Novel charge density wave transition in crystals of R5Ir4Si10
Indian Academy of Sciences (India)
S Ramakrishnan
2002-05-01
We review the observation of novel charge density wave (CDW) transitions in ternary R5Ir4Si10 compounds. A high quality single crystal of Lu5Ir4Si10 shows the formation of a commensurate CDW along -axis below 80 K in the (ℎ, 0, ) plane that coexists with BCS type superconductivity below 3.9 K. However, in a single crystal of Er5Ir4Si10, one observes the development of a 1D-incommensurate CDW at 155 K, which then locks into a purely commensurate state below 55 K. The well-localized Er3 moments are antiferromagnetically ordered below 2.8 K which results in the coexistence of strongly coupled CDW with local moment antiferromagnetism in Er5Ir4Si10. Unlike conventional CDW systems, extremely sharp transition (width ∼ 1.5 K) in all bulk properties along with huge heat capacity anomalies in these compounds makes this CDW transition an interesting one.
Institute of Scientific and Technical Information of China (English)
JI An-Chun; TIAN Guang-Shan
2007-01-01
In the present paper, we investigate the quantum phase transition in a spatially anisotropic antiferromagnetic Heisenberg model of S = 1 with single-ion energy anisotropy. By using the Schwinger boson representation, we calculate the Gaussian correction to the critical value Jc⊥ caused by quantum spin fluctuations. We find that, for the positive single-ion energy, a nonzero value of Jc⊥ is always needed to stabilize the antiferromagnetic long-range order in this model. It resolves a difference among literature and shows clearly that the effect of quantum fluctuations may qualitatively change a result obtained by the mean-field theories on lower-dimensional systems.
Uniaxial anisotropy and low-temperature antiferromagnetism of Mn2BO4 single crystal
Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Vasiliev, A. D.; Bezmaternykh, L. N.; Nizhankovskii, V. I.; Gavrilkin, S. Yu.; Lamonova, K. V.; Ovchinnikov, S. G.
2015-01-01
The Mn2BO4 single crystals have been grown using the flux technique. The careful study crystal structure and magnetic properties have been carried out. The antiferromagnet transition at TN = 26 K has been traced through the dc magnetization and specific heat temperature dependences. The magnetic uniaxial anisotropy has been detected with easy axis of magnetization lying in ab-plane. A reduction of the effective magnetic moment value is assigned to the non-quenched orbital moment of Jahn-Telle...
International Nuclear Information System (INIS)
The depinning field of a domain wall in a permalloy nanostructure can be used to detect the presence of a magnetic particle. In this device the displacement of the domain wall in a sweeping magnetic field produces a variation of the voltage drop across a corner due to the anisotropic magnetoresistance effect and hence an electrical signal. In this paper we use micromagnetic simulations to calculate the output signal of a particularly shaped device in the presence of a single synthetic antiferromagnetic nanoparticle. The calculated magnetoresistive signal is in good agreement with corresponding experimental data
Uniaxial anisotropy and low-temperature antiferromagnetism of Mn2BO4 single crystal
Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Vasiliev, A. D.; Bezmaternykh, L. N.; Nizhankovskii, V. I.; Gavrilkin, S. Yu.; Lamonova, K. V.; Ovchinnikov, S. G.
2015-11-01
The Mn2BO4 single crystals have been grown by the flux technique. A careful study of the crystal structure and magnetic properties have been carried out. The antiferromagnetic transition at TN=26 K has been traced through the dc magnetization and specific heat temperature dependences. Magnetic uniaxial anisotropy has been found with easy axis magnetization lying in the ab-plane. The obtained value of effective magnetic moment is assigned to the non-quenched orbital moment of Jahn-Teller Mn3+ ions. The discussion of magnetic properties is based on the superexchange interaction calculations.
Uniaxial anisotropy and low-temperature antiferromagnetism of Mn2BO4 single crystal
International Nuclear Information System (INIS)
The Mn2BO4 single crystals have been grown by the flux technique. A careful study of the crystal structure and magnetic properties have been carried out. The antiferromagnetic transition at TN=26 K has been traced through the dc magnetization and specific heat temperature dependences. Magnetic uniaxial anisotropy has been found with easy axis magnetization lying in the ab-plane. The obtained value of effective magnetic moment is assigned to the non-quenched orbital moment of Jahn–Teller Mn3+ ions. The discussion of magnetic properties is based on the superexchange interaction calculations. - Highlights: • Single-crystalline samples of Mn2BO4 of high quality were grown. The charge ordering oftype Mn2+(1)-Mn3+(2) was found. • The intrinsic antiferromagnetic transition at TN=26 K was observed through the magnetization and specific heat measurements. • An uniaxial magnetic anisotropy with easy axis of magnetization lying in ab-plane was found. • The superexchange interactions were calculated and the magnetic frustration was found
Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4
DEFF Research Database (Denmark)
Zaharko, O.; Christensen, Niels Bech; Cervellino, A.;
2011-01-01
We study the evidence for spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single-crystal neutron scattering in zero and applied magnetic fields. The magnetically ordered phase appearing below T-N = 8 K remains nonconventional down to 1.5 K. The magnetic Bragg pea...
Collinear antiferromagnetism in trigonal SrMn2As2 revealed by single crystal neutron diffraction
Kreyssig, A.; Das, P.; Sangeetha, N. S.; Benson, Z. A.; Heitman, T.; Johnston, D. C.; Goldman, A. I.
FeAs-based compounds and related materials have been an area of intense research in understanding the complex interplay between magnetism and superconductivity. Here we report on the magnetic structure of SrMn2As2 that crystallizes in a trigonal structure (P 3 m1) and undergoes an antiferromagnetic (AFM) transition at TN ~ 120 K. The temperature dependence of the magnetic susceptibility remains nearly constant below TN with H ∥ c while it decreases significantly with H ∥ ab . This shows that the local Mn moments order and lie in the ab plane instead of aligning along the c axis as in BaMn2As2. Single crystal neutron diffraction measurements on SrMn2As2 determined that the Mn moments are collinearly aligned in a G-type AFM order with AFM alignments between a moment and all nearest neighbors in the basal plane and also perpendicular to it. This manifests that G-type AFM order is robust for Mn122 systems despite different symmetries, i.e. tetragonal for BaMn2As2 and trigonal for SrMn2As2.Work at Ames Laboratory was supported by the DOE, BES, Division of Materials Sciences & Engineering, through DE-AC02-07CH11358. This research used resources at University of Missouri Research Reactor.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
Mi, Bin-Zhou
2016-09-01
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green's function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Antiferromagnetic order and Kondo-lattice behavior in single-crystalline Ce2RhSi3
Szlawska, M.; Kaczorowski, D.; Ślebarski, A.; Gulay, L.; Stępień-Damm, J.
2009-04-01
Single crystal of Ce2RhSi3 was investigated by means of x-ray diffraction, magnetization, electrical resistivity, and heat-capacity measurements. Moreover, its electronic structure was studied by cerium core-level x-ray photoemission spectroscopy. The results revealed that Ce2RhSi3 is an antiferromagnetic Kondo lattice due to the presence of stable trivalent Ce ions.
The magnetic properties of CsCrCl3, an antiferromagnetic chain compound with single-ion anisotropy
International Nuclear Information System (INIS)
The magnetic structure and excitations of the linear chain hexagonal perovskite salt CsCrCl3 have been studied by susceptibility, powder and single crystal neutron diffraction and coherent inelastic neutron scattering. Below the Neel temperature, Tsub(N) = 16 K, the spins lie in the basal plane with antiferromagnetic ordering along the c-axis chains. At 4.5 K there is strong dispersion of the spin-wave energy along c but no measurable dispersion perpendicular to c. (orig.)
Duan, T. F.; Ren, W. J.; Liu, W.; Zhang, Z. D.
2016-08-01
The magnetic structure of MnSn2 and magnetic phase transitions in this compound have been investigated by magnetic measurements on single crystals. The results show that two antiferromagnetic (AFM) states exist below 325 K and that a transition between these two phases occurs at 74 K. Applying a magnetic field (H) has great influence on the transition temperature. An anomalous magnetization process at low fields occurs when the magnetic field applied along the [110] direction, which is ascribed to the contribution of the basal anisotropy. Based on the data for the magnetization processes and the phase transition of the present single crystal, the H-T phase diagram has been established.
Physical properties of metallic antiferromagneticCaCo1.86As2 single crystals
Energy Technology Data Exchange (ETDEWEB)
Anand, V. K. [Ames Laboratory; Dhaka, Rajendra S. [Ames Laboratory; Lee, Yongbin [Ames Laboratory; Harmon, Bruce N. [Ames Laboratory; Kaminski, Adam [Ames Laboratory; Johnston, David C. [Ames Laboratory
2014-06-01
X-ray powder diffraction (XRD), magnetic susceptibility χ, isothermal magnetization M, heat capacity Cp, and in-plane electrical resistivity ρ measurements as a function of temperature T and magnetic field H are presented for CaCo1.86As2 single crystals. The electronic structure is probed by angle-resolved photoemission spectroscopy (ARPES) measurements of CaCo1.86As2 and by full-potential linearized augmented-plane-wave calculations for the supercell Ca8Co15As16 (CaCo1.88As2). Our XRD crystal structure refinement is consistent with the previous combined refinement of x-ray and neutron powder diffraction data showing a collapsed-tetragonal ThCr2Si2-type structure with 7(1)% vacancies on the Co sites corresponding to the composition CaCo1.86As2 [D. G. Quirinale et al., Phys. Rev. B 88, 174420 (2013)]. The anisotropic χ(T) data are consistent with the magnetic neutron diffraction data of Quirianale et al. that demonstrate the presence of A-type collinear antiferromagnetic order below the Néel temperature TN=52(1) K with the easy axis being the tetragonal c axis. However, no clear evidence from the ρ(T) and Cp(T) data for a magnetic transition at TN is observed. A metallic ground state is demonstrated from the band calculations and the ρ(T), Cp(T), and ARPES data, and spin-polarized calculations indicate a competition between the A-type AFM and FM ground states. The Cp(T) data exhibit a large Sommerfield electronic coefficient reflecting a large density of states at the Fermi energy D(EF) that is enhanced compared with the band structure calculation where the bare D(EF) arises from Co 3d bands. At 1.8 K, the M(H) data for H∥c exhibit a well-defined first-order spin-flop transition at an applied field of 3.5 T. The small ordered moment of ≈0.3μB/Co obtained from the M(H) data at low T, the large exchange enhancement of χ and the lack of a self-consistent interpretation of the χ(T) and M(H,T) data in terms of a local moment Heisenberg model together
Glazkov, V. N.; Smirnov, A. I.; Sanchez, J. P.; Forget, A.; Colson, D.; Bonville, P.
2006-02-01
Single-ion anisotropy is of importance for the magnetic ordering of the frustrated pyrochlore antiferromagnets Gd2Ti2O7 and Gd2Sn2O7. The anisotropy parameters for Gd2Sn2O7 were measured using the electron spin resonance technique. The anisotropy was found to be of the easy plane type, with the main constant D = 140 mK. This value is 35% smaller than the value of the corresponding anisotropy constant of the related compound Gd2Ti2O7.
Uniaxial anisotropy and low-temperature antiferromagnetism of Mn{sub 2}BO{sub 4} single crystal
Energy Technology Data Exchange (ETDEWEB)
Kazak, N.V., E-mail: nat@iph.krasn.ru [L.V. Kirensky Institute of Physics, SB of RAS, Academgorodok 50/38, 660036 Krasnoyarsk (Russian Federation); Platunov, M.S. [L.V. Kirensky Institute of Physics, SB of RAS, Academgorodok 50/38, 660036 Krasnoyarsk (Russian Federation); Knyazev, Yu.V.; Ivanova, N.B. [Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Bayukov, O.A. [L.V. Kirensky Institute of Physics, SB of RAS, Academgorodok 50/38, 660036 Krasnoyarsk (Russian Federation); Vasiliev, A.D. [L.V. Kirensky Institute of Physics, SB of RAS, Academgorodok 50/38, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Bezmaternykh, L.N. [L.V. Kirensky Institute of Physics, SB of RAS, Academgorodok 50/38, 660036 Krasnoyarsk (Russian Federation); Nizhankovskii, V.I. [International Laboratory of High Magnetic Fields and Low Temperatures, PL-53421 Wroclaw (Poland); Gavrilkin, S.Yu. [P.N. Lebedev Physical Institute of RAS, 119991 Moscow (Russian Federation); Lamonova, K.V. [O.O. Galkin Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Ovchinnikov, S.G. [L.V. Kirensky Institute of Physics, SB of RAS, Academgorodok 50/38, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Siberian State Aerospace University, 660014 Krasnoyarsk (Russian Federation)
2015-11-01
The Mn{sub 2}BO{sub 4} single crystals have been grown by the flux technique. A careful study of the crystal structure and magnetic properties have been carried out. The antiferromagnetic transition at T{sub N}=26 K has been traced through the dc magnetization and specific heat temperature dependences. Magnetic uniaxial anisotropy has been found with easy axis magnetization lying in the ab-plane. The obtained value of effective magnetic moment is assigned to the non-quenched orbital moment of Jahn–Teller Mn{sup 3+} ions. The discussion of magnetic properties is based on the superexchange interaction calculations. - Highlights: • Single-crystalline samples of Mn{sub 2}BO{sub 4} of high quality were grown. The charge ordering oftype Mn{sup 2+}(1)-Mn{sup 3+}(2) was found. • The intrinsic antiferromagnetic transition at T{sub N}=26 K was observed through the magnetization and specific heat measurements. • An uniaxial magnetic anisotropy with easy axis of magnetization lying in ab-plane was found. • The superexchange interactions were calculated and the magnetic frustration was found.
Belevtsev, B. I.; Dalakova, N. V.; Savitsky, V. N.; Panfilov, A. S.; Braude, I. S.; Bondarenko, A. V.
2004-05-01
Resistive measurements were made to study the magnetic field-induced antiferromagnetic (AF)—weak ferromagnetic (WF) transition in the La2CuO4 single crystal. The magnetic field (dc or pulsed) was applied normally to the CuO2 layers. The transition manifested itself in a drastic decrease of the resistance in critical fields of 5-7 T. The study is the first to display the effect of the AF-WF transition on the conductivity of the La2CuO4 single crystal in the direction parallel to the CuO2 layers. The results provide support for the three-dimensional nature of the hopping conduction of this layered oxide.
Belevtsev, B I; Panfilov, A S; Braude, I S; Bondarenko, A V
2003-01-01
The results on anisotropy of hopping conductivity (5-295 K) and magnetoresistance (MR) (5-55 K) of La sub 2 CuO sub 4 sub + sub d antiferromagnetic single crystals with T sub N approx 188 K are reported. The resistance was measured by the Montgomery technique for different combinations of transport current and magnetic field directions with respect to the crystallographic axes. In the case where the field and transport current were parallel to the CuO sub 2 layers, a transition (at T approx 20 K) from negative MR to positive MR was detected with a rise of temperature. In the fields perpendicular to the CuO sub 2 layers, only negative MR was observed. The nature of the positive MR is discussed. It is shown that the effect is more likely attributable to the orbital motion of charge carriers rather than to the interaction of their spins with the magnetic surroundings. The correlation is found between the value, magnetic-field and temperature behavior of the positive MR and the known Shklovsky-Efros model based o...
Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO
Pereira, Lino Miguel da Costa; Correia, João Guilherme; Van Bael, M J; Temst, Kristiaan; Vantomme, André; Araújo, João Pedro
2013-01-01
As the intrinsic origin of the high temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn$_{1−x}$Fe$_{x}$O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900$^{\\circ}$C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn substitutional sites behave as localized paramagnetic moments down to 2$^{\\circ}$K, irrespective of the Fe concentration and the density...
Kaczorowski, D.; Pikul, A. P.; Gnida, D.; Tran, V. H.
2009-07-01
Single crystals of Ce2PdIn8 were studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements. The compound was found to be a heavy fermion clean-limit superconductor with Tc=0.68K. Most remarkably, the superconductivity in this system emerges out of the antiferromagnetic state that sets in at TN=10K, and both cooperative phenomena coexist in a bulk at ambient pressure conditions.
Kaczorowski, D.; Pikul, A. P.; Gnida, D.; Tran, V. H.
2009-01-01
Single crystals of Ce2PdIn8 were studied by means of magnetic susceptibility, electrical resistivity and specific heat measurements. The compound was found to be a heavy fermion clean-limit superconductor with Tc = 0.68 K. Most remarkably, the superconductivity in this system emerges out of the antiferromagnetic state that sets in at TN = 10 K, and both cooperative phenomena coexist in a bulk at ambient pressure conditions.
DEFF Research Database (Denmark)
Brecht, E.; Casalta, H.; Schleger, P.;
1994-01-01
In YBa2Cu3-AlxO6+delta single crystals antiferromagnetic AFII ordering has been observed below 18 K by neutron diffraction. The transition temperature T-2 to the AFI ordering increases with x and delta.......In YBa2Cu3-AlxO6+delta single crystals antiferromagnetic AFII ordering has been observed below 18 K by neutron diffraction. The transition temperature T-2 to the AFI ordering increases with x and delta....
Antiferromagnetic resonance in charge ordering state of Pr0.5Ca0.5MnO3-δ single crystal
International Nuclear Information System (INIS)
An antiferromagnetic resonance (AFMR) is observed in the charge ordered antiferromagnetic phase of Pr0.5Ca0.5MnO3-δ single crystal for the first time. Above the Neel temperature, TN=173 K, a paramagnetic resonance with g=2.0 is observed. There is no significant change of the resonance spectra at the charge ordering transition temperature, TCO=242 K. Below TN, a branch of AFMR is found. Since the resonance field of this mode increases linearly as the frequency is decreased, this branch is assigned as the spin-flop mode. Below 60 K, the critical fields, BC, evaluated as the extrapolation of this mode to zero frequency agree well with the insulator-metal transition fields, BCO, at which the melting of the charge-ordering phase occurs. Present results indicate that the temperature dependence of BCO is affected by the temperature dependence of BC
Antiferromagnetic resonance in charge ordering state of Pr 0.5Ca 0.5MnO 3- δ single crystal
Kawamata, S.; Noguchi, S.; Okuda, K.; Nojiri, H.; Motokawa, M.
2001-05-01
An antiferromagnetic resonance (AFMR) is observed in the charge ordered antiferromagnetic phase of Pr 0.5Ca 0.5MnO 3- δ single crystal for the first time. Above the Néel temperature, TN=173 K, a paramagnetic resonance with g=2.0 is observed. There is no significant change of the resonance spectra at the charge ordering transition temperature, TCO=242 K. Below TN, a branch of AFMR is found. Since the resonance field of this mode increases linearly as the frequency is decreased, this branch is assigned as the spin-flop mode. Below 60 K, the critical fields, BC, evaluated as the extrapolation of this mode to zero frequency agree well with the insulator-metal transition fields, BCO, at which the melting of the charge-ordering phase occurs. Present results indicate that the temperature dependence of BCO is affected by the temperature dependence of BC.
DEFF Research Database (Denmark)
Jin, Zuanming; Mics, Zoltán; Ma, Guohong;
2013-01-01
We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively...... by the magnetic field component of the THz pulse. The intrinsic dielectric anisotropy of YFeO3 in the THz range allows for coherent control of both the amplitude and the phase of the excited spin wave. The coherent control is based on simultaneous generation of two interfering phase-shifted spin waves whose...... amplitudes and relative phase, dictated by the dielectric anisotropy of the YFeO3 crystal, can be controlled by varying the polarization of the incident THz pulse with respect to the crystal axes. The spatially anisotropic decay of the THz-excited FM spin resonance in YFeO3, leading to an increasingly linear...
Energy Technology Data Exchange (ETDEWEB)
Adelnia, Fatemeh [Dipartimento di Fisica, Università degli Studi di Milano and INSTM, I-20133 Milano (Italy); Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, I-27100 Pavia (Italy); Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, I-43124 Parma (Italy); Ghirri, Alberto; Candini, Andrea [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Cervetti, Christian [Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Evangelisti, Marco [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Affronte, Marco [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Sheikin, Ilya [Grenoble High Magnetic Field Laboratory, CNRS-LNCMI, 25, B.P. 166, 38042 Grenoble Cedex 9 (France); Winpenny, Richard; Timco, Grigore [The Lewis Magnetism Laboratory, The University of Manchester, M13 9PL Manchester (United Kingdom); Borsa, Ferdinando [Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, I-27100 Pavia (Italy); and others
2015-12-28
A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr{sub 8}Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ{sub 0}H{sub c1} = 2.15 T is found to be an almost true LC while the second LC at μ{sub 0}H{sub c2} = 6.95 T has an anti-crossing gap of Δ{sub 12} = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ{sub 0}H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ∼ 10{sup 10} rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.
Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers
International Nuclear Information System (INIS)
The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)
Ferromagnetic response of a ``high-temperature'' quantum antiferromagnet
Wang, Xin
2014-03-01
We study the antiferromagnetic phase of the ionic Hubbard model at finite temperature using dynamical mean-field theory. We find that the ionic potential plays a dual role in determining the antiferromagnetic order. A small ionic potential (compared to the Hubbard repulsion) increases the super-exchange coupling, thereby implying an increase of the Neel temperature of the system, which should facilitate observation of antiferromagnetic ordering experimentally. On the other hand, for large ionic potential, the antiferromagnetic ordering is killed and the system becomes a charge density wave with electron occupancies alternating between 0 and 2. This novel way of degrading antiferromagnetism leads to spin polarization of the low energy single particle density of states. The dynamic response of the system thus mimics ferromagnetic behavior, although the system is still an antiferromagnet in terms of the static spin order. Work done in collaboration with Rajdeep Sensarma and Sankar Das Sarma, and supported by NSF-JQI-PFC, AFOSR MURI, and ARO MURI.
Antiferromagnetic spin-orbitronics
Manchon, Aurelien
2015-05-01
Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.
Nanoparticles of antiferromagnetic materials
DEFF Research Database (Denmark)
Madsen, Daniel Esmarch
2008-01-01
I denne Ph.D. afhandling studeres forskellige egenskaber ved antiferromagnetiske nanopartikler. I en ideel antiferromagnet er spinnene orienteret således at der ikke er et resulterende magnetisk moment. I nanopartikler af antiferromagnetiske materialer er denne kompensation på grund af forskellig...
Antiferromagnetic crystalline topological insulators
LIU, CHAO-XING
2013-01-01
The gapless surface Dirac cone of time reversal invariant topological insulators is protected by time reversal symmetry due to the Kramers' theorem. Spin degree of freedom is usually required since Kramers' theorem only guarantees double degeneracy for spinful fermions, but not for spinless fermions. In this paper, we present an antiferromagnetic spinless model, which breaks time reversal symmetry. Similar to time reversal invariant topological insulators, this model possesses a topologically...
Bose-Einstein condensation in antiferromagnets at low temperatures
International Nuclear Information System (INIS)
The Bose-Einstein condensation (BEC) was predicted by Einstein in 1925 and this effect is characterized by the formation of a collective quantum state, when macroscopic number of particles is governed by a single wave function. The BEC of magnons was discovered experimentally in superfluid phase of 3He. In the present work we report our progress on the BEC of magnons investigations in solid antiferromagnets at low temperatures by magnetic resonance methods. The duration of the FID signal in two samples of easy-plane antiferromagnets CsMnF3 has been studied. Obtained data confirm the formation of magnon BEC in antiferromagnet CsMnF3
Antiferromagnetic spin Seebeck effect.
Energy Technology Data Exchange (ETDEWEB)
Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-03
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.
Spin waves in antiferromagnetic FeF2
DEFF Research Database (Denmark)
Hutchings, M T; Rainford, B.D.; Guggenheim, H J
1970-01-01
Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...
Classical and quantum anisotropic Heisenberg antiferromagnets
Directory of Open Access Journals (Sweden)
W. Selke
2009-01-01
Full Text Available We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and quartic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid and biconical (corresponding, in the quantum lattice gas description, to supersolid phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.
Spin structures in antiferromagnetic nanoparticles
DEFF Research Database (Denmark)
Brok, Erik
In this thesis magnetic structures of antiferromagnetic nanoparticles are studied as a function of particle size and aggregation. In nanoparticles the magnetic structure can be different from that of the corresponding bulk system due to the following reasons: a) a significant surface contribution...... a detailed knowledge of it can be important for applications of antiferromagnetic nanoparticles for example combined with ferromagnetic nanoparticles in nanocomposite devices. In this thesis the magnetic structure, in particular the orientation of the spins in the antiferromagnetic sublattices......, is investigated in systems of magnetic nanoparticles using a variety of experimental techniques. The spin structure in systems with spin canting, due to magnetic atoms in low symmetry surroundings, is studied in a theoretical model that is able to quantitatively explain observations of anomalous temperature...
Antiferromagnetism in chromium alloy single crystals
DEFF Research Database (Denmark)
Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.
1965-01-01
that, above a certain concentration, the oscillatory magnetization becomes commensurate with the lattice. The resistivity and thermoelectric power have also been studied as a function of temperature between 4.2°K and 450°K. Pronounced anomalies were observed in the transport properties just below the...... Néel temperatute, and these are interpreted in terms of the magnitude and position of the magnetic superzone energy gaps and the change in magnetic disorder scattering....
Thermoinduced magnetization in nanoparticles of antiferromagnetic materials
DEFF Research Database (Denmark)
Mørup, Steen; Frandsen, Cathrine
2004-01-01
We show that there is a thermoinduced contribution to the magnetic moment of nanoparticles of antiferromagnetic materials. It arises from thermal excitations of the uniform spin-precession mode, and it has the unusual property that its magnitude increases with increasing temperature. This has...... the consequence that antiferromagnetism is nonexistent in nanoparticles at finite temperatures and it explains magnetic anomalies, which recently have been reported in a number of studies of nanoparticles of antiferromagnetic materials....
Electric voltage generation by antiferromagnetic dynamics
Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo
2016-05-01
We theoretically demonstrate dc and ac electric voltage generation due to spin motive forces originating from domain wall motion and magnetic resonance, respectively, in two-sublattice antiferromagnets. Our theory accounts for the canting between the sublattice magnetizations, the nonadiabatic electron spin dynamics, and the Rashba spin-orbit coupling, with the intersublattice electron dynamics treated as a perturbation. This work suggests a way to observe and explore the dynamics of antiferromagnetic textures by electrical means, an important aspect in the emerging field of antiferromagnetic spintronics, where both manipulation and detection of antiferromagnets are needed.
Spontaneous pattern formation in an anti-ferromagnetic quantum gas
Kronjäger, Jochen; Becker, Christoph; Soltan-Panahi, Parvis; Bongs, Kai; Sengstock, Klaus
2009-01-01
Spontaneous pattern formation is a phenomenon ubiquitous in nature, examples ranging from Rayleigh-Benard convection to the emergence of complex organisms from a single cell. In physical systems, pattern formation is generally associated with the spontaneous breaking of translation symmetry and is closely related to other symmetry-breaking phenomena, of which (anti-)ferromagnetism is a prominent example. Indeed, magnetic pattern formation has been studied extensively in both solid-state mater...
DEFF Research Database (Denmark)
Brecht, E.; Schmahl, W.W.; Fuess, H.;
1995-01-01
-doped single crystals show two magnetic transitions, the first between the paramagnetic state and the AFI phase, and a second transition at low temperatures between the AFI and the AFII phase. The Neel temperature T-N of the antiferromagnetic AFI phase is found to be insensitive to the Al content x as well as...... the O content 6+delta in the x-delta region investigated so far. In a limited temperature interval the order parameter shows the components of both the AFI and AFII phases indicating competing interactions. For some crystals a complete reordering to the AFII phase at 4.2 K can be observed. Although...... the antiferromagnetic ordering pattern is different for the AFI and AFII phase, the ordered moments on the Cu sites are within the experimental error ([S](Cu(2)) approximate to 0.56 mu(B), [S](Cu(1)) approximate to 0 mu(B)) identical in the two phases. Comparison of Al-doped crystals with pure...
Institute of Scientific and Technical Information of China (English)
Hu Jing-Guo; Stamps R L
2006-01-01
The rotational anisotropies in the exchange bias structures of ferromagnetism/antiferromagnetism 1/antiferromagnetism 2 are studied in this paper. Based on the model, in which the antiferromagnetism is treated with an Ising mean field theory and the rotational anisotropy is assumed to be related to the field created by the moment induced on the antiferromagnetic layer next to the ferromagnetic layer, we can explain why in experiments for ferromagnetism (FM)/antiferromagntism 1 (AFM1)/antiferromagnetism 2 (AFM2) systems the thickness-dependent rotational anisotropy value is non-monotonic, i.e. it reaches a minimum for this system at a specific thickness of the first antiferromagnetic layer and exhibits oscillatory behaviour. In addition, we find that the temperature-dependent rotational anisotropy value is in good agreement with the experimental result.
International Nuclear Information System (INIS)
Magnetic correlations in all four phases of pure and doped vanadium sesquioxide (V2O3) have been examined by magnetic thermal-neutron scattering. Specifically, we have studied the antiferromagnetic and paramagnetic phases of metallic V2-yO3, the antiferromagnetic insulating and paramagnetic metallic phases of stoichiometric V2O3, and the antiferromagnetic and paramagnetic phases of insulating V1.944Cr0.056O3. While the antiferromagnetic insulator can be accounted for by a localized Heisenberg spin model, the long-range order in the antiferromagnetic metal is an incommensurate spin-density wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations with a open-quotes single lobeclose quotes spectrum in the Stoner electron-hole continuum. Furthermore, our results in metallic V2O3 represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the self-consistent renormalization theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for ℎωBT in the paramagnetic insulator carry substantial magnetic spectral weight. However, they are extremely short-ranged, extending only to the nearest neighbors. The phase transition to the antiferromagnetic insulator, from the paramagnetic metal and the paramagnetic insulator, introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short-range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate d orbitals at the Fermi level in V2O3. copyright 1998 The American Physical Society
Dynamic rotor mode in antiferromagnetic nanoparticles
DEFF Research Database (Denmark)
Lefmann, Kim; Jacobsen, H.; Garde, J.;
2015-01-01
We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...
Characterization of the Dilute Ising Antiferromagnet
Energy Technology Data Exchange (ETDEWEB)
Wiener, T.
2000-09-12
A spin glass is a magnetic ground state in which ferromagnetic and antiferromagnetic exchange interactions compete, thereby creating frustration and a multidegenerate state with no long range order. An Ising system is a system where the spins are constrained to lie parallel or antiparallel to a primary axis. There has been much theoretical interest in the past ten years in the effects of applying a magnetic field transverse to the primary axis in an Ising spin glass at low temperatures and thus study phase transitions at the T=0 limit. The focus of this study is to search for and characterize a new Ising spin glass system. This is accomplished by site diluting yttrium for terbium in the crystalline material TbNi{sub 2}Ge{sub 2}. The first part of this work gives a brief overview of the physics of rare earth magnetism and an overview of experimental characteristics of spin glasses. This is followed by the methodology used to manufacture the large single crystals used in this study, as well as the measurement techniques used. Next, a summary of the results of magnetic measurements on across the dilution series from pure terbium to pure yttrium is presented. This is followed by detailed measurements on particular dilutions which demonstrate spin glass behavior. Pure TbNi{sub 2}Ge{sub 2} is an Ising antiferromagnet with a several distinct metamagnetic states below 17 K. As the terbium is alloyed with yttrium, these magnetic states are weakened in a consistent manner, as is seen in measurements of the transition temperatures and analysis of Curie-Weiss behavior at high temperature. At low concentrations of terbium, below 35%, long range order is no longer present and a spin-glass-like state emerges. This state is studied through various measurements, dc and ac susceptibility, resistivity, and specific heat. This magnetic behavior was then compared to that of other well characterized spin glasses. It is concluded that there is a region of concentration s for which a spin
Local Spin Correlations in Heisenberg Antiferromagnets
Weihong, Zheng; Oitmaa, J.
2000-01-01
We use linked cluster series expansion methods to estimate the values of various short distance correlation functions in $S=1/2$ Heisenberg antiferromagnets at T=0, for dimension $d=1,2,3$. The method incorporates the possibility of spontaneous symmetry breaking, which is manifest in $d=2,3$. The results are important in providing a test for approximate theories of the antiferromagnetic ground state.
Energy Technology Data Exchange (ETDEWEB)
Sharmin, S; Umegaki, I; Tanaka, H; Ono, T [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo 152-8551 (Japan); Tanaka, G; Nojiri, H [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Fujisawa, M [Development of Frontier Research and Technology, Meguro-ku, Tokyo 152-8551 (Japan); Matsumi, N; Tomoo, M [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Okubo, S; Ohta, H [Molecular Photoscience Research Center, Kobe University, Kobe 657-8501 (Japan); Sakurai, T, E-mail: sharmin@lee.phys.titech.ac.jp [Center for Supports to Research and Education Activities, Kobe University, Kobe 657-8501 (Japan)
2011-07-20
We have investigated the antiferromagnetic resonance modes of the kagome antiferromagnet Cs{sub 2}Cu{sub 3}SnF{sub 12} both theoretically and experimentally. High-field electron spin resonance experiments on single crystals were conducted in the ordered phase at different frequencies and temperatures with the external magnetic field parallel to the c axis. Considering three sublattices, we calculated the resonance modes for the motions of the sublattice magnetizations within the framework of the mean field approximation. It was found that the frequency-field diagram is in good agreement with the experimental results.
Constructing a magnetic handle for antiferromagnetic manganites
Glavic, Artur; Dixit, Hemant; Cooper, Valentino R.; Aczel, Adam A.
2016-04-01
An intrinsic property of antiferromagnetic materials is the compensation of the magnetic moments from the individual atoms that prohibits the direct interaction of the spin lattice with an external magnetic field. To overcome this limitation we have created artificial spin structures by heteroepitaxy between two bulk antiferromagnets SrMnO3 and NdMnO3. Here, we demonstrate that charge transfer at the interface results in the creation of thin ferromagnetic layers adjacent to A -type antiferromagnetism in thick NdMnO3 layers. A novel interference based neutron diffraction technique and polarized neutron reflectometry are used to confirm the presence of ferromagnetism in the SrMnO3 layers and to probe the relative alignment of antiferromagnetic spins induced by the coupling at the ferro- to antiferromagnet interface. A density functional theory analysis of the driving forces for the exchange reveals strong ferromagnetic interfacial coupling through quantifiable short range charge transfer. These results confirm a layer-by-layer control of magnetic arrangements that constitutes a promising step on a path towards isothermal magnetic control of antiferromagnetic arrangements as would be necessary in spin-based heterostructures like multiferroic devices.
Spinon dynamics in quantum integrable antiferromagnets
Vlijm, R.; Caux, J.-S.
2016-05-01
The excitations of the Heisenberg antiferromagnetic spin chain in zero field are known as spinons. As pairwise-created fractionalized excitations, spinons are important in the understanding of inelastic neutron scattering experiments in (quasi-)one-dimensional materials. In the present paper, we consider the real space-time dynamics of spinons originating from a local spin flip on the antiferromagnetic ground state of the (an)isotropic Heisenberg spin-1/2 model and the Babujan-Takhtajan spin-1 model. By utilizing algebraic Bethe ansatz methods at finite system size to compute the expectation value of the local magnetization and spin-spin correlations, spinons are visualized as propagating domain walls in the antiferromagnetic spin ordering with anisotropy dependent behavior. The spin-spin correlation after the spin flip displays a light cone, satisfying the Lieb-Robinson bound for the propagation of correlations at the spinon velocity.
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-04-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.
Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge
Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru
2016-06-01
The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.
A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction.
Park, B G; Wunderlich, J; Martí, X; Holý, V; Kurosaki, Y; Yamada, M; Yamamoto, H; Nishide, A; Hayakawa, J; Takahashi, H; Shick, A B; Jungwirth, T
2011-05-01
A spin valve is a microelectronic device in which high- and low-resistance states are realized by using both the charge and spin of carriers. Spin-valve structures used in modern hard-drive read heads and magnetic random access memoriescomprise two ferromagnetic electrodes whose relative magnetization orientations can be switched between parallel and antiparallel configurations, yielding the desired giant or tunnelling magnetoresistance effect. Here we demonstrate more than 100% spin-valve-like signal in a NiFe/IrMn/MgO/Pt stack with an antiferromagnet on one side and a non-magnetic metal on the other side of the tunnel barrier. Ferromagneticmoments in NiFe are reversed by external fields of approximately 50 mT or less, and the exchange-spring effect of NiFe on IrMn induces rotation of antiferromagnetic moments in IrMn, which is detected by the measured tunnelling anisotropic magnetoresistance. Our work demonstrates a spintronic element whose transport characteristics are governed by an antiferromagnet. It demonstrates that sensitivity to low magnetic fields can be combined with large, spin-orbit-coupling-induced magnetotransport anisotropy using a single magnetic electrode. The antiferromagnetic tunnelling anisotropic magnetoresistance provides a means to study magnetic characteristics of antiferromagnetic films by an electronic-transport measurement. PMID:21399629
Merodio, P.; Kalitsov, A.; Chshiev, M.; Velev, J.
2016-06-01
Based on model calculations, we predict a magnetoelectric tunneling electroresistance effect in multiferroic tunnel junctions consisting of ferromagnetic electrodes and magnetoelectric antiferromagnetic barriers. Switching of the antiferromagnetic order parameter in the barrier in applied electric field by means of the magnetoelectric coupling leads to a substantial change of the resistance of the junction. The effect is explained in terms of the switching of the orientations of local magnetizations at the barrier interfaces affecting the spin-dependent interface transmission probabilities. Magnetoelectric multiferroic materials with finite ferroelectric polarization exhibit an enhanced resistive change due to polarization-induced spin-dependent screening. These results suggest that devices with active barriers based on single-phase magnetoelectric antiferromagnets represent an alternative nonvolatile memory concept.
Pressure-induced antiferromagnetic transition and phase diagram in FeSe
International Nuclear Information System (INIS)
We report measurements of resistance and ac magnetic susceptibility on FeSe single crystals under high pressure up to 27.2 kbar. The structural phase transition is quickly suppressed with pressure, and the associated anomaly is not seen above ∼18 kbar. The superconducting transition temperature evolves nonmonotonically with pressure, showing a minimum at ∼12 kbar. We find another anomaly at 21.2 K at 11.6 kbar. This anomaly most likely corresponds to the antiferromagnetic phase transition found in μSR measurements. The antiferromagnetic and superconducting transition temperatures both increase with pressure up to ∼25 kbar and then level off. The width of the superconducting transition anomalously broadens in the pressure range where the antiferromagnetism coexists. (author)
The electronic structure of antiferromagnetic chromium
DEFF Research Database (Denmark)
Skriver, Hans Lomholt
1981-01-01
The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...
Magnetic Properties of Nanoparticles of Antiferromagnetic Materials
DEFF Research Database (Denmark)
Mørup, Steen; Frandsen, Cathrine; Bødker, Franz;
2003-01-01
The magnetic properties of antiferromagnetic nanoparticles have been studied by Mossbauer spectroscopy and neutron scattering. Temperature series of Mossbauer spectra of non-interacting, superparamagnetic hematite nanoparticles were fitted by use of the Blume-Tjon relaxation model. It has been...
Skyrmions in square-lattice antiferromagnets
Keesman, Rick; Raaijmakers, Mark; Baerends, A. E.; Barkema, G. T.; Duine, R. A.
2016-08-01
The ground states of square-lattice two-dimensional antiferromagnets with anisotropy in an external magnetic field are determined using Monte Carlo simulations and compared to theoretical analysis. We find a phase in between the spin-flop and spiral phase that shows strong similarity to skyrmions in ferromagnetic thin films. We show that this phase arises as a result of the competition between Zeeman and Dzyaloshinskii-Moriya interaction energies of the magnetic system. Moreover, we find that isolated (anti-)skyrmions are stabilized in finite-sized systems, even at higher temperatures. The existence of thermodynamically stable skyrmions in square-lattice antiferromagnets provides an appealing alternative over skyrmions in ferromagnets as data carriers.
Antiferromagnetic exchange mechanism of superconductivity in cuprates
Plakida, N M
2001-01-01
One examines theory of superconducting coupling resulted from antiferromagnetic exchange in terms of which one explains strong dependence of T sub c superconducting transition temperature on alpha lattice constant. Calculations are based on the Hubbard p-d two-region model within strong correlation limit. DELTA pd excitation high energy at antiferromagnetic exchange of two particles from different Hubbard subregions results in suppression o delay effects and in coupling of all particles in conductivity subregion with Fermi energy E sub F >= DELTA pd : T sub c approx = E sub F exp(-1/lambda), where lambda propor to J. T sub c (alpha) and isotopic effect are explained by J exchange interaction dependence on alpha and on zero oscillations of oxygen ions
Terahertz Antiferromagnetic Spin Hall Nano-Oscillator
Cheng, Ran; Xiao, Di; Brataas, Arne
2016-05-01
We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators.
Diffusive magnonic spin transport in antiferromagnetic insulators
Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.
2016-02-01
It has been shown recently that a layer of the antiferromagnetic insulator (AFI) NiO can be used to transport spin current between a ferromagnet (FM) and a nonmagnetic metal (NM). In the experiments one uses the microwave-driven ferromagnetic resonance in a FM layer to produce a spin pumped spin current that flows through an AFI layer and reaches a NM layer where it is converted into a charge current by means of the inverse spin Hall effect. Here we present a theory for the spin transport in an AFI that relies on the spin current carried by the diffusion of thermal antiferromagnetic magnons. The theory explains quite well the measured dependence of the voltage in the NM layer on the thickness of the NiO layer.
Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets
Institute of Scientific and Technical Information of China (English)
HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong
2001-01-01
The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.
Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets
Institute of Scientific and Technical Information of China (English)
HUHui; LURong; 等
2001-01-01
The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.
Dynamic rotor mode in antiferromagnetic nanoparticles
Lefmann, K.; Jacobsen, H.; Garde, J; Hedegard, P.; Wischnewski, Andreas; Ancona, S.N.; Jacobsen, H. S.; Bahl, C R H; Theil Kuhn, L.
2015-01-01
We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic sign...
Transformation of spin current by antiferromagnetic insulators
Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasil S.; Slavin, Andrei N.; Ivanov, Boris A.
2015-01-01
It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can effectively conduct spin current by excitation of a pair of evanescent AFM spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and the AFM lattice, and, depending on the excitation conditions, can be either attenuated or enhanced. When the phase difference between the excited evanescent modes is close to $\\pi/2$,...
Tricritical behavior of the frustrated XY antiferromagnet
Plumer, M. L.; Mailhot, A.; Caillé, A.
1994-01-01
Extensive histogram Monte-Carlo simulations of the XY antiferromagnet on a stacked triangular lattice reveal exponent estimates which strongly favor a scenario of mean-field tricritical behavior for the spin-order transition. The corresponding chiral-order transition occurs at the same temperature but appears to be decoupled from the spin-order. These results are relevant to a wide class of frustrated systems with planar-type order and serve to resolve a long-standing controversy regarding th...
Barlowite as a canted antiferromagnet: Theory and experiment
Jeschke, Harald O.; Salvat-Pujol, Francesc; Gati, Elena; Hoang, Nguyen Hieu; Wolf, Bernd; Lang, Michael; Schlueter, John A.; Valentí, Roser
2015-09-01
We investigate the structural, electronic, and magnetic properties of the newly synthesized mineral barlowite Cu4(OH) 6FBr which contains Cu2 + ions in a perfect kagome arrangement. In contrast to the spin-liquid candidate herbertsmithite ZnCu3(OH)6Cl 2, kagome layers in barlowite are perfectly aligned due to the different bonding environments adopted by F- and Br- compared to Cl-. With the synthesis of this material we unveil a design strategy for layered kagome systems with possible exotic magnetic states. Density functional theory calculations and effective model considerations for Cu4(OH) 6FBr , which has a Cu2 + site coupling the kagome layers, predict a three-dimensional network of exchange couplings, which together with a substantial Dzyaloshinskii-Moriya coupling lead to canted antiferromagnetic ordering of this compound in excellent agreement with magnetic susceptibility measurements on single crystals yielding TN=15 K .
Spinor dynamics in an antiferromagnetic spin-1 thermal Bose gas
Pechkis, Hyewon K; Schwettmann, Arne; Griffin, Paul F; Barnett, Ryan; Tiesinga, Eite; Lett, Paul D
2013-01-01
We present experimental observations of coherent spin-population oscillations in a cold thermal, Bose gas of spin-1 sodium-23 atoms. The population oscillations in a multi-spatial-mode thermal gas have the same behavior as those observed in a single-spatial-mode antiferromagnetic spinor Bose Einstein condensate. We demonstrate this by showing that the two situations are described by the same dynamical equations, with a factor of two change in the spin-dependent interaction coefficient, which results from the change to particles with distinguishable momentum states in the thermal gas. We compare this theory to the measured spin population evolution after times up to a few hundreds of ms, finding quantitative agreement with the amplitude and period. We also measure the damping time of the oscillations as a function of magnetic field.
Magnetocaloric properties of a frustrated Blume-Capel antiferromagnet
Directory of Open Access Journals (Sweden)
Žukovič Milan
2014-07-01
Full Text Available Low-temperature magnetization processes and magnetocaloric properties of a geometrically frustrated spin-1 Blume-Capel model on a triangular lattice are studied by Monte Carlo simulations. The model is found to display qualitatively different behavior depending on the sign of the single-ion anisotropy D. For positive values of D we observe two magnetization plateaus, similar to the spin-1/2 Ising antiferromagnet, and negative isothermal entropy changes for any field intensity. For a range of small negative values of D there are four magnetization plateaus and the entropy changes can be either negative or positive, depending on the field. If D is negative but large in absolute value then the entropy changes are solely positive.
New heavy-fermion antiferromagnet UPd2Cd20
Hirose, Yusuke; Doto, Hiroshi; Honda, Fuminori; Li, Dexin; Aoki, Dai; Haga, Yoshinori; Settai, Rikio
2016-10-01
We succeeded in growing a new high quality single crystal of a ternary uranium compound UPd2Cd20. From the electrical resistivity, magnetization, magnetic susceptibility, and specific heat experiments, UPd2Cd20 is found to be an antiferromagnetic heavy-fermion compound with the Néel temperature {{T}\\text{N}} = 5 K and exhibits the large electronic specific heat coefficient γ exceeding 500 mJ (K2· mol)-1. This compound is the first one that exhibits the magnetic ordering with the magnetic moments of the U atom in a series of UT2X20 (T: transition metal, X = Al, Zn, Cd). UPd2Cd20 shows typical characteristic features in heavy-fermion systems such as a broad maximum in the magnetic susceptibility at {{T}{{χ\\text{max}}}} and a large coefficient A of T 2 term in the resistivity.
