WorldWideScience

Sample records for antiferromagnet-based nuclear spin

  1. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction

    Czech Academy of Sciences Publication Activity Database

    Park, B.G.; Wunderlich, Joerg; Martí, X.; Holý, V.; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Shick, Alexander; Jungwirth, Tomáš

    2011-01-01

    Roč. 10, č. 5 (2011), s. 347-351 ISSN 1476-1122 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 32.841, year: 2011

  2. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  3. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  5. Nuclear spin-off

    International Nuclear Information System (INIS)

    1981-11-01

    This booklet gives examples of 'nuclear spin off', from research programmes carried out for the UKAEA, under the following headings; non destructive testing; tribology; environmental protection; flow measurement; material sciences; mechanical engineering; marine services; biochemical technology; electronic instrumentation. (U.K.)

  6. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis,

  7. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. High-spin nuclear traps

    International Nuclear Information System (INIS)

    Walker, P.; Dracoulis, G.

    1994-01-01

    The reaction pathways in stars, where all the heavy elements in the Universe were formed, are inextricably linked with isomers that live long enough to capture a neutron or proton before they decay. These isomers usually have excitation energies below 0.1 MeV. It is also possible to find highly excited isomers, with several MeV of excitation energy, that are trapped because of their large angular momentum (or spin). But attempts to understand the long-lived highly excited isomers, sometimes known as ''spin traps'', have been hampered by the difficulty of producing this exotic form of nuclear matter. Now, a new generation of radioactive ion beams promises a revolution in the study of high-spin nuclear traps. (author)

  9. High-spin nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  10. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    In the context of nuclear magnetic resonance (NMR), the term relaxation indicates the process by which the magnetic atomic nuclei reach thermal equilibrium with the chaotic molecular environment. In NMR, this process can be very slow, requiring between a fraction of a second to many minutes, depending on the.

  11. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  12. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  13. Nuclear Spin-Spin Coupling in HD, HT, and DT

    Science.gov (United States)

    Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof

    2018-02-01

    The interaction between nuclear spins in a molecule is exceptionally sensitive to the physics beyond the standard model. However, all present calculations of the nuclear spin-spin coupling constant J are burdened by computational difficulties, which hinders the comparison to experimental results. Here, we present a variational approach and calculate the constant J in the hydrogen molecule with the controlled numerical precision, using the adiabatic approximation. The apparent discrepancy with experimental result is removed by an analysis of nonadiabatic effects based on the experimental values of the J constant for HD, HT, and DT molecules. This study significantly improves the reliability of the NMR theory for searching new physics in the spin-spin coupling.

  14. Controlling a nuclear spin in a nanodiamond

    Science.gov (United States)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2017-09-01

    The sensing capability of a single optically bright electronic spin in diamond can be enhanced by making use of proximal dark nuclei as ancillary spins. Such systems, so far realized only in bulk diamond, can provide orders of magnitude higher sensitivity and spectral resolution in the case of magnetic sensing, as well as improved readout fidelity and state storage time in quantum information schemes. Nanodiamonds offer opportunities for scanning and embedded nanoscale probes, yet electronic-nuclear spin complexes have so far remained inaccessible. Here, we demonstrate coherent control of a 13C nuclear spin located 4 Å from a nitrogen-vacancy center in a nanodiamond and show coherent exchange between the two components of this hybrid spin system. We extract a free precession time T2* of 26 μ s for the nuclear spin, which exceeds the bare-electron free-precession time in nanodiamond by two orders of magnitude.

  15. India's nuclear spin-off

    International Nuclear Information System (INIS)

    Kaul, Ravi.

    1974-01-01

    After examining world-wide reactions of the foreign governments and news media to the India's peaceful nuclear experiment (PNE) in the Rajasthan Desert on 18 May 1974, development of nuclear technology in India is assessed and its economic advantages are described. Implications of the Non-Proliferation Treaty are explained. Psychological impact of India's PNE on India's neighbours and superpowers and associated political problems in context of proliferation of nuclear weapons are discussed in detail. (M.G.B.)

  16. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

    NARCIS (Netherlands)

    Taminiau, T.H.; Wagenaar, J.J.T.; Van der Sar, T.; Jelezko, F.; Dobrovitski, V.V.; Hanson, R.

    2012-01-01

    We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same

  17. Experimental energy-dependent nuclear spin distributions

    International Nuclear Information System (INIS)

    Egidy, T. von; Bucurescu, D.

    2009-01-01

    A new method is proposed to determine the energy-dependent spin distribution in experimental nuclear-level schemes. This method compares various experimental and calculated moments in the energy-spin plane to obtain the spin-cutoff parameter σ as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, σ 2 =0.391 A 0.675 (E-0.5Pa ' ) 0.312 , is proposed up to about 10 MeV that is in very good agreement with experimental σ values and is applied to improve the systematics of level-density parameters.

  18. Nuclear structure of Ra at high spin

    Indian Academy of Sciences (India)

    However, nuclear structure at high spin and excitation energies (∼ 6 MeV) would require a coupling of excited 1p–1h with 208Pb core. The coupling between single- particle orbitals and collective vibrations of core complicates the simple shell model picture. With increasing neutron number, Ra isotopes show an abrupt ...

  19. Quantum computing using nuclear spins

    International Nuclear Information System (INIS)

    Cejnar, P.

    2002-01-01

    In December 2001, a group of physicists at Stanford University and at the IBM research center in California announced the first experimental implementation of the Shor quantum factorization algorithm with 7 quantum bits. The nuclear magnetic resonance method applied appears to be a promising approach to the realization of quantum computers. Quantum computing, which is a very interesting field of application of the laws of the quantum world, is demonstrated on examples

  20. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  1. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  2. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  3. Inelastic electron tunneling spectroscopy of a single nuclear spin.

    Science.gov (United States)

    Delgado, F; Fernández-Rossier, J

    2011-08-12

    Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.

  4. Exploring Localization in Nuclear Spin Chains

    Science.gov (United States)

    Wei, Ken Xuan; Ramanathan, Chandrasekhar; Cappellaro, Paola

    2018-02-01

    Characterizing out-of-equilibrium many-body dynamics is a complex but crucial task for quantum applications and understanding fundamental phenomena. A central question is the role of localization in quenching thermalization in many-body systems and whether such localization survives in the presence of interactions. Probing this question in real systems necessitates the development of an experimentally measurable metric that can distinguish between different types of localization. While it is known that the localized phase of interacting systems [many-body localization (MBL)] exhibits a long-time logarithmic growth in entanglement entropy that distinguishes it from the noninteracting case of Anderson localization (AL), entanglement entropy is difficult to measure experimentally. Here, we present a novel correlation metric, capable of distinguishing MBL from AL in high-temperature spin systems. We demonstrate the use of this metric to detect localization in a natural solid-state spin system using nuclear magnetic resonance (NMR). We engineer the natural Hamiltonian to controllably introduce disorder and interactions, and observe the emergence of localization. In particular, while our correlation metric saturates for AL, it slowly keeps increasing for MBL, demonstrating analogous features to entanglement entropy, as we show in simulations. Our results show that our NMR techniques, akin to measuring out-of-time correlations, are well suited for studying localization in spin systems.

  5. Fast Electrical Control of Single Electron Spins in Quantum Dots with Vanishing Influence from Nuclear Spins

    Science.gov (United States)

    Yoneda, J.; Otsuka, T.; Nakajima, T.; Takakura, T.; Obata, T.; Pioro-Ladrière, M.; Lu, H.; Palmstrøm, C. J.; Gossard, A. C.; Tarucha, S.

    2014-12-01

    We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a spin-flip fidelity >96 % , a distinct chevron Rabi pattern in the spectral-time domain, and a spin resonance linewidth limited by the Rabi frequency, not by the dephasing rate. In addition, we establish fast z rotations up to 54 MHz by directly controlling the spin phase. Our findings will significantly facilitate tomography and error correction with electron spins in quantum dots.

  6. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper

    2008-01-01

    quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...

  7. Thermodynamics of Rh nuclear spins calculated by exact diagonalization

    DEFF Research Database (Denmark)

    Lefmann, K.; Ipsen, J.; Rasmussen, F.B.

    2000-01-01

    We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...

  8. Optically induced dynamic nuclear spin polarisation in diamond

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  9. Stimulated nuclear spin echos and spectral diffusion in glasses

    International Nuclear Information System (INIS)

    Borges, N.M.; Engelsberg, M.

    1984-01-01

    Experimental results of stimulated nuclear spin echos decay in glasses are presented. The measurements were performed in B 2 O 3 glasses, at the 23Na and 11 B resonance lines. The data analysis allows the study of Spectral diffusion at an inhomogeneous nuclear magnetic (NMR) resonance line, broadened for a desordered system of nuclear spins. A model is proposed to explain the time constants, and the particular form of the decay. (A.C.A.S.) [pt

  10. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1984-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given. 12 references

  11. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1985-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given

  12. An endohedral fullerene-based nuclear spin quantum computer

    International Nuclear Information System (INIS)

    Ju Chenyong; Suter, Dieter; Du Jiangfeng

    2011-01-01

    We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133]. - Research highlights: → We propose an endohedral fullerene-based scalable quantum computer architecture. → Qubits are encoded on nuclear spins, while electron spins serve as auxiliaries. → Nuclear spins are individually addressed using the hyperfine interaction. → Two-qubit gates are implemented through the medium of electron spins.

  13. Calculations of the indirect nuclear spin-spin coupling constants of PbH4

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Sauer, Stephan P. A.

    1999-01-01

    We report ab initio calculations of the indirect nuclear spin-spin coupling constants of PbH4 using a basis set which was specially optimized for correlated calculations of spin-spin coupling constants. All nonrelativistic contributions and the most important part of the spin-orbit correction wer...

  14. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  15. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...... the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14N-nitroxyl spin labels do not accord with conventional analysis...

  16. Electronic readout of a single nuclear spin using a molecular spin transistor

    Science.gov (United States)

    Vincent, R.; Klyastskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2012-02-01

    Quantum control of individual spins in condensed matter devices is an emerging field with a wide range of applications ranging from nanospintronics to quantum computing [1,2]. The electron, with its spin and orbital degrees of freedom, is conventionally used as carrier of the quantum information in the devices proposed so far. However, electrons exhibit a strong coupling to the environment leading to reduced relaxation and coherence times. Indeed quantum coherence and stable entanglement of electron spins are extremely difficult to achieve. We propose a new approach using the nuclear spin of an individual metal atom embedded in a single-molecule magnet (SMM). In order to perform the readout of the nuclear spin, the quantum tunneling of the magnetization (QTM) of the magnetic moment of the SMM in a transitor-like set-up is electronically detected. Long spin lifetimes of an individual nuclear spin were observed and the relaxation characteristics were studied. The manipulation of the nuclear spin state of individual atoms embedded in magnetic molecules opens a completely new world, where quantum logic may be integrated.[4pt] [1] L. Bogani, W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, W. Wernsdorfer, Nature Mat. 10, 502 (2011).

  17. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  18. Quantum computation with nuclear spins in quantum dots

    International Nuclear Information System (INIS)

    Christ, H.

    2008-01-01

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  19. Quantum description of nuclear spin cooling in a quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Giedke, Geza; Christ, H.; Cirac, I. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2007-07-01

    We study theoretically the cooling of an ensemble of nuclear spins coupled to the spin of a localized electron in a quantum dot. We obtain a master equation for the state of the nuclear spins interacting with a sequence of polarized electrons that allows to study quantitatively the cooling process including the effect of nuclear spin coherences, which can lead to 'dark states' of the nuclear system in which further cooling is inhibited. We show that the inhomogeneous Knight field mitigates this effect strongly and that the remaining dark state limitations can be overcome by very few shifts of the electron wave function, allowing for cooling far beyond the dark state limit. Numerical integration of the master equation indicates that polarizations larger than 90% can be achieved within a millisecond timescale.

  20. Distinction of nuclear spin states with the scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  1. Spin-off technologies developed through nuclear activities

    International Nuclear Information System (INIS)

    1993-01-01

    Given the changing role of government research establishments and the interest in maximizing return on capital and intellectual investment, determining the best way to apply or ''spin-off'' technologies from the nuclear field into other industrial and commercial sectors is of increasing concern. This study by the OECD Nuclear Energy Agency draws on expertise from numerous countries to determine what the spin-offs are, where they come from, and how they can best be fostered. It looks both at the results and process of spin-offs, and helps decision-makers in government and project leaders and managers in industry to maximize their benefits. (author)

  2. Relaxation of nuclear spin on holes in semiconductors

    International Nuclear Information System (INIS)

    Gr'ncharova, E.I.; Perel', V.I.

    1977-01-01

    The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction

  3. International conference on spin observables of nuclear probes: Summary talk

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1988-01-01

    A selected summary of the presentation and discussions at the 4th Telluride Conference is presented. The summary deals mainly with the effects of nuclear spin and isospin on the interaction between nucleons and their consequences in nuclear structure. 11 figs

  4. The domestication of nuclear spins by chemists and biologists

    CERN Document Server

    Ernst, R

    1992-01-01

    The usage of nuclear spins in chemistry and biology for exploring the structure and dynamics of matter is discussed. The main emphasis is put on the methodological aspects of multidimensional nuclear magnetic resonance (NMR) spectroscopy that are responsible for the success of this powerful analytical technique.

  5. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... Nuclear structure at high spin. Figure 1. Schematic of the orientation of HPGe detector in GDA [4]. These signals were fed to custom-made data acquisition system Freedom [10] which was later used for data reduction. We recorded γ-ray fold of nuclear reaction using multiplicity filter made of BGO scin-.

  6. Spin-orbit corrections to the indirect nuclear spin-spin coupling constants in XH4 (X=C, Si, Ge, and Sn)

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Jensen, Hans Jørgen Aagaard; Oddershede, Jens

    1997-01-01

    Using the quadratic response function at the ab initio SCF level of approximation we have calculated the relativistic corrections from the spin-orbit Hamiltonian, HSO, to the indirect nuclear spin-spin coupling constants of XH4 (X = C, Si, Ge, and Sn). We find that the spin-orbit contributions to...

  7. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  8. Tilted Foils Nuclear Spin Polarization at REX-ISOLDE

    CERN Document Server

    Törnqvist, Hans Toshihide

    2013-08-08

    This thesis will explain and summarize my work and involvement in experiments aimed at producing nuclear spin polarization of post-accelerated beams of ions with the tilted-foils technique at the REX-ISOLDE linear accelerator at CERN. Polarizing the nuclear spin of radioactive beams in particular may provide access to observables which may be difficult to obtain otherwise. Currently, the techniques commonly employed for nuclear spin polarization are restricted to specific nuclides and experimental measurement techniques. Tilted foils polarization may provide a new tool to extend the range of nuclides that can be polarized and the types of experiments that can be performed. The experiments rely not only on the production but also on the method to measure the degree of attained polarization. Two methods will be treated, based on particle scattering in Coulomb excitation that may be utilized for stable beams, and the $\\beta$-NMR that requires $\\beta$-decaying nuclei. The experimental setups and measurements will...

  9. Nuclear paramagnetic spin relaxation theory. Paramagnetic spin probes in homogeneous and micro-heterogeneous solutions

    International Nuclear Information System (INIS)

    Westlund, P.O.

    1994-01-01

    Specific mechanisms of relaxation encountered in paramagnetic systems are described: the T1-NMRD curve and the paramagnetically enhanced nuclear spin relaxation (PER) are first discussed and a general theory of PER is proposed (nuclear paramagnetic spin relaxation theory, lattice operators, decomposition approximation, general expression of dipolar correlation functions for slow tumbling complexes, low-field approach). Numerically calculated NMRD curves are described (reorientation model, pseudo-rotation models, vibration models). Experimental studies are then analyzed: NMRD studies of paramagnetic species in an aqueous system, paramagnetic hydrated metal ions in poly-electrolytes and biochemical systems, lyotropic liquid crystalline phases, polymer solutions. 19 fig., 60 ref

  10. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  11. Nuclear spin relaxation of methane in solid xenon

    Science.gov (United States)

    Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-03-01

    Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.

  12. Squeezing and entangling nuclear spins in helium 3

    DEFF Research Database (Denmark)

    Reinaudi, Gael; Sinatra, Alice; Dantan, Aurelien Romain

    2007-01-01

    We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study...

  13. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  14. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  15. Fully Automated Quantum-Chemistry-Based Computation of Spin-Spin-Coupled Nuclear Magnetic Resonance Spectra.

    Science.gov (United States)

    Grimme, Stefan; Bannwarth, Christoph; Dohm, Sebastian; Hansen, Andreas; Pisarek, Jana; Pracht, Philipp; Seibert, Jakob; Neese, Frank

    2017-11-13

    We present a composite procedure for the quantum-chemical computation of spin-spin-coupled 1 H NMR spectra for general, flexible molecules in solution that is based on four main steps, namely conformer/rotamer ensemble (CRE) generation by the fast tight-binding method GFN-xTB and a newly developed search algorithm, computation of the relative free energies and NMR parameters, and solving the spin Hamiltonian. In this way the NMR-specific nuclear permutation problem is solved, and the correct spin symmetries are obtained. Energies, shielding constants, and spin-spin couplings are computed at state-of-the-art DFT levels with continuum solvation. A few (in)organic and transition-metal complexes are presented, and very good, unprecedented agreement between the theoretical and experimental spectra was achieved. The approach is routinely applicable to systems with up to 100-150 atoms and may open new avenues for the detailed (conformational) structure elucidation of, for example, natural products or drug molecules. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    Science.gov (United States)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  17. Nuclear structure of Ra at high spin

    Indian Academy of Sciences (India)

    to such an aligned configuration in 216Ra, would be of the order of J ∼ 39 ¯h with a wave function of π(h2. 9/2 f 2 ... detectors at 99. ◦. In addition to these matrices, γ-gated γT matrices were generated for getting time spectrum between any two γ's of 216Ra which enabled lifetime measurement of isomeric nuclear levels. 3.

  18. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  19. Optical pump - nuclear resonance probe experiments on spin crossover complexes

    Science.gov (United States)

    Sakshath, S.; Jenni, K.; Scherthan, L.; Würtz, P.; Herlitschke, M.; Sergeev, I.; Strohm, C.; Wille, H.-C.; Röhlsberger, R.; Wolny, J. A.; Schünemann, V.

    2017-11-01

    A novel sample environment enabling optical pump - nuclear resonance probe experiments has been installed at the beamline P01, Petra III, DESY Hamburg. This set-up has been used to investigate optically induced spin state changes of spin crossover (SCO) complexes by nuclear resonant scattering immediately after excitation by an optical laser pulse. Here, we report the technical details as well as first results of the experiments performed at 290 K and 80 K on the SCO complexes [Fe (NH2trz)3]Cl2 and [Fe(PM-BiA)2(NCS)2], respectively. The 57Fe-enriched SCO complexes were excited by a 531 nm laser with a pulse length indicate the presence of high spin (HS) states when the complexes are excited by laser pulses and a pure low spin (LS) state in the absence of any laser pulse. Furthermore, the dependence of the optically excited HS-fraction has been determined as a function of the average optical power.

  20. Nuclear spin relaxation in liquids theory, experiments, and applications

    CERN Document Server

    Kowalewski, Jozef

    2006-01-01

    Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...

  1. Nuclear spin: Fifty years of ups and downs

    Energy Technology Data Exchange (ETDEWEB)

    Pines, A. [Lawrence Berkeley National Lab., CA (United States)

    1996-12-31

    Rumors of its demise notwithstanding, nuclear magnetic resonance (NMR) continues to flourish fifty years after our birth. The lecture will be a reminiscence about moments of excitation, coherence and relaxation in the history of NMR which produced, among other developments, spin echoes and time reversal, Fourier transform and multidimensional spectroscopy, magnetic resonance imaging, and high resolution solid state NMR. Applications of modern NMR spectroscopy cut across the boundaries of physics, chemistry, materials, biology and medicine.

  2. NV-NV electron-electron spin and NV-N S electron - electron and electron-nuclear spin interaction in diamond

    Science.gov (United States)

    Armstrong, Seiji; Rogers, Lachlan J.; McMurtrie, Roger L.; Manson, Neil B.

    2010-02-01

    Features associated with the cross relaxation between spin of the ground electric state of the nitrogen vacancy centre (NV) and other impurity spins, mainly substitutional nitrogen, NS, are observed as changes of the emission intensity as a function of external magnetic field. The features are attributed to NV-NV electron-electron spin interaction, NV- NS electron-nuclear spin interaction and NV electron spin interaction with simultaneous change of an NS electron and nuclear spin change.

  3. Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency

    NARCIS (Netherlands)

    Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.

    2011-01-01

    Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin

  4. Long lived quantum memory with nuclear atomic spins

    International Nuclear Information System (INIS)

    Sinatra, A.; Reinaudi, G.; Dantan, A.; Giacobino, E.; Pinard, M.

    2005-01-01

    We propose store non-classical states of light into the macroscopic collective nuclear spin (10 18 atoms) of a 3 He vapor, using metastability exchange collisions. We show that these collisions currently used to transfer orientation from the metastable state 2 3 S 1 to the ground state state of 3 He, may conserve quantum correlations and give a possible experimental scheme to perfectly map a squeezed vacuum field state onto a nuclear spin state, which should allow for extremely long storage times (hours). In addition to the apparent interest for quantum information, the scheme offers the intriguing possibility to create a long-lived non classical state for spins. During a metastability exchange collision an atom in the ground state state and an atom in the metastable triplet state 2 3 S exchange their electronic spin variables. The ground state atom is then brought into the metastable state and vice-versa. A laser transition is accessible from the metastable state so that the metastable atoms are coupled with light. This, together with metastability exchange collisions, provides an effective coupling between ground state atoms and light. In our scheme, a coherent field and a squeezed vacuum field excite a Raman transition between Zeeman sublevels of the metastable state, after the system is prepared in the fully polarized state by preliminary optical pumping. According to the intensity of the coherent field, which acts as a control parameter, the squeezing of the field can be selectively transferred either to metastable or to ground state atoms. Once it is encoded in the purely nuclear spin of the ground state of 3 He, which is 20 eV apart from the nearest excited state and interacts very little with the environment, the quantum state can survive for times as long as several hours. By lighting up only the coherent field in the same configuration as for the 'writing' phase, the nuclear spin memory can be 'read' after a long delay, the squeezing being transferred

  5. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  6. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    Science.gov (United States)

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  7. Nuclear spin relaxation/resonance of 8Li in Al

    Science.gov (United States)

    Wang, D.; Salman, Z.; Chow, K. H.; Fan, I.; Hossain, M. D.; Keeler, T. A.; Kiefl, R. F.; Levy, C. D. P.; Mansour, A. I.; Morris, G. D.; Pearson, M. R.; Parolin, T. J.; Saadaoui, H.; Smadella, M.; Song, Q.; MacFarlane, W. A.

    2009-04-01

    A low energy beam of spin polarized 8Li has been used to study the behaviour of isolated 8Li implanted into a 150 nm thick film of Al on an MgO substrate. The spin relaxation rate 1/T1 and β-NMR lineshape were measured as a function of temperature in a large magnetic field of 4.1 T. The resonances from different sites are unresolved due to the large nuclear dipolar interaction with the host 27Al magnetic dipole moments. Nevertheless the temperature variation of the site averaged 1/T1 and Knight shift show evidence for a transition between the octahedral O and substitutional S sites at about 150 K, as observed in other fcc metals.

  8. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions

    Science.gov (United States)

    Jacques, Vincent

    2013-03-01

    Nuclear spins are attractive candidates for solid-state quantum information storage and processing owing to their extremely long coherence time. However, since this appealing property results from a high level of isolation from the environment, it remains a challenging task to polarize, manipulate and readout with high fidelity individual nuclear spins. A promising approach to overcome this limitation consists in utilizing an ancillary single electronic spin to detect and control remote nuclear spins coupled by hyperfine interaction. In this talk, I will show how the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond can be used as a robust platform to observe the real-time evolution of surrounding single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of 13C isotopes, we first demonstrate high fidelity initialization and single-shot readout of an individual 13C nuclear spin. By including the intrinsic 14N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing (QIP) including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.

