WorldWideScience

Sample records for antiferroelectric thick films

  1. Orientation-dependent energy storage performance and electrocaloric effect in PLZST antiferroelectric thick films

    OpenAIRE

    Zhao, Ye; Gao, Hongcheng; Hao, Xihong; Zhang, Qi

    2016-01-01

    The enhancement of the energy storage performance and electrocaloric effect (ECE) was achieved via orientation control. The 1.5-μm-(Pb0.97La0.02)(Zr0.73Sn0.22Ti0.05)O3 (PLZST) antiferroelectric (AFE) thick films with (111), (110), and (100) crystallographic orientations were successfully prepared via a sol-gel method. It was found that both the enhanced energy-storage density of 13.5 J/cm3 at 900 kV/cm and the corresponding temperature reduction of ΔT = 28.1 °C at room temperature were obtain...

  2. Antiferroelectric films of deuterated betaine phosphate

    Science.gov (United States)

    Balashova, E. V.; Krichevtsov, B. B.; Svinarev, F. B.; Zaitseva, N. V.

    2016-07-01

    Thin films of partially deuterated betaine phosphate have been grown by the evaporation on Al2O3(110) and NdGaO3(001) substrates with a preliminarily deposited structure of interdigitated electrodes. The grown films have a polycrystalline block structure with characteristic dimensions of blocks of the order of 0.1-1.5 mm. The degree of deuteration of the films D varies in the range of 20-50%. It has been found that, at the antiferroelectric phase transition temperature T c afe = 100-114 K, the fabricated structures exhibit an anomaly of the electrical capacitance C, which is not accompanied by a change in the dielectric loss tangent tanδ. The strong-signal dielectric response is characterized by the appearance of a ferroelectric nonlinearity at temperatures T > T c afe , which is transformed into an antiferroelectric nonlinearity at T diagram has been constructed.

  3. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films.

    Science.gov (United States)

    Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Müller, Johannes; Kersch, Alfred; Schroeder, Uwe; Mikolajick, Thomas; Hwang, Cheol Seong

    2015-03-18

    The recent progress in ferroelectricity and antiferroelectricity in HfO2-based thin films is reported. Most ferroelectric thin film research focuses on perovskite structure materials, such as Pb(Zr,Ti)O3, BaTiO3, and SrBi2Ta2O9, which are considered to be feasible candidate materials for non-volatile semiconductor memory devices. However, these conventional ferroelectrics suffer from various problems including poor Si-compatibility, environmental issues related to Pb, large physical thickness, low resistance to hydrogen, and small bandgap. In 2011, ferroelectricity in Si-doped HfO2 thin films was first reported. Various dopants, such as Si, Zr, Al, Y, Gd, Sr, and La can induce ferro-electricity or antiferroelectricity in thin HfO2 films. They have large remanent polarization of up to 45 μC cm(-2), and their coercive field (≈1-2 MV cm(-1)) is larger than conventional ferroelectric films by approximately one order of magnitude. Furthermore, they can be extremely thin (5 eV). These differences are believed to overcome the barriers of conventional ferroelectrics in memory applications, including ferroelectric field-effect-transistors and three-dimensional capacitors. Moreover, the coupling of electric and thermal properties of the antiferroelectric thin films is expected to be useful for various applications, including energy harvesting/storage, solid-state-cooling, and infrared sensors. PMID:25677113

  4. Fabrication of antiferroelectric PLZT films on metal foils

    International Nuclear Information System (INIS)

    Fabrication of high-dielectric-strength antiferroelectric (AFE) films on metallic foils is technically important for advanced power electronics. To that end, we have deposited crack-free Pb0.92La0.08Zr0.95Ti0.05O3 (PLZT 8/95/5) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was coated by chemical solution deposition on the nickel foil before the deposition of PLZT. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be processed in air. With the PLZT 8/95/5 deposited on LNO-buffered Ni foils, we observed field- and thermal-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, EAF = 225 kV/cm, and the reverse phase transition field, EFA = 190 kV/cm, were measured at room temperature on a ∼1.15 μm-thick PLZT 8/95/5 film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were ∼600 and ∼730, respectively, with dielectric loss ∼0.04 at room temperature. The Curie temperature was ∼210 deg. C. The thermal-induced transition of AFE-to-FE phase occurred at ∼175 deg. C. Breakdown field strength of 1.2 MV/cm was measured at room temperature

  5. The effect of dc bias on the poled states in PNZST antiferroelectric thin films

    International Nuclear Information System (INIS)

    The effect on the polarization of antiferroelectric (AFE) PNZST ((Pb,Nb)(Zr,Sn,Ti)O3) thin films by ε-E (dc bias field) cycles was studied. It was shown that in these films the AFE ordering is destroyed by the application of a dc electrical field bias along the surface normal direction. After removing the dc bias the film relaxes slowly back to the initial AFE state. This phenomenon is dependent on the film thickness. The relaxation time decreases with increasing film thickness. With increasing storage time of the sample after removing the dc bias at room temperature or heat treatment above the Curie temperature, the AFE ordering can return. From the characteristics of hysteresis loops and ε-E behaviours, we can ascertain that this phenomenon could be attributed to the difference in the poled volume at the interfaces between the electrode and the film

  6. Direct current field adjustable ferroelectric behaviour in (Pb, Nb)(Zr, Sn, Ti)O3 antiferroelectric thin films

    International Nuclear Information System (INIS)

    (Pb, Nb)(Zr, Sn, Ti)O3 antiferroelectric (AFE) thin films have been fabricated on LaNiO3/Pt/Ti/SiO2/Si wafers using a sol-gel process. The electric field-induced antiferroelectric-to-ferroelectric (AFE-FE) phase transformation behaviour and its dependence on the temperature were examined by investigating the dielectric constant and dielectric loss versus temperature and electrical field. The AFE-FE phase transformation temperature can be adjusted as a function of the DC bias field and the thickness of the thin film. With increasing DC bias field, the FE phase region was enlarged, the AFE-FE transformation temperature shifted to lower temperature, and the ferroelectric-to-paraelectric transformation temperature shifted to higher temperature. With increasing film thickness, the modulation effect of the DC bias field on the AFE-FE phase transformation temperature is increased

  7. Quadrupolar Effect on Two Layered Thin Film Antiferroelectric Smectic Liquid Crystal

    International Nuclear Information System (INIS)

    Within the framework of the discrete Landau phenomenological model, the free energy of an antiferroelectric smectic liquid crystal is analyzed. This model considers the interactions between the liquid crystal molecules within the nearest and the next nearest layers. Electrostatic quadrupolar interaction up to the nearest layers is included. This quadrupolar term, bqξ???i·ξ???i+12 is positive, thus favouring a perpendicular orientation in the adjacent layer respectively. We show how quadrupolar interaction can affects the planar regions of the phase diagram of a two layered thin antiferroelectric smectic liquid crystal film.

  8. Antiferroelectricity in thin-film ZrO2 from first principles

    Science.gov (United States)

    Reyes-Lillo, Sebastian E.; Garrity, Kevin F.; Rabe, Karin M.

    2014-10-01

    Density-functional calculations are performed to investigate the experimentally reported field-induced phase transition in thin-film ZrO2 [J. Müller et al., Nano Lett. 12, 4318 (2012), 10.1021/nl302049k]. We find a small energy difference of ˜1 meV/f.u. between the nonpolar tetragonal and polar orthorhombic structures, characteristic of antiferroelectricity. The requisite first-order transition between the two phases, which atypically for antiferroelectrics have a group-subgroup relation, results from coupling to other zone-boundary modes, as we show with a Landau-Devonshire model. Tetragonal ZrO2 is thus established as a lead-free antiferroelectric with excellent dielectric properties and compatibility with silicon. In addition, we demonstrate that a ferroelectric phase of ZrO2 can be stabilized through epitaxial strain, and suggest an alternative stabilization mechanism through continuous substitution of Zr by Hf.

  9. Characteristics of antiferroelectric PbZrO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Won; Bae, Sang Bo; Kim, Kun Surb; Kim, Hong Keun [Ulsan Univ., Ulsan (Korea, Republic of); Lee, Jeong Sik [Kyungsung Univ., Pusan (Korea, Republic of); Jeong, Jung Hyun [Pukyong National Univ., Pusan (Korea, Republic of); Yamakawa, K. [Microelectronics Engineering Laboratory, Yokohama (Japan)

    1998-08-01

    Antiferroelectric PbZrO{sub 3} thin films were synthesized on Pt/Ti/SiO{sub 2}/Si substrates by using reactive magnetron co-sputtering followed by rapid thermal annealing. At an annealing temperature of 700.deg.C, the PbZrO{sub 3} films exhibited a pure perovskite phase with improved crystallinity as evidenced by higher and sharper (221) and (240) X-ray diffractometer peaks. From the scanning electron microscopy observations, the grains were found to have a columnar structure, and the average grain size was 0.3 - 0.5 {mu}m. An electric-field-forced transformation from the antiferroelectric phase to the ferroelectric phase was observed at room temperature and had a maximum polarization value of 41 {mu}C/cm{sup 2}. The average fields for exciting the ferroelectric state and that for reversing to the antiferroelectric state, as measured by charge versus voltage curves, were 357 kV/cm and 207 kV/cm, respectively. The dielectric constant was 196 with an associated dissipation factor of 0.043 at 100kHz. The frequency-dependent response indicated no dispersion below 1 MHz. According to the fatigue measurement, the value of P of the PbZrO{sub 3} film switched up to 10{sup 9} cycles which was a decrease of about 15% compared to the value for a virgin film.

  10. Characteristics of antiferroelectric PbZrO sub 3 thin films

    CERN Document Server

    Kim, I W; Kim, K S; Kim, H K; Lee Jae Sik; Jeong, J H; Yamakawa, K

    1998-01-01

    Antiferroelectric PbZrO sub 3 thin films were synthesized on Pt/Ti/SiO sub 2 /Si substrates by using reactive magnetron co-sputtering followed by rapid thermal annealing. At an annealing temperature of 700.deg.C, the PbZrO sub 3 films exhibited a pure perovskite phase with improved crystallinity as evidenced by higher and sharper (221) and (240) X-ray diffractometer peaks. From the scanning electron microscopy observations, the grains were found to have a columnar structure, and the average grain size was 0.3 - 0.5 mu m. An electric-field-forced transformation from the antiferroelectric phase to the ferroelectric phase was observed at room temperature and had a maximum polarization value of 41 mu C/cm sup 2. The average fields for exciting the ferroelectric state and that for reversing to the antiferroelectric state, as measured by charge versus voltage curves, were 357 kV/cm and 207 kV/cm, respectively. The dielectric constant was 196 with an associated dissipation factor of 0.043 at 100kHz. The frequency-de...

  11. Ferroelectricity in antiferroelectric epitaxial PbZrO3 films with different orientations

    International Nuclear Information System (INIS)

    PbZrO3 (PZO) is a well known antiferroelectric (AFE) material with orthorhombic crystal structure. Due to antiparallel lead-ion shifts the remnant polarization is nominally zero. With a sufficiently large applied electric field, PZO undergoes a field-driven phase transition into a ferroelectric (FE), rhombohedral phase. However, the existence of a FE polarization along the c-axis of PZO (without applied field) was predicted by Jona et al. with an estimated value of 25 μC/cm2. We have investigated the temperature dependence of hysteresis and capacitance in PLD-grown epitaxial PZO films with two different orientations in the 4.2-400 K temperature range. It was observed that (120)o-oriented films (index o-orthorhombic) show a mixed AFE and FE behaviour on the entire temperature range, the FE behaviour being more stable at low temperatures. In contrast, the (001)o-oriented films show a FE hysteresis only at temperatures up to 60 K. Above 60 K the hysteresis splits into two loops, typical for antiferroelectrics. The results indicate the coexistence of FE and AFE properties in PZO films, particularly at low temperature

  12. Giant Negative Electrocaloric Effect in Antiferroelectric La-Doped Pb(ZrTi)O3 Thin Films Near Room Temperature.

    Science.gov (United States)

    Geng, Wenping; Liu, Yang; Meng, Xiangjian; Bellaiche, Laurent; Scott, James F; Dkhil, Brahim; Jiang, Anquan

    2015-05-27

    Antiferroelectric thin films are demonstrated as a new class of giant electrocaloric materials that exhibit a negative electrocaloric response of about -5 K near room temperature. The giant negative electrocaloric effect may open up a new paradigm for light, compact, reliable, and high-efficiency refrigeration devices. PMID:25864588

  13. Thick film ink chemistry

    Science.gov (United States)

    Gehman, R. W.

    1982-03-01

    Twenty-six thick film inks from two vendors were proved for hybrid microcircuit production use. A data base of chemical information was established for all the inks to aid in future diagnostic and failure analysis activities. Efforts included both organic chemical analysis of printing vehicles and binders and inorganic chemical analysis of glass frits and electrically active phases. Analytical methods included infrared spectroscopy, mass spectroscopy, gas chromatography, X-ray fluorescence, emission spectroscopy, atomic absorption spectroscopy, and wet chemical techniques.

  14. Genuine driving voltage on polarization fatigue in (Pb,La)(Zr,Ti)O3 antiferroelectric thin films

    OpenAIRE

    Geng, Wenping; Lou, Xiaojie; Xu, Jianghong; Zhang, Fuping; Yang LIU; Dkhil, Brahim; Ren, Xiaobing; Zhang, Ming; HE Hongliang

    2013-01-01

    The polarization fatigue in (Pb0.97La0.02)(Zr0.95Ti0.05)O3 (PLZT) antiferroelectric thin films deposited onto silicon wafers is studied by investigating the effect of the peak/average/effective cycling voltage through varying the waveform of the electrical excitation. Interestingly, it is found that the fatigue endurance of the film is determined by the effective voltage of the external driving excitation rather than by the peak or average voltages. Our results can be well explained in the fr...

  15. Effects of raw materials on microstructure and dielectric properties of PbZrO3 antiferroelectric thin films prepared via sol-gel process

    International Nuclear Information System (INIS)

    Highlights: · The effects of starting materials on the microstructure and electrical of PZ AFE thin films were studied. · PZ films obtained from zirconium isopropoxide were highly (1 1 1)-oriented and had a more uniform surface microstructure. · PZ films with zirconium isopropoxide as starting material also displayed improved electrical properties. - Abstract: In this work, we report on two kinds of PbZrO3 (PZO) antiferroelectric (AFE) thin films with a thickness of about 700 nm, which were fabricated by using zirconium isopropoxide and zirconium nitrate as starting materials, respectively. The effects of the raw materials on microstructure and electrical properties of the PZO AFE films were studied in detail. X-ray diffraction and scanning electron microcopy results showed that the PZO films obtained from zirconium isopropoxide were highly (1 1 1)-oriented and had a more uniform surface microstructure. As a result, the PZO films from zirconium isopropoxide accordingly displayed better electrical properties, such as lager dielectric constant, increased saturated polarization, and smaller leakage current.

  16. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    Science.gov (United States)

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-01

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles. PMID:26606502

  17. Critical Thickness in Dewetting Films

    OpenAIRE

    Du, B; Z. Yang; Tsui, O. K. C.

    2001-01-01

    We study dewetting of thin polymer films with built-in topographical fluctuations produced by rubbing the film surface with a rayon cloth. By varying the density of imposed surface defects, we unambiguously distinguish spinodal dewetting, which dominates in liquid films thinner than a characteristic thickness = 13.3 nm, from heterogeneous nucleation in the thicker films. Invariance of this characteristic thickness upon more than a decade change in the defect density makes kinetic effect an un...

  18. Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue

    OpenAIRE

    Lou, X. J.; Wang, J.

    2010-01-01

    For the first time, we show that unipolar fatigue does occur in antiferroelectric capacitors, confirming the predictions of a previous work [Appl. Phys. Lett., 94, 072901 (2009)]. We also show that unipolar fatigue in antiferroelectrics is less severe than bipolar fatigue if the driving field is of the same magnitude. This phenomenon has been attributed to the switching-induced charge injection, the main cause for polarization fatigue in ferroelectric and antiferroelectric materials. Other ev...

  19. Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films grown on platinum-buffered silicon substrates

    International Nuclear Information System (INIS)

    (Pb, La)(Zr, Sn, Ti)O3 (PLZST) antiferroelectric (AFE) thin films with different compositions were deposited on Pt-buffered silicon wafers by the sol-gel process. The phase structure and the surface morphology of the PLZST AFE thin films were analysed by XRD and SEM, respectively. The electric field induced AFE-to-ferroelectric (AFE-FE) phase transformation behaviour of the PLZST thin films was examined by polarization versus field (P-E) and relative permittivity versus field (εr-E) measurements, with emphasis placed on composition-dependent phase switching field. The phase switching current was investigated as a function of a gradually changed dc electric field. Furthermore, the effect of the composition of the PLZST thin films on the Curie temperature (Tc) was also studied in detail

  20. Leakage current characteristics and dielectric breakdown of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film capacitors grown on metal foils

    International Nuclear Information System (INIS)

    We have grown crack-free antiferroelectric (AFE) Pb0.92La0.08Zr0.95Ti0.05O3 (PLZT) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, we applied a conductive buffer layer of lanthanum nickel oxide (LNO) on the nickel foil by chemical solution deposition prior to the PLZT deposition. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be prepared at high temperatures in air. With the AFE PLZT deposited on LNO-buffered Ni foils, we observed field-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, EAF = 260 kV cm-1, and the reverse phase transition field, EFA = 220 kV cm-1, were measured at room temperature on a ∼1.15 μm thick PLZT film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were ∼530 and ∼740, respectively, with dielectric loss -9 A cm-2 at room temperature under 87 kV cm-1 applied field. The breakdown behaviour of the AFE PLZT film-on-foil capacitors was studied by Weibull analysis. The mean breakdown time decreased exponentially with increasing applied field. The mean breakdown time was over 610 s when a field of 1.26 MV cm-1 was applied to a 1.15 μm thick AFE PLZT film-on-foil capacitor.

  1. Screen printed thick film thermoelectric devices

    International Nuclear Information System (INIS)

    The objective of this work is to develop thick film thermoelectric ( T.E. ) modules for medium and low grade thermal energy resources such as ocean thermal energy, geothermal springs and waste heat. Thick film T.E. modules are especially suitable for automatic mass production to reduce the cost. Progress in the development of screen printed thick film T.E. devices based on p-type Bi-Sb-Te alloy semiconductors is reported. Much more work is continuing to characterize the screen printed films and to optimize the performance by modifying the process conditions

  2. Film thickness determination by grazing incidence diffraction

    International Nuclear Information System (INIS)

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive

  3. Film thickness determination by grazing incidence diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, G. A.; Gerbasi, R. [CNR, Padua (Italy). Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati

    1996-09-01

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive.

  4. Thick Film Temperature Sensors Using Standard Pastes

    OpenAIRE

    M. R. Haskard; Janoska, I.

    1986-01-01

    Standard thick film resistor pastes exhibit changes in their electrical characteristics when printed on top of dielectric layers. Of particular interest is the inherent change in their temperature coefficient of resistance. Simple temperature sensors were formed by deliberately printing thick film resistor pastes on top of larger area dielectric layers. Temperature tests carried out on these devices have shown that by selecting the correct paste combination and resistor aspect ratio stable, r...

  5. Screen Printed PZT Thick Films Using Composite Film Technology

    OpenAIRE

    Dorey, R; Whatmore, R; Beeby, S. P.; Torah, R; White, N.

    2003-01-01

    A spin coating composite sol gel technique for producing lead zirconate titanate (PZT) thick films has been modified for use with screen printing techniques. The resulting screen printing technique can be used to produce 10 ?m thick films in a single print. The resultant films are porous but the density can be increased through the use of repeated sol infiltration/pyrolysis treatments to yield a high density film. When fired at 710°C the composite screen printed films have dielectric and piez...

  6. Thick Film Fail-Safe Resistors

    OpenAIRE

    Wojcicka, D. L.; St. Nowak

    1983-01-01

    The investigations of low resistance thick film fail-safe resistors are presented. Particularly the shape of a resistive path; the temperature of the central part of the resistor while increasing the power up to 4 Watts; the kind of composition material for the resistive path vs. extensometer effect, and the stability of the resistor are discussed.

  7. Nano-Hydroxyapatite Thick Film Gas Sensors

    Science.gov (United States)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-12-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  8. Nano-Hydroxyapatite Thick Film Gas Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India)

    2011-12-10

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  9. Percolation effect in thick film superconductors

    International Nuclear Information System (INIS)

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high Tc and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm2. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed

  10. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  11. Epitaxial piezoelectric thick film heterostructures on silicon

    Science.gov (United States)

    Kim, Dong Min

    The significantly higher dielectric permittivity, piezoelectric coefficients and electromechanical coupling coefficients of single crystal relaxor ferroelectrics make them very attractive for medical ultrasound transducers and microelectromechanical systems (MEMS) applications. The potential impact of thin-film relaxor ferroelectrics in integrated actuators and sensor on silicon has stimulated research on the growth and characterization of epitaxial piezoelectric thin films. We have fabricated heterostructures by (1) synthesizing optimally-oriented, epitaxial thin films of Pb(Mg1/3Nb2/3)O3-PbTiO 3 (PMN-PT) on miscut (001) Si wafers with epitaxial (001) SrTiO 3 template layers, where the single crystal form is known to have the giant piezoelectric response, and (2) nano-structuring to reduce the constraint imposed by the underlying silicon substrate. Up to now, the longitudinal piezoelectric coefficient (d33) values of PMN and PMN-PT thin films range from 50 to 200 pC/N have been reported, which are far inferior to the properties of bulk single crystals value (d33 ˜ 2000 pC/N). These might be attributed to substrate constraints, pyrochlore phases and other effects. Here, we have realized the giant d33 values by fabricating epitaxial PMN-PT thick films on silicon. When the PMN-PT film was subdivided into ˜1 mum2 capacitors by focused ion beam processing, a 4 mum thick film shows a low-field d33 of 800 pm/V that increases to over 1200 pm/V under bias, which is the highest d33 value ever realized on silicon substrates. These high piezo-reponse PMN-PT epitaxial heterostructures can be used for multilayered MEMS devices which function with low driving voltage, high frequency ultrasound transducer arrays for medical imaging, and capacitors for charge and energy storage. Since these PMN-PT films are epitaxially integrated with the silicon, they can make use of the well-developed fabrication process for patterning and micromachining of this large-area, cost

  12. Experience With Polymer Thick Film Technology

    OpenAIRE

    Vesa Sortti; Raimo Hulkkonen; Eero Jarvinen

    1983-01-01

    The paper describes a user's experiences with polymer thick film resistor technology. The characteristics studied are resistance values and their distributing. Parameters affecting these characteristics are the material of the substrate, and the curing of the polymer resistor paste. The test conditions (temperature cycling, dip soldering, high temperature storaging) were chosen to simulate the environmental conditions, through which the polymer resistor circuits have to go during the assembly...

  13. Epitaxial thick film high-Tc SQUIDs

    International Nuclear Information System (INIS)

    Low-noise operation of superconducting quantum interference devices (SQUIDs) in magnetic fields requires high critical current and strong pinning of vortices in the superconducting electrodes and in the flux transformer. Crack-free epitaxial high-Tc dc-SQUID structures with a total thickness ?5 μm and a surface roughness determined by 30 nm high growth spirals were prepared with YBa2Cu3O7-x (YBCO) films on MgO substrates buffered by a SrTiO3/BaZrO3-bilayer. HRTEM demonstrated a high quality epitaxial growth of the films. The YBCO films and SQUID structures deposited on the buffered MgO substrates had a superconducting transition temperature Tc exceeding 91 K and critical current densities Jc > 3 MA/cm2 at 77 K up to a thickness ∼5 μm. The application of thicker superconducting and insulator films helped us to increase the critical current and dynamic range of the multilayer high-Tc flux transformer and improve the insulation between the superconducting layers. An optimization of SQUID inductance allowed us to fabricate 8 mm SQUID magnetometers with SQUID voltage swings of ∼60 μV and a field resolution of ∼30 fT/√Hz at 77 K

  14. Thick-film analysis: literature search and bibliography

    International Nuclear Information System (INIS)

    A literature search was conducted to support development of in-house diagnostic testing of thick film materials for hybrid microcircuits. A background literature review covered thick film formulation, processing, structure, and performance. Important material properties and tests were identified and several test procedures were obtained. Several tests were selected for thick film diagnosis at Bendix Kansas City. 126 references

  15. Antiferroelectric Shape Memory Ceramics

    OpenAIRE

    Kenji Uchino

    2016-01-01

    Antiferroelectrics (AFE) can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26%) associated with the AFE to Ferroelectric (FE) phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms). In the Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (PNZST) system, the shape memory function is observed in the intermediate range between high temperature AFE and low tempera...

  16. Antiferroelectric liquid crystals

    OpenAIRE

    Benguigui, L.; Hardouin, F.

    1981-01-01

    Dielectric investigations have been undertaken in two thermotropic liquid crystal systems exhibiting a smectic A2 phase (i.e. with the layer spacing equal to twice the molecular length). The postulated antiferroelectric ordering has been supported by these measurements. There are anomalies in the dielectric constants ε∥ and ε〉 at the N-S A2 transition and an unusual low frequency relaxation, with a slight temperature dependence, appears around this transition and in the S A phases of these sy...

  17. Determination of thin film refractive index and thickness by means of film phase thickness

    Science.gov (United States)

    Nenkov, Milen; Pencheva, Tamara

    2008-06-01

    A new approach for determination of refractive index dispersion n(λ) (the real part of the complex refractive index) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate thin films are investigated in the spectral region 0.38-0.78 μm and their n(λ) and d are calculated. The approach is validated using Swanepoel's method and it is found to be applicable for relatively thin films when measured transmittance spectra have one minimum and one maximum only.

  18. Electron beam curable polymer thick film

    International Nuclear Information System (INIS)

    Currently, most printed circuit boards are produced by the selective etching of copper clads laminated on dielectric substrates such as paper/phenolic resion or nonwoven glass/epoxy resin composites. After the etchig, various components such as transistors and capacitors are mounted on the boards by soldering. But these are troublesome works, therefore, as an alternative, printing method has been investigated recently. In the printing method, conductor circuits and resistors can be made by printing and curing of the specially prepared paste on dielectric substrates. In the near future, also capacitors are made by same method. Usually, conductor paste, resistor paste and dielectric paste are employed, and in this case, the printing is screen printing, and the curing is done thermally. In order to avoid heating and the deterioration of substrates, attention was paid to electron beam curing, and electron beam curable polymer thick film system was developed. The electron beam curable paste is the milled mixture of a filler and an electron beam curable binder of oligomer/monomer. The major advantage of electron beam curable polymer thick film, the typical data of a printed resistor of this type and its trial are reported. (K.I.)

