDEWEB)
Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Ali Pinar, M. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Erdinc, Ahmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2006-04-24
The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made.
Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model
International Nuclear Information System (INIS)
Keskin, Mustafa; Ali Pinar, M.; Erdinc, Ahmet; Canko, Osman
2006-01-01
The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made
Oxygen-induced immediate onset of the antiferromagnetic stacking in thin Cr films on Fe(001)
Energy Technology Data Exchange (ETDEWEB)
Berti, Giulia, E-mail: giulia.berti@polimi.it; Brambilla, Alberto; Calloni, Alberto; Bussetti, Gianlorenzo; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
2015-04-20
We investigated the magnetic coupling of ultra-thin Cr films grown at 600 K on a Fe(001)-p(1 × 1)O substrate by means of spin-polarized photoemission spectroscopy. Our findings show that the expected antiferromagnetic stacking of the magnetization in Cr(001) layers occurs right from the first atomic layer at the Cr/Fe interface. This is at variance with all previous observations in similar systems, prepared in oxygen-free conditions, which always reported on a delayed onset of the magnetic oscillations due to the occurrence of significant chemical alloying at the interface, which is substantially absent in our preparation.
NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Smith, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Reyes, A.P. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Ashey, R. [NHMFL, Florida State University, 1800 E P.Dirac Dr., Tallahassee FL 32310 (United States); Caldwell, T. [NHMFL, Los Alamos, NM 87545 (United States); Prokofiev, A. [Goethe University, 60054 Frankfurt (Germany); Assmus, W. [Goethe University, 60054 Frankfurt (Germany); Teitel' baum, G. [E.K.Zavoiskii Institute for Technical Physics of the RAS, Sibirskii Trakt 10/7, Kazan 420029 (Russian Federation)]. E-mail: grteit@kfti.knc.ru
2006-05-01
Our {sup 51}V NMR measurements in the LiCuVO{sub 4} single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the {sup 51}V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.
NMR studies of incommensurate quantum antiferromagnetic state of LiCuVO 4
Smith, R.; Reyes, A. P.; Ashey, R.; Caldwell, T.; Prokofiev, A.; Assmus, W.; Teitel'baum, G.
2006-05-01
Our 51V NMR measurements in the LiCuVO 4 single crystal reveal that the classical quadrupole split signal transforms upon lowering temperature to the single line with the shape typical for the systems undergoing the phase transition to the incommensurate magnetic state. The angular dependence of such a lineshape together with the anomalies of the 51V nuclear spin relaxation rates make it possible to conclude that the low-temperature magnetic order corresponds to the antiferromagnetic state with the incommensurate modulation along the b-axis of the crystal.
Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets.
Powalski, M; Uhrig, G S; Schmidt, K P
2015-11-13
A quantitative description of magnons in long-range ordered quantum antiferromagnets is presented which is consistent from low to high energies. It is illustrated for the generic S=1/2 Heisenberg model on the square lattice. The approach is based on a continuous similarity transformation in momentum space using the scaling dimension as the truncation criterion. Evidence is found for significant magnon-magnon attraction inducing a Higgs resonance. The high-energy roton minimum in the magnon dispersion appears to be induced by strong magnon-Higgs scattering.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.
2017-10-01
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
The low-temperature phase of the Heisenberg antiferromagnet in a fermionic representation
International Nuclear Information System (INIS)
Azakov, S.; Dilaver, M.; Oztas, A.M.
1999-09-01
Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromagnet on a d-dimensional hypercubical lattice are studied within the fermionic representation when the constraint of a single occupancy condition is taken into account by the method suggested by Popov and Fedotov. Using a saddle point approximation in the path integral approach we discuss not only the leading order but also the fluctuations around the saddle point at one-loop level. The influence of taking into account the single occupancy condition is discussed at all steps. (author)
Imaging current-induced switching of antiferromagnetic domains in CuMnAs
Czech Academy of Sciences Publication Activity Database
Grzybowski, M.J.; Wadley, P.; Edmonds, K. W.; Beardsley, R.; Hills, V.; Campion, R. P.; Gallagher, B. L.; Chauhan, J.S.; Novák, Vít; Jungwirth, Tomáš; Maccherozzi, F.; Dhesi, S.S.
2017-01-01
Roč. 118, č. 5 (2017), 1-5, č. článku 057701. ISSN 0031-9007 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets * domains * x-ray microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 8.462, year: 2016
Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7
DEFF Research Database (Denmark)
Gaulin, B.D.; Reimers, J.N.; Mason, T.E.
1992-01-01
The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...
International Nuclear Information System (INIS)
Zhan-Hai, Dong
2009-01-01
In order to look for the 120° order phase of triangular lattice Heisenberg antiferromagnet with long range couplings, the Hamiltonian is diagonalized with the Bogoliubov transformation within linear spin-wave approximation. It is found that when the long range spin couplings are taken into account, the transformation is valid only for certain regions in the spin coupling parameter space. These regions just correspond to the 120° (or Néel) ordered phase, which is very different from square lattice in terms of shape, size and topological property
Mechanisms for spin supersolidity in S=(1/2) spin-dimer antiferromagnets
International Nuclear Information System (INIS)
Picon, J.-D.; Albuquerque, A. F.; Schmidt, K. P.; Laflorencie, N.; Troyer, M.; Mila, F.