  9. Quantum information processing with electronic and nuclear spins in semiconductors

    Science.gov (United States)

    Klimov, Paul Victor

    Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.

  10. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    Science.gov (United States)

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  11. Radioactive nuclear beams and the North American IsoSpin Laboratory (ISL) initiative

    International Nuclear Information System (INIS)

    Casten, R.F.

    1992-01-01

    Radioactive nuclear beams (RNBs) offer exciting new research opportunities in fields as diverse as nuclear structure, nuclear reactions, astrophysics atomic, materials, and applied science. Their realization in new accelerator complexes also offers important technical challenges. Some of the nuclear physics possibilities afforded by RNBs, with emphasis on low spin nuclear structure, are discussed, accompanied by an outline of the ISL initiative and its status

  12. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  13. Fingerprints of single nuclear spin energy levels using STM - ENDOR

    Science.gov (United States)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.

  14. Fingerprints of single nuclear spin energy levels using STM - ENDOR.

    Science.gov (United States)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite media

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1980-01-01

    Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt

  16. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    Science.gov (United States)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  17. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  18. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  19. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    Directory of Open Access Journals (Sweden)

    A. Ajoy

    2015-01-01

    Full Text Available Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  20. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  1. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules

    International Nuclear Information System (INIS)

    Grohmann, Thomas

    2012-01-01

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  2. Nuclear spin bath effects in molecular nanomagnets: Direct quantum mechanical simulations

    Science.gov (United States)

    Sinitsyn, N. A.; Dobrovitski, V. V.

    2004-11-01

    We investigate the influence of nuclear spins on the electronic spin tunneling in magnetic molecules such as Fe8 , focusing on the role of the spin diffusion in the nuclear spin bath. We simulate the quantum spin dynamics by numerically solving the time-dependent Schrödinger equation for the compound system (the electronic spin plus the bath spins). Our results demonstrate that the effect of the spin bath cannot always be modeled as a randomly varying magnetic field acting on the electronic spin. We consider two dynamical regimes: the spin relaxation in a constant magnetic field, and the spin tunneling in the linearly varying magnetic field passing the avoided level crossing, so-called Landau-Zener-Stückelberg (LZS) transition. For the first regime, we confirmed that the hole in the magnetization distribution has the width of the hyperfine fields distribution. For the second regime, we found that the transition probability for moderately slow sweeps deviates from the standard LZS prediction, while for the fast sweeps the deviation is negligible.

  3. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  4. Photoinduced nuclear spin conversion of methyl groups of single molecules

    International Nuclear Information System (INIS)

    Sigl, A.

    2007-01-01

    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  5. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  6. Nuclear spin-echo detection by means of perturbed angular correlations

    International Nuclear Information System (INIS)

    Kopvillem, U.H.; Shakhmuratova, L.N.

    1973-01-01

    Recent progress in theory and experiment of NMR detection by means of registration of angular distribution of nuclear radiation (NMR/RD) has stimulated us to consider the problem of spin-echo detection by means of nuclear radiation (s-E/RD). We have considered the case when each decaying radioactive nucleus suffers two pulses of magnetic radiofrequency field in its oriented excited state. The time-differential function of radiation's angular distribution is important in the S-E/RD problem, as it displays the motion of nuclear spins in time. The obtained results show that after the first pulse the anisotropy of radiation's angular distribution strongly decreases because of the dephasing of nuclear spins. After the second pulse there exist certain moments of time, determined by the nuclear spin and geometry of experiment, when the anisotropy of radiation's angular distribution sharply increases, whereas before and after these moments the function is swept. It is possible to observe the spin-echo by means of γ-γ angular correlations and by means of registration of γ-radiation's angular distribution after the nuclear reaction, for example after the bombardment of nuclei by a pulsed particle beam. The spin-echo nuclear radiation detection gives the possibility to explore the relaxation processes by the use of a relatively small number nuclei, as it is a microscopic method. (author)

  7. Multispin-assisted optical pumping of bulk 13C nuclear spin polarization in diamond

    Science.gov (United States)

    Pagliero, Daniela; Rao, K. R. Koteswara; Zangara, Pablo R.; Dhomkar, Siddharth; Wong, Henry H.; Abril, Andrea; Aslam, Nabeel; Parker, Anna; King, Jonathan; Avalos, Claudia E.; Ajoy, Ashok; Wrachtrup, Joerg; Pines, Alexander; Meriles, Carlos A.

    2018-01-01

    One of the most remarkable properties of the nitrogen-vacancy (NV) center in diamond is that optical illumination initializes its electronic spin almost completely, a feature that can be exploited to polarize other spin species in their proximity. Here we use field-cycled nuclear magnetic resonance to investigate the mechanisms of spin-polarization transfer from NVs to 13C spins in diamond at room temperature. We focus on the dynamics near 51 mT, where a fortuitous combination of energy-matching conditions between electron and nuclear spin levels gives rise to alternative polarization transfer channels. By monitoring the 13C spin polarization as a function of the applied magnetic field, we show 13C spin pumping takes place via a multispin cross-relaxation process involving the N V- spin and the electronic and nuclear spins of neighboring P1 centers. Further, we find that this mechanism is insensitive to the crystal orientation relative to the magnetic field, although the absolute level of 13C polarization—reaching up to ˜3 % under optimal conditions—can vary substantially depending on the interplay between optical pumping efficiency, photogenerated carriers, and laser-induced heating.

  8. Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale

    NARCIS (Netherlands)

    Wagenaar, J.C.; Den Haan, A. M J; de Voogd, J.M.; Bossoni, L; de Jong, T.A.; de Wit, M.; Bastiaans, K. M.; Thoen, D.J.; Endo, A.; Klapwijk, T.M.; Zaanen, J.; Oosterkamp, TH

    2016-01-01

    Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up

  9. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  10. Robust quantum-network memory using decoherence-protected subspaces of nuclear spins

    NARCIS (Netherlands)

    Reiserer, A.A.; Kalb, N.; Blok, M.S.; van Bemmelen, Koen J M; Taminiau, T.H.; Hanson, R.; Twitchen, Daniel J.; Markham, Matthew

    2016-01-01

    The realization of a network of quantum registers is an outstanding challenge in quantum science and technology. We experimentally investigate a network node that consists of a single nitrogen-vacancy center electronic spin hyperfine coupled to nearby nuclear spins. We demonstrate individual

  11. The determination of the in situ structure by nuclear spin contrast variation

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-01-01

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome

  12. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite medium

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1981-01-01

    Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt

  13. Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer

    Science.gov (United States)

    Romalis, Michael; Komack, Tom; Ghost, Rajat

    2008-01-01

    An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.

  14. Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field

    Science.gov (United States)

    Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.

    2018-04-01

    In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.

  15. All-electric control of donor nuclear spin qubits in silicon

    Science.gov (United States)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  16. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  17. Tensor quasiparticle interaction and spin-isospin sound in nuclear matter

    International Nuclear Information System (INIS)

    Haensel, P.

    1979-01-01

    The effect of the tensor components of the quasiparticle interaction in nuclear matter on the spin-isospin sound type excitations is studied. Numerical results are obtained using a simplified model of the quasiparticle interaction in nuclear matter. The quasiparticle distribution matrix corresponding to the spin-isospin sound is found to be qualitatively different from that obtained for purely central quasiparticle interaction. The macroscopic effects, however, are restricted to a small change in the phase velocity of the spin-isospin sound. (Auth.)

  18. Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.

    Science.gov (United States)

    Casanova, J; Wang, Z-Y; Plenio, M B

    2016-09-23

    Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.

  19. Observation of nuclear spin waves in spin-polarized atomic hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Johson, B.R.; Denker, J.S.; Bigelow, N.; Levy, L.P.; Freed, J.H.; Lee, D.M.

    1984-04-23

    We have observed narrow, distinct resonances in the NMR spectrum of dilute spin-polarized atomic hydrogen gas (nroughly-equal10/sup 16/ atoms/cm/sup 3/). The dependence of the observed spectra on temperature, density, polarization, and magnetic field gradient is consistent with theoretical predictions for spin-wave excitations damped by diffusion. We have measured the parameter ..mu.., which is a measure of the importance of exchange effects in spin transport processes, and the diffusion coefficient D/sub 0/, both of which are in reasonable agreement with theory.

  20. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  1. The MONSTER solves nuclear structure problems at low and high spins

    International Nuclear Information System (INIS)

    Hammaren, E.; Schmid, K.W.; Gruemmer, F.

    1984-01-01

    A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region

  2. RPA spin-isospin nuclear response in the deep inelastic region

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.; De Pace, A.; Johnson, M.B.; Ericson, M.

    1985-11-01

    The spin-isospin volume responses of a finite nucleus are evaluated in the RPA frame, utilizing a harmonic oscillator basis. Particular emphasis is given to the mixing between the longitudinal and transverse couplings, which arise at the nuclear surface. We show that it reduces somewhat the contrast between the two spin responses. We compare the calculated transverse response with the experimental one extracted from deep inelastic electron scattering

  3. Polarized photoproduction from nuclear targets with arbitrary spin and relation to deep inelastic scattering

    International Nuclear Information System (INIS)

    Hoodbhoy, P.; Massachusetts Inst. of Tech., Cambridge; Quaid-i-Azam Univ., Islamabad

    1990-01-01

    Inclusive photo-production from polarized targets of arbitrary spin is analyzed by using multipoles. The Drell-Hearn-Gerasimov sum rule, which was originally fromulated for spin-1/2 targets, is generalized to all spins and multipoles, and shown to have some interesting consequences. Measurements to test the new rules, or to derive nuclear structure information from them, could be incorporated into existing plans at electron accelerator facilities. Finally, the possible relevance of these generalized sum rules to sum rules measurable in polarized lepton-polarized target deep inelastic inclusive scattering is discussed. (orig.)

  4. Nuclear inelastic scattering study of a dinuclear iron(II) complex showing a direct spin transition

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, J. A., E-mail: wolny@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Garcia, Y. [Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST) (Belgium); Faus, I.; Rackwitz, S. [University of Kaiserslautern, Department of Physics (Germany); Schlage, K.; Wille, H.-C. [DESY (Germany); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The results of the nuclear inelastic scattering (NIS)/nuclear resonance vibrational spectroscopy (NRVS) for the powder spectra of dimeric [Fe {sub 2}L{sub 5}(NCS) {sub 4}] (L = N-salicylidene-4-amino-1,2,4-triazole) complex are presented. This system is spin crossover (SCO) material tagged with a fluorophore that can sense or “feel” the SCO signal ripping through the molecular network and thereby providing an opportunity to register the SCO transition. The spectra have been measured for the low-spin and high-spin phases of the complex. The high-spin isomer reveals one broad band above 200 cm {sup −1}, while the low-spin one displays two intense bands in the range from 390 to 430 cm {sup −1}, accompanied by a number of weaker bands below this area and one at ca. 490 cm {sup −1}. A normal coordinate analysis based on density functional calculations yields the assignment of the spin marker bands to particular molecular modes. In addition the vibrational contribution to the spin transition has been estimated.

  5. Optimal control of the inversion of two spins in Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Assémat, E.; Attar, L.; Penouilh, M.-J.; Picquet, M.; Tabard, A.; Zhang, Y.; Glaser, S.J.; Sugny, D.

    2012-01-01

    Highlights: ► We investigate the simultaneous optimal control of the inversion of two spins. ► We examine the energy minimum solution. ► We compare this solution with the time-minimum one. ► Experimental implementation using techniques of Nuclear Magnetic Resonance. -- Abstract: We investigate the optimal control of the inversion of two spin 1/2 particles in Nuclear Magnetic Resonance. The two spins, which differ by their resonance offset, are controlled by the same radio frequency magnetic field. Using the Pontryagin Maximum Principle, we compute the optimal control sequence which allows to reach the target state in a given time, while minimizing the energy of the magnetic field. A comparison with the time-optimal solution for bounded control amplitude realizing the same control in the same time is made. An experimental illustration is done using techniques of Nuclear Magnetic Resonance.

  6. Nuclear-Spin-Induced Circular Dichroism in the Infrared Region for Liquids.

    Science.gov (United States)

    Chen, Fang; Yao, Guo-hua; Zhang, Zhen-lin; Liu, Fan-chen; Chen, Dong-ming

    2015-06-22

    Recently, the nuclear-spin-induced optical rotation (NSOR) and circular dichroism (NSCD) for liquids were discovered and extensively studied and developed. However, so far, nuclear-spin-induced magnetic circular dichroism in the IR region (IR-NSCD) has not been explored, even though all polyatomic molecules exhibit extensive IR spectra. Herein, IR-NSCD is proposed and discussed theoretically. The results indicate that in favorable conditions the IR-NSCD angle may be much larger than the NSOR angle in the UV/Vis region due to a vibrational resonance effect and can be measurable by using the NSOR experiment scheme. IR-NSCD can automatically combine and give NMR spectra and IRCD spectra of the nuclear spin prepolarized samples in liquids, which, in principle, could be developed to become a unique, novel analytical tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing...

  8. On the Convergence of the ccJ-pVXZ and pcJ-n Basis Sets in CCSD Calculations of Nuclear Spin-Spin Coupling Constants

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2018-01-01

    The basis set convergence of nuclear spin-spin coupling constants (SSCC) calculated at the coupled cluster singles and doubles (CCSD) level has been investigated for ten difficult molecules. Eight of the molecules contain fluorine atoms and nine contain double or triple bonds. Results obtained us...

  9. Nuclear orientation of radioactive nuclei the spin program

    Czech Academy of Sciences Publication Activity Database

    Dupák, Jan; Finger, M.; Finger jr., M.; Janata, A.; Kracíková, T. I.; Lebedev, N. A.; Nováková, D.; Ota, J.; Rotter, M.; Slunečka, M.; Slunečková, V.; Virus, M.; Yushkevich, Y. V.

    2000-01-01

    Roč. 50, Supp. S1 (2000), s. 253-268 ISSN 0011-4626. [Symmetry and Spin. Praha, 05.09.1999-12.09.1999] R&D Projects: GA AV ČR KSK1067601 Institutional research plan: CEZ:AV0Z2065902 Subject RIV: JR - Other Machinery Impact factor: 0.298, year: 2000

  10. Nuclear and hadronic reaction mechanisms producing spin asymmetry

    Indian Academy of Sciences (India)

    naka

    This may be possible in the framework of the QRC model by considering an annihilation and creation mechanism, as shown in figure 2, where the initial valence u quark, which carries the proton's spin information, annihilates with u in the target proton and then ss pair is created through the gluon propagation, and the s ...

  11. Chip-Scale Combinatorial Atomic Navigator (C-SCAN) Low Drift Nuclear Spin Gyroscope

    Science.gov (United States)

    2018-01-01

    AFRL-RY-WP-TR-2017-0199 CHIP-SCALE COMBINATORIAL ATOMIC NAVIGATOR (C-SCAN) Low Drift Nuclear Spin Gyroscope Michael Romalis...January 2018 Final 3 May 2013 – 31 July 2017 4. TITLE AND SUBTITLE CHIP-SCALE COMBINATORIAL ATOMIC NAVIGATOR (C-SCAN) Low Drift Nuclear Spin Gyroscope...gyroscope probed by ⁸⁷Rb atoms . We batch fabricated gyroscope cells with a yield exceeding 85% and achieved ¹²⁹Xe T₂ time of 300 sec and 3He T2 time of

  12. Nuclear spin-orbit interaction from chiral pion-nucleon dynamics

    International Nuclear Information System (INIS)

    Kaiser, N.

    2002-01-01

    Using the two-loop approximation of chiral perturbation theory, we calculate the momentum and density dependent nuclear spin-orbit strength U ls (p,k f ). This quantity is derived from the spin-dependent part of the interaction energy Σ spin =((i)/(2))σ→·(q→xp→)U ls (p,k f ) of a nucleon scattering off weakly inhomogeneous isospin symmetric nuclear matter. We find that iterated 1π-exchange generates at saturation density, k f0 =272.7 MeV, a spin-orbit strength at p=0 of U ls (0,k f0 )≅35 MeV fm 2 , in perfect agreement with the empirical value used in the shell model. This novel spin-orbit strength is neither of relativistic nor of short range origin. The potential V ls underlying the empirical spin-orbit strength Ubar ls =V ls r ls 2 becomes a rather weak one, V ls ≅17 MeV, after the identification r ls =m π -1 as suggested by the present calculation. We observe, however, a strong p-dependence of U ls (p,k f0 ) leading even to a sign change above p=200 MeV. This and other features of the emerging spin-orbit Hamiltonian which go beyond the usual shell model parametrization leave questions about the ultimate relevance of the spin-orbit interaction generated by 2π-exchange for a finite nucleus. We also calculate the complex-valued isovector single-particle potential U I (p,k f )+iW I (p,k f ) in isospin asymmetric nuclear matter proportional to τ 3 (N-Z)/(N+Z). For the real part we find reasonable agreement with empirical values and the imaginary part vanishes at the Fermi-surface p=k f

  13. Canadian experience with spin-offs from nuclear technology

    International Nuclear Information System (INIS)

    Lennox, C.G.; Garvey, P.M.

    1989-01-01

    The innovation process introduced into AECL's research laboratories is described, with its achievements in increased commercial and spin-off businesses. In particular, the role of the champion or entrepreneur is emphasized in the manner in which he/she interacts within a dedicated team to pursue each opportunity. Examples are provided of several commercial and business development opportunities resulting from the background research programs

  14. Thermal mixing in multiple-pulse nuclear quadrupole resonance spin-locking

    International Nuclear Information System (INIS)

    Beltjukov, P A; Kibrik, G E; Furman, G B; Goren, S D

    2007-01-01

    We report on an experimental and theoretical nuclear quadrupole resonance (NQR) multiple-pulse spin-locking study of the thermal mixing process in solids containing nuclei of two different sorts, I>1/2 and S = 1/2, coupled by dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of both the spin systems describing the mutual spin-lattice relaxation and the thermal mixing were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence described by a sum of two exponents. The calculated relaxation time versus the multiple-pulse field parameters agrees well with the obtained experimental data in 1,4-dichloro-2-nitrobenzene. The calculated magnetization relaxation time versus the strength of the applied magnetic field agrees well with the obtained experimental data

  15. Towards the improvement of spin-isospin properties in nuclear energy density functionals

    International Nuclear Information System (INIS)

    Roca-Maza, X.; Colò, G.; Liang, H. Z.; Sagawa, H.; Meng, J.; Ring, P.; Zhao, P. W.

    2016-01-01

    We address the problem of improving existing nuclear Energy Density Functionals (EDFs) in the spin-isospin channel. For that, we propose two different ways. The first one is to carefully take into account in the fitting protocol some of the key ground state properties for an accurate description of the most studied spin-isospin resonances: the Gamow-Teller Resonance (GTR) [1]. The second consists in providing a strategy to build local covariant EDF keeping the main features from their non-local counterparts [2]. The RHF model based on a Lagrangian where heavy mesons carry the nuclear effective interaction have been shown to be successful in the description of spin-isospin resonances [3]. (paper)

  16. Shell structure at high spin and the influence on nuclear shapes

    International Nuclear Information System (INIS)

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in 154 Dy 88 . The role of rotation-aligned configurations in the shape change is discussed

  17. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  18. Nuclear spin dependence of the reaction of H(3)+ with H2. I. Kinetics and modeling.

    Science.gov (United States)

    Crabtree, Kyle N; Tom, Brian A; McCall, Benjamin J

    2011-05-21

    The chemical reaction H(3)(+) + H(2) → H(2) + H(3)(+) is the simplest bimolecular reaction involving a polyatomic, yet is complex enough that exact quantum mechanical calculations to adequately model its dynamics are still unfeasible. In particular, the branching fractions for the "identity," "proton hop," and "hydrogen exchange" reaction pathways are unknown, and to date, experimental measurements of this process have been limited. In this work, the nuclear-spin-dependent steady-state kinetics of the H(3)(+) + H(2) reaction is examined in detail, and employed to generate models of the ortho:para ratio of H(3)(+) formed in plasmas of varying ortho:para H(2) ratios. One model is based entirely on nuclear spin statistics, and is appropriate for temperatures high enough to populate a large number of H(3)(+) rotational states. Efforts are made to include the influence of three-body collisions in this model by deriving nuclear spin product branching fractions for the H(5)(+) + H(2) reaction. Another model, based on rate coefficients calculated using a microcanonical statistical approach, is appropriate for lower-temperature plasmas in which energetic considerations begin to compete with the nuclear spin branching fractions. These models serve as a theoretical framework for interpreting the results of laboratory studies on the reaction of H(3)(+) with H(2). © 2011 American Institute of Physics.

  19. Effects of tensor forces in nuclear spin-orbit splittings from ab initio calculations

    Science.gov (United States)

    Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan

    2018-03-01

    A systematic and specific pattern due to the effects of the tensor forces is found in the evolution of spin-orbit splittings in neutron drops. This result is obtained from relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. It forms an important guide for future microscopic derivations of relativistic and nonrelativistic nuclear energy density functionals.

  20. Isotopic and spin-nuclear effects in solid hydrogens (Review Article)

    Science.gov (United States)

    Freiman, Yuri A.; Crespo, Yanier

    2017-12-01

    The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.

  1. Restricted magnetically balanced basis applied for relativistic calculations of indirect nuclear spin-spin coupling tensors in the matrix Dirac-Kohn-Sham framework

    International Nuclear Information System (INIS)

    Repisky, Michal; Komorovsky, Stanislav; Malkina, Olga L.; Malkin, Vladimir G.

    2009-01-01

    The relativistic four-component density functional approach based on the use of restricted magnetically balanced basis (mDKS-RMB), applied recently for calculations of NMR shielding, was extended for calculations of NMR indirect nuclear spin-spin coupling constants. The unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component while to solve the second-order coupled perturbed DKS equations a restricted magnetically balanced basis set for the small component was applied. Benchmark relativistic calculations have been carried out for the X-H and H-H spin-spin coupling constants in the XH 4 series (X = C, Si, Ge, Sn and Pb). The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in our method for property calculations

  2. Nuclear structure of 94,95Mo at high spins

    International Nuclear Information System (INIS)

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  3. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  4. Determination of nuclear spins of short-lived isotopes by laser induced fluorescence

    International Nuclear Information System (INIS)

    Buchinger, F.; Dabkiewicz, P.; Kremmling, H.; Kuehl, T.; Mueller, A.C.; Schuessler, H.A.

    1980-01-01

    The spins of several nuclear ground and isomeric states have been measured for a number of mercury isotopes. The fluorescent light from the 6s6p 3 P 1 state is observed at 2537 Angstroem after excitation with the frequency doubled output of a pulsed dye laser. Four different laser induced fluorescence techniques were tested for their applicability: double resonance, Hanle effect, time delayed integral Hanle beats, and time resolved quantum beats. The sensitivity and selectivity of these models are compared with emphasis on the determination of spins of nuclei far from beta-stability, where short half lives and low production yields restrict the number of available atoms. The experiments were carried out on-line with the ISOLDE isotope separator at CERN at densities as low as 10 6 atoms/cm 3 . Results for the very neutron deficient high spin mercury isomers with half lives of several seconds, but also for the ground states of the abundant low spin stable mercury isotopes, are given as examples. The test measurements determined the nuclear spins of the odd sup(185m-191m)Hg isomers to be I = 13/2. (orig.)

  5. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  6. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  7. Parametric excitation of nuclear spin waves in MnCO3 antiferromagnetic crystals

    International Nuclear Information System (INIS)

    Govorkov, S.A.; Tulin, V.A.