  19. Measurement Method of the Thickness Uniformity for Polymer Films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.

  20. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  1. Integrated thick-film nanostructures based on spinel ceramics

    OpenAIRE

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for...

  2. Advances in Low Cost Silver-Containing Thick Film Conductors

    OpenAIRE

    Rosenberg, Richard M.; John R. Larry; Horowitz, Samuel J.; Felten, John J.; Taylor, Barry E.

    1981-01-01

    Extensive use of thick film materials to manufacture resistor networks and hybrid integrated circuits has come about because of economic, processing and functional advantages over other technologies in the high volume production of miniaturized circuits. Inherent in the adoption of thick film technology for increasingly diverse applications has been the ability of thick film material suppliers to provide progressive performance improvements at lower cost concurrent with circuit manufacturer's...

  3. Multiplexed Holographic Optical Data Storage In Thick Bacteriorhodopsin Films

    Science.gov (United States)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Ozcan, Meric; Smithey, Daniel T.; Crew, Marshall

    1998-01-01

    The optical data storage capacity of photochromic bacteriorhodopsin films is investigated by means of theoretical calculations, numerical simulations, and experimental measurements on sequential recording of angularly multiplexed diffraction gratings inside a thick D85N BR film.

  4. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films

    Institute of Scientific and Technical Information of China (English)

    Chatnapa Duangdee; Noppadon Tangpukdee; Srivicha Krudsood; Polrat Wilairatana

    2012-01-01

    Objective: To determine the frequency of malaria parasite detection from the buffy coat blood ilms by using capillary tube in falciparum malaria patients with negative conventional thick ilms. Methods: Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification.Results:Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. Conclusions: The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  5. Influence of thickness on properties of plasticized oat starch films

    Directory of Open Access Journals (Sweden)

    Melicia Cintia Galdeano

    2013-08-01

    Full Text Available The aim of this study was to investigate the effect of thickness (between 80 and 120 µm on apparent opacity, water vapor permeability and mechanical properties (tensile and puncture of oat starch films plasticized with glycerol, sorbitol, glycerol:sorbitol mixture, urea and sucrose. Films were stored under 11, 57, 76 and 90% relative humidity (RH to study the mechanical properties. It was observed that the higher the thickness, the higher was the opacity values. Films without the plasticizer were more opaque in comparison with the plasticized ones. Glycerol:sorbitol films presented increased elongation with increasing thickness at all RH. Puncture force showed a strong dependence on the film thickness, except for the films plasticized with sucrose. In general, thickness did not affect the water permeability.

  6. Measurement of liquid crystal film thickness using interferometry

    International Nuclear Information System (INIS)

    Thickness measurements of thin films having thickness less than 1 µm are difficult to obtain by an interferometer. These difficulties arise from the overlap of the fringes from the upper and lower surfaces of the thin films. This paper presents a new methodology that mediates the consequences of this overlap and then implements it with thickness measurements of liquid crystal (LC) thin films. It takes into consideration the properties of light propagation within these films in order to rectify the images obtained from the interferometer. It assumes that the lower fringe pattern is much stronger that the upper one and hence the latter may be ignored. This occurs in situations where thin films are coated on substrates of significantly higher reflectivity, as happens when an LC thin film is coated on a polished iron substrate. The thickness and topography of LC thin films were experimentally measured with this methodology and were compared with measurements taken by an atomic force microscope

  7. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino

    2016-05-01

    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  8. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard;

    2010-01-01

    Piezoelectric thick films have increasing interest due to the potential high sensitivity and actuation force for MEMS sensors and actuators. The screen printing technique is a promising deposition technique for realizing piezoelectric thick films in the thickness range from 10-100 mu m. In this...... work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction and...

  9. IMPROVED REGISTRATION TECHNIQUE FOR FABRICATING THICK-FILM PIEZOELECTRIC SENSORS

    OpenAIRE

    Frood, A. J. M.; Beeby, S. P.; Tudor, M. J.; White, N. M.

    2005-01-01

    A fundamental limitation of screen printing is the achievable alignment accuracy and resolution. This paper presents details of a thick-resist process that improves both of these factors. The technique involves exposing/developing a thick resist to form the desired pattern and then filling the features with thick film material using a doctor blading process. Minimum feature sizes of

  10. Thickness-dependent electrocaloric effect in mixed-phase Pb0.87Ba0.1 La0.02(Zr0.6Sn0.33Ti0.07)O3 thin films

    Science.gov (United States)

    Correia, T. M.

    2016-01-01

    Full-perovskite Pb0.87Ba0.1La0.02(Zr0.6Sn0.33Ti0.07)O3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant (εm) and the corresponding temperature (Tm) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with εm reaching a minimum at 400 nm and Tm shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric (EAFE−FE) and ferroelectric–antiferroelectric (EFE−AFE) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402937

  11. Advantages of PZT thick film for MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lou-Moller, R.; Hansen, K.;

    2010-01-01

    For all MEMS devices a high coupling between the mechanical and electrical domain is desired. Figures of merit describing the coupling are important for comparing different piezoelectric materials. The existing figures of merit are discussed and a new figure of merit is introduced for a fair...... comparison of piezoelectric thin and thick films based MEMS devices, as cantilevers, beams, bridges and membranes. Simple analytical modeling is used to define the new figure of merit. The relevant figure of merits is compared for the piezoelectric material of interest for MEMS applications: ZnO, AIN, PZT...... thin film and PZT thick film. It is shown that MEMS sensors with the PZT thick film TF2100 from InSensor A/S have potential for significant higher voltage sensitivities compared to PZT thin film base MEMS sensors when the total thickness of the MEMS cantilever, beam, bridge or membrane is high...

  12. Screen-printed piezoceramic thick films for miniaturised devices

    DEFF Research Database (Denmark)

    Lou-Moeller, R.; Hindrichsen, Christian Carstensen; Thamdrup, Lasse Højlund;

    2007-01-01

    machining. On the other hand, the process of screen printing thick films involves potential problems of thermal matching and chemical compatibility at the processing temperatures between the functional film, the substrate and the electrodes. As an example of such a miniaturised device, a MEMS accelerometer......The development towards smaller devices with more functions integrated calls for new and improved manufacturing processes. The screen-printing process is quite well suited for miniaturised and integrated devices, since thick films can be produced in this manner without the need for further...... based on PZT thick film will be presented. The design and process flow of this accelerometer has been optimised by means of finite element modelling (FEMLAB (c)). Consequently it has proved possible to eliminate post-processing steps after the screen printing of the PZT thick film....

  13. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  14. Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes

    Science.gov (United States)

    Zuo, Zheng-Hu; Zhan, Qing-Feng; Chen, Bin; Yang, Hua-Li; Liu, Yi-Wei; Liu, Lu-Ping; Xie, Ya-Li; Li, Run-Wei

    2016-08-01

    Free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 (PZT(95/5)) thin film is fabricated on 200-nm-thick Pt foil by using pulsed laser deposition. X-ray diffraction patterns indicate that free-standing PZT(95/5) film possesses an a-axis preferred orientation. The critical electric field for the 300-nm-thick free-standing PZT(95/5) film transiting from antiferroelectric to ferroelectric phases is increased to 770 kV/cm, but its saturation polarization remains almost unchanged as compared with that of the substrate-clamped PZT(95/5) film. The energy storage density and energy efficiency of the substrate-clamped PZT(95/5) film are 6.49 J/cm3 and 54.5%, respectively. In contrast, after removing the substrate, the energy storage density and energy efficiency of the free-standing PZT(95/5) film are enhanced up to 17.45 J/cm3 and 67.9%, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374312, 51401230, and 51522105) and the Fund for Ningbo Municipal Science and Technology Innovation Team, China (Grant No. 2015B11001).

  15. Calibration of the ultrasonic lubricant-film thickness measurement technique

    Science.gov (United States)

    Zhang, Jie; Drinkwater, Bruce W.; Dwyer-Joyce, Rob S.

    2005-09-01

    This paper describes an experimental apparatus and procedure for the calibration of the ultrasonic lubricant-film thickness measurement technique. It also presents a study of the accuracy of the technique. The calibration apparatus is demonstrated on a three layer steel-mineral oil-steel system. This was chosen to be representative of a typical bearing system which is the industrial application of the technique. In such bearing systems the lubricant-film thickness typically ranges from 0.1 to 100 µm. The calibration apparatus uses a high precision piezoelectric displacement translator to controllably displace one of the steel surfaces relative to the other and hence alter the lubricant-film thickness by a known amount. Through-thickness resonant frequency measurements are then used to accurately measure a thick lubricant film (h > 10 µm). These resonant frequency measurements form the starting point of the calibration. The displacement translator is then used to reduce the lubricant-film thickness into the, more practically interesting, low micron range. In this range the amplitude of the measured reflection coefficient is used via a spring interface model to calculate the lubricant-film thickness. Issues of ultrasonic beam alignment and frequency of operation are discussed. A detailed study of the effect of reflection-coefficient errors on the resultant thickness measurement is presented. Practical guidelines for use of the calibration are then defined and calibration is demonstrated experimentally over the range 0.5-1.3 µm.

  16. Integrated thick-film nanostructures based on spinel ceramics.

    Science.gov (United States)

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141

  17. Thick epitaxial YIG films with narrow FMR linewidth

    OpenAIRE

    Syvorotka, I. I.; Syvorotka, I. M.; Ubizskii, S.B.

    2012-01-01

    The La-doped yttrium iron garnet (YIG) films with thickness up to 130 μm were grown by liquid phase epitaxy (LPE) method. All grown thick films demonstrate “mirror” and “striation” types of surface morphology that depend from film growth temperature and thickness. Addition of B2O3 is favourable to a change the surface morphology into a “mirror” one. The mechanisms of the morphological changes are discussed. It was found that the ferromagnetic resonance (FMR) linewidth appreciably dep...

  18. Self-assembled film thickness determination by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Dejeu, J. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)], E-mail: jerome.dejeu@univ-fcomte.fr; Salut, R. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Spajer, M. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Membrey, F.; Foissy, A. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Charraut, D. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)

    2008-06-30

    The thickness evolution of multilayer film is investigated by focused ion beam (FIB) in the domain of polymer multilayers. This method, currently used in the modification and the characterization of integrated circuits, proves it is possible to determine the polymer film thickness. Sample cutting and its observation of the cross-section are performed in the FIB without leaving the vacuum chamber. Two main conclusions can be drawn: (1) the roughness of the film increases with the number of layer deposit, (2) the film growth changes from nonlinear (called exponential) to linear beyond 300 nm (70 layers)

  19. Refractive index of nanoscale thickness films measured by Brewster refractometry

    CERN Document Server

    Tikhonov, E A; Malyukin, Yu V

    2015-01-01

    It is shown that reflective laser refractometery at Brewster angle can be usefull for precision measurements of refractive indexes (RI) in the transparency band of various films of nanoscale thickness. The RI measurements of nanoscale porous film on the basis of gadolinium orthosilicate and quartz have been carried out as first experience. It is shown that surface light scattering in such films that is connected with clustering of nanoscale pores can decrease the accuracy of the RI measurements at Brewster angle. Estimated physical dependence RI stipulated by the film thickness reduction (3D-2D transition) in the range of (20-160)nm has not been not detected.

  20. Thin film thickness measurements using Scanning White Light Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B.; Kaminski, P.M.; Walls, J.M., E-mail: J.M.Walls@lboro.ac.uk

    2014-01-01

    Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb{sub 2}O{sub 5} and ZrO{sub 2}), a metal-nitride (SiN{sub x}:H), a carbon-nitride (SiC{sub x}N{sub y}:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area. - Highlights: • Capability to make thin film measurements with sub-nanometre accuracy • Measurements of thin film thickness made on metal-oxides, nitrides and carbon-nitrides • Excellent correlation with thickness measurements using spectroscopic ellipsometry • Thin film measurement and nanometrology from the same sample area.

  1. Thin film thickness measurements using Scanning White Light Interferometry

    International Nuclear Information System (INIS)

    Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb2O5 and ZrO2), a metal-nitride (SiNx:H), a carbon-nitride (SiCxNy:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area. - Highlights: • Capability to make thin film measurements with sub-nanometre accuracy • Measurements of thin film thickness made on metal-oxides, nitrides and carbon-nitrides • Excellent correlation with thickness measurements using spectroscopic ellipsometry • Thin film measurement and nanometrology from the same sample area

  2. Electrophoretic deposition and constrained sintering of strontium titanate thick films

    International Nuclear Information System (INIS)

    Thick films of functional oxides are currently substituting counterparts bulk ceramics, as in the case of low loss dielectrics. For SrTiO3 (ST) based compositions it is demonstrated that electrophoretic deposition (EPD), using acetone as a suspension media with iodine addition, is a suitable technology to fabricate 12 μm thick films. The microstructural analysis of the films sintered at 1500 °C shows that highly densified microstructures can be obtained and, by slightly varying the Sr/Ti stoichiometry in the powder composition, increased densification and grain size and enlargement of the distribution with decreasing Sr/Ti ratio can be observed. In spite of the high densification of the films, it is also demonstrated that due to the constraint imposed by the substrate a smaller grain size is observed in thick films as compared to equivalent bulk ceramics. In addition, a preferential vertical pore orientation is observed in ST thick films. These results may have broad implications if one considers that the dielectric losses and dielectric tunability is affected by pore orientation, since it affects the electric field distribution. - Highlights: • Nonstoichiometry effect on microstructure of constrained sintered thick films and bulk is similar. • Increased densification and grain size and enlargement of distribution with decreasing Sr/Ti ratio. • Independent of Sr/Ti ratio smaller grain size for thick films compared to ceramics. • Preferential vertical pore orientation for constrained sintering of thick films. • Anisotropic porosity as tailoring factor to engineer permittivity and tunability

  3. The effect of thickness on the magnetic properties of melt-processed YBCO thick films

    International Nuclear Information System (INIS)

    Magnetic properties of melt-processed YBa2Cu3O7-δ thick films have been measured and correlated with features in the microstructure at 4.2 and 77 K for film thicknesses between 50 and 140 μm. A pronounced peak has been observed in both the measured volume magnetization and calculated length scale over which current flows at a film thickness of approximately 53 μm and 4.2 K in fields of up to 10 T. An intra 'hub-spoke' (H-S) type grain current dominates the volume magnetization at this film thickness. Measurements at 77 K, on the other hand, exhibit a peak at 80 μm, the magnitude of which varies significantly with applied field. This correlates well with observed increased connectivity between individual H-S grains and may be accounted for by the flow of inter H-S grain current. The H-S grains transform to a more granular microstructure for films greater than approximately 100 μm thick which is characterized by the presence of smaller diameter current-carrying loops. This is observed as a decrease in the volume magnetization at 4.2 K and a levelling off of this parameter at 77 K with increasing film thickness. Further evidence for the presence of intra H-S and inter H-S grain critical current densities at 4.2 K in films up to a thickness of 80 μm has been observed from length-scale analysis as a function of the difference between maximum and applied magnetic field. A qualitative model for the volume magnetization of the films at 4.2 K in terms of individual contributions from intra H-S grain, inter H-S grain and granular Jc components is proposed. (author)

  4. Preparation and characterization of thick cubic boron nitride films

    International Nuclear Information System (INIS)

    Cubic boron nitride (c-BN) films are prepared by the radio frequency magnetron sputtering technique. The stresses and crystallinities of the films are estimated by the Fourier transform infrared spectroscopy of c-BN samples, including the peak shifts and varieties of full widths at half maximum. The effects of the B—C—N interlayer and the two-stage deposition method on the c-BN films are investigated. Then the thick and stable c-BN films are prepared by a combination of the two methods. The properties of the interlayer and film are also characterized

  5. Characterization and comparison of thermistor thick films. Topical report

    International Nuclear Information System (INIS)

    Four thermistor thick film inks were evaluated for HMC production use. The physical, chemical and electrical properties of the wet inks and fired films were measured. Variations in the physical and chemical properties of the inks were used to explain variations in thermistor electrical resistance and temperature coefficient of resistance

  6. Glue Film Thickness Measurements by Spectral Reflectance

    Energy Technology Data Exchange (ETDEWEB)

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  7. Glue Film Thickness Measurements by Spectral Reflectance

    International Nuclear Information System (INIS)

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 (micro)m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  8. Noninvasive thickness measurements of metal films through microwave dielectric resonators

    Science.gov (United States)

    Jung, Ho Sang; Lee, Jae Hun; Han, Hyun Kyung; Lee, Sang Young

    2016-05-01

    Thicknesses of Pt films ranging from 60 to 950 nm are measured noninvasively using a TE 011-mode dielectric resonator with the resonant frequency of 8.5 - 9.8 GHz at temperatures of 77 K and 293 K. A cylindrical rutile rod is used as the dielectric, with a high- T C superconductive YBa2Cu3O7- δ film used as the bottom endplate of the resonator for measurements at 77 K. This method is based on two facts: i) Due to the electromagnetic interferences of incoming and reflected waves at the surface of the metal film surface, the effective surface resistance varies with the film thickness, and ii) the intrinsic surface resistance of normal metals is equal to the intrinsic surface reactance in the local limit. The measured thicknesses using the rutile resonator appear to be comparable with those obtained using a profilometer. [Figure not available: see fulltext.

  9. Characterization of a nanometer-thick sputtered polytetrafluoroethylene film

    Science.gov (United States)

    Li, Lei; Jones, Paul M.; Hsia, Yiao-Tee

    2011-02-01

    Fast growth of nanotechnology, e.g. hard disk drive (HDD) and microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), requires nanometer-thick protection films with high thermal stability and low surface energy. In this paper, we report the characterization results of a nanometer-thick sputtered polytetrafluoroethylene (PTFE) film prepared by radio frequency (RF) sputtering. Atomic force microscopy (AFM) and X-ray reflectivity (XRR) results show that the nanometer-thick sputtered PTFE film has good uniformity. Thermally programmed desorption (TPD) results show that the film is thermally stable up to 430 °C. Surface energy measurement via contact angle method shows that the film has low surface energy with the thickness as low as 1.5 nm. X-ray photoelectron spectroscopy (XPS) data suggests that the film has crosslinked molecular structure, which results in amorphous morphology as shown by X-ray diffraction (XRD) data. Nano-indentation testing shows that the sputtered film has higher hardness and modulus than bulk PTFE. The structure-property relationship has been discussed.

  10. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  11. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    Energy Technology Data Exchange (ETDEWEB)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K [Nanoparticle Technology and Air Quality Laboratory, Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), 5531-G Boelter Hall, Los Angeles, CA 90095 (United States)

    2006-10-14

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity.

  12. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  13. Low frequency (5 MHz) impedance measurements of thick YBCO films

    International Nuclear Information System (INIS)

    Two-point low frequency impedance measurements of microstrip transmission lines, fabricated from thick YBCO (+10 wt.% Ag) films on YSZ and sapphire substrates, have provided intrinsic properties for these granular thick films. The variation of the resistance with temperature for all the films studied, with and without an external DC magnetic field, followed that found by the conventional four-point DC technique. However, the temperature variation of the reactance for these granular thick films showed four important features: (1) for temperatures below Tc(R=0) the reactance was purely inductive even when superconductivity had been destroyed by the application of an external magnetic field, but the tail of the resistive transition was still present; (2) high quality, melt textured, thick films had a small double peak (or broad single peak) structure in the inductance for temperatures above Tc which corresponded to changes in the tail of the resistivity transition and these peaks are interpreted in terms of magnetic field penetration into the inter- and intra-granular regions; (3) poor quality films and those intentionally doped with Y2BaCuO5 had a constant inductive value extending from low temperatures to a temperature corresponding to the end of the resistive tail; (4) as the temperature is increased beyond the onset of superconductivity the inductive reactance decreased rapidly, for all films studied, to a negative value (i.e. a capacitive reactance) and then decreased approximately linearly for further increases in temperature. The value of the capacitive reactance appeared to depend on the amount of (211) YBCO present in the film. Analysis of the film conducting path in terms of parallel conductance and susceptance components gives rise to a temperature dependence very similar to the susceptibility curves obtained from bulk YBCO material and their observed structure may be interpreted in terms of a granular model. (orig.)

  14. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness

    Science.gov (United States)

    Huang, Xinru; Roth, Connie B.

    2016-06-01

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ˜20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ˜120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.

  15. Analyses of microstructure in Bi(2223) thick film

    International Nuclear Information System (INIS)

    The mass densities of the presintering thick films (TFs) at different pressures were measured. The author measured the thicknesses of the silver-clamped and silver-sheathed TFs sintered three times after moving silver and observed the configurations of both the surface and cross section of these samples by SEM photographs, respectively. As the experimental results showed, the reason why the critical current density of TFs is two order lower than that of thin films is probably as follows: during the sintering process, the air in the powder produced many holes which made the link junctions of the grains and the texture structure of the TF weak. A method of decreasing holes and enhancing critical current density of thick film is proposed

  16. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    International Nuclear Information System (INIS)

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  17. Film thickness measurements in liquid–liquid slug flow regimes

    International Nuclear Information System (INIS)

    Highlights: • A direct measure of film thickness in liquid–liquid flows was taken. • A region of constant film thickness is presents in slugs where LD⁎⩾1.86. • Experimental data shows the dependency of film thickness on Capillary number. • Expressions are presented to predict the magnitude of the film. -- Abstract: At present there is significant interest in the development of small scale medical diagnostic equipment. These devices offer faster processing times and require smaller sample volumes than equivalent macro scale systems. Although significant attention has been focused upon their outputs, little attention has been devoted to the detailed fluid mechanics that govern the flow mechanisms within these devices. Conventionally, the samples in these small scale devices are segmented into distinct discrete droplets or slugs which are suspended in an organic carrier phase. Separating these slugs from the channel wall is a very thin film of the organic carrier phase. The magnitude of this film is the focus of the present study and the effects of sample slug length and carrier phase fluidic properties on the film are examined over a range of Capillary numbers. A non-intrusive optical technique was used to capture images of the flow from which the magnitude of the film was determined. The experimental results show that the film is not constant along the length of the slug; however above a threshold value for slug length, a region of constant film thickness exists. When compared with existing correlations in the literature, the experimental data showed reasonable agreement with the Bretherton model when the Capillary number was calculated based on the mean two phase flow velocity. However, significant differences were observed when the Capillary number was redefined to account for the mean velocity at the liquid interface, i.e., the mean slug velocity. Analysis of the experimental data revealed that it fell into two distinct flow regimes; a visco

  18. Inhomogeneous Growth of Micrometer Thick Plasma Polymerized Films.

    Science.gov (United States)

    Akhavan, Behnam; Menges, Bernhard; Förch, Renate

    2016-05-17

    Plasma polymerization is traditionally recognized as a homogeneous film-forming technique. It is nevertheless reasonable to ask whether micrometer thick plasma polymerized structures are really homogeneous across the film thickness. Studying the properties of the interfacial, near-the-substrate (NTS) region in plasma polymer films represents particular experimental challenges due to the inaccessibility of the buried layers. In this investigation, a novel non-destructive approach has been utilized to evaluate the homogeneity of plasma polymerized acrylic acid (PPAc) and 1,7-octadiene (PPOD) films in a single measurement. Studying the variations of refractive index throughout the depth of the films was facilitated by a home-built surface plasmon resonance (SPR)/optical waveguide (OWG) spectroscopy setup. It has been shown that the NTS layer of both PPAc and PPOD films exhibits a significantly lower refractive index than the bulk of the film that is believed to indicate a higher concentration of internal voids. Our results provide new insights into the growth mechanisms of plasma polymer films and challenge the traditional view that considers plasma polymers as homogeneous and continuous structures. PMID:27111265

  19. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness

    Science.gov (United States)

    Park, Bong-Ok; Lokhande, C. D.; Park, Hyung-Sang; Jung, Kwang-Deog; Joo, Oh-Shim

    Thin-film ruthenium oxide electrodes are prepared by cathodic electrodeposition on a titanium substrate. Different deposition periods are used to obtain different film thicknesses. The electrodes are used to form a supercapacitor with a 0.5 M H 2SO 4 electrolyte. The specific capacitance and charge-discharge periods are found to be dependent on the electrode thickness. A maximum specific capacitance of 788 F g -1 is achieved with an electrode thickness of 0.0014 g cm -2. These results are explained by considering the morphological changes that take place with increasing film thickness.

  20. Electrochemical Migration in Thick-Film IC-S

    OpenAIRE

    Gabor Harsanyi; Gabor Ripka

    1985-01-01

    The phenomenon of silver migration in conductor-insulator systems is well known, but it is less known that several other metals can exhibit migration. This paper tries to give a short summary of the phenomenon as applied to thick-film circuits.Tests have been made on different conductors used in thick-film circuits. The dendrites formed by electrochemical migration were examined by scanning electron microscope, and also by wavelength-dispersive analysis of the emitted x-rays. By obtaining sec...

  1. Thin dielectric film thickness determination by advanced transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  2. Experimental rig for measuring lubricant film thickness in rolling bearings

    OpenAIRE

    Zhang, Xingnan; Jablonka, Karolina Anna; Glovnea, Romeo

    2014-01-01

    Electrical capacitance has been applied in the past for measuring the lubricant film thickness in rolling element bearings. The main difficulty arises from the fact that the measured capacitance is a combination of the capacitances of many rolling elements, which come in contact with both the inner and outer rings. Besides, the capacitance of the Hertzian contact itself and the surrounding area must also be separated. It results in a complex system which, in order to be solved for the film ...

  3. Properties and applications of thick film high temperature superconductors

    International Nuclear Information System (INIS)

    Melt processed YBa2Cu3Ox thick films display low surface resistance, moderate performance in fields a/nd can be applied to three-dimensional (3-D) substrates with ease. The processing and properties of such films are described. Possible applications are examined and prototype devices are described. These include high Q, low frequency resonators for cellular communications filters, low phase noise oscillators, magnetic resonance imaging receiver coils, low noise magnetic shields, coils, flux transformers, and antennas

  4. Enhanced domain contribution to ferroelectric properties in freestanding thick films

    OpenAIRE

    Ryu, Jungho; Priya, Shashank; Park, Chee-Sung; Kim, Kun-Young; Choi, Jong-Jin; Hahn, Byung-Dong; Yoon, Woon-Ha; Lee, Byoung-Kuk; Park, Dong-Soo; Park, Chan

    2009-01-01

    We report the success in fabricating clamped, "island," and freestanding 10 mu m thick piezoelectric films using aerosol deposition. The deposition was conducted at room temperature by impinging the piezoelectric particles flowing through the nozzle onto platinized silicon (Pt/Ti/SiO(2)/Si) substrate and crystallization was conducted by annealing at 700 degrees C. Freestanding films were synthesized by increasing the cooling rate from annealing temperature to room temperature which resulted i...

  5. Measuring Thicknesses Of Vacuum-Deposited Organic Thin Films

    Science.gov (United States)

    David, Carey E.