2008-01-01
Using perturbative expansions and the contractor renormalization (CORE) algorithm, we obtain effective hard-core bosonic Hamiltonians describing the low-energy physics of S=1/2 spin-dimer antiferromagnets known to display supersolid phases under an applied magnetic field. The resulting effective models are investigated by means of mean-field analysis and quantum Monte Carlo simulations. A ''leapfrog mechanism,'' through means of which extra singlets delocalize in a checkerboard-solid environment via correlated hoppings, is unveiled that accounts for the supersolid behavior
Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires
Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.
2016-04-01
Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.
International Nuclear Information System (INIS)
Fukushima, Akio; Yakushiji, Kay; Konoto, Makoto; Kubota, Hitoshi; Imamura, Hiroshi; Yuasa, Shinji
2016-01-01
We newly developed a magnetic memory cell having multi-bit function. The memory cell composed of a perpendicularly magnetized magnetic tunnel junction (MB-pMTJ) and a synthetic antiferromagnetic reference layer. The multi-bit function is realized by combining the freedom of states of the magnetic free layer and that in the antiferromagnetically coupled reference layer. The structure of the reference layer is (FeB/Ta/[Co/Pt]_3)/Ru/([Co/Pt]_6); the top and the bottom layers are coupled through Ru layer where the reference layer has two degrees of freedom of a head-to-head and a bottom-to-bottom magnetic configuration. A four-state memory cell is realized by combination of both degrees of freedom. The states in the reference layer however is hardly detected by the total resistance of MB-pMTJ, because the magnetoresistance effect in the reference layer is negligibly small. That implies that the resistance values for the different states in the reference layer are degenerated. On the other hand, the two different states in the reference layer bring different stray fields to the free layer, which generate two different minor loop with different switching fields. Therefore, the magnetic states in the reference layer can be differentiated by the two-step reading, before and after applying the appropriately pulsed magnetic field which can identify the initial state in the reference layer. This method is similar to distinguishing different magnetic states in an in-plane magnetized spin-valve element. We demonstrated that four different states in the MB-pMTJ can be distinguished by the two-step read-out. The important feature of the two-step reading is a practically large operation margins (large resistance change in reading) which is equal to that of a single MTJ. Even though the two-step reading is a destructive method by which 50% of the magnetic state is changed, this MB-pMTJ is promising for high density non-volatile memory cell with a minor cost of operation speed
Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF_{3}
DEFF Research Database (Denmark)
Coldea, R.; Cowley, R.A.; Perring, T.G.
1998-01-01
component evolves below T-N into the longitudinal susceptibility identified in an earlier polarized neutron experiment. The intensity and energy width of the longitudinal scattering decrease on cooling below T-N. Down to the lowest temperatures where the longitudinal susceptibility could be measured......The magnetic critical scattering of the near-ideal three-dimensional Heisenberg antiferromagnet (AF) RbMnF3 has been remeasured using neutron scattering. The critical dynamics has been studied in detail in the temperature range 0.77T(N)
Spin-waves in antiferromagnetic single crystal LiFePO$_4$
Li, Jiying; Garlea, Vasile O.; Zarestky, Jerel L.; Vaknin, David
2005-01-01
Spin-wave dispersions in the antiferromagnetic state of single crystal LiFePO$_4$ were determined by inelastic neutron scattering measurements. The dispersion curves measured from the (010) reflection along both {\\it a}$^\\ast$ and {\\it b}$^\\ast$ reciprocal-space directions reflect the anisotropic coupling of the layered Fe$^{2+}$ (S = 2) spin-system. The spin-wave dispersion curves were theoretically modeled using linear spin-wave theory by including in the spin-Hamiltonian in-plane nearest- ...
Exchange bias in antiferromagnetic coupled Fe3O4+Cr2O3 nanocomposites
International Nuclear Information System (INIS)
Liu, X H; Cui, W B; Lv, X K; Liu, W; Zhao, X G; Li, D; Zhang, Z D
2008-01-01
Exchange bias (EB) and magnetic properties of ferrimagnetic (FI) Fe 3 O 4 and antiferromagnetic (AFM) Cr 2 O 3 nanocomposites prepared by mechanical alloying have been investigated. A large EB field of 2.2 kOe at 10 K is observed in one of the nanocomposites, which may be related to the uncompensated and pinned AFM spins at the interface between FI and AFM phases of the nanocomposites. The EB field varies with the strength of cooling field and the content of the Cr 2 O 3 phase, the phenomena observed are explained in terms of interfacial exchange interaction between the two phases
Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander
2016-03-01
This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.
Mn55 NMR investigation of the correlation between antiferromagnetism and ferroelectricity in TbMn2O5
Baek, S.-H.; Reyes, A. P.; Hoch, M. J. R.; Moulton, W. G.; Kuhns, P. L.; Harter, A. G.; Hur, N.; Cheong, S.-W.
2006-10-01
The correlation between antiferromagnetism and ferroelectricity in magnetoelectric multiferroic TbMn2O5 has been investigated by zero-field Mn55 NMR. Antiferromagnetic transition near 40K is found to be first order. When an external field up to 7T is applied along the easy a axis, a dramatic change in the signal intensity is observed which is hysteretic in nature. Such effects are absent for H along the b and c axes. The observed field-induced signal enhancement is attributed to antiferromagnetic domain walls which are strongly coupled to ferroelectric domain walls. Experimental data suggest that this may be related to the field-induced ferromagnetic ordering of the Tb ion.