    1976-01-01

    Parametric excitation of nuclear spin waves in the antiferromagnetic crystal MnCO 3 is investigated at 1080 MHz by the parallel pumping technique. Two threshold processes are observed in the experiments. One refers to spin wave excitation in a nuclear magnetic system and the other to excitation of magneto-elastic waves. The post-threshold sample susceptibility in such processes is studied. After the second threshold a very pronounced overheating of the nuclear magnetic system of the sample with respect to the lattice is observed. The nature of these overheating phenomena shows that two magneto-elastic oscillation branches are excited in the second threshold process. The dependence of the threshold field on wave vector is more complicated in a small magnetic field due to magnetization processes in the sample. In a large magnetic field complications are evoked by the magneto-elastic coupling

  8. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  9. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  10. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... A multidetector gamma array (GDA), for studying nuclear structure was built with ancillary devices namely gamma multiplicity filter and charged particle detector array. This facility was designed for in-beam gamma spectroscopy measurements in fusion evaporation reactions at Inter-University Accelerator ...

  11. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... erator Centre, New Delhi. The rolled 209Bi target thickness was 3.5 mg/cm2. Beam was pulsed at 4 MHz to measure lifetimes of nuclear isomers by electronics method. GDA used in the present work has improved the quality of coincidence spectra, enabling us to identify and place several weak transitions ...

  12. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  13. Contribution to the study of thermal mixing between nuclear spin systems; Contribution a l'etude du melange thermique entre systemes de spins nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-02-15

    This work describes methods of dynamic nuclear polarization in solids based on the thermal mixing between nuclear spin systems. The description of the thermal mixing processes involves most of the fundamental aspects of the spin temperature theory. The experiments, conducted with paradichlorobenzene and para-dibromobenzene, yield a detailed confirmation of the theoretical predictions. (author) [French] Ce travail decrit des methodes de polarisation dynamique nucleaire dans les solides basees sur le melange thermique entre systemes de spins nucleaires. La description des processus de melange thermique met en jeu la plupart des aspects fondamentaux de la theorie de la temperature de spin. Les experiences, realisees avec du paradichlorobenzene et du paradibromobenzene, apportent une confirmation detaillee des previsions theoriques. (auteur)

  14. 55Mn nuclear spin relaxation and lifetime of magnons in MnF2 near the spin-flop transition

    International Nuclear Information System (INIS)

    Boucher, J.P.; King, A.R.

    1977-01-01

    A divergence in the nuclear relaxation rate (T 1 -1 ) of 55 Mn is observed in MnF 2 when the magnetic field approaches the field of the spin-flop transition (H=92.94Oe). The field dependence of T 1 -1 at 4.2 and 2K was studied together with its temperature dependence at 92.4 and 85 kOe. Near the transition, T 1 -1 is governed, below 8K, by the processes induced by the dipolar coupling and, above 8K, by those induced by exchange interactions. On the contrary, in weaker fields (H=85Oe), the only exchange induced processes are important [fr

  15. Spin assignments of nuclear levels above the neutron binding energy in $^{88}$Sr

    CERN Multimedia

    Neutron resonances reveal nuclear levels in the highly excited region of the nucleus around the neutron binding energy. Nuclear level density models are therefore usually calibrated to the number of observed levels in neutron-induced reactions. The gamma-ray cascade from the decay of the highly excited compound nucleus state to the ground state show dierences dependent on the initial spin. This results in a dierence in the multiplicity distribution which can be exploited. We propose to use the 4${\\pi}$ total absorption calorimeter (TAC) at the n TOF facility to determine the spins of resonances formed by neutrons incident on a metallic $^{87}$Sr sample by measuring the gamma multiplicity distributions for the resolved resonances. In addition we would like to use the available enriched $^{87}$Sr target for cross section measurements with the C$\\scriptscriptstyle{6}$D$\\scriptscriptstyle{6}$ detector setup.

  16. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    Science.gov (United States)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  17. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    Science.gov (United States)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  18. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  19. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals.

    Science.gov (United States)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same "direct relativistic mapping" between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  20. Corrections to nucleon spin structure asymmetries measured on nuclear polarized targets

    International Nuclear Information System (INIS)

    Rondon, O.A.

    1999-01-01

    The nucleon spin structure functions have been extracted from measurements of asymmetries in deep inelastic scattering of polarized leptons on polarized nuclei. The polarized nuclei present in practical targets: H, 2 H, 3 He, 14 N, 15 N, 6 Li, and 7 Li, are, with the exception of hydrogen, systems of bound nucleons, some of which can attain significant degrees of alignment. All the aligned nucleons contribute to the asymmetries. The contributions of each nuclear species to the asymmetry have to be carefully determined, before a reliable value for the net nucleon asymmetry is obtained. For this purpose, the spin component of the nuclear angular momentum for every nuclear state and the probability of each state have to be known with sufficient accuracy. In this paper I discuss the basic corrections used to estimate the contributions of the different nuclei, with emphasis on the A=6 and 7 Li isotopes present in the Li 2 H polarized target used during SLAC Experiment 155 to study the deuteron spin structure. copyright 1999 The American Physical Society

  1. Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy.

    Science.gov (United States)

    Devience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S

    2013-10-01

    Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, mz  = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism 'Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States' (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Quantum cognition: The possibility of processing with nuclear spins in the brain

    Science.gov (United States)

    Fisher, Matthew P. A.

    2015-11-01

    The possibility that quantum processing with nuclear spins might be operative in the brain is explored. Phosphorus is identified as the unique biological element with a nuclear spin that can serve as a qubit for such putative quantum processing-a neural qubit-while the phosphate ion is the only possible qubit-transporter. We identify the "Posner molecule", Ca9(PO4)6, as the unique molecule that can protect the neural qubits on very long times and thereby serve as a (working) quantum-memory. A central requirement for quantum-processing is quantum entanglement. It is argued that the enzyme catalyzed chemical reaction which breaks a pyrophosphate ion into two phosphate ions can quantum entangle pairs of qubits. Posner molecules, formed by binding such phosphate pairs with extracellular calcium ions, will inherit the nuclear spin entanglement. A mechanism for transporting Posner molecules into presynaptic neurons during vesicle endocytosis is proposed. Quantum measurements can occur when a pair of Posner molecules chemically bind and subsequently melt, releasing a shower of intra-cellular calcium ions that can trigger further neurotransmitter release and enhance the probability of post-synaptic neuron firing. Multiple entangled Posner molecules, triggering non-local quantum correlations of neuron firing rates, would provide the key mechanism for neural quantum processing. Implications, both in vitro and in vivo, are briefly mentioned.

  3. A NEW METHOD FOR EXTRACTING SPIN-DEPENDENT NEUTRON STRUCTURE FUNCTIONS FROM NUCLEAR DATA

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Y.F.; Melnitchouk, W.

    2009-01-01

    High-energy electrons are currently the best probes of the internal structure of nucleons (protons and neutrons). By collecting data on electrons scattering off light nuclei, such as deuterium and helium, one can extract structure functions (SFs), which encode information about the quarks that make up the nucleon. Spin-dependent SFs, which depend on the relative polarization of the electron beam and the target nucleus, encode quark spins. Proton SFs can be measured directly from electron-proton scattering, but those of the neutron must be extracted from proton data and deuterium or helium-3 data because free neutron targets do not exist. At present, there is no reliable method for accurately determining spin-dependent neutron SFs in the low-momentum-transfer regime, where nucleon resonances are prominent and the functions are not smooth. The focus of this study was to develop a new method for extracting spin-dependent neutron SFs from nuclear data. An approximate convolution formula for nuclear SFs reduces the problem to an integral equation, for which a recursive solution method was designed. The method was then applied to recent data from proton and deuterium scattering experiments to perform a preliminary extraction of spin-dependent neutron SFs in the resonance region. The extraction method was found to reliably converge for arbitrary test functions, and the validity of the extraction from data was verifi ed using a Bjorken integral, which relates integrals of SFs to a known quantity. This new information on neutron structure could be used to assess quark-hadron duality for the neutron, which requires detailed knowledge of SFs in all kinematic regimes.

  4. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  5. Relation between molecular electronic structure and nuclear spin-induced circular dichroism

    DEFF Research Database (Denmark)

    Štěpánek, Petr; Coriani, Sonia; Sundholm, Dage

    2017-01-01

    with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state......The recently theoretically described nuclear spin-induced circular dichroism (NSCD) is a promising method for the optical detection of nuclear magnetization. NSCD involves both optical excitations of the molecule and hyperfine interactions and, thus, it offers a means to realize a spectroscopy...... with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates...

  6. Pure spin-3/2 propagator for use in particle and nuclear physics

    Science.gov (United States)

    Kristiano, J.; Clymton, S.; Mart, T.

    2017-11-01

    We propose the use of a pure spin-3/2 propagator in the (3 /2 ,0 )⊕(0 ,3 /2 ) representation in particle and nuclear physics. To formulate the propagator in a covariant form we use the antisymmetric tensor spinor representation and we consider the Δ resonance contribution to the elastic π N scattering as an example. We find that the use of a conventional gauge-invariant interaction Lagrangian leads to a problem: the obtained scattering amplitude does not exhibit the resonance behavior. To overcome this problem we modify the interaction by adding a momentum dependence. As in the case of the Rarita-Schwinger formalism, we find that a perfect resonance description could be obtained in the pure spin-3/2 formulation only if hadronic form factors were considered in the interactions.

  7. Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Delgado, Pedro [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Accardi, Alberto [Hampton University, Hampton, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.

  8. Nuclear spin relaxation/resonance of {sup 8}Li in Al

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chow, K.H.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D.; Keeler, T.A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F., E-mail: kiefl@triumf.c [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research (Canada); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D.; Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Saadaoui, H.; Smadella, M.; Song, Q. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada)

    2009-04-15

    A low energy beam of spin polarized {sup 8}Li has been used to study the behaviour of isolated {sup 8}Li implanted into a 150 nm thick film of Al on an MgO substrate. The spin relaxation rate 1/T{sub 1} and beta-NMR lineshape were measured as a function of temperature in a large magnetic field of 4.1 T. The resonances from different sites are unresolved due to the large nuclear dipolar interaction with the host {sup 27}Al magnetic dipole moments. Nevertheless the temperature variation of the site averaged 1/T{sub 1} and Knight shift show evidence for a transition between the octahedral O and substitutional S sites at about 150 K, as observed in other fcc metals.

  9. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    Science.gov (United States)

    Herlitschke, M.; Disch, S.; Sergueev, I.; Schlage, K.; Wetterskog, E.; Bergström, L.; Hermann, R. P.

    2016-04-01

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4 nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.

  10. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  11. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  12. Measurements of the nuclear spin-spin relaxation times for commensurate {sup 3}He-Ne films adsorbed on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C; Sullivan, N S [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Stachowiak, P [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)], E-mail: Sullivan@phys.ufl.edu

    2009-02-01

    Measurements of the {sup 3}He nuclear spin-spin relaxation time, T{sub 2}, have been carried out for commensurate layers of {sup 3}He-Ne mixtures adsorbed on hexagonal boron nitride for temperatures 0.2< T <10 K. A temperature independent relaxation is observed at low temperatures and is interpreted in terms of the effective exchange frequencies for {sup 3}He particle exchange on the surface. The results show a strong dependence on the fraction of neon in the adsorbed layer. This variation is discussed in terms of a multiple spin exchange model for {sup 3}He in a monolayer. The contributions to T{sub 2} from different components of the exchange, 2-spin exchange (J{sub 2}), 3-spin exchange (J{sub 3}), 4-spin exchange (J{sub 4}) and higher exchange permutations depend on the {sup 3}He coverage and thus permit the separation of the amplitudes of the different exchange rates, and in particular allow one to deduce the relative strengths of 2-atom and 3-atom exchange where other methods are sensitive only to the effective two-particle term J{sub eff} = J{sub 2} - 2J{sub 3}.

  13. To a better management of nuclear wastes. SPIN program: chemical separations

    International Nuclear Information System (INIS)

    Madic, C.

    1995-01-01

    This document is a compilation of transparencies for a conference about the techniques used in France for the reprocessing of spent fuels. A description of the different steps of the fuel cycle and of the Purex process (TBP extraction etc..) is given. According to December 30, 1991 nuclear waste policy acts, the ultimate disposal of long life radioactive wastes is prohibited. The SPIN program has been created to develop separation and transmutation processes for high activity radioactive wastes prior to their storage in surface facilities or disposal in deep geologic repositories. The two main axes of the SPIN program are the reduction of waste volume and the reduction of long-life radionuclides quantity using new chemical processes (Diamex) and extractants (diamides, picolinamides, calixarenes, ether-crown), and destruction processes. The principal targets of the SPIN program are the minor actinides (neptunium..) and the long-life fission products (technetium, zirconium..). The processes used are derived from Purex and involve additional hydrometallurgical (pyrometallurgical) operations in order to minimize the induced secondary waste fluxes. (J.S.). 20 figs., 2 tabs

  14. Quantum correlations in a system of nuclear s = 1/2 spins in a strong magnetic field

    International Nuclear Information System (INIS)

    Fel’dman, E B; Kuznetsova, E I; Yurishchev, M A

    2012-01-01

    Entanglement and quantum discord for a pair of nuclear spins s = 1/2 in a nanopore filled with a gas of spin-carrying molecules (atoms) are studied. The correlation functions describing dynamics of dipolar-coupled spins in a nanopore are found. The dependence of spin-pair entanglement on the temperature and the number of spins is obtained from the reduced density matrix, which is centrosymmetric (CS). An analytic expression for the concurrence is obtained for an arbitrary CS density matrix. It is shown that the quantum discord as a measure of quantum correlations attains a significant value at low temperatures. It is also shown that the discord in the considered model has ‘flickering’ character and disappears periodically in the course of time evolution of the system. The geometric discord is studied for arbitrary 4 × 4 CS density matrices. (paper)

  15. Restricted conformational flexibility of furanose derivatives: Ab initio interpretation of their nuclear spin-spin coupling constants

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Raich, I.; Kaminsky, J.; Hrabal, R.; Čejka, J.; Sychrovský, Vladimír

    2004-01-01

    Roč. 108, - (2004), s. 6365-6372 ISSN 1089-5639 R&D Projects: GA AV ČR IAA4055104; GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4055905 Keywords : spin-spin coupling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.639, year: 2004

  16. Novel nuclear laser spectroscopy method using superfluid helium for measurement of spins and moments of exotic nuclei

    International Nuclear Information System (INIS)

    Furukawa, Takeshi; Wakui, Takashi; Yang, Xiaofei; Fujita, Tomomi; Imamura, Kei; Yamaguchi, Yasuhiro; Tetsuka, Hiroki; Tsutsui, Yoshiki; Mitsuya, Yosuke; Ichikawa, Yuichi; Ishibashi, Yoko; Yoshida, Naoki; Shirai, Hazuki; Ebara, Yuta; Hayasaka, Miki; Arai, Shino; Muramoto, Sosuke

    2013-01-01

    Highlights: • Development of a novel nuclear laser spectroscopy method using superfluid helium. • Observation of the Zeeman resonance with the 85 Rb beam introduced into helium. • Demonstration of deducing the nuclear spins from the observed resonance spectrum. -- Abstract: We have been developing a novel nuclear laser spectroscopy method “OROCHI” for determining spins and moments of exotic radioisotopes. In this method, we use superfluid helium as a stopping material of energetic radioisotope beams and then stopped radioisotope atoms are subjected to in situ laser spectroscopy in superfluid helium. To confirm the feasibility of this method for rare radioisotopes, we carried out a test experiment using a 85 Rb beam. In this experiment, we have successfully measured the Zeeman resonance signals from the 85 Rb atoms stopped in superfluid helium by laser-RF double resonance spectroscopy. This method is efficient for the measurement of spins and moments of more exotic nuclei

  17. Novel nuclear laser spectroscopy method using superfluid helium for measurement of spins and moments of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Takeshi, E-mail: takeshi@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakui, Takashi [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan); Yang, Xiaofei [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); School of Physics, Peking University, Chengfu Road, Haidian District, Beijing 100871 (China); Fujita, Tomomi [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Imamura, Kei; Yamaguchi, Yasuhiro [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Tetsuka, Hiroki; Tsutsui, Yoshiki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501,Japan (Japan); Mitsuya, Yosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Ichikawa, Yuichi [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ishibashi, Yoko [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yoshida, Naoki; Shirai, Hazuki [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ebara, Yuta; Hayasaka, Miki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501,Japan (Japan); Arai, Shino; Muramoto, Sosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); and others

    2013-12-15

    Highlights: • Development of a novel nuclear laser spectroscopy method using superfluid helium. • Observation of the Zeeman resonance with the {sup 85}Rb beam introduced into helium. • Demonstration of deducing the nuclear spins from the observed resonance spectrum. -- Abstract: We have been developing a novel nuclear laser spectroscopy method “OROCHI” for determining spins and moments of exotic radioisotopes. In this method, we use superfluid helium as a stopping material of energetic radioisotope beams and then stopped radioisotope atoms are subjected to in situ laser spectroscopy in superfluid helium. To confirm the feasibility of this method for rare radioisotopes, we carried out a test experiment using a {sup 85}Rb beam. In this experiment, we have successfully measured the Zeeman resonance signals from the {sup 85}Rb atoms stopped in superfluid helium by laser-RF double resonance spectroscopy. This method is efficient for the measurement of spins and moments of more exotic nuclei.

  18. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  19. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Test of parity-conserving time-reversal invariance using polarized neutrons and nuclear spin aligned holmium

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Wilburn, W.S.; Gould, C.R.; Haase, D.G.; Keith, C.D.; Raichle, B.W.; Seely, M.L.; Walston, J.R.

    1997-01-01

    A test of parity-conserving, time-reversal noninvariance (PC TRNI) has been performed in 5.9 MeV polarized neutron transmission through nuclear spin aligned holmium. The experiment searches for the T-violating fivefold correlation via a double modulation technique emdash flipping the neutron spin while rotating the alignment axis of the holmium. Relative cross sections for spin-up and spin-down neutrons are found to be equal to within 1.2x10 -5 (80% confidence). This is a two orders of magnitude improvement compared to traditional detailed balance studies of time reversal, and represents the most precise test of PC TRNI in a dynamical process, to our knowledge. copyright 1997 The American Physical Society

  1. Contribution to the safety assessment of instrumentation and control software for nuclear power plants. Application to spin N4

    International Nuclear Information System (INIS)

    Soubies, B.; Boulc'h, J.; Elsensohn, O.; Le Meur, M.; Henry, J.Y.

    1994-01-01

    The process of licensing nuclear power plants for operation consists of mandatory steps featuring detailed examination of the instrumentation and control system. Significant changes were introduced by the operator in the process of designing and producing 1400 MWe pressurized water reactor safety systems and, in particular, in the case of the Digital Integrated Protection System, (French abbreviation SPIN). The methodology applied by the Institute of Protection and Nuclear Safety (IPSN) to examine the software of this system is described. It consists of the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs, and the approach adopted by the IPSN to evaluate SPIN safety softwares of the protection system for the N4 series of reactors. (R.P.). 2 refs

  2. Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources

    Science.gov (United States)

    Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.

    2018-04-01

    We study the gravitational collapse of prestellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3, and of the hydrides of carbon, nitrogen, oxygen, and sulfur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the prestellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes—as assumed in our gas-phase network—and direct nucleus- or atom-exchange reactions.

  3. Signal interferences from turbulent spin dynamics in solution nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Huang, Susie Y.; Lin, Yung-Ya; Lisitza, Natalia; Warren, Warren S.

    2002-06-01

    Artifacts arising from aperiodic turbulent spin dynamics in gradient-based nuclear magnetic resonance (NMR) applications are comprehensively surveyed and numerically simulated by a nonlinear Bloch equation. The unexpected dynamics, triggered by the joint action of radiation damping and the distant dipolar field, markedly deteriorate the performance of certain pulse sequences incorporating weak pulsed-field gradients and long evolution times. The effects are demonstrated in three general classes of gradient NMR applications: solvent signal suppression, diffusion measurements, and coherence pathway selection. Gradient-modulated solvent transverse magnetization can be partially rephased in a series of self-refocusing gradient echoes that blank out solute resonances in the CHESS (chemical-shift-selective spectroscopy) and WATERGATE (gradient-tailored water suppression) solvent suppression schemes. In addition, the discovered dynamics contribute to erratic echo attenuation in pulsed gradient spin echo (PGSE) and PGSE stimulated echo diffusion measurements and produce coherence leakage in gradient-selected DQFCOSY and HMQC experiments. Specific remedies for minimizing unwanted effects are presented.

  4. Quantum non demolition measurement of a single nuclear spin in a room temperature solid

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Phillip; Beck, Johannes; Steiner, Matthias; Rathgen, Helmut; Rempp, Florian; Zarrabi, Navid; Dolde, Florian; Jelezko, Fedor; Wrachtrup, Joerg [Universitaet Stuttgart (Germany); Hemmer, Philip [A and M University, Texas (United States)

    2010-07-01

    The measurement process and its interpretation are in the focus of quantum mechanics since its early days. Today's ability to isolate single quantum objects allows experimental demonstration of former ''gedankenexperiments'' like measurement induced quantum state collaps. Rapidly growing quantum technologies explore fundamental aspects of measurements in quantum computing, however for solid state systems such experiments require operation at very low temperatures. Here we show that projective quantum measurement can be performed on a single nuclear spin in diamond under ambient conditions. Using quantum non demolition (QND) readout we are able to detect quantum jumps and the quantum Zeno effect emphasising the addressability of fundamental questions of quantum mechanics in solids. Single shot measurements with fidelities exceeding 0.9 enable efficient state initialization, quantum error correction and entanglement pumping that is crucial for quantum information processing including measurement based schemes and distributed quantum networks.

  5. Theory of radiative muon capture with applications to nuclear spin and isospin doublets

    International Nuclear Information System (INIS)

    Hwang, W.P.; Primakoff, H.

    1978-01-01

    A theory of radiative muon capture, with applications to nuclear spin and isospin doublets, is formulated on the basis of the conservation of the hadronic electromagnetic current, the conservation of the hadronic weak polar currents, the partial conservation of the hadronic weak axial-vector current, the SU(2) x SU(2) current algebra for the various hadronic current, and a simplifying dynamical approximation for the hadron-radiating part of the transition amplitude: the ''linearity hypothesis''. The resultant total transition amplitude, which also includes the muon-radiating part, is worked out explicitly and applied to treat the processes μ - p → ν/sub μ/nγ and μ - 3 He → ν/sub μ/ 3 Hγ

  6. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  7. Degradation of organochloride pesticides by molten salt oxidation at IPEN: spin-off nuclear activities

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2013-01-01

    Nuclear spin-off has at least two dimensions. It may provide benefits to the society such as enlarge knowledge base, strengthen infrastructure and benefit technology development. Besides this, to emphasize that some useful technologies elapsed from nuclear activities can affect favorably the public opinion about nuclear energy. In this paper is described a technology developed initially by the Rockwell Int. company in the USA more than thirty years ago to solve some problems of nuclear fuel cycle wastes. For different reasons the technology was not employed. In the last years the interest in the technology was renewed and IPEN has developed his version of the method applicable mainly to the safe degradation of hazardous wastes. This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs - persistent organic pollutants and particularly for the organ chlorides. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions, resultants of the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (polychlorinated biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their life cycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves using a chemical reactor containing molten salts, sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation and the residue is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe

  8. Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation

    Science.gov (United States)

    Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David

    2018-04-01

    Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system 138Ba 19. Our sensitivity surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be suppressed to at least the level of the present statistical sensitivity. We measure the matrix element W of the NSD-PV interaction with total uncertainty δ W /(2 π )<0.7 Hz , for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei including 137Ba in 137BaF, where |W |/(2 π )≈5 Hz is expected.

  9. Measuring nuclear-spin-dependent parity violation with molecules: Experimental methods and analysis of systematic errors

    Science.gov (United States)

    Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David

    2018-04-01

    Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.