    1996-01-01

    Method of measuring thickness of thin organic liquid film deposited in vacuum involves use of quartz-crystal monitor (QCM) calibrated by use of witness plate that has, in turn, calibrated by measurement of absorption of infrared light in deposited material. Present procedure somewhat tedious, but once calibration accomplished, thicknesses of organic liquid deposits monitored in real time and in situ by use of QCM.

  6. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    International Nuclear Information System (INIS)

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  7. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yiu Wai Lai, Michael Krause, Alan Savan, Sigurd Thienhaus, Nektarios Koukourakis, Martin R Hofmann and Alfred Ludwig

    2011-01-01

    Full Text Available A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  8. Infrared film thickness measurement. Comparison with cold neutron imaging

    International Nuclear Information System (INIS)

    Near infiaRed FILM thickness PROfile (NIR-FILMPRO) is a newly developed optical technique for non-intrusive measurement of water film thickness. The technique is based on light absorption. For the case of water, vibrational modes of H-O-H bonds give rise to absorption transitions with overtone and combination bands located in the near infrared spectral range which show an adequate attenuation for film film measurements. A near infrared camera and light projection system assembled in a geometry with reflective lighting offer time resolved measurements of the film thickness distribution on a 2D domain. The CCD detector array with 30 μm pitch InGaAs photosensitive sites provides 0.6 mm spatial resolution when combined with a 50 mm focal length lens and placed at 1 m from the target. The data acquisition electronic allows for a tame rate of 370 fps at full resolution (256 x 320 pixels) and up to 11 kfps for the minimum window size (128 x 8 pixels). For the validation of the technique, the thickness of a failing turbulent water film on a vertical wall was measured with both NIR-FILMPRO and cold neutrons. Cold neutron imaging allow for a comparison of time average measurements with high spatial resolution. An excellent correspondence between the two methods was found. The root mean square of the deviations between the two techniques was found to be 2.3% of the measurement for thicknesses ranging from approximately 100 μm to 500 μm. The strengths of the present technique are the applicability to demineralized water, the ability to see through steam-rich environments, and contactless measurements on prototypal surfaces with the presence of mass and enthalpy fluxes such as condensation and evaporation. (author)

  9. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders;

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a...

  10. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.;

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  11. Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion

    DEFF Research Database (Denmark)

    Sivebæk, I. M.; Persson, B. N. J.

    2016-01-01

    We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results for the...

  12. Presentation and characterization of novel thick-film PZT microactuators

    Science.gov (United States)

    Chalvet, Vincent; Habineza, Didace; Rakotondrabe, Micky; Clévy, Cédric

    2016-04-01

    We propose in this paper the characterization of a new generation of piezoelectric cantilevers called thick-films piezoelectric actuators. Based on the bonding and thinning process of a bulk PZT layer onto a silicon layer, these cantilevers can provide better static and dynamic performances compared to traditional piezocantilevers, additionally to the small dimensions.

  13. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain;

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  14. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  15. Accurate analysis of ellipsometric data for thick transparent films

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhao; Mingyu Sheng; Yuxiang Zheng; Liangyao Chen

    2011-01-01

    @@ Using e-beam evaporation, the ellipsometric parameters of thick transparent films are studied with the modified analysis method for the SiO2 film samples deposited onto the Si substrate.The ellipsometric parameters are measured at the incidence angles changing from 50° to 70° and in the 3-4.5 eV photon energy range.The error in the conventional method can be significantly reduced by the modified ellipsometric method considering the spatial effect to show good agreement between the theoretical and experimental results.The new method presented in this letter can be applied to other optical measurement of the periodic or non-periodic film structures.%Using e-beam evaporation, the ellipsometric parameters of thick transparent films are studied with the modified analysis method for the SiO2 film samples deposited onto the Si substrate. The ellipsometric parameters are measured at the incidence angles changing from 50° to 70° and in the 3-4.5 eV photon energy range. The error in the conventional method can be significantly reduced by the modified ellipsometric method considering the spatial effect to show good agreement between the theoretical and experimental results. The new method presented in this letter can be applied to other optical measurement of the periodic or non-periodic film structures.

  16. Microwave permittivity and permeability of ferrite-polymer thick films

    International Nuclear Information System (INIS)

    Nickel-zinc ferrite-epoxy composites with different ferrite/epoxy ratios, 50/50, 60/40, 70/30 and 80/20, have been prepared as thick films of thickness 100 μm. Different compositions of nickel-zinc ferrite, Ni1-xZnxFe2O4, where x=0.2,0.4 and 0.5 have been used to prepare the composite films. The complex permittivity (ε'-jε'') and the complex permeability (μ'-jμ'') of the films as well as of the sintered ferrites have been measured at X-band (8-12 GHz) microwave frequencies using the cavity perturbation technique. The dielectric constant and the permeability of the films are found to be different from those of the sintered ferrites. ε' of films is found to increase with increase in the ferrite content of the composites as well as with frequency while the permeability, μ', is observed to decrease with increase in ferrite content as well as frequency. The high permeability losses exhibited by the films at X-band frequencies, shows their potentiality for applications like suppression of electromagnetic interference in microwave circuits. The composites with the ferrite composition x=0.5 are observed to exhibit higher losses compared to the composites with other compositions. Also the ferrite/epoxy ratio 80/20 is observed to give comparatively higher losses

  17. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  18. Textured (Tl-Bi-Pb)-1223 thick films

    International Nuclear Information System (INIS)

    Screen printing was employed to fabricate thick films of the composition (Tl0.6Bi0.16Pb0.24)(Ba0.1 Sr0.9)2Ca2 Cu3 Oy on polycrystalline Y2 O3-doped ZrO2 substrates. The influence of the screen printing procedure, the heat-treatment of the films and additional compaction on the texturing of the superconducting crystallites and on the electrical properties of the superconducting films have been studied. X-ray diffraction ascertained the high phase purity of the material and allowed calculation of the degree of texturing. Scanning electron microscopy in combination with EDX and optical microscopy in normal and polarized light yielded information about the microstructure of the films. Tc(0) values of 118 K and transport critical current densities in the range of 10 kA cm-2 at 77 K were obtained for the best specimens. (author)

  19. Effects of thickness on electronic structure of titanium thin films

    Indian Academy of Sciences (India)

    Güvenç Akgül

    2014-02-01

    Effects of thickness on the electronic structure of e-beam evaporated thin titanium films were studied using near-edge X-ray absorption fine structure (NEXAFS) technique at titanium 2,3 edge in total electron yield (TEY) mode and transmission yield mode. Thickness dependence of 2,3 branching ratio (BR) of titanium was investigated and it was found that BR below 3.5 nm shows a strong dependence on film thickness. Mean electron escape depth () in titanium, an important parameter for surface applications, was determined to be = 2.6 ± 0.1 nm using 2,3 resonance intensity variation as a function of film thickness. The average 3/2 white line intensity ratio of titanium was obtained as 0.89 from the ratio of amplitudes of each 3 and 2 peaks and 0.66 from the integrated area under each 3 and 2 peaks. In addition, a theoretical calculation for pure titanium was presented for comparison with experimental data.

  20. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    Science.gov (United States)

    Azadi Motlagh, Z.; Azim Araghi, M. E.

    2016-02-01

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32-100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current-voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures.

  1. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    International Nuclear Information System (INIS)

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32–100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current–voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures. (paper)

  2. Ultrasonic array of thick film transducers for biological tissue characterization.

    Science.gov (United States)

    Gwirc, Sergio N; Negreira, Carlos A; Marino, Nestor R

    2010-01-01

    The initial motivation for this work was to accomplish an easy way to manufacture different geometries of ultrasonic transducers and arrays using a PZT powder, combined with a standard process to have repetitive series of them. The piezoelectric thick film was obtained using a PZT paste and applying it by screen printing on an alumina substrate. Then, the film was drying and sintered with a temperature-time profile determined by the paste characteristics. Each transducer is composed by three layers, one by PZT and two acting as electrodes. The active element of the paste is a PZT powder which is dispersed in a commercial vehicle to obtain rheological properties suitable for use the screen printing process. The connection between PZT particles is improved by adding a lead borosilicate frit glass that also helps to attach the film to the substrate due to the relatively low temperature of sintered that has been used in this process. The PZT film has low density that is generated by internal porosity, so its acoustic impedance is lower than for a bulk ceramic transducer and so is well adapted to testing human tissues. At the same time the thick film technology is well suited to make medium size transducers and also arrays performed with tiny ultrasonic transducers. PMID:21097177

  3. Multilayer circuits with thick-film polymer insulation

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2012-10-01

    Full Text Available Three design and technological versions of multilayer circuit have been developed. The interlayer and protective isolation in these circuits was performed with thick (10—30 micron heat-resistant photosensitive organic dielectric film. Such performance allows to attach component leads to the contact pads on the interlayer isolation with the use of ultrasonic welding and soldering. Number of interlayer connections of conductors in such circuits is minimized. The complexity and cost of manufacturing of the circuits can be reduced by 2—3 times compared to known thin-film prototypes.

  4. Thickness measurement of Ni thin film using dispersion characteristics of a surface acoustic wave

    International Nuclear Information System (INIS)

    In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.

  5. Thickness Dependence Magnetization in Laser Ablated Ni-Cu-Zn Ferrite Nanostructured Thin Films.

    Science.gov (United States)

    Raghavender, A T; Hong, Nguyen Hoa; Lee, Kyu Joon; Jung, Myung-Hwa

    2016-01-01

    Ni₀.₅Cu₀.₃Zn₀.₂Fe₂O₄ thin films with thickness ranging from 25 nm to 500 nm were grown on Si substrate using pulsed laser deposition technique and their structural and magnetic properties were investigated. From the atomic force microscopy (AFM) analysis, it is observed that the film roughness (Ra) depends strongly on the thickness of the fabricated film. The magnetizations of the thin films were found to decrease when the film thickness increases. The thinner films showed a larger magnetization than the thick films. All the films showed a blocking temperature indicating their superparamagnetic behavior. PMID:27398528

  6. Effect of film thickness on microstructure parameters and optical constants of CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.co [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt); Afify, N. [Physics Department, Assiut University, Assiut (Egypt); El-Taher, A. [Physics Department, Faculty of Science, Qassim University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O. 71452 (Egypt)

    2009-08-12

    Different thickness of cadmium telluride (CdTe) thin films was deposited onto glass substrates by the thermal evaporation technique. Their structural characteristics were studied by X-ray diffraction (XRD). The XRD experiments showed that the films are polycrystalline and have a zinc-blende (cubic) structure. The microstructure parameters, crystallite size and microstrain were calculated. It is observed that the crystallite size increases and microstrain decreases with the increase in the film thickness. The fundamental optical parameters like band gap and extinction coefficient are calculated in the strong absorption region of transmittance and reflectance spectrum. The possible optical transition in these films is found to be allowed direct transition with energy gap increase from 1.481 to 1.533 eV with the increase in the film thickness. It was found that the optical band gap increases with the increase in thickness. The refractive indices have been evaluated in transparent region in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index can be extrapolated by Cauchy dispersion relationship over the whole spectral range, which extended from 400 to 2500 nm. It is observed that the refractive index, n increases on increasing the film thickness up to 671 nm and then the variation of n with higher thickness lie within the experimental errors.

  7. Preparation and Characteristics of GaN Films on Freestanding CVD Thick Diamond Films

    International Nuclear Information System (INIS)

    Prefer-oriented and fine grained polycrystalline GaN films are prepared by plasma enhanced metal organic chemical vapour deposition on nucleation surfaces of freestanding thick diamond films. The characteristics of the GaN films are characterized by x-ray diffraction, reflection high energy electron diffraction and atomic force microscopy. The results indicate that the structure and morphology of the films are strongly dependent on the deposition temperature. The most significant improvements in morphological and structural properties of GaN films are obtained under the proper deposition temperature of 400°C. (cross-disciplinary physics and related areas of science and technology)

  8. Thick film force and slip sensors for a prosthetic hand

    OpenAIRE

    Cranny, A; Cotton, D P J; Chappell, P H; White, N.M.

    2004-01-01

    In an attempt to improve the functionality of a prosthetic hand device, a new fingertip has been developed that incorporates sensors to measure temperature and grip force, and to detect the onset of object slip from the hand. The sensors have been implemented using thick film printing technology and exploit the piezoresistive characteristics of commercially available screen printing resistive pastes and the piezoelectric properties of proprietary lead-zirconate-titanate (PZT) formulated paste...

  9. Using bias superposition to test a thick film conductance sensor

    International Nuclear Information System (INIS)

    A novel on-line monitoring technique for a range of MEMS and integrated sensor systems is presented based on the injection of a test stimuli into the bias structure of transducer functions. The technique 'Bias Superposition' utilises both signal injection and signal extraction techniques to achieve an indication of structural integrity of the transducer and interface. The technique has been successfully applied to a thick film conductance sensor

  10. A sensitive magnetic field sensor using BPSCCO thick film

    Indian Academy of Sciences (India)

    S Vijay Srinivas; Abhijit Ray; T K Dey

    2001-08-01

    A highly sensitive magnetic sensor operating at liquid nitrogen temperature and based on BPSCCO screen-printed thick film, is reported. The sensor resistance for an applied magnetic field of 100 × 10–4T(100 gauss) exhibits an increase by 360% of its value in zero field at 77.4 K. The performance of the sensor in presence of magnetic field, the hysteretic features and the effect of thermal cycling, has been discussed.

  11. Tape casting and partial melting of Bi-2212 thick films

    International Nuclear Information System (INIS)

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 μm. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6 degrees. At 77K/OT a critical current density of 15'000 A/cm2 was reached in films of the dimension 1cm x 2cm x 20μm (1μV/cm criterion, resistively measured). At 4K/OT the highest value was 350'000 A/cm2 (1nV/cm criterion, magnetically measured)

  12. The Effect of Thickness of Aluminium Films on Optical Reflectance

    Directory of Open Access Journals (Sweden)

    Robert Lugolole

    2015-01-01

    Full Text Available In Uganda and Africa at large, up to 90% of the total energy used for food preparation and water pasteurization is from fossil fuels particularly firewood and kerosene which pollute the environment, yet there is abundant solar energy throughout the year, which could also be used. Uganda is abundantly rich in clay minerals such as ball clay, kaolin, feldspar, and quartz from which ceramic substrates were developed. Aluminium films of different thicknesses were deposited on different substrates in the diffusion pump microprocessor vacuum coater (Edwards AUTO 306. The optical reflectance of the aluminium films was obtained using a spectrophotometer (SolidSpec-3700/DUV-UV-VIS-NIR at various wave lengths. The analysis of the results of the study revealed that the optical reflectance of the aluminium films was above 50% and increased with increasing film thickness and wavelength. Thus, this method can be used to produce reflector systems in the technology of solar cooking and other appliances which use solar energy.

  13. Tape casting and partial melting of Bi-2212 thick films

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, D.; Lang, T.; Heeb, B. [Nichtmetallische Werkstoffe, Zuerich (Switzerland)] [and others

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  14. Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    A series of silver films with different thickness were prepared under identical conditions by direct current magnetron sputtering. The optical properties of the silver films were measured using spectrophotometric techniques and the optical constants were calculated from reflection and transmission measurements made at near normal incidence. The results show that the optical properties and constants are affected by films' thickness. Below the critical thickness of 17 nm at which Ag film forms a continuous film, the optical properties and constants vary significantly as the thickness of films increases and then tends to a stable value which is reached at 41 nm. X-ray diffraction measurements were carried out to examine the structure and stress evolution of the Ag films as a function of films' thickness. It was found that the interplanar distance of (111) orientation decreases when the film thickness increases and tends to be close to that of bulk material. The compressive strains also decrease with increasing thickness

  15. CdTe thin film solar cells with reduced CdS film thickness

    International Nuclear Information System (INIS)

    A study was performed to reduce the CdS film thickness in CdTe thin film solar cells to minimize losses in quantum efficiency. Using close space sublimation deposition for CdS and CdTe a maximum efficiency of ∼ 9.5% was obtained with the standard CdS film thickness of ∼ 160 nm. Reduction of the film CdS thickness to less than 100 nm leads to poor cell performance with ∼ 5% efficiency, mainly due to a lower open circuit voltage. An alternative approach has been tested to reduce the CdS film thickness (∼ 80 nm) by depositing a CdS double layer. The first CdS layer was deposited at high substrate temperature in the range of 520-540 deg. C and the second CdS layer was deposited at low substrate temperature of ∼ 250 deg. C. The cell prepared using a CdS double layer show better performance with cell efficiency over 10%. Quantum efficiency measurement confirmed that the improvement in the device performance is due to the reduction in CdS film thickness. The effect of double layer structure on cell performance is also observed with chemical bath deposited CdS using fluorine doped SnO2 as substrate.

  16. X-ray-fluorescence measurement of thin film thicknesses

    International Nuclear Information System (INIS)

    A method and apparatus were developed for X-ray fluorescence measurement of the thicknesses of thin metal films deposited on top of each other on a substrate. The method is highly accurate and rapid and is especially useful for making microelectronic devices. The system involves exposing the metal films to X-ray radiation, then measuring the intensity of the various fluorescent lines excited by the radiation. The lead-detecting collimator has a conical bore and a very small entrance aperture used to define the surface area of the top film from which excited fluorescence is to be detected. The collimator has an opening in the side to allow some of the incident X-rays from the source to enter the bore to excite fluorescence in the lead. This fluorescence is monitored by a detector as a measure of the intensity of the incident X-rays. The system is first calibrated in a systematic way to specify a set of parameters characteristic of the plated-metal configuration to be measured. The sample is irradiated and the number of counts in each of the selector characteristic lines of the platings and substrate is measured. The thickness of the plating layers are then calculated by an iterative method in accordance with specified relationships between the calibrated parameters and the measured counts. (DN)

  17. Fatigue crack closure in submicron-thick freestanding copper films

    International Nuclear Information System (INIS)

    The fatigue crack closure in approximately 500-nm-thick freestanding copper films were investigated by in situ field emission scanning electron microscope (FESEM) observations of the fatigue crack opening/closing behavior at three stress ratios of R=0.1, 0.5, and 0.8 in the low–Kmax (maximum stress intensity factor) region of Kmax<4.5 MPam1/2. The direct observation of fatigue cracks clarified that crack closure occurred at R=0.1 and 0.5, while the fatigue crack was always open at R=0.8. Changes in the gage distance across the fatigue crack during a fatigue cycle were measured from the FESEM images, and the crack opening stress intensity factor Kop was evaluated on the basis of the stress intensity factor K vs. the gage distance relationship. The effective stress intensity factor range ΔKeff=Kmax−Kop was then evaluated. The R-dependence of the da/dN vs. ΔKeff relationship was smaller than that of the da/dN vs. ΔK relationship. This suggests that ΔKeff is a dominating parameter rather than ΔK in the fatigue crack propagation in the films. This paper is the first report on the presence of the fatigue crack closure in submicron-thick freestanding metallic films

  18. Auto-calibration of ultrasonic lubricant-film thickness measurements

    International Nuclear Information System (INIS)

    The measurement of oil film thickness in a lubricated component is essential information for performance monitoring and design. It is well established that such measurements can be made ultrasonically if the lubricant film is modelled as a collection of small springs. The ultrasonic method requires that component faces are separated and a reference reflection recorded in order to obtain a reflection coefficient value from which film thickness is calculated. The novel and practically useful approach put forward in this paper and validated experimentally allows reflection coefficient measurement without the requirement for a reference. This involves simultaneously measuring the amplitude and phase of an ultrasonic pulse reflected from a layer. Provided that the acoustic properties of the substrate are known, the theoretical relationship between the two can be fitted to the data in order to yield reflection coefficient amplitude and phase for an infinitely thick layer. This is equivalent to measuring a reference signal directly, but importantly does not require the materials to be separated. The further valuable aspect of this approach, which is demonstrated experimentally, is its ability to be used as a self-calibrating routine, inherently compensating for temperature effects. This is due to the relationship between the amplitude and phase being unaffected by changes in temperature which cause unwanted changes to the incident pulse. Finally, error analysis is performed showing how the accuracy of the results can be optimized. A finding of particular significance is the strong dependence of the accuracy of the technique on the amplitude of reflection coefficient input data used. This places some limitations on the applicability of the technique

  19. Thick Film Temperature Compensating Circuit for Semiconductor Strain Gauges

    OpenAIRE

    Mitsuo Ai; Hiromi Tosaki; Akira Ikegami; Hideo Arima; Yoshitaka Matsuoka; Tsutomu Okayama

    1981-01-01

    Thick film circuits were developed for temperature compensating of semiconductor strain gauges and for connecting the gauges to amplifiers in electronic pressure and differential pressure transmitters. In each circuit, ten Au pads for Al wire bonding and thirteen Ag/Pd pads for soldering must be fabricated on a small substrate. The results of the research are shown below.(1) The resistance values and the thermistor constants required for the thermistors are 0.9 ± 0.09 kilo-ohm and 2500 ± 40 K...

  20. Observation of Cavity QED in thick dielectric films

    Science.gov (United States)

    Sarabi, Bahman; Ramanayaka, A. N.; Gladchenko, S.; Stoutimore, M. J. A.; Khalil, M. S.; Osborn, K. D.

    2013-03-01

    Cavity QED in amorphous dielectrics is investigated by measuring five linear superconducting resonators with thick dielectric films and capacitor volumes ranging from 80 μm3 to 5000 μm3. In the smallest volume dielectrics we observe additional resonances which may be explained by CQED, despite the dielectric volume which is many orders of magnitude larger than Josephson junction barrier volumes. In addition to the volume dependence of the CQED resonances, we will report on the stability of the resonances in time and the phase noise. This research allows new fundamental studies on TLS phenomena in meso-volume amorphous dielectrics.

  1. Amorphous film thickness dependence for epitaxy of perovskite oxide films under excimer laser irradiation

    International Nuclear Information System (INIS)

    We have studied the epitaxial growth of perovskite manganite LaMnO3 (LMO) on SrTiO3(1 0 0) in the excimer laser assisted metal organic deposition process. The LMO was preferentially grown from the substrate surface by the KrF laser irradiation. The study of amorphous LMO film thickness dependence on epitaxial growth under the excimer laser irradiation revealed that the photo-thermal heating effect strongly depended on the amorphous film thickness due to a low thermal conductivity of amorphous LMO: the ion-migration for chemical bond-forming at the reaction interface would be strongly enhanced in the amorphous LMO film with the large film thickness about 210 nm. On the other hand, the photo-chemical effect occurred efficiently for the amorphous film thickness in the range of 35-210 nm. These results indicate that the epitaxial growing rate was dominated by the photo-thermal heating after the photo-chemical activation at the growth interface.

  2. Thickness optimization of Mo films for Cu(InGa)Se2 solar cell applications

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Zhao Yan-Min; Liu Xing-Jiang; Ao Jian-Ping; Sun Yun

    2011-01-01

    Mo thin films are deposited on soda lime glass (SLG) substrates using DC magnetron sputtering. The Mo film thicknesses are varied from 0.08 μm to 1.5 μm to gain a better understanding of the growth process of the film. The residual stresses and the structural properties of these films are investigated, with attention paid particularly to the film thickness dependence of these properties. Residual stress decreases and yields a typical tensile-to-compressive stress transition with the increase of film thickness at the first stages of film growth. The stress tends to be stable with the further increase of film thickness. Using the Mo film with an optimum thickness of 1 μm as the back contact, the Cu(InGa)Se2 solar cell can reach a conversion efficiency of 13.15%.

  3. Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.

    Science.gov (United States)

    Ganbavle, V V; Mohite, S V; Agawane, G L; Kim, J H; Rajpure, K Y

    2015-08-01

    We report a study on effect of film thickness on NO2 sensing properties of sprayed WO3 thin films. WO3 thin films varying in thicknesses are deposited onto the glass substrates by simple spray pyrolysis technique by varying the volume of spray solution.Thin film gas sensors are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) techniques to study their physical properties. Film having thickness 745nm has shown highest gas response of 97% with 12 and 412s response and recovery times, respectively towards 100ppm NO2 concentration. Gas response of 20% is observed towards 10ppm NO2 at 200°C operating temperature. Sensitivity of the optimal sensor is 0.83%/ppm when operating at 200°C with 10ppm lower detection limit. The response of the sensor is reproducible and WO3 films are highly selective towards NO2 in presence of mist of various interfering gases viz. H2S, NH3, LPG, CO and SO2. PMID:25898119

  4. Na+ and Li+ NASICON Superionic Conductors Thick Films

    Science.gov (United States)

    Perthuis, H.; Velasco, G.; Colomban, Ph.

    1984-05-01

    For microionic applications, superionic conductors have been elaborated in the form of thick films, using silk-screen printable powders. Na3Zr2Si2PO12, Na3.1Zr1.55Si2.3P0.7O11 and Li0.8Zr1.8Ta0.2(PO4)3 compositions are synthesized by a sol-gel process involving hydrolysis-polycondensation reactions of metal-organic alcoholic solutions. A thermal treatment (600°C-800°C) allows to obtain very fine particles (Inks are prepared with these powders, an organic binder, volatile fluidifying agents and mineralizers. The layers, about 50 μm in thickness, are achieved by successive deposits and sinterings (950°C-1050°C) onto alumina substrates. Films conductivity is determined by the complex impedance method. Values measured at 300°C (Na+: σ˜10-2 Ω-1cm-1, EA{=}0.25 eV, Li+: σ˜5 10-4 Ω-1cm-1, EA{=}0.5 eV) reach those obtained with well-densified ceramics. An anisotropic behaviour related to microstructure is pointed out.

  5. Environmentally compatible solder materials for thick film hybrid assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Rejent, J.A.; Hernandez, C.L. [Sandia National Labs., Albuquerque, NM (United States). Materials and Process Sciences Center

    1997-02-01

    New soldering materials and processes have been developed over the last several years to address a variety of environmental issues. One of the primary efforts by the electronics industry has involved the development of alternative solders to replace the traditional lead-containing alloys. Sandia National Laboratories is developing such alternative solder materials for printed circuit board and hybrid microcircuit (HMC) applications. This paper describes the work associated with low residue, lead-free soldering of thick film HMC`s. The response of the different materials to wetting, aging, and mechanical test conditions was investigated. Hybrid test vehicles were designed and fabricated with a variety of chip capacitors and leadless ceramic chip carriers to conduct thermal, electrical continuity, and mechanical evaluations of prototype joints. Microstructural development along the solder and thick film interface, after isothermal solid state aging over a range of elevated temperatures and times, was quantified using microanalytical techniques. Flux residues on soldered samples were stressed (temperature-humidity aged) to identify potential corrosion problems. Mechanical tests also supported the development of a solder joint lifetime prediction model. Progress of this effort is summarized.