Continuum limit of gl(M vertical stroke N) spin chains
International Nuclear Information System (INIS)
Candu, Constantin
2011-03-01
We study the spectrum of an integrable antiferromagnetic Hamiltonian of the gl(M vertical stroke N) spin chain of alternating fundamental and dual representations. After extensive numerical analysis, we identify the vacuum and low lying excitations and with this knowledge perform the continuum limit, while keeping a finite gap. All antiferromagnetic gl(n+N vertical stroke N) spin chains with n>0 and N≠0 are shown to possess in the continuum limit 2n-2 multiplets of massive particles which scatter with gl(n) Gross-Neveu like S-matrices, namely their eigenvalues do not depend on N. We argue that the continuum theory is the gl(M vertical stroke N) Gross-Neveu model, that is the massive deformation of the gl(M vertical stroke N) 1 Wess-Zumino-Witten model. As we can see ion the example of gl(2m vertical stroke 1) spin chains, the full particle spectrum is much richer. Our analysis suggests that for a complete characterization of the latter it is not enough to restrict to large volume calculations, as we do in this work. (orig.)
International Nuclear Information System (INIS)
Paulinelli, H G; De Souza, S M; Rojas, Onofre
2013-01-01
In this paper we explore the entanglement in an orthogonal dimer-plaquette Ising–Heisenberg chain, assembled between plaquette edges, also known as orthogonal dimer plaquettes. The quantum entanglement properties involving an infinite chain structure are quite important, not only because the mathematical calculation is cumbersome but also because real materials are well represented by infinite chains. Using the local gauge symmetry of this model, we are able to map onto a simple spin-1 like Ising and spin-1/2 Heisenberg dimer model with single effective ion anisotropy. Thereafter this model can be solved using the decoration transformation and transfer matrix approach. First, we discuss the phase diagram at zero temperature of this model, where we find five ground states, one ferromagnetic, one antiferromagnetic, one triplet–triplet disordered and one triplet–singlet disordered phase, beside a dimer ferromagnetic–antiferromagnetic phase. In addition, we discuss the thermodynamic properties such as entropy, where we display the residual entropy. Furthermore, using the nearest site correlation function it is possible also to analyze the pairwise thermal entanglement for both orthogonal dimers. Additionally, we discuss the threshold temperature of the entangled region as a function of Hamiltonian parameters. We find a quite interesting thin reentrance threshold temperature for one of the dimers, and we also discuss the differences and similarities for both dimers. (paper)
Ground state properties of a spin chain within Heisenberg model with a single lacking spin site
International Nuclear Information System (INIS)
Mebrouki, M.
2011-01-01
The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.
Continuum limit of gl(M vertical stroke N) spin chains
Energy Technology Data Exchange (ETDEWEB)
Candu, Constantin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2011-03-15
We study the spectrum of an integrable antiferromagnetic Hamiltonian of the gl(M vertical stroke N) spin chain of alternating fundamental and dual representations. After extensive numerical analysis, we identify the vacuum and low lying excitations and with this knowledge perform the continuum limit, while keeping a finite gap. All antiferromagnetic gl(n+N vertical stroke N) spin chains with n>0 and N{ne}0 are shown to possess in the continuum limit 2n-2 multiplets of massive particles which scatter with gl(n) Gross-Neveu like S-matrices, namely their eigenvalues do not depend on N. We argue that the continuum theory is the gl(M vertical stroke N) Gross-Neveu model, that is the massive deformation of the gl(M vertical stroke N){sub 1} Wess-Zumino-Witten model. As we can see ion the example of gl(2m vertical stroke 1) spin chains, the full particle spectrum is much richer. Our analysis suggests that for a complete characterization of the latter it is not enough to restrict to large volume calculations, as we do in this work. (orig.)
Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I
Someya, Yoshiko
1981-12-01
The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.
Turov, Evgenii A.; Shavrov, Vladimir G.
1983-07-01
This review of some aspects of the magnetoacoustics of ferro- and antiferromagnetic materials has been written in connection with the 25th anniversary of the rise of this field of physics of magnetic phenomena. Primary attention is paid to relatively new problems that have not been reflected in the existing monographs and reviews. The topic is a group of linear magnetoacoustic effects that manifest spontaneous symmetry breaking caused by magnetic ordering in a system of two coupled fields: the magnetization field M (r) and the deformation field uij(r). To some extent these effects are analogous to the Higgs effect in the theory of elementary particles (the Higgs mechanism of the origin of the mass of a particle) or the Meissner effect in the theory of superconductivity. A direct analog of the stated effects is the so-called magnetoelastic gap in the magnon spectrum, while an analog of an accompanying effect is the softening of the quasiacoustic modes interacting with it (up to the vanishing of the corresponding dynamic elastic moduli). However, a characteristic feature of such effects in crystalline (anisotropic) magnetic materials is that they are manifested mainly near points of magnetic (spin-reorientation) phase transitions. This review treats the coupled magnetoelastic waves in ferro- and antiferromagnetic materials of different types that show phase transitions with respect to temperature, magnetic field, or pressure.
Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet
DEFF Research Database (Denmark)
Lefmann, K.; Hedegård, P.
1994-01-01
In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...