Jiang, Shan; Liu, Lian; Schütt, Michael; Hallas, Alannah M.; Shen, Bing; Tian, Wei; Emmanouilidou, Eve; Shi, Aoshuang; Luke, Graeme M.; Uemura, Yasutomo J.; Fernandes, Rafael M.; Ni, Ni
2016-05-01
We report the transport, thermodynamic, muon spin relaxation, and neutron study of the Ca0.74 (1 )La0.26 (1 ) (Fe1 -xCox )As2 single crystals, mapping out the temperature-doping level phase diagram. Upon Co substitution on the Fe site, the structural and magnetic phase transitions in this 112 compound are suppressed and superconductivity up to 20 K occurs. Our measurements of the superconducting and magnetic volume fractions show that these two phases coexist microscopically in the underdoped region, in contrast to the related Ca10(Pt3As8 )((Fe1 -xPtx )2As2 )5 (10-3-8) compound, where coexistence is absent. Supported by model calculations, we discuss the differences in the phase diagrams of the 112 and 10-3-8 compounds in terms of the FeAs interlayer coupling, whose strength is affected by the character of the spacer layer, which is metallic in the 112 compound and insulating in the 10-3-8 compound.
Room temperature spin-polarizations of Mn-based antiferromagnetic nanoelectrodes
Energy Technology Data Exchange (ETDEWEB)
Yamada, Toyo Kazu, E-mail: toyoyamada@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Chiba (Japan); Vazquez de Parga, Amadeo L. [Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia and Dep. Fisica de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2014-11-03
Antiferromagnets produce no stray field, and therefore, a tip electrode made of antiferromagnetic material has been considered to be the most suitable choice to measure such as magnetoresistance (MR) through single isolated magnetic nanoparticles, molecules, and ultrathin films. Spin polarizations (P) of antiferromagnetic 3-nm, 6-nm, and annealed 3-nm Mn films grown on W tips with a bcc(110) apex as well as bulk-NiMn tips were obtained at 300 K by measuring MR in ultrahigh vacuum by means of spin-polarized scanning tunneling microscopy using a layerwise antiferromagnetically stacking bct-Mn(001) film electrode. The Mn-coated tips with coverages of 3 and 6 nm exhibited P values of 1 ± 1% and 3 ± 2%, respectively, which tips likely contain α- or strained Mn. With a thermal assist, the crystalline quality and the magnetic stability of the film could increase. The annealed tip exhibited P = 9 ± 2%. The bulk-NiMn tips exhibit spin polarizations of 0 or 6 ± 2% probably depending on the chemical species (Mn or Ni) present at the apex of the tip. Fe-coated W tips were used to estimate the bct-Mn(001) film spin polarization.
Room temperature write-read operations in antiferromagnetic memory
Moriyama, Takahiro; Matsuzaki, Noriko; Kim, Kab-Jin; Suzuki, Ippei; Taniyama, Tomoyasu; Ono, Teruo
2015-01-01
B2-ordered FeRh has been known to exhibit antiferromagnetic-ferromagnetic (AF-F) phase transitions in the vicinity of room temperature. Manipulation of the N\\'eel order via AF-F phase transition and recent experimental observation of the anisotropic magnetoresistance in antiferromagnetic FeRh has proven that FeRh is a promising candidate for antiferromagnetic memory material. In this work, we demonstrate sequential write and read operations in antiferromagnetic memory resistors made of B2-ord...
Half-Quantum Vortices in an Antiferromagnetic Spinor Bose-Einstein Condensate.
Seo, Sang Won; Kang, Seji; Kwon, Woo Jin; Shin, Yong-il
2015-07-01
We report on the observation of half-quantum vortices (HQVs) in the easy-plane polar phase of an antiferromagnetic spinor Bose-Einstein condensate. Using in situ magnetization-sensitive imaging, we observe that pairs of HQVs with opposite core magnetization are generated when singly charged quantum vortices are injected into the condensate. The dynamics of HQV pair formation is characterized by measuring the temporal evolutions of the pair separation distance and the core magnetization, which reveals the short-range nature of the repulsive interactions between the HQVs. We find that spin fluctuations arising from thermal population of transverse magnon excitations do not significantly affect the HQV pair formation dynamics. Our results demonstrate the instability of a singly charged vortex in the antiferromagnetic spinor condensate. PMID:26182102
Gu, Bo; Su, Gang; Gao, Song
2006-04-01
The magnetization process, the susceptibility, and the specific heat of the spin- 1/2 antiferromagnet (AF)-AF-ferromagnet (F) and F-F-AF trimerized quantum Heisenberg chains have been investigated by means of the transfer matrix renormalization group (TMRG) technique as well as the modified spin-wave (MSW) theory. A magnetization plateau at m=1/6 for both trimerized chains is observed at low temperature. The susceptibility and the specific heat show various behaviors for different ferromagnetic and antiferromagnetic interactions and in different magnetic fields. The TMRG results of susceptibility and the specific heat can be nicely fitted by a linear superposition of double two-level systems, where two fitting equations are proposed. Three branch excitations, one gapless excitation and two gapful excitations, for both systems are found within the MSW theory. It is observed that the MSW theory captures the main characteristics of the thermodynamic behaviors at low temperatures. The TMRG results are also compared with the possible experimental data.
Switching of antiferromagnetic chains with magnetic pulses
Tao, Kun; Polyakov, Oleg P.; Stepanyuk, Valeri S.
2016-04-01
Recent experimental studies have demonstrated the possibility of information storage in short antiferromagnetic chains on an insulator substrate [S. Loth et al., Science 335, 196 (2012), 10.1126/science.1214131]. Here, using the density functional theory and atomistic spin dynamics simulations, we show that a local magnetic control of such chains with a magnetic tip and magnetic pulses can be used for fast switching of their magnetization. Furthermore, by changing the position of the tip one can engineer the magnetization dynamics of the chains.
Antiferromagnetic noise correlations in optical lattices
DEFF Research Database (Denmark)
Bruun, Niels Bohr International Academy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark, Georg Morten; Syljuåsen, F. T.; Pedersen, K. G. L.;
2009-01-01
We analyze how noise correlations probed by time-of-flight experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional and three-dimensional optical lattices. Combining analytical and quantum Monte Carlo calculations using experimentally realistic parameters, we...... show that AF correlations can be detected for temperatures above and below the critical temperature for AF ordering. It is demonstrated that spin-resolved noise correlations yield important information about the spin ordering. Finally, we show how to extract the spin correlation length and the related...
Lattice distortion in disordered antiferromagnetic XY models
Institute of Scientific and Technical Information of China (English)
Li Peng-Fei; Cao Hai-Jing
2012-01-01
The behavior of lattice distortion in spin 1/2 antiferromagnetic XY models with random magnetic modulation is investigated with the consideration of spin-phonon coupling in the adiabatic limit.It is found that lattice distortion relies on the strength of the random modulation.For strong or weak enough spin-phonon couplings,the average lattice distortion may decrease or increase as the random modulation is strengthened.This may be the result of competition between the random magnetic modulation and the spin-phonon coupling.
Quantum phase transitions in antiferromagnets and superfluids
Sachdev, Subir; Vojta, Matthias
2000-05-01
We present a general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition. Basic results are reviewed in the context of experiments on the spin-ladder compounds, insulating two-dimensional antiferromagnets, and double-layer quantum Hall systems. Recent large N computations on an extended t- J model (Phys. Rev. Lett. 83 (1999) 3916) motivate a global scenario of the quantum phases and transitions in the high-temperature superconductors, and connections are made to numerous experiments.
Antiferromagnetic topological insulators in cold atomic gases
Essin, Andrew M.; Gurarie, Victor
2011-01-01
We propose a spin-dependent optical lattice potential that realizes a three-dimensional antiferromagnetic topological insulator in a gas of cold, two-state fermions such as alkaline earths, as well as a model that describes the tight-binding limit of this potential. We discuss the physically observable responses of the gas that can verify the presence of this phase. We also point out how this model can be used to obtain two-dimensional flat bands with nonzero Chern number.
No antiferromagnetic reordering at low temperature in pure YBa2Cu3O6+x
DEFF Research Database (Denmark)
Casalta, H.; Schleger, P.; Brecht, E.;
1994-01-01
Magnetic ordering has been investigated by neutron scattering on an YBa2Cu3O6+x single crystal with x=0.1 and x=0.18, and an Al doped YBa2(CU2.86Al0.14)O-6.25 crystal. For the undoped crystal an antiferromagnetic ordering transition (AFI) was observed at T-N=410 K and 368 K (respectively for x=0...
Antiferromagnetism in a 20% Ho-80% Tb alloy single crystal
DEFF Research Database (Denmark)
Lebech, Bente
1968-01-01
20% Ho-80% Tb exhibits two magnetic phases, similar to those of Tb. The spiral turn angle varies from 31.1° to 21.4°. A minimum effective spin for the occurrence of stable simple ferromagnetic structure at low temperatures is predicted.......20% Ho-80% Tb exhibits two magnetic phases, similar to those of Tb. The spiral turn angle varies from 31.1° to 21.4°. A minimum effective spin for the occurrence of stable simple ferromagnetic structure at low temperatures is predicted....
Experimental and theoretical studies of nanoparticles of antiferromagnetic materials
DEFF Research Database (Denmark)
Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine;
2007-01-01
The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles, the co...
Antiferromagnetism, crystal fields and hybridisation in UxY1-xPd3 studied by neutron scattering
DEFF Research Database (Denmark)
Bull, M.J.; McEwen, K.A.; Eccleston, R.S.;
1999-01-01
We summarise our UxY1-xPd3 inelastic neutron scattering experiments and present new neutron diffraction results for a single crystal of U0.45Y0.55Pd3. Long-range antiferromagnetic order is unambiguously observed below T-N = 22.5 K. in contrast, no long-range order is found in polycrystalline...
Directory of Open Access Journals (Sweden)
Takashi Yanagisawa
2015-01-01
Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.
Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.
2016-08-01
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.
Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes
Zhang, D. L.; Xu, X. G.; Wu, Y.; Li, X. Q.; Miao, J.; Jiang, Y.
2012-05-01
We study dual-synthetic antiferromagnets (DSyAFs) using Co2FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices.
DMRG studies of the frustrated kagome antiferromagnets and the application to volborthite
Gong, Shou-Shu; Sheng, D. N.; Yang, Kun
Motivated by the recent magnetization measurements on the high-quality single crystals of the kagome antiferromagnet volborthite, we study the ground state and magnetization properties of two kagome models proposed from the electronic structure simulations, which treat the volborthite as either the coupled trimers or the coupled frustrated chains on the kagome lattice. We study the models using density-matrix renormalization group on the cylinder geometry with the system width up to 4 legs. We find a quantum phase diagram of the models with changing couplings, and identify the magnetic properties of each phase. In the antiferromagnetic phases, we also study the magnetization curve and the different phases in the magnetic field. Finally, we compare the magetization properties of the models with the experimental observations of volborthite. NSF DMR-1157490, DMR-1408560, and the State of Florida.
Molecular orbital study on antiferromagnetic coupling mechanism in a silver (I) complex
Institute of Scientific and Technical Information of China (English)
ZHANG Guiqin; HUANG Jiangen; HUANG Yuanhe; FANG Decai; ZHANG Deqing
2005-01-01
The mechanism of antiferromagnetic coupling in an Ag (I) complex of nitronyl nitroxide is investigated by means of the broken-symmetry approach within the density functional method (DFT-BS). The magneto-structural correlation and the single-occupied molecular orbital (SOMO) analysis reveal the existence of the antiferromagnetic coupling pathway along nitronyl nitroxide units via Ag (I) ion, and that the Ag (I) ion plays an important bridge role. The spin population analysis also shows the existence of spin delocalization along the ONCNO-Ag-ONCNO chain. It is found that the non-typical covalent bonds with major ionic character between Ag (I) ions and oxygen atoms of nitronyl nitroxide units can be used to mediate the spin-spin interaction of nitronyl nitroxides.
Fragile antiferromagnetism in the heavy-fermion compound YbBiPt
Energy Technology Data Exchange (ETDEWEB)
Ueland, Benjamin G. [Ames Laboratory; Kreyssig, Andreas [Ames Laboratory; Prokes, K. [Helmholtz-Zentrum Berlin fur Materialien und Energie; Lynn, J. W. [NIST Center for Neutron Research; Harriger, L. W. [NIST Center for Neutron Research; Pratt, D. K. [NIST Center for Neutron Research; Singh, D. K. [NIST Center for Neutron Research; Heitmann, T. W. [University of Missouri; Sauerbrei, Samantha [Ames Laboratory; Saunders, Scott M. [Ames Laboratory; Mun, E. D. [Ames Laboratory; Budko, Serguei L. [Ames Laboratory; McQueeney, Robert J. [Ames Laboratory; Canfield, Paul C. [Ames Laboratory; Goldman, Alan I. [Ames Laboratory
2014-05-08
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, τAFM = (121212), and ordered moments that align along the [1 1 1] direction of the cubic unit cell. We describe the scattering in terms of a two-Gaussian peak fit, which consists of a narrower component that appears below TN≈0.4 K and corresponds to a magnetic correlation length of ξn≈ 80 Å, and a broad component that persists up to T*≈ 0.7 K and corresponds to antiferromagnetic correlations extending over ξb≈ 20 Å. Our results illustrate the fragile magnetic order present in YbBiPt and provide a path forward for microscopic investigations of the ground states and fluctuations associated with the purported quantum critical point in this heavy-fermion compound.
The antiferromagnetic cross-coupled spin ladder: Quantum fidelity and tensor networks approach
Chen, Xi-Hao; Cho, Sam Young; Zhou, Huan-Qiang; Batchelor, Murray T.
2016-05-01
We investigate the phase diagram of the cross-coupled Heisenberg spin ladder with antiferromagnetic couplings. For this model, the results for the existence of the columnar dimer phase, which was predicted on the basis of weak coupling field theory renormalization group arguments, have been conflicting. The numerical work on this model has been based on various approaches, including exact diagonalization, series expansions and density-matrix renormalization group calculations. Using the recently-developed tensor network states and groundstate fidelity approach for quantum spin ladders, we find no evidence for the existence of the columnar dimer phase. We also provide an argument based on the symmetry of the Hamiltonian, which suggests that the phase diagram for antiferromagnetic couplings consists of a single line separating the rung-singlet and the Haldane phases.
Transformation of spin current by antiferromagnetic insulators
Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasil S.; Slavin, Andrei N.; Ivanov, Boris A.
2016-06-01
It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can effectively conduct spin current through the excitation of a pair of evanescent AFM spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and the AFM lattice and, depending on the excitation conditions, can be either attenuated or enhanced. When the phase difference between the excited evanescent modes is close to π /2 , there is an optimum AFM thickness for which the output spin current reaches a maximum, which can significantly exceed the magnitude of the input spin current. The spin current transfer through the AFM depends on the ambient temperature and increases substantially when temperature approaches the Néel temperature of the AFM layer.
Dynamic rotor mode in antiferromagnetic nanoparticles
DEFF Research Database (Denmark)
Lefmann, Kim; Jacobsen, H.; Garde, J.;
2015-01-01
We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K....... However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all...... measured neutron data and reveal that thermally activated spin canting gives rise to an unusual type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The...
Spin dynamics in geometrically frustrated antiferromagnetic pyrochlores
Gardner, J. S.; Ehlers, G.; Bramwell, S. T.; Gaulin, B. D.
2004-03-01
We have studied the spin dynamics of several antiferromagnetic pyrochlore oxides. These magnets are geometrically frustrated and only reach their ground states at temperatures much lower than that expected from mean field theory. Here we present data on the magnetic nature, especially the spin dynamics of Tb2Ti2O7, Gd2Ti2O7 and Y2Mo2O7. In these systems the ground states are found to be very different. Y2Mo2O7 freezes completely into a spin glass-like state, Tb2Ti2O7 is a cooperative paramagnetic and remains dynamic down to 15 mK and Gd2Ti2O7 enters a unique partially ordered state at {\\sim }1 K.
Probing the evolution of antiferromagnetism in multiferroics
Energy Technology Data Exchange (ETDEWEB)
Holcomb, M.; Martin, L.; Scholl, A.; He, Q.; Yu, P.; Yang, C.-H.; Yang, S.; Glans, P.-A.; Valvidares, M.; Huijben, M.; Kortright, J.; Guo,, J.; Chu, Y.-H.; Ramesh, R.
2010-06-09
This study delineates the evolution of magnetic order in epitaxial films of the room-temperature multiferroic BiFeO3 system. Using angle- and temperature-dependent dichroic measurements and spectromicroscopy, we have observed that the antiferromagnetic order in the model multiferroic BiFeO3 evolves systematically as a function of thickness and strain. Lattice-mismatch-induced strain is found to break the easy-plane magnetic symmetry of the bulk and leads to an easy axis of magnetization which can be controlled through strain. Understanding the evolution of magnetic structure and how to manipulate the magnetism in this model multiferroic has significant implications for utilization of such magnetoelectric materials in future applications.
Ising antiferromagnet on the Archimedean lattices
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Landau model for the multiferroic delafossite antiferromagnets
Ribeiro, J. L.; Perez-Mato, J. M.; Vieira, L. G.
2016-10-01
A symmetry based framework is used to describe the complex phase diagrams observed in the multiferroic delafossite compounds. A free energy Landau functional is derived from the analysis of the transformation properties of the most general incommensurate magnetic spin order parameter. A principle of maximal symmetry is invoked and the stability of each of the different higher symmetry phases considered. The competition between different potential ground states is analysed within the scope of a simplified model, which emphasizes the role of the symmetry allowed phase dependent biquadratic couplings. The cross-over between the different competing states is also discussed. The results show that the diverse set of phase diagrams that are experimentally observed in this class of triangular lattice antiferromagnets and, in particular, the stabilization of magnetically induced ferroelectric states, can be well interpreted and described within this integrated phenomenological approximation.
A Holographic Model for Paramagnetism/antiferromagnetism Phase Transition
Cai, Rong-Gen
2014-01-01
In this paper we build a holographic model of paramagnetism/antiferromagnetism phase transition, which is realized by introducing two real antisymmetric tensor fields coupling to the background gauge field strength and interacting with each other in a dyonic black brane background. In the case without external magnetic field and in low temperatures, the magnetic moments condense spontaneously in antiparallel manner with the same magnitude, which leads to an antiferromagnetic phase. In the case with weak external magnetic field, the magnetic susceptibility density has a peak at the critical temperature and satisfies the Curie-Weiss law in the paramagnetic phase of antiferromagnetism.
Quantum fluctuations of the antiferro-antiferromagnetic double-layer
Institute of Scientific and Technical Information of China (English)
Jiang Wei; Zhu Cheng-Bo; Yu Gui-Hong; Lo Veng-Cheong
2009-01-01
This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature.It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists,there will be no acoustic energy branch in the system. The anisotropy constant,antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.
Nonlinear Absorption of Radio Waves in a Noncollinear Antiferromagnet
Tikhonov, Aleksey M.; Pavlov, Nikolay G.
2015-01-01
The nonlinear absorption of radio waves (200 - 800 MHz) in a noncollinear cubic antiferromagnet Mn3Al2Ge3O12 in an external magnetic field H || [001] has been studied in the temperature range of 1.2 - 4.2 K. We attribute the observed dissipation of the electromagnetic energy to the parametric excitation of inhomogeneous surface waves at the boundaries of antiferromagnetic domains.
Magnetic Behaviour of Antiferromagnetic Monolayer under an External Field
Institute of Scientific and Technical Information of China (English)
黄晨; 王怀玉; 王恩哥
2003-01-01
Magnetic behaviour of antiferromagnetic monolayer under external field is studied. This is the first time to calculate all components of spin statistical average of an antiferromagnetic system with the random-phase approximation. To do so, a method is developed by many-body Green's function theory. Magnetization and susceptibility are investigated when external field is applied in either the x- or z-direction. The results are compared with the ferromagnetic monolayer.
Room-temperature antiferromagnetic memory resistor
Marti, X.; Fina, I.; Frontera, C.; Liu, Jian; Wadley, P.; He, Q.; Paull, R. J.; Clarkson, J. D.; Kudrnovský, J.; Turek, I.; Kuneš, J.; Yi, D.; Chu, J.-H.; Nelson, C. T.; You, L.; Arenholz, E.; Salahuddin, S.; Fontcuberta, J.; Jungwirth, T.; Ramesh, R.
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Antiferromagnetic semiconductor LiMnAs
Energy Technology Data Exchange (ETDEWEB)
Novak, Vit; Jungwirth, Tomas; Cukr, Miroslav [Institute of Physics AS CR, Cukrovarnicka 10, Praha (Czech Republic); Svoboda, Stepan [Institute of Physics AS CR, Cukrovarnicka 10, Praha (Czech Republic); Charles University, Ke Karlovu 5, Praha (Czech Republic); Soban, Zbynek [Institute of Physics AS CR, Cukrovarnicka 10, Praha (Czech Republic); Czech Technical University, Technicka 2, Praha (Czech Republic); Marti, Xavier; Holy, Vaclav; Horodyska, Petra; Nemec, Petr [Charles University, Ke Karlovu 5, Praha (Czech Republic)
2011-07-01
LiMnAs belongs to the theoretically predicted class of I-Mn-V semiconductors with the antiferromagnetic ordering of Mn atoms. We report its first successful preparation in form of a thin film by molecular beam epitaxy. Structural properties of the material were examined in-situ by RHEED, and ex-situ by XPS and XRD, confirming the tetragonal crystal structure with its [100] direction oriented along the [110] direction of the InAs substrate. Transparency of LiMnAs in the spectral range of 870 to 1400 nm confirms the existence of an optical gap and indicates the band-gap energy above 1.4 eV. Magnetic properties measured by SQUID magnetometry show nearly compensated net magnetic moment in temperatures up to 400 K and magnetic fields up to 7 T, in a clear contrast to the ferromagnetic character of MnAs or to the paramagnetic behavior of the same amount of uncoupled Mn atoms.
Room-temperature antiferromagnetic memory resistor.
Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Horio, M; Adachi, T; Mori, Y; Takahashi, A; Yoshida, T; Suzuki, H; Ambolode, L C C; Okazaki, K; Ono, K; Kumigashira, H; Anzai, H; Arita, M; Namatame, H; Taniguchi, M; Ootsuki, D; Sawada, K; Takahashi, M; Mizokawa, T; Koike, Y; Fujimori, A
2016-01-01
In the hole-doped cuprates, a small number of carriers suppresses antiferromagnetism and induces superconductivity. In the electron-doped cuprates, on the other hand, superconductivity appears only in a narrow window of high-doped Ce concentration after reduction annealing, and strong antiferromagnetic correlation persists in the superconducting phase. Recently, Pr(1.3-x)La0.7Ce(x)CuO4 (PLCCO) bulk single crystals annealed by a protect annealing method showed a high critical temperature of around 27 K for small Ce content down to 0.05. Here, by angle-resolved photoemission spectroscopy measurements of PLCCO crystals, we observed a sharp quasi-particle peak on the entire Fermi surface without signature of an antiferromagnetic pseudogap unlike all the previous work, indicating a dramatic reduction of antiferromagnetic correlation length and/or of magnetic moments. The superconducting state was found to extend over a wide electron concentration range. The present results fundamentally challenge the long-standing picture on the electronic structure in the electron-doped regime.
On the influence of nanometer-thin antiferromagnetic surface layer on ferromagnetic CrO$_2$
Das, Pintu; Bajpai, Ashna; Ohno, Yuzo; Ohno, Hideo; Jens MÜLLER
2012-01-01
We present magnetic stray field measurements performed on a single micro-crystal of the half metallic ferromagnet CrO$_2$, covered by a naturally grown 2\\,-\\,5\\,nm surface layer of antiferromagnetic (AFM) Cr$_2$O$_3$. The temperature variation of the stray field of the micro-crystal measured by micro-Hall magnetometry shows an anomalous increase below $\\sim$\\,60\\,K. We find clear evidence that this behavior is due to the influence of the AFM surface layer, which could not be isolated in the c...
Cascade of field-induced magnetic transitions in a frustrated antiferromagnetic metal
Coldea, A. I.; Seabra, L.; McCollam, A.; Carrington, A.; Malone, L.; Bangura, A. F.; Vignolles, D.; van Rhee, P.G.; McDonald, R. D.; Sorgel, T.; Jansen, M.; Shannon, N; Coldea, R.
2014-01-01
Frustrated magnets can exhibit many novel forms of order when exposed to high magnetic fields, however, much less is known about materials where frustration occurs in the presence of itinerant electrons. Here we report thermodynamic and transport measurements on micron-sized single crystals of the triangular-lattice metallic antiferromagnet 2H-AgNiO2, in magnetic fields of up to 90 T and temperatures down to 0.35 K. We observe a cascade of magnetic phase transitions at 13.5 20, 28 and 39T in ...
Nematic antiferromagnetic states in bulk FeSe
Liu, Kai; Lu, Zhong-Yi; Xiang, Tao
2016-05-01
The existence of nematic order, which breaks the lattice rotational symmetry with nonequivalent a and b axes in iron-based superconductors, is a well-established experimental fact. An antiferromagnetic (AFM) transition is accompanying this order, observed in nearly all parent compounds, except bulk FeSe. The absence of the AFM order in FeSe casts doubt on the magnetic mechanism of iron-based superconductivity, since the nematic order is believed to be driven by the same interaction that is responsible for the superconducting pairing in these materials. Here we show, through systematic first-principles electronic structure calculations, that the ground state of FeSe is in fact strongly AFM correlated but without developing a magnetic long-range order. Actually, there are a series of staggered n -mer AFM states with corresponding energies below that of the single stripe AFM state, which is the ground state for the parent compounds of most iron-based superconductors. Here, the staggered n -mer (n any integer >1 ) means a set of n adjacent parallel spins on a line along the b axis with antiparallel spins between n -mers along both a and b axes. Moreover, different n -mers can antiparallelly mix with each other to coexist. Among all the states, we find that the lowest energy states formed by the staggered dimer, staggered trimer, and their random antiparallel aligned spin states along the b axis are quasidegenerate. The thermal average of these states does not show any magnetic long-range order, but it does possess a hidden one-dimensional AFM order along the a axis, which can be detected by elastic neutron scattering measurements. Our finding gives a natural account for the absence of long-range magnetic order and suggests that the nematicity is driven predominantly by spin fluctuations even in bulk FeSe, providing a unified description on the phase diagram of iron-based superconductors.
Magnetic phase diagrams of classical triangular and kagome antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Gvozdikova, M V [Department of Physics, Kharkov National University, 61077 Kharkov (Ukraine); Melchy, P-E; Zhitomirsky, M E, E-mail: mike.zhitomirsky@cea.fr [Service de Physique Statistique, Magnetisme et Supraconductivite, UMR-E9001 CEA-INAC/UJF, 17 rue des Martyrs, 38054 Grenoble (France)
2011-04-27
We investigate the effect of geometrical frustration on the H-T phase diagrams of the classical Heisenberg antiferromagnets on triangular and kagome lattices. The phase diagrams for the two models are obtained from large-scale Monte Carlo simulations. For the kagome antiferromagnet, thermal fluctuations are unable to lift degeneracy completely and stabilize translationally disordered multipolar phases. We find a substantial difference in the temperature scales of the order by disorder effect related to different degeneracy of the low- and the high-field classical ground states in the kagome antiferromagnet. In the low-field regime, the Kosterlitz-Thouless transition into a spin-nematic phase is produced by unbinding of half-quantum vortices.
Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model
International Nuclear Information System (INIS)
Results of a renormalization group study for the 2-dimensional Hubbard model close to half-filling at finite temperature are presented. Bosonic degrees of freedom corresponding to antiferromagnetic and d-wave superconducting order are introduced, and flow equations for the corresponding coupling constants are deduced from an exact flow equation for the effective average action. The influence of bosonic fluctuations on the onset of local antiferromagnetic order is discussed. At low enough temperatures and close to half-filling the discrete symmetry of the lattice is broken and incommensurate antiferromagnetic fluctuations dominate. The phase diagram is shown for the parameter regime close to half-filling in the presence of vanishing as well as non-vanishing next-to-nearest-neighbor hopping t'. Finally, the potential emergence of d-wave superconducting order at larger distances from half-filling is discussed.
Holes in a two-dimensional quantum antiferromagnet
International Nuclear Information System (INIS)
A brief review is presented on the studies of the hole motion in a two-dimensional quantum antiferromagnetic. An extended introduction is given to cover the background of the problem. The quantum Bogoliubov-de Gennes formalism which treats the local distortion of the spin configuration and the quantum renormalization process on an equal footing, is outlined. The latest development on the central issue, whether a hole can freely propagate on an antiferromagnetic background, is overviewed. (author). 108 refs, 11 figs, 1 tab
Antiferromagnetic Potts model on the Erdos-Renyi random graph
Contucci, Pierluig; Giardina', Cristian; Starr, Shannon
2011-01-01
We study the antiferromagnetic Potts model on the Erdos-Renyi random graph. By identifying a suitable interpolation structure and proving an extended variational principle we show that the replica symmetric solution is an upper bound for the limiting pressure which can be recovered in the framework of Derrida-Ruelle probability cascades. A comparison theorem with a mixed model made of a mean field Potts-antiferromagnet plus a Potts-Sherrington-Kirkpatrick model allows to show that the replica symmetric solution is exact at high temperatures.
Raman scattering in a two-layer antiferromagnet
Morr, Dirk K.; Chubukov, Andrey V.; Kampf, Arno P.; Blumberg, G.
1995-01-01
Two--magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two--layer systems, such as $YBa_2Cu_3O_{6+x}$. We present a theory for Raman scattering in a two--layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one--band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic fo...
Thermal Generation of Spin Current in an Antiferromagnet.
Seki, S; Ideue, T; Kubota, M; Kozuka, Y; Takagi, R; Nakamura, M; Kaneko, Y; Kawasaki, M; Tokura, Y
2015-12-31
The longitudinal spin Seebeck effect has been investigated for a uniaxial antiferromagnetic insulator Cr(2)O(3), characterized by a spin-flop transition under magnetic field along the c axis. We have found that a temperature gradient applied normal to the Cr(2)O(3)/Pt interface induces inverse spin Hall voltage of spin-current origin in Pt, whose magnitude turns out to be always proportional to magnetization in Cr(2)O(3). The possible contribution of the anomalous Nernst effect is confirmed to be negligibly small. The above results establish that an antiferromagnetic spin wave can be an effective carrier of spin current. PMID:26765011
Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings
Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo
2015-08-01
We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.
Tobey, R. I.; Wall, S.; Foerst, M.; Bromberger, H.; Khanna, V.; Turner, J. J.; Schlotter, W.; Trigo, M.; Krupin, O.; Lee, W. S.; Chuang, Y. -D.; Moore, R.; Cavalieri, A. L.; Wilkins, S. B.; Zheng, H.; Mitchell, J. F.; Dhesi, S. S.; Cavalleri, A.; Hill, J.P.
2012-01-01
Using time-resolved resonant soft x-ray diffraction, we measure the evolution of the full three-dimensional scattering volume of the antiferromagnetic superlattice reflection in the single-layer manganite La0.5Sr1.5MnO4 on femtosecond time scales following photoexcitation. We find that the in-plane
Order and excitations in large-S kagome-lattice antiferromagnets
Chernyshev, A. L.; Zhitomirsky, M. E.
2015-10-01
We systematically investigate the ground-state and the spectral properties of antiferromagnets on a kagomé lattice with several common types of the planar anisotropy: X X Z , single-ion, and out-of-plane Dzyaloshinskii-Moriya. Our main focus is on the role of nonlinear, anharmonic terms, which are responsible for the quantum order-by-disorder effect and for the corresponding selection of the ground-state spin structure in many of these models. The X X Z and the single-ion anisotropy models exhibit a quantum phase transition between the q =0 and the √{3 }×√{3 } states as a function of the anisotropy parameter, offering a rare example of the quantum order-by-disorder fluctuations favoring a ground state which is different from the one selected by thermal fluctuations. The nonlinear terms are also shown to be crucial for a very strong near-resonant decay phenomenon leading to the quasiparticle breakdown in the kagomé-lattice antiferromagnets whose spectra are featuring flat or weakly dispersive modes. The effect is shown to persist even in the limit of large spin values and should be common to other frustrated magnets with flat branches of excitations. Model calculations of the spectrum of the S =5 /2 Fe-jarosite with Dzyaloshinskii-Moriya anisotropy provide a convincing and detailed characterization of the proposed scenario.
Incommensurate antiferromagnetism and magnetic correlations in CeCu6-xAux
DEFF Research Database (Denmark)
Stockert, O.; Lohneysen, H. von; Schröder, A.;
1997-01-01
Magnetic ordering and correlations in single crystals of the heavy-fermion alloys CeCu5.8Au0.2 and CeCu5.9Au0.1 were investigated by elastic and inelastic neutron scattering. CeCu5.8Au0.2 orders with an incommensurate magnetic structure and a wave vector q = (+/- 0.79 0 0). Only dynamic antiferro......Magnetic ordering and correlations in single crystals of the heavy-fermion alloys CeCu5.8Au0.2 and CeCu5.9Au0.1 were investigated by elastic and inelastic neutron scattering. CeCu5.8Au0.2 orders with an incommensurate magnetic structure and a wave vector q = (+/- 0.79 0 0). Only dynamic...... antiferromagnetic correlations along a* are observed in CeCu5.9Au0.1 which evolve into a static sine modulation in CeCu5.8Au0.2....
Brackett, Jeremy; Newman, Joseph; De Silva, Theja N.
2016-10-01
We study an effective fermion model on a square lattice to investigate the cooperation and competition of superconductivity and anti-ferromagnetism. In addition to particle tunneling and on-site interaction, a bosonic excitation mediated attractive interaction is also included in the model. We assume that the attractive interaction is mediated by spin fluctuations and excitations of Bose-Einstein condensation (BEC) in electronic systems and Bose-Fermi mixtures on optical lattices, respectively. Using an effective mean-field theory to treat both superconductivity and anti-ferromagnetism at equal footing, we study a single effective model relevant for both systems within the Landau energy functional approach and a linearized theory. Within our approaches, we find possible co-existence of superconductivity and anti-ferromagnetism for both electronic and cold-atomic models. Our linearized theory shows while spin fluctuations favor d-wave superconductivity and BEC excitations favor s-wave superconductivity.
Indian Academy of Sciences (India)
B K Sahoo; B N Panda
2011-10-01
The effect of hybridization of conduction electrons and f-level on superconductivity (SC) and antiferromagnetism (AFM) in the coexistent phase of rare-earth nickel borocarbide superconductors (Ni2B2C) is reported. The Hamiltonian of the system is a mean ﬁeld one and has been solved by writing equations of motion for the single-particle Green functions. It is assumed that superconductivity arises due to BCS pairing mechanism in the presence of antiferromagnetism in nickel lattices of Ni2B2 plane. The expressions for superconducting and antiferromagnetic order parameters are derived using double time electron Green functions. The quasiparticle energy bands are plotted and the nature of band dispersion of the quasiparticles is studied.
Internal energy and specific heat in a ferromagnetic-antiferromagnetic double layers
Institute of Scientific and Technical Information of China (English)
Jiang Wei; Guo An-Bang
2007-01-01
The internal energy and specific heat of a Heisenberg ferro- antiferromagnetic double-layer system are studied by using spin-wave theory and the retarded Green function method at low temperatures. Numerical results show that the antiferromagnetic intralayer coupling J2 has an important influence on internal energy and specific heat for a four-sublattice system with antiferromagnetic (or ferrimagnetic) interlayer couplings.
Excitations in a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Birgeneau, R. J.; Walker, L. R.; Guggenheim, H. J.;
1975-01-01
Inelastic neutron scattering studies of the magnetic excitations in the planar Heisenberg random antiferromagnet Rb2Mn0.5Ni0.5F4 at 7K are reported. Two well-defined bands of excitations are observed. A simple mean crystal model is found to predict accurately the measured dispersion relations usi...
On the magnetism of Heisenberg double-layer antiferromagnets
International Nuclear Information System (INIS)
The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K3M2F7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)
Observation of Antiferromagnetic Resonance in an Organic Superconductor
DEFF Research Database (Denmark)
Torrance, J. B.; Pedersen, H. J.; Bechgaard, K.
1982-01-01
Anomalous microwave absorption has been observed in the organic superconductor TMTSF2AsF6 (TMTSF: tetramethyltetraselenafulvalene) below its metal-nonmetal transition near 12 K. This absorption is unambiguously identified as antiferromagnetic resonance by the excellent agreement between a spin...
Soliton dynamics in planar ferromagnets and anti-ferromagnets
Institute of Scientific and Technical Information of China (English)
LINFang-hua; SHATAHJalal
2003-01-01
The aim of this paper is to present a rigorous mathematical proof of the dynamical laws for the topological solitons( magnetic vortices) in ferromagnets and anti-ferromagnets. It is achieved through the conservation laws for the topological vorticity and the weak convergence methods.
Fractional excitations in the square-lattice quantum antiferromagnet
DEFF Research Database (Denmark)
Piazza, B. Dalla; Mourigal, M.; Christensen, Niels Bech;
2015-01-01
characterize the magnetic fluctuations in the metal-organic compound Cu(DCOO)(2)center dot 4D(2)O, a known realization of the quantum square-lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller...
Holographic model for the paramagnetism/antiferromagnetism phase transition
Cai, Rong-Gen; Yang, Run-Qiu
2015-04-01
In this paper we build a holographic model of paramagnetism/antiferromagnetism phase transition, which is realized by introducing two real antisymmetric tensor fields coupling to the background gauge field strength and interacting with each other in a dyonic black brane background. In the case without an external magnetic field and in low temperatures, the magnetic moments condense spontaneously in an antiparallel manner with the same magnitude and the time reversal symmetry is also broken spontaneously (if the boundary spatial dimension is more than 2, spatial rotational symmetry is broken spontaneously as well), which leads to an antiferromagnetic phase. In the case with the weak external magnetic field, the magnetic susceptibility density has a peak at the critical temperature and satisfies the Curie-Weiss law in the paramagnetic phase of antiferromagnetism. In the strong external magnetic field case, there is a critical magnetic field Bc in the antiferromagnetic phase: when the magnetic field reaches Bc, the system will return into the paramagnetic phase by a second order phase transition.
An antiferromagnetic transverse Ising nanoisland; unconventional surface effects
Kaneyoshi, T.
2015-12-01
The phase diagrams and temperature dependences of magnetizations in a transverse Ising nanosisland with an antiferromagnetic spin configuration are studied by the use of the effective-field theory with correlations (EFT). Some novel features, such as the re-entrant phenomena with two compensation points being free from disorder induced frustration, are obtained for the magnetic properties in the system.
Magnetic phase diagram of the antiferromagnetic pyrochlore Gd2 Ti2 O7
Petrenko, O. A.; Lees, M. R.; Balakrishnan, G.; Paul, D. Mck
2004-07-01
Gd2Ti2O7 is a highly frustrated antiferromagnet on a pyrochlore lattice, where apart from the Heisenberg exchange the spins also interact via dipole-dipole forces. We report on low-temperature specific heat measurements performed on single crystals of Gd2Ti2O7 for three different directions of an applied magnetic field. The measurements reveal the strongly anisotropic behavior of Gd2Ti2O7 in a magnetic field despite the apparent absence of a significant single-ion anisotropy for Gd3+ . The H-T phase diagrams are constructed for H∥[111] , H∥[110] , and H∥[112] . The results indicate that further theoretical work beyond a simple mean-field model is required.
Sequential write-read operations in FeRh antiferromagnetic memory
Moriyama, Takahiro; Matsuzaki, Noriko; Kim, Kab-Jin; Suzuki, Ippei; Taniyama, Tomoyasu; Ono, Teruo
2015-09-01
B2-ordered FeRh has been known to exhibit antiferromagnetic-ferromagnetic (AF-F) phase transitions in the vicinity of room temperature. Manipulation of the Néel order via AF-F phase transition and recent experimental observation of the anisotropic magnetoresistance in antiferromagnetic FeRh has proven that FeRh is a promising candidate for antiferromagnetic memory material. In this work, we demonstrate sequential write and read operations in antiferromagnetic memory resistors made of B2-orderd FeRh thin films by a magnetic field and electric current only, which open a realistic pathway towards operational antiferromagnetic memory devices.
Magnetic ordering of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6
Asai, Shinichiro; Soda, Minoru; Kasatani, Kazuhiro; Ono, Toshio; Avdeev, Maxim; Masuda, Takatsugu
2016-01-01
We investigate the magnetic order of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6 and its related antiferromagnet Ba3NiTa2O9 by neutron diffraction measurements. We observe magnetic Bragg peaks below the transition temperatures, and identify propagation vectors for these oxides. A combination of representation analysis and Rietveld refinement leads to a collinear magnetic order for Ba2NiTeO6 and a 120∘ structure for Ba3NiTa2O9 . We find that the spin model of the bilayer triangular lattice is equivalent to that of the two-dimensional buckled honeycomb lattice having magnetic frustration. We discuss the magnetic interactions and single-ion anisotropy of Ni+2 ions for Ba2NiTeO6 in order to clarify the origin of the collinear magnetic structures. Our calculation suggests that the collinear magnetic order of Ba2NiTeO6 is induced by the magnetic frustration and easy-axis anisotropy.
Heisenberg antiferromagnet on Cayley trees: Low-energy spectrum and even/odd site imbalance
Changlani, Hitesh J.; Ghosh, Shivam; Henley, Christopher L.; Läuchli, Andreas M.
2013-02-01
To understand the role of local sublattice imbalance in low-energy spectra of s=(1)/(2) quantum antiferromagnets, we study the s=(1)/(2) quantum nearest neighbor Heisenberg antiferromagnet on the coordination 3 Cayley tree. We perform many-body calculations using an implementation of the density matrix renormalization group (DMRG) technique for generic tree graphs. We discover that the bond-centered Cayley tree has a quasidegenerate set of a low-lying tower of states and an “anomalous” singlet-triplet finite-size gap scaling. For understanding the construction of the first excited state from the many-body ground state, we consider a wave function ansatz given by the single-mode approximation, which yields a high overlap with the DMRG wave function. Observing the ground-state entanglement spectrum leads us to a picture of the low-energy degrees of freedom being “giant spins” arising out of sublattice imbalance, which helps us analytically understand the scaling of the finite-size spin gap. The Schwinger-boson mean-field theory has been generalized to nonuniform lattices, and ground states have been found which are spatially inhomogeneous in the mean-field parameters.
Magnetoelectric effect in antiferromagnetic LiCoPO4 in pulsed magnetic fields
Khrustalyov, V. M.; Savytsky, V. M.; Kharchenko, M. F.
2016-04-01
The magnetoelectric effect in single-crystal LiCoPO4 (TN = 21.8 K) is studied in strong pulsed magnetic fields which destroy the antiferromagnetic structure of the crystal spin ordering. The electric polarization along the crystallographic a axis induced by a magnetic field H||b is measured. New features of the electric polarization in a magnetic field are found, including a spike in the polarization near the field for the first magnetic transition at H1 = 123 kOe, a recovery of the electric polarization at the second magnetic transition H2 = 210 kOe, and a gradual reduction to zero on approaching the third transition at H3 = 263 kOe. Various possible magnetic structures in the high field phases are examined which are consistent with their magnetization and electric polarization. The observed linear dependence of the polarization on field strength in the initial antiferromagnetic phase and the vanishing of the polarization in the first high-field phase are in good agreement with previous studies of the magnetoelectric effect in LiCoPO4 [Wiegelmann et al., Ferroelectrics 161, 147 (1994); H. Wiegelman, Ph.D. thesis (University of Konstanz, Konstanz, 1995)].
Control of antiferromagnetic domain distribution via polarization-dependent optical annealing.
Higuchi, Takuya; Kuwata-Gonokami, Makoto
2016-01-01
The absence of net magnetization inside antiferromagnetic domains has made the control of their spatial distribution quite challenging. Here we experimentally demonstrate an optical method for controlling antiferromagnetic domain distributions in MnF2. Reduced crystalline symmetry can couple an order parameter with non-conjugate external stimuli. In the case of MnF2, time-reversal symmetry is macroscopically broken reflecting the different orientations of the two magnetic sublattices. Thus, it exhibits different absorption coefficients between two orthogonal linear polarizations below its antiferromagnetic transition temperature under an external magnetic field. Illumination with linearly polarized laser light under this condition selectively destructs the formation of a particular antiferromagnetic order via heating. As a result, the other antiferromagnetic order is favoured inside the laser spot, achieving spatially localized selection of an antiferromagnetic order. Applications to control of interface states at antiferromagnetic domain boundaries, exchange bias and control of spin currents are expected. PMID:26911337
Segregation of antiferromagnetism and high-temperature superconductivity in Ca1-xLaxFe2As2
Saha, Shanta R.; Drye, T.; Goh, S. K.; Klintberg, L. E.; Silver, J. M.; Grosche, F. M.; Sutherland, M.; Munsie, T. J. S.; Luke, G. M.; Pratt, D. K.; Lynn, J. W.; Paglione, J.
2014-04-01
We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca1-xLaxFe2As2. Using electrical transport, elastic neutron scattering, and resonant tunnel diode oscillator measurements on samples under both quasihydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) superconducting critical point. Our results indicate that the observed superconducting phase with a maximum transition temperature of Tc=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure-tuning through the AFM critical point. Thus, the superconducting phase appears to exist exclusively in juxtaposition to the antiferromagnetic phase in a manner similar to the oxygen- and fluorine-based iron-pnictide superconductors with the highest transition temperatures reported to date. Unlike the lower-Tc systems, in which superconductivity and magnetism usually coexist, the tendency for the highest-Tc systems to show noncoexistence provides an important insight into the distinct transition temperature limits in different members of the iron-based superconductor family.
EuCo2P2 : A model molecular-field helical Heisenberg antiferromagnet
Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.
2016-07-01
The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the a b plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ , high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperature T ≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ˜T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2 , respectively. These values are enhanced by a factor of ˜2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the a b plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χa b(T ≤TN) .
Hidden symmetries in the two-dimensional isotropic antiferromagnet
Leonel, S A; Oliveira, W; Silva, G L; Xavier, L M V
2013-01-01
We discuss the two-dimensional isotropic antiferromagnet in the framework of gauge invariance. Gauge invariance is one of the most subtle useful concepts in theoretical physics, since it allows one to describe the time evolution of complex physical systesm in arbitrary sequences of reference frames. All theories of the fundamental interactions rely on gauge invariance. In Dirac's approach, the two-dimensional isotropic antiferromagnet is subject to second class constraints, which are independent of the Hamiltonian symmetries and can be used to eliminate certain canonical variables from the theory. We have used the symplectic embedding formalism developed by a few of us to make the system under study gauge-invariant. After carrying out the embedding and Dirac analysis, we systematically show how second class constraints can generate hidden symmetries. We obtain the invariant second-order Lagrangian and the gauge-invariant model Hamiltonian. Finally, for a particular choice of factor ordering, we derive the fun...