  6. Effect of film thickness on electrochromic activity of spray deposited iridium oxide thin films

    International Nuclear Information System (INIS)

    Electrochromic iridium oxide thin films were deposited onto fluorine doped tin oxide (FTO) coated glass substrates from an aqueous iridium chloride solution using a spray pyrolysis process. The deposition temperature was 250 deg. C. The solution quantity was varied from 25 to 55 ml to obtain films with different thickness. The as-deposited samples were X-ray amorphous. The electrochromic properties were studied in proton containing electrolyte (0.5N, H2SO4) using cyclic voltammetry, chronoamperometry and spectrophotometry techniques. The films exhibit anodic electrochromism. The colouration efficiency at 630 nm was maximum for thicker sample, owing to its large charge storage capacity and hydration

  7. Effect of film thickness on electrochromic activity of spray deposited iridium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India)]. E-mail: psp_phy@unishivaji.ac.in; Mujawar, S.H. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Sadale, S.B. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Deshmukh, H.P. [Department of Physics, Bharati Vidyapeeth, Deemed University, Y.M. College, Pune (India); Inamdar, A.I. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India)

    2006-10-10

    Electrochromic iridium oxide thin films were deposited onto fluorine doped tin oxide (FTO) coated glass substrates from an aqueous iridium chloride solution using a spray pyrolysis process. The deposition temperature was 250 deg. C. The solution quantity was varied from 25 to 55 ml to obtain films with different thickness. The as-deposited samples were X-ray amorphous. The electrochromic properties were studied in proton containing electrolyte (0.5N, H{sub 2}SO{sub 4}) using cyclic voltammetry, chronoamperometry and spectrophotometry techniques. The films exhibit anodic electrochromism. The colouration efficiency at 630 nm was maximum for thicker sample, owing to its large charge storage capacity and hydration.

  8. Preparation and characterization of thick BSCCO 2223 films

    International Nuclear Information System (INIS)

    Among the most widespread applications for critical high-temperature ceramic superconductors are for silver veined tapes, with the superconductor in the middle. These tapes are prepared by the powder- in - tube method. To attain high densities of critical current, the ceramic material must have a certain texture, with the grains oriented with the c axis perpendicular to the direction in which the current circulates. In the system that was studied, the degree of orientation increases as the distance to the vein decreases, with the maximum being in the silver-ceramic inter-phase. Superconductor tapes become inconvenient when defining the ceramic, especially because of the orientation of their plates as a function of the distance to the silver. Although the silver can be dissolved by a chemical attack in order to uncover the ceramic, greater precaution is needed while manipulating the superconductor and obtaining representative data. The behavior of thick films of the compound BSCCO 2223, deposited on silver sheets, forming silver-ceramic composites, was studied. These sheets simulate the silver-ceramic inter-phase and the distribution of the grains towards the center in a thick tape. After the samples were prepared, the phases that were present were characterized by x-ray diffraction and the resulting microstructure was analyzed with a SEM (Scanning Electron Microscope). Its mechanical properties were evaluated, following the formation and propagation of cracks in real time using four point flexion microassays inside the SEM chamber, as well as generating tension-deformation curves. The method of preparation of the thick films is discussed and its influence on the results obtained with the different characterizations (cw)

  9. Ultrasonic measurement of lubricant film thickness in sliding bearings with thin liners

    International Nuclear Information System (INIS)

    When conducting ultrasonic measurements of the lubricant film thickness in sliding bearings with thin liners, the ultrasonic pulse reflected from the bearing liner–lubricant film interface will superimpose on the pulse reflected from the bearing substrate–liner interface. The thickness information of the lubricant film is contained in the reflected pulse from the liner–lubricant film interface. In this case, the film thickness could not be obtained directly from the superimposed reflected signals. The thin liner indicates that the thickness of the bearing liner is less than half the ultrasonic pulse width. Based on the spectrum analysis method of superimposed signals, a new method is proposed to measure the lubricant film thickness in sliding bearings with thin liners. The frequency-domain amplitude ratio between the echo component containing thickness information and the steady echo component from the bearing substrate–liner interface is extracted from the superimposed signal. The reflection coefficient of the liner–lubricant film interface is obtained by this amplitude ratio to determine the film thickness. The lubricant films of different thicknesses in a thin-liner thrust pad were measured in a high-precision experimental apparatus. The measurement results were compared with the known film thickness set by the experimental apparatus. In the thinner film region, the measurement results agreed well with the set film thickness. In the thicker film region, the mean values of the multiple measurement results represented the film thickness. The experimental results show that the method can be used to measure the lubricant film thickness in sliding bearings with thin liners. (paper)

  10. Ethanol vapour sensing properties of screen printed WO3 thick films

    Indian Academy of Sciences (India)

    R S Khadayate; R B Waghulde; M G Wankhede; J V Sali; P P Patil

    2007-04-01

    This paper presents ethanol vapour sensing properties of WO3 thick films. In this work, the WO3 thick films were prepared by standard screen-printing method. These films were characterized by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM). The ethanol vapour sensing properties of these thick films were investigated at different operating temperatures and ethanol vapour concentrations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity of ∼1424.6% at 400°C in air atmosphere with fast response and recovery time.

  11. Thickness Dependence of Fluorescence Dynamics in Thin and Ultrathin Polystyrene Films

    Science.gov (United States)

    Tateishi, Yohei; Okada, Yohei; Tanaka, Keiji; Nagamura, Toshihiko

    2008-03-01

    Fluorescence dynamics such as lifetime and rotational relaxation time for 6-(N-(7-nitrobenz-2-oxa-1,3- diazol-4-yl)amino) hexanoic acid (NBD) in polystyrene (PS) solid was examined as a function of film thickness, t. Both times decreased with decreasing thickness once the film became thinner than a critical value, to. Interestingly, in the case of ultrathin films, both times were insensitive to the film thickness. In addition, fluorescence intensity per unit thickness also decreased with decreasing thickness at t model composed of surface, bulk and interfacial layers.

  12. Nanometer-thick copper films grown by thermal atomic layer deposition

    International Nuclear Information System (INIS)

    Because of the superior properties of copper, it has been of great interest as a conducting material to replace aluminum in device manufacturing. In this study, we investigated the influence of substrate temperature, film thickness, and rapid thermal annealing (RTA) on the deposition of Cu films of thickness less than 10 nm. Compared to thicker films, the electrical properties of nanometer-thick films were found to be very sensitive to the deposition temperature. Further, we determined the optimal deposition temperature to obtain low-resistivity nanometer-thick Cu films. The Cu films were deposited with island-type growth, and the interconnection between grains plays a major role in the resistivity of the films. We also determined the critical thickness at which Cu films exhibit continuous growth as 8 nm. After RTA, the film color darkened, electron scattering became weak, and the resistivity reduced more than 20% with annealing at 300–350 °C, because of the growth of Cu grains. The results of this study indicate that thermal ALD can be used in conjunction with RTA to produce low-resistivity Cu thin films, the thickness, uniformity, and conformality of which can be easily controlled. - Highlights: • Resistance of nanometer-thick Cu film was sensitive to deposition temperature. • Optimal temperature deposition was determined to obtain low-resistivity. • Critical thickness at which Cu films exhibit continuous growth was determined. • Resistivity reduced with annealing at 300–350 °C

  13. THICKNESS DEPENDENCE OF MAGNETIZATION AND MAGNETOSTRICTION OF NiFe AND NiFeRh FILMS

    OpenAIRE

    Ounadjela, K.; Lefakis, H.; Speriosu, V.; Hwang, C.; Alexopoulos, P.

    1988-01-01

    The saturation magnetization, 4πMs, and the magnetostriction constant, λ, of Ni81Fe19, Ni81Fe19/Ta and Ni72Fe17Rh11/ Ta thinfilms were studied as a function of film thickness before and after annealing. For films of thickness t < 200 Å, 4πMs, and λs were found to be strongly dependent on film thickness with even larger variation after annealing. Auger depth profiles have shown the existence of inhomogeneous interfacial layer at the film surface, Ta/film and film/substrate interfaces. The pres...

  14. A Study on the Thickness Measurement of Thin Film by Ultrasonic Wave

    International Nuclear Information System (INIS)

    Recently, it is gradually raised necessity that thickness of thin film is measured accurately and managed in industrial circles and medical world. In this study, regarding to the thickness of film which is in opaque object and is beyond distance resolution capacity, thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measurement results, film thickness which is beyond distance resolution capacity was measured accurately. And within thickness range that don't exist interference, thickness measurement by MEM-ceptrum analysis was impossible

  15. Influence of film thickness on topology and related magnetic interactions in Fe nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Ausanio, G.; Iannotti, V., E-mail: iannotti@na.infn.it; Amoruso, S.; Bruzzese, R. [University of Naples ' Federico II' , Department of Physics (Italy); Wang, X.; Aruta, C. [Complesso Universitario di Monte S. Angelo, CNR-SPIN (Italy); Arzeo, M. [Chalmers University of Technology, Department of Microtechnology and Nanoscience (Sweden); Lanotte, L. [University of Naples ' Federico II' , Department of Physics (Italy)

    2013-08-15

    Fe nanoparticle (NP)-assembled thin films with different thickness were prepared by femtosecond-pulsed laser deposition using different deposition times. The proper selection of the deposition time allows to control, to a certain degree, the morphology and topology of the deposited Fe nanoparticles (NPs) assembly, fostering non-uniform dense assemblies of NPs, with the consequent reduction of the influence of the exchange interactions on the macroscopic magnetic properties with decreasing thickness. The magnetic behavior of the Fe NP-assembled films with decreasing thickness is characterized by higher coercive field (H{sub c}) values (a factor Almost-Equal-To 4.5) and a good compromise between the hysteresis loops squareness and moderate exchange interactions, strongly correlated with the NPs topology.

  16. Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films

    Science.gov (United States)

    Grzibovskis, Raitis; Vembris, Aivars; Pudzs, Kaspars

    2016-08-01

    Nowadays most organic devices consist of thin (below 100 nm) layers. Information about the morphology and energy levels of thin films at such thickness is essential for the high efficiency devices. In this work we have investigated thin films of 2-(4-[N,N-dimethylamino]-benzylidene)-indene-1,3-dione (DMABI) and 2-(4-(bis(2-(trityloxy)ethyl)amino)benzylidene)-2H-indene-1,3-dione (DMABI-6Ph). DMABI-6Ph is the same DMABI molecule with attached bulky groups which assist formation of amorphous films from solutions. Polycrystalline structure was obtained for the DMABI thin films prepared by thermal evaporation in vacuum and amorphous structure for the DMABI-6Ph films prepared by spin-coating method. Images taken by SEM showed separate crystals or islands at the thickness of the samples below 100 nm. The ionization energy of the studied compounds was determined using photoemission yield spectroscopy. A vacuum level shift of 0.40 eV was observed when ITO electrode was covered with the thin film of the organic compound. Despite of the same active part of the investigated molecules the ITO/DMABI interface is blocking electrons while ITO/DMABI-6Ph interface is blocking holes.

  17. Low Temperature Firing of Pb-Contained Thick Film Dielectrics

    OpenAIRE

    Gung-Fun Chen; Shen-Li Fu

    1987-01-01

    The preparation and properties of the Pb(Fe2/3W1/3)x(Fe1/2Nb1/2)0.86–xTi0.14O3-based thick film dielectrics are described. The Calcined Pb(Fe2/3W1/3)O3 powder, instead of glass frit, is used as the flux agent to promote densification during the firing process. Firing is conducted at temperatures below 1000℃. The dissolution of Pb(Fe2/3W1/3)O3 into the starting material and the segregation of Pb(Fe2/3W1/3)O3 along the grain boundaries result in two peaks in the dielectric constant vs temperatu...

  18. Development of metal oxide impregnated stilbite thick film ethanol sensor

    Science.gov (United States)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  19. Magnetic Probe Construction using Thick-film Technology

    International Nuclear Information System (INIS)

    Thick-film technology has been successfully adapted for the design and fabrication of magnetic probes of a new type suitable for use in the simultaneous ultra-high vacuum and high-temperature environment of a nuclear fusion device. The maximum usable temperature is expected to be around 900 degrees C. This new probe has a specific sensitivity (coupling area per unit volume) an order of magnitude higher than a conventional coil. The new probe in one implementation is capable of simultaneously measuring magnetic field in three orthogonal directions about a single spatial point and in two frequency ranges. Low-frequency coils have a measured coupling area of 296-323 cm squared and a frequency response of about 300 kHz. High-frequency coils have a design coupling area of 12-15 cm squared

  20. Structure and properties of nanocrystalline ZrNxOy thin films: Effect of the oxygen content and film thickness

    International Nuclear Information System (INIS)

    The main objective of this study was to investigate the structure and properties of ZrNxOy thin films associated with oxygen content and film thickness. ZrNxOy thin films were deposited using hollow cathode discharge ion plating on Si (100) substrate. The thickness of ZrNxOy films increased with increasing oxygen flow rate, ranging from 143 to 894 nm. Phase separation from ZrNxOy to ZrN and monoclinic ZrO2 (m-ZrO2) was observed by x-ray diffraction (XRD). The electrical and mechanical properties were influenced by the film thickness and the amount of separated phase, m-ZrO2. ZrNxOy thin films with smaller thickness or deposited at higher O2 flow rate were found to have higher electrical resistivity. Hardness of the ZrNxOy thin films increased with increasing thickness, which could be related to microstructure change of the thin films. Residual stress of the ZrN phase in the ZrNxOy thin films, measured using the modified sin2 ψ XRD method, decreased with increasing oxygen flow rate. The thickness dependence of the residual stress in ZrN was different with different oxygen flow rates. The average residual stress of the ZrNxOy thin films also decreased with increasing oxygen flow rate and the stress did not showed significant dependence on the film thickness.

  1. Critical film thickness for fracture in thin-film electrodes on substrates in the presence of interfacial sliding

    International Nuclear Information System (INIS)

    It is well known that thin-film electrodes on substrates could fracture during lithium insertion/extraction above a critical film thickness. Recent studies have revealed that lithium could facilitate sliding at the interface between lithiated Si and the underlying substrate. In this paper, we investigate fracture in thin-film electrodes and derive the critical film thickness for fracture as a function of both the fracture toughness of the film and the sliding resistance of the interface. The analysis indicates that a slippery interface due to lithiation could significantly decrease the critical thickness for fracture. (paper)

  2. Characterization of the property degradation of PZT thin films with thickness

    International Nuclear Information System (INIS)

    The property degradation of lead zirconate titanate (PZT) thin films with thickness was investigated. PZT thin films were fabricated under the optimum established conditions. PZT thin films with a thickness of less than 30 nm did not show the perovskite phase. When considering the thickness of the reacted layer between the PZT thin film and the Pt bottom electrode of about 10 nm in thickness, a thickness of 30 nm was considerable compared to the critical thickness (18 nm) over which PZT shows ferroelectricity. The degree of (001) orientation increased as the thickness increased due to the competition between the effect of the surface energy and that of the lattice mismatch with Pt(111). The degradation of the ferroelectricity with increasing PZT thickness was investigated. PZT thin films with a thickness of less than 30 nm did not show ferroelectric properties. The remnant polarization decreased and the coercive field increased as the PZT thickness decreased. We speculate that the increase in the residual stress and the decrease in the grain size with decreasing film thickness were the major factors in the decrease in the remnant polarization while the increase in the contribution of the low dielectric layer between the PZT and the bottom electrode contributed most to the increase in the coercive field. The leaky behavior of PZT thin films with thicknesses of less than 30 nm appeared to be due to the existence of metallic Pb at the PZT grain boundary, as observed by X-ray photoelectron spectroscopy.

  3. Relationship between Supplied Oil Flow Rates and Oil Film Thicknesses under Starved Elastohydrodynamic Lubrication

    OpenAIRE

    Taisuke Maruyama; Tsuyoshi Saitoh

    2015-01-01

    Many studies have already considered starved lubrication. However, there have been no reports on the oil film thicknesses under steady starved EHL (elastohydrodynamic lubrication), where the ultra-low volume of oil supplied per unit time is uniform. The present study examined the relationship between the supplied oil flow rate and oil film thickness under steady starved lubrication. A ball-on-disk testing machine was used in experiments to measure the oil film thickness by means of optical in...

  4. Low firing temperature thick-film piezoresistive composites: properties and conduction mechanism

    OpenAIRE

    Vionnet Menot, Sonia; Ryser, Peter

    2007-01-01

    Thick-film technology has found applications on miniaturised hybrid circuits in various fields (automotive electronics, televisions, ...). This technology is also now widely used for the fabrication of force and pressure sensors that use the piezoresistive properties of thick-film resistors. The goal of this work has been generated by the fact that usual piezoresistive pastes / inks were optimised for applications on alumina, which is the standard substrate for thick-film technology, but ill ...

  5. Discrete film thickness in polyacrylamide-CdS nanocomposite ultrathin films

    International Nuclear Information System (INIS)

    A nanocomposite of polyacrylamide, a water soluble polymer, and nanocrystalline CdS has been prepared using a chemical route. Transmission electron microscope observation shows that the particles are attached via the polymer coils. The reduction of viscosity for the composite, despite the increase in concentration, indicates a reduction of interchain entanglement between the composite coils. Ultrathin films were prepared from the nanocomposite and pure polyacrylamide using spin coating on a Si(100) substrate in the speed range of 500 to 5000 rpm. X-ray reflectivity studies of the pure polymer and composite films were carried out in vacuum. The thickness of the composite films varies nonmonotonically with spinning speed and is found to lie in discrete 'bands' of thickness separated by 'forbidden regions'. The power law behavior of the thickness with the spinning speed was also found to be different for the composite films in comparison to the polymer ones. A model has been proposed in terms of discrete numbers of layers composed of CdS-attached polymer coils to explain the phenomena

  6. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  7. Thickness dependence of the electrical and structural properties of (PbSn)Te epitaxial films

    International Nuclear Information System (INIS)

    The electrical properties of epitaxial (PbSn)Te films were found to be strongly dependent upon film thickness up to a thickness of ∼5 μm. An analysis of the various scattering mechanisms indicated that the increase in the experimentally measured carrier mobility with thickness is due mainly to a decrease in the defect scattering. A TEM study showed that the defect structure in these films also changes dramatically with film thickness and growth time. The defect density is reduced by the annealing out of dislocations by slip; dislocation climb leads to formation of extended defect clusters and the reduced concentration of point defects by gettering. 3 figs., 8 refs

  8. Dependence of bilinear and biquadratic interlayer coupling on thickness of magnetic films

    International Nuclear Information System (INIS)

    The dependence of bilinear and biquadratic interlayer coupling on the thickness of magnetic films is analysed for a trilayer structure with spectacular reflection at the outer surfaces. It is shown that the oscillation periods corresponding to the case where the thickness of one of the two magnetic films is constant, while that of second one is varied, can be different from the oscillation periods in the case were the thickness of both magnetic films vary simultaneously. The nonoscillatory component of the coupling parameter is shown to be weakly dependent on the thickness of the magnetic films. (author)

  9. Mode-locking resonance for driven vortex matter in thick and thin superconducting films

    International Nuclear Information System (INIS)

    We report on measurements of the mode-locking (ML) resonance for the thick and thin films of amorphous MoxGe1-x with weak pinning. The clear ML resonance indicative of driven vortex lattices is observed for the thick film, while it is not visible for the thin film. The results suggest that for the thin film the elasticity of driven lattices may be significantly reduced and the lattices may be unstable against small pinning.

  10. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  11. Preparation and characterization of microcrack-free thick YBa2Cu3O7-δ films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High quality epitaxial YBa2Cu3O7-δ (YBCO) superconducting films were fabricated on (00l) LaAlO3 substrates using the direct-current sputtering method. The attainment of an unusually high film thickness (up to 2.0 μm) without microcracking was attributed in part to the presence of pores correlated with yttrium-rich composition in the films. The influence of the film thickness on the microstructure was investigated by X-ray diffraction conventional scan (θ-2θ, ω-scan, pole figure) and high-resolution reciprocal space mapping. The films were c-axis oriented with no a-axis-oriented grains up to the thickness of 2 μm. The surface morphology and the critical current density (Jc) strongly depended on the film thickness.Furthermore, the reasons for these thickness dependences were elucidated in derail.

  12. Development of Dual-light Path Monitoring System of Optical Thin-film Thickness

    Institute of Scientific and Technical Information of China (English)

    XU Shi-jun

    2005-01-01

    The accurate monitoring of optical thin-film thickness is a key technique for depositing optical thin-film. For existing coating equipments, which are low precision and automation level on monitoring thin-film thickness, a new photoelectric control and analysis system has been developed. In the new system, main techniques include a photoelectric system with dual-light path, a dual-lock-phase circuit system and a comprehensive digital processing-control-analysis system.The test results of new system show that the static and dynamic stabilities and the control precision of thin-film thickness are extremely increased. The standard deviation of thin-film thickness, which indicates the duplication of thin-film thickness monitoring, is equal to or less than 0.72%. The display resolution limit on reflectivity is 0.02 %. In the system, the linearity of drift is very high, and the static drift ratio approaches zero.

  13. 3D thickness profile measurement of thin films coated on the microscopic area

    International Nuclear Information System (INIS)

    Film thickness profile measurements are crucial in manufacturing processes of thin film–based devices that require precisely controlled thickness and surface morphology. However, film thickness measurement techniques, such as scanning electron microscopy, transmission electron microscopy, and ellipsometry, are limited to 1D or 2D analyses. We propose a new method to measure 3D thickness profiles. The resulting profiles contain not only the thin film surface morphologies but also 3D thickness data. The proposed method includes direct surface measurements and an alignment process utilizing fiducial marks. The top and bottom surface profiles of the film are directly measured using atomic force microscopy before and after a selective etching process. The proposed method based on simple principles including surface measurement and alignment processes is capable of evaluating films that are too thick to be measured using optical methods. (paper)

  14. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    International Nuclear Information System (INIS)

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions

  15. Highly efficient dye-sensitized solar cells of thick mesoporous titania films derived from supramolecular templating

    International Nuclear Information System (INIS)

    Thick titania films of highly ordered orthorhombic pore organization and sufficient thickness up to a few micrometers have been synthesized via a supramolecular templated route and layer-by-layer deposition. An appropriate pre-heat treatment was applied to improve the mesopore accessibility. The mesoporous films were highly crystallized with the crystallite size of ∼12 nm regardless of the film thickness, due to the spatial confinement of mesopores. A high optical transparency was demonstrated for the mesoporous films, which is ascribed to the high mesoporosity and uniformity of the ordered film structure. Both the mesopore accessibility and optical transparency have contributed to the high performance of these films as photoanodes in the dye-sensitized solar cells, showing a maximum solar energy conversion efficiency of 6.02% for a film of 5.08 μm in thickness.

  16. Influence of the thickness on the morphology and sensing ability of thermally-deposited tellurium films

    Science.gov (United States)

    Hristova-Vasileva, T.; Bineva, I.; Dinescu, A.; Nesheva, D.; Arsova, D.; Pejova, B.

    2016-03-01

    Tellurium films with nominal thicknesses of 30, 90 and 300 nm were prepared by thermal evaporation in vacuum at a low deposition rate of 0.3 nm/s. The morphology evolution with the increase of the film thickness was observed by scanning electron microscopy and atomic force microscopy. Nanorods with a width of about 40 nm were observed on the thinnest films surface. On the 90 nm thick films, the formations grew in priority in the z-direction to nanoblades with the same width, but a length of about 100 nm. The further increase of the thickness led to an increase of the 2D nanoobjects' width and length and formation of a stacked nanosheet structure. The surface root-mean-square roughness (Sq) increased with the thickness of the films. Preliminary investigations of the sensing ability of the as-deposited tellurium films with different thicknesses towards water (H2O), ethanol (C2H5OH), acetone (C3H5OH), and ammonia (NH3) vapors were performed by measuring the vapor-induced changes in the film dark current. The films showed appreciable response only to ammonia vapors; their sensitivity was almost equal for the 30 and 90 nm thick films, and decreased significantly for the film tkness of 300 nm.

  17. Thick film polymer-ceramic composites for pyroelectric applications

    Science.gov (United States)

    Dietze, M.; Krause, J.; Solterbeck, C.-H.; Es-Souni, M.

    2007-03-01

    Thick films of 0-3 composites of lead-zirconate-titanate ceramic and polyvinylidene-trifluorethylene copolymer have been produced by spin coating on gold-coated silicon wafers. The dielectric properties were investigated as a function of ceramic volume fraction and temperature. Pyroelectric measurements were undertaken by temperature modulation with a Peltier element. Additionally, the pyroelectric response has been investigated up to 3000Hz using a modulated laser. The piezoelectric response of the composites obtained by using a laser vibrometer are also reported. It is shown that the dielectric constant increases with increasing volume fraction of ceramic and that it reaches a maximum at a temperature in the range of 65-70°C due to the ferroelectric-paraelectric phase transition of the polymer matrix. The pyroelectric coefficient increases to 92μCm-2K-1 at a ceramic volume fraction of 20%. Furthermore the effective piezoelectric charge coefficient d33 of the composite almost vanishes at this composition. This composites show relatively high pyroelectric figures of merit and may be a potential candidate for pyroelectric sensor applications.

  18. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process with...

  19. Refractive index gradient measurement across the thickness of a dielectric film by the prism coupling method

    International Nuclear Information System (INIS)

    A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness Hf with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [Δ n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)

  20. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  1. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    International Nuclear Information System (INIS)

    Phosphorous-alloyed Bi2Te3 thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi2Te3 thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 μV/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Thickness dependence of the work function in double-layer metallic films

    OpenAIRE

    Hornauer, Hans; Vancea, Johann; Reiss, Günter; Hoffmann, Horst

    1989-01-01

    The work function of metallic thin films limited by symmetric surfaces is expected to be thickness dependent at a level of 0.1 eV and a thickness range of about 5 nm. Recent experiments, however, demonstrated that Cu films on glass or Ni substrates show a long ranging (10–20 nm) increase of the work function with increasing film thickness [1]. This effect was attributed to a violation of local charge neutrality in films with unlike surfaces. In this paper we show that the barrier height of th...