Magnetic anisotropy of the antiferromagnetic ring [Cr8F8Piv16].
van Slageren, Joris; Sessoli, Roberta; Gatteschi, Dante; Smith, Andrew A; Helliwell, Madeleine; Winpenny, Richard E P; Cornia, Andrea; Barra, Anne-Laure; Jansen, Aloysius G M; Rentschler, Eva; Timco, Grigore A
2002-01-04
A new tetragonal (P42(1)2) crystalline form of [Cr8F8Piv16] (HPiv = pivalic acid, trimethyl acetic acid) is reported. The ring-shaped molecules, which are aligned in a parallel fashion in the unit cell, form almost perfectly planar, regular octagons. The interaction between the CrIII ions is antiferromagnetic (J = 12 cm(-1)) which results in a S = 0 spin ground state. The low-lying spin excited states were investigated by cantilever torque magnetometry (CTM) and high-frequency EPR (HFEPR). The compound shows hard-axis anisotropy. The axial zero-field splitting (ZFS) parameters of the first two spin excited states (S = 1 and S = 2, respectively) are D1 = 1.59(3) cm(-1) or 1.63 cm(-1) (from CTM and HFEPR, respectively) and D2 = 0.37 cm(-1) (from HFEPR). The dipolar contributions to the ZFS of the S = 1 and S = 2 spin states were calculated with the point dipolar approximation. These contributions proved to be less than the combined single-ion contributions. Angular overlap model calculations that used parameters obtained from the electronic absorption spectrum, showed that the unique axis of the single-ion ZFS is at an angle of 19.3(1) degrees with respect to the ring axis. The excellent agreement between the experimental and the theoretical results show the validity of the used methods for the analysis of the magnetic anisotropy in antiferromagnetic CrIII rings.
Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1:1 complexes.
Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Poussereau, Sandrine; Sorace, Lorenzo
2004-04-07
We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.
Novel magnetic hydrogen sensing: a case study using antiferromagnetic haematite nanoparticles
International Nuclear Information System (INIS)
Punnoose, Alex; Reddy, K M; Thurber, Aaron; Hays, Jason; Engelhard, Mark H
2007-01-01
Hydrogen sensing is a critical component of safety to address widespread public perceptions of the hazards of production, storage, transportation and use of hydrogen in proposed future automobiles and in various other applications. A nanoscale magnetic hydrogen sensor is proposed based on the experimental observation of systematically varying the saturation magnetization and remanence of nanoscale antiferromagnetic haematite with hydrogen flow. The saturation magnetization and remanence of the nanoscale haematite sample showed an increase of one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1-10% range and at 575 K, suggesting that a practical magnetic hydrogen sensor could be developed using this material and the novel magnetic sensing method. Thermogravimetric analysis of the haematite sample shows significant mass loss when hydrogen gas is introduced. X-ray diffraction and x-ray photoelectron spectroscopy studies ruled out any impurity phase formation as a result of gas-sample interaction. This work thus facilitates the use of the magnetic properties of an antiferromagnetic material as gas sensing parameters, thus exploring the concept of 'magnetic gas sensing'
Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures.
Khan, U; Li, W J; Adeela, N; Irfan, M; Javed, K; Wan, C H; Riaz, S; Han, X F
2016-03-21
The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3[combining macron]. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ∼25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.
Neutron diffraction study of antiferromagnetic ErNi3Ga9 in magnetic fields
Ninomiya, Hiroki; Sato, Takaaki; Matsumoto, Yuji; Moyoshi, Taketo; Nakao, Akiko; Ohishi, Kazuki; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We report specific heat, magnetization, magnetoresistance, and neutron diffraction measurements of single crystals of ErNi3Ga9. This compound crystalizes in a chiral structure with space group R 32 . The erbium ions form a two-dimensional honeycomb structure. ErNi3Ga9 displays antiferromagnetic order below 6.4 K. We determined that the magnetic structure is slightly amplitude-modulated as well as antiferromagnetic with q = (0 , 0 , 0.5) . The magnetic properties are described by an Ising-like model in which the magnetic moment is always along the c-axis owing to the large uniaxial anisotropy caused by the crystalline electric field effect in the low temperature region. When the magnetic field is applied along the c-axis, a metamagnetic transition is observed around 12 kOe at 2 K. ErNi3Ga9 possesses crystal chirality, but the antisymmetric magnetic interaction, the so-called Dzyaloshinskii-Moriya (DM) interaction, does not contribute to the magnetic structure, because the magnetic moments are parallel to the DM-vector.
Photoemission electron microscopy for the study of ferromagnetic and antiferromagnetic materials
International Nuclear Information System (INIS)
Anders, Simone; Scholl, Andreas; Nolting, Frithjof; Padmore, Howard A.; Luening, Jan; Stoehr, Joachim; Scheinfein, Michael
2000-01-01
Photoemission electron microscopy (PEEM) is a full field imaging technique where x-ray exited electrons are used to form an image of the sample surface as a function of the x-ray photon energy and polarization. Contrast in PEEM can be due to a number of mechanisms including topographical, work function, elemental, chemical, polarization, x-ray magnetic circular and linear dichroism contrast. This wide range of contrast mechanisms together with the surface sensitivity and high spatial resolution make PEEM a very useful tool for the study of magnetic materials. PEEM-II is a new microscope installed at the bending magnet beamline 7.3.1.1 of the Advanced Light Source. In the present paper we describe the design and features of PEEM-II, and show results of our recent studies. Using PEEM and its elemental specificity, it is possible to investigate the various layers in magnetic multilayer structures independently. The experiments described here include the investigation of the switching behavior of magnetic multilayer structures that are of interest for magnetic RAM applications. The study of antiferromagnetic surfaces and thin films are of great importance for devices based on the effect of exchange bias. To date, studies at high-spatial-resolution of exchange bias systems has been difficult because of the lack of appropriate investigation methods. Here we demonstrate how PEEM has been used to image antiferromagnetic structure on surfaces with high spatial resolution
Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
Werth, A.; Kopietz, P.; Tsyplyatyev, O.