  10. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  11. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    Science.gov (United States)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  12. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Matsuki, Yoh; Woskov, Paul P; Corzilius, Björn; Griffin, Robert G; Temkin, Richard J

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules; Theoretische Untersuchung zur Quantendynamik der Kernspinisomere nicht-linearer Molekuele

    Energy Technology Data Exchange (ETDEWEB)

    Grohmann, Thomas

    2012-05-31

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  14. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  15. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  16. 14N Nuclear Quadrupole Resonance Signals in Paranitrotoluene and Trinitrotoluene. Spin-Lock Spin-Echo Off-Resonance Effects

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvone

    A simple, yet effective technique to enhance the 14N NQR trinitrotoluene notoriously low sensitivity is the use of multipulse sequences. Here we investigate the off-resonance effects of the Spin-Lock Spin-Echo multipulse sequence, a predecessor of many advanced pulse sequences used for the same enhancement. Two samples have been used: paranitrotoluene, with a single 14N site as a model compound for trinitrotoluene, and trinitrotoluene itself, with six 14N sites. Our main focus has been the irradiation frequency dependence of the NQR signal, which is important when 14N NQR is used for remote detection of explosives. The two related principal issues are: the target temperature uncertainty and the existence of multiplets with several closely spaced resonance frequencies. The first applies to any explosive, since in remote detection the temperature is only approximately known, whereas the second applies mainly to trinitrotoluene, with 12 resonance frequencies between 837 and 871 kHz. Our frequency dependent investigation shows that the signal intensity as well as the effective spinspin relaxation time varies substantially with irradiation frequency in both samples. We provide a theoretical explanation of this variation which describes very well the observations and can be useful for increasing the reliability of remote detection signal processing.

  17. The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance

    Science.gov (United States)

    Garcon, Antoine; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Figueroa, Nataniel L.; Graham, Peter W.; Kimball, Derek F. Jackson; Rajendran, Surjeet; Gil Sendra, Marina; Sushkov, Alexander O.; Trahms, Lutz; Wang, Tao; Wickenbrock, Arne; Wu, Teng; Budker, Dmitry

    2018-01-01

    The cosmic axion spin precession experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the Universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses {m}{{a}}∼ {10}-14–{10}-6 eV. Sub-Hz frequencies are typically difficult to probe with NMR due to the diminishing sensitivity of magnetometers in this region. To circumvent this limitation, we suggest new detection and data processing modalities. We describe a non-resonant frequency-modulation detection scheme, enabling searches from mHz to Hz frequencies ({m}{{a}}∼ {10}-17–{10}-14 eV), extending the detection bandwidth by three decades.

  18. Dynamical suppression of nuclear-spin decoherence time in Si and GaAs using inversion pulses

    International Nuclear Information System (INIS)

    Watanabe, S.; Harada, J.; Sasaki, S.; Hirayama, Y.

    2007-01-01

    We found that nuclear-spin decoherence is suppressed by applying inversion pulses such as alternating phase Carr-Purcell (APCP) and Carr-Purcell-Meiboom-Gill (CPMG) sequences in silicon and GaAs. The decoherence time reaches ∼1.3s by applying inversion pulses, which is ∼200 times as long as the characteristic decay time obtained from the Hahn echo sequence (∼6ms) in silicon

  19. Nuclear shape transitions and some properties of aligned-particle configurations at high spin

    International Nuclear Information System (INIS)

    Koo, T.L.; Chowdhury, P.; Emling, H.

    1982-01-01

    Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states

  20. Collective spin by linearization of the Schrodinger equation for nuclear collective motion

    International Nuclear Information System (INIS)

    Greiner, M.; Scheid, W.; Herrmann, R.

    1988-01-01

    The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity

  1. Nuclear inelastic scattering of 1D polymeric Fe(II) complexes of 1,2,4-aminotriazole in their high-spin and low-spin state

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Juliusz A., E-mail: wolny@physik.uni-kl.de; Rackwitz, Sergej [University of Kaiserslautern, Department of Physics (Germany); Achterhold, Klaus [Technische Universitaet Muenchen, Department of Physics (Germany); Muffler, Kai; Schuenemann, Volker [University of Kaiserslautern, Department of Physics (Germany)

    2012-03-15

    The vibrational properties of Fe(II) 1D spin crossover polymers have been characterized by nuclear inelastic scattering (NIS). The complexes under study were the tosylate and perchlorate salts of ([Fe(4-amino-1,2,4-triazole){sub 3}] <{sup +2}){sub n} complexes. The complexes have LS (S = 0) marker bands in the range of 300-500 cm{sup - 1}, while the marker bands corresponding to the HS (S = 2) state are detected between 200 cm{sup - 1} and 300 cm{sup - 1}, in line with the decreasing Fe-N bond strengths during the transition from LS to HS. Accompanying DFT calculations using the functional B3LYP and the basis set CEP-31G confirm these assignments.

  2. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  3. Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin

    Science.gov (United States)

    Urdampilleta, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.

    2013-05-01

    A multiterminal device based on a carbon nanotube quantum dot was used at very low temperature to probe a single electronic and nuclear spin embedded in a bis-(phthalocyaninato) terbium (III) complex (TbPc2). A spin-valve signature with large conductance jumps was found when two molecules were strongly coupled to the nanotube. The application of a transverse field separated the magnetic signal of both molecules and enabled single-shot read-out of the terbium nuclear spin. The Landau-Zener (LZ) quantum tunneling probability was studied as a function of field sweep rate, establishing a good agreement with the LZ equation and yielding the tunnel splitting Δ. It was found that Δ increased linearly as a function of the transverse field. These studies are an essential prerequisite for the coherent manipulation of a single nuclear spin in TbPc2.

  4. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    International Nuclear Information System (INIS)

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-01

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T 1 . Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in 13 CH 3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states

  5. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  6. Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy of soil humic fractions

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; Hawkins, B.L.; Maciel, G.E.

    1986-01-01

    Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy was used to characterize humic fractions isolated from different soils. The humic acid fractions are more aromatic than the humin fractions, probably due to the higher polysaccharide content of humins. However, fulvic acid fractions are more aromatic than the corresponding humic acid and humin fractions. These results can be interpreted in terms of the isolation procedure, because the high affinity of Polyclar AT for phenols results in higher aromaticities as compared with other isolation methods (e.g. charcoal).

  7. Nanoscale quantum gyroscope using a single 13C nuclear spin coupled with a nearby NV center in diamond

    Science.gov (United States)

    Song, Xuerui; Wang, Liujun; Feng, Fupan; Lou, Liren; Diao, Wenting; Duan, Chongdi

    2018-03-01

    Developing gyroscopes based on quantum systems are important for inertial sensing applications, and its underlying physics is of fundamental interest. In this paper, we proposed a new type of gyroscope based on the Berry phase generated during rotation of the quantum system by using a single 13C nuclear spin coupled with a nearby nitrogen-vacancy center in diamond. Due to the atom-scale size of the quantum system, rotation information can be obtained with high spatial resolution. The gyroscope can be manipulated at room temperature and without the need for a strong magnetic field, which is also beneficial to its further applications.

  8. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  9. Pseudogap Behavior of the Nuclear Spin-Lattice Relaxation Rate in FeSe Probed by 77Se-NMR

    Science.gov (United States)

    Shi, Anlu; Arai, Takeshi; Kitagawa, Shunsaku; Yamanaka, Takayoshi; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas; Hirata, Michihiro; Sasaki, Takahiko

    2018-01-01

    We conducted 77Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature (T1T)-1 increases below the structural transition temperature Ts but starts to be suppressed below T*, well above the superconducting transition temperature Tc(H), resulting in a broad maximum of (T1T)-1 at Tp(H). This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because T* and Tp(H) decrease in the same manner as Tc(H) with increasing H, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above Tc(H).

  10. Study of nuclear isovector spin responses from polarization transfer in (p,n) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Wakasa, Tomotsugu

    1997-01-01

    We have measured a complete set of polarization transfer observables has been measured for quasi-free (p vector, n vector) reactions on 2 H, 6 Li, 12 C, 40 Ca, and 208 Pb at a bombarding energy of 346MeV and a laboratory scattering angle of 22deg (q=1.7 fm -1 ). The polarization transfer observables for all five targets are remarkably similar. These polarization observables yield separated spin-longitudinal (σ·q) and spin-transverse (σxq) nuclear responses. These results are compared to the spin-transverse responses measured in deep-inelastic electron scattering as well as to nuclear responses based on the random phase approximation. Such a comparison reveals an enhancement in the (p vector, n vector) spin-transverse channel, which masks the effect of pionic correlations in the response ratio. Second, the double differential cross sections at θ lab between 0deg and 12.3deg and the polarization transfer D NN at 0deg for the 90 Zr(p,n) reaction are measured at a bombarding energy of 295MeV. The Gamow-Teller(GT) strength B(GT) in the continuum deduced from the L=0 cross section is compared both with the perturbative calculation by Bertsch and Hamamoto and with the second-order random phase approximation calculation by Drozdz et al. The sum of B(GT) values up to 50MeV excitation becomes S β- =28.0±1.6 after subtracting the contribution of the isovector spin-monopole strength. This S β- value of 28.0±1.6 corresponds to about (93±5)% of the minimum value of the sum-rule 3(N-Z)=30. Last, first measurements of D NN (0deg) for (p vector, n vector) reactions at 295MeV yield large negative values up to 50MeV excitation for the 6 Li, 11 B, 12 C, 13 C(p vector, n vector) reactions. DWIA calculations using the Franey and Love (FL) 270MeV interaction reproduce differential cross sections and D NN (0deg) values, while the FL 325MeV interaction yield D NN (0deg) values less negative than the experimental values. (J.P.N.)

  11. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi

    2017-12-05

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  12. Determination of spins and radioactive widths of tellurium nuclear levels with capturre gamma rays

    International Nuclear Information System (INIS)

    Bianchini, F.G.

    1973-01-01

    Spins and levels widths of the tellurium, mainly 128 Te and 130 Te, were determinated by gamma spectroscopy. Measurements of inelastic and elastic scattering, angular distribution and scattering temperature dependence, were still made. Energy levels of this isotopes, were also determinated [pt

  13. Quantum entanglement analysis of an optically excited coupling of two nuclear spins via a mediator: Combining the quantum concurrence and negativity

    Science.gov (United States)

    Fu, Chenghua; Hu, Zhanning

    2018-03-01

    In this paper, we investigate the characteristics of the nuclear spin entanglement generated by an intermedium with an optically excited triplet. Significantly, the interaction between the two nuclear spins presents to be a direct XY coupling in each of the effective subspace Hamiltonians which are obtained by applying a transformation on the natural Hamiltonian. The quantum concurrence and negativity are discussed to quantitatively describe the quantum entanglement, and a comparison between them can reveal the nature of their relationship. An innovative general equation describing the relationship between the concurrence and negativity is explicitly obtained.

  14. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    Science.gov (United States)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  15. A new problem in the correlation of nuclear-spin relaxation and ionic conductivity in superionic glasses

    Science.gov (United States)

    Tatsumisago, M.; Angell, C. A.; Martin, S. W.

    1992-11-01

    Following the recent resolution of the longstanding problem of reconciling constant frequency nuclear-spin lattice relaxation (SLR) activation energies and d.c. conductivity activity energies in ion conducting glasses, we point out a new problem which seems not to have been discussed previously. We report conductivity data measured at a series of fixed frequencies and variable temperatures on a lithium chloroborate glass and compare them with SLR data on identically prepared samples, also using different fixed frequencies. While phenomenological similarities due to comparable departures from exponential relaxation are found in each case, pronounced differences in the most probable relaxation times themselves are observed. The conductivity relaxation at 500 K occurs on a time scale shorter by some 2 orders of magnitude than the 7Li SLR correlation, and has a significantly lower activation energy. We show from a literature review that this distinction is a common but unreported finding for highly decoupled (fast-ion conducting) systems, and that an inverse relationship is found in supercoupled salt/polymer ``solid'' electrolytes. In fast-ion conducting glasses, the slower SLR process would imply special features in the fast-ion motion which permit spin correlations to survive many more successive ion displacements than previously expected. It is conjectured that the SLR in superionic glasses depends on the existence of a class of low-lying traps infrequently visited by migrating ions.

  16. Contrast generation in the nuclear-spin tomography by pulsed ultrasound; Kontrasterzeugung in der Kernspintomographie durch gepulsten Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Oehms, Ole Benjamin

    2009-07-10

    In the framework of this thesis a combined method of ultrasound and nuclear-spin tomography is presented. Via ultrasound pulses by the sound-radiation force in liquids and tissue phantoms motions are generated, which depend on ther viscoelastic properties. This motions are made visible by a motion-sensitive tomograph sequence in the phase image of the tomograph in form of a phase change. The first measurements on simple phantoms and liquids are presented. [German] Im Rahmen dieser Arbeit wird eine kombinierte Methode aus Ultraschall und Kernspintomographie vorgestellt. Ueber Ultraschallpulse werden durch die Schallstrahlungskraft in Fluessigkeiten und Gewebephantomen Bewegungen erzeugt, die von den viskoelastischen Eigenschaften abhaengen. Diese Bewegungen werden mit einer bewegungssensitiven Tomographensequenz im Phasenbild des Tomographen in Form einer Phasenaenderung sichtbar gemacht. Die ersten Messungen an einfachen Phantomen und Fluessigkeiten werden praesentiert. (orig.)

  17. Spin-lattice relaxation attenuation coefficients for on-line nuclear orientation experiments

    CERN Document Server

    Vénos, D; Severijns, N

    2003-01-01

    In on-line nuclear orientation experiments the relaxation process is of great importance. During implantation of the radioactive beam, the nuclear sublevel populations attain a secular equilibrium. For this case secular orientation parameters are introduced: B sublambda(sec)=rho sublambda B sublambda(th). Previously attenuation coefficients rho sublambda have already been tabulated, but only for lambda=2,4. In the last few years the number of nuclear orientation experiments in which beta or alpha particles are studied has increased. For these experiments the terms with lambda=1,3,6, and 8 are also necessary. Therefore, we have calculated the values of rho sublambda in full scope.

  18. Electron spin resonance and nuclear magnetic resonance of sodium macrostructures in strongly irradiated NaCl-K crystals: Manifestation of quasi-one-dimensional behavior of electrons

    NARCIS (Netherlands)

    Cherkasov, FG; Mustafin, RG; L'vov, SG; Denisenko, GA; den Hartog, HW; Vainshtein, D. I.

    1998-01-01

    Data from an investigation of electron spin resonance and nuclear magnetic resonance of NaCl-K (similar to 1 mole%) crystals strongly irradiated with electrons imply the observation of a metal-insulator transition with decreasing temperature and the manifestation of quasi-one-dimensional electron

  19. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    DEFF Research Database (Denmark)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek

    2016-01-01

    corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the 4-component Dirac-Coulomb Hamiltonian using Dyall’s acv4z basis sets. The relativistic corrections to the nuclear magnetic...

  20. Thermal coupling in low fields between the nuclear and electronic spins in Tm2+ doped CaF2

    International Nuclear Information System (INIS)

    Urbina, Cristian.

    1977-01-01

    It is shown that in a CaF 2 crystal doped with divalent thulium ions there is in low fields, a thermal coupling between the electron magnetic moments of Tm 2+ and the nuclear moments of 19 F. When these ones have been lowered down to temperature through dynamical high-field polarization and adiabatic demagnetization in succession the resulting polarisation of the formed ones can overstep their original polarization in high field. A trial is given to explain this Zeeman electronic energy cooling through nuclear Zeeman energy with invoking a thermal coupling between both systems through the spin-spin electronic interaction but no theoretical model is developed in view of a quantitative explanation of the dynamics of such a process. The magnetic resonance spectrum of Tm 2 + in low field is also investigated: an important shift and narrowing of the electron resonance line in low field are obtained when 19 F nuclei are very cold. This special spectral characters are explained as due to magnetic interactions between electronic impurities and the neighbouring 19 F nuclei and a theoretical model is developed (based on the local Weiss field approximation) which explains rather well the changes in the spectral shift as a function of the 19 F nucleus temperature. A second theoretical model has also been developed in view of a quantitative explanation of both the narrowing and shift of the spectrum, but its prediction disagree with the experimental results. It is shown that in low fieldsx it is possible to get rid of paramagnetic impurities after they have been reused as reducing agents for 19 F nucleus entropy populating at about 80%, a non magnetic metastable state with these impurities [fr

  1. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Science.gov (United States)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  2. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  3. Electron-nuclear spin dynamics of Ga centers in GaAsN dilute nitride semiconductors probed by pump-probe spectroscopy

    Science.gov (United States)

    Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.

    2018-03-01

    We propose an experimental procedure to track the evolution of electronic and nuclear spins in Ga2+ centers in GaAsN dilute semiconductors. The method is based on a pump-probe scheme that enables to monitor the time evolution of the three components of the electronic and nuclear spin variables. In contrast to other characterization methods, as nuclear magnetic resonance, this one only needs moderate magnetic fields (B≈ 10 mT), and does not require microwave irradiation. Specifically, we carry out a series of tests for different experimental conditions in order to optimize the procedure for maximum sensitivity in the measurement of the circular degree of polarization. Based on previous experimental results and the theoretical calculations presented here, we estimate that the method could yield a time resolution of about 10ps.

  4. Persistent Optical Nuclear Spin Narrowing in a Singly Charged InAs Quantum Dot

    Science.gov (United States)

    2012-02-01

    hole envelope wave function, Ah is the hyper- fine coupling constant, and c0 is the lattice parameter. Since the external magnetic field is in the x̂...February 2012 / J. Opt. Soc. Am. B A121 where γs (γt) is the spin (trion) dephasing rate, χ is half the pump Rabi frequency ΩR (ΩR # μEℏ , where μ is...probe ab- sorption at the dark state dip (αdip) and the Rabi sideband (αpeak): αdip # α0 χ2γs & γt$γ2s% χ4 & 2χ2γtγs & γ2t γ2s ; (11) αpeak # α0 χ2γs

  5. Effect of nuclear spin on chemical reactions and internal molecular rotation

    International Nuclear Information System (INIS)

    Sterna, L.L.

    1980-12-01

    Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of 13 C and 12 C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. 13 C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride

  6. Nuclear spin-lattice relaxation of Cu-62 at low temperatures in iron

    Czech Academy of Sciences Publication Activity Database

    Golovko, V. V.; Zákoucký, Dalibor; Srnka, Dušan; Honusek, Milan

    2006-01-01

    Roč. 74, č. 4 (2006), 044313 ISSN 0556-2813 R&D Projects: GA ČR GA202/02/0848 Institutional research plan: CEZ:AV0Z10480505 Keywords : orientation experiments * HPGE detectors * ionization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.327, year: 2006

  7. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    Science.gov (United States)

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  8. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  9. Difusão de spins nucleares em meios porosos - uma abordagem computacional da RMN

    OpenAIRE

    Éverton Lucas-Oliveira

    2015-01-01

    A Ressonância Magnética Nuclear (RMN) é uma importante técnica empregada nas principais áreas de conhecimento, tais como, Física, Química e Medicina. Importantes trabalhos da RMN aplicada ao estudo da dinâmica de moléculas em fluidos presentes em meios porosos permitiram que esta técnica ganhasse também notoriedade na indústria do petróleo. O presente projeto é fundamentado em alguns destes trabalhos seminais, reproduzindo, através de modelos físico-computacionais, os principais efeitos físic...

  10. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  11. Spin-engineered quantum dots

    OpenAIRE

    Fleurov, V.; Ivanov, V. A.; Peeters, F. M.; Vagner, I. D.

    2001-01-01

    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of bindin...

  12. Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

    Science.gov (United States)

    Ishikawa, Yuya; Ohya, Kenta; Fujii, Yutaka; Fukuda, Akira; Miura, Shunsuke; Mitsudo, Seitaro; Yamamori, Hidetomo; Kikuchi, Hikomitsu

    2018-04-01

    We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value ( Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

  13. Anomalous 125Te Nuclear Spin Relaxation Coincident with Charge Kondo Behavior in Superconducting Pb1-xTlxTe

    Science.gov (United States)

    Mukuda, Hidekazu; Matsumura, Takashi; Maki, Shota; Yashima, Mitsuharu; Kitaoka, Yoshio; Miyake, Kazumasa; Murakami, Hironaru; Giraldo-Gallo, Paula; Geball, Theodore H.; Fisher, Ian R.

    2018-02-01

    We report the results of a 125Te NMR study of single crystalline Pb1-xTlxTe (x = 0, 0.35, 1.0%) as a window on the novel electronic states associated with the thallium impurities in PbTe. The Knight shift is enhanced as x increases, corresponding to an increase in the average density of states (DOS) coupled to a strong spatial variation in the local DOS surrounding each Tl dopant. Remarkably, for the superconducting composition (x = 1.0%), the 125Te nuclear spin relaxation rate (1/T1T) for Te ions that are close to the Tl dopants is unexpectedly enhanced in the normal state below a characteristic temperature of ˜10 K, below which the resistivity experiences an upturn. Such a simultaneous upturn in both the resistivity and (1/T1T) was not suppressed in the high magnetic field. We suggest that these observations are consistently accounted for by dynamical charge fluctuations in the absence of paramagnetism, which is anticipated by the charge Kondo scenario associated with the Tl dopants. In contrast, such anomalies were not detected in the non-superconducting samples (x = 0 and 0.35%), suggesting a connection between dynamical valence fluctuations and the occurrence of superconductivity in Pb1-xTlxTe.

  14. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  15. Near-Surface Structural Phase Transition of SrTiO3 Studied with Zero-Field β-Detected Nuclear Spin Relaxation and Resonance

    Science.gov (United States)

    Salman, Z.; Kiefl, R. F.; Chow, K. H.; Hossain, M. D.; Keeler, T. A.; Kreitzman, S. R.; Levy, C. D. P.; Miller, R. I.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Schultz, J. D.; Smadella, M.; Wang, D.; Macfarlane, W. A.

    2006-04-01

    We demonstrate that zero-field β-detected nuclear quadrupole resonance and spin relaxation of low energy Li8 can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO3 single crystal occurs at Tc˜150K, i.e., ˜45K higher than Tcbulk, and that the tetragonal domains formed below Tc are randomly oriented.

  16. Recycling of radioactively contaminated scrap from the nuclear cycle and spin-off for other application

    Directory of Open Access Journals (Sweden)

    Quade, U.

    2005-12-01

    Full Text Available In the 1980ies, Siempelkamp foundry in Krefeld, Germany, developed a process to melt medium and slightly radioactive metals from decommissioning and maintenance works in nuclear power plants. Since 1989, in the CARLA melting plant which is licensed according to the German radiation protection ordinance (StrlSchV, metals are being molten which, for the largest part, can be reused. Since 1998, in a second plant, the GERTA melting plant, metals with a content of mercury up to 1 weight %, natural radioactivity up to 500 Bq/g and other chemical contaminations are being molten and completely decontaminated, so that these metals can be reused in the steel cycle. The following text is describing the melting process, acceptance criteria for contaminated scrap and recycling paths for the produced ingots and slags.

    La fundición Siempelkamp en Krefeld, Alemania, desarrolló, en los años 80, un proceso para fundir metales mediana y levemente radioactivos, procedentes de reparaciones o desmantelamiento de plantas nucleares. En la planta de fundición CARLA, que cumple los requisitos del decreto de protección contra radiaciones de la República Federal de Alemania, se funden metales desde 1989, de los cuales la mayor parte puede ser utilizada nuevamente. Desde 1998, en una segunda planta, fundición GERTA, se funden y descontaminan totalmente, metales de hasta un 1 % de peso de mercurio, con una radioactividad natural de hasta 500 Bq/g y con otros contaminantes químicos. De este modo los metales pueden ser nuevamente utilizados en el ciclo metálico. El texto adjunto describe el método para el fundido, los criterios para aceptar chatarra contaminada y las vías de utilización para los bloques de metal y escorias generadas en el proceso.

  17. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    Science.gov (United States)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; Bowers, C. R.