  3. Dependence of Thermal Conductivity on Thickness in Single-Walled Carbon Nanotube Films.

    Science.gov (United States)

    Lee, Kyung-Min; Shrestha, Ramesh; Dangol, Ashesh; Chang, Won Seok; Coker, Zachary; Choi, Tae-Youl

    2016-01-01

    Herein, we report experimentally dependence of thermal conductivity on thickness of single walled carbon nanotubes (SWNTs) thin films; the measurements are based on the micropipette thermal sensor technique. Accurate and well resolved measurements of thermal conductivity made by the micropipette sensor showed a correlated behavior of thickness and thermal conductivity of CNT films that thermal conductivity decreased as thickness increased. The thickness dependence is explained by reduction of mean free path (MFP), which is induced by more intertubular junctions in more dense-packed carbon nanotube (CNT) networks; the thicker SWCNT films were revealed to have higher density. PMID:27398564

  4. Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, M., E-mail: mohammad.haidar@Physics.gu.se; Ranjbar, M.; Balinsky, M.; Dumas, R. K. [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Khartsev, S. [Department of Integrated Devices and Circuits, School of ICT, Royal Institute of Technology (KTH), 16440 Kista (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 41296 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 16440 Kista (Sweden)

    2015-05-07

    The magnetodynamical properties of nanometer-thick yttrium iron garnet films are studied using ferromagnetic resonance as a function of temperature. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition. First, we found that the damping coefficient increases as the temperature increases for different film thicknesses. Second, we found two different dependencies of the damping on film thickness: at room temperature, the damping coefficient increases as the film thickness decreases, while at T = 8 K, we find the damping to depend only weakly on the thickness. We attribute this behavior to an enhancement of the relaxation of the magnetization by impurities or defects at the surfaces.

  5. Diffusive phase transitions in ferroelectrics and antiferroelectrics

    OpenAIRE

    Prosandeev, S. A.; Raevski, I. P.; Waghmare, U. V.

    2003-01-01

    In this paper, we present a microscopic model for heterogeneous ferroelectric and an order parameter for relaxor phase. We write a Landau theory based on this model and its application to ferroelectric PbFe$_{1/2}$Ta$_{1/2}$O$_3$ (PFT) and antiferroelectric NaNbO$_3$:Gd. We later discuss the coupling between soft mode and domain walls, soft mode and quasi-local vibration and resulting susceptibility function.

  6. Structural, magnetic and transport properties of Co2FeAl Heusler films with varying thickness

    Science.gov (United States)

    Wang, Xiaotian; Li, Yueqing; Du, Yin; Dai, Xuefang; Liu, Guodong; Liu, Enke; Liu, Zhongyuan; Wang, Wenhong; Wu, Guangheng

    2014-08-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co2FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states.

  7. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    Science.gov (United States)

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films. PMID:23798771

  8. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Bagheri R.

    2013-06-01

    Full Text Available Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C. Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI, Panavia F (Kuraray, Varioloink II (Ivoclar, Maxcem (Kerr, Nexus2 (Kerr and two resin-modified glass-ionomer luting cements (RM-GICs; GC Fuji Plus (GC Corporation, and RelyX Luting 2 (3 M/ESPE. The film thickness and flow rate of each cement (n=15 was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements pro-duced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm.Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature.

  9. Acoustic measurement of lubricant-film thickness distribution in ball bearings

    OpenAIRE

    Zhang, J.; Drinkwater, B. W.; Dwyer-Joyce, R.S.

    2006-01-01

    An oil-film thickness monitoring system capable of providing an early warning of lubrication failure in rolling element bearings has been developed. The system is used to measure the lubricant-film thickness in a conventional deep groove ball bearing (shaft diameter 80 mm, ball diameter 12.7 mm). The measurement system comprises a 50 MHz broadband ultrasonic focused transducer mounted on the static outer raceway of the bearing. Typically the lubricant-films in rolling element bearings are bet...

  10. The phase shift of an ultrasonic pulse at an oil layer and determination of film thickness

    OpenAIRE

    Reddyhoff, T.; S. Kasolang; Dwyer-Joyce, R.S.; Drinkwater, B. W.

    2005-01-01

    An ultrasonic pulse incident on a lubricating oil film in a machine element will be partially reflected and partially transmitted. The proportion of the wave amplitude reflected, termed the reflection coefficient, depends on the film thickness and the acoustic properties of the oil. When the appropriate ultrasonic frequency is used, the magnitude of the reflection coefficient can be used to determine the oil film thickness. However, the reflected wave has both a real component and an imaginar...

  11. Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Flexoelectricity describes the coupling between polarization and strain/stress gradients in insulating crystals. In this paper, using the Landau-Ginsburg-Devonshire phenomenological approach, we found that flexoelectricity could increase the theoretical critical thickness in epitaxial BaTiO3 thin films, below which the switchable spontaneous polarization vanishes. This increase is remarkable in tensile films while trivial in compressive films due to the electrostriction caused decrease of potential barrier, which can be easily destroyed by the flexoelectricity, between the ferroelectric state and the paraelectric state in tensile films. In addition, the films are still in a uni-polar state even below the critical thickness due to the flexoelectric effect.

  12. Electroplated Fe-Pt thick films prepared in plating baths with various pH values

    OpenAIRE

    Yanai, T; Furutani, K.; Masaki, T; T. Ohgai; Nakano, M; Fukunaga, H

    2016-01-01

    Fe-Pt thick-films were electroplated on a Ta substrate using a direct current, and the effect of the pH value of the plating bath on the magnetic properties of the films was evaluated. For the films prepared from the baths with the same bath composition, the Fe composition and the thickness increased with increasing the pH value. In order to remove the effect of the change in the film composition on the magnetic properties, we controlled the film composition at approximately Fe50Pt50 or Fe60P...

  13. X-ray diffractometry of 10 nm thick YBa2Cu3O7-x films

    International Nuclear Information System (INIS)

    We report on some specific features of the X-ray diffraction spectra for ultrathin c-axis-oriented YBCO films. The films were prepared by laser deposition on LaAlO3 substrates. A DRON-4 powder diffractometer was used to analyze a structure and to measure thickness of the films. We find that this conventional technique can detect the YBCO films as thin as 5 nm. The X-ray interference fringes in the vicinity of the (005) YBCO reflections for the films from 10 to 20 nm thick were clearly visible. The oscillation period of the fringes depends on the thickness of the film and the intensity modulation yields some structural information. The I(-1)/I(+1) fringes intensity ratio was found to be sensitive to the type of atomic layer at the top and bottom of YBCO film

  14. Effect of thickness and temperature of copper phthalocyanine films on their properties

    Directory of Open Access Journals (Sweden)

    Alieva Kh. S.

    2012-06-01

    Full Text Available The research has shown that copper phthalocyanine films, having a set of unique properties, can be successfully used as gas-sensitive coating of resistive structures. The thickness of the film, in contrast to its temperature, is not the determining factor for high sensitivity. Low operating temperature of structures with copper phthalocyanine films allows to exploit them in economy mode.

  15. Microstructural parameters and optical constants of ZnTe thin films with various thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, Essam R., E-mail: esam_ramadan2008@yahoo.co [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt) and Physics Department, Faculty of Science, Qassium University, Buridah 51452 (Saudi Arabia); Kansal, Ishu [Department of Ceramics and Glass Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Mohamed, S.H. [Physics Department, Faculty of Science, Qassium University, Buridah 51452 (Saudi Arabia); Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Ferreira, Joes M.F. [Department of Ceramics and Glass Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal)

    2009-11-01

    Different thickness of polycrystalline ZnTe films have been deposited onto glass substrates at room temperature by vacuum evaporation technique. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a zinc blende (cubic) structure. The calculated microstructure parameters revealed that the crystallite size increases and microstrain decreases with increasing film thickness. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 400-2500 nm. For ZnTe films of different thicknesses, the dependence of absorption coefficient, alpha on the photon energy showed the occurrence of a direct transition with band gap energy E{sub g}{sup opt}=2.21+-0.01eV (For ZnTe films of different thicknesses) confirming the independency of deduced energy gap on film thickness. The refractive indices have been evaluated in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index could be extrapolated by Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. It was observed that the refractive index, n increased upon increasing the film thickness up to 508 nm, lying within the experimental error for further increases in film thickness.

  16. Noise properties of Pb/Cd-free thick film resistors

    Science.gov (United States)

    Witold Stadler, Adam; Kolek, Andrzej; Zawiślak, Zbigniew; Mleczko, Krzysztof; Jakubowska, Małgorzata; Rafał Kiełbasiński, Konrad; Młożniak, Anna

    2010-07-01

    Low-frequency noise spectroscopy has been used to examine noise properties of Pb/Cd-free RuO2- and CaRuO3-based thick films screen printed on alumina substrates. Experiments were performed in the temperature range 77-300 K and the frequency range 0.5-5000 Hz with multiterminal devices. The measured noise has been recognized as resistance noise that consists of background 1/f noise and components generated by several thermally activated noise sources (TANSs) of different activation energies. The total noise has been composed of the contributions generated in the resistive layer and in the resistive/conductive layers interface. These noise sources are non-uniformly distributed in the resistor volume. Noise intensity of new-resistive layers has been described by the noise parameter Cbulk. Pb/Cd-free layers turned out to be noisier than their Pb-containing counterparts; however, the removal of Pb and Cd from resistive composition is hardly responsible for the increase in the noise. In the case of RuO2 layers noise increases most likely due to larger grain size of RuO2 powder used to prepare resistive pastes. Information on the quality of the resistive-to-conductive layers interface occurred to be stored in the values of noise parameter Cint. Pb/Cd-free RuO2-based resistive pastes form well-behaved interfaces with various Ag-based conductive pastes. In contrast, CaRuO3-based paste forms bad contacts with AgPd terminations because the density of TANSs increases in the interface area.

  17. Noise properties of Pb/Cd-free thick film resistors

    International Nuclear Information System (INIS)

    Low-frequency noise spectroscopy has been used to examine noise properties of Pb/Cd-free RuO2- and CaRuO3-based thick films screen printed on alumina substrates. Experiments were performed in the temperature range 77-300 K and the frequency range 0.5-5000 Hz with multiterminal devices. The measured noise has been recognized as resistance noise that consists of background 1/f noise and components generated by several thermally activated noise sources (TANSs) of different activation energies. The total noise has been composed of the contributions generated in the resistive layer and in the resistive/conductive layers interface. These noise sources are non-uniformly distributed in the resistor volume. Noise intensity of new-resistive layers has been described by the noise parameter Cbulk. Pb/Cd-free layers turned out to be noisier than their Pb-containing counterparts; however, the removal of Pb and Cd from resistive composition is hardly responsible for the increase in the noise. In the case of RuO2 layers noise increases most likely due to larger grain size of RuO2 powder used to prepare resistive pastes. Information on the quality of the resistive-to-conductive layers interface occurred to be stored in the values of noise parameter Cint. Pb/Cd-free RuO2-based resistive pastes form well-behaved interfaces with various Ag-based conductive pastes. In contrast, CaRuO3-based paste forms bad contacts with AgPd terminations because the density of TANSs increases in the interface area.

  18. Confining substrate for micron-thick liquid films

    OpenAIRE

    Kuech, T. F.; McCaldin, J. O.

    1980-01-01

    Suitable combinations of surface geometry and material enable a substrate to hold a thin liquid film captive on its surface. Though only at metastable equilibrium, such films can survive a moderate amount of processing. They may be suited to the growth of semiconductor single-crystal films on amorphous substrates.

  19. Development of thickness measurement and thickness trend monitoring technology using high-temperature thin-film UT sensor

    International Nuclear Information System (INIS)

    In order to solve the problems of the thickness measurement, we have developed a thin-film UT sensor having excellent high-temperature durability and conformability in thin film form. In this paper, it was confirmed that the accuracy of thickness measurement for both complex geometries and plates at high-temperature was equivalent to the accuracy of conventional thickness measurement methods. It was also confirmed that the durability at high temperature and for temperature change in the actual equipment was sufficient by continuous heating and cycle heating tests. In addition, it was confirmed that continuous use for long term was possible by lifetime assessment. It is expected that through making the test results publicly known and a field trial in the actual plant, we are aiming to take this technique in to the Japanese standard for periodic inspection in the next step. (author)

  20. High-Jc YBCO films using precursors with barium concentration gradient in film thickness by TFA-MOD process

    International Nuclear Information System (INIS)

    YBa2Cu3O7-δ (YBCO) films were grown by using precursor films with barium concentration gradient in film thickness by an advanced metal organic deposition process using trifluoroacetates (TFA-MOD). We have reported previously that a lot of non-reacted particles such as Y- and Cu-oxides were remained for the YBCO film surface grown by the precursors using a starting solution with barium-poor (cation ratio as Y:Ba:Cu 1:1.5:3). Then, the barium concentration was increased in the film surface to complete the reaction among these Y and Cu residues and Ba and to increase the Y123 growth thickness for realizing higher Jc performance. Transmission electron microscopy (TEM) observation showed the increase of film thickness of YBCO grown by the precursors with barium concentration gradient in film thickness, indicating that the reaction between these Y and Cu-oxides and Ba proceeded to form Y123 phase. Consequently, higher Jc was obtained for the YBCO film by the precursors mentioned above than that of the YBCO film by the precursors with a constant concentration. Effects of barium concentration gradient in the precursors on the superconducting properties and microstructures in the YBCO film were discussed.

  1. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.

    Science.gov (United States)

    Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C

    2016-07-13

    Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating. PMID:27308723

  2. Film Thickness Influences on the Thermoelectric Properties of NiCr/NiSi Thin Film Thermocouples

    Science.gov (United States)

    Chen, Y. Z.; Jiang, H. C.; Zhang, W. L.; Liu, X. Z.; Jiang, S. W.

    2013-06-01

    NiCr/NiSi thin film thermocouples (TFTCs) with a multi-layer structure were fabricated on Ni-based superalloy substrates (95 mm × 35 mm × 2 mm) by magnetron sputtering and electron beam evaporation. The five-layer structure is composed of NiCrAlY buffer layer (2 μm), thermally grown Al2O3 bond layer (200 nm), Al2O3 insulating layer (10 μm), NiCr/NiSi TFTCs (1 μm), and Al2O3 protective layer (500 nm). Influences of thermocouple layer thickness on thermoelectric properties were investigated. Seebeck coefficient of the samples with the increase in thermocouple layer thickness from 0.5 μm to 1 μm increased from 27.8 μV/°C to 33.8 μV/°C, but exhibited almost no change with further increase in thermocouple layer thickness from 1 μm to 2 μm. Dependence on temperature of the thermal electromotive force of the samples almost followed standard thermocouple characteristic curves when the thickness of the thermocouple layer was 1 μm and 2 μm. Sensitive coefficient K of the samples increased greatly with the increase in thickness of the thermocouple layer from 0.5 μm to 1 μm, but decreased insignificantly with the increase in thermocouple layer thickness from 1 μm to 2 μm, and continuously decreased with the increase in temperature. The sensitive coefficient and the stability of NiCr/NiSi TFTCs were both improved after annealing at 600°C.

  3. Evolution of the localized surface plasmon resonance and electron confinement effect with the film thickness in ultrathin Au films

    International Nuclear Information System (INIS)

    Localized surface plasmon resonance (LSPR) and electron confinement effects on the interband transitions and free-electron absorption in ultrathin Au films with the film thicknesses of about 1–12 nm are investigated. A significant evolution of the LSPR, interband transition energies, plasma energy, and conductivity with the film thickness is observed. The evolution is attributed to the changes in the size, shape, and spacing of the self-assembled gold nanoparticles (Au NPs) with the sizes from several nanometers to 110 nm as well as the aggregation of the Au NPs in the Au films

  4. Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate

    International Nuclear Information System (INIS)

    To correlate flat titanium film surface properties with deposition parameters, titanium flat thin films were systematically deposited on glass substrates with various thicknesses and evaporation rates by electron-beam evaporation. The chemical compositions, crystal structure, surface topographies as well as wettability were investigated by using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM) and water contact angle measurement, respectively. The films consisted mainly of TiO2. Small percentages of Ti2O3 and metallic Ti were also found at the film surface using high-resolution XPS analysis. Quantitative XPS showed little differences regarding elemental compositions among different groups of films. The films were obtained by varying the deposition rate and the film thickness, respectively. XRD data showed consistent reflection patterns of the different titanium samples deposited using different film thicknesses. Without exception measurements of all samples exhibited contact angles of 80 deg ± 5 deg . Quantitative AFM characterization demonstrated good correlation tendency between surface roughness and film thickness or evaporation rate, respectively. It is important to notice that titanium films with different sizes of grains on their surfaces but having the same chemistry and film bulk structure can be obtained in a controllable way. By increasing the film thickness and evaporation rate, the surface roughness increased. The surface morphology and grain size growth displayed a corresponding trend. Therefore, the control of these parameters allows us to prepare titanium films with desired surface properties in a controllable and reproducible way for further biological investigations of these materials

  5. Influence of Thickness on Ethanol Sensing Characteristics of Doctor-bladed Thick Film from Flame-made ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sukon Phanichphant

    2007-02-01

    Full Text Available ZnO nanoparticles were produced by flame spray pyrolysis (FSP using zincnaphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%. The particleproperties were analyzed by XRD, BET, and HR-TEM. The sensing films were produced bymixing the particles into an organic paste composed of terpineol and ethyl cellulose as avehicle binder and were fabricated by doctor-blade technique with various thicknesses (5,10, 15 μm. The morphology of the sensing films was analyzed by SEM and EDS analyses.The gas sensing characteristics to ethanol (25-250 ppm were evaluated as a function of filmthickness at 400°C in dry air. The relationship between thickness and ethanol sensingcharacteristics of ZnO thick film on Al2O3 substrate interdigitated with Au electrodes wereinvestigated. The effects of film thickness, as well as the cracking phenomenon, though,many cracks were observed for thicker sensing films. Crack widths increased withincreasing film thickness. The film thickness, cracking and ethanol concentration havesignificant effect on the sensing characteristics. The sensing characteristics with variousthicknesses were compared, showing the tendency of the sensitivity to ethanol decreasedwith increasing film thickness and response time. The relationship between gas sensingproperties and film thickness was discussed on the basis of diffusively and reactivity of thegases inside the oxide films. The thinnest sensing film (5 μm showed the highest sensitivityand the fastest response time (within seconds.

  6. Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)

    Science.gov (United States)

    Krantz, Timothy Lewis

    2013-01-01

    The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.

  7. Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors

    Indian Academy of Sciences (India)

    G H Jain; L A Patil; P P Patil; U P Mulik; K R Patil

    2007-02-01

    Barium strontium titanate ((Ba0.87Sr0.13)TiO3–BST) ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The effect of film thickness on gas response was also studied. As prepared BST thick films were surface modified by dipping them into an aqueous solution of titanium chloride (TiCl3) for different intervals of time. Surface modification shifted response to H2S gas suppressing the responses to ammonia and other gases. The surface modification, using dipping process, altered the adsorbate–adsorbent interactions, which gave the unusual sensitivity and selectivity effect. Sensitivity, selectivity, thermal stability, response and recovery time of the sensor were measured and presented.

  8. Thickness-dependent fracture behaviour of flexible ZnO : Al thin films

    International Nuclear Information System (INIS)

    The effects of thickness on flexibility and crack initiation in ZnO : Al thin films sputter-deposited on polyethersulfone substrates have been investigated. With an increase in thickness, root-mean-square roughness and average crystallite size increase linearly. It is found that the higher the thickness, the lower is the strain required to initiate cracks in the film. The thinnest film (∼240 nm) exhibits a crack-initiating critical strain of 0.96% and a saturated crack density of 0.10 μm-1. A critical energy release rate of 68.5 J m-2 and a mode I fracture toughness of 3.2 MPa m0.5 are estimated for the films. These parameters are found to exhibit a linear dependence on film thickness.

  9. Effects of substrate and thickness on the structural and electrical properties of Ni thin films

    International Nuclear Information System (INIS)

    We report on the effects of the substrate and the thickness on the physical properties of Ni thin films. Ni films with thickness ranging from 17.0 nm to 107.0 nm have been deposited thermally on Si(100) and Si(111) substrates and on glass. Rutherford backscattering spectrometry, scanning electron microscopy and X-ray diffraction experiments have been performed to study the structural properties of these samples. It is found that all Ni films evaporated on glass and on Si(100) substrates have orientation. For the Ni films evaporated on Si(111) substrates, a change of texture from to is observed as the film thickness increases. The lattice constant and grain size are discussed as a function of substrate and thickness. Electrical properties have been also studied using the four point method (Authors)

  10. Preparation and study of thickness dependent electrical characteristics of zinc sulfide thin films

    Indian Academy of Sciences (India)

    A U Ubale; D K Kulkarni

    2005-02-01

    Zinc sulfide thin films have been deposited onto glass substrates by chemical bath deposition. The various deposition parameters such as volume of sulfide ion source, pH of bath, deposition time, temperature etc are optimized. Thin films of ZnS with different thicknesses of 76–332 nm were prepared by changing the deposition time from 6–20 h at 30°C temperature. The effect of film thickness on structural and electrical properties was studied. The electrical resistivity was decreased from 1.83 × 105 -cm to 0.363 × 105 -cm as film thickness decreased from 332 nm to 76 nm. The structural and activation energy studies support this decrease in the resistivity due to improvement in crystallinity of the films which would increase the charge carrier mobility and decrease in defect levels with increase in the thickness.

  11. Thickness dependent electronic structure of ultra-thin tetrahedral amorphous carbon (ta-C) films

    International Nuclear Information System (INIS)

    Microstructural properties of ultrathin (1–10 nm) tetrahedral amorphous carbon (ta-C) films are investigated by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, X-ray Photoelectron Spectroscopy, Raman spectroscopy and Atomic Force Microscopy (AFM). The CK-edge NEXAFS spectra of 1 nm ta-C films provided evidence of surface defects (C―H bonds) which rapidly diminish with increasing film thickness. A critical thickness for stabilization of largely sp3 matrix structure distorted by sp2 sites is observed via the change of π*C=C peak behavior. Meanwhile, an increase in the film thickness promotes an enhancement in sp3 content, the film roughness remains nearly constant as probed by spectroscopic techniques and AFM, respectively. The effect of thickness on local bonding states of ultrathin ta-C films proves to be the limiting factor for their potential use in magnetic and optical storage devices. - Highlights: ► Filtered Cathodic Vacuum Arc deposited ultra-thin ta-C films (1–10 nm thick). ► CK-edge NEXAFS provides evidence of surface defects (C―H bonds). ► Concentration of C―H surface defects decreases with increasing thickness. ► π*C=C behavior suggestive of rise and fall of sp2 bonding configuration. ► Critical thickness required for stability of sp3 distorted sp2 structures.

  12. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr2Te3. The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr2Te3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  13. Y-Ba-Cu-O thick film preparation using multistep KrF excimer laser deposition

    International Nuclear Information System (INIS)

    Thick films of high-temperature superconductors (HTSC) have attracted much attention to a number of current-carrying applications such as current leads, interconnects, current limiters and cryotron-type switches. As the film thickness of HTSC films is increased using the conventional method of pulsed laser deposition, the surface morphology is degraded during the film deposition. This structural transition results in decreasing the critical current density with the film thickness. Here, a multistep deposition technique in the KrF excimer laser ablation is used to prepare Y-Ba-Cu-O thick films. The high-quality Y-Ba-Cu-O superconducting films of thickness of a few mm were formed by optimizing the processing conditions from the bottom to the surface of the film. The initial ultrathin layer of a few nm was prepared at the low repetition rate of 1 Hz at laser fluence 3 J cm-2. Then, various repetition rates at the fluence 2 J cm-2 were chosen for deposition of the intermediate layer and the surface layer, both with thicknesses of about 1 μm. It is shown that surface morphology and vertical growth are significantly dominated by the initial layer structure and the following deposition conditions. The thick films with high Tc(zero) 89 K were obtained when the surface layer was prepared at a lower repetition rate under lower process temperature. The three step procedure prepared the superconducting thick films with the critical current density of 1.2 x 106 A cm-2 (at 5 K). (orig.)

  14. Thickness-dependent fcc-hcp phase transformation in polycrystalline titanium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, J., E-mail: jay@nmlindia.org [Materials Science and Technology Division, National Metallurgical Laboratory Jamshedpur, Council of Scientific and Industrial Research, Jamshedpur 831 007 (India); Kumar, Kishor [FCIPT, Institute for Plasma Research, B-15-17/P, GIDC, Electronic Estate, Gandhinagar, Gujarat 382 044 (India); Ranjan, Rajeev [Department of Materials Engineering, Indian Institute of Science Bangalore, Bangalore 560 012 (India); Chowdhury, S. Ghosh; Singh, S.R. [Materials Science and Technology Division, National Metallurgical Laboratory Jamshedpur, Council of Scientific and Industrial Research, Jamshedpur 831 007 (India)

    2011-04-15

    Polycrystalline Ti thin films are shown to gradually transform from face-centered cubic (fcc) to hexagonal close-packed structure (hcp) with increasing film thickness. Diffraction stress analysis revealed that the fcc phase is formed in a highly compressive hcp matrix ({>=}2 GPa), the magnitude of which decreases with increasing film thickness. A correlation between stress and crystallographic texture vis-a-vis the fcc-hcp phase transformation has been established. The total free energy change of the system upon phase transformation calculated using the experimental results shows that the fcc-hcp transformation is theoretically possible in the investigated film thickness regime (144-720 nm) and the hcp structure is stable for films thicker than 720 nm, whereas the fcc structure can be stabilized in Ti films much thinner than 144 nm.

  15. Electrochromic properties of aqueous sol-gel derived vanadium oxide films with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Chen, J.; Hu, X. [Academia Sinica, Shanghai, SH (China). Inst. of Ceramics

    2000-10-31

    Vanadium oxide films were spin-coated on ITO-coated glass substrates with a coating solution prepared by dissolving V{sub 2}O{sub 5} powder in H{sub 2}O{sub 2} solution. The cycling behaviors of the films annealed at 150 C for 1 h with different thickness were studied using cyclic voltammetry (CV) in propylene carbonate solution containing 1 mol/l LiClO{sub 4}. Electrochromism of the films upon lithium intercalation was investigated by in-situ transmittance measurements during the CV process. The vanadium oxide films showed reversible multichromism (yellow<->green<->blue) upon Li{sup +} ion insertion/extraction. Transmittance modulation range can be varied by adjusting the film thickness. Vanadium oxide films with proper thickness could be used in realization of multicolored electrochromic devices. (orig.)

  16. Sputtering of cryogenic films of hydrogen by keV ions: Thickness dependence and surface morphology

    International Nuclear Information System (INIS)

    The sputtering yield induced by keV hydrogen ions measured at CERN and at Riso National Laboratory for solid H2 and D2 at temperatures below 4.2 K decreases with increasing film thickness from about 100 x 1015 molecules/cm2. For a film thickness comparable to or larger than the ion range the data from Riso show a slight increase, whereas the yield from CERN continues to decrease up to very large film thicknesses, i.e. one order of magnitude larger than the ion range. The different behavior of the yield is discussed in terms of the probable growth modes of the films. The films produced at the Riso setup are quench-condensed films, while those produced at CERN are supposed to grow with large hydrogen aggregates on top of a thin bottom layer.