2018-05-01
We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.
Energy Technology Data Exchange (ETDEWEB)
Mohapatra, Rasmita, E-mail: rmrmmohapatra@gmail.com [P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore, Odisha 756019 (India); Rout, G.C., E-mail: gcr@iopb.res.in [Physics Enclave, Plot no-664/4825, Lane-4A, Shree Vihar, Patia, Bhubaneswar, Odisha 751024 (India)
2015-05-15
Highlights: • We considered here the interplay of antiferromagnetism (AFM) and Superconductivity (SC) with d-wave pairing symmetry in presence of impurity effect. • The tunneling conductance explains the multiple peaks and dip-hump structure. • It is observed that AFM coupling enhances the superconducting transition temperature. • The low temperature specific heat anomaly due to impurity atoms. - Abstract: We present here a model Hamiltonian to study the interplay between staggered magnetic field and the superconductivity with d-wave pairing symmetry in presence of hybridization between impurity f-electrons of rare-earth ions and 3d-electrons of copper ions. The staggered field and superconducting (SC) gaps are calculated by Green’s function technique and solved self-consistently. The coupling constants are compared using s-wave and d-wave pairings. The strength of hybridization suppresses the magnitude of the gaps; while antiferromagnetic coupling enhances the superconducting transition temperature, but suppresses the Neel temperature. The density of states (DOS) representing tunneling conductance shows complex character with impurity level lying at the Fermi level. The electronic specific heat explains prototype heavy fermion behavior in cuprate systems at low temperatures.
International Nuclear Information System (INIS)
Mohapatra, Rasmita; Rout, G.C.
2015-01-01
Highlights: • We considered here the interplay of antiferromagnetism (AFM) and Superconductivity (SC) with d-wave pairing symmetry in presence of impurity effect. • The tunneling conductance explains the multiple peaks and dip-hump structure. • It is observed that AFM coupling enhances the superconducting transition temperature. • The low temperature specific heat anomaly due to impurity atoms. - Abstract: We present here a model Hamiltonian to study the interplay between staggered magnetic field and the superconductivity with d-wave pairing symmetry in presence of hybridization between impurity f-electrons of rare-earth ions and 3d-electrons of copper ions. The staggered field and superconducting (SC) gaps are calculated by Green’s function technique and solved self-consistently. The coupling constants are compared using s-wave and d-wave pairings. The strength of hybridization suppresses the magnitude of the gaps; while antiferromagnetic coupling enhances the superconducting transition temperature, but suppresses the Neel temperature. The density of states (DOS) representing tunneling conductance shows complex character with impurity level lying at the Fermi level. The electronic specific heat explains prototype heavy fermion behavior in cuprate systems at low temperatures
NMR studies of the helical antiferromagnetic compound EuCo2P2
Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.
2018-05-01
In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.
'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings
International Nuclear Information System (INIS)
Meleshenko, Peter A.; Klinskikh, Alexander F.
2011-01-01
We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.
Two-dimensional magnetism in the triangular antiferromagnet NiGa2S4
International Nuclear Information System (INIS)
Nambu, Yusuke
2013-01-01
At sufficiently low temperatures, electron spins in normal magnets generally order into some fashion, for instance, ferromagnetic and antiferromagnetic. Geometrical frustration and/or reduced dimensionality can suppress such conventional orders, and occasionally induce unknown states of matter. This is the case for the two-dimensional (2D) triangular antiferromagnet Ni(Ga 2 S 4 , in which S=1 nickel spins do not order, instead show an exotic magnetism. We found (1) a resonant critical slowing down toward T*=8.5 K followed by a viscous spin liquid behavior, and (2) a spin-size dependent ground state. To elucidate (1), spin dynamics ranging from 10 -13 to 10 0 seconds were quantitatively explored through the experimental techniques such as inelastic neutron scattering, backscattering, neutron spin echo, ac and nonlinear susceptibilities. The finding of (2) is evidenced by impurity effects. Integer spins substituted systems such as zinc and iron ions retain a quadratic temperature dependence of the magnetic specific heat as for the parent compound. However, substitutions of half-odd integer spins, cobalt and manganese ions, eventually induce a distinct behavior, indicating an importance of integer size of spins to stabilize the 2D magnetism realized in NiGa 2 S 4 . The article gives our experimental findings and as well as some relevant theoretical scenarios. (author)
Antiferromagnetic Mott insulating state in the single-component molecular material Pd(tmdt)2
Takagi, Rina; Sari, Dita Puspita; Mohd-Tajudin, Saidah Sakinah; Ashi, Retno; Watanabe, Isao; Ishibashi, Shoji; Miyagawa, Kazuya; Ogura, Satomi; Zhou, Biao; Kobayashi, Akiko; Kanoda, Kazushi
2017-12-01
A family of compounds built by a single molecular species, M (tmdt) 2, with a metal ion, M , and organic ligands, tmdt, affords diverse electronic phases due to M -dependent interplays between d electrons in M , and π electrons in tmdt. We investigated the spin state in Pd (tmdt) 2 , a π -electron system without a d -electron contribution, through 1H nuclear magnetic resonance (NMR) and muon-spin resonance experiments. The temperature profiles of the NMR linewidth, relaxation rate, and asymmetry parameter in muon decay show an inhomogeneous antiferromagnetic order with moments distributed around ˜0.1 μB that onsets at above 100 K. This result provides an example of the antiferromagnetic order in a pure π -electron system in M (tmdt) 2, and it demonstrates that correlation among the π electrons is so strong as to give the Néel temperature over 100 K. The small and inhomogeneous moments are understandable as the crucial disorder effect in correlated electrons situated near the Mott transition.