Quantum Nucleation of Antiferromagnetic Bubbles with Tetragonal and Hexagonal Symmetries
Institute of Scientific and Technical Information of China (English)
PAN Hui; ZHU Jia-Lin; L(U) Rong
2004-01-01
We study the quantum nucleation in a nanometer-scale antiferromagnet placed in a magnetic field at an arbitrary angle. We consider the magnetocrystalline anisotropy with tetragonal symmetry and that with hexagonal symmetry, respectively. Different structures of the tunneling barriers can be generated by the magnitude and the orientation of the magnetic field. We use the instanton method in the spin-coherent-state path-integral representation to calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for bulk solids and two-dimensional films of antiferromagnets, respectively. We find that the rate of quantum nucleation and the crossover temperature from thermal-to-quantum transitions depend on the orientation and strength of the external magnetic field distinctly, which can be tested by use of existing experimental techniques.
Fermi surface and antiferromagnetism of FeRh
Energy Technology Data Exchange (ETDEWEB)
Nakada, K. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi Hiroshima 739-8530 (Japan)]. E-mail: nakada@hiroshima-u.ac.jp; Yamada, H. [Faculty of Science, Shinshu University, Matsumoto 390-8621 (Japan)
2007-03-15
In order to examine the stabilization of antiferromagnetic state with the observed spin ordering wave vector Q in an ordered alloy FeRh with a CsCl-type structure, the nesting effect of the Fermi surfaces is discussed by using the electronic structures calculated by the FLAPW method. Although the nesting of Fermi surfaces cannot be seen so clearly, it is found that there exists rather wide region in the Brillouin zone where the energy at the crossing point between the energies E(k) and E(k+Q) of electron and hole is within a few mRy above or below the Fermi level. This fact is shown to stabilize the antiferromagnetic state in FeRh, together with the fact that a hole surface exists on other place in the Brillouin zone.
Impurity-induced antiferromagnetic domains in the periodic Anderson model
Benali, A.; Bai, Z. J.; Curro, N. J.; Scalettar, R. T.
2016-08-01
A central feature of the periodic Anderson model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization V , and singlet formation at large V . At zero temperature, and in dimension d >1 , these two phases are separated by a quantum critical point Vc. We use quantum Monte Carlo (QMC) simulations to explore the effect of impurities which have a local hybridization V*Vc . We measure the suppression of singlet correlations and the antiferromagnetic correlations which form around the impurity, as well as the size of the resulting domain. Exact diagonalization calculations for linear chains allow us to verify that the qualitative features obtained at intermediate coupling and finite T persist to strong coupling and T =0 , regimes which are difficult to access with QMC. Our calculations agree qualitatively with NMR measurements in CeCoIn5 -xCdx .
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang
2015-03-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).
Spin waves in the block checkerboard antiferromagnetic phase
Institute of Scientific and Technical Information of China (English)
Lu Feng; Dai Xi
2012-01-01
Motivated by the discovery of a new family of 122 iron-based superconductors,we present the theoretical results on the ground state phase diagram,spin wave,and dynamic structure factor obtained from the extended J1-J2 Heisenberg model.In the reasonable physical parameter region of K2Fe4Ses,we find that the block checkerboard antiferromagnetic order phase is stable.There are two acoustic spin wave branches and six optical spin wave branches in the block checkerboard antiferromagnetic phase,which have analytic expressions at the high-symmetry points.To further compare the experimental data on neutron scattering,we investigate the saddlepoint structure of the magnetic excitation spectrum and the inelastic neutron scattering pattern based on linear spin wave theory.
Resonating Valence Bond states for low dimensional S=1 antiferromagnets
Liu, Zheng-Xin; Zhou, Yi; Ng, Tai-Kai
2014-03-01
We study S = 1 spin liquid states in low dimensions. We show that the resonating-valence-bond (RVB) picture of S = 1 / 2 spin liquid state can be generalized to S = 1 case. For S = 1 system, a many-body singlet (with even site number) can be decomposed into superposition of products of two-body singlets. In other words, the product states of two-body singlets, called the singlet pair states (SPSs), are over complete to span the Hilbert space of many-body singlets. Furthermore, we generalized fermionic representation and the corresponding mean field theory and Gutzwiller projected stats to S = 1 models. We applied our theory to study 1D anti-ferromagnetic bilinear-biquadratic model and show that both the ground states (including the phase transition point) and the excited states can be understood excellently well within the framework. Our method can be applied to 2D S = 1 antiferromagnets.
Quantum order by disorder in frustrated diamond lattice antiferromagnets
Bernier, Jean-Sebastien; Lawler, Michael J.; Kim, Yong Baek
2008-01-01
We present a quantum theory of frustrated diamond lattice antiferromagnets. Considering quantum fluctuations as the predominant mechanism relieving spin frustration, we find a rich phase diagram comprising of six phases with coplanar spiral ordering in addition to the N\\'eel phase. By computing the specific heat of these ordered phases, we obtain a remarkable agreement between $(k,k,0)$-spiral ordering and the experimental specific heat data for the diamond lattice spinel compounds MnSc$_2$S$...
Lattice Gauge Theories and the Heisenberg Antiferromagnetic Chain
Berruto, F; Grignani, G; Sodano, P
2000-01-01
We study the strongly coupled 2-flavor lattice Schwinger model and the SU(2)-color QCD_2. The strong coupling limit, even with its inherent nonuniversality, makes accurate predictions of the spectrum of the continuum models and provides an intuitive picture of the gauge theory vacuum. The massive excitations of the gauge model are computable in terms of spin-spin correlators of the quantum Heisenberg antiferromagnetic spin-1/2 chain.
Long range anti-ferromagnetic spin model for prebiotic evolution
Energy Technology Data Exchange (ETDEWEB)
Nokura, Kazuo [Shonan Institute of Technology, Fujisawa 251-8511 (Japan)
2003-11-28
I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states.
Energy Technology Data Exchange (ETDEWEB)
Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)
1997-09-01
The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.
Correlations between Kondo clouds in nearly antiferromagnetic Kondo lattices
Energy Technology Data Exchange (ETDEWEB)
Kiselev, M.N. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K.A
2004-05-01
We discuss a novel fluctuational mechanism explaining the physics of nearly antiferromagnetic Kondo lattices (KL). The effective action for KL model is expressed in terms of Bose operators responsible for paramagnetic excitations and semi-bosonic fields describing the dynamic Kondo clouds created by conduction electrons around local spin. The gauge invariant resonance valence bond theory of interacting Kondo clouds describes the spin liquid with strong critical fluctuations imitating itinerant fluctuation magnetism of Moriya type.
Coupling the valley degree of freedom to antiferromagnetic order
Li, Xiao; Cao, Ting; Niu, Qian; Shi, Junren; Feng, Ji
2013-01-01
Conventional electronics are based invariably on the intrinsic degrees of freedom of an electron, namely, its charge and spin. The exploration of novel electronic degrees of freedom has important implications in both basic quantum physics and advanced information technology. Valley as a new electronic degree of freedom has received considerable attention in recent years. In this paper, we develop the theory of spin and valley physics of an antiferromagnetic honeycomb lattice. We show that by ...
Drone-fermions in the two-dimensional antiferromagnet
Krivenko, S.; Khaliullin, G.
1995-02-01
Two different representations of spins - via the conventional fermions, or via the Mattis drone-fermions - are compared considering the planar antiferromagnetic Heisenberg model as an example. Mean-field spin correlation functions calculated for the uniform and flux RVB states show that the drone-fermion approach has an advantage in giving the lower energy and the enhanced AF correlations, because of the absence of unphysical spinless states in this representation.
Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films
Energy Technology Data Exchange (ETDEWEB)
Kim, Ki Yeon; Lee, Jeong Soo
2008-02-15
This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.
Fermion Bound States Around Skyrmions in Doped Antiferromagnets
Institute of Scientific and Technical Information of China (English)
寇谡鹏
2003-01-01
We show the skyrmion effects in doped antiferromagnets for the uniform flux phase. The low-energy effective theory of the t′-J model can be mapped onto the massive quantum electrodynamics. There exist Fermion bound states around skyrmions. For each sublattice, there exist induced fractional fermion numbers around the skyrmions. The total induced fermion number is zero due to the "cancelling effect" between two sublattices with opposite charges.
Long range anti-ferromagnetic spin model for prebiotic evolution
International Nuclear Information System (INIS)
I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states
Cooperative Multiscale Aging in a Ferromagnet/Antiferromagnet Bilayer
Urazhdin, Sergei
2015-01-01
We utilize anisotropic magnetoresistance to study temporal evolution of the magnetization state in epitaxial Ni$_{80}$Fe$_{20}$/Fe$_{50}$Mn$_{50}$ ferromagnet/antiferromagnet bilayers. The resistance exhibits power-law evolution over a wide range of temperatures and magnetic fields, indicating that aging is characterized by a wide range of activation time scales. We show that aging is a cooperative process, i.e. the magnetic system is not a superposition of weakly interacting subsystems chara...
Origin of asymmetric reversal modes in ferromagnetic/antiferromagnetic multilayers
Beckmann, B.; Nowak, U.; Usadel, K. D.
2004-01-01
Experimentally an asymmetry of the reversal modes has been found in certain exchange bias systems. From a numerical investigation of the domain state model evidence is gained that this effect depends on the angle between the easy axis of the antiferromagnet and the applied magnetic field. Depending on this angle the ferromagnet reverses either symmetrically, e. g. by a coherent rotation on both sides of the loop, or the reversal is asymmetric with a non uniform reversal mode for the ascending...
Coexistence of superconductivity, ferromagnetism and antiferromagnetism in iron pnictides
Gill, Raminder
2016-05-01
Coexistence of Superconductivity and magnetism have always been the fascinating area of interest for condensed-matter physicists. A variety of systems, such as cuprates, heavy fermions, and iron pnictides showed superconductivity in a narrow region near the border to antiferromagnetism (AFM)as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetism (FM) has seen in URhGe, UGe2, ErRh4B4 and many compounds. Here, we present a third situation where superconductivity coexists with FM and AFM. The recent experimental finding of interplay of ferromagnetism,antiferromagnetism and superconductivity in EuFe2(As1-xPx)2 impressed us to discuss this problem in detail. Ironpnictides are high Tc magnetic superconductors and could be very useful in finding many new superconductorswith high Tc probably near to room temperature. In this paper, we have theoretically calculated the superconducting order parameter of EuFe2(As1-xPx)2 where magnetic ordering is due to Eu+ moments and superconductivity is due to Fe3+ moments. The Eu ions order antiferromagnetically for x≤0.13, while a crossover is observed for x≥0.22 whereupon the Eu ions order ferromagnetically.
Fractional excitations in the square-lattice quantum antiferromagnet
Dalla Piazza, B.; Mourigal, M.; Christensen, N. B.; Nilsen, G. J.; Tregenna-Piggott, P.; Perring, T. G.; Enderle, M.; McMorrow, D. F.; Ivanov, D. A.; Rønnow, H. M.
2015-01-01
Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spin-1/2 particles is far from complete. The quantum square-lattice Heisenberg antiferromagnet, for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wavevector (π, 0). We use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound Cu(DCOO)2.4D2O, a known realization of the quantum square-lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially extended pairs of fractional S = 1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wavevector, these fractional excitations are bound and form conventional magnons. Our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.
Relaxation dynamics in the frustrated Cr9 antiferromagnetic ring probed by NMR
Garlatti, E.; Bordignon, S.; Carretta, S.; Allodi, G.; Amoretti, G.; De Renzi, R.; Lascialfari, A.; Furukawa, Y.; Timco, G. A.; Woolfson, R.; Winpenny, R. E. P.; Santini, P.
2016-01-01
We investigate the magnetic properties and the phonon-induced relaxation dynamics of the first regular Cr9 antiferromagnetic (AF) ring, which represents a prototype frustrated AF ring. Geometrical frustration in Cr9 yields an energy spectrum with twofold degenerate low-lying levels and a low-spin ground state. The electronic relaxation dynamics is probed by 1H -NMR through the temperature dependence of the spin-lattice relaxation rate 1 /T1 . We develop a microscopic model that reproduces 1 /T1(T ) curves, taking also into account the wipeout effect. By interpreting these measurements we determine the spin-phonon coupling strength and we investigate the decay of the cluster magnetization due to the spin-phonon interaction. We find that at very low temperatures, the relaxation is characterized by a single dominating Arrhenius-type relaxation process, whereas several relevant processes emerge at higher temperatures. In addition, we calculate the temperature and magnetic field dependence of level lifetimes.
Magnetization of the canted antiferromagnetic CoCO 3 in Abragam-Pryce approximation
Meshcheryakov, V. F.
2006-05-01
Weiss molecular field theory was used to calculate the magnetization of the canted antiferromagnetic CoCO 3 ( T=18.1 K). Wave functions of magnetic doublets near Co 2+ ground state in Abragam-Pryce approximation were determined. One of the crystal field variables, free Co 2+ ion isotropic exchange interaction inside, and between magnetic sublatticies, and rotation angle ϕ, characterizing nonequivalence ion Co 2+ positions, were used as parameters. From comparison with the experimental data exchange interaction anisotropy and g-factors g, g were obtained. At low temperatures T<40 K the coincidence of calculated and experimental results are good and g-factor values are almost the same as have been obtained from EPR data in Co(1%)+CdCO single crystals. At high temperatures in the paramagnetic region, experimental data differs from calculated ones by more than two times. It is shown that this discrepancy cannot be described within the frames of used approximations.
Anti-ferromagnetism through Mn doping in topological insulator Bi2Se3
Maurya, V. K.; Yadav, P. K.; Patnaik, S.
2015-06-01
Bi2Se3 is a well-known Topological Insulator made of quintuple layers of Bi-Se-Bi-Se-Bi stacked with the Van-der-Waals forces which makes it a good accepter of doping at two places; Bi sites and interlayer gaps. In this paper we report the synthesis and characterization of single crystals of Mn doped Bi2Se3. SEM analysis confirms layered structure. Resistivity and Hall measurements have been done to determine charge carrier density and Hall coefficient. Susceptibility data is well fitted to the Curie-Weiss law within the transition range (5K to 125 K). A negative value of ΘP is indicative of weak anti-ferromagnetic correlation with low Mn doping.
Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films
Directory of Open Access Journals (Sweden)
David Klar
2013-05-01
Full Text Available The magnetic and electronic properties of single-molecule magnets are studied by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. We study the magnetic coupling of ultrathin Co and Ni films that are epitaxially grown onto a Cu(100 substrate, to an in situ deposited submonolayer of TbPc2 molecules. Because of the element specificity of the X-ray absorption spectroscopy we are able to individually determine the field dependence of the magnetization of the Tb ions and the Ni or Co film. On both substrates the TbPc2 molecules couple antiferromagnetically to the ferromagnetic films, which is possibly due to a superexchange interaction via the phthalocyanine ligand that contacts the magnetic surface.
Mandru, Andrada-Oana; Corbett, Joseph P.; Richard, Andrea L.; Gallagher, James; Meng, Keng-Yuan; Ingram, David C.; Yang, Fengyuan; Smith, Arthur R.
2016-10-01
We report structural and magnetic properties of magnetostrictive Fe100 -xGax (x ≈ 15) alloys when deposited onto antiferromagnetic manganese nitride and non-magnetic magnesium oxide substrates. From X-ray diffraction measurements, we find that the FeGa films are single crystalline. Scanning tunneling microscopy imaging reveals that the surface morphologies are dictated by the growth temperature, composition, and substrate. The magnetic properties can be tailored by the substrate, as found by magnetic force microscopy imaging and vibrating sample magnetometry measurements. In addition to pronounced tetragonal deformations, depositing FeGa onto manganese nitride leads to the formation of stripe-like magnetic domain patterns and to the appearance of perpendicular magnetic anisotropy.
Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points
Energy Technology Data Exchange (ETDEWEB)
Fischer, I.A.
2006-07-01
This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We
Energy Technology Data Exchange (ETDEWEB)
Wang, Meng; Yi, Ming; Cao, Huibo; de la Cruz, C.; Mo, S. K.; Huang, Q. Z.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D. H.; Shen, Z. X.; Birgeneau, R. J.
2015-09-01
A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb_{1-δ}Fe_{1.5-σ}S_{2} is reported. A neutron diffraction experiment on a powder sample shows that a 98% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb_{0.66}Fe_{1.36}S_{2}, and that only 2% of the sample is in the block antiferromagnetic phase with √5×√5 iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with the refined composition of Rb_{0.78}Fe_{1.35}S_{2}, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra 10% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.
The phase-separated states in antiferromagnetic semiconductors with polarizable lattice
Nagaev, E. L.
2000-01-01
The possibility of the slab or stripe phase separation (alternating ferromagnetic highly- conductive and insulating antiferromagnetic layers) is proved for isotropic degenerate antiferromagnetic semiconductors. This type of phase separation competes with the droplet phase separation (ferromagnetic droplets in the antiferromagnetic host or vice versa). The interaction of electrons with optical phonons alone cannot cause phase-separated state with alternating highly-conductive and insulating re...
The Magnetism of Li doped La$_{2}$CuO$_4$: the antiferromagnetic spin-shard state
Sushkov, O. P.; Neto, A. H. Castro
2005-01-01
We study the dynamics of a single hole in Li and Sr doped La$_{2}$CuO$_4$ and its extension to a finite hole concentration. We compare the physics of La$_{2-x}$Sr$_x$CuO$_4$ and La$_{2}$Cu$_{1-x}$Li$_x$O$_4$ and explain why these systems are remarkably different. We demonstrate that holes in La$_{2}$Cu$_{1-x}$Li$_x$O$_4$ are always localized and that there is a critical concentration, $x_c\\approx 0.03$, above which the holes break the global antiferromagnetic state into an array of weakly cou...
Reversible optical switching of antiferromagnetism in TbMnO3
Manz, Sebastian; Matsubara, Masakazu; Lottermoser, Thomas; Büchi, Jonathan; Iyama, Ayato; Kimura, Tsuyoshi; Meier, Dennis; Fiebig, Manfred
2016-10-01
Lasers can be used to control the magnetization of a ferromagnet via optically driven thermal and electronic excitation. Transfer of this concept to antiferromagnets is appealing because of the increasing technological interest in antiferromagnetism. Controlling spin structures in antiferromagnets is challenging, however, because of their zero magnetization. In a proof-of-principle experiment we demonstrate that optical control of antiferromagnetic domains is nevertheless possible. We reverse the antiferromagnetic order parameter in multiferroic TbMnO3 repeatedly, using light pulses of two different colours. Switching depends on a unique relation between the wavelength of the light, its optical absorption and the electric polarization field induced by the antiferromagnetic order of TbMnO3. We then demonstrate sequential laser-controlled writing and erasure of antiferromagnetic domains. The universality of reversible optical antiferromagnetic switching is derived by Monte Carlo simulations. Opto-magnetism is thus complemented by an important degree of freedom, namely local control of antiferromagnetism by means of light.
Bootstrap equations and correlation functions for the Heisenberg XYZ antiferromagnet
Quano, Yas-Hiro
2002-01-01
Presented are two kinds of integral solutions to the quantum Knizhnik-Zamolodchikov equations for the 2n-point correlation functions of the Heisenberg XYZ antiferromagnet. Our first integral solution can be obtained from those for the cyclic SOS model by using the vertex-face correspondence. By the construction, the sum with respect to the local height variables k_0, k_1, >..., k_{2n} of the cyclic SOS model remains other than n-fold integral in the first solution. In order to perform those s...
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.;
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Dynamical Structure Factors of quasi-one-dimensional antiferromagnets
Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel
2007-03-01
For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.
Giant magnetocaloric effect in antiferromagnetic DyVO4 compound
Midya, A.; Khan, N.; Bhoi, D.; Mandal, P.
2014-09-01
We have investigated the magnetic and magnetocaloric properties of DyVO4 by magnetization and heat capacity measurements. χ(T) shows antiferromagnetic to paramagnetic transition at TNDy~3.5 K. The compound undergoes a metamagnetic transition and exhibits a huge entropy change. The maximum values of magnetic entropy change (ΔSM), adiabatic temperature change (ΔTad) and refrigerant capacity (RC) reach 26 J kg-1 K-1, 17 K, and 526 J kg-1, respectively for a field change of 0-8 T. Moreover, the material is highly insulating and exhibits no thermal and field hysteresis, satisfying the necessary conditions for a good magnetic refrigerant material.
Domain-wall spin dynamics in kagome antiferromagnets.
Lhotel, E; Simonet, V; Ortloff, J; Canals, B; Paulsen, C; Suard, E; Hansen, T; Price, D J; Wood, P T; Powell, A K; Ballou, R
2011-12-16
We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.
Propagation and ghosts in the classical kagome antiferromagnet.
Robert, J; Canals, B; Simonet, V; Ballou, R
2008-09-12
We investigate the classical spin dynamics of the kagome antiferromagnet by combining Monte Carlo and spin dynamics simulations. We show that this model has two distinct low temperature dynamical regimes, both sustaining propagative modes. The expected gauge invariance type of the low energy, low temperature, out-of-plane excitations is also evidenced in the nonlinear regime. A detailed analysis of the excitations allows us to identify ghosts in the dynamical structure factor, i.e., propagating excitations with a strongly reduced spectral weight. We argue that these dynamical extinction rules are of geometrical origin.
Density matrix renormalization group numerical study of the kagome antiferromagnet.
Jiang, H C; Weng, Z Y; Sheng, D N
2008-09-12
We numerically study the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice using the density-matrix renormalization group method. We find that the ground state is a magnetically disordered spin liquid, characterized by an exponential decay of spin-spin correlation function in real space and a magnetic structure factor showing system-size independent peaks at commensurate magnetic wave vectors. We obtain a spin triplet excitation gap DeltaE(S=1)=0.055+/-0.005 by extrapolation based on the large size results, and confirm the presence of gapless singlet excitations. The physical nature of such an exotic spin liquid is also discussed.
Antiferromagnetic exchange and spin-fluctuation pairing in cuprate superconductors
Plakida, Nikolay M.
2006-01-01
A microscopic theory of superconductivity is formulated within an effective p-d Hubbard model for a CuO2 plane. By applying the Mori-type projection technique, the Dyson equation is derived for the Green functions in terms of Hubbard operators. The antiferromagnetic exchange caused by interband hopping results in pairing of all carries in the conduction subband and high Tc proportional to the Fermi energy. Kinematic interaction in intraband hopping is responsible for the conventional spin-fluctuation pairing. Numerical solution of the gap equation proves the d-wave gap symmetry and defines Tc doping dependence. Oxygen isotope shift and pressure dependence of Tc are also discussed.
Phase Diagram of Antiferromagnetically Exchange-Coupled Bilayer
Institute of Scientific and Technical Information of China (English)
GUO Guang-Hua; ZHANG Guang-Fu; SUN Li-Yuan; Peter A. J. de Groot
2008-01-01
Magnetic hysteresis properties of antiferromagnetically exchange-coupled bilayer structures, in which the two magnetic layers have different magnetic parameters and thicknesses, are studied within the framework of the Stoner-Wohifarth model. Analytical expressions for the switching fields corresponding to the linear magnetic states are obtained. By adjusting the magnetic parameters or thicknesses of layers, nine different types of easyaxis hysteresis loops may exist. The phase diagram of easy-axis hysteresis loops is mapped in the k,1 and k,2 plane, where k,1 and k,2 are the ratios of magnetic anisotropy to the interlayer exchange coupling of the two magnetic layers, respectively.
Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers.
Fan, Raymond; Kinane, Christy J.; Charlton, Timothy M; De Vries, Mark; Dorner, P; Ali, Mannan; Brydson, Richard M D; Marrows, Chrisopher H; Hickey, Bryan J.; Arena, Dario A.; Tanner, Bryan K; Nisbet, Gareth; Langridge, Sean
2010-01-01
The nanoscale magnetic structure of FeRh epilayers has been studied by polarized neutron reflectometry. Epitaxial films with a nominal thickness of 500 angstrom were grown on MgO (001) substrates via molecular-beam epitaxy and capped with 20 angstrom of MgO. The FeRh films show a clear transition from the antiferromagnetic (AF) state to the ferromagnetic (FM) state with increasing temperature. Surprisingly the films possess a FM moment even at a temperature 80 K below the AF-FM transition tem...
Yang-Lee Circle Theorem for an Antiferromagnetic Heisenberg Ladder
Institute of Scientific and Technical Information of China (English)
王先智
2001-01-01
The Yang-Lee zeros of an antiferromagnetic Heisenberg ladder model are determined. It is found that if J4≤0 Yang-Lee zeros are located on the unit circle and on the negative real axis in the complex activity plane. In particular, if J4≤0 and 2J2≥J4, Yang-Lee zeros are located on the unit circle and the Yang-Lee circle theorem is valid. If J4 ＞ 0, Yang-Lee zeros are located on some complicated curves.
Angle-dependent loop shifts in antiferromagnetic nanoparticles
Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi
2016-08-01
Experimentally hysteresis loop shifts have been widely observed in antiferromagnetic (AF) nanoparticles. Here numerical investigations show that this effect is dependent on the angle between the easy axis of the AF spins and the applied magnetic field in uncompensated nanoparticles. In contrast, the loop shifts disappear in compensated nanoparticles. The results suggest that the uncompensated spins and field directions are essential ingredients to generate loop shifts in AF nanoparticle systems. The present study hints at a possible way to optimize the magnetic performance of AF nanostructures.
High-field spin dynamics of antiferromagnetic quantum spin chains
DEFF Research Database (Denmark)
Enderle, M.; Regnault, L.P.; Broholm, C.;
2000-01-01
The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices
Energy Technology Data Exchange (ETDEWEB)
Takamura, Y.; Biegalski, M.B.; Christen, H.M.
2009-10-22
Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.
1D antiferromagnetism in spin‐alternating bimetallic chains
Coronado Miralles, Eugenio; Sapiña Navarro, Fernando; Drillon, M.; De Jongh, L.J.
1990-01-01
The magnetic and thermal properties of the ordered bimetallic chain CoNi(EDTA)⋅6H2O in the very low‐temperature range are reported. The magnetic behavior does not exhibit the characteristic features of 1D ferrimagnets, but a continuous decrease of χmT towards zero at absolute zero. This 1D antiferromagnetic behavior results from an accidental compensation between the moments located at the two sublattices. This behavior, as well as the specific‐heat results, are modeled on the basis of an Isi...
A transverse Ising bilayer film with an antiferromagnetic spin configuration
Kaneyoshi, T.
2015-10-01
The phase diagrams and temperature dependences of magnetizations in a transverse Ising bilayer film with an antiferromagnetic spin configuration are studied by the uses of the effective-field theory (EFT) with correlations, in order to clarify whether the appearance of a compensation point is possible below the transition temperature in the system. From these investigations, we have found a lot of characteristic phenomena in these properties, when the value of an interlayer coupling takes a large value, such as the reentrant phenomenon free from the disorder-induced frustration and the novel types of magnetization curve with a compensation point.
Baddour, Frederick G; Fiedler, Stephanie R; Shores, Matthew P; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H
2013-05-01
A series of Pt-based heterobimetallic lantern complexes of the form [PtM(SAc)4(OH2)] (M = Co, 1; Ni, 2; Zn, 3) were prepared using a facile, single-step procedure. These hydrated species were reacted with 3-nitropyridine (3-NO2py) to prepare three additional lantern complexes, [PtM(SAc)4(3-NO2py)] (M = Co, 4; Ni, 5; Zn, 6), or alternatively dried in vacuo to the dehydrated species [PtM(SAc)4] (M = Co, 7; Ni, 8; Zn, 9). The Co- and Ni-containing species exhibit Pt-M bonding in solution and the solid state. In the structurally characterized compounds 1-6, the lantern units form dimers in the solid state via a short Pt···Pt metallophilic interaction. Antiferromagnetic coupling between 3d metal ions in the solid state through noncovalent metallophilic interactions was observed for all the paramagnetic lantern complexes prepared, with J-coupling values of -12.7 cm(-1) (1), -50.8 cm(-1) (2), -6.0 cm(-1) (4), and -12.6 cm(-1) (5). The Zn complexes 3 and 6 also form solid-state dimers, indicating that the formation of short Pt···Pt interactions in these complexes is not predicated on the presence of a paramagnetic 3d metal ion. These contacts and the resultant antiferromagnetic coupling are also not unique to heterobimetallic lantern complexes with axially coordinated H2O or the previously reported thiobenzoate supporting ligand.
Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase
International Nuclear Information System (INIS)
Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1−xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase
International Nuclear Information System (INIS)
We report an inelastic neutron scattering study of coherent magnetic excitations in powder and single-crystal samples of the model kagome antiferromagnet potassium iron jarosite, KFe3(OH)6(SO4)2. Initial measurements on a natural single crystal using a triple-axis spectrometer revealed a mode with a zone-centre gap of 7 meV that showed little dispersion within the kagome layers, as well as some indication of a mode with a zone-boundary energy of approximately 20 meV. However, the high background from hydrogen in the sample made it very difficult to search for other excitations. In the absence of suitable deuterated crystals, measurements were performed on deuterated powders using time-of-flight neutron spectrometers over a range of temperatures that include TN ∼ 64 K. This confirmed the flat 7 meV mode as well as dispersive modes that reached to higher energies. The origin of these modes is discussed in relation to the most likely Hamiltonian for the magnetic degrees of freedom in this material, and estimates are made of the strength of the nearest-neighbour exchange, J1, and contributions from a Dzyaloshinsky-Moriya interaction or single-ion anisotropy arising from a crystal field
Dynamical current-induced ferromagnetic and antiferromagnetic resonances
Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.
2015-12-01
We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.
Raman scattering in a two-layer antiferromagnet
Morr, Dirk K.; Chubukov, Andrey V.; Kampf, Arno P.; Blumberg, G.
1996-08-01
Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa2Cu3O6+x. We present a theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the interlayer exchange coupling J2 for the Raman spectra in A1g and B1g scattering geometries both in the nonresonant regime (when the Loudon-Fleury model is valid) and at resonance. We show that within the Loudon-Fleury approximation, a nonzero J2 gives rise to a finite signal in A1g scattering geometry. Both in this approximation and at resonance the intensity in the A1g channel has a peak at small transferred frequency equal to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa2Cu3O6.1 and Sr2CuO2Cl2 compounds and argue that the large value of J2 suggested in a number of recent studies is incompatible with Raman experiments in A1g geometry.
The Heisenberg antiferromagnet on the square-kagomé lattice
Directory of Open Access Journals (Sweden)
J. Richter
2009-01-01
Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.
Theory of the spin Seebeck effect in antiferromagnets
Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.
2016-01-01
The spin Seebeck effect (SSE) consists in the generation of a spin current by a temperature gradient applied in a magnetic film. The SSE is usually detected by an electric voltage generated in a metallic layer in contact with the magnetic film resulting from the conversion of the spin current into charge current by means of the inverse spin Hall effect. The SSE has been widely studied in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and metals with large spin-orbit coupling such as platinum. Recently the SSE has been observed in bilayers made of the antiferromagnet Mn F2 and Pt, revealing dependences of the SSE voltage on temperature and field very different from the ones observed in YIG/Pt. Here we present a theory for the SSE in structures with an antiferromagnetic insulator (AFI) in contact with a normal metal (NM) that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the AFI/NM bilayer. The theory explains quite well the measured dependences of the SSE voltage on the sample temperature and on the applied magnetic field in Mn F2/Pt .
Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors
Sachdev, Subir
I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operator method is used to describe the transition of dimerized antiferromagnetic insulators between magnetically ordered states and spin-gap states. The Schwinger boson method is applied to frustrated square lattice antiferromagnets: phase diagrams containing collinear and spirally ordered magnetic states, Z_2 spin liquids, and valence bond solids are presented, and described by an effective gauge theory of spinons. Insights from these theories of insulators are then applied to a variety of symmetry breaking transitions in d-wave superconductors. The latter systems also contain fermionic quasiparticles with a massless Dirac spectrum, and their influence on the order parameter fluctuations and quantum criticality is carefully discussed. I conclude with an introduction to strong coupling problems associated with symmetry breaking transitions in two-dimensional metals, where the order parameter fluctuations couple to a gapless line of fermionic excitations along the Fermi surface.
Electrical control of antiferromagnetic metal up to 15 nm
Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng
2016-08-01
Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.
The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene
Energy Technology Data Exchange (ETDEWEB)
Şarlı, Numan, E-mail: numansarli82@gmail.com [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Akbudak, Salih [Department of Physics, Adiyaman University, 02100 Adiyaman (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Ankara (Turkey); Ellialtıoğlu, Mehmet Recai [Department of Physics Engineering, Hacettepe University, 06800 Ankara (Turkey)
2014-11-01
In this work, the magnetic properties of the ferromagnetic and antiferromagnetic two layer spin-1/2 Ising nanographene systems are investigated within the effective field theory. We find that the magnetizations and the hysteresis behaviors of the central graphene atoms are similar to those of the edge graphene atoms in the ferromagnetic case. But, they are quite different in the antiferromagnetic case. The antiferromagnetic central graphene atoms exhibit type II superconductivity and they have triple hysteresis loop. The peak effect (PE) region is observed on the hysteresis curves of the antiferromagnetic Ising nanographene system. Therefore, we suggest that there is a strong relationship between the antiferromagnetism and the peak effect. Our results are in agreement with some experimental works in recent literature.
Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu, E-mail: taniyama.t.aa@m.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)
2015-08-24
We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.
Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current
Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu
2015-08-01
We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.
Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes
Saidaoui, Hamed Ben Mohamed
2014-05-28
Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
International Nuclear Information System (INIS)
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Tailoring coercivity of unbiased exchange-coupled ferromagnet/antiferromagnet bilayers
Energy Technology Data Exchange (ETDEWEB)
Sossmeier, K. D.; Schafer, D.; Bastos, A. P. O.; Schmidt, J. E.; Geshev, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)
2012-07-01
This paper reports experimental results obtained on unconventional exchange-coupled ferromagnet/antiferromagnet (FM/AF) system showing zero net bias. The Curie temperature of the FM (NiCu) is lower than the blocking temperature of the AF (IrMn). Samples were either annealed or irradiated with He, Ar, or Ge ions at 40 keV. Due to the exchange coupling at the FM/AF interface, the coercivity (H{sub C}) of the as-deposited FM/AF bilayer is rather higher than that of the corresponding FM single layer. We found that by choosing a proper ion fluence or annealing temperature, it is possible to controllably vary H{sub C}. Ion irradiation of the FM single layer has lead to only a decrease of H{sub C} and annealing or He ion irradiation has not caused important changes at the FM/AF interface; nevertheless, a twofold increase of H{sub C} was obtained after these treatments. Even more significant enhancement of H{sub C} was attained after Ge ion irradiation and attributed to ion-implantation-induced modification of only the FM layer; damages of the FM/AF interface, on the other hand, decrease the coercivity.
Antiferromagnetic phase transition and spin correlations in NiO
DEFF Research Database (Denmark)
Chatterji, Tapan; McIntyre, G.J.; Lindgård, Per-Anker
2009-01-01
We have investigated the antiferromagnetic (AF) phase transition and spin correlations in NiO by high-temperature neutron diffraction below and above TN. We show that AF phase transition is a continuous second-order transition within our experimental resolution. The spin correlations manifested...... by the strong diffuse magnetic scattering persist well above TN530 K and could still be observed at T=800 K which is about 1.5TN. We argue that the strong spin correlations above TN are due to the topological frustration of the spins on a fcc lattice. The Néel temperature is substantially reduced...... by this process. We determined the critical exponents =0.328±0.002 and =0.64±0.03 and the Néel temperature TN=530±1 K. These critical exponents suggest that NiO should be regarded as a 3dXY system...
Interfaces in superconducting hybrid heterostructures with an antiferromagnetic interlayer
Constantinian, K. Y.; Kislinskii, Yu. V.; Ovsyannikov, G. A.; Shadrin, A. V.; Sheyerman, A. E.; Vasil'ev, A. L.; Presnyakov, M. Yu.; Komissinskiy, P. V.
2013-03-01
The structural, X-ray diffraction, and electrophysical studies of hybrid superconducting hetero-structures with an interlayer of cuprate antiferromagnetic Ca1 - x Sr x CuO2 (CSCO) with the upper electrode Nb/Au and the lower electrode YBa2Cu3O7 - δ (YBCO) have been carried out. It has been experimentally shown that the epitaxial growth of two cuprates, YBCO and CSCO, results in the formation of an interface on which the enrichment of the CSCO interlayer with charge carriers proceeds to a depth of about 20 nm. In this case, the conduction of the enriched CSCO region proves to be closer to metallic, whereas the CSCO film deposited onto the NdGaO3 substrate is a Mott insulator with hopping conduction.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041
Antiferromagnetic topological superconductor and electrically controllable Majorana fermions.
Ezawa, Motohiko
2015-02-01
We investigate the realization of a topological superconductor in a generic bucked honeycomb system equipped with four types of mass-generating terms, where the superconductor gap is introduced by attaching the honeycomb system to an s-wave superconductor. Constructing the topological phase diagram, we show that Majorana modes are formed in the phase boundary. In particular, we analyze the honeycomb system with antiferromagnetic order in the presence of perpendicular electric field E(z). It becomes topological for |E(z)|>E(z)(cr) and trivial for |E(z)|superconductor by controlling applied electric field. One Majorana zero-energy bound state appears at the phase boundary. We can arbitrarily control the position of the Majorana fermion by moving the spot of applied electric field, which will be made possible by a scanning tunneling microscope probe.
Magnetic Orders and Fluctuations in the Dipolar Pyrochlore Antiferromagnet
Cepas, Olivier; Shastry, B. Sriram
2005-03-01
While the classical Heisenberg antiferromagnet on the pyrochlore lattice does not order, we will discuss, from a theoretical standpoint, possible magnetic phases induced by the dipole-dipole interactions. Such interactions play a role in systems such as Gd2Ti2O7 or Gd2Sn2O7 in stabilizing exotic forms of magnetic order, a subject of current debate. We will also argue that the external magnetic field induces multiple transitions, one of which is associated with no obvious broken symmetry, but can be characterized by a disorder parameter. Finally, Monte-Carlo simulations and Landau-Ginzburg expansion show that the dipolar Heisenberg model exhibits a fluctuation-induced first-order transition, thanks to the frustration and a continuous set of soft modes.
Magnetoelastic properties of antiferromagnetically coupled magnetic composite media
Valencia-Cardona, Juan J.; Leo, Perry H.
2016-08-01
We study the magnetic response of a ferromagnetic bilayer with antiferromagnetic coupling, where the layers experience magnetostrictive strains and epitaxial misfit strains. These strains cause the layers to stretch and bend as the magnetic spins of the layers rotate, resulting in elastic energy that adds to the magnetic energy of the system. The magnetic and elastic energies are computed as a function of spin direction in each layer for a given set of material and geometric parameters. By finding the rotations that minimize the total energy, we compute magnetic hysteresis loops for different combinations of magnetic and elastic parameters. The elastic contribution is reflected in the transitions at the corners of the hysteresis curves as well as in the coercive field of the main loop. The details of the elastic contribution depend in a complicated way on the magnetostriction of the layers, the epitaxial strain, the magnetic anisotropies, and the system geometry.
A quadrangular transverse Ising nanowire with an antiferromagnetic spin configuration
Kaneyoshi, T.
2015-11-01
The phase diagrams and the temperature dependences of magnetizations in a transverse Ising nanowire with an antiferromagnetic spin configuration are investigated by the use of the effective-field theory with correlations (EFT) and the core-shell concept. Many characteristic and unexpected behaviors are found for them, especially for thermal variation of total magnetization mT. The reentrant phenomenon induced by a transverse field in the core, the appearance of a compensation point, the non-monotonic variation with a compensation point, the reentrant phenomena with a compensation point and the existence of both a broad maximum and a compensation point have been found in the thermal variations of mT.
Spontaneous Pattern Formation in an Antiferromagnetic Quantum Gas
International Nuclear Information System (INIS)
In this Letter we report on the spontaneous formation of surprisingly regular periodic magnetic patterns in an antiferromagnetic Bose-Einstein condensate (BEC). The structures evolve within a quasi-one-dimensional BEC of 87Rb atoms on length scales of a millimeter with typical periodicities of 20...30 μm, given by the spin healing length. We observe two sets of characteristic patterns which can be controlled by an external magnetic field. We identify these patterns as linearly unstable modes within a mean-field approach and calculate their mode structure as well as time and energy scales, which we find to be in good agreement with observations. These investigations open new prospects for controlled studies of symmetry breaking and complex quantum magnetism in bulk BEC.
Spin waves in antiferromagnetically coupled bimetallic oxalates.
Reis, Peter L; Fishman, Randy S
2009-01-01
Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M(')(III) arranged on an open honeycomb lattice. Performing a Holstein-Primakoff expansion, we obtain the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of the crystal-field angular momentum L(2) and L(3) on the M(II) and M(')(III) sites. Our results are applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The presence or absence of magnetic compensation appears to have no effect on the spin-wave gap. PMID:21817242
Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho.
Rettig, L; Dornes, C; Thielemann-Kühn, N; Pontius, N; Zabel, H; Schlagel, D L; Lograsso, T A; Chollet, M; Robert, A; Sikorski, M; Song, S; Glownia, J M; Schüßler-Langeheine, C; Johnson, S L; Staub, U
2016-06-24
Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L_{3} absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p→5d) or quadrupole (E2, 2p→4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f-5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak. PMID:27391747
Jurčišinová, E.; Jurčišin, M.
2016-09-01
The antiferromagnetic spin-1 Ising model is studied on the Husimi lattice constructed from elementary triangles with coordination number z = 4. It is found that the model has a unique solution for arbitrary values of the magnetic field as well as for all temperatures. A detailed analysis of the magnetization is performed and it is shown that in addition to the standard plateau-like ground states, the model also contains well-defined single-point ground states related to definite values of the magnetic field. Exact values of the residual entropies for all ground states are found. The properties of the susceptibility and the specific heat of the model are also discussed. The existence of the Schottky-type behavior of the specific heat and the strong magnetocaloric effect for low enough temperatures and for the external magnetic field close to the values at which the single-point ground states exist are identified.
Lattice effects in YVO3 single crystal
Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM
2005-01-01
In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =
Magnetic properties of the S = 1/2 antiferromagnetic spin-chain α - Cu2V2O7
Gitgeatpong, Ganatee; Zhao, Yang; Avdeev, Maxim; Piltz, Ross; Sato, Taku; Matan, Kittiwit
2015-03-01
Magnetic properties of the S = 1 / 2 antiferromagnetic spin-chain, α - Cu2V2O7, have been studied using magnetization and neutron scattering measurements on powder and single-crystal samples. Magnetic susceptibility reveals a Curie-Weiss temperature of Θ = -73.2(9) K with a magnetic phase transition at TN = 33 K while the Bonner-Fisher fit to the magnetic susceptibility for T >TN with magnetic field perpendicular to the crystallographic a - axis yields the intra-chain coupling of |J|/k = 46.0(2) K. Small ferromagnetism below TN is due to spin-canting caused by Dzyaloshinskii-Moriya interactions. Analysis of the neutron diffraction data reveals that the Cu2+ spins are coupled antiferromagnetically along zigzag chains, which run alternately along [011] and [01-1] directions. The ordered moment of 0.925(3) μB is predominantly along the a - axis. Our recent inelastic neutron scattering, which reveals atypical magnetic excitations centered at commensurate wave vectors (0, +/-0.25, 0) around the magnetic zone center, will also be discussed.
Substrate-induced antiferromagnetism of an Fe monolayer on the Ir(001) surface
Kudrnovsky, Josef; Maca, Frantisek; Turek, Ilja; Redinger, Josef
2009-01-01
We present detailed ab initio study of structural and magnetic stability of a Fe-monolayer on the fcc(001) surface of iridium. The Fe-monolayer has a strong tendency to order antiferromagnetically for the true relaxed geometry. On the contrary an unrelaxed Fe/Ir(001) sample has a ferromagnetic ground state. The antiferromagnetism is thus stabilized by the decreased Fe-Ir layer spacing in striking contrast to the recently experimentally observed antiferromagnetism of the Fe/W(001) system which...
Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki
2016-01-01
The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Tobias
2010-08-27
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Order and disorder in two geometrically frustrated antiferromagnets
International Nuclear Information System (INIS)
A great deal of attention has been given in recent years to the search for spin systems, both theoretical and experimental, with disordered ground states. The origin of magnetic ordering is fairly well understood and most systems do display some form of long range order. Notable exceptions are systems with so-called spin liquid states. These states exhibit novel magnetic properties which can not be fully explained by current theories. To study magnetic systems with spin liquid ground states, we look for models in which we expect fluctuations to destroy long range order. Geometrically frustrated systems, in which lattice geometry enhances fluctuations and inhibits the formation of long range order, have attracted a tremendous amount of attention from both experimentalists and theorists. In this thesis, we study two geometrically frustrated magnetic systems. Classical magnetism and geometrical frustration are introduced in Chapter 1, while geometrical frustration in quantum mechanical spin systems is reviewed in Chapter 3. Our first study, detailed in Chapter 2, deals with how dipolar interactions affect the ground state ordering in a classical Heisenberg antiferromagnet on the pyrochlore lattice, a network of corner sharing tetrahedra. Antiferromagnetic exchange alone is known not to induce ordering in this system. We analyze low temperature order resulting from the combined interactions, both by using a mean-field approach and by examining the energy cost of fluctuations about an ordered state. We discuss behavior as a function of the ratio of the dipolar and exchange interaction strengths and find two types of ordered phase. Below a certain value of this ratio, we find that the system orders in a four-sublattice Neel state. For interaction strengths above this critical ratio, the system orders with an incommensurate wavevector. We relate our results to the recent experimental work and reproduce and extend the theoretical calculations on the pyrochlore compound, Gd
Energy Technology Data Exchange (ETDEWEB)
Alvarez, G., E-mail: memodin@yahoo.com [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico); Contreras, J. [Facultad de Química de la Universidad Nacional Autónoma de México, Cd. Universitaria, México DF 04510 (Mexico); Conde-Gallardo, A. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, México DF 07360 (Mexico); Montiel, H., E-mail: herlinda_m@yahoo.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-186, México DF 04510 (Mexico); Zamorano, R. [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico)
2013-12-15
An electron paramagnetic resonance (EPR) study of Bi{sub 2}Fe{sub 4}O{sub 9} powders is carried out in X-band (8.8–9.8 GHz) and the 200–350 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Fe{sup 3+} (S=5/2) ions. The onset of the para–antiferromagnetic transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH{sub pp}) and the resonant field (H{sub res}); a weak ferromagnetism is also observed at low temperature and it is attributed to canting of Fe{sup 3+} ion sublattices in the antiferromagnetic matrix. The magnetically modulated microwave absorption spectroscopy (MAMMAS) and the low-field microwave absorption (LFMA) are used to give further information on this material. These techniques give evidence of the magnetic transition, suggesting a weak ferromagnetism at low temperature. - Highlights: • The changes in lineshape of the EPR spectra in Bi{sub 2}Fe{sub 4}O{sub 9} powders are studied. • The onset of the para–antiferromagnetic transition is detected. • A weak ferromagnetism is also observed in this material. • MAMMAS and LFMA techniques are used to give a further knowledge on the bismuth ferrite.
Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers
Institute of Scientific and Technical Information of China (English)
章文; 翟亚; 鹿牧; 游彪; 翟宏如
2015-01-01
A general model of a hybrid interfacial domain wall (HIDW) in ferromagnetic/antiferromagnetic exchange biased bi-layers is proposed, where an interfacial domain wall is allowed to extend into either the ferromagnetic or antiferromagnetic layer or across both. The proposition is based on our theoretical investigation on thickness and field dependences of ferro-magnetic domain wall (FMDW) and antiferromagnetic domain wall (AFDW), respectively. Good match of the simulation to the hysteresis loops of a series of NiFe/FeMn exchange-biased bilayers confirms the existence of the HIDW, where the AFDW part is found to preferentially occupy the entire antiferromagnetic layer while the FMDW shrinks with the increased magnetic field as expected. The observed asymmetry between the ascending and descending branches of the hysteresis loop is explained naturally as a consequence of different partition ratios between AFDW and FMDW.
Energy Technology Data Exchange (ETDEWEB)
Jiang Qing; Zhong Chonggui
2002-12-30
Soft-mode theory based on DIFFOUR model for ferroelectric interaction and the mean-field theory of high spin Ising model for antiferromagnetic interaction are used to investigate the ferroelectric, antiferromagnetic, magnetoelectric properties in ferroelectromagnetic lattice in which the ferroelectric order and antiferromagnetic order coexist simultaneously below a certain temperature. Ferroelectric polarization, spin moment, and magnetoelectric susceptibility as well, as a function of temperature for system, are calculated and compared with the different coupling coefficient. It is found that an anomaly appears in curve of the polarization susceptibility as a function of temperature due to the coupling between the ferroelectric and antiferromagnetic orders in the ferroelectromagnetic lattice. At the same time, we also considered the influence of magnetoelectric effect on polarization susceptibility by applying the external field including electric and magnetic.
Spin waves and unidirectional anisotropy in ultra thin ferromagnetic/antiferromagnetic bilayer
Directory of Open Access Journals (Sweden)
H. Moradi
2005-06-01
Full Text Available In this paper a simple model calculation of spin wave is given for the ferromagtic layer in ultra thin ferromagnetic/antiferromagnetic bilayer. In this model the magnetic layer is assumed as an isolated layer but the effect of antiferromagnetic layer on ferromagnetic layer and unidirectional anisotropy, is given in the effective field applied on each spin. The thin layer is assumed as two-dimensional plate. In this model the exchange coupling and dipoles interactions are assumed in the ferromagnetic layer. The spin wave frequencies are calculated for long spin waves. The observed data is fitted into this theory. In the light of this theory, important information can be obtained about the existing fields in the ferromagnetic/antiferromagnetic bilayer. These studies are very important because the ferromagnetic/antiferromagnetic bilayer is used in sensors and spin valves that are used in reading data from the hard-disk of computer.
Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio
2015-01-01
High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417
Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks
Energy Technology Data Exchange (ETDEWEB)
Wu, J.; Carlton, D.; Park, J. S.; Meng, Y.; Arenholz, E.; Doran, A.; Young, A.T.; Scholl, A.; Hwang, C.; Zhao, H. W.; Bokor, J.; Qiu, Z. Q.
2010-12-21
In magnetic thin films, a magnetic vortex is a state in which the magnetization vector curls around the center of a confined structure. A vortex state in a thin film disk, for example, is a topological object characterized by the vortex polarity and the winding number. In ferromagnetic (FM) disks, these parameters govern many fundamental properties of the vortex such as its gyroscopic rotation, polarity reversal, core motion, and vortex pair excitation. However, in antiferromagnetic (AFM) disks, though there has been indirect evidence of the vortex state through observations of the induced FM-ordered spins in the AFM disk, they have never been observed directly in experiment. By fabricating single crystalline NiO/Fe/Ag(001) and CoO/Fe/Ag(001) disks and using X-ray Magnetic Linear Dichroism (XMLD), we show direct observation of the vortex state in an AFM disk of AFM/FM bilayer system. We observe that there are two types of AFM vortices, one of which has no analog in FM structures. Finally, we show that a frozen AFM vortex can bias a FM vortex at low temperature.
Detection of antiferromagnetic order by cooling atoms in an optical lattice
Yang, Tsung-Lin; Teles, Rafael; Hazzard, Kaden; Hulet, Randall; Rice University Collaboration
2016-05-01
We have realized the Fermi-Hubbard model with fermionic 6 Li atoms in a three-dimensional compensated optical lattice. The compensated optical lattice has provided low enough temperatures to produce short-range antiferromagnetic (AF) spin correlations, which we detect via Bragg scattering of light. Previously, we reached temperatures down to 1.4 times that of the AFM phase transition, more than a factor of 2 below temperatures obtained previously in 3D optical lattices with fermions. In order to further reduce the entropy in the compensated lattice, we implement an entropy conduit - which is a single blue detuned laser beam with a waist size smaller than the overall atomic sample size. This repulsive narrow potential provides a conductive metallic path between the low entropy core and the edges of the atomic sample where atoms may be evaporated. In addition, the entropy conduit may store entropy, thus further lowering the entropy in the core. We will report on the status of these efforts to further cool atoms in the optical lattice. Work supported by ARO MURI Grant, NSF and The Welch Foundation.
Heat switch effect in an antiferromagnetic insulator Co3V2O8
Zhao, X.; Wu, J. C.; Zhao, Z. Y.; He, Z. Z.; Song, J. D.; Zhao, J. Y.; Liu, X. G.; Sun, X. F.; Li, X. G.
2016-06-01
We report a heat switch effect in single crystals of an antiferromagnet Co3V2O8, that is, the thermal conductivity (κ) can be changed with magnetic field in an extremely large scale. Due to successive magnetic phase transitions at 12-6 K, the zero-field κ(T ) displays a deep minimum at 6.7 K and rather small magnitude at low temperatures. Both the temperature and field dependencies of κ demonstrate that the phonons are strongly scattered at the regime of magnetic phase transitions. Magnetic field can suppress magnetic scattering effect and significantly recover the phonon thermal conductivity. In particular, a 14 T field along the a axis increases the κ at 7.5 K up to 100 times. For H ∥c , the magnitude of κ can be suppressed down to ˜8% at some field-induced transition and can be enhanced up to 20 times at 14 T. The present results demonstrate that it is possible to design a kind of heat switch in the family of magnetic materials.
Fukushima, Akio; Yakushiji, Kay; Konoto, Makoto; Kubota, Hitoshi; Imamura, Hiroshi; Yuasa, Shinji
2016-02-01
We newly developed a magnetic memory cell having multi-bit function. The memory cell composed of a perpendicularly magnetized magnetic tunnel junction (MB-pMTJ) and a synthetic antiferromagnetic reference layer. The multi-bit function is realized by combining the freedom of states of the magnetic free layer and that in the antiferromagnetically coupled reference layer. The structure of the reference layer is (FeB/Ta/[Co/Pt]3)/Ru/([Co/Pt]6); the top and the bottom layers are coupled through Ru layer where the reference layer has two degrees of freedom of a head-to-head and a bottom-to-bottom magnetic configuration. A four-state memory cell is realized by combination of both degrees of freedom. The states in the reference layer however is hardly detected by the total resistance of MB-pMTJ, because the magnetoresistance effect in the reference layer is negligibly small. That implies that the resistance values for the different states in the reference layer are degenerated. On the other hand, the two different states in the reference layer bring different stray fields to the free layer, which generate two different minor loop with different switching fields. Therefore, the magnetic states in the reference layer can be differentiated by the two-step reading, before and after applying the appropriately pulsed magnetic field which can identify the initial state in the reference layer. This method is similar to distinguishing different magnetic states in an in-plane magnetized spin-valve element. We demonstrated that four different states in the MB-pMTJ can be distinguished by the two-step read-out. The important feature of the two-step reading is a practically large operation margins (large resistance change in reading) which is equal to that of a single MTJ. Even though the two-step reading is a destructive method by which 50% of the magnetic state is changed, this MB-pMTJ is promising for high density non-volatile memory cell with a minor cost of operation speed.
Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains
International Nuclear Information System (INIS)
Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4·H2O (1) and BaCu2Ge3O9·H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P21/c with a=5.1320(2) Å, b=16.1637(5) Å, c=5.4818(2) Å, β=102.609(2)°, V=443.76(3) Å3 and Z=4. This copper germanate contains layers of composition [CuGeO4]∞2− comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) Å, b=10.8606(9) Å, c=13.5409(8) Å, V=817.56(9) Å3 and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner–Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K—the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the χT plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. - Graphical abstract: Copper chains present in CaCuGeO4·H2O and BaCu2Ge3O9·H2O, two novel copper germanates synthesized hydrothermally, showing antiferromagnetic and ferromagnetic intra-chain interactions respectively. Highlights: ► The structure of two new chain containing copper germinates is reported. ► The calcium compound CaCuGeO4·H2O contains
Bauer, Johannes; Sachdev, Subir(Department of Physics, Harvard University, Cambridge, MA, 02138, USA)
2015-01-01
We study charge ordered solutions for fermions on a square lattice interacting with dynamic antiferromagnetic fluctuations. Our approach is based on real space Eliashberg equations which are solved self-consistently. We first show that the antiferromagnetic fluctuations can induce arc features in the spectral functions, as spectral weight is suppressed at the hot spots; however, no real pseudogap is generated. At low temperature spontaneous charge order with a $d$-form factor can be stabilize...
Spin Dynamics and Critical Fluctuations in a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.;
1975-01-01
A comprehensive elastic- and inelastic-neutron-scattering study of the binary mixed antiferromagnet Rb2Mn0.5Ni0.5F4 has been carried out. The pure materials, Rb2MnF4 and Rb2NiF4 are [2d] near-Heisenberg antiferromagnets of the K2NiF4 type. Elastic-scattering experiments demonstrate that the Mn...
Magnetoelectric and antiferromagnetic photogalvanic effects in RMn2O5 oxides: A symmetric approach
Men'shenin, V. V.
2012-10-01
Possible magnetic states of the commensurate antiferromagnetic manganate phase with a nonzero wave vector of the structure have been analyzed within the group-theoretical approach using only the space symmetry group. A phenomenological description of the magnetoelectric effect has been performed and the possibility of the existence of the antiferromagnetic photogalvanic effect in this phase has been established using the magnetic states obtained in this study.
Design of Co/ Pd multilayer system with antiferromagnetic-to-ferromagnetic phase transition
Thiele, Jan-Ulrich; Hauet, Thomas; Hellwig, Olav
2008-01-01
International audience Among the known magnetic material systems, most are either purely antiferromagnetic or purely ferromagnetic at temperatures up to their critical temperature. There are only very few examples of materials that undergo a temperature dependent phase transition from an antiferromagnetic to a ferromagnetic phase or vice versa, and of these, only the chemically ordered alloy FeRh exhibits this transition near room temperature. Here we present a perpendicular anisotropy mul...
Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2
Directory of Open Access Journals (Sweden)
Ekkehard Krüger
2016-09-01
Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.
Schwandt, David; Mambrini, Matthieu; Poilblanc, Didier
2010-06-01
We propose a general nonperturbative scheme that quantitatively maps the low-energy sector of spin-1/2 frustrated Heisenberg antiferromagnets to effective generalized quantum dimer models. We develop the formal lattice-independent frame and establish some important results on (i) the locality of the generated Hamiltonians, (ii) how full resummations can be performed in this renormalization scheme. The method is then applied to the much debated kagome antiferromagnet for which a fully resummed effective Hamiltonian—shown to capture the essential properties and provide deep insights on the microscopic model [D. Poilblanc, M. Mambrini, and D. Schwandt, Phys. Rev. B 81, 180402(R) (2010)]—is derived.
Spin-transfer torques in antiferromagnetic textures: Efficiency and quantification method
Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo
2016-08-01
We formulate a theory of spin-transfer torques in textured antiferromagnets, which covers the small to large limits of the exchange coupling energy relative to the kinetic energy of the intersublattice electron dynamics. Our theory suggests a natural definition of the efficiency of spin-transfer torques in antiferromagnets in terms of well-defined material parameters, revealing that the charge current couples predominantly to the antiferromagnetic order parameter and the sublattice-canting moment in, respectively, the limits of large and small exchange coupling. The effects can be quantified by analyzing the antiferromagnetic spin-wave dispersions in the presence of charge current: in the limit of large exchange coupling the spin-wave Doppler shift always occurs, whereas, in the opposite limit, the only spin-wave modes to react to the charge current are ones that carry a pronounced sublattice-canting moment. The findings offer a framework for understanding and designing spin-transfer torques in antiferromagnets belonging to different classes of sublattice structures such as, e.g., bipartite and layered antiferromagnets.
Insight into the antiferromagnetic structure manipulated by electronic reconstruction
Cui, B.; Li, F.; Song, C.; Peng, J. J.; Saleem, M. S.; Gu, Y. D.; Li, S. N.; Wang, K. L.; Pan, F.
2016-10-01
Antiferromagnetic (AFM) materials, with robust rigidity to magnetic field perturbations and ultrafast spin dynamics, show great advantages in information storage and have developed into a fast-emerging field of AFM spintronics. However, a direct characterization of spin alignments in AFM films has been challenging, and their manipulation by lattice distortion and magnetic proximity is inevitably accompanied by "ferromagnetic" features within the AFM matrix. Here we resolve the G -type AFM structure of SrCo O2.5 and find that the interfacial AFM structure could be modulated intrinsically from in plane to out of plane with a canted angle of 60∘ by the charge transfer and orbital reconstruction in SrCo O2.5/L a2 /3S r1 /3Mn O3 heterostructures both experimentally and theoretically. Such an interfacial AFM reconfiguration caused by electronic reconstruction does not cause the ferromagnetic feature and changes the magnetization switching process of L a2 /3S r1 /3Mn O3 from in plane to perpendicular to the plane, in turn. Our study not only reveals the coupling between charge, orbital, and AFM structure, but also provides a unique approach to manipulating AFM structure.
Ferromagnetic and antiferromagnetic order in bacterial vortex lattices
Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.
2016-04-01
Despite their inherently non-equilibrium nature, living systems can self-organize in highly ordered collective states that share striking similarities with the thermodynamic equilibrium phases of conventional condensed-matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies, microbial suspensions and tissues to the coherent macro-scale dynamics in schools of fish and flocks of birds. Yet, the generic mathematical principles that govern the emergence of structure in such artificial and biological systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct patterns characterized by ferro- and antiferromagnetic order. The coupling between adjacent vortices can be controlled by tuning the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currents, reminiscent of those in quantum systems. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems.
Quantum order by disorder in frustrated diamond lattice antiferromagnets.
Bernier, Jean-Sébastien; Lawler, Michael J; Kim, Yong Baek
2008-07-25
We present a quantum theory of frustrated diamond lattice antiferromagnets. Considering quantum fluctuations as the predominant mechanism relieving spin frustration, we find a rich phase diagram comprising of six phases with coplanar spiral ordering in addition to the Néel phase. By computing the specific heat of these ordered phases, we obtain a remarkable agreement between (k, k, 0) spiral ordering and the experimental specific heat data for the diamond lattice spinel compounds MnSc2S4, Co3O4, and CoRh2O4, i.e., specific heat data is a strong evidence for (k, k, 0) spiral ordering in all of these materials. This prediction can be tested in future neutron scattering experiments on Co3O4 and CoRh2O4, and is consistent with existing neutron scattering data on MnSc2S4. Based on this agreement, we infer a monotonically increasing relationship between frustration and the strength of quantum fluctuations. PMID:18764361
Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides.
Gu, Mingqiang; Rondinelli, James M
2016-04-29
We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.
Jamming Behavior of Domain Walls in an Antiferromagnetic Film
Sinha, Sunil
2014-03-01
Over the last few years, attempts have been made to unify many aspects of the freezing behavior of glasses, granular materials, gels, supercooled liquids, etc. into a general conceptual framework of what is called jamming behavior. This occurs when particles reach packing densities high enough that their motions become highly restricted. A general phase diagram has been proposed onto which various materials systems, e.g glasses or granular materials, can be mapped. We will discuss some recent applications of resonant and non-resonant soft X-ray Grazing Incidence Scattering to mesoscopic science, for example the study of magnetic domain wall fluctuations in thin films. For these studies, we use resonant magnetic x-ray scattering with a coherent photon beam and the technique of X-ray Photon Correlation Spectroscopy. find that at the ordering temperature the domains of an antiferromagnetic system, namely Dysprosium metal, behave very much also like a jammed system and their associated fluctuations exhibit behavior which exhibit some of the universal characteristics of jammed systems, such as non-exponential relaxation and Vogel-Fulcher type freezing. Work supported by Basic Energy Sciences, U.S. Dept. of Energy under Grant Number: DE-SC0003678.
Spin torque antiferromagnetic nanooscillator in the presence of magnetic noise
Directory of Open Access Journals (Sweden)
H. Gomonay
2012-12-01
Full Text Available Spin-torque effects in antiferromagnetic (AFM materials are of great interest due to the possible applications as high-speed spintronic devices. In the present paper we analyze the statistical properties of the current-driven AFM nanooscillator that result from the white Gaussian noise of magnetic nature. According to the peculiarities of deterministic dynamics, we derive the Langevin and Fokker-Planck equations in the energy representation of two normal modes. We find the stationary distribution function in the subcritical and overcritical regimes and calculate the current dependence of the average energy, energy fluctuation and their ratio (quality factor. The noncritical mode shows the Boltzmann statistics with the current-dependent effective temperature in the whole range of the current values. The effective temperature of the other, i.e., soft, mode critically depends on the current in the subcritical region. Distribution function of the soft mode follows the Gaussian law above the generation threshold. In the overcritical regime, the total average energy and the quality factor grow with the current value. This raises the AFM nanooscillators to the promising candidates for active spintronic components.
Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks
Zhang, Xichao; Ezawa, Motohiko; Zhou, Yan
2016-08-01
A magnetic skyrmion is a topological magnetization structure with a nanometric size and a well-defined swirling spin distribution, which is anticipated to be an essential building block for novel skyrmion-based device applications. We study the motion of magnetic skyrmions in multilayer synthetic antiferromagnetic (SAF) racetracks as well as in conventional monolayer ferromagnetic (FM) racetracks at finite temperature. There is an odd-even effect of the constituent FM layer number on the skyrmion Hall effect (SkHE). Namely, due to the suppression of the SkHE, the magnetic skyrmion has no transverse motion in multilayer SAF racetracks packed with even FM layers. It is shown that a moving magnetic skyrmion is stable even at room temperature (T =300 K) in a bilayer SAF racetrack but it is destructed at T =100 K in a monolayer FM racetrack. Our results indicate that the SAF structures are reliable and promising candidates for future applications in skyrmion electronics and skyrmion spintronics.
Magnetic and calorimetric studies of antiferromagnetic transitions in erbium sesquisulfide
Energy Technology Data Exchange (ETDEWEB)
Wang, C.R.; Chen, Y.Y.; Yao, Y.D.; Lin, Y.S.; Ou, M.N.; Taher, S.M.A.; Hamdeh, H.H.; Zhang, X.; Ho, J.C. E-mail: james.ho@wichita.edu; Gruber, J.B.John B
2004-03-01
Magnetic measurements reveal an antiferromagnetic transition in erbium sesquisulfide ErS{sub 1.5} (Er{sub 2}S{sub 3}). The Neel temperature T{sub N} decreases from approximately 3 K at low fields to below 1.8 K at 9000 G. A Curie-Weiss fit to the low-field data between 100 and 300 K yields an effective magnetic moment of 9.65 {mu}{sub B} per Er{sup 3+}. Zero-field calorimetric measurements between 0.7 and 8 K also show a corresponding specific heat peak at T{sub N}. Not expected, however, is the presence of a lower-temperature specific heat shoulder near 2 K. An entropy analysis indicates that both anomalies provide a total of R ln 2 as expected for the Er{sup 3+} ordering, suggesting that the two non-equivalent Er{sup 3+} sites in the monoclinic lattice have different transition temperatures near 3 and 2 K, respectively.
Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets
Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.
2016-05-01
Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.
Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers
Energy Technology Data Exchange (ETDEWEB)
Fan, P.; Arena, D.; Kinane, C.J.; Charlton, T.R.; Dorner, R.; Ali, M.; de Vries, A. de.; Brydson, R.M.D.; Marrows, C.H.; Hickey, B.J.; Tanner, B.K.; Nisbet, G.; and Langridge, S.
2010-07-15
The nanoscale magnetic structure of FeRh epilayers has been studied by polarized neutron reflectometry. Epitaxial films with a nominal thickness of 500 {angstrom} were grown on MgO (001) substrates via molecular-beam epitaxy and capped with 20 {angstrom} of MgO. The FeRh films show a clear transition from the antiferromagnetic (AF) state to the ferromagnetic (FM) state with increasing temperature. Surprisingly the films possess a FM moment even at a temperature 80 K below the AF-FM transition temperature of the film. We have quantified the magnitude and spatial extent of this FM moment, which is confined to within {approx}60-80 {angstrom} of the FeRh near the top and bottom interfaces. These interfacial FM layers account for the unusual effects previously observed in films with thickness <100 {angstrom}. Given the delicate energy balance between the AF and FM ground states we suggest a metastable FM state resides near to the interface within an AF matrix. The length scale over which the FM region resides is consistent with the strained regions of the film.
Non-collinear antiferromagnets and the anomalous Hall effect
Kübler, J.; Felser, C.
2014-12-01
The anomalous Hall effect is investigated theoretically by employing density functional calculations for the non-collinear antiferromagnetic order of the hexagonal compounds Mn3Ge and Mn3Sn using various planar triangular magnetic configurations as well as unexpected non-planar configurations. The former give rise to anomalous Hall conductivities (AHC) that are found to be extremely anisotropic. For the planar cases the AHC is connected with Weyl points in the energy-band structure. If this case were observable in Mn3Ge, a large AHC of about σzx≈ 900 (Ω \\text{cm})-1 should be expected. However, in Mn3Ge it is the non-planar configuration that is energetically favored, in which case it gives rise to an AHC of σxy≈ 100 (Ω \\text{cm})-1 . The non-planar configuration allows a quantitative evaluation of the topological Hall effect that is seen to determine this value of σxy to a large extent. For Mn3Sn it is the planar configurations that are predicted to be observable. In this case the AHC can be as large as σyz≈250 (Ω \\text{cm})-1 .
Relaxation rates of electronic and nuclear magnons in antiferromagnetic materials
International Nuclear Information System (INIS)
The mechanisms that contribute for the spin-wave relaxation rate in antiferromagnetic materials that belong to two different families, one with cubic simmetry and the other one with uniaxial simmetry are discussed. The typical representatives of these two classes are RbMnF3 and MnF2, respectively. We have done an unified theory to explain the nuclear and electronic spin-wave relaxation rates in RbMnF3 which is based on a mechanism that arises from the crystalline inhomogeneities. The theory was good for both cases, where three-magnon confluence processes without momentum conservation (due to inhomogeneities) were able to explain the general features of the relaxation rates. We have also performed measurements of the AFMR linewidth of MnF2 doped with different concentrations of cobalt and taken care of minimizing the radiation damping. The experimental data were explained by non-momentum conserving magnon-phonon processes. Our results lead to believe that non-momentum conserving processes are the most suitable to explain relaxation rates in materials where one can not define a translational simmetry in the lattice. (author)
Tuning frustrated antiferromagnetism in intermetallic AFe4X2 systems
International Nuclear Information System (INIS)
Magnetic systems with reduced dimensionality or frustration are attracting strong interest because these features lead to an increase of quantum fluctuations which often results in unusual, very interesting properties. Here we present a detailed study of the intermetallic AFe4X2 compounds (A=Sc,Y,Lu,Zr; X=Si,Ge) crystallizing in the ZrFe4Si2 structure type in which the Fe-sublattice is formed by chains of edge-linked tetrahedra. We synthesized polycrystalline samples of all these compounds and investigated their magnetic, thermodynamic, structural and transport properties. Our results indeed evidence this family of compounds to cover the whole regime from frustrated antiferromagnetic (AFM) order up to the quantum critical point separating the AFM ground state from the paramagnetic ground state. All compounds with trivalent A elements show frustrated AFM order. Replacement of trivalent A by tetravalent Zr shifts the system towards an unstable magnetic state. Since YFe4Si2 and ZrFe4Si2 present peculiar features, we also studied the influence of different annealing conditions and slight off-stoichiometry on their unusual properties.
International Nuclear Information System (INIS)
Time-of-flight and polarized triple axis neutron scattering is used to probe the spin excitations of Cu(DCOO)2x4D2O and La2-xSrxCuO4. The first part of the thesis contains an investigation of the excitation spectrum of the square lattice S = 1/2 Heisenberg antiferromagnet Cu(DCOO)24D2O. Along the antiferromagnetic zone boundary a pronounced intensity variation is found for the dominant single-magnon excitations. This variation tracks an already known zone boundary dispersion. Using polarization analysis to separate the components of the excitation spectrum, a continuum of longitudinally polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described by linear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo computations. In the second part of the thesis, the spin excitation spectra of the high temperature superconductors La1.90Sr0.10CuO4 and La1.84Sr0.16Cu characterized. The main discovery is that the excitations are dispersive at both doping levels. The dispersion strongly resembles that seen in other high-Tc superconductors. The presence of dispersive excitations does not require superconductivity to exist. For La1.84Sr0.16CuO4, but not for La1.90Sr0.10CuO4, the onset superconductivity gives rise to a spectral weight shift which displays qualitative and quantitative similarities to the resonance mode observed in other high-Tc superconductors. (au)
Energy Technology Data Exchange (ETDEWEB)
Bech Christensen, N
2005-01-01
Time-of-flight and polarized triple axis neutron scattering is used to probe the spin excitations of Cu(DCOO){sub 2}x4D{sub 2}O and La{sub 2-x}Sr{sub x}CuO{sub 4}. The first part of the thesis contains an investigation of the excitation spectrum of the square lattice S = 1/2 Heisenberg antiferromagnet Cu(DCOO){sub 2}4D{sub 2}O. Along the antiferromagnetic zone boundary a pronounced intensity variation is found for the dominant single-magnon excitations. This variation tracks an already known zone boundary dispersion. Using polarization analysis to separate the components of the excitation spectrum, a continuum of longitudinally polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described by linear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo computations. In the second part of the thesis, the spin excitation spectra of the high temperature superconductors La{sub 1.90}Sr{sub 0.10}CuO{sub 4} and La{sub 1.84}Sr{sub 0.16}Cu characterized. The main discovery is that the excitations are dispersive at both doping levels. The dispersion strongly resembles that seen in other high-T{sub c} superconductors. The presence of dispersive excitations does not require superconductivity to exist. For La{sub 1.84}Sr{sub 0.16}CuO{sub 4}, but not for La{sub 1.90}Sr{sub 0.10}CuO{sub 4}, the onset superconductivity gives rise to a spectral weight shift which displays qualitative and quantitative similarities to the resonance mode observed in other high-T{sub c} superconductors. (au)
Koplak, O. V.; Chernenkaya, A.; Medjanik, K.; Brambilla, A.; Gloskovskii, A.; Calloni, A.; Schönhense, G.; Ciccacci, F.; Morgunov, R. B.
2014-01-01
Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the (DOEO)$_4$[HgBr$_4$]TCE organic semiconductor. Localization starts in the region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of antiferromagnetic inclusions (droplets), individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types o...
DEFF Research Database (Denmark)
Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas;
2011-01-01
,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged...... at different muon stopping sites. Muon time spectra measured at weak longitudinal fields and temperatures much higher than T-N can be well described using a single muon site with an exponential muon spin relaxation that gradually changes into an stretched exponential on approaching T-N. The temperature...
DEFF Research Database (Denmark)
Donolato, M.; Gobbi, M.; Cantoni, M.;
2010-01-01
The depinning field of a domain wall in a permalloy nanostructure can be used to detect the presence of a magnetic particle. In this device the displacement of the domain wall in a sweeping magnetic field produces a variation of the voltage drop across a corner due to the anisotropic...
Modulated antiferromagnetic structure of Nd1-xPrx single crystals
DEFF Research Database (Denmark)
McEwen, K. A.; Lebech, Bente; Fort, D.
1986-01-01
Neutron diffraction studies of Nd0.75Pr0.25 and Nd0.65Pr0.35 are reported for T≥3K. The magnetic structure of these DHCP alloys is simpler than that of pure Nd: only satellites with qh≈0.13 τ100 were found. The structure has moments on both the hexagonal and cubic sites...
Sanjeewa, Liurukara D; McGuire, Michael A; McMillen, Colin D; Cao, Huibo; Kolis, Joseph W
2016-01-01
The descloizite-type compound, SrMn(VO4)(OH), was synthesized as large single crystals using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P212121. The structure exhibits a one-dimensional feature, with MnO4 chains propagating along the a-axis which are interconnected by VO4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J/kB = 9.97(3) K between nearest Mn neighbors and a canted antiferromagnetic behavior below TN = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicu...
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V. V.; Springholz, G.; Holý, V.; Jungwirth, T.
2016-06-01
Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets.
Hubbard one-particle Green function in the antiferromagnetic phase
International Nuclear Information System (INIS)
An analytic approach is presented of electronic one-particle spectra of the one-band Hubbard model at half filling in the antiferromagnetic phase. Starting from the strong-coupling regime U>t, a projection technique is used to set up self-consistent coupled equations for the electron Green function, which are valid down to values U∼t. The self-consistent equation for the hole propagator is a direct generalization of the one found from the t-J model. This gives further support to the open-quotes stringclose quotes picture, where propagation of holes creates strings of overturned spins with which the holes interact. Hopping of holes (or electrons) with up spin on the down sublattice is also taken into acount, as well as transitions between the lower and upper Hubbard bands. These are shown to change significantly the incoherent part of the t-J model spectra, by smearing out the shake-off peaks, reminiscent of higher bound string states due to multispin scattering. Coherent (quasiparticle) peaks exist at the band edges, on both sides of the insulating gap. With decreasing U the quasiparticle concept loses its meaning for wave vectors at the center of the magnetic Brillouin zone (MBZ). For large values of U the dispersion of the quasiparticle is found to scale with its band width, which is of order J. Extrema are always found at k=(π/2,π/2). The weight of the quasiparticle at this k value decreases logarithmically with increasing U. In the strong-coupling limit the spectrum tends to be symmetric, i.e., to become an even function of the frequency around the chemical potential, for any wave vector. For small values of U the dispersion at the edge of the MBZ flattens away. The spectral function in this regime, for wave vectors away from the edge of the MBZ, is concentrated mainly on one side of the chemical potential. copyright 1996 The American Physical Society
Doping effects on the magnetic properties of NdRhIn{sub 5} intermetallic antiferromagnet
Energy Technology Data Exchange (ETDEWEB)
Lora-Serrano, R., E-mail: rlora@ifi.unicamp.b [Instituto de Fisica ' Gleb Wataghin' , UNICAMP, 13083-970 Campinas-Sao Paulo (Brazil); Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902 Uberlandia-MG (Brazil); Garcia, D.J. [Instituto de Fisica ' Gleb Wataghin' , UNICAMP, 13083-970 Campinas-Sao Paulo (Brazil); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) and Centro Atomico Bariloche, S.C. de Bariloche, Rio Negro (Argentina); Miranda, E.; Adriano, C.; Bufaical, L.; Duque, J.G.S.; Pagliuso, P.G. [Instituto de Fisica ' Gleb Wataghin' , UNICAMP, 13083-970 Campinas-Sao Paulo (Brazil)
2009-10-15
We report temperature dependent heat capacity and magnetization measurements on single crystals of Nd{sub 1-x}La{sub x}RhIn{sub 5} (x=0.15, 0.4 and 0.5) and NdRhIn{sub 5-x}Sn{sub x} (x=0.08, 0.12 and 0.24). NdRhIn{sub 5} is an antiferromagnetic (AFM) compound with T{sub N}approx 11 K which crystallizes in the same layered tetragonal structure of the CeMIn{sub 5} family (M=Rh, Co and Ir), where different ground states can be found by tuning the interplay among different microscopic interactions such as the Kondo effect, crystal field (CEF) effects and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) magnetic interaction. Here, we explore the evolution of the AFM correlations in this Nd-based (non-Kondo) compound while perturbing the RKKY exchange by using two different substitutions: (i) replacing Nd{sup 3+} by non-magnetic La{sup 3+} within NdIn{sub 3} atomic planes (dilution) and (ii) substituting In by Sn in the In-sites (electronic tuning). For both types of doping, our results show the suppression of the AFM state as the La- or Sn-content is increased. This doping induced suppression of the AFM order is discussed considering the effects of dilution and effects in the tetragonal CEF using a mean-field model applied to the observed data. Our results are compared to the properties of other members of the RRhIn{sub 5} family considering the role of dimensionality in the magnetic interactions.
Topological Many-Body States in Quantum Antiferromagnets via Fuzzy Supergeometry
Directory of Open Access Journals (Sweden)
Keisuke Totsuka
2013-04-01
Full Text Available Recent vigorous investigations of topological order have not only discovered new topological states of matter, but also shed new light on “already known” topological states. One established example with topological order is the valence bond solid (VBS states in quantum antiferromagnets. The VBS states are disordered spin liquids with no spontaneous symmetry breaking, but most typically manifest a topological order known as a hidden string order on the 1D chain. Interestingly, the VBS models are based on mathematics analogous to fuzzy geometry. We review applications of the mathematics of fuzzy supergeometry in the construction of supersymmetric versions of VBS (SVBS states and give a pedagogical introduction of SVBS models and their properties. As concrete examples, we present detailed analysis of supersymmetric versions of SU(2 and SO(5 VBS states, i.e., UOSp(N|2 and UOSp(N|4 SVBS states, whose mathematics are closely related to fuzzy two- and four-superspheres. The SVBS states are physically interpreted as hole-doped VBS states with a superconducting property that interpolates various VBS states, depending on the value of a hole-doping parameter. The parent Hamiltonians for SVBS states are explicitly constructed, and their gapped excitations are derived within the single-mode approximation on 1D SVBS chains. Prominent features of the SVBS chains are discussed in detail, such as a generalized string order parameter and entanglement spectra. It is realized that the entanglement spectra are at least doubly degenerate, regardless of the parity of bulk (superspins. The stability of the topological phase with supersymmetry is discussed, with emphasis on its relation to particular edge (superspin states.
Energy Technology Data Exchange (ETDEWEB)
Fernández-Pacheco, A., E-mail: af457@cam.ac.uk; Mansell, R.; Petit, D.; Lee, J. H.; Cowburn, R. P. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ummelen, F. C.; Swagten, H. J. M. [Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2014-09-01
We have designed a bilayer synthetic antiferromagnet where the order of layer reversal can be selected by varying the sweep rate of the applied magnetic field. The system is formed by two ultra-thin ferromagnetic layers with different proximities to the spin reorientation transition, coupled antiferromagnetically using Ruderman-Kittel-Kasuya-Yosida interactions. The different dynamic magnetic reversal behavior of both layers produces a crossover in their switching fields for field rates in the kOe/s range. This effect is due to the different effective anisotropy of both layers, added to an appropriate asymmetric antiferromagnetic coupling between them. Field-rate controlled selective switching of perpendicular magnetic anisotropy layers as shown here can be exploited in sensing and memory applications.
Spin Hall effects in metallic antiferromagnets – perspectives for future spin-orbitronics
Directory of Open Access Journals (Sweden)
Joseph Sklenar
2016-05-01
Full Text Available We investigate angular dependent spin-orbit torques from the spin Hall effect in a metallic antiferromagnet using the spin-torque ferromagnetic resonance technique. The large spin Hall effect exists in PtMn, a prototypical CuAu-I-type metallic antiferromagnet. By applying epitaxial growth, we previously reported an appreciable difference in spin-orbit torques for c- and a-axis orientated samples, implying anisotropic effects in magnetically ordered materials. In this work we demonstrate through bipolar-magnetic-field experiments a small but noticeable asymmetric behavior in the spin-transfer-torque that appears as a hysteresis effect. We also suggest that metallic antiferromagnets may be good candidates for the investigation of various unidirectional effects related to novel spin-orbitronics phenomena.
Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets
Železný, J.
2014-10-06
We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.
Indications of c-axis Charge Transport in Hole Doped Triangular Antiferromagnets
Institute of Scientific and Technical Information of China (English)
LIANG Ying; LIU Bin; FENG Shi-Ping
2004-01-01
The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the tJ model by considering the incoherent interlayer hopping.It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation.The c-axis conductivity spectrum shows a lov-energy peak and the unusual high-energy broad band,while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the Iow temperature insulating-like behavior,which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.
Exchange bias up to room temperature in antiferromagnetic hexagonal Mn3Ge
Qian, J. F.; Nayak, A. K.; Kreiner, G.; Schnelle, W.; Felser, C.
2014-07-01
Mn3.04Ge0.96 has a hexagonal crystal structure, which can be stabilized by high-temperature annealing, and shows antiferromagnetic order with a small ferromagnetic component of less than 0.1μB and a coercivity of 0.45 T. In the ordered phase, magnetization curves M(H) exhibit an exchange bias of 62 mT at T = 2 K after field cooling, which is observable up to room temperature. The exchange anisotropy is suggested to originate from the exchange interaction between the host of triangular-antiferromagnetic Mn3Ge units and embedded ferrimagnetic-like clusters. Such clusters develop when excess Mn atoms occupy empty Ge sites in the original triangular-antiferromagnetic structure of Mn3Ge.
Institute of Scientific and Technical Information of China (English)
ZHAO Jin-Wei; HU Jing-Guo; CHEN Guang
2004-01-01
The temperature dependence of exchange bias and coercivity in a ferromagnetic layer coupled with an antiferromagnetic layer is discussed.In this model,the temperature dependence comes from the thermal instability of the system states and the temperature modulated relative magnetic parameters.Morever,the thermal fluctuation of orientations of easy axes of antiferromagnetic grains at preparing has been considered.From the present model,the experimental results can be illustrated qualitatively for available magnetic parameters.Based on our discussion,we can conclude that soft ferromagnetic layer coupled by hard antiferromagnetic layer may be very applicable to design magnetic devices.In special exchange coupling,we can get high exchange bias and low coercivity almost independent of temperature for proper temperature ranges.
Energy Technology Data Exchange (ETDEWEB)
Drichko, Natalia; Hackl, Rudi; Schlueter, John A.
2015-10-15
Using Raman scattering, the quasi-two-dimensional organic superconductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br (T-c = 11.8 K) and the related antiferromagnet kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl are studied. Raman scattering provides unique spectroscopic information about magnetic degrees of freedom that has been otherwise unavailable on such organic conductors. Below T = 200 K a broad band at about 500 cm(-1) develops in both compounds. We identify this band with two-magnon excitation. The position and the temperature dependence of the spectral weight are similar in the antiferromagnet and in the metallic Fermi liquid. We conclude that antiferromagnetic correlations are similarly present in the magnetic insulator and the Fermi-liquid state of the superconductor.
Institute of Scientific and Technical Information of China (English)
LIU Zhao-Sen; Sechovsk(y) Vladimir; Divi(s) Martin
2011-01-01
@@ A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell.We study the magnetic properties in the presence and absence of an external magnetic field.Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the field direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core.%A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell. We study the magnetic properties in the presence and absence of an external magnetic field. Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the Geld direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core.
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.
Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya
2015-11-12
In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields. PMID:26524519
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.
Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya
2015-11-12
In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields.
Synthetic antiferromagnet with Heusler alloy Co2FeAl ferromagnetic layers
Xu, X. G.; Zhang, D L; Li, X. Q.; Bao, J.; Jiang, Y.
2009-01-01
Heusler alloy Co2FeAl was employed as ferromagnetic layers in Co2FeAl/Ru/Co2FeAl synthetic antiferromagnet structures. The experimental results show that the structure with a Ru thickness of 0.45 nm takes on strongly antiferromagnetic coupling, which maintains up to 150 oC annealing for 1 hour. The structure has a very low saturation magnetization Ms of 425 emu/cc, a low switching field Hsw of 4.3 Oe and a high saturation field Hs of 5257 Oe at room temperature, which are favorable for applic...
Critical Behaviour of Pure and Site-Random Two Dimensional Antiferromagnets
DEFF Research Database (Denmark)
Birgenau, R. J.; Als-Nielsen, Jens Aage; Shirane, G.
1977-01-01
Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T......Quasielastic neutron scattering studies of the static critical behavior in the two-dimensional antiferromagnets K2NiF4, K2MnF4, and Rb2Mn0.5Ni0.5F4 are reported. For T...
Giant electrothermal conductivity and spin-phonon coupling in an antiferromagnetic oxide.
Chiorescu, C; Neumeier, J J; Cohn, J L
2008-12-19
The application of weak electric fields ( less, similar 100 V/cm) is found to dramatically enhance the lattice thermal conductivity of the antiferromagnetic insulator CaMnO3 over a broad range of temperature about the Néel ordering point (125 K). The effect is coincident with field-induced detrapping of bound electrons, suggesting that phonon scattering associated with short- and long-ranged antiferromagnetic order is suppressed in the presence of the mobilized charge. This interplay between bound charge and spin-phonon coupling might allow for the reversible control of spin fluctuations using weak external fields.
Inertia-Free Thermally Driven Domain-Wall Motion in Antiferromagnets
Selzer, Severin; Atxitia, Unai; Ritzmann, Ulrike; Hinzke, Denise; Nowak, Ulrich
2016-09-01
Domain-wall motion in antiferromagnets triggered by thermally induced magnonic spin currents is studied theoretically. It is shown by numerical calculations based on a classical spin model that the wall moves towards the hotter regions, as in ferromagnets. However, for larger driving forces the so-called Walker breakdown—which usually speeds down the wall—is missing. This is due to the fact that the wall is not tilted during its motion. For the same reason antiferromagnetic walls have no inertia and, hence, no acceleration phase leading to higher effective mobility.
DEFF Research Database (Denmark)
Gammelmark, Søren; Eckardt, André
2013-01-01
We theoretically study the adiabatic preparation of an antiferromagnetic phase in a mixed Mott insulator of two bosonic atom species in a one-dimensional optical lattice. In such a system one can engineer a tunable parabolic inhomogeneity by controlling the difference of the trapping potentials...... felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...
Energy Technology Data Exchange (ETDEWEB)
Finazzi, M.; Brambilla, A.; Biagioni, P.; Graf, J.; Gweon, G.-H.; Scholl, A.; Lanzara, A.; Duo, L.
2006-09-07
We report experimental evidence for a transition in theinterface coupling between an antiferromagnetic film and a ferromagneticsubstrate. The transition is observed in a thin epitaxial NiO film grownon top of Fe(001) as the film thickness is increased. Photoemissionelectron microscopy excited with linearly polarized x rays shows that theNiO film is antiferromagnetic at room temperature with in-plane uniaxialmagnetic anisotropy. The anisotropy axis is perpendicular to the Fesubstrate magnetization when the NiO thickness is less than about 15A,but rapidly becomes parallel to the Fe magnetization for a NiO coveragehigher than 25 A.
International Nuclear Information System (INIS)
Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations
Energy Technology Data Exchange (ETDEWEB)
Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)
2016-02-08
Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.
Foley, Andrew; Corbett, Joseph; Richard, Andrea L.; Alam, Khan; Ingram, David C.; Smith, Arthur R.
2016-07-01
Single phase ε-Mn4N and ζ-Mn10N thin films are grown on MgO(001) using molecular beam epitaxy. The films are identified and characterized using reflection high-energy electron diffraction, x-ray diffraction, back scattered electron scanning electron microscopy, atomic/magnetic force microscopy and Rutherford backscattering spectrometry. These films are found to be highly smooth with root-mean-squared roughnesses 3.39 nm and below. The quality of ε-Mn4N grown is strongly dependent on substrate temperature during growth. Epitaxial growth of substantial grains composed of the antiferromagnetic η-phase Mn3N2 side by side with ferrimagnetic ε-phase grains is observed when growth temperature is below 480 °C. Ising domains isolated within areas roughly 0.5 μm across are observed in the ferrimagnetic ε-phase grains of samples consisting of a mix of η- and ε-phase grains. Magnetic domains following semi-continuous paths, which are 0.7-7.2 μm across, are observed in single phase ε-Mn4N. Measurements of the ζ-phase detail the structure and magnetism of the material as high Mn content γ-type ζ-phase with a regular surface corrugation along the [100]-direction and antiferromagnetic.
International Nuclear Information System (INIS)
In this work, simulations of ferromagnetic/antiferromagnetic multilayers of La1−xCaxMnO3 have been carried out by using the Monte Carlo method combined with the Metropolis algorithm and the classical Heisenberg model. In the Hamiltonian we have considered three contributions: nearest neighbor exchange interaction, magnetocrystalline anisotropy and Zeeman interaction. Samples were built by including three types of Mn ions depending on their valence state and type of ionic orbital. Both the number of layers and the antiferromagnetic layer thickness influence on the exchange bias phenomenon are analyzed. Hysteresis loops results exhibit not only a shift as evidence of exchange bias but also the formation of plateaus or steps caused by the presence of more than one interface and the low layers thickness. Each layer presents a strong magnetic behavior because the magneto static energy favors formation of multi-domains in contrast with the single-domains of a single layer FM producing one sub-Loop of each domain (each layer). On the other hand, as the number of layers (n) increases, the sub-cycles tend to disappear. As the plateaus disappear, the system is more effective, increasing the coercive and bias fields. Moreover, domain sizes (layers thickness) also affect the shape of the hysteresis loop. On increasing the thickness of the AFM layer, a decrease in the plateaus produced by the uncoupling is generated.
Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet
DEFF Research Database (Denmark)
Lefmann, K.; Hedegård, P.
1994-01-01
In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long...
Grancha, Thais; Ferrando-Soria, Jesús; Cano, Joan; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio
2013-07-01
The Cu(2+)-mediated self-assembly of oxamato-based ligands derived from either the (S)- or (R)-enantiomers of the amino acid valine leads to the formation of two antiferromagnetically coupled homochiral anionic hexacopper(II) wheels in the presence of templating tetramethylammonium countercations.
The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagome antiferromagnet
Cherepanov, V B; Podivilov, E V
2001-01-01
The problem of the Berezinskii-Kosterlitz-Thouless transition in the highly frustrated XY antiferromagnetic is solved. The transition temperature is found. It is shown that the spin correlation function exponentially decays with distance even in the low-temperature phase, in contrast to the order parameter correlation function, which decays algebraically with distance
Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP
DEFF Research Database (Denmark)
Knorr, K.; Loidl, A.; Kjems, Jørgen
1981-01-01
The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....