  17. Sputtering of cryogenic films of hydrogen by keV ions: Thickness dependence and surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Schou, Jorgen [Department of Photonics Engineering, Riso Campus, Technical University of Denmark, DK-4000 Roskilde (Denmark)], E-mail: j.schou@risoe.dk; Hilleret, Noel [AT-VAC, Cern 1211, CH - Geneva 23 (Switzerland)

    2009-08-15

    The sputtering yield induced by keV hydrogen ions measured at CERN and at Riso National Laboratory for solid H{sub 2} and D{sub 2} at temperatures below 4.2 K decreases with increasing film thickness from about 100 x 10{sup 15} molecules/cm{sup 2}. For a film thickness comparable to or larger than the ion range the data from Riso show a slight increase, whereas the yield from CERN continues to decrease up to very large film thicknesses, i.e. one order of magnitude larger than the ion range. The different behavior of the yield is discussed in terms of the probable growth modes of the films. The films produced at the Riso setup are quench-condensed films, while those produced at CERN are supposed to grow with large hydrogen aggregates on top of a thin bottom layer.

  18. Ultrasonic oil-film thickness measurement: An angular spectrum approach to assess performance limits

    OpenAIRE

    Zhang, J.; Drinkwater, B. W.; Dwyer-Joyce, R.S.

    2007-01-01

    The performance of ultrasonic oil-film thickness measurement in a ball bearing is quantified. A range of different viscosity oils (Shell T68, VG15, and VG5) are used to explore the lowest reflection coefficient and hence the thinnest oil-film thickness that the system can measure. The results show a minimum reflection coefficient of 0.07 for both oil VG15 and VG5 and 0.09 for oil T68 at 50 MHz. This corresponds to an oil-film thickness of 0.4 μm for T68 oil. An angular spectrum (or Fourier d...

  19. The measurement of lubricant-film thickness using ultrasound

    OpenAIRE

    Dwyer-Joyce, R.S.; Drinkwater, B. W.; Donohoe, C.J.

    2003-01-01

    Ultrasound is reflected from a liquid layer between two solid bodies. This reflection depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. If the wavelength is much greater than the liquid-layer thickness, then the response is governed by the stiffness of the layer. If the wavelength and layer thickness are similar, then the interaction of ultrasound with the layer is controlled by its resonant behaviour. This stiffness governed respon...

  20. Tailoring of Luminous Transmittance upon Switching for Thermochromic VO2 Films by Thickness Control

    Science.gov (United States)

    Xu, Gang; Jin, Ping; Tazawa, Masato; Yoshimura, Kazuki

    2004-01-01

    The difference in luminous transmittance (Δ Tlum) upon switching of VO2 films strongly affects its solar controllability when used as a thermochromic window. It was found that Δ Tlum is controllable by film thickness. Optical calculation for a VO2 film on quartz glass revealed that the low-temperature semiconductor phase exhibits lower Tlum than the high-temperature metallic phase for thickness below 50 nm, while the relationship is reversed above 50 nm. The calculation was confirmed by film deposition and measurement. Maximum Δ Tlum is located near 80 nm. An enhanced Δ Tlum contributes largely to solar efficiency.

  1. Thickness-dependent magnetic properties of Ce9Fe91 films

    International Nuclear Information System (INIS)

    Ce9Fe91 films with different thickness were fabricated by a rf magnetron sputtering method. The critical thickness tc for spin reorientation transition has been determined to be approximately 90 nm using the stripe domain model and magnetic force microscope. Above tc, the films exhibit Bloch stripe domain structure and a superhigh resonance frequency at 6 GHz is found for the parallel stripe configuration. However, below tc, the films possess an in-plane uniaxial anisotropy caused by order interface tension between the film and substrate, and the resonance frequency breaks through the Snoek limit. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Phase thickness approach for determination of thin film refractive index dispersion from transmittance spectra

    Science.gov (United States)

    Nenkov, M. R.; Pencheva, T. G.

    2008-06-01

    A novel approach for determination of refractive index dispersion n(λ ) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate and titanium oxide thin films are investigated and their n(λ ) and d are calculated. The approach is validated using Swanepoel's method and it is found to be applicable for relatively thinner films when measured transmittance spectra have one minimum and one maximum only.

  3. Effect of heat and film thickness on a photoinduced phase transition in azobenzene liquid crystalline polyesters

    DEFF Research Database (Denmark)

    Sanchez, C; Alcala, R; Hvilsted, Søren;

    2003-01-01

    The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans-cis-trans isomerizati......The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans...

  4. Thickness dependent magnetic transitions in pristine MgO and ZnO sputtered thin films

    Directory of Open Access Journals (Sweden)

    Mukes Kapilashrami

    2010-09-01

    Full Text Available We report a systematic study of the thickness dependency of room temperature ferromagnetism in pristine MgO (~100–500 nm and ZnO (~100–1000 nm thin films deposited by reactive magnetron sputtering technique under the respective identical controlled optimum oxygen ambience. As far as we know this is the first such report on ferromagnetic pure MgO thin films, a result which should be of significance in understanding the functional aspects of magnetic tunnelling characteristics in devices using MgO dielectrics. From the magnetic characterization we observe a distinct variation in the saturation magnetization (MS with increasing film thickness. In the case of MgO thin films MS values vary in the range 0.04–1.58 emu/g (i.e. 0.0012–0.046 μB/unit cell with increasing film thickness showing the highest MS value for the 170 nm thick film. Above this thickness MS is found to decrease and eventually above 420 nm the films show a paramagnetic behaviour followed by the well known diamagnetic property for the bulk (>500 nm. It is obvious that since initially the MS values increase with thickness, there has to be a maximum before the films become diamagnetic at some finite thickness. We also note that the MS values observed for MgO are the highest (more than twice the value observed for ZnO to be reported for such a defect induced ferromagnetism in a pristine oxide. The origin of ferromagnetic order in both the oxides appears to arise from the respective cat-ion vacancies. The discovery of film thickness dependent ferromagnetic order should be very useful in developing multifunctional devices based on the technologically important materials MgO and ZnO.

  5. Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    Directory of Open Access Journals (Sweden)

    Robert Koncki

    2006-04-01

    Full Text Available Various planar technologies are employed for developing solid-state sensorshaving low cost, small size and high reproducibility; thin- and thick-film technologies aremost suitable for such productions. Screen-printing is especially suitable due to itssimplicity, low-cost, high reproducibility and efficiency in large-scale production. Thistechnology enables the deposition of a thick layer and allows precise pattern control.Moreover, this is a highly economic technology, saving large amounts of the used inks. Inthe course of repetitions of the film-deposition procedure there is no waste of material dueto additivity of this thick-film technology. Finally, the thick films can be easily and quicklydeposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodesbased on ionophores as well as crystalline ion-selective materials dedicated forpotentiometric measurements are demonstrated. Analytical parameters of these sensors arecomparable with those reported for conventional potentiometric electrodes. All mentionedthick-film strip electrodes have been totally fabricated in only one, fully automated thick-film technology, without any additional manual, chemical or electrochemical steps. In allcases simple, inexpensive, commercially available materials, i.e. flexible, plastic substratesand easily cured polymer-based pastes were used.

  6. Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yurchuk, Ekaterina, E-mail: ekaterina.yurchuk@namlab.com [Namlab gGmbH, Noethnitzer Strasse 64, 01187 Dresden (Germany); Müller, Johannes [Fraunhofer Center for Nanoelectronic-Technologies, Koenigsbruecker Strasse 180, 01099 Dresden (Germany); Knebel, Steve [Namlab gGmbH, Noethnitzer Strasse 64, 01187 Dresden (Germany); Sundqvist, Jonas [Fraunhofer Center for Nanoelectronic-Technologies, Koenigsbruecker Strasse 180, 01099 Dresden (Germany); Graham, Andrew P.; Melde, Thomas; Schröder, Uwe [Namlab gGmbH, Noethnitzer Strasse 64, 01187 Dresden (Germany); Mikolajick, Thomas [Namlab gGmbH, Noethnitzer Strasse 64, 01187 Dresden (Germany); Chair of Nanoelectronic Materials, Technische Universität Dresden, Noethnitzer Strasse 64, 01187 Dresden (Germany)

    2013-04-30

    The ferroelectric behaviour of silicon doped hafnium oxide has been investigated using metal–insulator–metal capacitor structures for film thicknesses of 9 and 27 nm, annealing temperatures between 450 and 1000 °C and silicon contents from 0 to 8.5 cat%. For the 9 nm thick films, an improvement of the ferroelectric remanent polarization was revealed for decreasing silicon content and increasing annealing temperature, which corresponds well with the HfO{sub 2} structural phases observed by x-ray diffraction. An increase of the film thickness up to 27 nm induced an apparent decrease of the remanent polarization and modified the temperature dependence. This change in the ferroelectric properties was shown to be determined by the different crystallization behaviour of the thick films with respect to the thin films. - Highlights: ► We investigated the ferroelectric behaviour of Si-doped HfO{sub 2} layers. ► The effects of film thickness, Si-content and annealing conditions were examined. ► Increasing Si content induced reduction of the remanent polarization (Pr). ► A significant decrease of Pr was detected with increasing film thickness. ► Crystallization under mechanical confinement was shown to be essential.

  7. Electrical properties of Li doped sodium potassium niobate thick films prepared by a tape casting process

    International Nuclear Information System (INIS)

    Highlights: → Li doped KNN thick films were prepared by a tape casting process. → The coercive fields decreased with the addition of Li ions. → The thick film with 6 mol% Li exhibited an optimized value of d33 which was 92 pm/V. - Abstract: Lithium doped K0.5Na0.5NbO3 (abbreviated as KNN-xL, with x = 0.02, 0.04, 0.06, 0.08) thick films with a thickness of about 20 μm were prepared by a tape casting process. The presence of Li ions promoted the microstructure of these thick films. Coercive fields (Ec) of the thick films decreased with the addition of Li ions. Two phase transition temperatures, corresponding to TO-T and TC, were observed in the KNN-xL thick films. The sample with x = 0.06 exhibited an optimized value of d33 (91.6 pm/V), which was attributed to the formation of a morphotropic phase boundary.

  8. Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films

    Science.gov (United States)

    Mohan, Ranjini R.; Varma, Sreekanth J.; Sankaran, Jayalekshmi

    2016-04-01

    The present work highlights the remarkably high shielding effectiveness of about 68 dB, exhibited by highly ordered and doped polyaniline films, in the microwave frequency range 4-12 GHz, obtained by self-stabilized dispersion polymerization as the synthesis route. The observed shielding effectiveness is found to depend quite sensitively on the electrical conducting properties, which are predominantly controlled by the nature and concentration of the dopants. The structural and morphological characterization of the films using XRD and TEM techniques reveals surprisingly high extent of crystallinity, which contributes significantly towards enhancing the electrical conductivity of the films. Most of the available reports on the microwave response of conducting polymer film samples deal with much thicker films, compared to the micrometer thick films of the present studies. The shielding effectiveness of acid doped, micrometer thick polyaniline films reported in the present work far exceeds most of the previously reported values and meets the commercial requirements.

  9. Antiferroelectric polarization switching and dynamic scaling of energy storage: A Monte Carlo simulation

    Science.gov (United States)

    Huang, B. Y.; Lu, Z. X.; Zhang, Y.; Xie, Y. L.; Zeng, M.; Yan, Z. B.; Liu, J.-M.

    2016-05-01

    The polarization-electric field hysteresis loops and the dynamics of polarization switching in a two-dimensional antiferroelectric (AFE) lattice submitted to a time-oscillating electric field E(t) of frequency f and amplitude E0, is investigated using Monte Carlo simulation based on the Landau-Devonshire phenomenological theory on antiferroelectrics. It is revealed that the AFE double-loop hysteresis area A, i.e., the energy loss in one cycle of polarization switching, exhibits the single-peak frequency dispersion A(f), suggesting the unique characteristic time for polarization switching, which is independent of E0 as long as E0 is larger than the quasi-static coercive field for the antiferroelectric-ferroelectric transitions. However, the dependence of recoverable stored energy W on amplitude E0 seems to be complicated depending on temperature T and frequency f. A dynamic scaling behavior of the energy loss dispersion A(f) over a wide range of E0 is obtained, confirming the unique characteristic time for polarization switching of an AFE lattice. The present simulation may shed light on the dynamics of energy storage and release in AFE thin films.

  10. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    International Nuclear Information System (INIS)

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknessesFilm thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness

  11. Order in nanometer thick intergranular films at Au-sapphire interfaces

    International Nuclear Information System (INIS)

    Highlights: → Au particles were equilibrated on (0 0 0 1) sapphire in the presence of anorthite. → 1.2 nm thick equilibrium films (complexions) were formed at the Au-sapphire interfaces. → Quantitative HRTEM was used to study the atomistic structure of the films. → Structural order was observed in the 1.2 nm thick films adjacent to the sapphire crystal. → This demonstrates that ordering is an intrinsic part of equilibrium intergranular films. - Abstract: In recent years extensive studies on interfaces have shown that ∼1 nm thick intergranular films (IGF) exist at interfaces in different material systems, and that IGF can significantly affect the materials' properties. However, there is great deal of uncertainty whether such films are amorphous or partially ordered. In this study specimens were prepared from Au particles that were equilibrated on sapphire substrates in the presence of anorthite glass, leading to the formation of 1.2 nm thick IGF at the Au-sapphire interfaces. Site-specific cross-section samples were characterized using quantitative high resolution transmission electron microscopy to study the atomistic structure of the films. Order was observed in the 1.2 nm thick films adjacent to the sapphire crystal in the form of 'Ca cages', experimentally demonstrating that ordering is an intrinsic part of IGF, as predicted from molecular dynamics and diffuse interface theory.

  12. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Arce, R.D.; Schmidt, J.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknessesFilm thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness.

  13. Improvement of Film Thickness Uniformity in TFA-MOD Coated Conductors

    Science.gov (United States)

    Katayama, K.; Nakahata, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    TFA-MOD process is expected to be promising for future applications since it can produce high performance YBCO coated conductors with low cost. The dip-coating is adopted as the coating process because of its simplicity and controllability of the overall film thickness. Dip-coated films have uniform thickness along longitudinal direction, but not necessary in transverse direction. In the case of thicker films, the more cracks form during processing at the thicker region near the edges generate and propagate mainly due to tensile and bending strain. So we have to suppress the thickness distribution in transverse direction for thicker films for high IC values. In this study, we found that the thickness distribution was firstly given by meniscus shape and then the solution flew down till it's dried. The solution in the center region drops more since it is slowly dried compared with the edge region. Then, we developed a drying process, which accelerates the drying by blowing hot gas to prevent the coated solutions from dropping. As a result, the thickness uniformity was improved; the thickness ratio of the thick region (edge) to the flat one (center) was improved from 1.35 to 1.07. Furthermore, we successfully produced ~1.5 μm thick films with high critical current density values (> 2MA/cm2) by the new coating process including the force drying step.

  14. Low-voltage pulse exciting electron emission from ferroelectric copolymer film cathode: Role of film thickness and emission stability

    International Nuclear Information System (INIS)

    Ferroelectric copolymer thin films P(VDF-TrFE) are used as a ferroelectric cathode for investigation of their electron emission properties. This ferroelectric copolymer films with different thicknesses are deposited by spin-coating method, and then the annealing process is carried out to improve the crystallinities of as-deposited copolymer films. The measurement results of ferroelectric electron emission showed that the copolymer P(VDF-TrFE) films had a desired ferroelectric electron emission ability excited at low-voltage pulse, and its peak emission current can reach to be ∼1.3 μA when the pulse voltage is 280 V. In addition, the effect of film thickness on electron emission property and emission stability of copolymer thin film P(VDF-TrFE) are discussed.

  15. Effects of a flow obstacle on liquid film thickness in relation with CHF enhancement

    International Nuclear Information System (INIS)

    There is evidence in literature that the insertion of flow obstacles in the coolant of a boiler flowing in an annular regime postpones the film dryout emergence on the heated surfaces. Specifically, the obstacle is believed to force the deposition of droplets to the wall, hence to increase the film flow rate, and therefore to delay dryout. The two objectives of the present research are (i) to confirm the increase in the film flow rate due to the obstacle, by (ii) building an appropriate flow-loop equipped with suited techniques for film thickness and film velocity measurements. A solid cylinder is inserted in the center of a vertical water-air annular tube flow. Variations in liquid film characteristics, e.g. film thickness and interfacial parameters (disturbance waves velocity and frequency), are measured through a local conductance probes technique. This work shows that the presence of an obstacle in an annular flow leads to an increase in the film thickness, specifically the substrate thickness, and does not affect the interfacial behavior of the film. An increase in the droplet deposition constant is observed and agrees reasonably in the droplet deposition constant is observed and agrees reasonably well with predictions from the Windecker et al. (1999) correlation. The flow-loop and the measurements techniques are suited for extensive droplet deposition measurements. (orig.)

  16. Determination of Thickness of an Inaccessible Thin Film under a Multilayered System from Natural Frequencies

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chang-Zhi; LI Ming-Xuan; MAO Jie; WANG Xiao-Min

    2008-01-01

    @@ We investigate the relationship between natural frequencies of a multilayered system of different elastic materials and the thickness of the undermost thin film. The natural frequencies are numerically calculated from the reflection coefficient of a sample system of "steel-epoxy resin-aluminium-thin polymer' with normal incidence.Strain energy ratio is defined and calculated to give the physics explanation why some frequencies are sensitive to thickness of the thin film in certain range. Experiments of three specimens indicate that the measured natural frequencies agree well with the theoretical ones. It is found in our experiments that the ratio of the lowest film thickness to wavelength is about 1/5. The average relative errors for the inverted polymer film thicknesses are found to be 11.8%, -4.8% and -1.3%, respectively.

  17. Microscopic image processing system for measuring nonuniform film thickness profiles: Image scanning ellipsometry

    International Nuclear Information System (INIS)

    The long-term objective of this research program is to determine the stability and heat transfer characteristics of evaporating thin films. The current objective is to develop and use a microscopic image-processing system (IPS) which has two parts: an image analyzing interferometer (IAI) and an image scanning ellipsometer (ISE). The primary purpose of this paper is to present the basic concept of ISE, which is a novel technique to measure the two dimensional thickness profile of a non-uniform, thin film, from several nm up to several μm, in a steady state as well as in a transient state. It is a full-field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. The ISE was tested by measuring the thickness profile and the refractive index of a nonuniform solid film

  18. Thickness Influence on In Vitro Biocompatibility of Titanium Nitride Thin Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Liviu Duta

    2016-01-01

    Full Text Available We report a study on the biocompatibility vs. thickness in the case of titanium nitride (TiN films synthesized on 410 medical grade stainless steel substrates by pulsed laser deposition. The films were grown in a nitrogen atmosphere, and their in vitro cytotoxicity was assessed according to ISO 10993-5 [1]. Extensive physical-chemical analyses have been carried out on the deposited structures with various thicknesses in order to explain the differences in biological behavior: profilometry, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS, X-ray diffraction and surface energy measurements. XPS revealed the presence of titanium oxynitride beside TiN in amounts that vary with the film thickness. The cytocompatibility of films seems to be influenced by their TiN surface content. The thinner films seem to be more suitable for medical applications, due to the combined high values of bonding strength and superior cytocompatibility.

  19. Thickness dependence of the magnetic properties of ripple-patterned Fe/MgO(001) films

    Science.gov (United States)

    Büttner, Felix; Zhang, Kun; Seyffarth, Susanne; Liese, Tobias; Krebs, Hans-Ulrich; Vaz, C. A. F.; Hofsäss, Hans

    2011-08-01

    Grazing incidence Xe+ ion sputtering was used to create a nanoscale ripple pattern on a thin Fe film, epitaxially grown on MgO(001). The Fe film has a thickness gradient of 0-20 nm and a ripple height of about 3 nm, giving rise to a transition from a continuous film to separated nanorods with decreasing film thickness. This allowed the investigation of the competition between the uniaxial and biaxial anisotropy of the irradiated sample as a function of thickness. From magneto-optical Kerr effect measurements, we determine accurately the cubic magnetocrystalline anisotropy and the uniaxial anisotropy that originates from the ripple pattern using a coherent rotation model. Our results show that the uniaxial anisotropy strength increases, whereas the contribution of the biaxial crystal anisotropy decreases, when going from the continuous film to the nanorod structures.

  20. Structural, transport and microwave properties of 123/sapphire films: Thickness effect

    Energy Technology Data Exchange (ETDEWEB)

    Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D. [Institute of Thermophysics, Novosibirsk (Russian Federation)] [and others

    1994-12-31

    The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.

  1. Investigation of thickness effects on the dielectric constant barium strontium titanate thin films

    CERN Document Server

    Grattan, L J

    2002-01-01

    The collapse in dielectric constant at small thickness commonly observed in ferroelectric thin films was measured and investigated in barium strontium titanate (Ba sub 0 sub . sub 5 Sr sub 0 sub . sub 5 TiO sub 3). The possible mechanisms responsible for this effect are reviewed. Functional measurements were performed on BST thin films, of 7.5 to 950 nm, by incorporating them into capacitor structures with bottom electrodes of strontium ruthenate (SRO) and thermally- evaporated Au top electrodes. A discussion on thin film growth considerations, optimal PLD conditions and the measurement techniques employed in the project is presented. The experimentally determined dielectric constant - thickness profile was fitted using the series capacitor model assuming low dielectric constant interfacial layers in series with the bulk. Consideration of the case where the combined 'dead layer' thickness was close to the total BST thickness revealed that, for this system, the total 'dead layer' thickness had to be less than ...

  2. Thickness effect on magnetocrystalline anisotropy of Co/Pd(111) films: A density functional study

    Science.gov (United States)

    Jekal, Soyoung; Rhim, S. H.; Kwon, Oryong; Hong, Soon Cheol

    2015-05-01

    In this study, we carried out first-principles calculations on magnetocrystalline anisotropy (MCA) of Co/Pd thin films by adopting two different systems of (i) n-Co/3-Pd and (ii) n-Pd/3-Co. In one system, we vary the thickness of Co layer, fixing the thickness of the Pd layer to 3-monolayers, and in the other system vice versa. MCA is mainly governed by the surface and interface Co atoms, while contributions from other Co atoms are smaller. MCA energy (EMCA) of the Co/Pd thin film shows oscillatory behavior with the thickness of the Co layer, but is insensitive to the thickness of the Pd layer. In particular, the n-Co/3-Pd films of n = 2, 4, and 6 exhibit strong perpendicular MCA of about 1 meV. Our results suggest that controlling the thickness of the Co layer in Co/Pd (111) is crucial in achieving strong perpendicular MCA.

  3. Formulation, development, and characterization of magnetic pastes and epoxies for thick film inductors

    OpenAIRE

    Kashani, Mohammad Mansour Riahi

    1992-01-01

    Inductors and transformers constitute two important magnetic components In RF and power hybrids electronic circuitry. Thick film inductors have been subject of extensive research in recent years because they significantly reduce the weight and size, and increase the frequency of operation of electronic circuits. The research work in this dissertation is aimed at the formulation of thick film ferrite pastes and ferrite epoxies and the design, construction, and evaluation of thic...

  4. An experimental analysis of thick-film solid-state reference electrodes

    OpenAIRE

    Sophocleous, Marios; Glanc-Gostkiewicz, Monika; Atkinson, John Karl; Garcia-Breijo, Eduardo

    2012-01-01

    Thick-Film planar solid-state Silver/Silver Chloride (Ag/AgCl) reference electrodes were developed and tested for ion susceptibility and long term drift in approximately 0.04 M potassium chloride (KCl) solution. Various types of electrodes were tested exhibiting stabilities down to 2 millivolts per decade change of chloride concentration. It is demonstrated that Thick-Film reference electrodes are suitable for use in underground soil measurements due to their ruggedness and robustness.

  5. Operating limits for acoustic measurement of rolling bearing oil film thickness

    OpenAIRE

    Dwyer-Joyce, R.S.; Reddyhoff, T.; Drinkwater, B.

    2004-01-01

    An ultrasonic pulse striking a thin layer of liquid trapped between solid bodies will be partially reflected. The proportion reflected is a function of the layer stiffness, which in turn depends on the film thickness and its bulk modulus. In this work, measurements of reflection have been used to determine the thickness of oil films in elastohydrodynamic lubricated (EHL) contacts. A very thin liquid layer behaves like a spring when struck by an ultrasonic pulse. A simple quasi-static spring m...

  6. Operating Limits for Acoustic Measurement of Rolling Bearing Oil Film Thickness

    OpenAIRE

    Dwyer-Joyce, R.S.; Reddyhoff, T.; Drinkwater, B.

    2004-01-01

    An ultrasonic pulse striking a thin layer of liquid trapped between solid bodies will be partially reflected. The proportion reflected is a function of the layer stiffness, which in turn depends on the film thickness and its bulk modulus. In this work, measurements of reflection have been used to determine the thickness of oil films in elastohydrodynamic lubricated (EHL) contacts. A very thin liquid layer behaves like a spring when struck by an ultrasonic pulse. A simple quasi-static spring m...

  7. Influence of film thickness and In-doping on physical properties of CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Sajid, E-mail: sajidarif@hotmail.com [Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000 (Pakistan); Thermal Transport Laboratory, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Shah, Nazar Abbas [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Nazir, Adnan [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Ali, Zulfiqar [Optics Laboratories, P. O. Box 1021, Islamabad (Pakistan); Maqsood, Asghri [CESET, Center for Emerging Sciences, Engineering and Technology, Islamabad (Pakistan)

    2014-02-25

    Highlights: • Fabrication of polycrystalline CdS thin films by Close Spaced Sublimation technique. • The direct band gap of 2.44 eV and the electrical resistivity in the order of 10{sup 6}–10{sup 8} Ω cm was measured. • Resistivity was reduced to the order of 10{sup –2}–10{sup 1} Ω m by the thermally diffusion of indium into CdS films. -- Abstract: Polycrystalline CdS thin films were deposited on glass substrates by close spaced sublimation technique. Samples of various thicknesses, ranging from 250 to 940 nm were obtained. The optical and electrical properties of pure CdS thin films were studied as a function of film thickness. The resistivity of as-deposited CdS films was in the order of 10{sup 6}–10{sup 8} Ω cm, depending upon the film thickness. In the high temperature region, carriers are transported over the grain boundaries by thermionic emission. Resistivity was reduced to the order of 10{sup −2}–10{sup 1} Ω cm by the thermally diffusion of indium into CdS films, without changing the type of carriers. The annealing temperature dependence of structural, optical and electrical properties of In-doped CdS films showed that the samples annealed at 350 °C and 400 °C exhibited better results.