Raman scattering in a Heisenberg S = 1/2 antiferromagnet on the anisotropic triangular lattice
International Nuclear Information System (INIS)
Perkins, Natalia; Brenig, Wolfram
2009-01-01
We investigate two-magnon Raman scattering from the S = 1/2 Heisenberg antiferromagnet on the triangular lattice (THAF), considering both isotropic and anisotropic exchange interactions. We find that the Raman intensity for the isotropic THAF is insensitive to the scattering geometry, while both the line profile and the intensity of the Raman response for the anisotropic THAF shows a strong dependence on the scattering geometry. For the isotropic case we present an analytical and numerical study of the Raman intensity including both the effect of renormalization of the one-magnon spectrum by 1 = S corrections and final-state magnonmagnon interactions. The bare Raman intensity displays two peaks related to one-magnon van-Hove singularities. We find that 1 = S self-energy corrections to the one-magnon spectrum strongly modify this intensity profile. The central Raman-peak is significantly enhanced due to plateaus in the magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral support narrows considerably. Additionally we investigate final-state interactions by solving the Bethe-Salpeter equation to O(1 = S). In contrast to collinear antiferromagnets, the non-collinear nature of the magnetic ground state leads to an irreducible magnon scattering which is retarded and non-separable already to lowest order. We show that final-state interactions lead to a rather broad Raman-continuum centered around approximately twice the 'roton'-energy.
RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet
Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.
2016-03-01
We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.
Direct evidence of spin frustration in the fcc antiferromagnet NiS sub 2
Matsuura, M; Endoh, Y; Hirota, K; Yamada, K
2002-01-01
NiS sub 2 is a well-known Mott insulator with anomalous antiferromagnetic long-range order of coexistent type I (Q sub M =(1,0,0), T sub N sub 1 =40 K) and type II (Q sub M =(1/2,1/2,1/2), T sub N sub 2 =30 K). Extensive neutron-scattering measurements reveal that magnetism in NiS sub 2 is governed by geometrical spin frustration, resulting in magnetic diffuse scattering extending along the fcc zone boundary. Although the diffuse scattering exists at temperatures as high as 250 K (6T sub N sub 1), it disappears rapidly below T sub N sub 2 , associated with minor crystal distortion. We observed a clear energy gap in addition to the low-energy spin-wave excitation at significantly below 30 K, and obtain evidence that degeneracy due to the coexistence of the two types of antiferromagnetism is relieved in the ground state via the reduction in symmetry due to distortion. (orig.)
Electrical switching of antiferromagnets via strongly spin-orbit coupled materials
Li, Xi-Lai; Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook
2017-01-01
Electrically controlled ultra-fast switching of an antiferromagnet (AFM) is shown to be realizable by interfacing it with a material of strong spin-orbit coupling. The proximity interaction between the sublattice magnetic moments of a layered AFM and the spin-polarized free electrons at the interface offers an efficient way to manipulate antiferromagnetic states. A quantitative analysis, using the combination with a topological insulator as an example, demonstrates highly reliable 90° and 180° rotations of AFM magnetic states under two different mechanisms of effective torque generation at the interface. The estimated switching speed and energy requirement are in the ps and aJ ranges, respectively, which are about two-three orders of magnitude better than the ferromagnetic counterparts. The observed differences in the magnetization dynamics may explain the disparate characteristic responses. Unlike the usual precessional/chiral motions in the ferromagnets, those of the AFMs can essentially be described as a damped oscillator with a more direct path. The impact of random thermal fluctuations is also examined.
Competing ferromagnetic and anti-ferromagnetic interactions in iron nitride ζ-Fe2N
Rao, K. Sandeep; Salunke, H. G.
2018-03-01
The paper discusses the magnetic state of zeta phase of iron nitride viz. ζ-Fe2N on the basis of spin polarized first principles electronic structure calculations together with a review of already published data. Results of our first principles study suggest that the ground state of ζ-Fe2N is ferromagnetic (FM) with a magnetic moment of 1.528μB on the Fe site. The FM ground state is lower than the anti-ferromagnetic (AFM) state by 8.44 meV and non-magnetic (NM) state by 191 meV per formula unit. These results are important in view of reports which claim that ζ-Fe2N undergoes an AFM transition below 10 K and others which do not observe any magnetic transition up to 4.2 K. We argue that the experimental results of AFM transition below 10 K are inconclusive and we propose the presence of competing FM and AFM superexchange interactions between Fe sites mediated by nitrogen atoms, which are consistent with Goodenough-Kanamori-Anderson rules. We find that the anti-ferromagnetically coupled Fe sites are outnumbered by ferromagnetically coupled Fe sites leading to a stable FM ground state. A Stoner analysis of the results also supports our claim of a FM ground state.