Magnetic correlations in the 2D S=5/2 honeycomb antiferromagnet MnPS3
DEFF Research Database (Denmark)
Rønnow, H.M.; Wildes, A.R.; Bramwell, S.T.
2000-01-01
MnPS3 is a quasi-2D S = 5/2 antiferromagnet on a honeycomb lattice. Using an energy integrating neutron scattering technique, we have measured the structure factor S(k) of the instantaneous magnetic fluctuations. The temperature dependence of the correlation length xi follows the Kosterlitz...
't Hooft-Polyakov monopoles in an antiferromagnetic Bose-Einstein condensate
Stoof, H.T.C.; Vliegen, E.; Al Khawaja, U.
2001-01-01
We show that an antiferromagnetic spin-1 Bose-Einstein condensate, which can for instance be created with 23-Na atoms in an optical trap, has not only singular line-like vortex excitations, but also allows for singular point-like topological excitations, i.e., 't Hooft-Polyakov monopoles. We discuss the static and dynamic properties of these monopoles.
Azcoiti, V; Follana, E; Giordano, M
2012-01-01
We study the two-dimensional Antiferromagnetic Ising Model with an imaginary magnetic field i\\theta at \\theta=\\pi. We use a new geometric algorithm which does not present a sign problem. This allows us to perform efficient numerical simulations of this system.
Directory of Open Access Journals (Sweden)
Borovský Michal
2016-01-01
Full Text Available The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1. The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
Transition from the Z2 spin liquid to antiferromagnetic order: Spectrum on the torus
Whitsitt, Seth; Sachdev, Subir
2016-08-01
We describe the finite-size spectrum in the vicinity of the quantum critical point between a Z2 spin liquid and a coplanar antiferromagnet on the torus. We obtain the universal evolution of all low-lying states in an antiferromagnet with global SU(2) spin rotation symmetry, as it moves from the fourfold topological degeneracy in a gapped Z2 spin liquid to the Anderson "tower-of-states" in the ordered antiferromagnet. Due to the existence of nontrivial order on either side of this transition, this critical point cannot be described in a conventional Landau-Ginzburg-Wilson framework. Instead, it is described by a theory involving fractionalized degrees of freedom known as the O (4) * model, whose spectrum is altered in a significant way by its proximity to a topologically ordered phase. We compute the spectrum by relating it to the spectrum of the O (4 ) Wilson-Fisher fixed point on the torus, modified with a selection rule on the states, and with nontrivial boundary conditions corresponding to topological sectors in the spin liquid. The spectrum of the critical O (2 N ) model is calculated directly at N =∞ , which then allows a reconstruction of the full spectrum of the O (2N ) * model at leading order in 1 /N . This spectrum is a unique characteristic of the vicinity of a fractionalized quantum critical point, as well as a universal signature of the existence of proximate Z2 topological and antiferromagnetically ordered phases, and can be compared with numerical computations on quantum antiferromagnets on two-dimensional lattices.
Del Maestro, Adrian; Gingras, Michel J. P.
2007-08-01
The Gd2Sn2O7 pyrochlore Heisenberg antiferromagnet displays a phase transition to a four sublattice Néel ordered state at a critical temperature Tc˜1K . The low-temperature state found via neutron scattering corresponds to that predicted by a classical model that considers nearest-neighbor antiferromagnetic exchange and long-range dipolar interactions. Despite the seemingly conventional nature of the ordered state, the specific heat Cv has been found to be described in the temperature range 350mK⩽T⩽800mK by an anomalous power law Cv˜T2 . A similar temperature dependence of Cv has also been reported for Gd2Ti2O7 , another pyrochlore Heisenberg material. Such behavior is to be contrasted with the typical T3 behavior expected for a three-dimensional antiferromagnet with conventional long-range order which is then generally accompanied by an exp(-Δ/T) behavior at lower temperature where anisotropy effects induce a gap Δ to collective spin excitations. Such anomalous T2 behavior in Cv has been argued to be correlated to an unusual energy dependence of the density of states which also seemingly manifests itself in low-temperature spin fluctuations found in muon spin relaxation experiments. In this paper, we report calculations of Cv that consider spin-wave-like excitations out of the Néel order observed in Gd2Sn2O7 via neutron scattering. We argue that the parametric Cv∝T2 does not reflect the true low-energy excitations of Gd2Sn2O7 . Rather, we find that the low-energy excitations of this material are antiferromagnetic magnons gapped by single-ion and dipolar anisotropy effects, and that the lowest temperature of 350mK considered in previous specific heat measurements accidentally happens to coincide with a crossover temperature below which magnons become thermally activated and Cv takes an exponential form. We argue that further specific heat measurements that extend down to at least 100mK are required in order to ascribe an unconventional description of
International Nuclear Information System (INIS)
It has been proposed that antiferromagnetic Fe adatom spins on semiconductor Cu–N surfaces can be used to store information (Loth et al 2012 Science 335 196). Here, we investigate spin dynamics of such antiferromagnetic systems through Monte Carlo simulations. We find out the temperature and size laws of switching rates of Néel states and show that the Néel states can become stable enough for the information storage when the number of spins reaches one or two dozens of the Fe spins. We also explore promising methods for manipulating the Néel states. These could help realize information storage with such antiferromagnetic spin systems. (paper)
Li, Jun; Liu, Bang-Gui
2015-06-01
It has been proposed that antiferromagnetic Fe adatom spins on semiconductor Cu-N surfaces can be used to store information (Loth et al 2012 Science 335 196). Here, we investigate spin dynamics of such antiferromagnetic systems through Monte Carlo simulations. We find out the temperature and size laws of switching rates of Néel states and show that the Néel states can become stable enough for the information storage when the number of spins reaches one or two dozens of the Fe spins. We also explore promising methods for manipulating the Néel states. These could help realize information storage with such antiferromagnetic spin systems.
Energy Technology Data Exchange (ETDEWEB)
Snoek, M; Titvinidze, I; Toeke, C; Hofstetter, W [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt/Main (Germany); Byczuk, K [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg, 86135 Augsburg (Germany)], E-mail: snoek@itp.uni-frankfurt.de
2008-09-15
We apply dynamical mean-field theory to strongly interacting fermions in an inhomogeneous environment. With the help of this real-space dynamical mean-field theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.
Watanabe, Tadataka; Hara, Shigeo; Ikeda, Shin-Ichi; Tomiyasu, Keisuke
2011-07-01
Ultrasound velocity measurements of the orbitally frustrated spinel GeCo2O4 reveal unique elastic anomalies within the antiferromagnetic phase. Temperature dependence of shear moduli exhibits a minimum within the antiferromagnetic phase, suggesting the coupling of shear acoustic phonons to molecular spin-orbit excitations. Magnetic-field dependence of elastic moduli exhibits diplike anomalies, being interpreted as magnetic-field-induced metamagnetic and structural transitions. These elastic anomalies suggest that the survival of geometrical frustration, and the interplay of spin, orbital, and lattice degrees of freedom evoke a set of phenomena in the antiferromagnetic phase.
Institute of Scientific and Technical Information of China (English)
Susan Z. HUA; Matthew R. SULLIVAN; Jason N. ARMSTRONG
2006-01-01
Recent work on magnetic quantum point contacts (QPCs) was discussed. Complete magnetoresistance loops across Co QPCs as small as a single atom was measured. The remarkable feature of these QPCs is the rapid oscillatory decay in magnetoresistance with the increase of contact size. In addition,stepwise or quantum magnetoresistance loops are observed,resulting from varying transmission probability of the available discrete conductance channels because the sample is cycled between the ferromagnetic (F) and antiferromagnetic (AF) aligned states. Quantized conductance combined with spin dependent transmission of electron waves gives rise to a multi-channel system with a quantum domain wall acting as a valve,i.e.,a quantum spin-valve. Behavior of a few-atom QPC is built on the behavior of a single-atom QPC and hence the summarization of results as 'single-atom spintronics'. An evolutionary trace of spin-dependent electron transmission from a single atom to bulk is provided,the requisite hallmarks of artefact-free magnetoresistance is established across a QPC - stepwise or quantum magnetoresistance loops and size dependent oscillatory magnetoresistance.
Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy
Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente
2016-06-01
The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys.
Blanco, M Cecilia; Paz, Sergio Alexis; Nassif, Vivian M; Guimpel, Julio J; Carbonio, Raúl E
2015-06-21
The BaLaCuSbO(6) double perovskite has been successfully synthesized by solid state reaction under an air atmosphere. Its structure was refined using powder neutron diffraction in the monoclinic space group I2/m with a 4% antisite disorder on the B cations. Magnetic measurements give signs of 2D-antiferromagnetic behaviour with TN around 64 K. The Jahn-Teller distortion produced by Cu(2+) ions favours a crystallographic tetragonal distortion and consequently the in-plane super-superexchange antiferromagnetic interactions, J(90°), are favoured over the in-plane J(180°) antiferromagnetic exchange interactions. Both, J and J' magnetic interactions have been evaluated according to a Heisenberg antiferromagnetic rectangular model using an approximation to Curie's law in powers of J/T, being |J| around 10 times stronger than |J'|. PMID:25858013
Magnetoelectric effect in diluted antiferromagnet PbFe0.5Nb0.5O3
International Nuclear Information System (INIS)
Multiferroics, i. e. materials where two primary ferroic order parameters of magnetic and electric nature coexist, are of significant scientific and practical interest nowadays. Especially attractive are the multiferroics with enhanced magnetoelectric (ME) properties, which relate changes of polarization/magnetization to external magnetic/electric fields, respectively. While the linear ME effect has strong symmetry requirements and is rare, higher order ME couplings are allowed in all multiferroics. We report on investigations of magnetic and ME properties of (001)-oriented PbFe0.5Nb0.5O3 (PFN) single crystals in the temperature range 5-300 K. PFN is ferroelectric below 385 K and antiferromagnetic below the Neel temperature, TN=154 K. Temperature dependences of the magnetization exhibit a step like anomaly at TN and a maximum on zero-field cooled curves at 8 K. Below TN, the system manifests a spontaneous second order ME effect (electrobimagnetic effect), which reaches a peak value around 20 K. Moreover, after field cooling the linear ME effect has been observed, which disappears above 8 K. The nature of the low-temperature magnetic anomaly and the temperature dependences of the ME effects are discussed.
Energy Technology Data Exchange (ETDEWEB)
Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow (Russian Federation); Shaldin, Yu. V. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); Institute for Crystallography RAS, Lenin' s Avenue 59, 119333 Moscow (Russian Federation); Nizhankovskii, V. I. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland)
2016-01-07
The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-like peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.
Structure and properties of the 5.5 K antiferromagnet EuAu{sub 2}Ge{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Schellenberg, Inga; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Hermes, Wilfried; Lidin, Sven [Lund Univ. (Sweden). Div. of Polymer and Materials Chemistry
2011-07-01
A well crystallized sample of EuAu{sub 2}Ge{sub 2} was synthesized by arc-melting of the elements. The structure was refined on the basis of single crystal X-ray diffracto meter data: ThCr{sub 2}Si{sub 2} type, I4/mmm, a = 447.3(1), c = 1034.0(4) pm, wR2 = 0.0575, 148 F{sup 2} values and 9 variables. The gold atoms have tetrahedral germanium coordination (261 pm Au-Ge). These AuGe{sub 4/4} tetrahedra share four common edges, leading to layers which are connected via Ge-Ge bonds (247 pm). The europium atoms fill cages of coordination number 16 within the [Au{sub 2}Ge{sub 2}]{sup {delta}}{sup -} polyanion. Temperature dependent susceptibility measurements show a magnetic moment of 7.79(1){mu}{sub B}/formula unit. Together with the {sup 151}Eu Moessbauer spectroscopic data (isomer shift of -11.43 mm/s at 77 K), the magnetic data point to stable divalent europium. EuAu{sub 2}Ge{sub 2} orders antiferromagnetically at T{sub N1} = 5.5(1) K, followed by a spin-reorientation at T{sub N2} = 3.5 K. A metamagnetic step occurs around 20 kOe in the 4 K magnetization isotherm. (orig.)
Magnetic dilution and domain selection in the X Y pyrochlore antiferromagnet Er2Ti2O7
Gaudet, J.; Hallas, A. M.; Maharaj, D. D.; Buhariwalla, C. R. C.; Kermarrec, E.; Butch, N. P.; Munsie, T. J. S.; Dabkowska, H. A.; Luke, G. M.; Gaulin, B. D.
2016-08-01
Below TN=1.1 K, the X Y pyrochlore Er2Ti2O7 orders into a k =0 noncollinear, antiferromagnetic structure referred to as the ψ2 state. The magnetic order in Er2Ti2O7 is known to obey conventional three-dimensional (3D) percolation in the presence of magnetic dilution, and in that sense is robust to disorder. Recently, however, two theoretical studies have predicted that the ψ2 structure should be unstable to the formation of a related ψ3 magnetic structure in the presence of magnetic vacancies. To investigate these theories, we have carried out systematic elastic and inelastic neutron scattering studies of three single crystals of Er2 -xYxTi2O7 with x =0 (pure), 0.2 (10 %Y ) and 0.4 (20 % Y ), where magnetic Er3 + is substituted by nonmagnetic Y3 +. We find that the ψ2 ground state of pure Er2Ti2O7 is significantly affected by magnetic dilution. The characteristic domain selection associated with the ψ2 state, and the corresponding energy gap separating ψ2 from ψ3, vanish for Y3 + substitutions between 10 % Y and 20 % Y , far removed from the three-dimensional percolation threshold of ˜60 % Y . The resulting ground state for Er2Ti2O7 with magnetic dilutions from 20 % Y up to the percolation threshold is naturally interpreted as a frozen mosaic of ψ2 and ψ3 domains.
Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5
Energy Technology Data Exchange (ETDEWEB)
Sapkota, Aashish [Ames Laboratory; Tucker, Gregory S [Ames Laboratory; Ramazanoglu, Mehmet [Ames Laboratory; Tian, Wei [Ames Laboratory; Ni, N [University of California; Cava, R J; McQueeney, Robert J [Princeton; Goldman, Alan I [Ames Laboratory; Kreyssig, Andreas [Ames Laboratory
2014-09-01
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of the Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.
Metallic behavior induced by potassium doping of the trigonal antiferromagnetic insulator EuMn2As2
Anand, V. K.; Johnston, D. C.
2016-07-01
We report magnetic susceptibility χ , isothermal magnetization M , heat capacity Cp, and electrical resistivity ρ measurements on undoped EuMn2As2 and K-doped Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 single crystals with the trigonal CaAl2Si2 -type structure as a function of temperature T and magnetic field H . EuMn2As2 has an insulating ground state with an activation energy of 52 meV and exhibits antiferromagnetic (AFM) ordering of the Eu+2 spins S =7/2 at TN 1=15 K from Cp(T ) and χ (T ) data with a likely spin-reorientation transition at TN 2=5.0 K. The Mn+23 d5 spins-5/2 exhibit AFM ordering at TN=142 K from all three types of measurements. The M (H ) isotherm and χ (T ) data indicate that the Eu AFM structure is both noncollinear and noncoplanar. The AFM structure of the Mn spins is also unclear. A 4% substitution of K for Eu in Eu0.96K0.04Mn2As2 is sufficient to induce a metallic ground state. Evidence is found for a difference in the AFM structure of the Eu moments in the metallic crystals from that of undoped EuMn2As2 versus both T and H . For metallic Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 , an anomalous S-shape T dependence of ρ related to the Mn magnetism is found. Upon cooling from 200 K, ρ exhibits a strong negative curvature, reaches maximum positive slope at the Mn TN≈150 K, and then continues to decrease but more slowly below TN. This suggests that dynamic short-range AFM order of the Mn spins above the Mn TN strongly suppresses the resistivity, contrary to the conventional decrease of ρ that is only observed upon cooling below TN of an antiferromagnet.
The Antiferromagnetic Correlations in the Half—Filled Double—Exchange Model at Finite Temperature
Institute of Scientific and Technical Information of China (English)
JIAn－Chun; WANGJing; 等
2002-01-01
We extend a previous result of ours [G.S.Tian,Phys.Rev.B63 (2001) 224413] on the antiferromagnetic spin correlations in the half-filled Hubbard model at finite temperature to the double-exchange model.To overcome the mathematical difficulty cused by the S=3/2 localized spin freedom in this model,we apply both Zener's argument and the finite-temperature spin-reflection-positivity method to show rigorously that,at any temperature T,the spin correlations in the half-filled double-exchange model are predominantly antiferromagnetic.This conclusion is completely consistent with the experimental observations and the previous theoretical results by approximate methods.
Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films
Cossu, F.
2013-06-21
Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.
Gómez Albarracín, F. A.; Rosales, H. D.
2016-04-01
In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer honeycomb lattice in a highly frustrated regime in the presence of a magnetic field. This study shows strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For antiferromagnetic couplings J1=Jx=Jp/3 , we find that at low temperatures there are two different regions in the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions present broken Z2 symmetry and are separated by a not fully collinear classical plateau at M =1 /2 . At higher temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also discuss the low-temperature behavior of the system for a less frustrated region, J1=Jx
Electronic structure of the antiferromagnetic semiconductor Mn Sb2 S4
Matar, S. F.; Weihrich, R.; Kurowski, D.; Pfitzner, A.; Eyert, V.
2005-06-01
The electronic band structures of orthorhombic (oP28) and monoclinic (mC28) MnSb2S4 were investigated with ab initio calculations in the local spin density approximation to the density functional theory. An analysis of the electronic properties and of the chemical bonding is provided using the augmented spherical wave method considering nonmagnetic, ferromagnetic, ferrimagnetic, and antiferromagnetic model orderings. In agreement with experimental results both modifications of MnSb2S4 are predicted to be antiferromagnetic. While the experimental band gap is missed for the monoclinic polymorph, the calculated band gap for orthorhombic MnSb2S4 is close to the experimental one.
Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.
2015-03-01
In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.
Easy moment direction and antiferromagnetic domain wall motion in Mn2Au
Barthem, Vitoria M. T. S.; Colin, Claire V.; Haettel, Richard; Dufeu, Didier; Givord, Dominique
2016-05-01
The interest of giving active functions to antiferromagnetic (AFM) materials in spintronics devices has been realized recently. Mn2Au is a high-Néel temperature antiferromagnet with large Mn moment, lying in plane of the tetragonal structure. To determine the direction of the moments in Mn2Au, an original approach is demonstrated, which should be generic to planar AFM materials. It involves the rotation of the granular sample around an axis perpendicular to the applied magnetic field. The family of easy moment directions is . For grains prevented from rotating, the dominant magnetization process is AFM domain wall motion. Textured Mn2Au nanoelements could be introduced in spintronics devices, in which the Mn moments would be switched under modest external excitation.
Current driven spin–orbit torque oscillator: ferromagnetic and antiferromagnetic coupling
Johansen, Øyvind; Linder, Jacob
2016-01-01
We consider theoretically the impact of Rashba spin–orbit coupling on spin torque oscillators (STOs) in synthetic ferromagnets and antiferromagnets that have either a bulk multilayer or a thin film structure. The synthetic magnets consist of a fixed polarizing layer and two free magnetic layers that interact through the Ruderman-Kittel-Kasuya-Yosida interaction. We determine analytically which collinear states along the easy axis that are stable, and establish numerically the phase diagram for when the system is in the STO mode and when collinear configurations are stable, respectively. It is found that the Rashba spin–orbit coupling can induce anti-damping in the vicinity of the collinear states, which assists the spin transfer torque in generating self-sustained oscillations, and that it can substantially increase the STO part of the phase diagram. Moreover, we find that the STO phase can extend deep into the antiferromagnetic regime in the presence of spin–orbit torques. PMID:27653357
International Nuclear Information System (INIS)
Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (TN) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the TN by adjusting the atomic cohesive energy. The TN is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numerical match between predictions and measurements reveals that the TN of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number
Phase-matched sum frequency generation of antiferromagnetic film in THz frequency field
International Nuclear Information System (INIS)
We report on a way to obtain a new source in THz frequency field based on sum frequency (SF) generation of an antiferromagnetic film (AFF). The continuous SF output windows versus the infrared signal wave frequencies are shown. We found that the highest SF outputs can be induced when the frequencies of the two signal waves are both situated at the vicinity of the same resonant frequency of AFF. In addition, the incident angles are in the smaller angle regions. An optimum interact length is defined which should be necessary for the choice of AFF thickness in the experiments. Finally, the frequencies of highest SF outputs can be modulated by controlling the external magnetic field strength. - Highlights: • SF generation of antiferromagnetic film. • New source available with the SF generation method in THz field. • SF conversion efficiency affected by incident frequencies, angles and thickness film
Energy Technology Data Exchange (ETDEWEB)
Magalhaes, S.G. [Laboratorio de Mecanica Estatistica e Teoria da Materia Condensada (PPGFIS-Dep. Fisica) UFSM, 97105-900 Santa Maria (Brazil)]. E-mail: ggarcia@ccne.ufsm.br; Zimmer, F.M. [Laboratorio de Mecanica Estatistica e Teoria da Materia Condensada (PPGFIS-Dep. Fisica) UFSM, 97105-900 Santa Maria (Brazil); Kipper, C.J. [Laboratorio de Mecanica Estatistica e Teoria da Materia Condensada (PPGFIS-Dep. Fisica) UFSM, 97105-900 Santa Maria (Brazil); Calegari, E.J. [Laboratorio de Mecanica Estatistica e Teoria da Materia Condensada (PPGFIS-Dep. Fisica) UFSM, 97105-900 Santa Maria (Brazil)
2007-03-15
The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising SG model with a local BCS pairing interaction in the presence of a transverse magnetic field {gamma}. The spins in different sublattices interact with Gaussian random couplings with an antiferromagnetic mean. The problem is formulated in a Grassmann path integral formalism. The static ansatz and the replica symmetry are used to obtain the half-filling thermodynamic potential. The results are shown in phase diagrams that exhibit a complex transition line separating the PAIR phase from the others. This line is second order at high temperature which ends in a tricritical point. The presence of {gamma} affects deeply the transition lines.
Solution of the antiferromagnetic Ising model on a tetrahedron recursive lattice.
Jurčišinová, E; Jurčišin, M
2014-03-01
We consider the antiferromagnetic spin-1/2 Ising model on the recursive tetrahedron lattice on which two elementary tetrahedrons are connected at each site. The model represents the simplest approximation of the antiferromagnetic Ising model on the real three-dimensional tetrahedron lattice which takes into account effects of frustration. An exact analytical solution of the model is found and discussed. It is shown that the model exhibits neither the first-order nor the second-order phase transitions. A detailed analysis of the magnetization of the model in the presence of the external magnetic field is performed and the existence of the magnetization plateaus for low temperatures is shown. All possible ground states of the model are found and discussed. The existence of nontrivial singular ground states is proven and exact explicit expressions for them are found.
Directory of Open Access Journals (Sweden)
P. Sahebsara
2006-09-01
Full Text Available The self-energy-functional approach is a powerful many-body tool to investigate different broken symmetry phases of strongly correlated electron systems. We use the variational cluster perturbation theory (also called the variational cluster approximation to investigate the interplay between the antiferromagnetism and d-wave superconductivity of κ-(ET2 X conductors. These compounds are described by the so-called dimer Hubbard model, with various values of the on-site repulsion U and diagonal hopping amplitude t. At strong coupling, our zero-temperature calculations show a transition from Néel antiferromagnetism to a spin-liquid phase with no long range order, at around t ~ 0.9. At lower values of U, we find d-wave superconductivity. Taking into account the point group symmetries of the lattice, we find a transition between dx2-y2 and dxy pairing symmetries, the latter happening for smaller values of U.
DEFF Research Database (Denmark)
Zhang, N.G.; Henley, C.L.; Rischel, C.;
2002-01-01
We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second......-neighbor interactions. A 32-site system is exactly diagonalized, and the energy spectrum of the low-lying singlets follows the analytically predicted clustering pattern....
Su, W. P.
2005-01-01
To understand the interplay of d-wave superconductivity and antiferromagnetism in the cuprates, we consider a two-dimensional extended Hubbard model with nearest neighbor attractive interaction. Free energy of the homogeneous (coexisting superconducting and antiferromagnetic) state calculated a s a function of the band filling shows a region of of phase separation. The phase separation caused by the intersite attractive force leads to novel insights into salient features of the pseudogap phas...
Yu, Rong; Roscilde, Tommaso; Haas, Stephan
2006-01-01
Site dilution of spin-gapped antiferromagnets leads to localized free moments, which can order antiferromagnetically in two and higher dimensions. Here we show how a weak magnetic field drives this order-by-disorder state into a novel disordered-free-moment phase, characterized by the formation of local singlets between neighboring moments and by localized moments aligned antiparallel to the field. This disordered phase is characterized by the absence of a gap, as it is the case in a Bose gla...
Aytekin, O.; Bayri, A.
2012-12-01
In this study the role of the antiferromagnetic interactions in recently synthesized dinuclear Cr(III) complex has been investigated. Since there was not enough structural information for the characterization of the synthesis, we claim that there should be antiferromagnetic interactions between the dinuclear Fe(III) ions, if the proposed structure is the real structure. A new experiment is proposed to test the predictions of this theoretical investigation.
Correlation functions of the antiferromagnetic Heisenberg model using a modified Lanczos method
Gagliano, Eduardo R.; Dagotto, Elbio; Moreo, Adriana; Alcaraz, Francisco C.
1986-08-01
Using a modified Lanczos algorithm, we study the correlation functions in the ground state of the one-dimensional antiferromagnetic Heisenberg model. We obtain numerical results for rings up to 24 sites. There are no indications of the anomalous behavior of these correlation functions recently observed in chains with 16 sites. We also present a pedagogical description of the hashing technique which is an efficient algorithm for searching and storage purposes.
Mailhot, A.; Plumer, M. L.; Caillé, A.
1993-01-01
The results of a detailed histogram Monte-Carlo study of critical-fluctuation effects on the magnetic-field temperature phase diagram associated with the hexagonal Heisenberg antiferromagnet with weak axial anisotropy are reported. The multiphase point where three lines of continuous transitions merge at the spin-flop boundary exhibits a structure consistent with scaling theory but without the usual umbilicus as found in the case of a bicritical point.
One- and two-magnon Raman scattering in the canted antiferromagnet NiF{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Meloche, E. [Department of Physics and Astronomy, University of Western Ont., London, Ont., N6A 3K7 (Canada); Cottam, M.G. [Department of Physics and Astronomy, University of Western Ont., London, Ont., N6A 3K7 (Canada)]. E-mail: cottam@uwo.ca; Gnezdilov, V.P. [Institute for Microstructural Sciences, National Research Council, Ottawa, Ont., K1A 0R6 (Canada); Lockwood, D.J. [Institute for Microstructural Sciences, National Research Council, Ottawa, Ont., K1A 0R6 (Canada)
2007-03-15
The magnons in the canted rutile-structure antiferromagnet NiF{sub 2} have been studied by Raman scattering. Results are presented for the polarization dependences of the one-magnon spectum over a wide range of temperatures below T {sub N} and the two-magnon spectrums at low temperatures. A theoretical analysis of the data, including the important role of the spin canting for the one-magnon properties, is shown to provide good agreement with the measurements.
Imaging the antiferromagnetic to ferromagnetic first order phase transition of FeRh
Mariager, S. O.; Guyader, L. Le; Buzzi, M.; Ingold, G.; Quitmann, C.
2013-01-01
The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to shape anisotropy, but the magnetocrystalline anisotropy is negligible and there is no preferred in-plane magnetization direction. When heating through the AFM to FM phase transition the nucleation of the FM phase occurs at many independent nucleat...
Study of the Antiferromagnetic Blume-Capel Model on kagomé Lattice
Hwang, Chi-Ok; Park, Sojeong; Kwak, Wooseop
2016-09-01
We study the anti-ferromagnetic (AF) Ising model and the AF Blume-Capel (BC) model on the kagomé lattice. Using the Wang-Landau sampling method, we estimate the joint density functions for both models on the lattice, and we obtain the exact critical magnetic fields at zero temperature by using the micro-canonical analysis. We also show the patterns of critical lines for the models from micro-canonical analysis.
Neto, Minos A.; de Sousa, J. Ricardo; Padilha, Igor T.; Rodriguez Salmon, Octavio D.; Roberto Viana, J.; Dinóla Neto, F.
2016-06-01
We study the three-dimensional antiferromagnetic Ising model in both uniform longitudinal (H) and transverse (Ω) magnetic fields by using the effective-field theory (EFT) with finite cluster N = 1 spin (EFT-1). We analyzed the behavior of the magnetic susceptibility to investigate the reentrant phenomena that we have seen in the same phase diagram previously obtained in other papers. Our results shows the presence of two divergences in the susceptibility that indicates the existence of a reentrant behavior.
Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB{sub 6}
Energy Technology Data Exchange (ETDEWEB)
Friemel, G.; Li, Y.; Keimer, B.; Inosov, D.S. [MPI fuer Festkoerperforschung, Stuttgart (Germany); Dukhnenko, A.V.; Shitsevalova, N.Y.; Filipov, V.B. [Institute for Problems of Material Sciences, Kiev (Ukraine); Sluchanko, N.E. [General Physics Institute, Moscow (Russian Federation); Ivanov, A. [Institut Laue-Langevin, Grenoble (France)
2012-07-01
Resonant magnetic excitations are widely recognized as hallmarks of unconventional superconductivity in copper oxides, iron pnictides, and heavy-fermion compounds. Model calculations have related these modes to the microscopic properties of the pair wave function, but the mechanisms of their formation are still debated. Here we report the discovery of a similar resonant mode in the non-superconducting antiferromagnetic heavy-fermion metal CeB{sub 6}. Unlike conventional magnons, the mode is non-dispersive and is sharply peaked around a wave vector separate from those characterizing the antiferromagnetic order. The magnetic intensity distribution rather suggests that the mode is associated with a coexisting antiferro-quadrupolar order parameter, which has long remained ''hidden'' to the neutron-scattering probes. The mode energy increases continuously below the onset temperature for antiferromagnetism, in parallel to the opening of a nearly isotropic spin gap throughout the Brillouin zone. These attributes bear strong similarity to those of the resonant modes in unconventional superconductors, indicating the dominance of itinerant spin dynamics in the ordered low-temperature phases of CeB{sub 6}.
Energy Technology Data Exchange (ETDEWEB)
Natsume, Yuhei; Tada, Shinichiro; Suzuki, Toshihiko [Chiba Univ., Graduate School of Science and Technology, Chiba (Japan)
2002-06-01
Characteristic properties of excited states in antiferromagnetic ladder systems with spin-1/2 are investigated in relation with the theoretical analysis of the quite asymmetric shape of the peak for twice the spin gap {delta}{sub g} in magnetic Raman spectra. Here, the structure of exchange-scattering spectra are reproduced by the numerical calculation for the finite Heisenberg ladder, in which legs with antiferromagnetic bond J{sub c} is connected by rungs with antiferromagnetic bond J{sub r}. The singlet ground state in this system can be expressed as the ordering of singlet dimers on rungs in the ladder for J{sub c}/J{sub r} {yields} +0. In fact, the value of 0.1 is adopted to be the ratio of J{sub c}/J{sub r} in order to discuss the experimental work of the magnetic Raman spectra for the ladder of V{sup 4+} ions in the oxide compound CaV{sub 2}O{sub 5} reported in Konstantinovic et al., Phys. Rev. B61 (2000), 15185. As for this peak of 2{delta}{sub g}, quite an asymmetric observed shape is explained by the present calculation. According to the analysis of spectra, we discuss the expression of excited states by triplet dimers on rungs: The dominant contribution of the pair of triplet dimers on adjacent rungs to the corresponding state for 2{delta}{sub g} peak is pointed out. (author)
Room-temperature tetragonal non-collinear Heusler antiferromagnet Pt2MnGa
Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Suard, E.; Chapon, L.; Senyshyn, A.; Petricek, V.; Skourski, Y.; Nicklas, M.; Felser, C.; Chadov, S.
2016-08-01
Antiferromagnetic spintronics is a rapidly growing field, which actively introduces new principles of magnetic storage. Despite that, most applications have been suggested for collinear antiferromagnets. In this study, we consider an alternative mechanism based on long-range helical order, which allows for direct manipulation of the helicity vector. As the helicity of long-range homogeneous spirals is typically fixed by the Dzyaloshinskii-Moriya interactions, bi-stable spirals (left- and right-handed) are rare. Here, we report a non-collinear room-temperature antiferromagnet in the tetragonal Heusler group. Neutron diffraction reveals a long-period helix propagating along its tetragonal axis. Ab-initio analysis suggests its pure exchange origin and explains its helical character resulting from a large basal plane magnetocrystalline anisotropy. The actual energy barrier between the left- and right-handed spirals is relatively small and might be easily overcome by magnetic pulse, suggesting Pt2MnGa as a potential candidate for non-volatile magnetic memory.
Exchange bias and magnetization reversal in ferromagnet/antiferromagnet antidot arrays
Luo, An; Ma, Fenghua; Hu, Yong
2016-09-01
Exchange bias and coercivity in ferromagnet/antiferromagnet antidot arrays magnetized perpendicularly are simulated to demonstrate the mechanism of their variations in specific nanostructures, using a modified Monte Carlo Metropolis algorithm. Three kinds of antidot array models characterized by different morphologies in the vicinity of pore are established and their magnetization behaviors are compared with that in the continuous film. An increase in the exchange bias field with a suppressed coercivity is obtained if the antiferromagnet covers the wall of pore entirely. By means of the results of the spin configurations, it is found that only the heterostructure component, e.g., the antiferromagnet can cut off the domain in the ferromagnet layer into small sizes effectively, and thus increases the pinning effect to the ferromagnet and changes the nucleation field. Moreover, the thermal stability of exchange bias in the antidot arrays is not enhanced and the coercivity is nonmonotonic with increasing temperature probably due to the magnetic field applied perpendicular to the film plane. We suggest that our numerical findings are also suitable for other nanostructures.
The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology
Wu, Ling-Na; You, Li
2016-05-01
The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.
Magnetization Process of Spin-1/2 Heisenberg Antiferromagnets on a Layered Triangular Lattice
Yamamoto, Daisuke; Marmorini, Giacomo; Danshita, Ippei
2016-02-01
We study the magnetization process of the spin-1/2 antiferromagnetic Heisenberg model on a layered triangular lattice by means of a numerical cluster mean-field method with a scaling scheme (CMF+S). It has been known that antiferromagnetic spins on a two-dimensional (2D) triangular lattice with quantum fluctuations exhibit a one-third magnetization plateau in the magnetization curve under magnetic field. We demonstrate that the CMF+S quantitatively reproduces the magnetization curve including the stabilization of the plateau. We also discuss the effects of a finite interlayer coupling, which is unavoidable in real quasi-2D materials. It has been recently argued for a model of the layered-triangular-lattice compound Ba3CoSb2O9 that such interlayer coupling can induce an additional first-order transition at a strong field. We present the detailed CMF+S results for the magnetization and susceptibility curves of the fundamental Heisenberg Hamiltonian in the presence of magnetic field and weak antiferromagnetic interlayer coupling. The extra first-order transition appears as a quite small jump in the magnetization curve and a divergence in the susceptibility at a strong magnetic field ˜0.712 of the saturation field.
Interconnections between magnetic state and transport currents in antiferromagnetic Sr2IrO4
Tsoi, Maxim
Interconnections between magnetic state and transport currents in ferromagnetic (F) heterostructures are the basis for spintronic applications, e.g. tunneling magnetoresistance and spin-transfer torque phenomena provide a means to read and write information in magnetic memory devices like STTRAM. Similar interconnections were proposed to occur in systems where F-components are replaced with antiferromagnets (AFM). We demonstrated experimentally the existence of such interconnections in antiferromagnetic Mott insulator Sr2IrO4: first, we found a very large anisotropic magnetoresistance (AMR) which can be used to monitor (read) the magnetic state of AFM; second, we demonstrated the feasibility of reversible resistive switching driven by high-density currents/high electric fields which can be used for writing in AFM memory applications. These results support the feasibility of AFM spintronics where antiferromagnets are used in place of ferromagnets. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, and by NSF grants DMR-1207577, DMR-1265162 and DMR-1122603.
Averkov, Yu. O.; Tarapov, S. I.; Yakovenko, V. M.; Yampol'skii, V. A.
2015-04-01
The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.
Energy Technology Data Exchange (ETDEWEB)
Matan, K., E-mail: kmatan@issp.u-tokyo.ac.j [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Helton, J.S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Grohol, D. [The Dow Chemical Company, Core R and D, Midland, MI 48674 (United States); Nocera, D.G. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wakimoto, S.; Kakurai, K. [Quantum Beam Science Directorate, Japanese Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Lee, Y.S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2009-09-01
We report polarized neutron scattering studies of spin-wave excitations and spin fluctuations in the S=5/2 kagome{sup '} lattice antiferromagnet KFe{sub 3}(OH){sub 6}(SO{sub 4}){sub 2} (jarosite). Inelastic polarized neutron scattering measurements at 10 K on a single crystal sample reveal two spin gaps, associated with in-plane and out-of-plane excitations. The polarization analysis of quasi-elastic scattering at 67 K shows in-plane spin fluctuations with XY symmetry, consistent with the disappearance of the in-plane gap above the Neel temperature T{sub N}=65K. Our results suggest that jarosite is a promising candidate for studying the 2D XY universality class in magnetic systems.
Local Weak Ferromagnetism in Single-Crystalline Ferroelectric BiFeO3
DEFF Research Database (Denmark)
Ramazanoglu, M.; Laver, Mark; Ratcliff, W.;
2011-01-01
Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO3 reveal a long-wavelength spin density wave generated by ∼1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic...
Institute of Scientific and Technical Information of China (English)
JI An-Chun; TIAN Guang-Shan
2006-01-01
In the present paper, we calculate the Gaussian correction to the critical value Jc⊥ caused by quantum spin fluctuation in a two-dimensional spatially anisotropic Heisenberg antiferromagnet with integer spin S. Previously, someauthors computed this quantity by the mean-field theory based on the Schwinger boson representation of spin operators.However, for S = 1, their result is much less than the one derived by numerical calculations. By taking the effect ofquantum spin fluctuation into consideration, we are able to produce a greatly improved result.
The Antiferromagnetic Correlations in the Half-Filled Double-Exchange Model at Finite Temperature
Institute of Scientific and Technical Information of China (English)
JI An-Chun; WANG Jing; TIAN Guang-Shan
2002-01-01
We extend a previous result of ours [G.S. Tian, Phys. Rev. B63 (2001) 224413] on the antiferromagneticspin correlations in the half-filled Hubbard model at finite temperature to the double-exchange model. To overcome themathematical difficulty caused by the S = 3/2 localized spin freedom in this model, we apply both Zener's argumentand the finite-temperature spin-reflection-positivity method to show rigorously that, at any temperature T, the spincorrelations in the half-filled double-exchange model are predominantly antiferromagnetic. This conclusion is completelyconsistent with the experimental observations and the previous theoretical results by approximate methods.
Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering
Corcovilos, T. A.; Baur, S. K.; Hitchcock, J. M.; Mueller, E. J.; Hulet, R. G.
2009-01-01
Antiferromagnetism of ultracold fermions in an optical lattice can be detected by Bragg diffraction of light, in analogy to the diffraction of neutrons from solid state materials. A finite sublattice magnetization will lead to a Bragg peak from the (1/2 1/2 1/2) crystal plane with an intensity depending on details of the atomic states, the frequency and polarization of the probe beam, the direction and magnitude of the sublattice magnetization, and the finite optical density of the sample. Ac...
Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice
Aoyama, Kazushi; Kawamura, Hikaru
2016-06-01
Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.
Quantum entanglement in trimer spin-1/2 Heisenberg chains with antiferromagnetic coupling
Del Cima, O M; da Silva, S L L
2015-01-01
The quantum entanglement measure is determined, for the first time, for antiferromagnetic trimer spin-1/2 Heisenberg chains. The physical quantity proposed to measure the entanglement is the distance between states by adopting the Hilbert-Schmidt norm. The method is applied to the new magnetic Cu(II) trimer system, 2b.3CuCl_2.2H_2O, and to the trinuclear Cu(II) halide salt, (3MAP)_2Cu_2Cl_8. The decoherence temperature, above which the entanglement is suppressed, is determined for the both systems. A correlation among their decoherence temperatures and their respective exchange coupling constants is established.
Antiferromagnetic TiFe{sub 2} in applied fields: experiment and simulation
Energy Technology Data Exchange (ETDEWEB)
Martins, T. B.; Rechenberg, H. R., E-mail: hercilio@macbeth.if.usp.br [Universidade de Sao Paulo, Instituto de Fisica (Brazil)
2006-04-15
Moessbauer spectra of a powdered TiFe{sub 2} sample were measured under different applied fields and the results were compared to simulated spectra obtained by minimizing the total energy of a two-sublattice antiferromagnet. In order to reproduce experimental results a highly textured distribution had to be assumed, the local anisotropy axis lying mostly perpendicular to the applied field. Thus, magnetic alignment of AF grains by an external field was demonstrated. In addition, exchange and anisotropy fields for TiFe{sub 2} at T {approx} 0 K have been determined.
Pressure effects on the antiferromagnetic order of the hydride CeRuSiH
Energy Technology Data Exchange (ETDEWEB)
FernIndez, J Rodriguez; Rojas, D P; Sal, J C Gomez [DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Tence, S; Chevalier, B, E-mail: rodrigufj@unican.e [CNRS, Universite de Bordeaux, ICMCB, 87 Avenue Dr. A. Schweitzer, 33608 Pessac (France)
2010-01-15
The non-magnetic heavy fermion CeRuSi upon hydrogen absorption develops an antiferromagnetic behaviour, mainly due to the pronounced expansion of the unit cell. The effects of pressure on the {chi}(T) and M(H) curves of the hydride CeRuSiH up to 10.3 kbar are presented. Both, the Neel temperatures and the critical fields of the metamagnetic transitions, increase with pressure, whereas the net magnetization decreases. This evolution could be understood within the framework of the Doniach diagram.
Antiferromagnet-long-period structure phase transition in RMn2O5 oxides
Men'shenin, V. V.; Nikolaev, V. V.; Dmitriev, A. V.
2011-07-01
An analysis of the magnetic phase transition from an antiferromagnetic into an incommensurate phase in oxides RMn2O5 has been performed. It has been shown that this is a second-order phase transition and that it can occur through one of complete irreducible representations of the space group Pbam, i.e., without a decrease in the symmetry of the crystal lattice. It has been established that the decrease in the electric polarization of the oxides in this transition is due to the development of long-period magnetic ordering.
Frustrated diamond-chain quantum XXZ Heisenberg antiferromagnet in a magnetic field
International Nuclear Information System (INIS)
We consider the antiferromagnetic spin-1/2 XXZ Heisenberg model on a frustrated diamond-chain lattice in a z- or x-aligned external magnetic field. We use the strong-coupling approach to elaborate an effective description in the low-temperature strong-field regime. The obtained effective models are spin-1/2 XY chains which are exactly solvable through the Jordan–Wigner fermionization. We perform exact-diagonalization studies of the magnetization curves to test the quality of the effective description. The results may have relevance for the description of the azurite spin-chain compound
Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures
Khan, U.; Li, W. J.; Adeela, N.; Irfan, M.; Javed, K.; Wan, C. H.; Riaz, S.; Han, X. F.
2016-03-01
The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3&cmb.macr;. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ~25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3&cmb.macr;. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ~25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are
Finite-size effect of antiferromagnetic transition and electronic structure in LiFePO4
Shu, G. J.; Wu, M. W.; Chou, F. C.
2012-01-01
The finite-size effect on the antiferromagnetic (AF) transition and electronic configuration of iron has been observed in LiFePO4. Determination of the scaling behavior of the AF transition temperature (TN) versus the particle-size dimension (L) in the critical regime 1-TN(L)/TN(XTL)\\simL^-1 reveals that the activation nature of the AF ordering strongly depends on the surface energy. In addition, the effective magnetic moment that reflects the electronic configuration of iron in LiFePO4 is fo...
A layered antiferromagnetic semiconductor EuMTe{sub 3} (M = Bi, Sb)
Energy Technology Data Exchange (ETDEWEB)
Niu, Ying Y.; Wu, Dong; Shen, Liang; Wang, Biao [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China)
2015-12-15
We synthesized ternary tellurides EuMTe{sub 3} (M = Bi, Sb) using a low-temperature flux method. These compounds crystallize in the P{sub mmn} space group with layered structure. A superstructure modulation along the b-axis was observed. Physical property measurements revealed that these compounds are antiferromagnetic semiconductors. Finally, a strong spin-orbit coupling with possible novel quantum interference between localization and weak antilocalization effects was suggested in the present system. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum phase diagram of a frustrated antiferromagnet on the bilayer honeycomb lattice
Zhang, Hao; Lamas, Carlos A.; Arlego, Marcelo; Brenig, Wolfram
2016-06-01
We study the spin-1/2 Heisenberg antiferromagnet on a bilayer honeycomb lattice including interlayer frustration. Using a set of complementary approaches, namely, Schwinger bosons, dimer series expansion, bond operators, and exact diagonalization, we map out the quantum phase diagram. Analyzing ground-state energies and elementary excitation spectra, we find four distinct phases, corresponding to three collinear magnetic long-range ordered states, and one quantum disordered interlayer dimer phase. We detail that the latter phase is adiabatically connected to an exact singlet product ground state of the bilayer, which exists along a line of maximum interlayer frustration. The order within the remaining three phases will be clarified.
Magnetic behavior of EuCu2As2: Delicate balance between antiferromagnetic and ferromagnetic order
Sengupta, Kausik; Paulose, P. L.; Sampathkumaran, E. V.; Doert, Th.; Jemetio, J. P. F.
2005-01-01
The Eu-based compound, EuCu2As2, crystallizing in the ThCr2Si2-type tetragonal structure, has been synthesized and its magnetic behavior has been investigated by magnetization (M), heat-capacity (C) and electrical resistivity (rho) measurements as a function of temperature (T) and magnetic field (H) as well as by 151Eu Moessbauer measurements. The results reveal that Eu is divalent ordering antiferromagnetically below 15 K in the absence of magnetic field, apparently with the formation of mag...
Tricritical behaviour of the frustrated Ising antiferromagnet on the honeycomb lattice
Bobák, A.; Lučivjanský, T.; Žukovič, M.; Borovský, M.; Balcerzak, T.
2016-08-01
We use the effective-field theory with correlations based on different cluster sizes to investigate phase diagrams of the frustrated Ising antiferromagnet on the honeycomb lattice with isotropic interactions of the strength J1 present results for the ground-state energy as a function of the frustration parameter R =J2 / |J1 |. We find that the cluster-size has a considerable effect on the existence and location of a tricritical point in the phase diagram at which the phase transition changes from the second order to the first one.