  8. Effects of chromophore concentration and film thickness on thermo-optic properties of electro-optic fluorinated polyimide films

    Institute of Scientific and Technical Information of China (English)

    Hongxiang Song; Chengxun Wu

    2007-01-01

    Electro-optic (EO) effect and thermo-optic (TO) effect are jointly considered on the basis of field-induced and temperature-affected perturbations of the operating point in waveguide components. TO coefficients of EO fluorinated polyimide films with side-chain azobenzene chromophore were measured by attenuatedtotal-reflection (ATR) technique at different temperatures with TE- and TM-polarized lights, respectively.It is found that the absolute values of TO coefficients increase with the increments of both chromophore concentration and film thickness, but the polarization dependence of TO coefficients increases with the increment of chromophore concentration and decreases with the increment of film thickness.

  9. Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications

    Science.gov (United States)

    Bouguila, N.; Kraini, M.; Halidou, I.; Lacaze, E.; Bouchriha, H.; Bouzouita, H.

    2016-01-01

    Indium sulfide (In2S3) films have been deposited on soda-lime glass substrates using a spray technique (CSP). Indium chloride and thiourea were used as precursors at a molar ratio of S:In = 2. The substrate temperature was fixed at 340°C. The effect of film thickness on the structural, morphological and optical properties of the as-deposited films has been studied. These films were characterized by x-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical absorption spectroscopy. As-prepared samples were polycrystalline with a cubic structure and (400) as preferential orientation. Their grain size increased from 35 nm to 41 nm with increasing thickness whereas the dislocation density and microstrain of the films decreased with the increase of thickness. Both SEM and AFM images showed that the films were homogenous with an increase of the surface roughness with the increase of thickness. The optical transmittance of the films decreased from 80% to 20% in the visible and infrared regions when the thickness was increased from 0.78 μm to 6.09 μm. The optical band gap E g was found to be in the range of 2.75-2.19 eV and showed a decrease with film thickness. Based on the measured optical constants (n and k), a Wemple-Didomenico model was used to determine the values of single oscillator energy ( E 0), dispersion energy ( E d), optical band gap ( E g) and high frequency dielectric constant ( \\varepsilon_{∞} ). In addition, these films exhibited n-type conductivity and were highly resistive. These results confirm that In2S3 thin films are a promising alternative as a buffer-layer material for CuInGa(S,Se)2-based solar cells.

  10. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    International Nuclear Information System (INIS)

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry

  11. Temperature- and thickness-dependent elastic moduli of polymer thin films

    Directory of Open Access Journals (Sweden)

    Ao Zhimin

    2011-01-01

    Full Text Available Abstract The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T and thickness (h-dependent elastic moduli of polymer thin films Ef(T,h is developed with verification by the reported experimental data on polystyrene (PS thin films. For the PS thin films on a passivated substrate, Ef(T,h decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*, at which thickness Ef(T,h deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  12. Magnetic properties of permalloy films with different thicknesses deposited onto obliquely sputtered Cu underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoyu; Sun, Xiaojun; Wang, Jianbo; Liu, Qingfang, E-mail: liuqf@lzu.edu.cn

    2015-03-01

    In this work, the influence of obliquely sputtered Cu underlayer of 10 nm on the magnetic properties of normally sputtered Permalloy thin films with different thicknesses from 10 nm to 150 nm has been investigated. It has been found that the samples with the Permalloy layer thickness ranging from 10 nm to 70 nm exhibit a good in-plane uniaxial magnetic anisotropy, and the increase of the film thickness leads to a decrease of the anisotropy field and the natural resonance frequency. The critical Permalloy layer thickness for stripe domain initiation of these films is about 80 nm, which is thinner than that of obliquely sputtered Permalloy thin films without an underlayer. The characteristic shapes of hysteresis loops which can be called ''transcritical'' are observed above the critical thickness. The condition and mechanism of appearing stripe domain structure were discussed and it has been found that the frequency response of permeability of the anisotropic films shows the characteristics of multi-peak resonance. - Highlights: • Py films were fabricated on obliquely sputtered Cu underlayers by RF magnetron sputtering. • Effects of Py layer thickness on anisotropy, ferromagnetic resonance frequency have been studied. • Samples with Py layer (<70 nm) show a good in-plane uniaxial magnetic anisotropy. • Samples with Py layer (>80 nm) show stripe domains and multi-peaks in permeability spectra.

  13. Thickness dependence of magnetic properties in La–Co substituted strontium hexaferrite films with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Yajuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheng, Weiming, E-mail: wmcheng@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yan, Peng [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jincai [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Miao, Xiangshui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-09-15

    The thickness dependence of magnetization reversal and coercivity behavior for La–Co substituted strontium hexaferrite (Sr-M) films was investigated. It is found that perpendicular anisotropy appears only when film thickness (t) is above 110 nm. With increasing t, perpendicular anisotropy energy (K{sub u⊥}) increases gradually to its maximum of 1.76×10{sup 6} erg/cm{sup 3} at t=300 nm, but turns to decrease when t>300 nm. Moreover, when t>110 nm, those films exhibit domains pinning or Stoner–Wohlfarth reversal model, present large K{sub u⊥} values and a rapid increase in H{sub c⊥}. However, while t≤110 nm, Sr-M films show nucleation model of magnetization reversal and perform low coercivity. The origin of the coercivity varying with thickness should be correlated with the grain size and preferred orientations in Sr-M films. - Highlights: • Thickness dependence in submicro-scale bulk system is investigated for La–Sr–Co–Fe–O films. • (0 0 1) preferred orientation gradually increases until t=300 nm and then declines. • The magnetization reversal presents different models with thickness. • Perpendicular anisotropy energy increases to maximum value of 1.76×10{sup 6} erg/cm{sup 3} at t=300 nm. • The coercivity varying with thickness is correlated with the grain size and preferred orientation.

  14. Study of lead free ferroelectrics using overlay technique on thick film microstrip ring resonator

    Directory of Open Access Journals (Sweden)

    Shridhar N. Mathad

    2016-03-01

    Full Text Available The lead free ferroelectrics, strontium barium niobates, were synthesized via the low cost solid state reaction method and their fritless thick films were fabricated by screen printing technique on alumina substrate. The X band response (complex permittivity at very high frequencies of Ag thick film microstrip ring resonator perturbed with strontium barium niobates (SrxBa1-xNb2O6 in form of bulk and thick film was measured. A new approach for determination of complex permittivity (ε′ and ε′′ in the frequency range 8–12 GHz, using perturbation of Ag thick film microstrip ring resonator (MSRR, was applied for both bulk and thick film of strontium barium niobates (SrxBa1-xNb2O6. The microwave conductivity of the bulk and thick film lie in the range from 1.779 S/cm to 2.874 S/cm and 1.364 S/cm to 2.296 S/cm, respectively. The penetration depth of microwave in strontium barium niobates is also reported.

  15. Investigation of structure, adhesion strength, wear performance and corrosion behavior of platinum/ruthenium/nitrogen doped diamond-like carbon thin films with respect to film thickness

    International Nuclear Information System (INIS)

    Research highlights: → Sputtered PtRuN-DLC thin films were fabricated with different film thicknesses. → The graphitization of the films increased with increased film thickness. → The wear resistance of the films increased though their adhesion strength decreased. → The corrosion potentials of the films shifted to more negative values. → However, the corrosion currents of the films decreased. - Abstract: In this study, the corrosion performance of platinum/ruthenium/nitrogen doped diamond-like carbon (PtRuN-DLC) thin films deposited on p-Si substrates using a DC magnetron sputtering deposition system in a 0.1 M NaCl solution was investigated using potentiodynamic polarization test in terms of film thickness. The effect of the film thickness on the chemical composition, bonding structure, surface morphology, adhesion strength and wear resistance of the PtRuN-DLC films was studied using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), micro-scratch test and ball-on-disc tribotest, respectively. It was found that the wear resistance of the PtRuN-DLC films apparently increased with increased film thickness though the adhesion strength of the films decreased. The corrosion results revealed that the increased concentration of sp2 bonds in the PtRuN-DLC films with increased film thickness shifted the corrosion potentials of the films to more negative values but the decreased porosity density in the films significantly decreased the corrosion currents of the films.

  16. The effect of film thickness on critical properties of YBCO film fabricated by TFA-MOD using 211-process

    International Nuclear Information System (INIS)

    YBCO films were fabricated by the TFA-MOD method using the '211-process', and the effects of the film thickness on phase formation, microstructure, texture evolution, and critical properties were evaluated. Various film thicknesses ranging from 0.41 μm to 2.14 μm were obtained by repeating the dip coating and calcining processes one to five times. The critical properties varied significantly with the film thickness. The Ic increased from 35 to 105 A/cm-width with increasing the film thickness from 0.41 μm to 1.17 μm. On the other hand, the corresponding Jc remained almost constant in the range of 0.76-0.90 MA/cm2. With further increases in thickness, these values decreased drastically, which was attributed to the degraded microstructure, i.e., the formation of BaF2 and a-axis grains and degraded texture and surface morphology arising from the insufficient heat treatment time. It is believed that the optimum thickness for improving both the Ic and Jc values is approximately 1.17 μm

  17. Magnetic properties and microstructure investigation of electrodeposited FeNi/ITO films with different thickness

    International Nuclear Information System (INIS)

    Highlights: •FeNi alloy thin films with different thickness deposited on Indium Tin Oxides (ITOs) conductive glass substrates by electrodeposition method. •A columnar crystalline microstructure and domain structure were obtained in FeNi thin films. •Particular FMR spectra of FeNi alloy with different thickness were studied. -- Abstract: FeNi alloy thin films with different thickness deposited on Indium Tin Oxides (ITOs) conductive glass substrates from the electrolytes by electrodeposition method have been studied by magnetic force microscopy (MFM), scanning electron microscopy (SEM) and ferromagnetic resonance (FMR) technique. For these films possessing an in-plane isotropy, the remanence decreases with the increasing of film thickness and the critical thickness that a stripe domain structure emerges is about 116 nm. Characteristic differences of the FMR spectra of different thickness are also observed. The results show that the resonance field at high measured angle increases firstly then decreases with increasing thickness, which may be related to the striped domain structure

  18. Spacer Thickness-Dependent Electron Transport Performance of Titanium Dioxide Thick Film for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reda E. El-Shater

    2015-01-01

    Full Text Available A titanium dioxide (P25 film was deposited by cast coating as conductive photoelectrode and subsequently immersed in dye solution (N719 to fabricate the photoanode of dye-sensitized solar cells (DSSCs. A plastic spacer was used as a separation and sealant layer between the photoanode and the counter electrode. The effect of the thickness of this spacer on the transfer of electrons in the liquid electrolyte of the DSSCs was studied by means of both IV curves and electrochemical impedance. Using a spacer thickness range of 20 μm to 50 μm, efficiency ranges from 3.73% to 7.22%. The highest efficiency of 7.22% was obtained with an optimal spacer thickness of 40 μm.

  19. Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, CheolGyu; Lee, Nam-Hyun; Kwon, Young-Kyu; Kang, Bongkoo, E-mail: bkkang@postech.ac.kr

    2013-10-01

    This paper investigates the effect of Sn concentration and film thickness on properties of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated using a solution process. ZTO solution was synthesized using zinc acetate dehydrate and tin chloride dehydrate dissolved in a solvent composed of 2-methoxyethanol and mono-ethanolamine. A ZTO film was obtained for an active channel on a gate oxide layer by spin-coating the solution at room temperature, drying at 300 °C for 10 min, and annealing at 550 °C for 120 min. The thickness and Sn concentration affected the material structure and electrical properties of ZTO film. The best solution processed ZTO TFT was obtained at film thickness of 35 nm and Sn concentration of 30 at.%. The fabricated ZTO TFT exhibited an on/off ratio of 1.88 × 10{sup 7}, a field effect mobility of 17.02 cm{sup 2}/Vs, a subthreshold swing of 0.77 V/decade, and a threshold voltage of 5.01 V. - Highlights: • Good solution-based zinc tin oxide (ZTO) thin film transistors were fabricated. • The ZTO film should have ∼ 30 at.% Sn and 35–54 nm thickness. • The fabricated devices had an on/off ratio of 1.88 × 10{sup 7} and mobility of 17.02 cm{sup 2}/Vs.

  20. Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors

    International Nuclear Information System (INIS)

    This paper investigates the effect of Sn concentration and film thickness on properties of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated using a solution process. ZTO solution was synthesized using zinc acetate dehydrate and tin chloride dehydrate dissolved in a solvent composed of 2-methoxyethanol and mono-ethanolamine. A ZTO film was obtained for an active channel on a gate oxide layer by spin-coating the solution at room temperature, drying at 300 °C for 10 min, and annealing at 550 °C for 120 min. The thickness and Sn concentration affected the material structure and electrical properties of ZTO film. The best solution processed ZTO TFT was obtained at film thickness of 35 nm and Sn concentration of 30 at.%. The fabricated ZTO TFT exhibited an on/off ratio of 1.88 × 107, a field effect mobility of 17.02 cm2/Vs, a subthreshold swing of 0.77 V/decade, and a threshold voltage of 5.01 V. - Highlights: • Good solution-based zinc tin oxide (ZTO) thin film transistors were fabricated. • The ZTO film should have ∼ 30 at.% Sn and 35–54 nm thickness. • The fabricated devices had an on/off ratio of 1.88 × 107 and mobility of 17.02 cm2/Vs

  1. Gas sensing properties of Cu and Cr activated BST thick films

    Indian Academy of Sciences (India)

    G H Jain; L A Patil

    2006-08-01

    H2S gas sensing properties of BST ((Ba0.67Sr0.33)TiO3) thick films are reported here for the first time. BST ceramic powder was prepared by mechanochemical process. Thick films of BST were prepared by screen-printing technique. The sensing performance of the films was tested for various gases. The films were surface customized by dipping them into aqueous solutions of CuCl2 and CrO3 for various intervals of time. These surface modified BST films showed improved sensitivity to H2S gas (100 ppm) than pure BST film. Chromium oxide was observed to be a better activator than copper oxide in H2S gas sensing. The effect of microstructure and amount of activators on H2S gas sensing were discussed. The sensitivity, selectivity, stability, response and recovery time of the sensor were measured and presented.

  2. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian; Hansen, K.; Guizzetti, M.; Birkelund, Karen; Thomsen, Erik Vilain; Hansen, Ole

    2012-01-01

    elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  3. Thickness dependent wetting properties and surface free energy of HfO2 thin films

    Science.gov (United States)

    Zenkin, Sergei; Belosludtsev, Alexandr; Kos, Šimon; Čerstvý, Radomír; Haviar, Stanislav; Netrvalová, Marie

    2016-06-01

    We show here that intrinsic hydrophobicity of HfO2 thin films can be easily tuned by the variation of film thickness. We used the reactive high-power impulse magnetron sputtering for preparation of high-quality HfO2 films with smooth topography and well-controlled thickness. Results show a strong dependence of wetting properties on the thickness of the film in the range of 50-250 nm due to the dominance of the electrostatic Lifshitz-van der Waals component of the surface free energy. We have found the water droplet contact angle ranging from ≈120° for the thickness of 50 nm to ≈100° for the thickness of 2300 nm. At the same time the surface free energy grows from ≈25 mJ/m2 for the thickness of 50 nm to ≈33 mJ/m2 for the thickness of 2300 nm. We propose two explanations for the observed thickness dependence of the wetting properties: influence of the non-dominant texture and/or non-monotonic size dependence of the particle surface energy.

  4. Coating of a stainless steel tube-wall catalytic reactor with thermally treated polysiloxane thick films

    OpenAIRE

    Guillou, L.; Supiot, P.; Le Courtois, V.

    2005-01-01

    Organosilicon films were grafted over stainless steel substrates thanks to a plasma assisted chemical vapor deposition process. Thicknesses up to 10μm were developed. The organosilicon films were then thermally treated under air and the influence of calcinations conditions was investigated by infrared spectroscopy, Raman microscopy and XPS. On all films, it appears that the structure varies according to the thermal treatment parameters. Indeed the surface composition appears to be SiO1.8 whic...

  5. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  6. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    Science.gov (United States)

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. PMID:27309943

  7. Commercialization of a thick-film solar cell

    Science.gov (United States)

    McDonald, G. D.

    1980-12-01

    The use of screen printing as a technique for producing large area solar cells was evaluated with emphasis on the preparation and improvement in performance of screen printed CdS cells. Thermal gravimetric analysis of the CdS inks used to print CdS films confirm that all the fugitive binders and flux are removed under firing conditions used to prepare the CdS films. Warpage of the Nesatron glass substrates makes their use questionable. Multiple layers of CdS appear to resolve a pin hole problem previously encountered.

  8. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.;

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  9. Thickness distribution of thin amorphous chalcogenide films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pavlista, Martin; Hrdlicka, Martin; Prikryl, Jan [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); Nemec, Petr; Frumar, Miloslav [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); University of Pardubice, Department of General and Inorganic Chemistry, Faculty of Chemical Technology, Pardubice (Czech Republic)

    2008-11-15

    Amorphous chalcogenide thin films were prepared from As{sub 2}Se{sub 3}, As{sub 3}Se{sub 2} and InSe bulk glasses by pulsed laser deposition using a KrF excimer laser. Thickness profiles of the films were determined using variable angle spectroscopic ellipsometry. The influence of the laser beam scanning process during the deposition on the thickness distribution of the prepared thin films was evaluated and the corresponding equations suggested. The results were compared with experimental data. (orig.)

  10. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Takeo, E-mail: t-ohno@wpi-aimr.tohoku.ac.jp [WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Samukawa, Seiji, E-mail: samukawa@ifs.tohoku.ac.jp [WPI - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Fluid Science (IFS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  11. Thickness effects on magnetic properties and ferromagnetic resonance of Co-Ni-Fe soft magnetic thin films

    International Nuclear Information System (INIS)

    In order to apply Co-Ni-Fe thin films for high-frequency magnetic devices, the thickness effects on the magnetic properties of these films have been studied. Coercivity and electrical resistivity of these films increase from 1.5 to 8.9 Oe, and 25 to 88 μΩ cm, respectively, with the decrease of film thickness. The effective permeability of these films is 1300, which is maintained above 700 MHz at 0.1 μm thickness and below. Also, Hk increases from 22 to 65 Oe with the decrease of film thickness, which plays an important role in enhancing the high-frequency characteristics in Co-Ni-Fe thin films with the increase of electrical resistivity. From the XRD, TEM, and FMR investigations of Co-Ni-Fe films, it is certain that the magnetic phases change from amorphous to crystalline phase with the increase of the film thickness

  12. Study of film thickness on fuel rod under high pressure and high temperature steam-water two phase flow

    International Nuclear Information System (INIS)

    The liquid film thickness on the fuel rod is measured by ultrasonic echo technique under high temperature and high pressure steam-water two phase flow. As quality is increased, film thickness is decreased. The film thickness is about 0.2 mm at 9% of quality under 1 MPa. It was found from test data that disturbance wave is not measured clearly and change of film is small. (author)

  13. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Jakubisova-Liskova, Eva, E-mail: liskova@karlov.mff.cuni.cz; Visnovsky, Stefan [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague (Czech Republic); Chang, Houchen; Wu, Mingzhong [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  14. Ceramic thick film humidity sensor based on MgTiO3 + LiF

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO3 + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO3/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time

  15. Synthesis and Seebeck coefficient of nanostructured phosphorus-alloyed bismuth telluride thick films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian; Li, Shanghua; Toprak, Muhammet S.; Muhammed, Mamoun [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Soliman, Hesham M.A. [Royal Institute of Technology (KTH), Department of Microelectronics and Applied Physics, 16440 Stockholm (Sweden); Advanced Technology and New Materials Research Institute (ATNMRI), Mubarak City for Scientific Research and Technology Applications, New Borg El-Arab, 21934 Alexandria (Egypt); Platzek, Dieter; Mueller, Eckhard [Institute of Materials Research, German Aerospace Center (DLR), 51170 Koeln (Germany)

    2008-07-01

    Phosphorous-alloyed Bi{sub 2}Te{sub 3} thick films have been prepared by electrochemical deposition. The average grain size of the films was calculated to be 14-26 nm based on Scherrer's equation. The effect of P on the Seebeck coefficient of thermoelectric P-alloyed Bi{sub 2}Te{sub 3} thick film was investigated. The results show that P-alloyed thick film has n-type conductivity with the Seebeck coefficient of -35 {mu}V/K. The correlation between P site occupancy in the crystal and the Seebeck coefficient was discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Optical behaviour of thick gold and silver films with periodic circular nanohole arrays

    International Nuclear Information System (INIS)

    To better understand the enhanced optical transmission observed with an array of nanoholes on optically thick metallic films, an extensive numerical calculation is presented in this paper to relate the scattering modes observed to transmittance spectral behaviour. Surface plasmon polariton Bloch waves, Wood's anomalies and localized surface plasmon resonances at the rim of the nanoholes are investigated based on scattering modes that form the features of the transmission spectrum. The finite difference time-domain method is applied to calculate the transmission intensity from films of gold and silver subjected to variations in geometrical parameters such as film thickness, spatial period of the structures and hole diameter. Analysis of transmission spectra showed that the cut-off frequency of the array of subwavelength holes is mostly defined by the thickness of the film and the diameter of the holes rather than the periodicity of the structures.

  17. Interference method for monitoring the refractive index and the thickness of transparent films during deposition

    Science.gov (United States)

    Alius, H.; Schmidt, R.

    1990-04-01

    An interferometric method is described for simultaneous measurement of the refractive index and the thickness of transparent isotropic films during the deposition process. Two laser beams are focused impinging at two different angles onto the film. The intensity of the beams reflected from the growing film shows minima and maxima, which are counted and evaluated to determine the refractive index n and the thickness d of the film in the range of some 100 nm up to several micrometers using 633-nm laser light. n and d can be determined within an accuracy better than 1%, if the thickness is larger than three times the vacuum wavelength of the laser. The measurements are well in accordance with calculations of the intensity modulation. The method can easily be extended to multilayer systems.

  18. Thickness Measurement of V2O5 Nanometric Thin Films Using a Portable XRF

    Directory of Open Access Journals (Sweden)

    Fabio Lopes

    2016-01-01

    Full Text Available Nanometric thin films have always been chiefly used for decoration; however they are now being widely used as the basis of high technology. Among the various physical qualities that characterize them, the thickness strongly influences their properties. Thus, a new procedure is hereby proposed and developed for determining the thickness of V2O5 nanometric thin films deposited on the glass surface using Portable X-Ray Fluorescence (PXRF equipment and the attenuation of the radiation intensity Kα of calcium present in the glass. It is shown through the present paper that the radiation intensity of calcium Kα rays is proportional to film thickness in nanometric films of vanadium deposited on the glass surface.

  19. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    Science.gov (United States)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  20. Image scanning ellipsometry for measuring the transient, film thickness profiles of draining liquids

    International Nuclear Information System (INIS)

    Image Scanning Ellipsometry, a technique to measure the two-dimensional thickness profile of a nonuniform, thin, liquid film, from several nanometers up to tens of microns, in the steady and transient states, was developed and tested. The ability of this full-field imaging technique to map every point on the surface simultaneously was demonstrated by measuring the thickness profiles of very thin, draining, liquid films in the interfacial, transition, hydrodynamic, and capillary regions. Depending on the relative size of the intermolecular, gravitational, and capillary forces, four flow regions were identified. Using a simple model for the transient film thickness profiles of a completely wetting, draining film of FC-70, the experimental results were successfully analyzed in the interfacial, transition, and hydrodynamic regions. A diffusion coefficient for the junction line between the interfacial and transition regions was theoretically and experimentally evaluated

  1. Thin films' thickness uniformity associated with the method of electron beam evaporation

    Science.gov (United States)

    Xia, Zhilin; Xue, Yiyu; Guo, Peitao; Li, Zhangwang

    2009-08-01

    Coating material has been considered as being made up of a lot of small tablets. These tablets have plane surface during the whole film preparation process. Based on the assumption that a column etching pit will form in coating material when electron beam is used for heating, influences of the etching pit's dimension and the internal structure of the vacuum chamber on films thickness uniformity have been investigated. Results reflect that the appearance of etching pit does not always cause negative influence on films thickness uniformity. The negative impact of etching on films thickness uniformity can be reduced by optimizing the internal structure of the vacuum chamber and preparation technical parameters. But, it is difficult to achieve the beneficial action. This investigation is useful to help us understand physical meaning of the emission characteristics of the evaporation particle and design experimental scheme.

  2. Sensor for thickness measurement of a liquid metal film

    International Nuclear Information System (INIS)

    Description, calibration and measuring method of a sensor for the measure of thin liquid metal depths in a temperature range of 0-5000C and for shift frequencies from 0 to 100 Hz; these sensors are based on the principle of induction-coil impedance variation, as a function of the thickness of an electrical conductor matter placed in the coil magnetic field

  3. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    International Nuclear Information System (INIS)

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ20 = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ20 of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure

  4. Thin-film thickness profile measurement using a Mirau-type low-coherence interferometer

    International Nuclear Information System (INIS)

    White-light interferometry has been spotlighted for years in the field of microelectronics as a 3D profiling tool but its application was limited to only opaque surfaces. Recently many approaches using white-light extended sources have been performed to measure the top and bottom surfaces of a thin-film structure simultaneously. When the film thickness is less than the coherence length of the light source, two waves reflected from the top and bottom surfaces of the film overlap and the interference signal become more complicated than for an opaque surface. Thus, it is an essential issue to cleanly separate the film thickness and surface height information from the complex interferograms. In this paper, we describe a Mirau-type low-coherence interferometer for measurements of the film thickness and top surface height profile with a simple measurement procedure. Our proposed method is verified by simulating the measurement errors according to the film thickness and measuring a SiO2 patterned film structure. (paper)

  5. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Peng, W.; You, L. X.; Wang, Z., E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China)

    2015-09-21

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ{sub 20} = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ{sub 20} of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure.

  6. Thickness-dependent autophobic dewetting of thin polymer films on coated substrates.

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth R; Walko, Donald A; Wang, Jin

    2011-01-01

    We demonstrate that the wetting behavior of a thin liquid film, poly(4-bromostyrene) (PBrS), on top of a solid substrate may be effectively controlled with the insertion of a secondary liquid film, poly(4-vinyl pyridine) (P4VP), underneath the primary film. This secondary film remains stable under all conditions, and can be viewed as an extension of the substrate itself. On the basis of results from X-ray standing waves generated via total external reflection from an X-ray mirror, time-of-flight secondary ion mass spectroscopy, optical microscopy, and atomic force microscopy, we construct the full Helmholtz free energy versus PBrS thickness curve using existing theories that account for both long- and short-range interactions. The form of the free energy curve, which contains an inflection point and an absolute minimum at a nonzero PBrS thickness, accurately reflects our observation that thick PBrS films undergo autophobic dewetting on top of the stable P4VP, while sufficiently thin PBrS films remain stable. The thickness of the autophobic wetting layer is controlled by the range of the repulsive interaction between the film and the substrate, and is found to be ∼4 nm for the PBrS/P4VP interface. PMID:21117671

  7. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  8. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Renguo [Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Zhang, Hedong, E-mail: zhang@is.nagoya-u.ac.jp [Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Komada, Suguru [Department of Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Mitsuya, Yasunaga [Nagoya Industrial Science Research Institute, Noa Yotsuya Building 2F, 1-13, Yotsuya-Douri, Chikusa-ku, Nagoya 464-0819 (Japan); Fukuzawa, Kenji; Itoh, Shintaro [Department of Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2014-11-30

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  9. An estimation method on failure stress of micro thickness Cu film-substrate structure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The failure of thin film-substrate structure occurs mainly at the thin film or the interface. However, the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size, interface and stress state on the failure behavior of thin film-substrate structure. Based on the scanning electron microscope (SEM) in-situ in- vestigation on the failure models of the Cu thin film-substrate structure and the nano scratched testing results, the failure stresses in different thicknesses of the Cu film-substrate were characterized, which were compared and confirmed by other methods, such as Stoney formula and other empiric equations. These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods. The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film. Therefore, the novel estimating method of failure stress assists people to understand the critical interfacial strength and to set up the failure criterion of thin film-substrate structure.