Xu, Lei; Yang, Ming; Shen, Lei; Zhou, Jun; Zhu, Tao; Feng, Yuan Ping
2018-01-01
Lifting the valley degeneracy is an efficient way to achieve valley polarization for further valleytronics operations. In this Rapid Communication, we demonstrate that a large valley splitting can be obtained in monolayer transition metal dichalcogenides by magnetic proximity coupling to an insulating antiferromagnetic substrate. As an example, we perform first-principles calculations to investigate the electronic structures of monolayer WS2 on the MnO(111) surface. Our calculation results suggest that a large valley splitting of 214 meV, which corresponds to a Zeeman magnetic field of 1516 T, is induced in the valence band of monolayer WS2. The magnitude of valley splitting relies on the strength of interfacial orbital hybridization and can be tuned continually by applying an external out-of-plane pressure and in-plane strain. More interestingly, we find that both spin and valley index will flip when the magnetic ordering of MnO is reversed. Besides, owing to the sizable Berry curvature and time-reversal symmetry breaking in the WS2/MnO heterostructure, a spin- and valley-polarized anomalous Hall current can be generated in the presence of an in-plane electric field, which allows one to detect valleys by the electrical approach. Our results shed light on the realization of valleytronic devices using the antiferromagnetic insulator as the substrate.
Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te
Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng
2018-02-01
Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.
Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4
Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.
1958-11-26
The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.
Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach
International Nuclear Information System (INIS)
Liu Guibin; Liu Banggui
2009-01-01
We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature T N and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for T N and determine our temperature-dependent average spin from zero temperature to T N in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature T N = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero T N , and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.
Pressure-induced antiferromagnetic superconductivity in CeNiGe3: A Ge73-NQR study under pressure
International Nuclear Information System (INIS)
Harada, A.; Kawasaki, S.; Mukuda, H.; Kitaoka, Y.; Thamizhavel, A.; Okuda, Y.; Settai, R.; Onuki, Y.; Itoh, K.M.; Haller, E.E.; Harima, H.
2007-01-01
We report on antiferromagnetic (AF) properties of pressure-induced superconductivity in CeNiGe 3 via the Ge73 nuclear-quadrupole-resonance (NQR) measurements under pressure (P). The NQR-spectrum measurements have revealed that the incommensurate antiferromagnetic ordering is robust against increasing P with the increase of ordered moment and ordering temperature. Nevertheless the measurements of nuclear spin-lattice relaxation rate (1/T 1 ) have pointed to the onset of superconductivity as a consequence of Ce-4f electrons delocalized by applying P. The emergence of superconductivity under the development of AF order suggests that a novel type of superconducting mechanism works in this compound
Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy
Lange, Florian; Ejima, Satoshi; Fehske, Holger
2018-02-01
Improving matrix-product state techniques based on the purification of the density matrix, we are able to accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion anisotropy in the Haldane, large-D , and antiferromagnetic phases. Distinct thermally activated scattering processes make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches. In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important and strongly enhances the spectral weight for momentum transfer π .
Editorial: Supply Chain Management
Directory of Open Access Journals (Sweden)
Dimitrios Aidonis
2017-05-01
Full Text Available This special issue has followed up the 3rd Olympus International Conference on Supply Chains held on Athens Metropolitan Expo, November 7 & 8 2015, Greece. The Conference was organized by the Department of Logistics Technological Educational Institute of Central Macedonia, in collaboration with the: a Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH, b Greek Association of Supply Chain Management (EEL of Northern Greece and the c Supply Chain & Logistics Journal. During the 2-Days Conference more than 60 research papers were presented covering the following thematic areas: (i Transportation, (ii Best Practices in Logistics, (iii Information and Communication Technologies in Supply Chain Management, (iv Food Logistics, (v New Trends in Business Logistics, and (vi Green Supply Chain Management. Three keynote invited speakers addressed interesting issues for the Operational Research, the Opportunities and Prospects of Greek Ports chaired Round Tables with other Greek and Foreign Scientists and Specialists.
Supply Chain Management og Supply Chain costing
DEFF Research Database (Denmark)
Nielsen, Steen; Mortensen, Ole
2002-01-01
Formålet med denne artikel er at belyse de muligheder som ligger i at integrere virksomhedens økonomiske styring med begrebet Supply Chain Management (SCM). Dette søges belyst ved først at beskrive den teoretiske ramme, hvori SCM indgår. Herefter analyseres begrebet Supply Chain Costing (SCC) som...... Århus. Et resultat er, at via begrebet Supply Chain Costing skabes der mulighed for at måle logistikkædens aktiviteter i kr./øre. Anvendelsen af denne information har også strategisk betydning for at kunne vælge kunde og leverandør. Ved hjælp af integrationen skabes der også helt nye mulighed...
Vieraşu, T.; Bălăşescu, M.
2011-01-01
In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.
Directory of Open Access Journals (Sweden)
Vieraşu, T.
2011-01-01
Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.
janssen, Anja; Segers, Johan
2013-01-01
The extremes of a univariate Markov chain with regularly varying stationary marginal distribution and asymptotically linear behavior are known to exhibit a multiplicative random walk structure called the tail chain. In this paper we extend this fact to Markov chains with multivariate regularly varying marginal distributions in Rd. We analyze both the forward and the backward tail process and show that they mutually determine each other through a kind of adjoint relation. In ...