    2014-10-01

    A combined experimental-theoretical study of optically pumped nuclear magnetic resonance (OPNMR) has been performed in a GaAs /A l0.1G a0.9As quantum well film epoxy bonded to a Si substrate with thermally induced biaxial strain. The photon energy dependence of the Ga OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from the electronic structure and differential absorption to spin-up and spin-down states of the electron conduction band using a modified k .p model based on the Pidgeon-Brown model. Comparison of theory with experiment facilitated the assignment of features in the OPNMR energy dependence to specific interband Landau level transitions. The results provide insight into how effects of strain and quantum confinement are manifested in optical nuclear polarization in semiconductors.

  18. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.

    Science.gov (United States)

    Liu, Mengxiao; Kim, Yaewon; Hilty, Christian

    2017-09-05

    Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.

  19. Design of a triple resonance magic angle sample spinning probe for high field solid state nuclear magnetic resonance

    Science.gov (United States)

    Martin, Rachel W.; Paulson, Eric K.; Zilm, Kurt W.

    2003-06-01

    Standard design and construction practices used in building nuclear magnetic resonance (NMR) probes for the study of solid state samples become difficult if not entirely impractical to implement as the 1H resonance frequency approaches the self resonance frequency of commercial capacitors. We describe an approach that utilizes short variable transmission line segments as tunable reactances. Such an approach effectively controls stray reactances and provides a higher Q alternative to ceramic chip capacitors. The particular probe described is built to accommodate a 2.5 mm magic angle spinning rotor system, and is triply tuned to 13C, 15N, and 1H frequencies for use at 18.8 T (200, 80, and 800 MHz, respectively). Isolation of the three radio frequency (rf) channels is achieved using both a rejection trap and a transmission line notch filter. The compact geometry of this design allows three channels with high power handling capability to fit in a medium bore (63 mm) magnet. Extended time variable temperature operation is integral to the mechanical design, enabling the temperature control necessary for investigation of biological macromolecules. Accurate measurement of the air temperature near the sample rotor is achieved using a fiber optic thermometer, which does not interfere with the rf electronics. We also demonstrate that acceptable line shapes are only readily achieved using zero magnetic susceptibility wire in construction of the sample coil. Computer simulation of the circuit aided in the physical design of the probe. Representative data illustrating the efficiency, rf homogeneity, and signal to noise factor of the probe are presented.

  20. A study on the improvement of spin-off effectiveness of national nuclear R and D activities

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Lee, T. J.

    1997-02-01

    This study consists of two parts. One is to identify factors affecting technological effectiveness of the spin-off process that is defined as the technology transfer process from government sponsored research institutes (GRI's) to the civilian sector. The other is to analyze the environment of the spin-off process and to suggest guidelines for addition, this study also examines spin-off effectiveness with technology transfer types. To validate the conceptual model and hypotheses of the spin-off process, data are collected from 12 cases through in-depth interviews and questionnaires. Spearman correlation analysis is employed in order to test the hypotheses on the spin-off process. (author). 50 refs., 17 tabs., 12 figs

  1. Nuclear spin relaxation of 8Li in a thin film of La 0.67Ca 0.33MnO 3

    Science.gov (United States)

    Miller, R. I.; Arseneau, D.; Chow, K. H.; Daviel, S.; Engelbertz, A.; Hossain, MD.; Keeler, T.; Kiefl, R. F.; Kreitzman, S.; Levy, C. D. P.; Morales, P.; Morris, G. D.; MacFarlane, W. A.; Parolin, T. J.; Poutissou, R.; Saadaoui, H.; Salman, Z.; Wang, D.; Wei, J. Y. T.

    2006-03-01

    We report β-NMR measurements of the nuclear spin relaxation rate (1/T1) in a thin film of La 0.67Ca 0.33MnO 3 (LCMO) using a low-energy beam of spin-polarized 8Li. In a small magnetic field of 150 G, there is a broad peak in 1/T1 near the Curie temperature (Tc=259 K) and a dramatic decrease in 1/T1 at lower temperatures. This is attributed to a critical slowing down of the spin fluctuations near Tc and freezing of the magnetic excitations at low temperatures, respectively. In addition, there is a small amplitude, slow relaxing component at high temperatures, which we attribute to 8Li in the SrTiO 3 substrate. There is an indication that the spin relaxation rate in the substrate is also peaked at Tc due to close proximity to the magnetic film. These results establish that low-energy β-NMR can be used as a probe of magnetic fluctuations in magnetic thin films over a wide range of temperatures.

  2. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Document Server

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  3. Nuclear spin dynamics in solid {sup 3}He at ultralow temperatures; Kernspindynamik in festem {sup 3}He bei ultratiefen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Kath, Matthias

    2009-11-06

    In this thesis the experimental study of the spin dynamics of solid {sup 3}He is described. By means of magnetization measurements above 3 mK a Curie-Weiss behaviour was found with {theta}{sub W}{approx}2.1 mK and by this an order parameter of J={theta}{sub W}k{sub B}/{approx}-0.5 Kk{sub B} was observed, while in the range of 1 to 3 mK a pure Curie behaviour was found. By means of NMR measurements the values of {tau}{sub 1}(6 mK)=240 ms{+-}12 ms and {tau}{sub 1}(1 mK){approx} 40 ms were determined, while spin-echo measurements yielded the spin-spin relaxation time {tau}{sub 2}(6 mK)=4540 {mu}s{+-}140 {mu}s. Furthermore neutron scattering studies were performed. (HSI)

  4. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  5. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    Nuclei occur in many different species, called nuclides, which are defined by the numbers of protons and neutrons they contain. The chemical nature of an atom is defined by the number of protons in its nucleus. For example, all atoms of carbon have six protons in the nucleus, and all atoms of hydrogen have a single proton ...

  6. Near-surface structural phase transition of SrTiO3 studied with zero-field beta-detected nuclear spin relaxation and resonance.

    Science.gov (United States)

    Salman, Z; Kiefl, R F; Chow, K H; Hossain, M D; Keeler, T A; Kreitzman, S R; Levy, C D P; Miller, R I; Parolin, T J; Pearson, M R; Saadaoui, H; Schultz, J D; Smadella, M; Wang, D; MacFarlane, W A

    2006-04-14

    We demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e., approximately 45K higher than T(c)bulk, and that the tetragonal domains formed below T(c) are randomly oriented.

  7. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  8. Nuclear spin Hall and Klein tunneling effects during oxidation with electric and magnetic field inductions in graphene.

    Science.gov (United States)

    Little, Reginald B; McClary, Felicia; Rice, Bria; Jackman, Corine; Mitchell, James W

    2012-12-14

    The recent observation of the explosive oxidation of graphene with enhancement for decreasing temperature and the requirements for synchronizing oxidants for collective oxidation-reduction (redox) reactions presented a chemical scenario for the thermal harvesting by the magnetic spin Hall Effect. More experimental data are presented to demonstrate such spin Hall Effect by determining the influence of spins of so-called spectator fermionic cations. Furthermore, the so-called spectator bosonic cations are discovered to cause a Klein tunneling effect during the redox reaction of graphene. The Na(+) and K(+), fermionic cations and the Mg(2+) and Ca(2+), bosonic cations were observed and compared under a variety of experimental conditions: adiabatic reactions with initial temperatures (18-22 °C); reactions toward infinite dilution; isothermal reactions under nonadiabatic conditions at low temperature of 18 °C; reactions under paramagnetic O(2) or diamagnetic N(2) atmospheres of different permeabilities; reactions in applied and no applied external magnetic field; and reactions toward excess concentrations of common and uncommon Na(+) and Mg(2+) cations. The observed reaction kinetics and dynamics under these various, diverse conditions are consistent with the spin Hall mechanism, energy harvesting and short time violation of Second Law of Thermodynamics for redox reactions of graphene by the Na(+)K(+) mixture and are consistent with the Klein tunnel mechanism for the redox reactions of graphene by the Mg(2+)Ca(2+) mixture. Mixed spin Hall and Klein tunnel mechanisms are discovered to slow and modulate explosive redox reactions. Such spin Hall Effect also gives explanation of recent tunneling of electrons through boron nitride.

  9. Nuclear magnetic resonance in high magnetic fields: Study of singlet-ground-state due to 1-D quantum spin effect

    Science.gov (United States)

    Chiba, Meiro; Ajiro, Yoshitami; Satoh, Eiji; Kubo, Takeji

    1996-02-01

    In one-dimensional (1-D) magnets the singlet-ground-state (SGS) due to the quantum spin effect is one of the most interesting phenomena. The temperature and the field dependences of the proton spin-lattice relaxation under magnetic fields up to 15 T have been observed for SGS materials, namely, NENP (Haldane system) and CuCI 2(γ-picoline) 2 (alternating antiferromagnetic chain). The results clearly show the excitation of SGS with a characteristic energy gap in the magnetic excited state. The observed relaxation rate is discussed in terms of the number of magnetic excitons in focussing on the dissimilarity between two systems.

  10. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  11. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  12. Two methods for nuclear spin determination in collinear laser spectroscopy: classical r.f. magnetic resonance and observation of the Larmor precession

    International Nuclear Information System (INIS)

    Bendali, N.; Duong, H.T.; Saint-Jalm, J.M.; Vialle, J.L.

    1984-01-01

    Measurement of nuclear spin in the collinear laser spectroscopy method has been investigated using a fast sodium atomic beam excited collinearly by a C.W. single mode dye laser beam. The atomic magnetic moments are first aligned by optical pumping process, then they interact with a static magnetic field H 0 . The magnetic alignment of the atomic system just at the exit of the magnetic field is monitored by the laser induced fluorescence. Upon varying the amplitude of H 0 , the fluorescence signal presents a fringed structure. This structure is due to the Larmor precession of the aligned magnetic moments around H 0 , and therefore it is a signature of the spin involved. The modulation patterns corresponding to different relative orientations of H 0 and light polarization direction, are fitted by an analytical formula. In a second step, a classical magnetic resonance experiment with a static magnetic field and a radiofrequency field has been performed. The monocinetic character of our fast atomic beam allowed us to observe, even at high r.f. power, resonances line shapes in agreement with the Majorana formula

  13. Characterization of the sp sup 2 bonds network in a-C:H layers with nuclear magnetic resonance, electron energy loss spectroscopy and electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kleber, R.; Jung, K.; Ehrhardt, H. (Fachbereich Physik, Univ. Kaiserslautern (Germany)); Muehling, I.; Breuer, K. (Technische Univ. Chemnitz, Sektion Physik/Elektronische Bauelemente (Germany)); Metz, H.; Engelke, F. (Karl-Marx-Univ., Sektion Physik, Leipzig (Germany))

    1991-12-01

    a-C:H layers prepared at different ion energies have been investigated by several methods including {sup 13}C nuclear magnetic resonance (NMR), electron energy loss spectroscopy (EELS) and electron spin resonance (ESR). The sp{sup 2} fraction of the samples rose from 27% to about 60 at.% with increasing ion energies from 30 eV to 170 eV. In the EELS spectra of these layers the intensity of the {pi}{yields}{pi}{sup *} transition between 4 and 7 eV showed no significant variation. But a shift of the peak is observed from 7 eV to lower energy losses with increasing ion energies indicating an enhanced formation of larger sp{sup 2} cluster sizes. This shift is accompanied by a broadening of the energy loss peak, suggesting a broadening of the cluster size distribution. The ESR spectra showed an increase of the spin density by more than one order of magnitude with increasing ion energies. Simultaneously the linewidth of the ESR signal gets narrower. This can also be interpreted as an increasing cluster size from single benzene rings to three and four fused six-fold rings. Hence, the EELS and ESR spectra lead to the same conclusions with respect to the microstructure of the a-C:H network. (orig.).

  14. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  15. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  16. Structural analysis of mixed alkali borosilicate glasses containing Cs+ and Na+ using strong magnetic field magic angle spinning nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    S. Kaneko

    2017-03-01

    Full Text Available We have investigated the local structure of alkali atoms in mixed alkali silicate, borate, and borosilicate glasses, which contain Cs+ and Na+, using strong magnetic field magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy of 133Cs and 23Na. The spectral peaks of 133Cs in borosilicate (Si:B = 1:1 and Si-rich borosilicate (Si:B = 2:1 glasses shifted to upfield with increasing Cs+/(Na+ + Cs+ ratio, which implies that the coordination number of Cs+ decreased as in the case of silicate and borate glasses. However, this trend was not observed in the 23Na spectra of either borosilicate glass. This might be because the chemical shift of 23Na in borosilicate glass is strongly affected by nearby species such as Si or B, and not by the coordination number of Na+.

  17. Contribution to the evaluation of safety of software used in command control systems in nuclear plants: application to the SPIN N4

    International Nuclear Information System (INIS)

    Soubies, B.; Boulc'h, J.; Elsensohn, O.; Le Meur, M.; Henry, J.Y.

    1994-06-01

    The licensing procedures process of nuclear plants features compulsory steps which bring about a thorough exam of the commands control system. This analysis accounts for the aspects linked to technologies (integrated circuits, software packages) which have been chosen by the manufacturer for the programmed systems in charge of safety functions. Important innovations have been introduced in terms of design and manufacturing processes of safety systems of 1400 MWe pressurized water reactors, more precisely for the integrated numerical protection system (SPIN). The methodology used by the IPSN for the exam of the software of this system is presented in the communication. This methodology leads the IPSN to carry out studies and developments of tools keeping in sight as their main goal to bring substantial help to analysis. (authors). 2 refs

  18. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  19. Nuclear inelastic scattering and density functional theory studies of a one-dimensional spin crossover [Fe(1,2,4-triazole)2(1,2,4-triazolato)](BF4) molecular chain.

    Science.gov (United States)

    Jenni, Kevin; Scherthan, Lena; Faus, Isabelle; Marx, Jennifer; Strohm, Cornelius; Herlitschke, Marcus; Wille, Hans-Christian; Würtz, Peter; Schünemann, Volker; Wolny, Juliusz A

    2017-07-26

    Nuclear inelastic scattering (NIS) experiments have been performed in order to study the vibrational dynamics of the low- and high-spin states of the polynuclear 1D spin crossover compound [Fe(1,2,4-triazole) 2 (1,2,4-triazolato)](BF 4 ) (1). Density functional theory (DFT) calculations using the functional B3LYP* and the basis set CEP-31G for heptameric and nonameric models of the compound yielded the normal vibrations and electronic energies for high-spin and low-spin isomers of three models differing in the distribution of anionic trz - ligands and BF 4 - anions. On the basis of the obtained energies a structural model with a centrosymmetric Fe(trzH) 4 (trz - ) 2 coordination core of the mononuclear unit of the chain is proposed. The obtained distribution of the BF 4 - counteranions in the proposed structure is similar to that obtained on the basis of X-ray powder diffraction studies by Grossjean et al. (Eur. J. Inorg. Chem., 2013, 796). The NIS data of the system diluted to 10% Fe(ii) content in a 90% Zn(ii) matrix (compound (2)) show a characteristic change of the spectral pattern of the low-spin centres, compared to the low-spin phase of the parent Fe(ii) complex (1). DFT calculations reveal that this is caused by a change of the structure of the neighbours of the low-spin centres. The spectral pattern of the high-spin centres in (2) is within a good approximation identical to that of the high-spin Fe(ii) isomer of (1). The inspection of the molecular orbitals of the monomeric model systems of [Fe(trzH) 4 (trz - ) 2 ] and [Fe(trzH) 6 ], together with calculations of spin transition energies, point towards the importance of an electrostatic effect caused by the negatively charged ligands. This results in the stabilisation of the low-spin state of the complex containing the anionic ligand and shortening of the Fe-N(trz - ) compared to the Fe-N(trzH) bond in high-spin, but not in low-spin [Fe(trzH) 4 (trz - ) 2 ].

  20. Limitations of optically pumped spin-exchange-polarized targets

    Science.gov (United States)

    Walker, T.; Anderson, L. W.

    1993-12-01

    The effects of spin-exchange collisions on the polarization of dense spin-polarized samples of hydrogen and deuterium are analyzed. It is shown that even in large magnetic fields spin-exchange collisions transfer angular momentum between the electrons and the nuclei. This effect has important implications for the operation of spin-polarized targets and sources of hydrogen and deuterium. For the specific case of sources that are spin-polarized by spin-exchange collisions with optically pumped alkali atoms, spin-exchange not only polarizes the hydrogen and deuterium electron spins, but polarizes the nuclear spins as well.

  1. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  2. Photoinduced nuclear spin conversion of methyl groups of single molecules; Photoinduzierte Kernspinkonversion von Methylgruppen an einzelnen Molekuelen. Lochbrenn- und Einzelmolekuelspektroskopie an Terrylen und Methylderivaten

    Energy Technology Data Exchange (ETDEWEB)

    Sigl, A.

    2007-12-28

    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  3. Electron Spin Dynamics in Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-01-01

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  4. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    Science.gov (United States)

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  5. Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Shishmarev, Dmitry; Wright, Alan J; Rodrigues, Tiago B; Pileio, Giuseppe; Stevanato, Gabriele; Brindle, Kevin M; Kuchel, Philip W

    2018-03-01

    Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of 1 H spin-echo and 13 C-NMR spectra. 1 H-NMR experiments showed that the fumarase reaction in hemolysates is sufficiently rapid to make its kinetics amenable to study in a period of approximately 3 min, a timescale characteristic of hyperpolarized 13 C-NMR spectroscopy. The rapid-dissolution dynamic nuclear polarization (RD-DNP) technique was used to hyperpolarize [1,4- 13 C]fumarate, which was injected into concentrated hemolysates. The kinetic data were analyzed using recently developed FmR α analysis and modeling of the enzymatic reaction using Michaelis-Menten equations. In RD-DNP experiments, the decline in the 13 C-NMR signal from fumarate, and the concurrent rise and fall of that from malate, were captured with high spectral resolution and signal-to-noise ratio, which allowed the robust quantification of fumarase kinetics. The kinetic parameters obtained indicate the potential contribution of hemolysis to the overall rate of the fumarase reaction when 13 C-NMR RD-DNP is used to detect necrosis in animal models of implanted tumors. The analytical procedures developed will be applicable to studies of other rapid enzymatic reactions using conventional and hyperpolarized substrate NMR spectroscopy. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Self-diffusion of electrolyte species in model battery electrodes using Magic Angle Spinning and Pulsed Field Gradient Nuclear Magnetic Resonance

    Science.gov (United States)

    Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard

    2017-09-01

    Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.

  7. Nuclear spintronics

    OpenAIRE

    Vagner, Israel D.

    2003-01-01

    The electron spin transport in condensed matter, Spintronics, is a subject of rapidly growing interest both scientifically and from the point of view of applications to modern and future electronics. In many cases the electron spin transport cannot be described adequately without accounting for the hyperfine interaction between electron and nuclear spins. Here, the progress in physics and applications of these phenomena will be reviewed.

  8. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  9. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  10. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  11. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  12. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  13. Spin correlations in Ho2Ti2O7: A dipolar spin ice system

    DEFF Research Database (Denmark)

    Bramwell, S.T.; Harris, M.J.; Hertog, B.C. den

    2001-01-01

    described by a nearest neighbor spin ice model and very accurately described by a dipolar spin ice model. The heat capacity is well accounted for by the sum of a dipolar spin ice contribution and an expected nuclear spin contribution, known to exist in other Ho(3+) salts. These results settle the question......The pyrochlore material Ho(2)Ti(2)O(7) has been suggested to show "spin ice" behavior. We present neutron scattering and specific heat results that establish unambiguously that Ho(2)Ti(2)O(7) exhibits spin ice correlations at low temperature. Diffuse magnetic neutron scattering is quite well...

  14. ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE ζ FROM THE HCO{sup +}-to-DCO{sup +} ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo; Herbst, Eric [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Bergner, Jennifer B. [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (United States); Öberg, Karin I., E-mail: shingledecker@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-20

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.

  15. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  16. Nuclear spin relaxation of {sup 8}Li in a thin film of La{sub 0.67}Ca{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.I. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 (Canada); Arseneau, D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Chow, K.H. [Department of Physics, University of Alberta, Edmonton, Alta., T6G 2J1 (Canada); Daviel, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Engelbertz, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Hossain, MD. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Keeler, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)]|[Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 (Canada)]|[Canadian Institute for Advanced Research, Toronto, Ont., Canada M5G 1Z8 (Canada)]. E-mail: kiefl@triumf.ca; Kreitzman, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Morales, P. [Department of Physics, University of Toronto, Toronto, Ont., M5S 1A7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); MacFarlane, W.A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada): Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Poutissou, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Wei, J.Y.T. [Canadian Institute for Advanced Research, Toronto, Ont., M5G 1Z8 (Canada)]|[Department of Physics, University of Toronto, Toronto, Ont., M5S 1A7 (Canada)

    2006-03-31

    We report {beta}-NMR measurements of the nuclear spin relaxation rate (1/T{sub 1}) in a thin film of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) using a low-energy beam of spin-polarized {sup 8}Li. In a small magnetic field of 150G, there is a broad peak in 1/T{sub 1} near the Curie temperature (T{sub c}=259K) and a dramatic decrease in 1/T{sub 1} at lower temperatures. This is attributed to a critical slowing down of the spin fluctuations near T{sub c} and freezing of the magnetic excitations at low temperatures, respectively. In addition, there is a small amplitude, slow relaxing component at high temperatures, which we attribute to {sup 8}Li in the SrTiO{sub 3} substrate. There is an indication that the spin relaxation rate in the substrate is also peaked at T{sub c} due to close proximity to the magnetic film. These results establish that low-energy {beta}-NMR can be used as a probe of magnetic fluctuations in magnetic thin films over a wide range of temperatures.

  17. Selective One-Dimensional Total Correlation Spectroscopy Nuclear Magnetic Resonance Experiments for a Rapid Identification of Minor Components in the Lipid Fraction of Milk and Dairy Products: Toward Spin Chromatography?

    Science.gov (United States)

    Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P

    2015-06-10

    We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.

  18. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  19. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  20. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  1. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  2. Solvent Effects on Nuclear Magnetic Resonance 2J(C,Hf and 1J(C,Hf Spin–Spin Coupling Constants in Acetaldehyde

    Directory of Open Access Journals (Sweden)

    Angel Esteban

    2003-02-01

    Full Text Available Abstract: The known solvent dependence of 1J(Cc,Hf and 2J(C1,Hf couplings in acetaldehyde is studied from a theoretical viewpoint based on the density functional theory approach where the dielectric solvent effect is taken into account with the polarizable continuum model. The four terms of scalar couplings, Fermi contact, paramagnetic spin orbital, diamagnetic spin orbital and spin dipolar, are calculated but the solvent effect analysis is restricted to the first term since for both couplings it is by far the dominant contribution. Experimental trends of Δ1J(Cc,Hf and Δ2J(C1,Hf Vs ε (the solvent dielectric constant are correctly reproduced although they are somewhat underestimated. Specific interactions between solute and solvent molecules are studied for dimethylsulfoxide, DMSO, solutions considering two different one-to-one molecular complexes between acetaldehyde and DMSO. They are determined by interactions of type C=O---H---C and S=O---H---C, and the effects of such interactions on 1J(Cc,Hf and 2J(C1,Hf couplings are analyzed. Even though only in a semiquantitative way, it is shown that the effect of such interactions on the solvent effects, of Δ1J(Cc,Hf and Δ2J(C1,Hf, tend to improve the agreement between calculated and experimental values. These results seem to indicate that a continuum dielectric model has not enough flexibility for describing quantitatively solvent effects on spin-spin couplings. Apparently, even for relatively weak hydrogen bonding, the contribution from “direct” interactions is of the same order of magnitude as the “dielectric” effect.

  3. T violating neutron spin rotation asymmetry

    International Nuclear Information System (INIS)

    Masuda, Yasushiro.