Antiferromagnetic Nd ordering in NdPd{sub 2}Ga{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Doenni, A.; Fischer, P.; Fauth, F.; Zolliker, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bauer, E. [Technische Univ., Vienna (Austria)
1997-09-01
The ternary intermetallic compound NdPd{sub 2}Ga{sub 3} was investigated by powder neutron diffraction: the crystal structure agrees well with the ordered hexagonal PrNi{sub 2}Al{sub 3}-type structure. The antiferromagnetic ordering below T{sub N} 6.5 K corresponds to a propagation vector k = [1/2,0,0]. The ordered magnetic Nd moments of (1.99 {+-} 0.04) {mu}{sub B} at saturation lie in the basal plane due to the crystal-electric field anisotropy and are oriented perpendicular to the propagation vector. (author) 1 fig., 1 tab., 2 refs.
A holographic model for antiferromagnetic quantum phase transition induced by magnetic field
Cai, Rong-Gen; Kusmartsev, F V
2015-01-01
We propose a gravity dual of antiferromagnetic quantum phase transition (QPT) induced by magnetic field and study the criticality in the vicinity of quantum critical point (QCP). Results show the boundary critical theory is a strong coupling theory with dynamic exponent $z=2$. The hyperscaling law is violated and logarithmic corrections appear near the QCP. We compare our theoretical results with experimental data on variety of materials including low-dimensional magnet, BiCoPO$_5$ and pyrochlores, Er$_{2-2x}$Y$_{2x}$Ti$_2$O$_7$. Our model describes well the existing experiments and predicts QCP and other high field magnetic properties of these compounds.
Specific Heat of the Spin-1/2 Antiferromagnetic Heisenberg Chain
Institute of Scientific and Technical Information of China (English)
云国宏; 梁希侠
2001-01-01
A simple analytic theory of thermodynamics at finite temperature for the spin-1/2 antiferromagnetic Heisenberg chain is proposed based on the picture of the particle-hole pair excitations. The dispersion relation of the particle-hole pairs is derived in the formulation of thermodynamic Bethe ansatz provided that the particles and holes have the same energy and they are excited as normalmodes. It is shown that the behaviour of the specific heat is in excellent agreement with the numerical and experimental results.
Macroscopic anisotropy and symmetry breaking in the pyrochlore antiferromagnet Gd2Ti2O7
Hassan, A. K.; Lévy, L. P.; Darie, C.; Strobel, P.
2003-06-01
In the Heisenberg antiferromagnet Gd2Ti2O7, the exchange interactions are geometrically frustrated by the pyrochlore lattice structure. This ESR study reveals a strong temperature dependent anisotropy with respect to a [111] body diagonal below a temperature TA=80 K, despite the spin only nature of the Gd3+ ion. Anisotropy and symmetry breaking can nevertheless appear through the superexchange interaction. In the presence of anisotropic exchanges, short range planar correlations restricted to specific Kagomé planes are sufficient to explain the two ESR modes studied in this work.
Field-driven transitions in the dipolar pyrochlore antiferromagnet Gd2Ti2O7
Cépas, Olivier; Shastry, B. Sriram
2004-05-01
We present a mean-field theory for magnetic-field-driven transitions in dipolar coupled gadolinium titanate Gd2Ti2O7 pyrochlore system. Low-temperature neutron scattering yields a phase that can be regarded as a eight sublattice antiferromagnet, in which long-ranged ordered moments and fluctuating moments coexist. Our theory gives parameter regions where such a phase is realized, and predicts several other phases, with transitions amongst them driven by magnetic field as well as temperature. We find several instances of local disorder parameters describing the transitions.
Magnetic resonance in the pyrochlore antiferromagnet Gd2Ti2O7
Sosin, S. S.; Smirnov, A. I.; Prozorova, L. A.; Balakrishnan, G.; Zhitomirsky, M. E.
2006-06-01
An electron spin resonance study of frustrated pyrochlore Gd2Ti2O7 is performed in a wide frequency band for a temperature range 0.4 30K , which covers paramagnetic and magnetically ordered phases. The paramagnetic resonance reveals a spectroscopic g factor of about 2.0 and a temperature-dependent linewidth. In ordered phases magnetic resonance spectra are distinctive for a nonplanar cubic (or tetrahedral) antiferromagnet with an isotropic susceptibility. In the high-field-saturated phase, weakly dispersive soft modes are observed and their field evolution is traced.
Pu, Zhengguo; Zhang, Jun; Yi, Su; Wang, Dajun; Zhang, Wenxian
2016-05-01
We theoretically investigate four types of dynamical instability, in particular the periodic and oscillatory type IO, in an antiferromagnetic spin-1 Bose-Einstein condensate in a nonzero magnetic field, by employing the coupled-mode theory and numerical method. This is in sharp contrast to the dynamical stability of the same system in zero field. Remarkably, a pattern transition from a periodic dynamical instability IO to a uniform one IIIO occurs at a critical magnetic field. All four types of dynamical instability and the pattern transition are ready to be detected in 23Na condensates within the availability of the current experimental techniques.
The antiferromagnetic insulator Ca3FeRhO6: characterization and electronic structure calculations
Eyert, V.; Schwingenschloegl, U.; Fresard, R.; Maignan, A.; Martin, C.; Nguyen, N.; Hackenberger, C.; Kopp, T.
2006-01-01
We investigate the antiferromagnetic insulating nature of Ca3FeRhO6 both experimentally and theoretically. Susceptibility measurements reveal a Neel temperature T_N = 20 K, and a magnetic moment of 5.3 muB/f. u., while Moessbauer spectroscopy strongly suggests that the Fe ions, located in trigonal prismatic sites, are in a 3+ high spin state. Transport measurements display a simple Arrhenius law, with an activation energy of 0.2 eV. The experimental results are interpreted with LSDA band stru...
Néel Temperature of Antiferromagnets for Phase Transitions Driven by Spin-wave Interactions
Ayuela, Andrés; Klein, Douglas J.; March, Norman H.
2013-01-01
In a recent article,1 a wide variety of phase transitions, with transition (t) temperature Tt , were shown to be usefully characterized by the form kBTt Echar exp1/ λ where λ measured the strength of the quasiparticle interactions driving the phase transition. The present article is concerned primarily with antiferromagnets (AFs) having Néel temperature TN. It is first argued that the characteristic energy Echar can be usefully represented by kBθ, where θ is the Curie-Weiss ...
Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires
Directory of Open Access Journals (Sweden)
Majd Kuteifan
2016-04-01
Full Text Available Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.
Energy Technology Data Exchange (ETDEWEB)
Tsunoda, Masakiyo [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan)]. E-mail: tsunoda@ecei.tohoku.ac.jp; Naka, Mamiko [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); Kim, Dong Young [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Takahashi, Migaku [Department of Electonic Engineering, Tohoku University, Aobayama 6-6-05, Sendai 980-8579 (Japan); New Industry Creation Hatchery Center, Tohoku University, Aobayama 6-6-10, Sendai 980-8579 (Japan)
2006-09-15
Exchange biasing of ferromagnetic layer deposited on the antiferromagnetic superlattice was investigated in (Co{sub 70}Fe{sub 30}/Ru){sub 29.5}/Ru/Co{sub 90}Fe{sub 10} multilayers. Uniaxial magnetic anisotropy (K {sub AF}) was induced and tuned in the antiferromagentic superlattice by uniaxial substrate bending method through the inverse effect of magnetostriction. The exchange bias increased and tended to be saturated with increasing the K {sub AF}, while it was not observed at K {sub AF}=0.
Fermi-Surface Topology and Helical Antiferromagnetism in Heavy Lanthanide Metals
Döbrich, K. M.; Bostwick, A.; McChesney, J. L.; Rossnagel, K.; Rotenberg, E.; Kaindl, G.
2010-06-01
Detailed angle-resolved photoemission studies of Tb and Dy metal in the paramagnetic phase provide direct experimental proof of the presence of nesting features in the Fermi surfaces (FS) of these heavy lanthanide (Ln) metals. The observations clearly support the hypothesis that nesting of the FS in the paramagnetic phase is responsible for the development of helical antiferromagnetic ordering in heavy Ln metals. They also show that magnetic exchange splitting of the electronic states is responsible for the disappearance of FS nesting in the ferromagnetic phases.
LETTER TO THE EDITOR: Parity-broken ground state for the spin-1 pyrochlore antiferromagnet
Yamashita, Yasufumi; Ueda, Kazuo; Sigrist, Manfred
2001-12-01
The ground-state properties of the spin-1 pyrochlore antiferromagnet are studied by applying the VBS-like tetrahedron-unit decomposition to the original spin system. The symmetrization required on every vertex is taken into account by introducing a ferromagnetic coupling. The pairwise effective Hamiltonian between the adjacent tetrahedrons is obtained by considering the next nearest neighbour and the third neighbour exchange interactions. We find that the transverse component of the spin chirality exhibits a long-range order, breaking the parity symmetry of the tetrahedral group, while the chirality itself is not broken.
An exact calculation of the transverse susceptibility for an antiferromagnetic Ising $\\Delta$ chain
Kunisada, Nobutaka; Fukumoto, Yoshiyuki
2007-01-01
We study the transverse susceptibility of the fully frustrated antiferromagnetic Ising $\\Delta$-chain, extending Minami's transfer-matrix method for the transverse susceptibility of general-type Ising linear-chains [JPSJ 67,1998,2255]. For transverse fields $\\Gamma_1$ on tip spin sites and $\\Gamma_2$ on bottom spin sites, we calculate zero-field transverse-susceptibilities $\\chi_{tip}^x=\\lim_{\\Gamma_1,\\Gamma_2 -> 0}M_{tip}^x/\\Gamma_1$ and $\\chi_{bottom}^x=\\lim_{\\Gamma_1,\\Gamma_2 -> 0}M^x_{bot...
Oxygen-induced immediate onset of the antiferromagnetic stacking in thin Cr films on Fe(001)
Energy Technology Data Exchange (ETDEWEB)
Berti, Giulia, E-mail: giulia.berti@polimi.it; Brambilla, Alberto; Calloni, Alberto; Bussetti, Gianlorenzo; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
2015-04-20
We investigated the magnetic coupling of ultra-thin Cr films grown at 600 K on a Fe(001)-p(1 × 1)O substrate by means of spin-polarized photoemission spectroscopy. Our findings show that the expected antiferromagnetic stacking of the magnetization in Cr(001) layers occurs right from the first atomic layer at the Cr/Fe interface. This is at variance with all previous observations in similar systems, prepared in oxygen-free conditions, which always reported on a delayed onset of the magnetic oscillations due to the occurrence of significant chemical alloying at the interface, which is substantially absent in our preparation.
Influence of a magnetic field on the antiferromagnetic order in UPt{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Lussier, B.; Taillefer, L. [Department of Physics, McGill University, Montreal, Quebec, H3A2T8 (CANADA); Buyers, W.J. [AECL, Chalk River, Ontario, K0J1J0 (CANADA); Mason, T.E.; Petersen, T. [Department of Physics, University of Toronto, Toronto, Ontario, M5S1A7 (CANADA)
1996-09-01
A neutron-diffraction experiment was performed to investigate the effect of a magnetic field on the antiferromagnetic order in the heavy-fermion superconductor UPt{sub 3}. Our results show that a field in the basal plane of up to 3.2 T, higher than {ital H}{sub {ital c}2}(0), has no effect: it can neither select a domain nor rotate the moment. This has a direct impact on current theories for the superconducting phase diagram based on a coupling to the magnetic order. {copyright} {ital 1996 The American Physical Society.}
Solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain
Institute of Scientific and Technical Information of China (English)
Li De-Jun; Mi Xian-Wu; Deng Ke; Tang Yi
2006-01-01
By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons of two different quantum frequency bands: i.e., magnetic optical solitons and acoustic solitons. At the boundary of the Brillouin zone, these solitons become quantum intrinsic localized modes: their quantum eigenfrequencies are below the bottom of the harmonic optical frequency band and above the top of the harmonic acoustic frequency band.
Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model
International Nuclear Information System (INIS)
Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S4 is identically zero. In each case, the behavior of S4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S2. Overall shape similarity is noted. (author)
Antiferromagnetic resonance in the Mott insulator fcc-Cs3C60.
Suzuki, Yuta; Shibasaki, Seiji; Kubozono, Yoshihiro; Kambe, Takashi
2013-09-11
The magnetic ground state of the fcc phase of the Mott insulator Cs3C60 was studied using a low-temperature electron spin resonance technique, and antiferromagnetic resonance (AFMR) below 1.57 K was directly observed at ambient pressure. The AFMR modes for the fcc phase of Cs3C60 were investigated using a conventional two-sublattice model with uniaxial anisotropy, and the spin-flop field was determined to be 4.7 kOe at 1.57 K. The static magnetic exchange interactions and anisotropy field for fcc-Cs3C60 were also estimated.
Liu, Junjie; Goddard, Paul A; Singleton, John; Brambleby, Jamie; Foronda, Francesca; Möller, Johannes S; Kohama, Yoshimitsu; Ghannadzadeh, Saman; Ardavan, Arzhang; Blundell, Stephen J; Lancaster, Tom; Xiao, Fan; Williams, Robert C; Pratt, Francis L; Baker, Peter J; Wierschem, Keola; Lapidus, Saul H; Stone, Kevin H; Stephens, Peter W; Bendix, Jesper; Woods, Toby J; Carreiro, Kimberly E; Tran, Hope E; Villa, Cecelia J; Manson, Jamie L
2016-04-01
The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero-field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (J⊥) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (J(pyz)) within the two-dimensional [Ni(pyz)2](2+) square planes. Regardless of X, J(pyz) is similar for the four compounds and is roughly 1 K.
Lamrani, A. Fakhim; Ouchri, M.; Benyoussef, A.; Belaiche, M.; Loulidi, M.
2013-11-01
Electronic structure calculations based on density functional theory within the generalized gradient approximation for double perovskite Sr2FeMoO6 and Sr2OsMoO6 have been performed using the accurate full potential augmented spherical wave method. By substituting Fe atoms by Os in the double perovskite structure oxides we have shown that it is possible to realize half-metallic antiferromagnets with 100% spin polarization of the conduction electrons crossing the Fermi level, without showing a net magnetization. To support our results, GGA+U electronic structure calculations have been performed showing that the half-metallic antiferromagnetic state still persists. We conclude that the origin of the antiferromagnetism in Sr2OsMoO6 may be attributed to both superexchange and generalized double exchange mechanisms via the B(3d,5d)-O(2p)-B'(4d) coupling.
Quantum critical response function in quasi-two-dimensional itinerant antiferromagnets
Varma, C. M.; Zhu, Lijun; Schröder, Almut
2015-10-01
We reexamine the experimental results for the magnetic response function χ''(q ,E ,T ) for q around the antiferromagnetic vectors Q , in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based superconductor and on a heavy-fermion compound. The motivation is to compare the results with a recent theory, which shows that the fluctuations in a generic antiferromagnetic model for itinerant fermions map to those in the universality class of the dissipative quantum-XY model. The quantum-critical fluctuations in this model, in a range of parameters, are given by the correlations of spatial and temporal topological defects. The theory predicts a χ''(q ,E ,T ) (i) which is a separable function of (q -Q ) and of (E ,T ) , (ii) at criticality, the energy-dependent part is ∝tanh(E /2 T ) below a cutoff energy, (iii) the correlation time departs from its infinite value at criticality on the disordered side by an essential singularity, and (iv) the correlation length depends logarithmically on the correlation time, so that the dynamical critical exponent z is ∞ . The limited existing experimental results are found to be consistent with the first two unusual predictions from which the linear dependence of the resistivity on T and the T lnT dependence of the entropy also follow. More experiments are suggested, especially to test the theory of variations on the correlation time and length on the departure from criticality.
Antiferromagnetic instability in Sr3Ru2O7: stabilized and revealed by dilute Mn impurities
Hossain, Muhammed; Bohnenbuck, B.; Chuang, Y.-D.; Cruz, E.; Wu, H.-H.; Tjeng, L. H.; Elfimov, I. S.; Hussain, Z.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.
2009-03-01
X-ray Absorption Spectroscopy (XAS) and Resonant Elastic Soft X-ray Scattering (RESXS) studies have been performed on Mn-doped Sr3Ru2O7, both on the Ru and Mn L-edges, to investigate the origin of the metal insulator transition. Extensive simulations based on our experimental findings point toward an intrinsic antiferromagnetic instability in the parent Sr3Ru2O7 compound that is stabilized by the dilute Mn impurities. We show that the metal-insulator transition is a direct consequence of the antiferromagnetic order and we propose a phenomenological model that may be applicable also to metal-insulator transitions seen in other oxides. Moreover, a comparison of Ru and Mn L-edge data on 5% Mn doped system reveals that dilute Mn impurities are generating much more intense signal than Ru which is occupying 95% of the lattice sites. This suggests the embedding of dilute impurities as a powerful mean to probe weak and, possibly, spatially inhomogeneous order in solid-state systems. In collaboration with: Y. Yoshida (AIST), J. Geck, D.G. Hawthorn (UBC), M.W. Haverkort, Z. Hu, C. Sch"ußler-Langeheine (Cologne), R. Mathieu, Y. Tokura, S. Satow, H. Takagi (Tokyo), J.D. Denlinger (ALS).
Noncollinear antiferromagnetic structure of the molecule-based magnet Mn[N(CN)2]2
International Nuclear Information System (INIS)
The crystallographic and magnetic properties of the Mn[N(CN)2]2 compound have been investigated by dc magnetization, ac susceptibility, specific heat, and zero-field neutron diffraction on polycrystalline samples. The magnetic structure consists of two sublattices which are antiferromagnetically coupled and spontaneously canted. The spin orientation is mainly along the a axis with a small uncompensated moment along the b axis. The ground state is a crystal-field sextet with large magnetic anisotropy. The crystal structure consists of discrete octahedra which are axially elongated and successively tilted in the ab plane. Comparisons of the magnetic structures for the isostructural M[N(CN)2]2 (M=Mn, Fe, Co, Ni) series suggest that the spin direction is stabilized by crystal fields and the spin canting is induced by the successive tilting of the octahedra. We propose that the superexchange interaction is the mechanism responsible for the magnetic ordering in these compounds and we find that a crossover from noncollinear antiferromagnetism to collinear ferromagnetism occurs for a superexchange angle of αc=142.0(5) degree sign . (c) 2000 The American Physical Society
Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I
Someya, Yoshiko
1981-12-01
The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.
Novel magnetic hydrogen sensing: a case study using antiferromagnetic haematite nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Punnoose, Alex [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States); Reddy, K M [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States); Thurber, Aaron [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States); Hays, Jason [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States); Engelhard, Mark H [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)
2007-04-25
Hydrogen sensing is a critical component of safety to address widespread public perceptions of the hazards of production, storage, transportation and use of hydrogen in proposed future automobiles and in various other applications. A nanoscale magnetic hydrogen sensor is proposed based on the experimental observation of systematically varying the saturation magnetization and remanence of nanoscale antiferromagnetic haematite with hydrogen flow. The saturation magnetization and remanence of the nanoscale haematite sample showed an increase of one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1-10% range and at 575 K, suggesting that a practical magnetic hydrogen sensor could be developed using this material and the novel magnetic sensing method. Thermogravimetric analysis of the haematite sample shows significant mass loss when hydrogen gas is introduced. X-ray diffraction and x-ray photoelectron spectroscopy studies ruled out any impurity phase formation as a result of gas-sample interaction. This work thus facilitates the use of the magnetic properties of an antiferromagnetic material as gas sensing parameters, thus exploring the concept of 'magnetic gas sensing'.
Novel Magnetic Hydrogen Sensing: A Case Study Using Antiferromagnetic Hematite Nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Punnoose, Alex; Reddy, K. M.; Thurber, A.; Hays, Jason; Engelhard, Mark H.
2007-04-25
Hydrogen sensing is a critical component of safety to address wide spread public perceptions of the hazards of production, storage, transportation and use of hydrogen in proposed future automobiles and in various other applications. A nanoscale magnetic hydrogen sensor is proposed based on the experimental observation of systematically varying the saturation magnetization and remanence of nanoscale antiferromagnetic hematite with hydrogen flow. The saturation magnetization and remanence of the nanoscale hematite sample showed an increase of one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1 to 10% range and at 575 K, suggesting that a practical magnetic hydrogen sensor could be developed using this material and the novel magnetic sensing method. Thermogravimetric analysis of the hematite sample shows significant mass loss when hydrogen gas is introduced. Xray diffraction and x-ray photoelectron spectroscopy studies ruled out any impurity phase formation as a result of gas-sample interaction. This work thus facilitates the use of the magnetic properties of an antiferromagnetic material as gas sensing parameters, thus exploring the concept of ‘magnetic gas sensing’.
Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system
Fukami, Shunsuke; Zhang, Chaoliang; Duttagupta, Samik; Kurenkov, Aleksandr; Ohno, Hideo
2016-05-01
Spin-orbit torque (SOT)-induced magnetization switching shows promise for realizing ultrafast and reliable spintronics devices. Bipolar switching of the perpendicular magnetization by the SOT is achieved under an in-plane magnetic field collinear with an applied current. Typical structures studied so far comprise a nonmagnet/ferromagnet (NM/FM) bilayer, where the spin Hall effect in the NM is responsible for the switching. Here we show that an antiferromagnet/ferromagnet (AFM/FM) bilayer system also exhibits a SOT large enough to switch the magnetization of the FM. In this material system, thanks to the exchange bias of the AFM, we observe the switching in the absence of an applied field by using an antiferromagnetic PtMn and ferromagnetic Co/Ni multilayer with a perpendicular easy axis. Furthermore, tailoring the stack achieves a memristor-like behaviour where a portion of the reversed magnetization can be controlled in an analogue manner. The AFM/FM system is thus a promising building block for SOT devices as well as providing an attractive pathway towards neuromorphic computing.
Frustrated antiferromagnet YbAgGe under magnetic fields and pressures
Energy Technology Data Exchange (ETDEWEB)
Kubo, Hirokazu; Umeo, Kazunori; Takabatake, Toshiro [ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Katoh, Kenichi [Department of Applied Physics, National Defense Academy, Yokosuka 239-8686 (Japan); Ochiai, Akira, E-mail: khirokazu@hiroshima-u.ac.j [Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)
2010-01-15
We present a detailed study of the field (B)- temperature (T) phase diagram under pressures (P) up to 2.7 GPa for the heavy-fermion antiferromagnet YbAgGe that crystallizes in the hexagonal ZrNiAl-type structure with a quasi-kagome lattice of Yb ions. This compound undergoes two magnetic transitions at T{sub M1} = 0.8 K and T{sub M2} = 0.65 K in zero field at ambient pressure. In the ground state, M(B) shows a metamagnetic transition at B{sub M} = 4.6 T for the easy magnetization direction B || a. This transition field decreases to 3.3 T as P is increased to 2.2 GPa. At 2.7 GPa, {rho}(B) exhibits successive transitions at 5.0, 6.0, 7.5, and 9.0 T. On the other hand, for the hard direction B || c, T{sub M} increases with applied field in the P range above 0.5 GPa. This increase of T{sub M}(B) is opposite to the decrease of T{sub M}(B) for a conventional antiferromagnetic phase. These findings suggest that the application of pressure releases in part the magnetic frustration in YbAgGe.
Liu, Q.; Subir, B. K.; Jackson, M.; Zhu, R.; Pan, Y.
2001-12-01
A new parameter Mfr (the final remanence after a slow hysteretic demagnetization process) for the detection of the concentration of weak antiferromagnetic (AFM) minerals against a strong ferrimagnetic (FM) background is put forward by taking advantage of their sharply different H0 (the critical maximum field that can decrease Mfr to zero) values. For strong FM minerals (magnetite, maghemite), H0 values are less than 0.3 T, while for antiferromagnetic materials (such as hematite) with weak magnetic remanence, H0 is larger than 1 T. With synthetic samples, experiments showed that Mfr has a higher sensitivity to detect AFM minerals than the HIRM method because it has a higher random error caused by the required subtraction of two numbers. The latter requires measurements in the presence of high applied-fields (generally 0.3 to 1T). Mfr, on the other hand, being a remanence, is measured at zero applied fields. Detailed Mfr data for YiChuan (Gansu province, China) loess samples indicate that paleosol unit S1contains a higher concentration of FM but lower concentration of AFM minerals compared to that of the loess units above and below. This suggests the formation of Fe2+ bearing minerals at the cost of Fe3+ bearing AFM minerals during pedogenesis.
Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets
Li, Yao-Dong; Wang, Xiaoqun; Chen, Gang
2016-07-01
Motivated by the recent experimental progress on the strong spin-orbit-coupled rare-earth triangular antiferromagnet, we analyze the highly anisotropic spin model that describes the interaction between the spin-orbit-entangled Kramers' doublet local moments on the triangular lattice. We apply the Luttinger-Tisza method, the classical Monte Carlo simulation, and the self-consistent spin wave theory to analyze the anisotropic spin Hamiltonian. The classical phase diagram includes the 120∘ state and two distinct stripe-ordered phases. The frustration is very strong and significantly suppresses the ordering temperature in the regimes close to the phase boundary between two ordered phases. Going beyond the semiclassical analysis, we include the quantum fluctuations of the spin moments within a self-consistent Dyson-Maleev spin-wave treatment. We find that the strong quantum fluctuations melt the magnetic order in the frustrated regions. We explore the magnetic excitations in the three different ordered phases as well as in strong magnetic fields. Our results provide a guidance for the future theoretical study of the generic model and are broadly relevant for strong spin-orbit-coupled triangular antiferromagnets such as YbMgGaO4, RCd3P3 , RZn3P3 , RCd3As3 , RZn3As3 , and R2O2CO3 .
Critical Space-Time Networks and Geometric Phase Transitions from Frustrated Edge Antiferromagnetism
Trugenberger, Carlo A
2015-01-01
Recently I proposed a simple dynamical network model for discrete space-time which self-organizes as a graph with Hausdorff dimension d_H=4. The model has a geometric quantum phase transition with disorder parameter (d_H-d_s) where d_s is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
Temperature-driven growth of antiferromagnetic domains in thin-film FeRh
International Nuclear Information System (INIS)
The evolution of the antiferromagnetic phase across the temperature-driven ferromagnetic (FM) to antiferromagnetic (AF) phase transition in epitaxial FeRh thin films was studied by x-ray magnetic linear and circular dichroism (XMLD and XMCD) and photoemission electron microscopy. By comparing XMLD and XMCD images recorded at the same temperature, the AF phase was identified, its structure directly imaged, and its evolution studied across the transition. A quantitative analysis of the correlation length of the images shows differences between the characteristic length scale of the two phases with the AF phase having a finer feature size. The asymmetry of the transition from FM to AF upon cooling and AF–FM upon heating is evidenced: upon cooling the formation of AF phase is dominated by nucleation at defects, with little subsequent growth, resulting in a small and non-random final AF domain structure, while upon heating, heterogeneous nucleation at different sites followed by significant domain size growth of the FM phase is observed, resulting in a non-reproducible final FM large domain structure. (paper)
The magnetic properties of antiferromagnetic nanoparticles: NiO and αFe2O3
DEFF Research Database (Denmark)
Bahl, Christian Robert Haffenden
Nickel oxide (NiO) and hematite (a-Fe2O3), both antiferromagnets, have magnetic properties which at nanoscale differ from those of the bulk materials. With emphasis on NiO nanoparticles and comparisons with a-Fe2O3 nanoparticles these magnetic propertiesare studied by a range of experimental tech...... of the recently implemented monochromatic imaging mode of the RITA-II triple axis neutron spectrometer to measure inelastic neutron scattering data from the NiO nanoparticle samples is described. Theadvantages of using such a multi-blade mode are demonstrated.......Nickel oxide (NiO) and hematite (a-Fe2O3), both antiferromagnets, have magnetic properties which at nanoscale differ from those of the bulk materials. With emphasis on NiO nanoparticles and comparisons with a-Fe2O3 nanoparticles these magnetic propertiesare studied by a range of experimental...... techniques: elastic and inelastic neutron scattering, Mössbauer spectroscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometry. Knowledge of the size and shape of thenanoparticles is an often neglected prerequisite for studies of their magnetic properties. The NiO...
Electrically tunable transport in antiferromagnetic Sr3Ir2O7
Seinige, Heidi; Wang, Cheng; Cao, Gang; Zhou, Jianshi-S.; Goodenough, John B.; Tsoi, Maxim
Recently we demonstrated experimentally the existence of interconnections between magnetic state and transport currents in antiferromagnetic (AFM) Mott insulator Sr2IrO4. We found a very large anisotropic magnetoresistance and demonstrated a reversible resistive switching driven by high-density currents/high electric fields. These results support the feasibility of AFM spintronics, where antiferromagnets are used in place of ferromagnets, however a low Néel temperature of this material (240 K) questions any practical applications. Here we present a comparative electrical transport study of its sister compound Sr2IrO4 which has a higher transition temperature (285 K). Similar to the case of Sr2IrO4, we find a continuous reduction in the resistivity of Sr3Ir2O7 as a function of increasing electrical bias and abrupt reversible changes above a threshold bias current. We explain these results by a reduction of activation energy associated with a field-driven lattice distortion. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, and by NSF Grants DMR-1207577, DMR-1265162, and DMR-1122603.
Temperature-driven growth of antiferromagnetic domains in thin-film FeRh
Baldasseroni, C.; Bordel, C.; Antonakos, C.; Scholl, A.; Stone, K. H.; Kortright, J. B.; Hellman, F.
2015-06-01
The evolution of the antiferromagnetic phase across the temperature-driven ferromagnetic (FM) to antiferromagnetic (AF) phase transition in epitaxial FeRh thin films was studied by x-ray magnetic linear and circular dichroism (XMLD and XMCD) and photoemission electron microscopy. By comparing XMLD and XMCD images recorded at the same temperature, the AF phase was identified, its structure directly imaged, and its evolution studied across the transition. A quantitative analysis of the correlation length of the images shows differences between the characteristic length scale of the two phases with the AF phase having a finer feature size. The asymmetry of the transition from FM to AF upon cooling and AF-FM upon heating is evidenced: upon cooling the formation of AF phase is dominated by nucleation at defects, with little subsequent growth, resulting in a small and non-random final AF domain structure, while upon heating, heterogeneous nucleation at different sites followed by significant domain size growth of the FM phase is observed, resulting in a non-reproducible final FM large domain structure.
Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition
Kudrnovský, J.; Drchal, V.; Turek, I.
2015-01-01
The electronic, magnetic, thermodynamical, and transport properties of FeRh alloys are studied from first principles. We present a unified approach to the phase stability, an estimate of exchange interactions in various magnetic phases, and transport properties including the effect of temperature which are all based on the same electronic-structure model. Emphasis is put on the transition between the ferromagnetic (FM) and antiferromagnetic (AFM) phases. Such a study is motivated by a recent suggestion of FeRh as a room-temperature antiferromagnetic memory resistor. The theory predicts the order-disorder transformation from the hypothetical disordered bcc phase into ordered B2 phase. Comparison of exchange interactions in the magnetically ordered FM and AFM phases with corresponding spin-disordered counterparts allows us to identify relevant interactions which are precursors of magnetically ordered phases. The most important result is the explanation of a dramatic decrease of the resistivity accompanying the AFM to FM phase transition which is due to the spin disorder present in the system. The study of the anisotropic magnetoresistance in the AFM phase found recently experimentally is extended also to finite temperatures.
Soliton Lattice State of Spin-1/2 Antiferromagnetic Chain in an External Magnetic Field
Institute of Scientific and Technical Information of China (English)
WANG Zhi-Guo; ZHANG Yu-Mei; GAO Yang
2002-01-01
One-dimensional spin-1-2 anisotropic Heisenberg antiferromagnet in a longitudinal external magnetic field is studied using bosonization method and Gaussian wave functional techniques which take account of the spatial structure.The magnetization and the energy of the ground state which depend on the external magnetic field are calculated.For the case of anisotropic parameter △＞△0,increasing of the external magnetic field above the threshold value leads to the appearance of the soliton lattice state in the ground state,until to an another critical field where the ground state changes to the canted state phase.Therefore,with increasing external magnetic field,the ground state experiences four different phases successively,namely,antiferromagnetic Ising,soliton lattice state canted state,and magnetization saturated phases.When △＜△0,the soliton lattice state phase does not appear,with increasing external field,the paramagnetic phase smoothly evolves into the canted state phase,finally reaches magnetization saturated phase.
Pearce, D J G; Turner, M S
2015-10-01
Self-propelled particle (SPP) models are often compared with animal swarms. However, the collective animal behaviour observed in experiments often leaves considerable unconstrained freedom in the structure of a proposed model. Essentially, multiple models can describe the observed behaviour of animal swarms in simple environments. To tackle this degeneracy, we study swarms of SPPs in non-trivial environments as a new approach to distinguish between candidate models. We restrict swarms of SPPs to circular (periodic) channels where they polarize in one of two directions (like spins) and permit information to pass through windows between neighbouring channels. Co-alignment between particles then couples the channels (anti-ferromagnetically) so that they tend to counter-rotate. We study channels arranged to mimic a geometrically frustrated anti-ferromagnet and show how the effects of this frustration allow us to better distinguish between SPP models. Similar experiments could therefore improve our understanding of collective motion in animals. Finally, we discuss how the spin analogy can be exploited to construct universal logic gates, and therefore swarming systems that can function as Turing machines. PMID:26423438
High Field Magnetization Studies of Low Dimensional Heisenberg S = 1/2 Antiferromagnets
Landee, C. P.; Turnbull, M. M.
1998-03-01
The magnetization curves of a number of low dimensional S=1/2 Heisenberg antiferromagnets have been determined in fields up to 30 tesla at low temperatures at the National High Magnetic Fields Laboratory. Materials studied include a family of 1D materials, based upon Cu(pyrazine)(NO_3)_2, 2D magnets consisting of pyrazine-bridged copper layers, and several spin ladders with singlet ground states. All of the magnetization data show upward curvature and are well described by T = 0 calculations based upon finite cluster models(Bonner and Fisher, Phys. Rev. A135, 640 (1964); Yang and Mutter, NANL cond-mat/9610092.). Chemical substitution on the pyrazine rings permits the variation of exchange constants by more than 25 percent for the family of well isolated chains. The spin ladder systems consist of ferromagnetic dimers weakly connected by antiferromagnetic intradimer interactions. Field induced transitions are seen at fields of less than one tesla for each of the three compounds.
Order-by-disorder effects in antiferromagnets on face-centered cubic lattice
Batalov, L. A.; Syromyatnikov, A. V.
2016-09-01
We discuss the role of quantum fluctuations in Heisenberg antiferromagnets on face-centered cubic lattice with small dipolar interaction in which the next-nearest-neighbor exchange coupling dominates over the nearest-neighbor one. It is well known that a collinear magnetic structure which contains (111) ferromagnetic planes arranged antiferromagnetically along one of the space diagonals of the cube is stabilized in this model via order-by-disorder mechanism. On the mean-field level, the dipolar interaction forces spin to lie within (111) planes. By considering 1 / S corrections to the ground state energy, we demonstrate that quantum fluctuations lead to an anisotropy within (111) planes favoring three equivalent directions for the staggered magnetization (e.g., [ 11 2 bar ], [ 1 2 bar 1 ], and [ 2 bar 11 ] directions for (111) plane). Such in-plane anisotropy was obtained experimentally in related materials MnO, α-MnS, α-MnSe, EuTe, and EuSe. We find that the order-by-disorder mechanism can contribute significantly to the value of the in-plane anisotropy in EuTe. Magnon spectrum is also derived in the first order in 1 / S.
Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach.
Liu, Gui-Bin; Liu, Bang-Gui
2009-05-13
We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature T(N) and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for T(N) and determine our temperature-dependent average spin from zero temperature to T(N) in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature T(N) = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero T(N), and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.
Institute of Scientific and Technical Information of China (English)
刘芬芬; 张勇; 袁峰; 夏临华
2012-01-01
The two dimensions hole-doped t-t ＇-J-U model was studied based on the Gutzwiller approach and the renormalized mean-field theory.The phase diagrams of gossamer superconductors and the effects of the next-nearestneighbor hopping（t ＇） on superconductivity and antiferromagnetism based on the t-t ＇-J-U model were investigated.The results show that the qualitative feature of the phase diagrams in the t-t ＇-J-U model is the same as in the case of the t-J-U model.The antiferromagnetic order coexists with the d-wave superconductivity（dSC） in the underdoped region below the doping δ≈ 0.1 and is enhanced by the t ＇.The dSC order is slightly suppressed by t ＇ in the underdoped region and greatly enhanced in the overdoped region.The dSC order is pushed to a larger doping region and the coexistence region of the AF and dSC extends to higher doping.
Energy Technology Data Exchange (ETDEWEB)
Mohapatra, Rasmita, E-mail: rmrmmohapatra@gmail.com [P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore, Odisha 756019 (India); Rout, G.C., E-mail: gcr@iopb.res.in [Physics Enclave, Plot no-664/4825, Lane-4A, Shree Vihar, Patia, Bhubaneswar, Odisha 751024 (India)
2015-05-15
Highlights: • We considered here the interplay of antiferromagnetism (AFM) and Superconductivity (SC) with d-wave pairing symmetry in presence of impurity effect. • The tunneling conductance explains the multiple peaks and dip-hump structure. • It is observed that AFM coupling enhances the superconducting transition temperature. • The low temperature specific heat anomaly due to impurity atoms. - Abstract: We present here a model Hamiltonian to study the interplay between staggered magnetic field and the superconductivity with d-wave pairing symmetry in presence of hybridization between impurity f-electrons of rare-earth ions and 3d-electrons of copper ions. The staggered field and superconducting (SC) gaps are calculated by Green’s function technique and solved self-consistently. The coupling constants are compared using s-wave and d-wave pairings. The strength of hybridization suppresses the magnitude of the gaps; while antiferromagnetic coupling enhances the superconducting transition temperature, but suppresses the Neel temperature. The density of states (DOS) representing tunneling conductance shows complex character with impurity level lying at the Fermi level. The electronic specific heat explains prototype heavy fermion behavior in cuprate systems at low temperatures.
Gomez, M. E.; Marin, L.; Ramirez, G.; Prieto, P.
2011-03-01
We studied the isothermal magnetic field dependence of the resistance behavior in ferromagnetic--antiferromagnetic interface based on the Ca-doped lanthanum manganite system at temperatures below Neel temperature of the antiferromagnetic layer. We studied the influence of the thickness of the AF-layer, tAF , and F-layer, tF , on the ZFC and FC magnetoresistance (MR) in La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) bilayers. HFC was 400 Oe and the applied magnetic field, H. We systematically varied the tF and tAF thickness, maintaining constant the total bilayer thickness (d = tF +tAF) . We found that MR has hysteretic behavior as observed in [ La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) ]N superlattices, but; MR increases with the increasing field from H=0 to a maximum and then decreases continuously. This behavior also appears for negative fields in both ZFC and FC loops. The position and magnitude of the maximum is not symmetric with respect to the axis H=0. Work supported by CENM-COLCIENCIAS contract RC-0043-(2005).
Wills, A. S.; Zhitomirsky, M. E.; Canals, B.; Sanchez, J. P.; Bonville, P.; Dalmas de Réotier, P.; Yaouanc, A.
2006-01-01
Low-temperature powder neutron diffraction measurements are performed in the ordered magnetic state of the pyrochlore antiferromagnet Gd2Sn2O7. Symmetry analysis of the diffraction data indicates that this compound has the ground state predicted theoretically for a Heisenberg pyrochlore antiferromagnet with dipolar interactions. The difference in the magnetic structure of Gd2Sn2O7 andof nominally analogous Gd2Ti2O7 is found to be determined by a specific type of third-neighbour superexchange interaction on the pyrochlore lattice between spins across empty hexagons.
Energy Technology Data Exchange (ETDEWEB)
Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Departamento de Física y Química, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Agudelo-Giraldo, J.D. [Departamento de Física y Química, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Grupo de Investigación y Desarrollo en Informática y Telecomunicaciones, Universidad de Manizales, Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulación, Instituto de Física, Universidad de Antioquia, A.A. 1226 Medellín (Colombia)
2014-05-01
In this work, simulations of ferromagnetic/antiferromagnetic multilayers of La{sub 1−x}Ca{sub x}MnO{sub 3} have been carried out by using the Monte Carlo method combined with the Metropolis algorithm and the classical Heisenberg model. In the Hamiltonian we have considered three contributions: nearest neighbor exchange interaction, magnetocrystalline anisotropy and Zeeman interaction. Samples were built by including three types of Mn ions depending on their valence state and type of ionic orbital. Both the number of layers and the antiferromagnetic layer thickness influence on the exchange bias phenomenon are analyzed. Hysteresis loops results exhibit not only a shift as evidence of exchange bias but also the formation of plateaus or steps caused by the presence of more than one interface and the low layers thickness. Each layer presents a strong magnetic behavior because the magneto static energy favors formation of multi-domains in contrast with the single-domains of a single layer FM producing one sub-Loop of each domain (each layer). On the other hand, as the number of layers (n) increases, the sub-cycles tend to disappear. As the plateaus disappear, the system is more effective, increasing the coercive and bias fields. Moreover, domain sizes (layers thickness) also affect the shape of the hysteresis loop. On increasing the thickness of the AFM layer, a decrease in the plateaus produced by the uncoupling is generated.
DEFF Research Database (Denmark)
Jiang, Jianzhong; Mørup, Steen
1997-01-01
The influence of the particle size distribution on the ratio of the peak temperature, T-peak, to the blocking temperature, T-Bm, in zero field cooled (ZFD) magnetization curves has studied for both ferromagnetic and antiferromagnetic particle systems. In both systems the ratio beta=T-peak/T-Bm does...
Antiferromagnetic S=1/2 Spin Chain Driven by p-Orbital Ordering in CsO2
Riyadi, Syarif; Zhang, Baomin; de Groot, Robert A.; Caretta, Antonio; van Loosdrecht, Paul H. M.; Palstra, Thomas T. M.; Blake, Graeme R.
2012-01-01
We demonstrate, using a combination of experiment and density functional theory, that orbital ordering drives the formation of a one-dimensional (1D) S = 1/2 antiferromagnetic spin chain in the 3D rocksalt structure of cesium superoxide (CsO2). The magnetic superoxide anion (O-2(-)) exhibits degener
DEFF Research Database (Denmark)
Zaharko, O.; Cervellino, A.; Tsurkan, V.;
2010-01-01
Using neutron powder diffraction and Monte Carlo simulations we show that a spin-liquid regime emerges at all compositions in the diamond-lattice antiferromagnets Co(Al1−xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbor exchange coupling J2 is gradually supersede...
Directory of Open Access Journals (Sweden)
E Ghasemikhah
2012-03-01
Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.
Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu{sub 2}Si{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Yamagami, Hiroshi, E-mail: yamagami@cc.kyoto-su.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)
2011-01-01
In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu{sub 2}Si{sub 2} are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu{sub 2}Si{sub 2} crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.
Nishimoto, Satoshi; Shibata, Naokazu; Hotta, Chisa
2013-01-01
Quantum spin-1/2 kagome Heisenberg antiferromagnet is the representative frustrated system possibly hosting a spin liquid. Clarifying the nature of this elusive topological phase is a key challenge in condensed matter; however, even identifying it still remains unsettled. Here we apply a magnetic field and discover a series of spin-gapped phases appearing at five different fractions of magnetization by means of a grand canonical density matrix renormalization group, an unbiased state-of-the-art numerical technique. The magnetic field dopes magnons and first gives rise to a possible Z₃ spin liquid plateau at 1/9 magnetization. Higher field induces a self-organized super-lattice unit, a six-membered ring of quantum spins, resembling an atomic orbital structure. Putting magnons into this unit one by one yields three quantum solid plateaus. We thus find that the magnetic field could control the transition between various emergent phases by continuously releasing the frustration.
International Nuclear Information System (INIS)
The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet (FM)/antiferromagnet (AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications. (paper)
Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4
Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.
2016-07-01
CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.
Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Mobius strip
Energy Technology Data Exchange (ETDEWEB)
Cador, Olivier [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Gatteschi, Dante [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy); Sessoli, Roberta [Laboratory of Molecular Magnetism, Department of Chemistry and UdR INSTM, Universita degli Studi di Firenze, Via Lastruccia n. 3, 50019 Sesto Fiorentino (Italy)]. E-mail: roberta.sessoli@unifi.it; Barra, Anne-Laure [Laboratoire des Champs Magnetiques Intenses-CNRS, F-38042 Grenoble Cede 9 (France); Timco, Grigore A. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Winpenny, Richard E.P. [Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
2005-04-15
The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=32 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground state but, due to competing AF interactions, the first excited spin states are close in energy. The spin frustrated ring is visualized by a Mobius strip. The 'knot' of the strip represents the region of the ring where the AF interactions are more frustrated. In the particular case of this bimetallic ring electron paramagnetic resonance (EPR) has unambiguously shown that the frustration is delocalized on the chromium chain, while the antiparallel alignment is more rigid at the nickel site.
Preserved interfacial magnetism and giant antiferromagnetic exchange coupling in Co/Rh sandwiches
International Nuclear Information System (INIS)
The interlayer coupling in Co/Rh/Co sandwiches prepared by UHV evaporation has been investigated by means of magnetization and transport experiments. We found that the antiferromagnetic coupling strength for thin Rh layers is the largest ever obtained in magnetic systems, reaching approximately 34 erg/cm2 for 5 A thick Rh interlayer. This value is 7 to 8 times larger than the highest value previously observed in the Co/Ru system prepared under similar conditions. This unexpectedly large difference in the coupling strength between these two systems is mainly due to the magnetic nature of the interfaces. This is further supported by ab initio calculations of the magnetic moments in superlattices with mixed interfaces. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Casadei, Cecilia [Univ. of Pavia (Italy)
2011-01-01
The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr_{8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr^{3+} ion with diamagnetic Cd^{2+} (Cr_{7}Cd) and with Ni^{2+} (Cr_{7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both ^{53}Cr-NMR and ^{19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant ^{19}F - M^{+} where M^{+} = Cr^{3+}, Ni^{2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.
International Nuclear Information System (INIS)
Full text: In some low-dimensional quantum antiferromagnets a transition can occur between a Neel ordered ground state, characterised by gapless excitations and long range correlations, and a disordered ground state with a gap and short range correlations. The disordered phase is characterised by strong singlet formation on pairs of neighbouring spins. We have used a new analytic many body approach together with numerical series and exact diagonalisation methods to study such transitions in 1. a bilayer Heisenberg system 2. a spin analogue of the Kondo lattice model at half filling. A Letter on this work has been published. The analytic method is based on a 'bond operator' representation for spins which is used to transform the problem to an interacting Bose gas with a hardcore repulsion which is treated exactly. The results are in excellent agreement with numerical estimates, and represent a significant improvement on previous calculations
Directory of Open Access Journals (Sweden)
Hector Barco-Ríos
2011-06-01
Full Text Available The manganites have been widely studied because of their important properties as colossal magnetoresistance and exchange bias that are important phenomena used in many technological applications. For this reason, in this work, a study of the exchange bias effect present in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3. This study was carried out by using the Monte Carlo method and the Metropolis Algorithm. In order to make easy this study, a graphic user interface was built alloying a friendly interaction. The interface permits to control the thickness of Ferromagnetic and Antiferromagnetic layer, temperatures the magnetic field, the number of Monte Carlo steps and the exchange parameters. Results obtained reflected the influence of all of these parameters on the exchange bias and coercive fields.
Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons
Bossini, D.; Dal Conte, S.; Hashimoto, Y.; Secchi, A.; Pisarev, R. V.; Rasing, Th.; Cerullo, G.; Kimel, A. V.
2016-02-01
The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.
Adiabatic demagnetization of a pyrochlore antiferromagnet Gd 2Ti 2O 7
Sosin, S. S.; Prozorova, L. A.; Smirnov, A. I.; Golov, A. I.; Berkutov, I. B.; Petrenko, O. A.; Balakrishnan, G.; Zhitomirsky, M. E.
2005-04-01
An adiabatic demagnetization process is studied in the pyrochlore antiferromagnet Gd2Ti2O7. A strong cooling of the sample is observed by decreasing magnetic field in the range 120-60 kOe corresponding to a crossover between saturated and spin-liquid phases. This phenomenon indicates that a considerable part of the magnetic entropy associated with a macroscopic number of local soft modes survives in the strongly correlated paramagnetic state. Monte Carlo simulations demonstrate good agreement with the experiment. The cooling power of the process is experimentally estimated with a view to possible technical applications. The results on Gd2Ti2O7 are compared to those for Gd3Ga5O12, a related material for low-temperature magnetic cooling.
Energy Technology Data Exchange (ETDEWEB)
Ramm, Paul; Radu, Ilie; Weber, Alexander; Back, Christian [Institut fuer Angewandte und Experimentelle Physik, Universitaet Regensburg (Germany); Stamm, Christian; Kachel, Torsten; Pontius, Niko; Duerr, Hermann [BESSY GmbH, Berlin (Germany); Raabe, Joerg; Quitmann, Christoph; Joly, Luiic [Paul Scherrer Institut, Villigen PSI (Switzerland); Thiele, Jan-Ulrich [Hitachi Global Storage Technologies, San Jose Research Center (United States)
2007-07-01
The antiferromagnetic-to-ferromagnetic phase transition present on the FeRh thin film alloy is studied by employing static magneto-optic Kerr effect (MOKE), X-ray magnetic circular dichroism (XMCD) and X-ray photoemission electron microscopy (XPEEM) techniques, which give information on the average magnetization, the element-specific magnetic moments as well as the domain structure, respectively. The element-specific hysteresis provided by the XMCD measurements near the transition temperature reveal the growth of the Fe magnetic moment and development of the small but crucial induced Rh magnetic moment in the ferromagnetic phase. Using temperature dependent XPEEM in the vicinity of the phase transition we observe the formation and the partial reproducibility of the magnetic domain structure. The temperature hysteresis of the magnetic contrast deduced from the XPEEM data is in good agreement with the temperature dependent MOKE measurements.
Oliveira, A. B.; Rodriguez-Suarez, R. L.; Michea, S.; Vega, H.; Azevedo, A.; Rezende, S. M.; Aliaga, C.; Denardin, J.
2014-07-01
The angular dependence of the hysteresis shift has been investigated in ferromagnetic/antiferromagnetic (NiFe/IrMn) bilayers grown by oblique deposition under the influence of a static magnetic field applied perpendicular to the uniaxial anisotropy direction induced during the growth process. It was found that at low oblique deposition angles, the unidirectional anisotropy field is much greater than the uniaxial anisotropy field and the corresponding anisotropies directions are noncollinear. In these conditions, the angular dependence of the hysteresis loop shift exhibits the well know cosine like shape but demanding a phase shift. Contrary to this, at high oblique deposition angle (70°), the uniaxial anisotropy plays the fundamental role and the anisotropies directions are collinear. In this case, the exchange bias displays a jump phenomenon. The numerical calculations are consistent with the experimental data obtained from magneto-optical Kerr effect and ferromagnetic resonance.
Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80
Mendes, J. B. S.; Cunha, R. O.; Alves Santos, O.; Ribeiro, P. R. T.; Machado, F. L. A.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.
2014-04-01
A spin current is usually detected by converting it into a charge current through the inverse spin Hall effect (ISHE) in thin layers of a nonmagnetic metal with large spin-orbit coupling, such as Pt, Pd, and Ta. Here we demonstrate that Ir20Mn80, a high-temperature antiferromagnetic metal that is commonly employed in spin-valve devices, exhibits a large inverse spin Hall effect, as recently predicted theoretically. We present results of experiments in which the spin currents are generated either by microwave spin pumping or by the spin Seebeck effect in bilayers of singe-crystal yttrium iron garnet (YIG)/Ir20Mn80 and compare them with measurements in YIG/Pt bilayers. The results of both measurements are consistent, showing that Ir20Mn80 has a spin Hall angle similar to Pt, and that it is an efficient spin-current detector.
Crystal field and magnetization of canted antiferromagnet CoCO3
Meshcheryakov, V. F.
2007-11-01
The magnetization of the canted antiferromagnet CoCO3 ( T N = 18.1 K) is calculated in the Weiss molecular field approximation taking into account the microscopic state of the Co2+ ion in the entire range of temperatures and magnetic fields. The values of T N, magnetic susceptibility in the basal plane, and ferromagnetic moment were used as parameters. It is shown that the anisotropy of the g factor and of the exchange interaction at low temperatures ( T < 30 K) including the magnetic ordering temperature is correctly described in the Abragam-Pryce approximation. At high temperatures, the g factor increases and becomes isotropic, but it cannot be described using the Abragam-Pryce approximation. The reasons for g factor variation and the magnitude of the magnetic moment are discussed.
Zhang, Yun; Lu, Haiyan; Zhu, Xiegang; Tan, Shiyong; Chen, Qiuyun; Feng, Wei; Xie, Donghua; Luo, Lizhu; Zhang, Wen; Lai, Xinchun; Donglai Feng Team; Huiqiu Yuan Team
One basic concept in heavy fermions systems is the entanglement of localized spin state and itinerant electron state. It can be tuned by two competitive intrinsic mechanisms, Kondo effect and Ruderman-Kittel-Kasuya-Yosida interaction, with external disturbances. The key issue regarding heavy fermions properties is how the two mechanisms work in the same phase region. To investigate the relation of the two mechanisms, the cubic antiferromagnetic heavy fermions compound CeIn3 was investigated by soft x-ray angle resolved photoemission spectroscopy. The hybridization between f electrons and conduction bands in the paramagnetic state was observed directly, providing compelling evidence for Kondo screening scenario and coexistence of two mechanisms. The hybridization strength shows slight and regular anisotropy in K space, implying that the two mechanisms are competitive and anisotropic. This work illuminates the concomitant and competitive relation between the two mechanisms and supplies some evidences for the anisotropic superconductivity of CeIn3
Energy Technology Data Exchange (ETDEWEB)
Bick, Jens-Peter; Michels, Andreas [Universitaet des Saarlandes, D-66041 Saarbruecken (Germany); University of Luxembourg, L-1511 Luxembourg (Luxembourg); Ferdinand, Adrian; Birringer, Rainer [Universitaet des Saarlandes, D-66041 Saarbruecken (Germany); Baller, Joerg; Sanctuary, Roland [University of Luxembourg, L-1511 Luxembourg (Luxembourg); Philippi, Stefan [Leibniz Institute for Solid State and Materials Research, D-01069 Dresden (Germany); Lott, Dieter [GKSS Research Center, D-21502 Geesthacht (Germany); Balog, Sandor [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Rotenberg, Eli [Lawrence Berkeley National Laboratory, California 94720 (United States); Kaindl, Guenter [Freie Universitaet Berlin, D-14195 Berlin-Dahlem (Germany); Doebrich, Kristian M. [Freie Universitaet Berlin, D-14195 Berlin-Dahlem (Germany); Max-Born-Institut, D-12489 Berlin (Germany)
2011-07-01
We report on the results of grain-size and temperature-dependent magnetization, specific-heat, neutron-scattering, and angle-resolved photoelectron spectroscopy (ARPES) experiments on the heavy rare-earth metals terbium and holmium, with particular emphasis on the temperature regions where the helical antiferromagnetic phases exist. In contrast to Ho, we find that the helical structure in Tb is relative strongly affected by microstructural disorder, specifically, it can no longer be detected for the smallest studied grain size of D=18 nm. Moreover, in coarse-grained Tb a helical structure persists even in the ferromagnetic regime, down to about T=215 K, in agreement with the ARPES data, which reveal a nesting feature of the Fermi surface at the L point of the Brillouin zone at T=210 K.
Coupling-induced ferromagnetic transitions in ferroelectromagnets of weak antiferromagnetic order
Institute of Scientific and Technical Information of China (English)
LI Qichang; LIU Junming
2006-01-01
A Monte-Carlo simulation on phase transitions in ferroelectromagnets (FEMs) in which a weak antiferromagnetic ordering occurs at the Neel point TN far below the ferroelectric ordering point TE was performed. It is revealed that an intrinsic coupling between spins and electric-dipoles ( mp -coupling) does result in a weak ferromagnetic transition from the paramagnetic state at a temperature far above TN, as long as the coupling is strong enough. The magnetoelectric properties as a function of temperature, mp -coupling strength and external electric and magnetic fields were investigated. A mean-field calculation based on the Heisenberg model was performed and a rough consistency between the simulated and calculated ferromagnetic transitions was shown.
Quantum Chromodynamics, Antiferromagnets and XY Models from a Unified Point of View
Hofmann, Christoph P
2016-01-01
Antiferromagnets and quantum XY magnets in three space dimensions are described by an effective Lagrangian that exhibits the same structure as the effective Lagrangian of quantum chromodynamics with two light flavors. These systems all share a spontaneously broken internal symmetry O($N$) $\\to$ O($N$-1). Although the respective scales differ by many orders of magnitude, the general structure of the low-temperature expansion of the partition function is the same. In the nonabelian case, logarithmic terms of the form $T^8 \\ln T$ emerge at three-loop order, while for $N$=2 the series only involves powers of $T^2$. The manifestation of the Goldstone boson interaction in the pressure, order parameter, and susceptibility is explored in presence of an external field.
Fine Structure of the R Absorption Lines of Cr3+ in Antiferromagnetic Dysprosium Aluminum Garnet
Aoyagi, Kiyoshi; Kajiura, Masako; Sugano, Satoru
1981-11-01
The absorption spectrum of a Cr3+ ion in an antiferromagnetic disprosium aluminum garnet with the Néel temperature TN of 2.5 K, is measured in the red region between 1.7 K and 4.2 K. It is shown that the fine structure of the R1 and R2 lines at 1.7 K can be explained by using an effective Hamiltonian for the t2g3 2E excited state of Cr3+ in the surrounding of the ordered Dy3+ spins. The gross feature of the observed temperature dependence of the fine structure is shown to be reproduced by assuming appropriate exchange interactions of Cr3+ with Dy3+.
Frequency Dependence of Resonance Field of One-Dimensional Heisenberg Antiferromagnet KCuF3
Institute of Scientific and Technical Information of China (English)
SHI Qing-Fan; L(U) Zhen; MA Mu-Yan; MA Chao; LI Liang-Sheng
2006-01-01
@@ The frequency dependence of the in-plane angular change of the antiferromagnetic resonance (AFMR) field of KCuF3 is systematically measured at frequencies ranging from 3.8 to 10.6 GHz at 4.2K. The effect of inequivalent g-tensors is found to gradually diminish with decreasing the frequency, and completely vanish when the frequency is decreased to the lower-frequency branch of C-band, while the effect of the effective anisotropy field is significantly enhanced with decreasing the frequency. The calculated AFMR field Hres based on the eight-sublattice model proposed by Yamada and Kato [J. Phys. Soc. Jpn. 63 (1994)289] is in good agreement with the experimental data.
Hu, Jiangping; Ding, Hong
2012-01-01
Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479
Frustration in a transverse Ising nanoisland with an antiferromagnetic spin configuration
Energy Technology Data Exchange (ETDEWEB)
Kaneyoshi, T., E-mail: kaneyosi@is.nagoya-u.ac.Jp
2015-09-01
The phase diagrams, saturation magnetizations and temperature dependences of magnetizations in a transverse Ising nanoisland with an antiferromagnetic spin configuration are studied by the uses of the effective-field theory with correlations (EFT) and the mean-field approximation (MFA), in order to clarify whether the MFA can be successfully applied to the theoretical discussions of naonoislands. From these investigations, we have found a lot of unexpected characteristic phenomena in these properties, when the value of an interlayer coupling takes a large value. We have also found that the applications of the MFA to the magnetic properties are extremely restricted for nanoislands, when the value of an interlayer coupling takes a large value, in contrast to a number of bulk studies.
Sun, Jia-Tao; Wang, Zhengfei; Meng, S.; Du, Shixuan; Liu, F.; Gao, H.-J.
2016-09-01
Fundamental understanding of two-dimensional materials has spurred a surge in the search for topological quantum phase associated with the valley degree of freedom (VDOF). We discuss a spin-polarized version to the VDOF in which spin degeneracy is broken by the antiferromagnetic exchange coupling (LAFM) between opposite layers of the quasi-two-dimensional silicon nanomembrane (SiNM). Based on first principles calculations, we found that the LAFM state in SiNM can lead to metal-insulator transition (MIT). The broken degeneracy of spin degree of freedom in this insulating state of ultrathin SiNM may differ for different valleys, so that the SiNM can be exploited to produce the spatially separated spin and valley currents. We propose that the tunable spin-polarized valley photocurrents can be generated in an experimentally feasible ellipsometry setup. Our work shows promise for the development of spintronic and valleytronic devices compatible with current silicon industry.
Superparamagnetism of ultrathin Co film on antiferromagnetic Cr{sub 2}O{sub 3} layer
Energy Technology Data Exchange (ETDEWEB)
Shiratsuchi, Y; Nakatani, T; Nakatani, R; Yamamoto, M [Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 5650871 (Japan)], E-mail: shiratsuchi@mat.eng.osaka-u.ac.jp
2009-05-01
The effect of antiferromagnetic Cr{sub 2}O{sub 3} thin film on the magnetic properties of ultrathin Co film has been investigated. To achieve the investigation, we have also investigated the fabrication of Cr2O3 thin film of high quality using MBE. The crystalline quality of Cr oxide film strongly depends on the in-plane epitaxial variants of Cr(110) before the oxidation. We have successfully fabricated Cr{sub 2}O{sub 3}(0001) film by oxidizing three fold-symmetric Cr(110) film. On Cr{sub 2}O{sub 3}(0001) thin film, the magnetization of Co is stabilized parallel to the Cr spin direction below the Neel temperature of Cr{sub 2}O{sub 3}.
Competition of superconductivity and antiferromagnetism in RNi2B2C (R = Tm, Dy, Ho, Er)
International Nuclear Information System (INIS)
Highlights: • Hamiltonian model to study SC and AFM in RNi2B2C. • A competition between SC and AFM. - Abstract: The co-existence of superconductivity (SC) and antiferromagnetism (AFM) in RNi2B2C (R = Tm, Dy, Ho, Er) is reported in this paper. A mean field Hamiltonian model is taken for the system. The order parameters corresponding to SC and AFM are determined and their variation with temperature are studied for these borocarbide superconductors. The interplay of SC and AFM shows BCS type of two gaps in the quasi-particle density of states. Our theoretical study is an attempt to reveal how far the s-wave pairing taken in our model could explain the coexistence properties of SC and AFM in RNi2B2C
Coexisting multiple order parameters in single-layer LuMn O3 films
Schneider, Christof W.; Mukherjee, Saumya; Shimamoto, Kenta; Das, Saikat; Luetkens, Hubertus; White, Jonathan S.; Bator, Matthias; Hu, Yi; Stahn, Jochen; Prokscha, Thomas; Suter, Andreas; Salman, Zaher; Kenzelmann, Michel; Lippert, Thomas; Niedermayer, Christof
2016-08-01
Magnetoelectric multiferroics hold great promise for electrical control of magnetism or magnetic control of ferroelectricity. However, single phase ferroelectric materials with a sizeable ferromagnetic magnetization are rare. Here, we demonstrate that a single-phase orthorhombic LuMn O3 thin film features coexisting magnetic and ferroelectric orders. The temperature dependence of the different order parameters are presented with ferromagnetic order appearing below 100 K and thus at much higher temperatures than ferroelectricity or antiferromagnetism (TN,TFE≤40 K ) .
Spin liquid nature in the Heisenberg J1-J2 triangular antiferromagnet
Iqbal, Yasir; Hu, Wen-Jun; Thomale, Ronny; Poilblanc, Didier; Becca, Federico
2016-04-01
We investigate the spin-1/2 Heisenberg model on the triangular lattice in the presence of nearest-neighbor J1 and next-nearest-neighbor J2 antiferromagnetic couplings. Motivated by recent findings from density-matrix renormalization group (DMRG) claiming the existence of a gapped spin liquid with signatures of spontaneously broken lattice point group symmetry [Zhu and White, Phys. Rev. B 92, 041105 (2015), 10.1103/PhysRevB.92.041105 and Hu, Gong, Zhu, and Sheng, Phys. Rev. B 92, 140403 (2015), 10.1103/PhysRevB.92.140403], we employ the variational Monte Carlo (VMC) approach to analyze the model from an alternative perspective that considers both magnetically ordered and paramagnetic trial states. We find a quantum paramagnet in the regime 0.08 ≲J2/J1≲0.16 , framed by 120∘ coplanar (stripe collinear) antiferromagnetic order for smaller (larger) J2/J1 . By considering the optimization of spin-liquid wave functions of a different gauge group and lattice point group content as derived from Abrikosov mean-field theory, we obtain the gapless U(1 ) Dirac spin liquid as the energetically most preferable state in comparison to all symmetric or nematic gapped Z2 spin liquids so far advocated by DMRG. Moreover, by the application of few Lanczos iterations, we find the energy to be the same as the DMRG result within error bars. To further resolve the intriguing disagreement between VMC and DMRG, we complement our methodological approach by the pseudofermion functional renormalization group (PFFRG) to compare the spin structure factors for the paramagnetic regime calculated by VMC, DMRG, and PFFRG. This model promises to be an ideal test bed for future numerical refinements in tracking the long-range correlations in frustrated magnets.
Magnetic behavior of Eu(3)Ni(4)Ga(4): antiferromagnetic order and large magnetoresistance.
Anupam; Geibel, C; Hossain, Z
2012-08-15
The results of the magnetic susceptibility, isothermal magnetization, heat capacity, electrical resistivity and magnetoresistance measurements on polycrystalline Eu(3)Ni(4)Ga(4) are presented. Eu(3)Ni(4)Ga(4) forms in Na(3)Pt(4)Ge(4)-type cubic crystal structure (space group [Formula: see text]). The temperature dependence of the magnetic susceptibility of Eu(3)Ni(4)Ga(4) confirms the divalent state (Eu(2+)) of Eu ions with an effective magnetic moment μ(eff) = 7.98 μ(B). At low fields, e.g. at 0.01 T, a magnetic phase transition to an antiferromagnetically ordered state occurs at T(N) = 10.9 K, which is further confirmed by the temperature dependence of the heat capacity and electrical resistivity. The field dependence of isothermal magnetization at 2 K reveals the presence of two field induced metamagnetic transitions at H(c1) and H(c2) = 0.55 and 1.2 T, respectively and a polarized phase above H(PO) = 1.7 T. The reduced jump in the heat capacity at the transition temperature, ΔC|(T(N)) = 13.48 J/mol-Eu K would indicate an amplitude modulated (AM) antiferromagnetic structure. An interesting feature is that a large negative magnetoresistance, MR = [ρ(H) - ρ(0)]/ρ(0), is observed in the vicinity of magnetic transition even up to 2T(N). Similar large magnetoresistance has been observed in the paramagnetic state in some Gd and Eu based alloys and has been attributed to the magneto-polaronic effect. PMID:22785157
Magnetic behavior of Eu3Ni4Ga4: antiferromagnetic order and large magnetoresistance
International Nuclear Information System (INIS)
The results of the magnetic susceptibility, isothermal magnetization, heat capacity, electrical resistivity and magnetoresistance measurements on polycrystalline Eu3Ni4Ga4 are presented. Eu3Ni4Ga4 forms in Na3Pt4Ge4-type cubic crystal structure (space group I 4-bar 3 m). The temperature dependence of the magnetic susceptibility of Eu3Ni4Ga4 confirms the divalent state (Eu2+) of Eu ions with an effective magnetic moment μeff = 7.98 μB. At low fields, e.g. at 0.01 T, a magnetic phase transition to an antiferromagnetically ordered state occurs at TN 10.9 K, which is further confirmed by the temperature dependence of the heat capacity and electrical resistivity. The field dependence of isothermal magnetization at 2 K reveals the presence of two field induced metamagnetic transitions at Hc1 and Hc2 = 0.55 and 1.2 T, respectively and a polarized phase above HPO = 1.7 T. The reduced jump in the heat capacity at the transition temperature, ΔC|TN = 13.48 J/mol-Eu K would indicate an amplitude modulated (AM) antiferromagnetic structure. An interesting feature is that a large negative magnetoresistance, MR = [ρ(H) - ρ(0)]/ρ(0), is observed in the vicinity of magnetic transition even up to 2TN. Similar large magnetoresistance has been observed in the paramagnetic state in some Gd and Eu based alloys and has been attributed to the magneto-polaronic effect. (paper)
Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge
Cable, J. W.; Wakabayashi, N.; Radhakrishna, P.
1993-09-01
Inelastic neutron scattering was used to study the magnetic excitations of the triangular antiferromagnets Mn3Sn and Mn3Ge. These compounds have itinerant d electrons and large magnetic moments localized at the Mn sites and may be regarded as materials that lie in the intermediate regime between local-moment and itinerant-electron systems. The spin-wave spectra exhibit steep dispersion and strong damping, which is characteristic behavior of itinerant-electron systems. Nevertheless, it is useful to analyze the data in terms of a local-moment model with anisotropy. We find the data are remarkably well described by this model with exchange parameters extending to fifth-nearest neighbors and with both axial- and basal-plane anisotropy. The axial-anisotropy parameters were determined from the uniform out-of-plane spin fluctuation, and the signs show that the spins are confined to the basal plane. The second-order basal-plane anisotropy constants were determined by satisfying both the magnitude of the weak basal-plane ferromagnetic moments and the observed splitting of a doubly degenerate acoustic-spin-wave branch. The sixth-order basal-plane anisotropy was determined by adjusting to the observed energy gap associated with spin fluctuations within the basal plane. The exchange parameters have the correct signs to stabilize the triangular antiferromagnetic structure but yield Néel temperatures that are higher than those observed by a factor of 3 or 4. This overestimation of the Néel temperature is not an uncommon result when a local moment model is applied to an itinerant-electron system.
Energy Technology Data Exchange (ETDEWEB)
Safar, G. A. M., E-mail: gamsafar@yahoo.com.br; Simoes, T. R. G. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Paula, A. M. de [Universidade Federal de Minas Gerais, Departamento de Fisica (Brazil); Gratens, X.; Chitta, V. A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Stumpf, H. O. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil)
2013-02-15
Magnetism of supramolecular assemblies of single-walled carbon nanotubes (SWCNTS) with a magnetic dinuclear molecule is investigated. Raman, optical absorption and confocal fluorescence images are used to probe the interaction of the dinuclear compound and the SWCNT. The supramolecular assembly shows antiferromagnetism, on the contrary to the case when strong electronic doping of the SWCNT occurs, yielding a spin-glass system, and contrary to the case of the dinuclear molecular crystal, which is ferromagnetic. The SWCNT imposes the antiferromagnetic order to the dinuclear molecule, corroborating recent findings that antiferromagnetism is present in pure SWCNTs. Two theoretical models are used to fit the data, both yielding good fitting results. The nanoparticle size range is around 2-10 nm.
Energy Technology Data Exchange (ETDEWEB)
Wang, Guangmei [Ruhr-Universitat Bochum; Valldor, Martin [Max Plank Institute for Chemical Physics of Solids, Dresden, Germany; Mallick, Bert [Ruhr Universitat Bochum; Mudring, Anja-Verena [Ames Laboratory
2014-01-01
Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4+ ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (Tc = 10 or 13 K for Co and Tc = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+.
Single Parents - Single Outcomes?
2012-01-01
This master thesis seeks to evaluate the social economic wellbeing of single parent households across eleven European countries. Starting with market income, taxes and transfers are incorporated to arrive at a disposable income figure. Effort is further made to include the value of in kind transfers, more specifically education and health care services. This results in an extended income concept, where redistribution both in cash and in kind is accounted for. Income figures for market inc...
Fujihala, M.; Zheng, X. G.; Oohara, Y.; Morodomi, H.; Kawae, T.; Matsuo, Akira; Kindo, Koichi
2012-01-01
Spin fluctuations and spin-liquid behaviors of frustrated kagome antiferromagnets have received intense recent attention. Although most severe frustration was predicted for an Ising kagome antiferromagnet, a real material system of undistorted kagome lattice has not been found so far. Here we report the frustrated magnetism of a new Ising kagome antiferromagnet, MgCo3(OH)6Cl2, which can be viewed as a Co version of the intensively researched quantum kagome antiferromagnet of Herbertsmithite ZnCu3(OH)6Cl2. Experiments of magnetization, heat capacity, μSR, and neutron scattering demonstrated a partially frozen state with persistent spin fluctuations below around T = 2.7 K. The present study has provided a real material system to study the Ising spin behaviors on undistorted kagome lattice.
Han, Tianheng
New physics, such as a quantum spin liquid, can emerge in systems where quantum fluctuations are enhanced due to reduced dimensionality and strong frustration . The realization of a quantum spin liquid in two-dimensions would represent a new state of matter. It is believed that spin liquid physics plays a role in the phenomenon of high-Tc superconductivity, and the topological properties of the spin liquid state may have applications in the field of quantum information. The Zn-paratacamite family, ZnxCu4-- x(OH)6Cl2 for x > 0.33, is an ideal system to look for such an exotic state in the form of antiferromagnetic Cu 2 + kagome planes. The x = 1 end member, named herbertsmithite, has shown promising spin liquid properties from prior studies on powder samples. Here we show a new synthesis by which high-quality centimeter-sized single crystals of Znparatacamite have been produced for the first time. Neutron and synchrotron xray diffraction experiments indicate no structural transition down to T = 2 K. The magnetic susceptibility both perpendicular and parallel to the kagome plane has been measured for the x = 1 sample. A small, temperature-dependent anisotropy has been observed, where chi z / chip > 1 at high temperatures and chiz / chip fingerprint of the quantum spin liquid state in herbertsmithite. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
Antiferromagnetic versus spin-glass like behavior in MnIn{sub 2}S{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Sagredo, V. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de los Andes, Merida (Venezuela)]. E-mail: sagredo@ula.ve; Moron, M.C. [Instituto de Ciencia de Materiales de Aragon, C.S.I.C.-Universidad de Zaragoza, E-50009, Zaragoza (Spain); Betancourt, L. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de los Andes, Merida (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Merida (Venezuela)
2007-05-15
The low-temperature magnetic properties of MnIn{sub 2}S{sub 4} have been studied using AC magnetic susceptibility and magnetization experiments. High-temperature susceptibility fits indicate the presence of antiferromagnetic interactions. Low-field magnetization data show a peak at 5.6{+-}0.1 K, below which strong irreversibility is observed between zero-field-cooled (ZFC) and field-cooled (FC) cycles suggesting that the observed peak corresponds to a spin-glass-like transition instead of the antiferromagnetic one previously reported. Further evidence of this magnetic state comes from AC susceptibility data at different frequencies. The in-phase component {chi}'(T) exhibits the behavior expected of spin glasses, i.e. a shift of the cusp to higher temperatures for higher frequencies.
High Resolution Far Infrared Study of Antiferromagnetic Resonance Transitions in α-Fe2O3 (hematite)
Chou, Shin Grace; Plusquellic, David F.; Stutzman, Paul E.; Wang, Shuangzhen; Garboczi, Edward J.; Egelhoff, William F.
2012-02-01
In this study, we report high resolution optical measurements of the temperature dependence of the antiferromagnetic (AFM) transition in α-Fe2O3 (hematite) between (0.5 and 10) cm-1. The absorption peak position, over a large temperature range, is found to be in agreement with a modified spin-wave model at both the high and low temperature phases, where the temperature is above and below the Morin transition temperature, respectively. The high spectral resolution optical measurements as demonstrated in this study allow unprecedented zero-field spectral analysis of the zone center AFM magnon in a previously challenging spectral region, giving insights into the role of temperature and strain on the exchange and anisotropy interactions in the system. The results also suggest that the frequency-resolved measurement platform could be extended for room-temperature non-destructive examination and imaging applications for antiferromagnetic materials and devices.
Study on the dual-synthetic antiferromagnetic property using the Co2FeAl Heulser electrodes
Zhang, D. L.; Xu, X. G.; Wu, Y.; Li, X. Q.; Miao, J.; Jiang, Y.
2011-12-01
In this paper, we present the experimental results of dual-synthetic antiferromagnets (DSyAFs) with Co2FeAl (CFA) Heusler electrodes. It is shown that when the thicknesses of Ru layers are (0.45, 0.65) and (0.45, 1.00) (in nm), the CFA-based DSyAFs have a strong synthetic antiferromagnetic coupling among three CFA layers at room temperature, with a large saturation magnetic field Hs of ~11000 Oe, a low saturation magnetization Ms of ~708 emu/cm3 and a switching field Hsw of ~2.0 Oe, respectively. It is exciting that the CFA-based DSyAFs have an excellent thermal stability up to 400 °C. Therefore, the CFA-based DSyAFs are favourable for applications in future spintronic devices.
Gauyacq, Jean-Pierre; Yaro, Simeón Moisés; Cartoixà, Xavier; Lorente, Nicolás
2013-02-01
The controlled switching between two quasistable Néel states in adsorbed antiferromagnetic Fe chains has recently been achieved by Loth et al. [Science 335, 196 (2012)SCIEAS0036-8075] using tunneling electrons from an STM tip. In order to rationalize their data, we evaluate the rate of tunneling electron-induced switching between the Néel states. Good agreement is found with the experiment, permitting us to identify three switching mechanisms: (i) low STM voltage direct electron-induced transitions, (ii) intermediate STM voltage switching via spin-wave-like excitation, and (iii) high STM voltage transitions mediated by domain-wall formation. Spin correlations in the antiferromagnetic chains are the switching driving force, leading to a marked chain-size dependence.
t2 g-orbital model on a honeycomb lattice: Application to the antiferromagnet SrRu 2O 6
Wang, Da; Wang, Wan-Sheng; Wang, Qiang-Hua
2015-08-01
Motivated by the recent discovery of high-temperature antiferromagnet SrRu2O6 [Hiley et al., Angew. Chem. Int. Ed. 53, 4423 (2014);, 10.1002/anie.201310110 Tian et al., arXiv:1504.03642] and its potential to be the parent of a new superconductor upon doping, we construct a minimal t2 g-orbital model on a honeycomb lattice to simulate its low-energy band structure. Local Coulomb interaction is taken into account through both random phase approximation and mean-field theory. Experimentally observed antiferromagnetic order is obtained in both approximations. In addition, our theory predicts that the magnetic moments on three t2 g-orbitals are noncollinear as a result of the strong spin-orbit coupling of Ru atoms.
The influence of grain size on the magnetic interaction in antiferromagnetic α-Cr2O3
International Nuclear Information System (INIS)
α-Cr2O3 powders with grain sizes between 170 and 35 nm have been investigated by EPR between 320 and 520 K and by elastic neutron scattering at 100 and 380 K. The particle sizes were estimated from the line broadening of the diffraction peaks. The application of a statistical model allows us to compute the antiferromagnetic excitation energy ΔE from the EPR intensity. For diameters down to 100 nm, ΔE is given by 430 cm-1. It decreases to 260 cm-1 for particles with a size of 75 nm. Correspondingly the magnetic scattering decreases with decreasing particle size. However, the neutron scattering at 100 K still indicates an antiferromagnetic order even for particle sizes of 35 nm whereas there is no hint of residual interaction when considering the EPR intensity. (orig.)
Directory of Open Access Journals (Sweden)
C. Le Graët
2015-04-01
Full Text Available Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.
Le Graët, C.; Charlton, T. R.; McLaren, M.; Loving, M.; Morley, S. A.; Kinane, C. J.; Brydson, R. M. D.; Lewis, L. H.; Langridge, S.; Marrows, C. H.
2015-04-01
Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.
Energy Technology Data Exchange (ETDEWEB)
Ma, Q. L., E-mail: maqinli@gmail.com, E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Miyazaki, T.; Mizukami, S., E-mail: maqinli@gmail.com, E-mail: mizukami@wpi-aimr.tohoku.ac.jp [WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, 980-8577 Sendai (Japan); Iihama, S. [Department of Applied Physics, Tohoku University, 6-6-05 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Zhang, X. M. [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)
2015-11-30
The laser-induced spin dynamics of FeCo in perpendicularly magnetized L1{sub 0}-MnGa/FeCo bilayers with ferromagnetic and antiferromagnetic interfacial exchange coupling (IEC) are examined using the time-resolved magneto-optical Kerr effect. We found a precessional phase reversal of the FeCo layer as the IEC changes from ferromagnetic to antiferromagnetic. Moreover, a precession-suspension window was observed when the magnetic field was applied in a certain direction for the bilayer with ferromagnetic IEC. Our observations reveal that the spin dynamics modulation is strongly dependent on the IEC type within the Landau-Lifshitz-Gilbert depiction. The IEC dependence of the precessional phase and amplitude suggests the interesting method for magnetization dynamics modulation.
A theoretical study of the long-range-disorder mixed-spin antiferromagnet L2BaNiO5
Institute of Scientific and Technical Information of China (English)
ZHANG; Lin; KONG; Hongyan
2006-01-01
In this paper, we introduce a quasi-one-dimensional S = 1 antiferromagnet Heisenberg model, and some physical properties of antiferromagnet L2BaNiO5 without frame of two-time Green's function theory. In a high temperature region, we calculate the correlation functions, and obtain excitation spectrum along Ni chains and the Haldane gap in this spectrum versus temperature. We find that the short-range correlation still exists at high temperature, which leads to the existence of Haldane gap in excitation spectrum. The increment of excitation energy in the spectrum along the Ni chain is found to be induced by the AF interaction between spins of rare-earth and Ni ions. Additionally, we also find that Haldane gap goes up with temperature increasing.
[mu]SR magnetic response in frustrated antiferromagnets of type RMn[sub 2] (R = rare earth)
Energy Technology Data Exchange (ETDEWEB)
Weber, M. (Physics Dept., TU Munich, Garching (Germany)); Asch, L. (Physics Dept., TU Munich, Garching (Germany)); Kratzer, A. (Physics Dept., TU Munich, Garching (Germany)); Kalvius, G.M. (Physics Dept., TU Munich, Garching (Germany)); Muench, K.H. (Physics Dept., TU Munich, Garching (Germany)); Ballou, R. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Deportes, J. (Lab. Louis Neel, CNRS, 38 Grenoble (France)); Waeppling, R. (Dept. of Physics, Univ. of Uppsala (Sweden)); Litterst, F.J. (Inst. for Metal Physics, TU Braunschweig (Germany)); Klauss, H.H. (Inst. for Metal Physics, TU Braunschweig (Germany)); Niedermayer, C. (Faculty for Physics, Univ. Konstanz (Germany)); Chappert, J. (CEA/DRFMC, CEN Grenoble, 38 (France))
1994-07-01
Zero, longitudinal and transverse field [mu]SR was carried out in the antiferromagnets YMn[sub 2], Y[sub 0.95] Tb[sub 0.15] Mn[sub 2], Y[sub 0.9]Tb[sub 0.1]Mn[sub 2], Y[sub 0.99] Sc[sub 0.01] Mn[sub 2], Y[sub 0.98]Sc[sub 0.02]Mn[sub 2] and TbMn[sub 2]. The dynamics of Mn magnetic moments above T[sub N] is typical for an itinerant antiferromagnet. Within a certain temperature range above T[sub N] part of the material enters a randomly ordered (spin glass like) magnetic state as an out-come of frustration. At temperatures above [approx] 150 K the muon spin relaxation rate indicates that the muon has become mobile. (orig.)
Strong pinning of vortices by antiferromagnetic domain boundaries in CeCo(In1-x Cd x )5
Jang, D.-J.; Pedrero, L.; Pham, L. D.; Fisk, Z.; Brando, M.
2016-09-01
We have studied the isothermal magnetization M(H) of CeCo({{In}}1-x Cd x )5 with x = 0.0075 and 0.01 down to 50 mK. Pronounced field-history dependent phenomena occur in the coexistence regime of the superconducting and antiferromagnetic phases. At low-fields, a phenomenological model of magnetic-flux entry well explains M(H) implying the dominance of bulk pinning effect. However, unless crystallographic quenched disorder is hysteretic, the asymmetric peak effect (ASPE) which appears at higher fields cannot be explained by the pinning of vortices due to material defects. Also, the temperature dependence of the ASPE deviates from the conventional scenario for the peak effect. Comparison of our thermodynamic phase diagrams with those from previous neutron scattering and magnetoresistance experiments indicates that the pinning of vortices takes place at the field-history dependent antiferromagnetic domain boundaries.
Spin flop relaxation in the quasi-1d Heisenberg antiferromagnet CsMnBr 3 · 2H 2O
Chirwa, M.; Top, J.; Flokstra, J.
1983-12-01
The relaxation phenomena associated with the antiferromagnetic to spin-flop phase transition in the quasi one dimensional Heisenberg antiferromagnet CsMnBr 3 · 2H 2O have been determined in the temperature range 1.6-4.2 K using an automatic frequency-sweeping SQUID susceptometer. Below Tλ = 2.17 K the relaxation rate τ -1 displays an exponential temperature dependence given by τ-1 = ω0 exp(- E/ kT) where ω0 = 2.48 × 10 4 s -1 and E/ k = 3.62 K, the activation energy of the relaxation process. Above Tλ broadened absorption curves and flattened Argand diagrams are observed. The ratio K1/ K2 (=0.22 ± 0.02) of the orthorhombic anisotropy constants and a weak power-law temperature dependence of the critical spin-flop field Hcr were determined.
Energy Technology Data Exchange (ETDEWEB)
Hauet, Thomas; Gunther, Christian M.; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav
2008-12-09
We investigate the reversal process in antiferromagnetically coupled [Co/Pt]{sub X-1}/{l_brace}Co/Ru/[Co/Pt]{sub X-1}{r_brace}{sub 16} multilayer films by combining magnetometry and Magnetic soft X-ray Transmission Microscopy (MXTM). After out-of-plane demagnetization, a stable one dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick stack sample (X=7 is obtained), while metastable sharp antiferromagnetic (AF) domain walls are observed in the remanent state for a thinner stack sample (X=6). When applying an external magnetic field the sharp domain walls of the thinner stack sample transform at a certain threshold field into the FM stripe domain wall phase. We present magnetic energy calculations that reveal the underlying energetics driving the overall reversal mechanisms.
Dugave, Maxime; Kozlowski, Karol K; Suzuki, Junji
2016-01-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order $T^\\infty$ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field.
Manna, Sujit; Kamlapure, Anand; Cornils, Lasse; Hänke, Torben; Hedegaard, Ellen Marie Jensen; Bremholm, Martin; Iversen, Bo Brummerstedt; Hofmann, Philip; Wiebe, Jens; Wiesendanger, Roland
2016-01-01
The discovery of high-temperature superconductivity in Fe-based compounds [1,2] has triggered numerous investigations on the interplay between superconductivity and magnetism [3] and, more recently, on the enhancement of transition temperatures through interface effects [4]. It is widely believed that the emergence of optimal superconductivity is intimately linked to the suppression of long-range antiferromagnetic (AFM) order, although the exact microscopic picture of this relationship remain...
Jeffries, J. R.; Butch, N. P.; Hamlin, J. J.; Sinogeikin, S. V.; Evans, W. J.; Maple, M.B.
2010-01-01
X-ray diffraction experiments under pressure in a diamond anvil cell have been performed to gauge any response of the crystalline lattice of URu2Si2 to the "hidden order" or antiferromagnetic transitions, the latter of which is accessible only with applied pressure. The ambient-pressure crystal structure of URu2Si2 persists to high pressure, and structural characterization reveals a reasonably robust crystal lattice with respect to both of the aforementioned temperature-induced electronic tra...
Coexistence of charge order and antiferromagnetism in (TMTTF){sub 2}SbF{sub 6}: NMR study
Energy Technology Data Exchange (ETDEWEB)
Nomura, K., E-mail: knmr@phys.sci.hokudai.ac.jp; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.
2015-03-01
The electronic state of (TMTTF){sub 2}SbF{sub 6} was investigated by the {sup 1}H and {sup 13}C NMR measurements. The temperature dependence of T{sub 1}{sup −1} in {sup 1}H NMR shows a sharp peak associated with the antiferromagnetic transition at T{sub AF}=6 K. The temperature dependence of T{sub 1}{sup −1} is described by the power law T{sup 2.4} below T{sub AF}. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In {sup 13}C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μ{sub B} and 0.24 μ{sub B} at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μ{sub B} per dimer are quite different from 0.11 μ{sub B} of another AF (AFII) state in (TMTTF){sub 2}Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF){sub 2}SbF{sub 6}.
Le Graët, C; Charlton, T. R.; Mclaren, M.; Loving, M; Morley, S.A.; Kinane, C.J.; Brydson, R.M.D.; Lewis, L. H.; Langridge, S.; Marrows, C. H.
2015-01-01
Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed ...
DMRG Study of the S >= 1 quantum Heisenberg Antiferromagnet on a Kagome-like lattice without loops
Lamberty, R. Zach; Changlani, Hitesh J.; Henley, Christopher L.
2013-03-01
The Kagome quantum Heisenberg antiferromagnet, for spin up to S = 1 and perhaps S = 3 / 2 , is a prime candidate to realize a quantum spin liquid or valence bond crystal state, but theoretical or computational studies for S > 1 / 2 are difficult and few. We consider instead the same interactions and S >= 1 on the Husimi Cactus, a graph of corner sharing triangles whose centers are vertices of a Bethe lattice, using a DMRG procedure tailored for tree graphs. Since both lattices are locally identical, properties of the Kagome antiferromagnet dominated by nearest-neighbor spin correlations should also be exhibited on the Cactus, whereas loop-dependent effects will be absent on the loopless Cactus. Our study focuses on the possible transition(s) that must occur with increasing S for the Cactus antiferromagnet. (It has a disordered valence bond state at S = 1 / 2 but a 3-sublattice coplanar ordered state in the large S limit). We also investigate the phase diagram of the S = 1 quantum XXZ model with on-site anisotropy, which we expect to have three-sublattice and valence-bond-crystal phases similar to the kagome case. This work is supported by the National Science Foundation through a Graduate Research Fellowship to R. Zach Lamberty, as well as grant DMR-
Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P
2016-04-01
It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices. PMID:27152355
Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P
2016-04-01
It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.
Competition between ferromagnetism and antiferromagnetism in the rutile C r1 -xVxO2 system
Mustonen, Otto; Vasala, Sami; Chou, Ta-Lei; Chen, Jin-Ming; Karppinen, Maarit
2016-01-01
We present a comprehensive computational and experimental examination of the C r1 -xVxO2 (0 ≤x ≤0.5 ) system. The entire series crystallizes in the rutile structure, but the compounds exhibit significantly different magnetic properties depending on x . Lattice parameter a increases linearly with x , but the c parameter is slightly reduced due to vanadium-vanadium bonding. The V-for-Cr substitution creates C r3 +-V5 + pairs; this leads to competition between ferromagnetic (C r4 +-C r4 + ) and antiferromagnetic (C r3 +-C r3 + ) interactions such that the materials change from ferromagnetic to antiferromagnetic with increasing x . Weak ferromagnetic interactions arising from C r4 + are observed even in the seemingly antiferromagnetic phases with the exception of x =0.5 , which contains only C r3 + . Density functional theory calculations are performed, but they incorrectly predict the x =0.5 phase to be a half-metal. This is caused by an incorrect prediction of the oxidation states of chromium and vanadium.
Energy Technology Data Exchange (ETDEWEB)
Onuki, Y.; Umezawa, A.; Kwok, W.K.; Crabtree, G.W.; Nishihara, M.; Yamazaki, T.; Omi, T.; Komatsubara, T.
1987-08-01
The transport properties and the de Haas-van Alphen (dHvA) effect have been measured for antiferromagnetic PrB/sub 6/ and NdB/sub 6/. The number of conduction electrons is approximately one per unit cell. The magnetoresistance shows the existence of open orbits implying a multiply connected Fermi surface. The angular dependence of the magnetoresistance is roughly similar to that of the reference material, LaB/sub 6/. The dHvA data in PrB/sub 6/ shows both paramagnetic and antiferromagnetic Fermi surfaces. The antiferromagnetic Fermi surface arises from new magnetic Brillouin zone boundaries and antiferromagnetic gaps introduced by the magnetic order, and the paramagnetic Fermi surface from magnetic breakdown through the small antiferromagnetic gaps in high field. Hybridization between the conduction electrons and the f electrons has been observed through the cyclotron masses, which in PrB/sub 6/ are three times larger than the corresponding masses of LaB/sub 6/. In NdB/sub 6/ only the antiferromagnetic Fermi surface, quite different from those of LaB/sub 6/ and PrB/sub 6/, has been observed. 26 refs., 10 figs., 3 tabs.
Simple model for non-Fermi-liquid behavior induced by antiferromagnetic spin fluctuations
International Nuclear Information System (INIS)
We consider a simple model for itinerant antiferromagnetism consisting of an electron pocket and a hole pocket separated by a wave vector Q. The nesting of the Fermi surfaces leads to a spin-density wave instability for repulsive Hubbard coupling and to charge-density waves for an attractive interaction. The order can gradually be suppressed by mismatching the nesting and a quantum critical point is obtained as TN→0. In the disordered phase perturbative corrections are logarithmic in the external frequency or the temperature. We investigate the renormalization-group flow of the model in leading and next-to-leading logarithmic order. The linear-response correlation functions for spin-density and charge-density waves are calculated. The specific-heat γ coefficient and the uniform magnetic-field susceptibility increase on a logarithmic scale when the temperature is lowered. The Wilson ratio is temperature dependent and nonuniversal. The Fermi-liquid picture breaks down at the ordering temperature TN or at a quantum critical point. Our results are valid in the disordered phase for weak and intermediate coupling, but not in the critical region. The results are discussed in the context of non-Fermi-liquid behavior found in some heavy fermion compounds (the two pockets are then part of the Fermi surface of the heavy electron bands). copyright 1999 The American Physical Society
Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction
Surungan, Tasrief; Bansawang B., J.; Tahir, Dahlang
2016-03-01
Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.