Sukkel, W.; Hommes, M.
2009-01-01
In their pursuit of growth and professionalisation, the Dutch organic sector focuses primarily on market development. But how do you stimulate the market for organic foods? This is the subject of many research projects concerning market, consumer preferences and the supply chain. These projects focus specifically at consumer purchasing behaviour, product development, supply chain formation and minimising cost price. As a rule, this research takes place in close cooperation with chain actors
Supply chain planning classification
Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans
2001-10-01
Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.
DEFF Research Database (Denmark)
Wieland, Andreas; Handfield, Robert B.
Supply chain management has made great strides in becoming a discipline with a standalone body of theories. As part of this evolution, researchers have sought to embed and integrate observed supply chain management phenomena into theoretical statements. In our review, we explore where we have been...
Doyle, John Kevin
2010-01-01
Critical Chains project management focuses on holding buffers at the project level vs. task level, and managing buffers as a project resource. A number of studies have shown that Critical Chain project management can significantly improve organizational schedule fidelity (i.e., improve the proportion of projects delivered on time) and reduce…
DEFF Research Database (Denmark)
Wæhrens, Brian Vejrum; Slepniov, Dmitrij
2015-01-01
This workbook is recommended for the attention of students of and managers in Danish small and medium sized enterprises (SMEs). Danish SMEs are currently facing a number of key challenges related to their position in global value chains. This book provides an insight into value chain management t...
DEFF Research Database (Denmark)
Justesen, Jørn
2005-01-01
A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly.......A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly....
Czech Academy of Sciences Publication Activity Database
Khmelevskyi, S.; Shick, Alexander; Mohn, P.
2011-01-01
Roč. 83, č. 22 (2011), "224419-1"-"224419-5" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA AV ČR IAA100100912 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic anisotropy * antiferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011
Guo, Guang-Yu; Wang, Tzu-Cheng
2017-12-01
Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.
Spin-Resolved Photoemission on Anti-Ferromagnets: Direct Observation of Zhang-Rice Singlets in CuO
Tjeng, L.H.; Sinkovic, B.; Brookes, N.B.; Goedkoop, J.B.; Hesper, R.; Pellegrin, E.; Groot, F.M.F. de; Altieri, S.; Hulbert, S.L.; Shekel, E.; Sawatzky, G.A.
1997-01-01
We demonstrate that it is possible to obtain spin-resolved valence band spectra with a very high degree of spin polarization from antiferromagnetic transition metal materials if the excitation light is circularly polarized and has an energy close to the cation 2p3/2 (L3) white line. We are able to
Wijngaard, Jan; Haas, C.; Groot, R.A. de
1992-01-01
Self-consistent spin-polarized energy-band calculations have been performed for Mn2Sb for a ferrimagnetic (FI), ferromagnetic (F), and antiferromagnetic (AF) spin alignment. The calculated local moments on the two types of Mn atoms are in agreement with values obtained from neutron diffraction for
Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7
Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim
2016-12-01
We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.
Unconventional antiferromagnetic correlations of the doped Haldane gapsystem Y 2 BaNi 1 - x Zn x O 5
Villar, V.; Mélin, R.; Paulsen, C.; Souletie, J.; Janod, E.; Payen, C.
2002-01-01
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ(T) C/(Θ + T) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the ``impurity'' susceptibility (T) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T (T) = Cimp 1 + Timp/T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T (T) = A ln(T/Tc), where Tc increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility (T) which suggests the existence of antiferromagnetic correlations at very low temperature.
Integrated supply chain risk management
Riaan Bredell; Jackie Walters
2007-01-01
Integrated supply chain risk management (ISCRM) has become indispensable to the theory and practice of supply chain management. The economic and political realities of the modern world require not only a different approach to supply chain management, but also bold steps to secure supply chain performance and sustainable wealth creation. Integrated supply chain risk management provides supply chain organisations with a level of insight into their supply chains yet to be achieved. If correctly ...
Supply Chain Connectivity: Enhancing Participation in the Global Supply Chain
Patalinghug, Epictetus E.
2015-01-01
Supply chain connectivity is vital for the efficient flow of trade among APEC economies. This paper reviews the literature and supply chain management, describes the barriers to enhancing participation in global supply chain, analyzes the various measures of supply chain performance, and suggests steps for the Philippines to fully reap the benefits of the global value chain.
International Nuclear Information System (INIS)
Martinez, E.; Vega, A.; Robles, R.; Vazquez de Parga, A.L.
2005-01-01
We present a theoretical study of the magnetic properties of thin Mn films of 6 and 7 monolayers supported on Fe(001). The ab-initio tight binding linear muffin tin orbital (TB-LMTO) method was used to investigate the competition between ferromagnetic (F) and antiferromagnetic (AF) couplings within the system. We found several collinear magnetic solutions that may coexist at room temperature. The most stable configurations are characterized by AF coupling between the surface and subsurface Mn layers together with F coupling between Mn and Fe at the interface. The ground state arrangements for the 6 and 7 Mn films display opposite sign of the surface magnetic moment relative to the Fe substrate. The implications of these results in the possible onset of non-collinear magnetism when a step is present at the interface are discussed in comparison with Cr/Fe systems where non-collinear magnetism has been recently reported
Hu, Jiangping; Ding, Hong
2012-01-01
Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479