    1993-01-01

    A new experiment on T-violation is proposed, where a spin-rotating-neutron transmission through a polarized nuclear target is measuered. The method to control the neutron spin is discussed for the new T-violation experiment. The present method has possibility to provide us more accurate T-violation information than the neutron EDM measurement

  4. Spin dynamics in high-Tc cuprates

    International Nuclear Information System (INIS)

    Fukuyama, H.; Kohno, H.; Normand, B.; Tanamoto, T.

    1995-01-01

    Characteristic features of the spin excitations in high-T c cuprates revealed by neutron scattering and nuclear magnetic resonance experiments are summarised, and analysed on the basis of the slave-boson mean-field theory for the extended t-J model, placing special emphasis on the spin-gap phenomenon. (orig.)

  5. Fast electrical switching of spin injection in nonlocal spin transport devices

    Science.gov (United States)

    Fuhrer, A.; Alvarado, S. F.; Salis, G.; Allenspach, R.

    2011-05-01

    We present spin-injection experiments in a nonlocal spin transport device where spin is injected from a ferromagnetic FeCo electrode into a GaAs epilayer. The magnetization of the injection contact is switched by Oersted fields generated by alternating current pulses. This enables fast and offset-free measurements of nonlocal spin signals. Due to a negligible time-averaged electron spin polarization, dynamic nuclear polarization effects are small and Hanle curves measured down to T =3 K can be fit very accurately by drift-diffusion theory if a small constant Overhauser field BN=0.4 mT is accounted for.

  6. Adiabatic quantum computing with spin qubits hosted by molecules.

    Science.gov (United States)

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  7. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  8. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  9. 21st International Symposium on Spin Physics

    CERN Document Server

    Ma, Bo-Qiang; SPIN 2014; SPIN2014

    2016-01-01

    This special volume collected important papers written by leading experts, highlighting the latest research findings in various topics of spin phenomena in particle and nuclear physics. The contents are originated from the plenary talks at the latest symposium of the Spin Physics series (SPIN2014) which was held in Beijing, China, October 20-24, 2014.The volume also comprises a special collection of contributions in memory of the late Professor Michel Borghini, an outstanding physicist well remembered for his great contributions to the progress of high energy spin physics.

  10. Birefringence (spin rotation and spin dichroism) of high-energy deuterons

    International Nuclear Information System (INIS)

    Baryshevskij, V.G.; Rovba, A.A.

    2016-01-01

    The phenomenon of birefringence (spin rotation and spin dichroism) of high-energy deuterons, currently observed in experiments, is the macroscopic quantum effect similar to the birefringence effect known in optics. This paper considers the contribution coming to the spin dichroism effect from the interaction of deuteron electric quadrupole moment and nuclear electric field. The effect proves to be responsive to the behavior of deuteron ground state wave functions at a small distance. [ru

  11. Spin relaxation in disordered media

    International Nuclear Information System (INIS)

    Dzheparov, F S

    2011-01-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  12. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  13. Double-spin-flip resonance of rhodium nuclei at positive and negative spin temperatures

    DEFF Research Database (Denmark)

    Tuoriniemi, J.T.; Knuuttila, T.A.; Lefmann, K.

    2000-01-01

    Sensitive SQUID-NMR measurements were used to study the mutual interactions in the highly polarized nuclear-spin system of rhodium metal. The dipolar coupling gives rise to a weak double-spin-flip resonance. The observed frequency shifts allow deducing separately the dipolarlike contribution...

  14. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  15. Spin noise spectroscopy of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Hauke; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany); Marie, Xavier; Balocchi, Andrea [INSA-CNRS-UPS, LPCNO, Universite de Toulouse (France)

    2010-07-01

    ZnO is a promising material for optical spintronics showing long electron spin lifetimes due to the large band gap and low amount of nuclear spin isotopes. Here, we use spin noise spectroscopy to access the electron spin dynamics of this material in thermal equilibrium while avoiding carrier heating and excitation of electron hole pairs. A linear polarized laser beam (E{sub UV-Laser}=3.32 eV) close to the direct band gap of ZnO (E{sub D}{sup 0}{sub X}=3.36 eV) is used to detect the spin dynamics of neutral donors in ZnO with off-resonant, non-demolition Faraday rotation. The stochastic oriented electron spins induce polarization fluctuations of the transmitted laser beam. The fluctuation strength of N non-interacting, paramagnetic spins follow the Poisson statistics and generate measurable noise {proportional_to}{radical}(N) spins. These fluctuations are measured via a polarization bridge in the radio frequency regime and Fourier transformed in real-time. A magnetic field B is applied in Voigt-geometry and modulates the noise signal with the Larmor frequency of the electron spins {omega}{sub L}=g{mu}{sub B}B/{Dirac_h}. From the recorded noise spectra we can extract the electron g-factor, spin lifetimes, and densities.

  16. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  17. PREFACE: SPIN2010 - Preface for Conference Proceedings

    Science.gov (United States)

    Ströher, Hans; Rathmann, Frank

    2011-03-01

    SPIN2010, the 19th International Spin Physics Symposium, took place between 27 September and 2 October, 2010 on the campus of Forschungszentrum Jülich GmbH (FZJ) in Jülich, Germany. The scientific program of this Symposium included many topics related to spin phenomena in particle and nuclear physics as well as those in related fields. The International Spin Physics Symposium series has combined the High Energy Spin Symposia and the Nuclear Polarization Conferences since 2000. The most recent two Symposia were held in Virginia, USA (October 2008) and in Kyoto, Japan (October 2006). The meeting was opened by the chairman of the Board of Management of Jülich Forschungszentrum, Professor Achim Bachem, who cordially welcomed the participants from all over the world and gave a brief introduction to the Center and the research conducted there. The scientific program consisted of plenary sessions and parallel sessions and included the following topics: Fundamental symmetries and spin Spin structure of hadrons Spin physics beyond the Standard Model Spin in hadronic reactions Spin physics with photons and leptons Spin physics in nuclear reactions and nuclei Acceleration, storage, and polarimetry of polarized beams Polarized ion and lepton sources and targets Future facilities and experiments Medical and technological applications of spin physics The 6-day symposium had about 300 participants. In total 35 plenary talks (including 3 summaries of other spin physics meetings) and 163 contributed talks were given. The contents of many of these can be found in the present contributions, arranged according to the above topics and the time sequence. In addition, a public lecture on "Drall in der Quantenwelt", presented by H O Meyer (Bloomington) was received very well. Participants had the option to visit the Cooler synchrotron COSY at the Nuclear Physics Institute (IKP) and the 9.4 T MRT-PET hybrid scanner at the Institute of Neuroscience and Medicine (INM), two unique

  18. Gordon Conference on Nuclear Research

    International Nuclear Information System (INIS)

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei

  19. Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Noiri, A. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoneda, J.; Nakajima, T.; Otsuka, T.; Delbecq, M. R.; Takeda, K.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Amaha, S.; Allison, G. [RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2016-04-11

    Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.

  20. Resolving spin-orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot.

    Science.gov (United States)

    Shafiei, M; Nowack, K C; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-03-08

    We investigate the electric manipulation of a single-electron spin in a single gate-defined quantum dot. We observe that so-far neglected differences between the hyperfine- and spin-orbit-mediated electric dipole spin resonance conditions have important consequences at high magnetic fields. In experiments using adiabatic rapid passage to invert the electron spin, we observe an unusually wide and asymmetric response as a function of the magnetic field. Simulations support the interpretation of the line shape in terms of four different resonance conditions. These findings may lead to isotope-selective control of dynamic nuclear polarization in quantum dots.

  1. Attenuation of nuclear orientation of .sup.127./sup.In in GD and the InGDKorringa spin-lattice relaxation time constant

    Czech Academy of Sciences Publication Activity Database

    Stone, J.; Ohya, S.; Rikovska, J.; Woehr, A.; Betts, P.; Dupák, Jan; Fogelberg, B.; Jacobsson, L.

    č. 133 (2001), s. 111 - 115 ISSN 0304-3843 Institutional research plan: CEZ:AV0Z2065902 Keywords : nuclear orientation * Korringa constant Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.634, year: 2001

  2. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  3. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    1994-01-01

    The collection of abstracts on selected topics in nuclear structure are given. Special attention pays to collective excitations and high-spin states of nuclei, giant resonance structure, nuclear reaction mechanisms and so on

  4. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  5. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    Science.gov (United States)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  6. Stimulated polarization wave process in spin 3/2 chains

    International Nuclear Information System (INIS)

    Furman, G. B.

    2007-01-01

    Stimulated wave of polarization, triggered by a flip of a single spin, presents a simple model of quantum amplification. Recently, it has been demonstrated that, in an idealized one-dimensional Ising spin 1/2 chain with nearest-neighbor interactions and realistic spin 1/2 chain including the natural dipole-dipole interactions, irradiated by a weak resonant transverse field, a wave of flipped spins can be triggered by a single spin flip. Here we focuse on control of polarization wave in chain of spin 3/2, where the nuclear quadrupole interaction is dominant. Results of simulations for 1D spin chains and rings with up to five spins are presented.

  7. High spin states in Cu

    Indian Academy of Sciences (India)

    September 2000 physics pp.L471–L478. High spin states in. 63. Cu. B MUKHERJEE. ½,¾. , S MURALITHAR. ½. , R P SINGH. ½. , R KUMAR. ½. , K RANI. ½. ,. S C PANCHOLI. ¿ and R K BHOWMIK. ½. ½. Nuclear Science Centre, P.B. No. 10502, New Delhi 110 067, India. 2. Jawaharlal Nehru University, New Delhi 110 ...

  8. High spin spectroscopy of Pr

    Indian Academy of Sciences (India)

    2001-07-31

    Jul 31, 2001 ... High spin states; nuclear structure; gamma-ray spectroscopy;. ½¿. Pr energy levels. PACS Nos 21.10.-k; 23.20.-g; 27.60.+j; 29.30.Kv. 1. Introduction. The transitional nuclei in the A. ½ ¼ region with N between 77 and 81 are interesting as it offer good scope to look for possible shape changes, similar to ...

  9. Aluminum and gallium nuclei as microscopic probes for pulsed electron-nuclear double resonance diagnostics of electric-field gradient and spin density in garnet ceramics doped with paramagnetic ions

    Science.gov (United States)

    Uspenskaya, Yu. A.; Mamin, G. V.; Babunts, R. A.; Badalyan, A. G.; Edinach, E. V.; Asatryan, H. R.; Romanov, N. G.; Orlinskii, S. B.; Khanin, V. M.; Wieczorek, H.; Ronda, C.; Baranov, P. G.

    2018-03-01

    The presence of aluminum and gallium isotopes with large nuclear magnetic and quadrupole moments in the nearest environment of impurity ions Mn2+ and Ce3+ in garnets made it possible to use hyperfine and quadrupole interactions with these ions to determine the spatial distribution of the unpaired electron and the gradient of the electric field at the sites of aluminum and gallium in the garnet lattice. High-frequency (94 GHz) electron spin echo detected electron paramagnetic resonance and electron-nuclear double resonance measurements have been performed. Large difference in the electric field gradient and quadrupole splitting at octahedral and tetrahedral sites allowed identifying the positions of aluminum and gallium ions in the garnet lattice and proving that gallium first fills tetrahedral positions in mixed aluminum-gallium garnets. This should be taken into account in the development of garnet-based scintillators and lasers. It is shown that the electric field gradient at aluminum nuclei near Mn2+ possessing an excess negative charge in the garnet lattice is ca. 2.5 times larger than on aluminum nuclei near Ce3+.

  10. Spin noise spectroscopy on donors in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Bernien, Hannes; Mueller, Georg; Roemer, Michael; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany)

    2009-07-01

    In recent experiments spin noise spectroscopy (SNS) has proven to be a very sensitive technique to study electron spin dynamics in semiconductors at thermal equilibrium. Here we present SNS-measurements on donor bound electrons in very low doped bulk GaAs. In this environment the donors do not interact with each other and form artificial atoms. We discuss the detection of single donor bound electron spins, which should have extremely long spin relaxation times compared to ensemble spin relaxation times. In further experiments the electron bound to the donor will be used to probe and study the local nuclear magnetic field at the donor site.

  11. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  12. The decay of /sup 185/Hg low-spin states in /sup 185/Au as a probe of the nuclear models

    CERN Document Server

    Bourgeois, C; Kilcher, P; Roussière, B; Sauvage-Letessier, J

    1981-01-01

    The /sup 185/Au has been studied from the beta /sup +//EC decay of /sup 185m+g/Hg using the ISOCELE facility. Conversion electron measurements have been performed by means of a semi-circular magnetic spectrograph: new low-energy transitions have been observed. A 330 keV very converted transition has also been found. Its existence is discussed. In addition to the usual states observed in heavier gold isotopes, numerous negative-parity low-spin states have been located. The experimental states corresponding to a prolate shaped nucleus are compared with those extracted from an 'axial rotor+quasi-particle' coupling model. They could be identified with two state families, the first one arising from the h9/2+f5/2 sub-shells, the second from the p3/2+f7/2 sub-shells. (12 refs).

  13. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  14. Superionic phase transitions and nuclear spin phonon relaxation by Raman processes in Me3H(SeO4)2 (Me = Na, K, and Rb) single crystals by 1H and Me NMR

    International Nuclear Information System (INIS)

    Lim, Ae Ran

    2007-01-01

    Me 3 H(SeO 4 ) 2 (Me = Na, K, and Rb) single crystals were grown by the slow evaporation method, and the relaxation times of the 1 H and Me nuclei in these crystals were investigated using FT NMR spectrometry. The 1 H T 1 NMR results for K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 single crystals were very different from those for Na 3 H(SeO 4 ) 2 crystals. Short 1 H relaxation times were found for K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 at high temperatures, but not for Na 3 H(SeO 4 ) 2 , which are attributed to the destruction and reconstruction of hydrogen bonds; thus K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 have superionic phases, whereas Na 3 H(SeO 4 ) 2 does not. The temperature dependence of the relaxation rate for the 23 Na nucleus in Na 3 H(SeO 4 ) 2 crystals was in accord with a Raman process for nuclear spin-lattice relaxation (T 1 -1 ∝T 2 . In contrast, the spin-lattice relaxation rates for the 39 K and 87 Rb nuclei in K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 single crystals exhibited a very strong temperature dependence, T 1 -1 ∝T 7 . The motions giving rise to this strong temperature dependence may be related to the high electrical conductivities of these crystals at high temperatures

  15. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  16. Nuclear physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Explains the concepts in detail and in depth. Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook explains the experimental basics, effects and theory of nuclear physics. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams help to better understand the explanations. A better feeling to the subject of the book is given with sketches about the historical development of nuclear physics. The main topics of this book include the phenomena associated with passage of charged particles and radiation through matter which are related to nuclear resonance fluorescence and the Moessbauer effect., Gamov's theory of alpha decay, Fermi theory of beta decay, electron capture and gamma decay. The discussion of general properties of nuclei covers nuclear sizes and nuclear force, nuclear spin, magnetic dipole moment and electric quadrupole moment. Nuclear instability against various modes of decay and Yukawa theory are explained. Nuclear models such as Fermi Gas Model, Shell Model, Liquid Drop Model, Collective Model and Optical Model are outlined to explain various experimental facts related to nuclear structure. Heavy ion reactions, including nuclear fusion, are explained. Nuclear fission and fusion power production is treated elaborately.

  17. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  18. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  19. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  20. Collective nuclear dynamics. Abstracts

    International Nuclear Information System (INIS)

    Abrosimov, V.I.; Kolomietz, V.M.

    1994-01-01

    The fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects: liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities

  1. CNI polarimetry and the hadronic spin dependence of pp scattering

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1996-01-01

    Methods for limiting the size of hadronic spin-flip in the Coulomb- Nuclear Interference. region are critically assessed. This work was presented at the High Energy Polarimetry Workshop in Amsterdam, Sept. 9, 1996 and the RHIC Spin Collaboration meeting in Marseille, Sept. 17, 1996

  2. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by 13 C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis.

    Science.gov (United States)

    Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg

    2018-01-01

    The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.

  3. Cross-Polarized Magic-Angle Spinning (sup13)C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Relative to Culturable Bacterial Species Composition and Sustained Biological Control of Pythium Root Rot.

    Science.gov (United States)

    Boehm, M J; Wu, T; Stone, A G; Kraakman, B; Iannotti, D A; Wilson, G E; Madden, L V; Hoitink, H

    1997-01-01

    We report the use of a model system that examines the dynamics of biological energy availability in organic matter in a sphagnum peat potting mix critical to sustenance of microorganism-mediated biological control of pythium root rot, a soilborne plant disease caused by Pythium ultimum. The concentration of readily degradable carbohydrate in the peat, mostly present as cellulose, was characterized by cross-polarized magic-angle spinning (sup13)C nuclear magnetic resonance spectroscopy. A decrease in the carbohydrate concentration in the mix was observed during the initial 10 weeks after potting as the rate of hydrolysis of fluorescein diacetate declined below a critical threshold level required for biological control of pythium root rot. Throughout this period, total microbial biomass and activity, based on rates of [(sup14)C]acetate incorporation into phospholipids, did not change but shifts in culturable bacterial species composition occurred. Species capable of inducing biocontrol were succeeded by pleomorphic gram-positive genera and putative oligotrophs not or less effective in control. We conclude that sustained efficacy of naturally occurring biocontrol agents was limited by energy availability to this microflora within the organic matter contained in the potting mix. We propose that this critical role of organic matter may be a key factor explaining the variability in efficacy typically encountered in the control of pythium root rot with biocontrol agents.

  4. Multi-Quanta Spin-Locking Nuclear Magnetic Resonance Relaxation Measurements: An Analysis of the Long-Time Dynamical Properties of Ions and Water Molecules Confined within Dense Clay Sediments

    Directory of Open Access Journals (Sweden)

    Patrice Porion

    2017-11-01

    Full Text Available Solid/liquid interfaces are exploited in various industrial applications because confinement strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the dynamical properties of confined fluids is crucial to identify and better understand the key factors responsible for their behavior and to optimize their structural and dynamical properties. For that purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures (like dielectric relaxation, inelastic and quasi-elastic neutron scattering and obtain otherwise unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H, 7Li and 133Cs, because quadrupolar isotopes are the most abundant NMR probes in the periodic table. Clay sediments are the confining media selected for this study because they are ubiquitous materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling, waste storing, cracking and heterogeneous catalysis.

  5. Importance of triples contributions to NMR spin-spin coupling constants computed at the CC3 and CCSDT levels

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.; Gauss, Jürgen

    2017-01-01

    that the most important contributions arising from connected triple excitations in the coupled cluster expansion are accounted for at the CC3 level. Thus we believe that the CC3 method will become the standard approach for calculation of reference values of nuclear spin-spin coupling constants....

  6. On the discrepancy between theory and experiment for the F-F spin-spin coupling constant of difluoethyne

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2012-01-01

    The vicinal indirect nuclear spin-spin coupling constant (SSCC) between the two ¿uorine atoms in di¿uoroethyne has been reinvestigated. This coupling has previously proved dif¿cult to calculate accurately. In this study we have therefore systematically investigated the dependence of this coupling...

  7. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  8. The spin-orbit interaction in nuclei

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    The analysis previously made of the average nuclear potential has been extended to consideration of the spin-orbit interactions. It has not been possible to find a satisfactory two-body interaction consistent with all the data; that suggested by the phase-shift analysis of nucleon-nucleon scattering is just within the region of possible forms. (author). 13 refs, 1 fig

  9. Technologic spin-off from CNEA's activities

    International Nuclear Information System (INIS)

    Belinco, Cesar G.

    2001-01-01

    An analysis is made of the spin-off of technology from the nuclear activities in Argentina. Several examples are mentioned in fields such as material sciences, non-destructive testing, forensic research, space activities, instrumentation as well as in environmental studies

  10. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  11. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  12. Hole spin coherence in a Ge/Si heterostructure nanowire.

    Science.gov (United States)

    Higginbotham, A P; Larsen, T W; Yao, J; Yan, H; Lieber, C M; Marcus, C M; Kuemmeth, F

    2014-06-11

    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2* 0.18 μs exceeds corresponding measurements in III–V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.

  13. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  14. Probing mixed-spin pairing in heavy nuclei

    Science.gov (United States)

    Bulthuis, Brendan; Gezerlis, Alexandros

    2016-01-01

    The nature of the nuclear pairing condensate is an active topic of investigation, especially as regards its neutron-proton versus identical-particle character, which manifests as the difference between spin-singlet and spin-triplet pairing. In this work, we probe the recently proposed mixed-spin pairing condensates, using a phenomenological Hamiltonian and Hartree-Fock-Bogoliubov theory along with the gradient method. In addition to improving the solution of the many-body problem, we have calculated a series of physical quantities and examined the robustness of the mixed-spin pairing state as the input Hamiltonian is modified. Overall, we find that even though the mixed-spin correlation energy is suppressed in comparison to earlier work, the new pairing behavior persists. We also discuss the possibility of directly probing the mixed-spin pairing phase.

  15. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  16. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  17. High spin spectroscopy of 70Ge

    International Nuclear Information System (INIS)

    Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.

    2011-01-01

    Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study

  18. Effects of Confinement on Conventional Spin Problems

    DEFF Research Database (Denmark)

    Marchukov, Oleksandr

    2015-01-01

    , Hubbard model, etc., which are nevertheless used to describe physical phenomena in various fields, such as condensed matter physics, nuclear physics, etc. This dissertation discusses the effects of the external confinement on some con- ventional spin problems. It consists of two parts: In the first part...... the effects of spin-orbit coupling on particles trapped in a two-dimensional harmonic oscilla- tor are considered. The influences of the deformation of the trap, interparticle interaction and external magnetic field are analyzed. The statistical analysis of the single-particle energy spectrum and its relation...

  19. NMR with generalized dynamics of spin and spatial coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Jae

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences.

  20. NMR with generalized dynamics of spin and spatial coordinates

    International Nuclear Information System (INIS)

    Lee, Chang Jae.

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences

  1. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  2. Selected topics in nuclear structure

    International Nuclear Information System (INIS)

    Stachura, Z.

    1984-09-01

    19. winter school in Zakopane was devoted to selected topics in nuclear structure such as: production of spin resonances, heavy ions reactions and their applications to the investigation of high spin states, octupole deformations, excited states and production of new elements etc. The experimental data are ofen compared with theoretical predictions. Report contains 28 papers. (M.F.W.)

  3. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  4. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  5. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  6. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  7. Spin and Maximal Acceleration

    Directory of Open Access Journals (Sweden)

    Giorgio Papini

    2017-12-01

    Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.

  8. Spin Hall effect devices

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil

    2012-01-01

    Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  9. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  10. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  11. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  12. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  13. Local Noncollinear Spin Analysis.

    Science.gov (United States)

    Abate, Bayileyegn A; Joshi, Rajendra P; Peralta, Juan E

    2017-12-12

    In this work, we generalize the local spin analysis of Clark and Davidson [J. Chem. Phys. 2001 115 (16), 7382] for the partitioning of the expectation value of the molecular spin square operator, ⟨Ŝ 2 ⟩, into atomic contributions, ⟨Ŝ A ·Ŝ B ⟩, to the noncollinear spin case in the framework of density functional theory (DFT). We derive the working equations, and we show applications to the analysis of the noncollinear spin solutions of typical spin-frustrated systems and to the calculation of magnetic exchange couplings. In the former case, we employ the triangular H 3 He 3 test molecule and a Mn 3 complex to show that the local spin analysis provides additional information that complements the standard one-particle spin population analysis. For the calculation of magnetic exchange couplings, J AB , we employ the local spin partitioning to extract ⟨Ŝ A ·Ŝ B ⟩ as a function of the interatomic spin orientation given by the angle θ. This, combined with the dependence of the electronic energy with θ, provides a methodology to extract J AB from DFT calculations that, in contrast to conventional energy differences based methods, does not require the use of ad hoc S A and S B values.

  14. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  15. Effective Floquet Hamiltonian for spin I = 1 in magic angle spinning ...