Sato, Ryo; Yokoyama, Hisatoshi
2016-07-01
Band renormalization effects (BRE) are comprehensively studied for a mixed state of dx2 - y2-wave superconducting (d-SC) and antiferromagnetic (AF) orders, in addition to simple d-SC, AF, and normal (paramagnetic) states, by applying a variational Monte Carlo method to a two-dimensional Hubbard (t-t'-U) model. In a weakly correlated regime (U/t ≲ 6), BRE are negligible on all the states studied. As previously shown, the effective band of d-SC is greatly renormalized but the modifications of physical quantities, including energy improvement, are negligible. In contrast, BRE on the AF state considerably affects various features of the system. Because the energy is markedly improved for t'/t t'{L} [t' t'{L}, because the existence of Fermi surfaces near (π ,0) is a requisite for the electron scattering of {q} = (π ,π ). Actually, the coexistent state appears mainly for t'{L}/t < t'/t ≲ 0.2 in the mixed state. Nevertheless, the AF and coexisting states become unstable toward phase separation for - 0.05 ≲ t'/t ≲ 0.2 but become stable at other values of t'/t owing to the energy reduction by the diagonal hopping of doped holes. We show that this instability does not directly correlate with the strength of d-SC.
Torque Magnetometry and Thermomagnetic Capacity Studies on a 2-d Cr^4+ Antiferromagnet
Kaur, Narpinder; Nellutla, Saritha; Jo, Youn-Jung; Balicas, Luis; van Tol, Johan; Dalal, Naresh
2007-03-01
We report torque magnetometry and magnetic heat capacity measurements on a rare complex, Cr^IV-Diethylenetriamine diperoxo. The motivation here was to search for a simple spin-gap system that could exhibit a Bose-Einstein type condensation (BEC) of magnons. Our earlier reported magnetization and specific heat (Cp) measurements had indicated that this compound is a 2-d antiferromagnet, with a TN of 2.55 K in zero-field [1]. These magnetization and Cp data have now been augmented by use of additional magnetic fields, and the newly found B-T phase diagram is seen to be clearly parabolic. Torque magnetometry confirmed the Cp data and has enabled measurements close to the T -> 0 K, B ˜ 12.5 T region. Measurements in the dilution fridge are planned to extract the critical exponent (α) from the relation kbTc˜ (Bc-B)^α . We surmise that this system will constitute a simple new model for examining the BEC of magnons in detail. [1] C.M. Ramsey, B. Cage, P. Nguyen, K.A. Abboud, N.S. Dalal, Chem. Mater. 15, 92 (2003).
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-01-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions. PMID:27510369
Ground-state and low-lying excitations of the Heisenberg antiferromagnet
International Nuclear Information System (INIS)
Monte Carlo methods are used to determine the exact ground-state energy of the spin-1/2 Heisenberg antiferromagnet on two-dimensional square periodic lattices up to size 32 x 32. The extrapolated ground-state energy for infinite lattice size is -0.33459+-0.000 05. In addition, splittings between the ground state and the lowest spin-1 and -2 excitations are determined as a function of lattice size. The scaling of both the ground-state energy and the gap are in agreement with that predicted by spin-wave theory over a wide range of lattice sizes. In particular, numerical results demonstrate convincingly the lack of a gap for infinite systems, and that the gap for finite systems scales with the inverse volume of the lattice. Finally, we present results for the ground-state spin-correlation function. Our approximate results for larger lattices indicate that the staggered magnetization is 0.34+-0.01 units where the saturated value is
Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning
Frandsen, Benjamin A.; Liu, Lian; Cheung, Sky C.; Guguchia, Zurab; Khasanov, Rustem; Morenzoni, Elvezio; Munsie, Timothy J. S.; Hallas, Alannah M.; Wilson, Murray N.; Cai, Yipeng; Luke, Graeme M.; Chen, Bijuan; Li, Wenmin; Jin, Changqing; Ding, Cui; Guo, Shengli; Ning, Fanlong; Ito, Takashi U.; Higemoto, Wataru; Billinge, Simon J. L.; Sakamoto, Shoya; Fujimori, Atsushi; Murakami, Taito; Kageyama, Hiroshi; Alonso, Jose Antonio; Kotliar, Gabriel; Imada, Masatoshi; Uemura, Yasutomo J.
2016-08-01
RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.
Antiferromagnetic ground state with pair-checkerboard order in FeSe
Cao, Hai-Yuan; Chen, Shiyou; Xiang, Hongjun; Gong, Xin-Gao
2015-01-01
A monolayer FeSe thin film grown on SrTiO3(001) (STO) shows the sign of Tc>77 K , which is higher than the Tc record of 56 K for bulk FeAs-based superconductors. However, little is known about the magnetic ground state of FeSe, which should be closely related to its unusual superconductivity. Previous studies presume the collinear stripe antiferromagnetic (AFM) state as the ground state of FeSe, the same as that in FeAs superconductors. Here we find a magnetic order named the "pair-checkerboard AFM" as the magnetic ground state of tetragonal FeSe. The pair-checkerboard order results from the interplay between the nearest-, next-nearest, and unnegligible next-next-nearest neighbor magnetic exchange couplings of Fe atoms. The monolayer FeSe in pair-checkerboard order shows an unexpected insulating behavior with a Dirac-cone-like band structure related to the specific orbital order of the dx z and dy z characters of Fe atoms, which could explain the recently observed insulator-superconductor transition. The present results cast insights on the magnetic ordering in FeSe monolayer and its derived superconductors.
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-08-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.
Spin dynamics of S = 1/2 kagome lattice antiferromagnets observed by high-field ESR
Energy Technology Data Exchange (ETDEWEB)
Ohta, Hitoshi [Molecular Photoscience Research Center, Kobe University, Kobe 657-8501 (Japan); Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Zhang, Wei-min [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Okubo, Susumu; Fujisawa, Masashi [Molecular Photoscience Research Center, Kobe University, Kobe 657-8501 (Japan); Sakurai, Takahiro [Center for Supports to Research and Education Activities, Kobe University, Kobe 657-8501 (Japan); Okamoto, Yoshihiko; Yoshida, Hiroyuki; Hiroi, Zenji [Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa, Chiba 277-8581 (Japan)
2010-03-15
Due to the existence of strong spin frustration in a system, the spin dynamics of S = 1/2 kagome lattice antiferromagnet at low temperature has attracted much interest. High-field ESR has been measured on its model substances, Cu{sub 3}V{sub 2}O{sub 7}(OH){sub 2} . 2H{sub 2}O (volborthite) and BaCu{sub 3}V{sub 2}O{sub 3}(OH){sub 2} (vesignieite), down to 1.8 K using pulsed magnetic fields up to 16 T. The measurements are performed for 160 and 315 GHz using polycrys-talline samples. Although both samples showed the g-shift and the change of linewidth at low temperature, volborthite showed a small gap excitation of the order of 40 GHz (1.9 K) while vesignieite showed a paramagnetic behavior down to 1.9 K. Observed difference will be discussed in connection with the crystal structure, and the possible spin liquid state in vesignieite will be discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Extending the Family of V(4+) S=(1/2) Kagome Antiferromagnets.
Clark, Lucy; Aidoudi, Farida H; Black, Cameron; Arachchige, Kasun S A; Slawin, Alexandra M Z; Morris, Russell E; Lightfoot, Philip
2015-12-14
The ionothermal synthesis, structure, and magnetic susceptibility of a novel inorganic-organic hybrid material, imidazolium vanadium(III,IV) oxyfluoride [C3 H5 N2 ][V9 O6 F24 (H2 O)2 ] (ImVOF) are presented. The structure consists of inorganic vanadium oxyfluoride slabs with kagome layers of V(4+) S=${{ 1/2 }}$ ions separated by a mixed valence layer. These inorganic slabs are intercalated with imidazolium cations. Quinuclidinium (Q) and pyrazinium (Pyz) cations can also be incorporated into the hybrid structure type to give QVOF and PyzVOF analogues, respectively. The highly frustrated topology of the inorganic slabs, along with the quantum nature of the magnetism associated with V(4+) , means that these materials are excellent candidates to host exotic magnetic ground states, such as the highly sought quantum spin liquid. Magnetic susceptibility measurements of all samples suggest an absence of conventional long-range magnetic order down to 2 K despite considerable antiferromagnetic exchange.
Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF_{3}
DEFF Research Database (Denmark)
Coldea, R.; Cowley, R.A.; Perring, T.G.;
1998-01-01
The magnetic critical scattering of the near-ideal three-dimensional Heisenberg antiferromagnet (AF) RbMnF3 has been remeasured using neutron scattering. The critical dynamics has been studied in detail in the temperature range 0.77T(N) < T < 1.11T(N), where T-N is the Neel temperature. In agreem...... the leading term in the scaling behavior of the energy width was gamma(q) approximate to q(1.58+/-0.03) (hydrodynamic theory predicts a q(2) law). Possible explanations for the observed behavior of the longitudinal susceptibility are discussed........ In agreement with previous measurements, at T-N and for wave vectors away from the AF zone center, the scattering has a quasielastic component in addition to the inelastic response predicted by renormalization-group and mode-coupling theories. Both components scale with the dynamic exponent z = 1.43 +/- 0.......04, in agreement with dynamic scaling. On cooling below T-N the inelastic peaks transform into the transverse spin waves and a crossover has been observed in the dispersion from a power-law relation omega(q) = Aq(z) at T-N to a linear behavior omega(q) = cq in the hydrodynamic region below T-N. The quasielastic...
Solitary Magnons in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Green, M A; Demmel, F; Ewings, R A; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Rodriguez-Rivera, J A; Cheong, S-W
2016-07-01
CaFe_{2}O_{4} is a S=5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c-axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ∼1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ∼1-2 c-axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A+B orders as well as localization of spin excitations in a classical magnet. PMID:27419585
The sensitivity of surface polaritons in LHM-antiferromagnetic waveguide sensors
Energy Technology Data Exchange (ETDEWEB)
El-Khozondar, Hala J., E-mail: hkhozondar@iugaza.edu [Electrical Engineering Department, Islamic University, P.O.Box 108, Gaza, Palestine (Country Unknown); Al-Sahhar, Zeyad I., E-mail: z_alsahhar@yahoo.com [Physics Department, Al-Aqsa University, Gaza, Palestine (Country Unknown); Shabat, Mohamad M., E-mail: shabat@iugaza.edu.ps [Physics Department, Islamic University, Gaza, Palestine (Country Unknown)
2014-11-15
A three-layer waveguide structure sensor consisting of LHMs film surrounded by dielectric cladding and antiferromagnetic substrate is proposed. Left-handed materials (LHMs) known as Metamaterials (MTMs) have simultaneous negative permeability and permittivity. The dispersion relation for the structure is derived for TE modes only. The sensitivity is calculated for surface waves at the interface between LHM film and dielectric layer. Two ranges of frequencies are chosen such that the Voigt permeability, μ{sub v}, is either negative or positive. The sensitivity is proven to be affected by different parameters including the film thickness, LHM parameters, and Voigt permittivity. The results show that the proposed structure is sensitive to small changes in the cladding indicating that the structure is working as a sensor with high sensitivity. The parameters at which maximum sensitivity occur are obtained. - Highlights: • The homogenous sensitivity is used to measure the sensitivity of the structure. • Sensitivity changes as the value of Voigt permittivity, μ{sub v}, changes sign. • The sensitivity is affected by the film thickness and the LHM parameters. • The three-layered sensor has high sensitivity and compact structure. • The parameters at which we achieved maximum sensitivity are obtained.
Antiferromagnetic and superconducting gaps and their interrelation in high-T sub c cuprates
Arrigoni, E; Eckl, T; Hanke, W
2003-01-01
We propose a phenomenological model, comprising a microscopic SO(5) model plus the on-site Hubbard interaction U (projected SO(5) model) to understand the interrelation between the d-wave-gap modulation observed by recent angle-resolved photoemission experiments in the insulating antiferromagnet Ca sub 2 CuO sub 2 Cl sub 2 and the d-wave gap of high-T sub c superconducting materials. The on-site interaction U is important in order to produce a Mott gap of the correct order of magnitude, which would be absent in an exact SO(5) theory. The projected SO(5)-model explains the gap characteristics, namely both the symmetry and the different order of magnitude of the gap modulations between the AF and the SCc phases. Furthermore, it is shown that the projected SO(5) theory can provide an explanation for a recent observation [E. Pavarini et al., Phys. Rev. Lett. 87, 47003 (2001)], i. e. that the maximum T sub c observed in a large variety of high-T sub c cuprates scales with the next-nearest-neighbor hopping matrix e...
On the strong impact of doping in the triangular antiferromagnet CuCrO 2
Maignan, A.; Martin, C.; Frésard, R.; Eyert, V.; Guilmeau, E.; Hébert, S.; Poienar, M.; Pelloquin, D.
2009-06-01
Electronic band structure calculations using the augmented spherical wave method have been performed for CuCrO 2. For this antiferromagnetic ( TN=24 K) semiconductor crystallizing in the delafossite structure, it is found that the valence band maximum is mainly due to the t 2g orbitals of Cr 3+ and that spin polarization is predicted with 3 μ per Cr 3+. The structural characterizations of CuCr 1- xMg xO 2 reveal a very limited range of Mg 2+ substitution for Cr 3+ in this series. As soon as x=0.02, a maximum of 1% Cr ions are substituted by Mg site is measured in the sample. This result is also consistent with the detection of Mg spinel impurities from X-ray diffraction for x=0.01. This explains the saturation of the Mg 2+ effect upon the electrical resistivity and thermoelectric power observed for x>0.01. Such a very weak solubility limit could also be responsible for the discrepancies found in the literature. Furthermore, the measurements made under magnetic field (magnetic susceptibility, electrical resistivity and Seebeck coefficient) support that the Cr 4+ "holes", created by the Mg 2+substitution, in the matrix of high spin Cr 3+ ( S=3/2) are responsible for the transport properties of these compounds.
Khmelevskyi, S; Mohn, P
2012-01-11
The investigation of the electronic structure and magnetism for the compound MnB(2) with crystal structure type AlB(2) has been revisited to resolve contradictions between various experimental and theoretical results present in the literature. We find that MnB(2) exhibits an interesting example of a Kübler's covalent magnetism (Williams et al 1981 J. Appl. Phys. 52 2069). The covalent magnetism also appears to be the source of some disagreement between the calculated values of the magnetic moments and those given by neutron diffraction experiments. We show that this shortcoming is due to the atomic sphere approximation applied in earlier calculations. The application of the disordered local moment approach and the calculation of the inter-atomic exchange interactions within the Liechtenstein formalism reveal strong local moment antiferromagnetism with a high Néel temperature predicted from Monte Carlo simulations. A fully relativistic band structure calculation and then the application of the torque method yields a strong in-plane anisotropy of the Mn magnetic moments. The agreement of these results with neutron diffraction studies rules out any possible weak itinerant electron magnetism scenarios as proposed earlier for MnB(2).
Flat-histogram Monte Carlo in the Classical Antiferromagnetic Ising Model
Brown, G.; Rikvold, P. A.; Nicholson, D. M.; Odbadrakh, Kh.; Yin, J.-Q.; Eisenbach, M.; Miyashita, S.
2014-03-01
Flat-histogram Monte Carlo methods, such as Wang-Landau and multicanonical sampling, are extremely useful in numerical studies of frustrated magnetic systems. Numerical tools such as windowing and discrete histograms introduce discontinuities along the continuous energy variable, which in turn introduce artifacts into the calculated density of states. We demonstrate these effects and introduce practical solutions, including ``guard regions'' with biased walks for windowing and analytic representations for histograms. The classical Ising antiferromagnet supplemented by a mean-field interaction is considered. In zero field, the allowed energies are discrete and the artifacts can be avoided in small systems by not binning. For large systems, or cases where non-zero fields are used to break the degeneracy between local energy minima, the energy becomes continuous and these artifacts must be taken into account. Work performed at ORNL, managed by UT-Batelle for the US DOE; sponsored by Div of Mat Sci & Eng, Office of BES; used resources of Oak Ridge Leadership Computing Facility at ORNL, supported by Office of Science Contract DE-AC05-00OR22725.
Theoretical study of the role of charge ordering in antiferromagnetically ordered manganites
Panda, Saswati; Kar, J. K.; Rout, G. C.
2016-09-01
We address the interplay of charge and magnetic orderings in colossal magnetoresistive material manganese oxides. We propose here on-site double exchange spin-spin interaction in the presence of Heisenberg-type spin-spin interaction in localized t 2g core electrons. We consider charge-density wave (CDW) interaction in the crystal lattice as an extra mechanism in the itinerant e g band, to take into account of colossal magnetoresistance (CMR) in the system. We calculate electron Green’s functions by Zubarev’s Green’s function technique and hence calculate the charge-ordering gap and magnetic gap in the conduction band as well as core electron states. These orders are solved self-consistently for different model parameters of the system. We observe that the induced magnetic gap in the conduction band exists near the antiferromagnetic Néel temperature, which accounts for the CMR in the system. For all values of temperature, the CDW coupling lies in the range of g = 0.04 to 0.06, where the induced magnetic gap exists. The temperature-dependent specific heat exhibits anomalous jumps near charge-ordering and magnetic-ordering temperatures. The e g electron density of states exhibits a two-gap structure which explains tunneling conductance spectra measurements.
Spin-S kagome quantum antiferromagnets in a field with tensor networks
Picot, Thibaut; Ziegler, Marc; Orús, Román; Poilblanc, Didier
2016-02-01
Spin-S Heisenberg quantum antiferromagnets on the kagome lattice offer, when placed in a magnetic field, a fantastic playground to observe exotic phases of matter with (magnetic analogs of) superfluid, charge, bond, or nematic orders, or a coexistence of several of the latter. In this context, we have obtained the (zero-temperature) phase diagrams up to S =2 directly in the thermodynamic limit owing to infinite projected entangled pair states, a tensor network numerical tool. We find incompressible phases characterized by a magnetization plateau versus field and stabilized by spontaneous breaking of point group or lattice translation symmetry(ies). The nature of such phases may be semiclassical, as the plateaus at the 1/3th ,(1-2/9S)th, and (1-1/9S)th of the saturated magnetization (the latter followed by a macroscopic magnetization jump), or fully quantum as the spin-1/2 1/9 plateau exhibiting a coexistence of charge and bond orders. Upon restoration of the spin rotation U (1 ) symmetry, a finite compressibility appears, although lattice symmetry breaking persists. For integer spin values we also identify spin gapped phases at low enough fields, such as the S =2 (topologically trivial) spin liquid with no symmetry breaking, neither spin nor lattice.
The magnetic properties of antiferromagnetic nanoparticles: NiO and -Fe2O3
DEFF Research Database (Denmark)
Bahl, Christian Robert Haffenden
2006-01-01
sammenkitningen af partiklerne. Den nyligt implementerede monokromatiske "billededannende mode" af RITA-II tre-akse neutronspektrometeret på Paul Scherrer Instituttet i Schweiz beskrives. Brugen af denne til at måle uelastisk neutronspredningsdata fra prøver af NiO nanopartikler og fordelene ved at bruge en sådan......Nikkel oxid (NiO) og hematit -Fe2O3) er begge antiferromagneter med magnetiske egenskaber på nanoskala, som er forskellige fra dem i større krystaller. Med hovedvægt på nanopartikler af NiO og sammenligninger med nanopartikler af hematit studeres disse magnetiske egenskaber med en række...... egenskaber. Nanopartiklerne af NiO vises at være pladeformede med (111) planer som flader, en tykkelse på omkring 2.3 nm og en diameter på omkring 13 nm. Den magnetiske struktur er magen til den i større krystaller, med spinene holdt i (111) planerne. Målinger af spindynamikken afslører en værdi af den...
Magnetocaloric effect in pyrochlore antiferromagnet Gd2 Ti2 O7
Sosin, S. S.; Prozorova, L. A.; Smirnov, A. I.; Golov, A. I.; Berkutov, I. B.; Petrenko, O. A.; Balakrishnan, G.; Zhitomirsky, M. E.
2005-03-01
An adiabatic demagnetization process is studied in Gd2Ti2O7 , a geometrically frustrated antiferromagnet on a pyrochlore lattice. In contrast to conventional paramagnetic salts, this compound can exhibit a temperature decrease by a factor of 10 in the temperature range below the Curie-Weiss constant. The most efficient cooling is observed in the field interval between 120 and 60kOe corresponding to a crossover between saturated and spin-liquid phases. This phenomenon indicates that a considerable part of the magnetic entropy survives in the strongly correlated state. According to the theoretical model, this entropy is associated with a macroscopic number of local modes remaining gapless until the saturation field. Monte Carlo simulations on a classical spin model demonstrate good agreement with the experiment. The cooling power of the process is experimentally estimated with a view to possible technical applications. The results for Gd2Ti2O7 are compared to those for Gd3Ga5O12 , a well-known material for low temperature magnetic refrigeration.
Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field.
Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan
2012-06-27
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.
Antiferromagnetic nuclear spin helix and topological superconductivity in 13C nanotubes
Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel
2015-12-01
We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction arising from the hyperfine coupling between localized nuclear spins and conduction electrons in interacting 13C carbon nanotubes. Using the Luttinger liquid formalism, we show that the RKKY interaction is sublattice dependent, consistent with the spin susceptibility calculation in noninteracting carbon nanotubes, and it leads to an antiferromagnetic nuclear spin helix in finite-size systems. The transition temperature reaches up to tens of mK, due to a strong boost by a positive feedback through the Overhauser field from ordered nuclear spins. Similar to GaAs nanowires, the formation of the helical nuclear spin order gaps out half of the conduction electrons, and is therefore observable as a reduction of conductance by a factor of 2 in a transport experiment. The nuclear spin helix leads to a density wave combining spin and charge degrees of freedom in the electron subsystem, resulting in synthetic spin-orbit interaction, which induces nontrivial topological phases. As a result, topological superconductivity with Majorana fermion bound states can be realized in the system in the presence of proximity-induced superconductivity without the need of fine tuning the chemical potential. We present the phase diagram as a function of system parameters, including the pairing gaps, the gap due to the nuclear spin helix, and the Zeeman field perpendicular to the helical plane.
Meng, Zhaoliang; Qiu, Jinjun; Han, Guchang; Teo, Kie Leong
2015-12-01
We report the studies of magnetization reversal and magnetic interlayer coupling in synthetic antiferromagnetic (SAF) [Pd/Co70Fe30]9/Ru(tRu)/Pd(tPd)/[Co70Fe30/Pd]9 structure as functions of inserted Pd layer (tPd) and Ru layer (tRu) thicknesses. We found the exchange coupling field (Hex) and perpendicular magnetic anisotropy (PMA) can be controlled by both the tPd and tRu, The Hex shows a Ruderman-Kittel-Kasuya-Yosida-type oscillatory decay dependence on tRu and a maximum interlayer coupling strength Jex = 0.522 erg/cm2 is achieved at tPd + tRu ≈ 0.8 nm in the as-deposited sample. As it is known that a high post-annealing stability of SAF structure is required for magnetic random access memory applications, the dependence of Hex and PMA on the post-annealing temperature (Ta) is also investigated. We found that both high PMA of the top Co70Fe30/Pd multilayer is maintained and Hex is enhanced with increasing Ta up to 350 °C for tRu > 0.7 nm in our SAF structure.
Crystal Structure Manipulation of the Exchange Bias in an Antiferromagnetic Film
Yuan, Wei; Su, Tang; Song, Qi; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Zhang, Zhangyuan; Ma, Xiumei; Gao, Peng; Shi, Jing; Han, Wei
2016-06-01
Exchange bias is one of the most extensively studied phenomena in magnetism, since it exerts a unidirectional anisotropy to a ferromagnet (FM) when coupled to an antiferromagnet (AFM) and the control of the exchange bias is therefore very important for technological applications, such as magnetic random access memory and giant magnetoresistance sensors. In this letter, we report the crystal structure manipulation of the exchange bias in epitaxial hcp Cr2O3 films. By epitaxially growing twined oriented Cr2O3 thin films, of which the c axis and spins of the Cr atoms lie in the film plane, we demonstrate that the exchange bias between Cr2O3 and an adjacent permalloy layer is tuned to in-plane from out-of-plane that has been observed in oriented Cr2O3 films. This is owing to the collinear exchange coupling between the spins of the Cr atoms and the adjacent FM layer. Such a highly anisotropic exchange bias phenomenon is not possible in polycrystalline films.
Antiferromagnetic spin structure and negative thermal expansion of Li2Ni (WO4)2
Karna, Sunil K.; Wang, C. W.; Sankar, R.; Avdeev, M.; Singh, A.; Panneer Muthuselvam, I.; Singh, V. N.; Guo, G. Y.; Chou, F. C.
2015-07-01
We report the results of a study on the crystal and magnetic structure of Li2Ni (WO4)2 with a neutron diffraction technique. The Ni2 + spins of S = 1 for NiO6 octahedra are coupled via corner-sharing, nonmagnetic double tungstate groups in a super-superexchange route. Two magnetic anomalies at TN 1˜ 18 K and TN 2˜ 13 K are revealed from the measured magnetic susceptibility χ (T), and TN 2 is confirmed to be the onset of a commensurate long-range antiferromagnetic (AF) ordering through neutron diffraction. A negative thermal expansion phenomenon is observed below TN 2, which has been interpreted as a result of competing normal thermal contraction and long-range AF spin ordering through counterbalanced WO4 and NiO6 polyhedral local distortion. The AF spin structure has been modeled and used to show that Ni spins with a saturated magnetic moment of ˜1.90 (27 )μB that lies in the a -c plane approximately 46∘(±10∘) off the a axis. The experimental results are compared and found to be consistent with theoretical calculations using density-functional theory with a generalized gradient approximation plus on-site Coulomb interaction.
Monte carlo simulation study of the square lattice S=1/2 quantum heisenberg antiferromagnet
Kim, J K
1999-01-01
For the two dimensional S= 1/2 isotopic quantum Heisenberg antiferromagnet on a square lattice, we report our results of an extensive quantum Monte Carlo simulation for various physical observables such as the correlation length xi, the staggered magnetic susceptibility chi sub S sub T , the structure factor peak value S(Q), the internal energy epsilon, and the uniform susceptibility chi sub u. We find that chi sub S sub T approx chi sup 2 T and S(Q) approx xi sup 2 T sup 2 , in agreement with the predictions of the conventional theory but in disagreement with recent experiments. Our estimate of the spin stiffness constant rho sub s and spin wave velocity c, from the low temperature behavior of the chi sub u is shown to be consistent with the theoretical prediction of the low temperature behavior of the epsilon, and of the xi provided an additional correction up to T sup 2. However, our data are definitely inconsistent with the scenario of the crossover for the xi.
Spin-1/2 Heisenberg J1-J2 antiferromagnet on the kagome lattice
Iqbal, Yasir; Poilblanc, Didier; Becca, Federico
2015-01-01
We report variational Monte Carlo calculations for the spin-1/2 Heisenberg model on the kagome lattice in the presence of both nearest-neighbor J1 and next-nearest-neighbor J2 antiferromagnetic superexchange couplings. Our approach is based upon Gutzwiller projected fermionic states that represent a flexible tool to describe quantum spin liquids with different properties (e.g., gapless and gapped). We show that, on finite clusters, a gapped Z2 spin liquid can be stabilized in the presence of a finite J2 superexchange, with a substantial energy gain with respect to the gapless U (1 ) Dirac spin liquid. However, this energy gain vanishes in the thermodynamic limit, implying that, at least within this approach, the U (1 ) Dirac spin liquid remains stable in a relatively large region of the phase diagram. For J2/J1≳0.3 , we find that a magnetically ordered state with q =0 overcomes the magnetically disordered wave functions, suggesting the end of the putative gapless spin-liquid phase.
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F; Mekhov, Igor B
2016-01-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions. PMID:27510369
Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs
Sinclair, Alistair; Thurley, Marc
2011-01-01
In a seminal paper (Weitz, 2006), Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the infinite d-regular tree. More recently Sly (see also Galanis et al, 2011) showed that this is optimal in the sense that if there is an FPRAS for the hard-core partition function on graphs of maximum degree d for activities larger than the critical activity on the infinite d-regular tree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagn...
Canted antiferromagnetic phase of the ν=0 quantum Hall state in bilayer graphene.
Kharitonov, Maxim
2012-07-27
Motivated to understand the nature of the strongly insulating ν=0 quantum Hall state in bilayer graphene, we develop the theory of the state in the framework of quantum Hall ferromagnetism. The generic phase diagram, obtained in the presence of the isospin anisotropy, perpendicular electric field, and Zeeman effect, consists of the spin-polarized ferromagnetic (F), canted antiferromagnetic (CAF), and partially (PLP) and fully (FLP) layer-polarized phases. We address the edge transport properties of the phases. Comparing our findings with the recent data on suspended dual-gated devices, we conclude that the insulating ν=0 state realized in bilayer graphene at lower electric field is the CAF phase. We also predict a continuous and a sharp insulator-metal phase transition upon tilting the magnetic field from the insulating CAF and FLP phases, respectively, to the F phase with metallic edge conductance 2e(2)/h, which could be within the reach of available fields and could allow one to identify and distinguish the phases experimentally.
Ghosh, Pratyay; Verma, Akhilesh Kumar; Kumar, Brijesh
2016-01-01
A spin-1 Heisenberg model on trimerized kagome lattice is studied by doing a low-energy bosonic theory in terms of plaquette triplons defined on its triangular unit cells. The model considered has an intratriangle antiferromagnetic exchange interaction J (set to 1) and two intertriangle couplings J'>0 (nearest neighbor) and J″ (next nearest neighbor; of both signs). The triplon analysis performed on this model investigates the stability of the trimerized singlet ground state (which is exact in the absence of intertriangle couplings) in the J'-J″ plane. It gives a quantum phase diagram that has two gapless antiferromagnetically ordered phases separated by the spin-gapped trimerized singlet phase. The trimerized singlet ground state is found to be stable on J″=0 line (the nearest-neighbor case), and on both sides of it for J″≠0 , in an extended region bounded by the critical lines of transition to the gapless antiferromagnetic phases. The gapless phase in the negative J″ region has a coplanar 120∘ antiferromagnetic order with √{3 }×√{3 } structure. In this phase, all the magnetic moments are of equal length, and the angle between any two of them on a triangle is exactly 120∘. The magnetic lattice in this case has a unit cell consisting of three triangles. The other gapless phase, in the positive J″ region, is found to exhibit a different coplanar antiferromagnetic order with ordering wave vector q =(0 ,0 ) . Here, two magnetic moments in a triangle are of the same magnitude, but shorter than the third. While the angle between two short moments is 120∘-2 δ , it is 120∘+δ between a short and the long one. Only when J″=J' , their magnitudes become equal and the relative angles 120∘. The magnetic lattice in this q =(0 ,0 ) phase has the translational symmetry of the kagome lattice with triangular unit cells of reduced (isosceles) symmetry. This reduction in the point-group symmetry is found to show up as a difference in the intensities of
ESR study of Nd{sub 0.5}Sr{sub 0.5}MnO{sub 3} single crystal
Energy Technology Data Exchange (ETDEWEB)
Angappane, S. E-mail: angappan@physics.iitm.ernet.in; Pattabiraman, M.; Rangarajan, G. E-mail: rajan@acer.iitm.ernet.in; Sethupathi, K.; Balakrishnan, G.; Paul, D.McK.; Lees, M.R.; Sastry, V.S
2004-05-01
The paramagnetic g-value and linewidth of Nd{sub 0.5}Sr{sub 0.5}MnO{sub 5} single crystal show the presence of spin clusters in the paramagnetic state. The anisotropy field splits the spectra below 250 K (T{sub C}). An A-type antiferromagnetic phase (T{sub N} {approx} 225 K) is found to coexist with the ferromagnetic phase down to the charge ordering temperature of 150 K, at which a transition takes place also to a CE-type antiferromagnetic state.
Shimokawa, Tokuro; Watanabe, Ken; Kawamura, Hikaru
2015-10-01
Inspired by the recent theoretical suggestion that the random-bond S =1 /2 antiferromagnetic Heisenberg model on the triangular and the kagome lattices might exhibit a randomness-induced quantum spin liquid (QSL) behavior when the strength of the randomness exceeds a critical value, and that this "random-singlet state" might be relevant to the QSL behaviors experimentally observed in triangular organic salts κ -(ET) 2Cu2(CN) 3 and EtMe3Sb [Pd(dmit)2] 2 and in kagome herbertsmithite ZnCu3(OH) 6Cl2 , we further investigate the nature of the static and the dynamical spin correlations of these models. We compute the static and the dynamical spin structure factors, S (q ) and S (q ,ω ) , by means of an exact diagonalization method. In both triangular and kagome models, the computed S (q ,ω ) in the random-singlet state depends on the wave vector q only weakly, robustly exhibiting gapless behaviors accompanied by the broad distribution extending to higher energy ω . Especially in the strongly random kagome model, S (q ,ω ) hardly depends on q , and exhibits an almost flat distribution for a wide range of ω , together with a ω =0 peak. These features agree semiquantitatively with the recent neutron-scattering data on a single-crystal herbertsmithite. Furthermore, the computed magnetization curve agrees almost quantitatively with the experimental one recently measured on a single-crystal herbertsmithite. These results suggest that the QSL state observed in herbertsmithite might indeed be the randomness-induced QSL state, i.e., the random-singlet state.
Energy Technology Data Exchange (ETDEWEB)
Nascimento, Denise A. do, E-mail: denise.a.n@bol.com.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Departamento de Fisica, Universidade Federal de Roraima, BR 174, Km 12. Bairro Monte Cristo, CEP: 69300-000 Boa Vista/RR (Brazil); Neto, Minos A., E-mail: minosneto@hotmail.com [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Ricardo de Sousa, J., E-mail: jsousa@edu.ufam.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Pacobahyba, Josefa T., E-mail: jtmpacobahyba@dfis.ufrr.br [Departamento de Fisica, Universidade Federal de Roraima, BR 174, Km 12. Bairro Monte Cristo, CEP: 69300-000 Boa Vista/RR (Brazil)
2012-08-15
In this paper we study the critical behavior of a two-sublattice Ising model on an anisotropic square lattice in both uniform longitudinal (H) and transverse ({Omega}) fields by using the effective-field theory. The model consists of ferromagnetic interaction J{sub x} in the x direction and antiferromagnetic interaction J{sub y} in the y direction in the presence of the H and {Omega} fields. We obtain the phase diagrams in the H-T and {Omega}-T planes changing values of the {Omega} and H parameters, respectively for fixed value at {lambda}=J{sub x}/J{sub y}=1. At null temperature, the ground state phase diagram in the {Omega}-H plane for several values of {lambda} parameter is analyzed. In the particular case of {lambda}=1 we compare our results with mean-field theory (MFT) and was not observed reentrant behavior around of the critical field H{sub c}/J{sub y}=2.0 for {Omega}=0 by using EFT. - Highlights: Black-Right-Pointing-Pointer In the last decade there has been a great interest in physics of the quantum phase transition in system at low dimensional. Black-Right-Pointing-Pointer In particular, the transverse Ising model has been studied by a variety of approximate methods. Black-Right-Pointing-Pointer In the context of quantum phase transition and critical phenomena. Black-Right-Pointing-Pointer First time, is presented a study of the superantiferromagnetic transverse Ising model on an anisotropic square lattice. Black-Right-Pointing-Pointer We have obtained finite temperature and ground state phase diagrams.
Ferromagnetism vs. antiferromagnetism of the dimorphic HoCrO 4 oxide
Climent-Pascual, Esteban; Romero de Paz, Julio; Gallardo-Amores, José Manuel; Sáez-Puche, Regino
2007-07-01
This paper reports the specific conditions used in the preparation of the dimorphic phases of HoCrO 4 oxide. The scheelite form has been obtained from the room pressure stable HoCrO 4-zircon heated at 823 K at 40 kbar. The structures of both the polytypes have been refined from X-ray powder diffraction data using the Rietveld method. The zircon type of HoCrO 4 oxide crystallizes with tetragonal symmetry, S.G. I4 1/ amd and lattice parameters a = 7.119(10) and c = 6.2557(5) Å; while the scheelite-HoCrO 4 derivative shows tetragonal symmetry, S.G. I4 1/ a and lattice parameters a = 5.0017(1) and c = 11.2664(2) Å. Magnetic susceptibility measurements show that both zircon and scheelite forms of HoCrO 4 oxide present a very different magnetic behaviour at low temperatures. The zircon form behaves as a ferromagnet with a Curie temperature of 17.6 K, while the scheelite form is antiferromagnetic with a Néel temperature of 7.6 K. A metamagnetic transition for the scheelite form with a critical field of 1 T at 2 K has been also observed. The changes in the sign of the interactions have been also analyzed by considering the possible super-exchange mechanisms and the differences found in the Ho-O-Cr distances and bond angles in going from zircon to scheelite structural type.
Antiferromagnetism and Kondo effect in a two quantum dot system: a slave boson approach
Energy Technology Data Exchange (ETDEWEB)
Hamad, I.J.; Anda, E.V. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Fisica; Ribeiro, L. Costa [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ/UnED-NI), Nova Iguacu, RJ (Brazil)
2012-07-01
Full text: In a recent experiment, Jakob et. al proposed a device consisting of a cobalt atom attached to the tip of a scanning tunneling microscope (STM) which interacts with another Co atom adsorbed on a gold surface. The high capacity to tune the tip-sample distance obtained by the authors, with a sub-picometre resolution, enabled the control of the electronic interaction between the two Co atoms and allowed the access to a very rich set of physical phenomena, specifically, those associated to the interplay of the antiferromagnetic interaction between the spins of the Co atoms and the Kondo correlation with the electronic reservoir spins. As well, it is possible to carefully study the geometrical aspects of the experimental disposition creating Fano anti resonances in the differential conductance as a function of the applied potential. In order to reproduce the physics observed in such an experiment we elaborate a model consisting of two sites where the electrons are highly correlated, that simulates the two Co atoms. Each atom interacts with an electronic reservoir and between themselves by means of a directed coupling and also, indirectly, through a coupling between the two electronic reservoirs. The many- body system is solved using a Slave Boson Formalism, solving the problem in the mean field approximation for finite values of U, the Coulomb electronic repulsion at the Co sites. Unlike the NRG calculations developed in the mentioned work, which partially explain the measurements, our results carries the physics information associated to the direct coupling between the Co atoms that permits to study the different regimes and the geometrical implications on the conductance results. Our study is able to explain the experimental results in all the parameter space. (author)
Antiferromagnetism and Kondo effect in a two quantum dot system: a slave boson approach
International Nuclear Information System (INIS)
Full text: In a recent experiment, Jakob et. al proposed a device consisting of a cobalt atom attached to the tip of a scanning tunneling microscope (STM) which interacts with another Co atom adsorbed on a gold surface. The high capacity to tune the tip-sample distance obtained by the authors, with a sub-picometre resolution, enabled the control of the electronic interaction between the two Co atoms and allowed the access to a very rich set of physical phenomena, specifically, those associated to the interplay of the antiferromagnetic interaction between the spins of the Co atoms and the Kondo correlation with the electronic reservoir spins. As well, it is possible to carefully study the geometrical aspects of the experimental disposition creating Fano anti resonances in the differential conductance as a function of the applied potential. In order to reproduce the physics observed in such an experiment we elaborate a model consisting of two sites where the electrons are highly correlated, that simulates the two Co atoms. Each atom interacts with an electronic reservoir and between themselves by means of a directed coupling and also, indirectly, through a coupling between the two electronic reservoirs. The many- body system is solved using a Slave Boson Formalism, solving the problem in the mean field approximation for finite values of U, the Coulomb electronic repulsion at the Co sites. Unlike the NRG calculations developed in the mentioned work, which partially explain the measurements, our results carries the physics information associated to the direct coupling between the Co atoms that permits to study the different regimes and the geometrical implications on the conductance results. Our study is able to explain the experimental results in all the parameter space. (author)
Helical antiferromagnetic ordering in Lu1-xScxMnSi
Energy Technology Data Exchange (ETDEWEB)
Goetsch, Ryan J [Ames Laboratory; Anand, V K [Ames Laboratory; Johnston, David C [Ames Laboratory
2014-08-01
Polycrystalline samples of Lu_{1-x}Sc_{x}MnSi (x=0, 0.25, 0.5) are studied using powder x-ray diffraction, heat capacity Cp, magnetization, magnetic susceptibility χ, and electrical resistivity ρ measurements versus temperature T and magnetic field H. This system crystallizes in the primitive orthorhombic TiNiSi-type structure (space group Pnma) as previously reported. The ρ(T) data indicate metallic behavior. The Cp(T), χ(T), and ρ(T) measurements consistently indicate long-range antiferromagnetic (AF) transitions with AF ordering temperatures TN=246, 215, and 188 K for x=0, 0.25, and 0.5, respectively. A second transition is observed at somewhat lower T for each sample from the χ(T) and ρ(T) measurements, which we speculate are due to spin reorientation transitions; these second transitions are completely suppressed in H=5.5 T. The Cp data below 10 K for each composition indicate an enhanced Sommerfeld electronic heat capacity coefficient for the series in the range γ=24–29 mJ/mol K2. The χ(T) measurements up to 1000 K were fitted by local-moment Curie-Weiss behaviors which indicate a low Mn spin S~1. The χ data below TN are analyzed using the Weiss molecular field theory for a planar noncollinear cycloidal AF structure with a composition-dependent pitch, following the previous neutron diffraction work of Venturini et al. [J. Alloys Compd. 256, 65 (1997)]. Within this model, the fits indicate a turn angle between Mn ordered moments along the cycloid axis of ~100° or ~145°, either of which indicate dominant AF interactions between the Mn spins in the Lu_{1-x}Sc_{x}MnSi series of compounds.
Magnetic properties of Cu(L-aspartato)(H2O)2: A linear chain antiferromagnet
Calvo, Rafael; Passeggi, Mario C. G.; Moreno, Nelson O.; Barberis, Gaston E.; Braun Chaves, Artur; Torres, B. C. M.; Lezama, Luis; Rojo, Teófilo
1999-07-01
Specific heat, magnetic susceptibility, and magnetization measurements were performed in polycrystalline samples of the copper complex of the amino acid L-aspartic acid [called Cu(L-asp)]. The specific heat was measured between 3 and 45 K, while dc and ac susceptibilities were measured between 1.8 and 300 K. The magnetization data were obtained as a function of an applied field up to 9 T, at various fixed temperatures between 2 and 10 K. The specific heat and magnetic susceptibility curves show peaks at 3.95 K and 6.9 K, respectively, and approach zero at lower and higher temperatures. This behavior cannot be accounted for by considering only the superexchange paths provided by the σ skeleton of aspartic acid. If this were the case, a uniform J0 along the asp-Cu-asp-Cu-asp chains would be expected. The data were well fitted, proposing for Cu(L-asp) a behavior characteristic of an alternating linear chain antiferromagnet. Each S=12 copper ion is coupled with an isotropic exchange interaction J0/k=(-5.3+/-0.1) K with one copper neighbor in the chain, and αJ0/k=(-1.5+/-0.1) K with the other [α=(0.29+/-0.02)]. The average g value is g=2.165+/-0.002. Considering the alternating chain model, the susceptibility and magnetization data suggest also the presence of an additional interchain ferromagnetic coupling, which (within a mean-field approximation) leads to J'/k=(0.7+/-0.1) K. Other exchange paths are proposed to explain the data. An important finding is that hydrogen bonds may support relatively large values of J.
Multiple charge density wave transitions in the antiferromagnets R NiC2 (R =Gd ,Tb)
Shimomura, S.; Hayashi, C.; Hanasaki, N.; Ohnuma, K.; Kobayashi, Y.; Nakao, H.; Mizumaki, M.; Onodera, H.
2016-04-01
X-ray scattering and electrical resistivity measurements were performed on GdNiC2 and TbNiC2. We found a set of satellite peaks characterized by q1=(0.5 ,η ,0 ) below T1, at which the resistivity shows a sharp inflection, suggesting the charge density wave (CDW) formation. The value of η decreases with decreasing temperature below T1, and then a transition to a commensurate phase with q1 C=(0.5 ,0.5 ,0 ) takes place. The diffuse scattering observed above T1 indicates the presence of soft phonon modes associated with CDW instabilities at q1 and q2=(0.5 ,0.5 ,0.5 ) . The long-range order given by q2 is developed in addition to that given by q1 C in TbNiC2, while the short-range correlation with q2 persists even at 6 K in GdNiC2. The amplitude of the q1 C lattice modulation is anomalously reduced below an antiferromagnetic transition temperature TN in GdNiC2. In contrast, the q2 order vanishes below TN in TbNiC2. We demonstrate that R NiC2 (R = rare earth) compounds exhibit similarities with respect to their CDW phenomena, and discuss the effects of magnetic transitions on CDWs. We offer a possible displacement pattern of the modulated structure characterized by q1 C and q2 in terms of frustration.
Crystal structure and magnetism of Tb2Ni3Si5 single crystal
International Nuclear Information System (INIS)
The structure transition of Tb2Ni3Si5 single crystal and the spin arrangement in the transition structure were studied by the magnetism measurement and neutron diffraction analysis. The powder X-ray diffraction experiment determined the mother sample was U2Co3Si5 type structure. The measurement results of magnetic susceptibility showed Neel temperature at 34.2 K and three magnetic phases depend on the antiferromagnetic transition at 3.8 K and 8.3 K. The magnetization curve showed complex magnetism arrangement and small change of differential magnetization among each magnetic phase. The neutron diffraction experiment of single crystal indicated that Tb atom shifted and constructed the lattice with 12/7a x 1/4b x 1/2c unit and the composite structure consisted of two kinds of lattice nested. The stable composite structure is unusual in the metal lattice. The spin arrangement of single crystal made clear that Tb magnetic moment existed in the plane and it was complex antiferromagnetism with incommensurate period expressed by three wave vectors such as k1, k2 and k3 in the low and middle temperature phase. On the magnetic phase transition in the low and middle temperature phase, the strength ratio of magnetic scattering changed so large, that the phase, which determined the spin direction, changed in the two magnetic phases. In the high temperature, each magnetic phase showed complex antiferromagnetic spin arrangement. (S.Y.)
Magnetism induced by single-atom defects in nanographites.
Yazyev, Oleg V.; Helm, Lothar
2007-01-01
We study from first principles the magnetism in graphene induced by single carbon atom defects. For two types of defects considered in our study, the hydrogen chemisorption defect and the vacancy defect, the magnetism due to the defect-induced extended states has been observed. Calculated magnetic moments are equal to 1 μB per hydrogen chemisorption defect and ∼1.5 μB per vacancy defect. The magnetic ordering is either ferromagnetic or antiferromagnetic, depending on whether the defects corre...