    Indian Academy of Sciences (India)

    WINTEC

    be used as effective Hamiltonians for the study of nuclear spin dynamics. The general form of the Hamiltonian expressed in terms of a series of terms of decreasing order of magnitude is given by. H = H0 + λH1 + λ2H2 + … (1) where λ is the perturbation parameter. A series of unitary transformations represented collectively ...

  16. Effective Floquet Hamiltonian for spin I = 1 in magic angle spinning ...

    Indian Academy of Sciences (India)

    WINTEC

    Floquet Hamiltonians; contact transformations in NMR; Spin-1 MAS NMR; effective Ham- iltonians. 1. Introduction. Solid state nuclear magnetic resonance spectroscopy is an important technique to study structures, dyna- mics and electric charge distribution around nuclei in solids. It is also more difficult to perform and ana-.

  17. Nuclear scales

    International Nuclear Information System (INIS)

    Friar, J.L.

    1998-01-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the π-γ force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted

  18. Nuclear scales

    Energy Technology Data Exchange (ETDEWEB)

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  19. Spin-analyzed SANS for soft matter applications

    Science.gov (United States)

    Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.

    2017-06-01

    The small angle neutron scattering (SANS) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate SANS polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for SANS polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing SANS polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized SANS measurements.

  20. Noise in tunneling spin current across coupled quantum spin chains

    OpenAIRE

    Aftergood, Joshua; Takei, So

    2017-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a conc...

  1. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  2. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot

    Science.gov (United States)

    Bechtold, Alexander; Rauch, Dominik; Li, Fuxiang; Simmet, Tobias; Ardelt, Per-Lennart; Regler, Armin; Müller, Kai; Sinitsyn, Nikolai A.; Finley, Jonathan J.

    2015-12-01

    The control of solid-state qubits requires a detailed understanding of the decoherence mechanisms. Despite considerable progress in uncovering the qubit dynamics in strong magnetic fields, decoherence at very low magnetic fields remains puzzling, and the role of quadrupole coupling of nuclear spins is poorly understood. For spin qubits in semiconductor quantum dots, phenomenological models of decoherence include two basic types of spin relaxation: fast dephasing due to static but randomly distributed hyperfine fields (~2 ns) and a much slower process (>1 μs) of irreversible monotonic relaxation due either to nuclear spin co-flips or other complex many-body interaction effects. Here we show that this is an oversimplification; the spin qubit relaxation is determined by three rather than two distinct stages. The additional stage corresponds to the effect of coherent precession processes that occur in the nuclear spin bath itself, leading to a relatively fast but incomplete non-monotonic relaxation at intermediate timescales (~750 ns).

  3. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  4. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  5. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  6. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  7. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  8. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  9. Spin Hall noise

    NARCIS (Netherlands)

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G.E.W.; Goennenwein, S.T.B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle ? between the magnetization and the transport direction. The results are consistent

  10. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  11. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  12. DUBNA: Spin effects

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Earlier this year, a collaboration of Russian, Ukrainian and French laboratories measured the difference between the polarized neutron and proton total reaction rate (total cross section difference) at slightly higher energies than previous experiments, providing an interesting hint of an effect predicted by theory. This was measured using a beam of longitudinally polarized neutrons and a longitudinally polarized proton target with parallel and antiparallel polarization directions. The polarized neutron beam, from the break-up of polarized deuterons, was accelerated by the Synchrophasotron at the Joint Institute for Nuclear Research (JINR) Laboratory of High Energies, Dubna (Russian Federation). The polarized target, 20 cm long and 3 cm in diameter, provided by DAPNIA (Saclay, France) and Argonne (USA), had also been used in 1989-1990 at Fermilab for the E704 experiment. Equipment from Saclay and Argonne was shipped to Dubna and work started in June 1994. The International Association for the Promotion of Cooperation with Scientists from the Independent States of the Former Soviet Union (INTAS) supported the construction and improvement of the target in a suitable transportable form. The target was mounted in the JINR Laboratory of Nuclear Problems (LNP) by experts from DAPNIA (Saclay), JINR Dubna (LNP, LHE and Laboratory of Particle Physics - LPP), Gatchina (Russia), RASMoscow and the Kharkov (Ukraine) laboratories. The Saturne National Laboratory (Saclay), helped with computer programmes for the NMR target polarization measurements. Apparatus was tested in early February. The beam of 2 x 109 polarized deuterons produced 106 polarized neutrons at 3.6 GeV. The neutron beam polarization was about 52%. The new superconducting Nuclotron accelerator should allow the beam intensity to be increased and beam quality improved after an upgrade of the injection system. Preliminary results for the polarized neutron-proton cross section difference at neutron kinetic

  13. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  14. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  15. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths

    Science.gov (United States)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.

  16. Nuclear order in copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, K.N.; Lindgård, P.-A.

    1990-01-01

    The new antiferromagnetic reflection (02/32/3) has been found by neutron diffraction experiments at nanokelvin temperatures in the nuclear spin system of a 65CU single crystal. The corresponding three-sublattice structure has not been observed previously in any fcc antiferromagnet.......The new antiferromagnetic reflection (02/32/3) has been found by neutron diffraction experiments at nanokelvin temperatures in the nuclear spin system of a 65CU single crystal. The corresponding three-sublattice structure has not been observed previously in any fcc antiferromagnet....

  17. Nuclear order in copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, K.N.; Lindgård, P-A.

    1990-01-01

    A new ordering vector k=(2π/a)(0, 2/3, 2/3) for fcc antiferromagnets has been found by neutron-diffraction experiments at nanokelvin temperatures in the nuclear-spin system of a 65Cu single crystal. The corresponding reflection together with the previously observed (100) Bragg peak show the prese......A new ordering vector k=(2π/a)(0, 2/3, 2/3) for fcc antiferromagnets has been found by neutron-diffraction experiments at nanokelvin temperatures in the nuclear-spin system of a 65Cu single crystal. The corresponding reflection together with the previously observed (100) Bragg peak show...

  18. Atom-diatom scattering dynamics of spinning molecules

    Energy Technology Data Exchange (ETDEWEB)

    Eyles, C. J. [Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin (Germany); Floß, J.; Averbukh, I. Sh. [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leibscher, M. [Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2015-01-14

    We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H{sub 2} and F+H{sub 2} collisions. Molecules can be forced to rotate uni-directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules.

  19. NMR studies of selective population inversion and spin clustering

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging.

  20. NMR studies of selective population inversion and spin clustering

    International Nuclear Information System (INIS)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging

  1. Spin coherence transfer in chemical transformations monitoredNMR

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, Sabieh M.; Hilty, Christian; Chu, Chester; Bouchard,Louis-S.; Pierce, Kimberly L.; Pines, Alexander

    2006-07-31

    We demonstrate the use of micro-scale nuclear magneticresonance (NMR) for studying the transfer of spin coherence innon-equilibrium chemical processes, using spatially separated NMRencoding and detection coils. As an example, we provide the map ofchemical shift correlations for the amino acid alanine as it transitionsfrom the zwitterionic to the anionic form. Our method is unique in thesense that it allows us to track the chemical migration of encodednuclear spins during the course of chemical transformations.

  2. Quantum one dimensional spin systems. Disorder and impurities; Systemes de spins quantiques unidimensionnels. Desordre et impuretes

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, V

    1999-06-29

    This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)

  3. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  4. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  5. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the

  6. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  7. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  8. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  9. Higher spins and holography

    Science.gov (United States)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  10. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen

    2013-08-06

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  11. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  12. Entangled states decoherence in coupled molecular spin clusters

    Science.gov (United States)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  13. Measuring absolute spin polarization in dissolution-DNP by Spin PolarimetrY Magnetic Resonance (SPY-MR).

    Science.gov (United States)

    Vuichoud, Basile; Milani, Jonas; Chappuis, Quentin; Bornet, Aurélien; Bodenhausen, Geoffrey; Jannin, Sami

    2015-11-01

    Dynamic nuclear polarization at 1.2 K and 6.7 T allows one to achieve spin temperatures on the order of a few millikelvin, so that the high-temperature approximation (ΔEPolarimetrY Magnetic Resonance (SPY-MR), is illustrated for various pairs of (13)C spins (I, S) in acetate and pyruvate. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  15. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  16. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  17. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  18. Spin tracking in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U. [Brookhaven National Lab., Upton, NY (United States); Katayama, T. [Univ. of Tokyo (Japan); Wu, H. [Riken Inst., Tokyo (Japan)

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  19. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  20. Spin-mechatronics [Journal of the Physical Society of Japan, ISSN 0031-9015, Jan 2017, v. 86(1)

    International Nuclear Information System (INIS)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed. (author)

  1. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    Science.gov (United States)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  2. Spin temperatures under dynamic polarization in a one-dimensional system, the TANOL

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1974-01-01

    A quantitative model of Tanol submitted to dynamic polarization has been developed. The spin systems are described using a network of interconnected reservoirs. The model involves six (or ten) Zeeman nuclear reservoirs mutually coupled by nuclear-nuclear dipole interactions and coupled to electron spins by hyperfine interactions. When the electronic line is saturated, different nuclear temperatures appear in the molecule. These temperatures have been calculated as a function of the magnetic field orientation against the crystallographic axes. Experimental results are correctly reproduced. A quantitative agreement is obtained for the anisotropy of total polarization. The calculation also shows that, in certain directions, positive and negative spin temperatures simultaneously appear, that explains the complex shape of the signals observed. Nuclear relaxation processes involving two electron spins of the same exchange chain are taken into account for the calculation. The different possible chain directions (a, a+c, or c vectors) were envisaged. Only the c-vector hypothesis succeeded in interpreting experimental results [fr

  3. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  4. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  5. Proceedings of the conference on nuclear structure at the limits

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains the papers from the Proceedings of the Conference on Nuclear Structure at the Limits. Some of the areas covered by these papers are: nuclear deformation; nuclear decay; nuclear spectroscopy; radioactive ion beams; nuclear models; high spin states; and heavy ion reactions. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  6. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  7. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  8. Ultrafast optical control of individual quantum dot spin qubits

    International Nuclear Information System (INIS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-01-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin–spin entanglement can be generated if each spin can emit a photon that is

  9. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  10. Quantum spin quadrumer

    Science.gov (United States)

    Khatua, Subhankar; Shankar, R.; Ganesh, R.

    2018-02-01

    A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.

  11. Spider Spinning for Dummies

    Science.gov (United States)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  12. Correlations, spin dynamics, defects: the highly-frustrated Kagome bilayer

    International Nuclear Information System (INIS)

    Bono, David; Limot, Laurent; Mendels, Philippe; Collin Gaston; Blanchard Nicole

    2005-01-01

    The SrCr 9p Ga 1 -2 -9p O 19 and Ba 2 Sn 2 ZnGa 10-7p Cr 7p O 22 compounds are two highly-frustrated magnets possessing a quasi-two-dimensional Kagome bilayer of spin 3/2 chromium ions with antiferromagnetic interactions. Their magnetic susceptibility was measured by local nuclear magnetic resonance and nonlocal (SQUID) techniques, and their low-temperature spin dynamics by muon spin resonance. Consistent with the theoretical picture drawn for geometrically frustrated systems, the Kagome bilayer is shown here to exhibit: (i) short range spin-spin correlations down to a temperature much lower than the Curie-Weiss temperature, no conventional long-range transition occurring; (ii) a Curie contribution to the susceptibility from paramagnetic defects generated by spin vacancies; (iii) low-temperature spin fluctuations, at least down to 30 mK, which are a trademark of a dynamical ground state. These properties point to a spin-liquid ground state, possibly built on resonating valence bonds with unconfined spinons as the magnetic excitations

  13. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  14. Nuclear structure

    International Nuclear Information System (INIS)

    Diamond, R.M.; Stephens, F.S.; Deleplanque, M.A.; Draper, J.E.; Dines, E.L.; Davis, U.C.; Macchiavelli, A.O.

    1984-01-01

    Essentially the whole range of spins possible for many nuclei in the periodic table is available with the use of the 88-Inch cyclotron and SuperHILAC accelerators. Nuclei carry angular momentum principally in two ways: by aligning individual high j nucleons, and by a collective rotation of the nucleus as a whole. Deformed nuclei use both modes and it is the interplay between the single-particle and collective modes that leads to the great diversity of nuclear properties at high spin. Information about these states and their properties is obtained only by detailed γ-ray spectroscopy of their de-exciting transitions. But for the higher spins the population is usually spread over so many states that only average values of continuum properties can be determined. So one of the goals of present-day research is to push discrete spectroscopic studies to higher spin states, reducing the continuum region. To do this requires that the number of cascade pathways observed be reduced to a small enough number so that individual transitions can show. One way is to use a combination of sum-energy and multiplicity selection, that is, to define a smaller entry region. This is what the NaI crystal balls can do. Another technique is to set gates on the highest-lying discrete transitions observed and look at what is in coincidence (ahead) of them. Either method requires a drastic decrease in the number of cascades selected, so very good statistics are needed and this means many detectors as close as possible to the target. The authors use both techniques simultaneously. Current and planned experiments are described

  15. Limiting factor of defect-engineered spin-filtering effect at room temperature

    Science.gov (United States)

    Puttisong, Y.; Buyanova, I. A.; Chen, W. M.

    2014-05-01

    We identify hyperfine-induced electron and nuclear spin cross-relaxation as the dominant physical mechanism for the longitudinal electron spin relaxation time 1 of the spin-filtering Gai2+ defects in GaNAs alloys. This conclusion is based on our experimental findings that T1 is insensitive to temperature over 4-300 K, and its exact value is directly correlated with the hyperfine coupling strength of the defects that varies between different configurations of the Gai2+ defects present in the alloys. These results thus provide a guideline for further improvements of the spin-filtering efficiency by optimizing growth and processing conditions to preferably incorporate the Gai2+ defects with a weak hyperfine interaction and by searching for new spin-filtering defects with zero nuclear spin.

  16. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    Science.gov (United States)

    Caetano, R. A.

    2016-03-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.

  17. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  18. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  19. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  20. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  1. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond.

    Science.gov (United States)

    Golter, D Andrew; Wang, Hailin

    2014-03-21

    Rabi oscillations and adiabatic passage of single electron spins in a diamond nitrogen vacancy center are demonstrated with two Raman-resonant optical pulses that are detuned from the respective dipole optical transitions. We show that the optical spin control is nuclear-spin selective and can be robust against rapid decoherence, including radiative decay and spectral diffusion, of the underlying optical transitions. A direct comparison between the Rabi oscillation and the adiabatic passage, along with a detailed theoretical analysis, provides significant physical insights into the connections and differences between these coherent spin processes and also elucidates the role of spectral diffusion in these processes. The optically driven coherent spin processes enable the use of nitrogen vacancy excited states to mediate coherent spin-phonon coupling, opening the door to combining optical control of both spin and mechanical degrees of freedom.

  2. Spin Interactions and Cross-checks of Polarization in NH$_{3}$ Target

    CERN Document Server

    Kiselev, Yu; Doshita, N; Gautheron, F; Hess, Ch; Iwata, T; Koivuniemi, J; Kondo, K; Magnon, A; Mallot, G; Michigami, T; Meyer, W; Reicherz, G

    2008-01-01

    We study the magnetic structure of irradiated ammonia (NH$_{3}$) polarized by Dynamic Nuclear Polarization method at 0.2 K and at 2.5 T field. In this material, the electron spins, induced by ionizing radiation, couple $^{14}$N and $^{1}$H spins by the indirect spin-spin interaction. As a result, the local frequencies of $^{1}$H-spins are varied depending on $^{14}$N spin polarizations and lead to an asymmetry in the proton signal. This asymmetry allowes a good detection of $^{14}$N spins directly on the proton Larmor frequency. In the long COMPASS target at CERN, we use the cross-checks between spectral asymmetries and integral polarizations to decrease the relative error for longitudinal target polarizations up to $\\pm$2.0%.

  3. Possible Roles of Neural Electron Spin Networks in Memory and Consciousness

    CERN Document Server

    Hu, H P

    2004-01-01

    Spin is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. Thus, we have recently theorized that spin is the mind-pixel and developed a qualitative model of consciousness based on nuclear spins inside neural membranes and proteins. In this paper, we explore the possibility of unpaired electron spins being the mind-pixels. Besides free O2 and NO, the main sources of unpaired electron spins in neural membranes and proteins are transition metal ions and O2 and NO bound/absorbed to large molecules, free radicals produced through biochemical reactions and excited molecular triplet states induced by fluctuating internal magnetic fields. We show that unpaired electron spin networks inside neural membranes and proteins are modulated by action potentials through exchange and dipolar coupling tensors and spin-orbital coupling and g-factor tensors and perturbed by microscopically strong and fluctuating internal magnetic...

  4. NMR evidence for peculiar spin gaps in a doped S=1/2 Heisenberg spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Yannic; Rudisch, Christian; Hammerath, Franziska; Grafe, Hans-Joachim; Mohan, Ashwin; Ribeiro, Patrick; Hess, Christian; Wolter, Anja; Kataev, Vladislav; Nishimoto, Satoshi; Drechsler, Stefan-Ludwig; Buechner, Bernd [IFW Dresden (Germany); Singh, Surjeet [Indian Institute of Science Education and Research, Pune (India); Saint-Martin, Romuald; Revcolevschi, Alexandre [Laboratoire de Physico-Chimie de l' Etat Solide, Universite Paris-Sud, Orsay (France)

    2012-07-01

    We present {sup 63}Cu Nuclear Magnetic Resonance (NMR) measurements on undoped, Ca-doped and Ni-doped SrCuO{sub 2} single crystals. SrCuO{sub 2} is a good realization of a one-dimensional S=1/2 Heisenberg spin chain. This is manifested by the theoretically-expected temperature-independent NMR spin-lattice relaxation rate T{sub 1}{sup -1}. In Sr{sub 0.9}Ca{sub 0.1}CuO{sub 2} an exponential decrease of T{sub 1}{sup -1} below 90 K evidences the opening of a gap in the spin excitation spectrum, which amounts to {Delta}=50 K. DMRG calculations are presented to discuss the origin of this spin gap. New results on SrCu{sub 0.99}Ni{sub 0.01}O{sub 2} also indicate the presence of a spin gap, which is twice as large as in Sr{sub 0.9}Ca{sub 0.1}CuO{sub 2}, despite the minor doping level of Ni compared to Ca. We discuss different possible impacts of Ca (S=0) and Ni (S=1) doping on structural and magnetic properties of the parent compound.

  5. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  6. Overview of spin physics

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1992-12-23

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.

  7. QCD spin physics: Status and prospects for relativistic heavy-ion ...

    Indian Academy of Sciences (India)

    We review some of the recent developments in QCD spin physics and highlight the spin physics program now underway at RHIC. Author Affiliations. Werner Vogelsang1. RIKEN-BNL Research Center and BNL Nuclear Theory, Brookhaven National Laboratory, Upton, NY 11973, USA. Pramana – Journal of Physics.

  8. Investigations on resolution enhancement in EPR by means of electron spin echoes

    International Nuclear Information System (INIS)

    Merks, R.P.J.

    1979-01-01

    The electron spin echo technique has been applied in four types of experiments: the measurement of electric field induced shifts of the EPR line; the detection of electron spin echo ENDOR; a relaxation measurement and the measurement of hyperfine interactions via the nuclear modulation effect. (Auth.)

  9. Linearised collective Schroedinger equation for nuclear quadrupole surface vibrations

    International Nuclear Information System (INIS)

    Greiner, M.; Heumann, D.; Scheid, W.

    1990-11-01

    The linearisation of the Schroedinger equation for nuclear quadrupole surface vibrations yields a new spin degree of freedom, which is called collective spin and has a value of 3/2. With the introduction of collective spin dependent potentials, this linearised Schroedinger equation is then used for the description of low energy spectra and electromagnetic transition probabilities of some even-odd Xe, Ir and Au nuclei which have a spin 3/2 in their groundstate. (orig.)

  10. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  11. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  12. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  13. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  14. Chiral higher spin gravity

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-06-01

    We construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, on the left it has the Drinfeld-Sokolov reduced form, but on the right all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the "most general" AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine s l (3 )k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. We compare our work with previous results in the literature.

  15. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  16. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    International Nuclear Information System (INIS)

    Schwager, Heike

    2012-01-01

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  17. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, Heike

    2012-07-04

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  18. Sensitivity of Lambda single-particle energies to the Lambda N spin-orbit coupling and to nuclear core structure in p-shell and sd-shell hypernuclei

    Czech Academy of Sciences Publication Activity Database

    Veselý, Petr; Hiyama, E.; Hrtánková, Jaroslava; Mareš, Jiří

    2016-01-01

    Roč. 954, OCT (2016), s. 260-272 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61389005 Keywords : Lambda hypernuclei * spin orbit spilitting * Lambda N interaction * mean field model Subject RIV: BE - Theoretical Physics Impact factor: 1.916, year: 2016

  19. Spin flexoelectricity and chiral spin structures in magnetic films

    OpenAIRE

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism is discussed. The phenomenological arguments bas...

  20. Spinning geodesic Witten diagrams

    International Nuclear Information System (INIS)

    Dyer, Ethan; Freedman, Daniel Z.; Massachusetts Institute of Technology; Massachusetts Institute of Technology; Sully, James; McGill University, Montreal, QC

    2017-01-01

    We present an expression for the four-point conformal blocks of symmetric traceless operators of arbitrary spin as an integral over a pair of geodesics in Anti-de Sitter space, generalizing the geodesic Witten diagram formalism of Hijano et al. to arbitrary spin. As an intermediate step in the derivation, we identify a convenient basis of bulk threepoint interaction vertices which give rise to all possible boundary three point structures. Lastly, we highlight a direct connection between the representation of the conformal block as geodesic Witten diagram and the shadow operator formalism.

  1. Spin gating electrical current

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Zarbo, Liviu; Irvine, A.C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, Joerg; Jungwirth, Tomáš; Ferguson, A.J.

    2012-01-01

    Roč. 101, č. 12 (2012), , , "122411-1"-"122411-4" ISSN 0003-6951 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanodevices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012 http://arxiv.org/abs/1203.2439

  2. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  3. Spin, gravity, and inertia.

    Science.gov (United States)

    Obukhov, Y N

    2001-01-08

    The gravitational effects in the relativistic quantum mechanics are investigated. The exact Foldy-Wouthuysen transformation is constructed for the Dirac particle coupled to the static spacetime metric. As a direct application, we analyze the nonrelativistic limit of the theory. The new term describing the specific spin (gravitational moment) interaction effect is recovered in the Hamiltonian. The comparison of the true gravitational coupling with the purely inertial case demonstrates that the spin relativistic effects do not violate the equivalence principle for the Dirac fermions.

  4. High-spin structure in 40K

    Science.gov (United States)

    Söderström, P.-A.; Recchia, F.; Nyberg, J.; Gadea, A.; Lenzi, S. M.; Poves, A.; Ataç, A.; Aydin, S.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bruyneel, B.; Bucurescu, D.; Calore, E.; Cederwall, B.; Charles, L.; Chavas, J.; Colosimo, S.; Crespi, F. C. L.; Cullen, D. M.; de Angelis, G.; Désesquelles, P.; Dosme, N.; Duchêne, G.; Eberth, J.; Farnea, E.; Filmer, F.; Görgen, A.; Gottardo, A.; Grębosz, J.; Gulmini, M.; Hess, H.; Hughes, T. A.; Jaworski, G.; Jolie, J.; Joshi, P.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Karolak, M.; Kempley, R. S.; Khaplanov, A.; Korten, W.; Ljungvall, J.; Lunardi, S.; Maj, A.; Maron, G.; Męczyński, W.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Nolan, P. J.; Norman, M.; Obertelli, A.; Podolyak, Zs.; Pullia, A.; Quintana, B.; Redon, N.; Regan, P. H.; Reiter, P.; Robinson, A. P.; Şahin, E.; Simpson, J.; Salsac, M. D.; Smith, J. F.; Stézowski, O.; Theisen, Ch.; Tonev, D.; Unsworth, C.; Ur, C. A.; Valiente-Dobón, J. J.; Wiens, A.

    2012-11-01

    High-spin states of 40K have been populated in the fusion-evaporation reaction 12C(30Si,np)40K and studied by means of γ-ray spectroscopy techniques using one triple-cluster detector of the Advanced Gamma Tracking Array at the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro. Several states with excitation energy up to 8 MeV and spin up to 10- have been discovered. These states are discussed in terms of J=3 and T=0 neutron-proton hole pairs. Shell-model calculations in a large model space have shown good agreement with the experimental data for most of the energy levels. The evolution of the structure of this nucleus is here studied as a function of excitation energy and angular momentum.

  5. Novel spin effects in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1993-02-01

    This report discusses a number of interesting hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. These include constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton; the principle of hadron helicity retention in high x F inclusive reactions; predictions based on total hadron helicity conservation in high momentum transfer exclusive reactions; the dependence of nuclear structure functions and shadowing on virtual photon polarization; and general constraints on the magnetic moment of hadrons. I also will discuss the implications of several measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F

  6. Developments in quantum information processing by nuclear ...

    Indian Academy of Sciences (India)

    Abstract. Use of dipolar and quadrupolar couplings for quantum information processing (QIP) by nuclear magnetic resonance (NMR) is described. In these cases, instead of the individual spins being qubits, the 2n energy levels of the spin-system can be treated as an n-qubit system. It is demonstrated that QIP in such ...

  7. Nuclear magnetic resonance of external protons using continuous dynamical decoupling with shallow NV centers

    Science.gov (United States)

    de Las Casas, Charles; Ohno, Kenichi; Awschalom, David D.

    2015-03-01

    The nitrogen vacancy (NV) center in diamond is a paramagnetic defect with excellent spin properties that can reside within a few nanometers of the diamond surface, enabling atomic-scale magnetic resonance sensing of external nuclear spins. Here we use rotating frame longitudinal spin relaxation (T1ρ) based sensing schemes, known as Continuous Dynamical Decoupling (CDD), to detect external nuclear spins with shallow NV centers (DIAMANT program.

  8. Evidence for an internal-field-induced spin-flop configuration in the extended kagome YBaCo4O7

    Science.gov (United States)

    Hoch, M. J. R.; Kuhns, P. L.; Yuan, S.; Besara, T.; Whalen, J. B.; Siegrist, T.; Reyes, A. P.; Brooks, J. S.; Zheng, H.; Mitchell, J. F.

    2013-02-01

    The spin structure and spin dynamics in the extended kagome frustrated antiferromagnet YBaCo4O7 have been investigated using zero field and low applied field 59Co NMR. The YBaCo4O7 lattice is made up of bipyramid Co-ion units that form alternating planes of edge-sharing spin triangles and corner-sharing kagome spin triangles in an unusual exchange topology. Our low-temperature spin configuration results, based on hyperfine field orientations, are consistent with those from neutron scattering for the triangle spins which order antiferromagnetically below 106 K. For the kagome spins at low temperatures the static hyperfine fields are found to be oriented orthogonal to those of the triangle spins in a spin-flop configuration that is in disagreement with the neutron findings. Nuclear relaxation rate measurements made as a function of temperature show that inhomogeneous dynamic spin disorder occurs in kagome planes well below the Néel point.

  9. Growth points in nuclear physics

    CERN Document Server

    Hodgson, Peter Edward

    1980-01-01

    Growth Points in Nuclear Physics, Volume 2 covers the progress in the fields of nuclear structure and nuclear reactions. This book is composed of three chapters. The first chapter is devoted to nuclear forces and potentials, in particular the optical model potential that enables the elastic scattering of many particles by nuclei to be calculated in a very simple manner. This chapter also deals with the three-body forces and the spin dependence of the nuclear potential. The second chapter describes higher order processes involving two or more stages, specifically their intrinsic interest and th

  10. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  11. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  12. The spin lattice relaxation of 8Li in simple metals

    Science.gov (United States)

    Hossain, M. D.; Saadaoui, H.; Parolin, T. J.; Song, Q.; Wang, D.; Smadella, M.; Chow, K. H.; Egilmez, M.; Fan, I.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Morris, G. D.; Pearson, M. R.; Salman, Z.; MacFarlane, W. A.

    2009-04-01

    We report the modification to the linear temperature dependence of the Korringa nuclear spin-lattice relaxation rate of an implanted NMR probe in silver, as it makes a thermally activated site change. We develop a simple model of this phenomenon, which is found in a number of metals including Au and Nb.

  13. 3 QP plus rotor model and high spin states

    International Nuclear Information System (INIS)

    Mathur, Tripti

    1995-01-01

    Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs

  14. Quantum control of single spins and single photons in diamond

    NARCIS (Netherlands)

    Van der Sar, T.

    2012-01-01

    This thesis describes a series of experiments on the control of the optical properties of the nitrogen-vacancy (NV) center in diamond, and on control of the electron and nuclear spin states associated with the NV center. The NV center is a fluorescing atomic defect center in diamond, consisting of a

  15. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  16. " The Story of Spin

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 11. The Story of Spin - From Spectroscopy to Relativistic Quantum Mechanics. N Mukunda. Book Review Volume 3 Issue 11 November 1998 pp 89-90. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  18. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  19. The invariance of spin

    International Nuclear Information System (INIS)

    Bramson, B.D.

    1978-01-01

    An isolated system in general relativity makes a transition between stationary states. It is shown that the spin vectors of the system, long before and long after the emission of radiation, are supertranslation invariant and, hence, independent of the choice of Minkowski observation space. (author)

  20. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  1. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    Spin tunnelling; spin path integrals; discrete phase integral method; diabolical points. ... technologies. Our purpose in this article is rather different. The molecular systems have total spin of the order of 10, and magnetocrystalline anisotropies of few tens of Kelvin ...... The point С' is of this new type, and here it may be said to.

  2. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  3. Spin Transport in Bose Gases

    NARCIS (Netherlands)

    van Driel, H.J.

    2012-01-01

    In this Thesis, we show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode

  4. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  5. Spinning Them Off: Entrepreneuring Practices in Corporate Spin-Offs

    Directory of Open Access Journals (Sweden)

    Katja Maria Hydle

    2016-01-01

    Full Text Available This paper focuses on the practices between parent and child firms in corporate spinoffs. We uncover the enacted aspects of knowledge, called knowing, through theories from seven cases of incumbent-backed spin-offs and find that the management of the parent firms are highly involved in the spin-offs. The practices associated with spinning off are solving problems, involving multidisciplinary expertise and entrepreneuring management at the parent firm. We contribute to the spin-off literature by discussing the knowledge required for successfully spinning off child firms and to practice theory by empirically uncovering the practical understanding involved in the origin and perpetuation of an organization.

  6. Spin flexoelectricity and chiral spin structures in magnetic films

    Science.gov (United States)

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-06-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models.

  7. Three-electron spin qubits

    Science.gov (United States)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    -only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys

  8. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  9. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.

    Science.gov (United States)

    Sallen, G; Kunz, S; Amand, T; Bouet, L; Kuroda, T; Mano, T; Paget, D; Krebs, O; Marie, X; Sakoda, K; Urbaszek, B

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.

  10. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  11. Spin-wave-induced spin torque in Rashba ferromagnets

    Science.gov (United States)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  12. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    International Nuclear Information System (INIS)

    Park, J.-S.; Lee, S.-R.; Kim, Y.K.

    2004-01-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field (H ex.eff ) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply

  13. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    Science.gov (United States)

    Park, Jeong-Suk; Lee, Seong-Rae; Kim, Young Keun

    2004-08-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field ( Hex.eff) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply.

  14. Environmental Effects on Quantum Reversal of Mesoscopic Spins

    Science.gov (United States)

    Giraud, R.; Chiorescu, I.; Wernsdorfer, W.; Barbara, B.; Jansen, A. G. M.; Caneschi, A.; Mueller, A.; Tkachuk, A. M.

    2002-10-01

    We describe what we learnt these last years on quantum reversal of large magnetic moments, using mainly conventional SQUID or micro-SQUID magnetometry. Beside the case of ferromagnetic nanoparticles with 103 - 105 atoms (e.g. Co, Ni, Fe, Ferrites), most fruitful systems appeared to be ensembles of magnetic molecules. These molecules, generally arranged in single crystals, carry relatively small magnetic moments (S = 10 in Mn12-ac and Fe8). They are sufficiently apart from each other not to be coupled by exchange interactions. The ground multiplet is split over an energy barrier of tens of kelvin (≈ 67 K for Mn12) by a strong local crystal field, leading to an Ising-type ground-state. Only weak inter-molecular dipolar interactions are present, as well as intra-molecular interactions, such as hyperfine interactions. Quantum properties of molecule spins are crucially dependent on their magnetic environment of electronic and nuclear spins (the spin bath). Energy fluctuations of the spin bath of about 0.1 K are important, especially at very low temperatures. In particular, they are much larger than the ground-state tunnel splitting of large-spin molecules in low applied fields, of about 10-8 K or even less (such a low value is due to the presence of large energy barriers). Theoretical predictions are experimentally checked for tunneling effects in the presence of non-equilibrated or equilibrated spin-energy distribution. It is also shown that the phonon-bath plays no role in low field, except when the temperature approaches the cross-over temperature to the thermal activation regime. In fact, spin-phonon transitions can play a role only if the tunnel splitting is not too small in comparison with kBT. This is the case both for large-spin molecules in a large magnetic field (e.g. Mn12-ac in a few tesla) and for low-spin molecules, as shown with the study of the molecule V15 (Hilbert space dimension as large as 215 and spin 1/2). We also give our latest results on the

  15. Pauli and the spin-statistics theorem

    CERN Document Server

    Duck, Ian M

    1997-01-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties. Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that

  16. Electromagnetic properties of nuclei at high spins

    International Nuclear Information System (INIS)

    Leander, G.A.

    1986-01-01

    A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs

  17. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation...

  18. Memory-built-in quantum cloning in a hybrid solid-state spin register.

    Science.gov (United States)

    Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M

    2015-07-16

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  19. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  20. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  1. Spin Echo Attenuation of Restricted Diffusion as a Discord of Spin Phase Structure

    Science.gov (United States)

    Stepišnik, Janez

    1998-04-01

    By using the particle probability density we analyze the spin echo attenuation of particles, diffusing in a bounded region. It provides a means to expand a nonuniform spin phase distribution into a series of waves that characterize the geometry and boundary conditions of confinement. Random motion disrupts the initial phase structure created by applied gradients and consequently discords its structure waves. By assuming the spin phase fluctuation and/or the randomness of spin phase distribution in the subensemble as a Gaussian stochastic process, we derive a new analytical expression for the echo attenuation related to the particle velocity correlation. For a diffusion in porous structure we get the expression featuring the same "diffusive diffraction" patterns as those being found and explained by P. T. Callaghan and A. Coy ("Principles of Nuclear Magnetic Resonance Microscopy," Oxford Univ. Press, Oxford (1991);J. Chem. Phys.101, 4599-4609 (1994)) with the use of propagator theory. With the new approach we cast a new light on the phenomena and derive analitically how the diffusive diffractions appear when the sequence of finite or even modulated gradients are applied. The method takes into account the non-Markovian character of restricted diffusion, and therefore the echo dependence on the diffusion lengths and on the strength of applied gradient differs from the results of authors assuming the Markovian diffusion either by dealing with the diffusion propagators or by the computer simulation of Fick's diffusion.

  2. Muon spin rotation studies

    Science.gov (United States)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  3. Spin and Madelung fluid

    International Nuclear Information System (INIS)

    Salesi, G.

    1995-07-01

    Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung

  4. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  5. Pangaea, She No Spin

    Science.gov (United States)

    McDowell, M.

    2002-12-01

    Looking at lopsided Pangaea, shown imaginatively on many illustrated proposals, I wondered what would happen if the configuration were put in high relief on a globe and spun on axis. Then I wondered if the present configuration of land masses would itself balance as a spinning top. So I got two Replogle globes, two boxes of colored modeling clay sticks, and two fat knitting needles, to fit through the capped holes at the poles of the globes. The clay sticks I cut up into 3 mm. (1/8") slices, using a different color for each continent, and applied to the first globe, assuming the extreme exaggeration above the geoid, no matter how crude, would tell the story. Inserting one needle through the globe and securing it, I balanced the globe on the point of the needle and twirled it like a top. Result: Wobbly! Top end of needle gyrated unevenly, and here it was supposed to make a smooth precessional cone. Oh boy. For the second globe, I used a Scotese "free stuff" interpretation of Pangaea, which I had to augment considerably using USGS, DuToit, Irving and other references, fitting it on the globe and applying identical clay color slices to what I judged generally accepted land surfaces. Result: the thing would hardly stand up, let alone spin. Conclusion: Although a refinement of application on the "today" globe might eliminate nutation, creating a smoother spin, there is no way any refinement of Pangaea on the same size globe can come close. While the concept of a supercontinent may be viable, I theorize that it had to have evolved on a far smaller globe, where land mass could balance, and the "breakup" would not have caused us to wildly gyrate on our axis. Because Pangaea, she no spin.

  6. Spin Hall effect

    Czech Academy of Sciences Publication Activity Database

    Sinova, Jairo; Valenzuela, O.V.; Wunderlich, Joerg; Back, C.H.; Jungwirth, Tomáš

    2015-01-01

    Roč. 87, č. 4 (2015), s. 1213-1259 ISSN 0034-6861 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spin Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 33.177, year: 2015

  7. Spin and gravitation

    Science.gov (United States)

    Ray, J. R.

    1982-01-01

    The fundamental variational principle for a perfect fluid in general relativity is extended so that it applies to the metric-torsion Einstein-Cartan theory. Field equations for a perfect fluid in the Einstein-Cartan theory are deduced. In addition, the equations of motion for a fluid with intrinsic spin in general relativity are deduced from a special relativistic variational principle. The theory is a direct extension of the theory of nonspinning fluids in special relativity.

  8. Spinning Disk Confocal System

    Science.gov (United States)

    2006-06-01

    high temporal resolution. An instrument has been developed for exactly this type of live-cell imaging. This new instrument scans 1000 microbeams across...Imaging System. Instead of scanning a single laser beam across the cell, this new instrument scans 1000 microbeams simultaneously using a spinning...multipoint-excitation, multipoint- emission characteristics of UltraView RS, which confers three main advantages over traditional beam scanning LSCMs for

  9. Spinning out a star.

    Science.gov (United States)

    Lord, Michael D; Mandel, Stanley W; Wager, Jeffrey D

    2002-06-01

    Spinouts rarely take off; most, in fact, fall into one or more of four traps that doom them from the start. Some companies spin out ventures that are too close to the core of their businesses, in effect selling off their crown jewels. Sometimes, a parent company uses the spinout primarily to pawn off debt or expenses or to quickly raise external capital for itself. Other times, a company may try to spin out an area of its business that lacks one or more of the critical legs of a successful company--a coherent business model, say, or a solid financial base. And in many cases, parent companies can't bring themselves to sever their ownership ties and give up control of their spinouts. R.J. Reynolds, the tobacco giant, managed to avoid these traps when it successfully spun out a most unlikely venture, the pharmaceutical company Targacept. As the story illustrates, the problem with spinouts is similar to the problem of rich children. Their parents have the wherewithal to spoil them or shelter them or cling to them, but what they need is tough love and discipline--much the same discipline that characterizes successful start-ups. R.J. Reynolds recognized that it didn't know that much about the pharmaceutical business and couldn't merely try to spin out a small clone of itself. It had to treat the venture as if it were essentially starting from scratch, with a passionate entrepreneurial leader, a solid business plan, help from outside partners in the industry, and ultimately substantial venture backing. That these lessons are less obvious to executives contemplating spinning out ventures closer to their core businesses may be why so many spinouts fail.

  10. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  11. Spin Foam Models

    CERN Document Server

    Krasnov, K V

    1999-01-01

    The term ‘spin foam models’ was invented only a couple years ago by Baez to refer to a new approach to quantization of general relativity that appeared as an offsping of loop quantum gravity. Although this new approach was motivated, both logically and historically, by loop quantum gravity, it became clear by now that the two approaches are rather independent. While loop quantum gravity attempts to give a canonical quantization of general relativity, spin foam model approach is set to make sense of the path integral for gravity. Eventually, the two approaches will probably be shown to be equivalent, but no rigorous result to this effect exists as for now. In this thesis I develop the spin foam quantization of gravity from scratch, referring to results from loop quantum gravity only for comparison. I start from a review of 2 + 1 gravity and discuss different roots to quantize it. While some of them, as, for example, using Chern-Simons theory, only exist in 2 + 1, others can be generalized t...

  12. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  13. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  14. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  15. Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Levitov, Leonid

    2013-01-01

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....

  16. Spinning particle approach to higher spin field theory

    International Nuclear Information System (INIS)

    Corradini, Olindo

    2011-01-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  17. Entanglement entropy in random quantum spin-S chains

    International Nuclear Information System (INIS)

    Saguia, A.; Boechat, B.; Continentino, M. A.; Sarandy, M. S.

    2007-01-01

    We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block, and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer-spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach

  18. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  19. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  20. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  1. Hardy's argument and successive spin-s measurements

    International Nuclear Information System (INIS)

    Ahanj, Ali

    2010-01-01

    We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)) 4s , which is more than in the spatial case.

  2. Hole Spin Coherence in a Ge/Si Heterostructure Nanowire

    OpenAIRE

    Higginbotham, A. P.; Larsen, T. W.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M.; Kuemmeth, F.

    2014-01-01

    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time $T_2^* \\sim 0.18~\\mathrm{\\mu s}$ exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaus...

  3. Quark-hadron duality of nucleon spin structure function

    International Nuclear Information System (INIS)

    Dong, Y.B.

    2005-01-01

    Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g 1 from perturbative QCD prediction in the scaling region to the moment of g 1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the Δ(1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed. (orig.)

  4. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  5. Magnetic Resonance Imaging: From Spin Physics to Medical Diagnosis

    Science.gov (United States)

    Nacher, Pierre-Jean

    Two rather similar historical evolutions are evoked, each one originating in fundamental spin studies by physicists, and ending as magnetic resonance imaging (MRI), a set of invaluable tools for clinical diagnosis in the hands of medical doctors. The first one starts with the early work on nuclear magnetic resonance, the founding stone of the usual proton-based MRI, of which the basic principles are described. The second one starts with the optical pumping developments made to study the effects of spin polarization in various fundamental problems. Its unexpected outcome is a unique imaging modality, also based on MRI, for the study of lung physiology and pathologies.

  6. Electron nuclear double resonance study of the spin-label tanol (tempol) oriented in the inclusion compound 2'-hydroxy-2,4,4,7,4'-pentamethylflavan

    Energy Technology Data Exchange (ETDEWEB)

    Ohzeki, F.; Kispert, L.D.; Arroyo, C.; Steffan, M.

    1982-09-30

    The nitrogen quadrupole tensor has been determined by ENDOR measurements at -20/sup 0/C for the spin-label tanol (tempol) oriented in the inclusion compound 2'-hydroxy-2,4,4,7,4'-pentamethylflavan. The principal values are equal to +1.46, +0.11, and -1.57 MHz, with the direction of the 1.46-MHz quadrupole coupling lying parallel to the direction of the largest nitrogen hyperfine coupling. The other two quadrupole tensor components do not lie parallel to the remaining nitrogen hyperfine coupling directions nor are the couplings cylindrically symmetric. Two exchangeable protons are observed to be strongly dipolar coupled to the electron. Coupling constants and direction cosines for nine weekly coupled protons were deduced and attempts were made to assign them.

  7. Spin transport in spin filtering magnetic tunneling junctions.

    Science.gov (United States)

    Li, Yun; Lee, Eok Kyun

    2007-11-01

    Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.

  8. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  9. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights......The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...

  10. Visualizing spin states using the spin coherent state representation

    Science.gov (United States)

    Lee Loh, Yen; Kim, Monica

    2015-01-01

    Orbital angular momentum eigenfunctions are readily understood in terms of spherical harmonics. However, the quantum mechanical phenomenon of spin is often said to be mysterious and hard to visualize, with no classical analog. Many textbooks give a heuristic and somewhat unsatisfying picture of a precessing spin vector. Here, we show that the spin-coherent-state representation is a striking, elegant, and mathematically meaningful tool for visualizing spin states. We also demonstrate that cartographic projections such as the Hammer projection are useful for visualizing functions defined on spherical surfaces.

  11. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite

  12. (Medium energy spin physics with lasers)

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D.

    1992-01-01

    During the first two years of this program, we have successfully investigated two new methods for the production of polarized muonic helium. This work was done at LAMPF in collarboration with a group from Syracuse University. Traditionally, polarized muonic helium has been formed by stopping polarized muons in unpolarized atoms. Unfortunately, because of depolarization in the muon cascade to the ground state, residual polarizations are only {approximately}3%. The two methods we have developed both achieve much higher muon polarizations. To accomplish our goals, we first developed an appropriate muon beam for use with our small gas targets. During the summer of 1990, we stopped unpolarized negative muons in nuclear polarized {sup 3}He. The muons were polarized in the cascade to the ground state through the hyperfine interaction with the nucleus. The resulting muon polarizations were 7.2 {plus minus} 0.8% for a 100% nuclear polarized target. While higher polarizations are clearly desirable for practical purposes, this experiment yielded important insights on spin interactions that occur in muonic atoms. Also, the ability to rapidly reverse the target polarization gave the experiment good sensitivity with minimal systematic effects. Last summer, we completed an experiment in which we polarized muonic helium by direct spin interaction with an optically pumped Rb vapor. In this technique, the muonic helium atom is polarized through a combination of charge exchange and spin exchange with the polarized valence electron of the Rb vapor. In contrast to the technique described in appendix A, the {sup 3}He nuclei are not polarized. This last technique yielded dramatic polarizations approaching 50%.

  13. ac spin-Hall effect

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.

    2005-01-01

    Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other

  14. Observation of the spin Nernst effect

    Science.gov (United States)

    Meyer, S.; Chen, Y.-T.; Wimmer, S.; Althammer, M.; Wimmer, T.; Schlitz, R.; Geprägs, S.; Huebl, H.; Ködderitzsch, D.; Ebert, H.; Bauer, G. E. W.; Gross, R.; Goennenwein, S. T. B.

    2017-10-01

    The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.

  15. Symplectic integrators for spin systems

    Science.gov (United States)

    McLachlan, Robert I.; Modin, Klas; Verdier, Olivier

    2014-06-01

    We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R3. Unlike splitting methods, it is defined for all Hamiltonians and is O (3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top.

  16. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  17. Spin currents in metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Czeschka, Franz Dominik

    2011-09-05

    A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)

  18. Towards spin injection into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dash, S.P.

    2007-08-15

    Si has been studied for the purpose of spin injection extensively in this thesis. Three different concepts for spin injection into Si have been addressed: (1) spin injection through a ferromagnet-Si Schottky contact, (2) spin injection using MgO tunnel barriers in between the ferromagnet and Si, and (3) spin injection from Mn-doped Si (DMS) as spin aligner. (1) FM-Si Schottky contact for spin injection: To be able to improve the interface qualities one needs to understand the atomic processes involved in the formation of silicide phases. In order to obtain more detailed insight into the formation of such phases the initial stages of growth of Co and Fe were studied in situ by HRBS with monolayer depth resolution.(2) MgO tunnel barrier for spin injection into Si: The fabrication and characterization of ultra-thin crystalline MgO tunnel barriers on Si (100) was presented. (3) Mn doped Si for spin injection: Si-based diluted magnetic semiconductor samples were prepared by doping Si with Mn by two different methods i) by Mn ion implantation and ii) by in-diffusion of Mn atoms (solid state growth). (orig.)

  19. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  20. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...