  10. An estimation method on failure stress of micro thickness Cu film-substrate structure

    Institute of Scientific and Technical Information of China (English)

    WANG XiShu; LI Ying; MENG XiangKang

    2009-01-01

    The failure of thin film-substrate structure occurs mainly at the thin film or the interface.However,the characterizing and estimating methods of failure stress in thin film are neither uniform nor effective because there are some complex effects of such as size,interface and stress state on the failure behavior of thin film-substrate structure.Based on the scanning electron microscope(SEM)in-situ investigation on the failure models of the Cu thin film-substrata structure and the nano scratched testing results,the failure stresses in different thicknesses of the Cu film-substrate were characterized,which were compared and confirmed by other methods,such as Stoney formula and other empiric equations.These results indicate that the novel estimating method of failure stress in thin film based on the critical wavelength of surface unstable analysis is better than other methods.The main reason is that the novel estimating method of failure stress in meso thickness film fully considered the effect factors of free surface unstable behavior and elastic anisotropy of thin film.Therefore,the novel estimating method of failure stress assists people to understand the critical interracial strength and to set up the failure criterion of thin film-substrate structure.

  11. Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique

    International Nuclear Information System (INIS)

    Highlights: • Polycrystalline WO3 Thick films are fabricated by screen printing technique. • Monoclinic phases were the majority in formation of films. • The peak at 1643 cm−1 shows stretching vibrations attributed to W-OH of adsorbed H2O. • Absorption peaks in the range 879–650 cm−1 are attributed to the stretching W-O-W bonds. • Increase in resistance with decrease in RH when exposed to 20–100% RH. - Abstract: Thick films of tungsten oxide based were prepared using standard screen printing technique. To study the effect of temperature on the thick films were fired at different temperature for 30 min in air atmosphere. The WO3 thick films were characterized with X-ray diffraction, scanning electron microscopy and EDAX for elemental analysis. The formation of mixed phases of the film together with majority of monoclinic phase was observed. IR spectra confirm the peak at 1643 cm−1 clearly shows stretching vibrations attributed to the W-OH bending vibration mode of the adsorbed water molecules. The absorption peaks in the range 879–650 cm−1 are attributed to the stretching W-O-W bonds (i.e. ν [W-Ointer-W]). The peak located at 983 cm−1 belong to W=O terminal of cluster boundaries. A change in the resistance was observed with respect to the relative humidity when the WO3 thick films were exposed to a wide humidity range of 20–100%. An increasing firing temperature of WO3 film increases with the sensitivity. The parameters such as sensitivity and hysteresis of the WO3 film sensors have been evaluated

  12. Effect of different surfactants and thicknesses on electrodeposited films of bismuth telluride and its thermoelectric performance

    Science.gov (United States)

    Kulsi, Chiranjit; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali; Goswami, Shyamaprosad

    2015-10-01

    Thin films of bismuth telluride using various surfactants such as sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) have been electrochemically deposited. The influence of different surfactants on crystal orientation and morphology was investigated and correlated with the thermoelectric performance of the electrodeposited films. Since thickness affects the thermoelectric performance compared to the surfactant, thickness- dependent thermoelectric performance has also been investigated. The carrier mobilities of the films obtained are significantly enhanced due to improved surface morphology using different surfactants. Between the two surfactants, films with SDS exhibited the higher value of thermoelectric power, power factor, and figure of merit, which is due to the effect of micelle formation. The XRD pattern of all the films, which are electrodeposited without surfactant or using SDS and PVP, showed preferred crystal orientation along the (018) direction. The roles of organic molecules in the development of nanoparticles with improved thermoelectric properties have been investigated.

  13. The ideal split-thickness skin graft donor site dressing: rediscovery of polyurethane film.

    Science.gov (United States)

    Dornseifer, Ulf; Fichter, Andreas M; Herter, Frank; Sturtz, Gustavo; Ninkovic, Milomir

    2009-08-01

    The almost single disadvantage of polyurethane film dressings, an uncontrolled leakage, is probably as often described as its numerous advantages for split-thickness skin graft donor sites. We solved this problem by perforating the polyurethane film, which permits a controlled leakage into a secondary absorbent dressing. The study included 30 adult patients. Skin graft donor sites at the proximal thigh were dressed with the modified film dressing. Our results indicate that this dressing concept is associated with a reliable, rapid rate of epithelization. Both, controlled leakage and minimal pain caused particular comfort for patients and ward staff. Furthermore, this dressing was also suited for differently shaped and large donor sites. We conclude that the modification results in a more practicable, comfortable, and cost-effective film dressing, which requalifies the polyurethane film as an ideal dressing material for split-thickness skin graft donor sites. PMID:19571740

  14. Properties of second phase (BaSnO3, Sn) added-YBCO thick films

    International Nuclear Information System (INIS)

    The improvement of the critical current density Jc of YBCO thick films has been attempted by adding BaSnO3 powder and ultrafine Sn particles, whose diameter is about 2 μm and 7 x 10-2 μm, respectively. It was found that the addition of a small amount of these particles was effective for the enhancement of Jc of thick films prepared by a liquid-phase processing method. The 1 wt.% BaSnO3 films fired at Ts=1040-1060 C and the 3 wt.% Sn films (Ts=1030-1060 C) showed Jc values (77 K, 0 T) of about 2.1-2.4 x 103 Acm-2 and 3.1-3.5 x 103 Acm-2, respectively, as compared to 2.0 x 103 Acm-2 for the undoped films. (orig.)

  15. Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations

    International Nuclear Information System (INIS)

    Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing as well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO2 gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp

  16. Impact of thickness on microscopic and macroscopic properties of Fe-Te-Se superconductor thin films

    Directory of Open Access Journals (Sweden)

    N. Zhang

    2015-04-01

    Full Text Available A series of iron based Fe-Te-Se superconductor thin films depositing on 0.7wt% Nb-doped SrTiO3 at substrate temperatures in the 250°C -450°C range by pulsed laser ablation of a constituents well defined precursor FeTe0.55Se0.55 target sample. We study the possible growth mechanism and its influence on the superconductor properties. Experimental results indicate the superconductive and non-superconductive properties are modulated only by the thickness of the thin films through the temperature range. The films appear as superconductor whenever the thickness is above a critical value ∼30nm and comes to be non-superconductor below this value. Relative ratios of Fe to (Te+Se in the films retained Fe/(Te+Se1 for non-superconductor no matter what the film growth temperature was. The effect of film growth temperature takes only the role of modulating the ratio of Te/Se and improving crystallinity of the systems. According to the experimental results we propose a sandglass film growth mechanism in which the interfacial effect evokes to form a Fe rich area at the interface and Se or Te starts off a consecutive filling up process of chalcogenide elements defect sides, the process is significant before the film thickness reaches at ∼30nm.

  17. Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Mene, Ravindra U. [PDEA' s, Annasaheb Waghire College of Science, Arts and Commerce, Otur 412409, M.S. (India); School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S. (India); Mahabole, Megha P. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S. (India); Mohite, K.C. [Haribhai. V. Desai College, Pune 411002, M.S. (India); Khairnar, Rajendra S., E-mail: rskhairnarsps@gmail.com [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S. (India)

    2014-02-01

    Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing as well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.

  18. Hydrothermal epitaxial multiferroic BiFeO3 thick film by addition of the PVA

    International Nuclear Information System (INIS)

    Graphical abstract: Epitaxial BiFeO3 (BFO) thin films were fabricated on (0 0 1)-oriented single-crystal SrRuO3(SRO)/SrTiO3(STO) structures by PVA-assistant hydrothermal method. The electrical properties observed in BFO (0 0 1) thin films are superior to those of hydrothermal epitaxy reported previously, which indicates PVA plays an important role in fabricating BFO films by using hydrothermal method. Highlights: •We grow BiFeO3 thick film by hydrothermal method. •PVA as assistant agent epitaxially grow BiFeO3 thick film. •The ferroelectric properties of BiFeO3 thick film were measured. •The electrical properties observed in BFO (0 0 1) thin films are superior to those of hydrothermal epitaxy reported previously. -- Abstract: Hydrothermal method is a much simpler method of epitaxial multiferroic BiFeO3 (BFO) film than physical/chemical vapor deposition methods. In this work, epitaxial BFO thin films were fabricated on (0 0 1)-oriented single-crystal SrRuO3(SRO)/SrTiO3(STO) structures by PVA-assistant hydrothermal method. The results of θ–2θ scan, ω scan and reciprocal space mappings (RSMs) measured by synchrotron high resolution X-ray diffraction and high-resolution transmission electron microscopy (HRTEM) suggest that the BFO films have relaxed to a single-phase monoclinic structure. The electrical properties observed in BFO (0 0 1) thin films are superior to those of hydrothermal epitaxy reported previously, which indicates PVA plays an important role in fabricating BFO films by using hydrothermal method

  19. Transient elastohydrodynamic lubrication film thickness in sliding and rolling line contacts

    International Nuclear Information System (INIS)

    The contact behavior between cam and follower is greatly influenced by the kinematics and dynamics of the whole valve train system. This is the reason that both shape and thickness of the fluid film in the contact gap are mainly determined by applied loads and relative contact speeds as well as the curvatures of contacting elements. Most of the studies about lubricant film behavior between cam and follower have been performed without a consideration of transient effects in the contact gap. For the computational difficulties of transient effects, most contact conditions such as relative contacting speeds have been regarded as quasi-steady state during the whole operating cycle. In this work, in order to obtain stable convergence, a multigrid multi-level method is used for the computation of load capacity in the lubricant film. Nonlinear valve spring dynamics are also considered in the same way as Hanachi's. From the computational results, transient EHL film thicknesses under the conditions of different contact geometries are computed for a pushrod type valve train system during an engine cycle. Several results show the squeeze film effect, which is generally not found with conventional EHL computations of the cam and follower contact. The results are also compared with those by the Dowson-Hamrock (D-H) formula, which does not consider the dynamic film effect. Without the dynamic film effect as in D-H's formula, the minimum film thickness is highly dependent on the entraining lubricant velocity, whereas the minimum film thickness including the squeeze film effect is dependent on the applied load

  20. Variation of structure and magnetic properties with thickness of thin Co59Fe26Ni15 films

    International Nuclear Information System (INIS)

    Variations of phase composition and magnetic properties of electrodeposited nanocrystalline Co-Fe-Ni films with film thickness in the range of 50-500nm were analyzed. The samples were magnetically soft with coercivity in the range Hc=2-20Oe and uniaxial magnetic anisotropy up to Hk=20Oe. It was found that Hc decreases and Hk increases with increasing film thickness. The BCC phase dominates at small film thickness up to about 80nm and the FCC phase increases when the film growths to a larger thickness. The increase of FCC phase correlates with the improvement of the ultrasoft magnetic properties

  1. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel D. Tune

    2013-12-01

    Full Text Available The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2.

  2. Gradual phase transition between the smectic- C* and smectic- CA* phases and the thresholdless antiferroelectricity

    OpenAIRE

    VIJ, JAGDISH; Song, Jang-Kun; Fukuda, Atsuo

    2008-01-01

    PUBLISHED We have constructed the phase diagrams for a binary-mixture system of antiferroelectric and ferroelectric liquid-crystalline materials in both thick and thin cells. In the phase diagrams the boundary between the smectic-C* and smectic-CA * phases runs almost parallel to the temperature axis below from ca. 70 ?C down to at least ?25 ?C. The SmC*-SmCA * phase transition for a thin cell shows a large supercooling, and a gradual transition occurs near the boundary. ...

  3. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZr O3 films

    Science.gov (United States)

    Zhang, Yajun; Li, Gui-Ping; Shimada, Takahiro; Wang, Jie; Kitamura, Takayuki

    2014-11-01

    The intrinsic critical ferroelectric thickness of epitaxial ultrathin capacitors of incipient ferroelectric BaZr O3 (BZO) films with realistic SrRu O3 (SRO) electrodes is investigated by first-principles calculations based on density functional theory. We reveal that polarization can stably exist even in one-unit-cell thick BZO films, i.e., absence of critical thickness, whereas the widely investigated proper ferroelectrics like BaTi O3 and SrTi O3 films have no polarization. The influences of realistic ferroelectric-electrode interface and misfit strain on the ionic and electronic structures of the BZO-SRO thin film system have been examined under the short-circuited boundary condition. It is found that the ionic polarization of conductive SRO electrodes can effectively strengthen the screening of bound charges at the interface, which greatly reduces the depolarization field in the BZO films. Furthermore, the epitaxial misfit strain remarkably enhances the polarization through the enhancement of hybridization of Zr and O electron orbitals, resulting in the disappearance of ferroelectric critical thickness. Our findings are beyond the critical thickness of proper ferroelectrics and are thus promising for future nanometer-scale ferroelectric device such as high-density ferroelectric memory.

  4. Liquid film thickness measurement in small square pipe using ultrasonic pulse-echo method

    International Nuclear Information System (INIS)

    The ultrasonic pulse-echo method is applied to measure thickness in a liquid film. To prevent a piezoelectric element cracking under high temperature conditions, the maximum frequency of sound is limited. On the other hand, the required thickness resolution is about 0.05mm to detect whether or not dryout has occurred. An ultrasonic transducer frequency of 5MHz is selected to satisfy both frequency and resolution requirements for air-water experiments. The changing liquid film thickness on a stainless steel plate is simultaneously measured with the ultrasonic transducer and a laser displacement sensor. The two types of results show good agreement within the range from 0.06 to 0.22mm. Next, the air-water annular flow in the small vertical square pipe is measured using the pulse-echo method. A liquid film sensor based on the electrical conductance method is also used for results comparison. The most frequently observed thickness measured by the two methods is almost the same based on comparison of the measurement histograms. To estimate the resolution of the pulse-echo method, the pulse intensities of multiple reflections in the liquid film are simulated. The results show that a liquid film thickness of 0.03mm can be measured even if the ultrasonic frequency is less than 5MHz. (author)

  5. High-rate growth YBa2Cu3O7-X thick films and thickness dependence of critical current density

    International Nuclear Information System (INIS)

    High-rate in-situ YBa2Cu3O7-x (YBCO) film growth was demonstrated by means of the electron beam co-evaporation. Even though our oxygen pressure is low, ∼ 5 x 10-5 Torr, we can synthesize as-grown superconducting YBCO films at a deposition rate of around 10 nm/s. Relatively high temperatures of around 900 degree C was necessary in this process so far, and it suggests that this temperature at a given oxygen activity allows a Ba-Cu-O liquid formation along with an YBCO epitaxy. Local critical current density shows a clear correlation with local resistivity. Homogeneous transport properties with a large critical current density (4 - 5 MA/cm2 at 77K, 0T) are observed in top faulted region while it is found that the bottom part carries little supercurrent with a large local resistivity. Therefore, it is possible that thickness dependence of critical current density is closely related with a topological variation of good superconducting paths and/or grains in the film bodies. The information derived from it may be useful in the characterization and optimization of superconducting films for electrical power and other applications.

  6. Determination of oxide film thickness on aluminium using 14-MeV neutron activation and BET method

    International Nuclear Information System (INIS)

    A new method is described for the determination of the mean film thickness of aluminium oxides by 14-MeV neutron activation analysis of the oxygen and by BET measurement of the surface area. The mean film thickness obtained is independent of the surface roughness. Stable oxide films consisting of only a few atomic layers of oxygen are detected on aluminium. (author)

  7. Calculation of Oil Film Thickness from Damping Coefficients for a Piston Ring in an Internal Combustion Engine

    DEFF Research Database (Denmark)

    Christiansen, Jens; Klit, Peder; Vølund, Anders;

    2007-01-01

    engine. The basic idea is to use the fluid film damping coefficients to estimate the film thickness variation for a piston ring under cyclic varying load. Reynolds Equation is solved for a piston ring and the oil film thickness is determined. In this analysis hydrodynamic lubrication is assumed and the...

  8. Modeling of time-averaged film thickness distribution downstream of BWR functional spacers

    International Nuclear Information System (INIS)

    Functional spacers play an important role for the annular steam-water flow in boiling water reactors. They are designed to enhance droplet deposition and therefore delay dryout by sustaining the liquid film. Spacers also have an impact on the liquid film thickness on the fuel rod by their effect on the velocity field in the gas core of the flow. This work presents a CFD-based approach to predict the film thickness distribution in proximity of functional spacers based on a two-dimensional mass conservation equation for the liquid film coupled to a steady-state RANS simulation of the gas flow field. The model is validated by experiments with highly resolved film thickness data. For the experiments the gas flow rate, the liquid flow rate, the gas density and the spacer shape are varied. The model and experiments are in good agreement in regard to film thickness distributions downstream of spacers. A model sensitivity analysis shows the key parameters of the model and the potential for future development. The model aims to contribute to the development methodology of functional spacer optimization. (author)

  9. Effect of Film Thickness on the Thermo-Mechanical Behavior of Unpassivated Cu(Ag) Thin Films during Thermal Cycling

    International Nuclear Information System (INIS)

    The stress-temperature and stress-time behavior in electrochemically deposited Cu(1.5 at% Ag) was investigated by substrate curvature measurements. Film stress is separated into the average stress in the grain boundary and the average stress in the grain volume by assuming that grain boundary diffusion is the dominant stress relaxation mechanism. The athermal flow stress, the activation energy for grain boundary diffusion, and the elastic properties are discussed in dependence on film thickness

  10. FABRICATION AND PROPERTIES OF ANTIFERROELECTRIC RAINBOW ACTUATOR

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new type of large-displacement actuator called reduced and internally biased oxide wafer (RAINBOW) is fabricated by chemical reduction of Pb(Sn, Zr, Ti)O3(PSZT) antiferroelectric ceramics and its properties are investigated. It is found that PSZT is easily reduced and the optimal conditions for producing RAINBOW samples are determined to be 870 ℃ for 2~3 h. The antiferroelectricsferroelectrics phase transitions occur at lower field strength in RAINBOW actuators compared with normal PSZT actuators. Large axial displacements are also obtained from the RAINBOW actuator by application of electric fields exceeding the phase switching level. However, the field-induced displacement of the RAINBOW actuator is dependent on the manner of applying load on the samples.

  11. Development of BZO Doped YGdBCO Thick Films Using TFA-MOD Process

    Science.gov (United States)

    Nakamura, T.; Nakahata, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.; Kimura, K.; Hasegawa, T.; Kato, T.; Hirayama, T.

    TFA-MOD (Metal Organic Deposition using Trifluoro-acetates) process is of considerable practical concern for future applications since it can fabricate high performance coated conductors (CCs) with low cost. In this study, we developed the process for fabricating thick films in BZO nanoparticle doped Y0.77Gd0.23Ba1.5Cu3Oy (YGdBCO) CCs in order to realize high Ic values under magnetic field. The effect of RTR (Reel To Reel)-dip-coating conditions on microstructure, Jc(-B-θ) properties, etc. was investigated in order to fabricate crack-free thick and high performance films. A BZO doped YGdBCO film with uniform 3.0 μm thickness showed the high in-field Ic and Jc values of 55.6 A/cm-w and 0.18 MA/cm2@77.8K, 3T, respectively.

  12. Micro-Machined High-Frequency (80 MHz) PZT Thick Film Linear Arrays

    Science.gov (United States)

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the development of a micro-machined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT solgel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (−6 dB) of 60%. An insertion loss of −41 dB and adjacent element crosstalk of −21 dB were found at the center frequency. PMID:20889407

  13. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    Science.gov (United States)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  14. Critical assessment of thickness-dependent conductivity of thin metal films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H.; Vancea, J.

    1981-11-06

    The possibility of determining transport parameters for the electrical conductivity from its dependence on the film thickness (size effect) is discussed. Measured conductivities are used to assess existing theories on the size effect. Only Namba's model can be fitted to experimental curves and this enables us to determine four parameters, namely the conductivity sigmasub(infinity), the mean free path lsub(infinity), the specularity parameter rho and the surface roughness h. The experimental curves have to be fitted for very small film thickness to permit a separation of these parameters. The most important thickness range is just that which in the past has usually been excluded from discussion. Careful experiments and careful computer fittings will enable investigations of electronic states in distorted metal films.

  15. Radiochromic film thickness correction with convergent cone- beam optical CT scanner

    International Nuclear Information System (INIS)

    A cone-beam optical computed tomography (CT) scanner was modified by replacing the diffuse planar yellow light emitting diode (LED) source with violet and red LEDs and a large Fresnel lens. The narrow band sources provided transmission images of radiochromic EBT2 film at 420 and 633 nm, with air as a reference. The dose image was not detectable with the violet source. This demonstrated spectral independence of the two images. Assuming attenuation at 420 nm was dominated by absorption from yellow dye in the active film layer allowed a relative thickness image to be calculated. By scaling the 633 nm optical density image for relative thickness, non-uniformities in the recorded dose distribution due to film thickness variations, were removed

  16. The strain dependence of the transport current characteristics in Bi-2223 silver clamped thick film

    International Nuclear Information System (INIS)

    The dependences of stress on strain, strain on the critical current density, and the relation of Jc(H) at several strains were measured in Bi-2223 silver clamped thick film. The results indicate that the stress-strain curve has two strain transitions which are respectively correspond to the beginning and ending of breaking in Bi1.8Pb0.4Sr2Ca2Cu3Oy thick film. At ΔX/X≤2.5%, the critical current density Jc decreases slowly with ΔX/X increasing. At ΔX/X≥2.5%, Jc decreases rapidly with ΔX/X increasing. As strain increases, the characteristics of Jc(H) decrease rapidly and the weak link junctions emerges obviously. The microstructures show that the decrease of Jc and the variance of characteristics of Jc(H) relate to the breaking of intergrain and grains in the thick film

  17. Translational Diffusion in Supported Rubberly Polymer Films at Different Layer Thicknesses

    Science.gov (United States)

    Pak, Hunkyun; Ellingson, Peter Christopher; Yu, Hyuk

    2002-03-01

    Translational diffusion of an organic dye with C18 hydrocarbon tail (4-octadecylamino-NBD) is examined in thin films of poly(isoprene) and poly(dimethylsiloxane) spincast on substrates. Surface functionalized silicon wafers were used as the substrates. Two kinds of surface functionalized wafers, one with predominantly methyl group and the other with primary amine group, were examined with respect to the diffusion as a function of film thickness over a range of 10-2000 nm. The diffusion coefficient was determined by the technique of fluorescence recovery after photobleaching and the film thickness by ellipsometry. The diffusion coefficient is found to reduce substantially from that in bulk polymers, vary by an order of magnitude over the thickness range, and its dependence is analyzed in terms of a simple model that takes into account of polymer interactions with the functionalized surfaces.

  18. Interaction domains in high performance NdFeB thick films

    International Nuclear Information System (INIS)

    Thick sputtered films (5-300 micron) of NdFeB have excellent hard magnetic properties which make them attractive for applications in micro-electro-mechanical systems (MEMS). A two step process consisting of triode sputtering and high temperature annealing produced films with energy densities approaching those of sintered NdFeB magnets. Magnetic force microscopy (MFM) using hard magnetic tips showed that the films deposited without substrate heating and at 300 C exhibited magnetic domains typical of low anisotropy materials. These films were amorphous in the as-deposited state. The film deposited at 500 C was crystalline and displaid hard magnetic properties. This was reflected in the magnetic microstructure which showed interaction domains typical of highly textured and high magnetic anisotropy materials with a grain size below or equal to the critical single-domain particle limit. With increasing substrate temperature, the domain patterns of the annealed films became coarser, indicating higher degrees of texture.

  19. Adsorbed films of three-patch colloids: continuous and discontinuous transitions between thick and thin films.

    Science.gov (United States)

    Dias, C S; Araújo, N A M; Telo da Gama, M M

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed. PMID:25314441

  20. Application of X-ray fluorescence (WDXRF): thickness and chemical composition determination of thin films

    International Nuclear Information System (INIS)

    In this work a procedure is described for thickness and quantitative chemical composition of thin films by wavelength dispersion X-ray fluorescence (WDXRF) using Fundamental Parameters method. This method was validated according to quality assurance standard and applied sample Al, Cr, TiO2, Ni, ZrO2 (single thickness) and Ni/Cr (double thickness) on glass; Ni on steel and metallic zinc and TiO2 on metallic iron (single thickness), all the sample were prepared for physical deposition of vapor (PVD). The thickness had been compared with Absorption (FRX-A) and Rutherford Backscattering Spectrometry (RBS) methods; the result showed good efficiency of the fundamental parameters method. Sample structural characteristics analyzed by X ray diffraction (XRD) showed any influence in the thickness determinations. (author)

  1. Thick film oxidation of copper in an electroplated MEMS process

    International Nuclear Information System (INIS)

    Copper forms a porous oxide, allowing the formation of oxide layers up to tens of microns thick to be created at modest processing temperatures. In this work, the controlled oxidation of copper is employed within an all-metal electroplating process to create electrically insulating, structural posts and beams. This capability could eliminate the additional dielectric deposition and patterning steps that are often needed during the construction of sensors, waveguides, and other microfabricated devices. In this paper, copper oxidation rates for thermal and plasma-assisted growth methods are characterized. Time control of the oxide growth enables larger copper structures to remain conductive while smaller copper posts are fully oxidized. The concept is demonstrated using the controlled oxidation of a copper layer between two nickel layers to fabricate nickel inductors having both copper electrical vias and copper oxide support pillars. Nickel was utilized in this demonstration for its resistance against low temperature oxidation and interdiffusion with copper. (paper)

  2. Application of Al2O3-based polyimide composite thick films to integrated substrates using aerosol deposition method

    International Nuclear Information System (INIS)

    Al2O3-based polyimide composite thick films were successfully fabricated with reduction of residual stress and improvement in plasticity for integrated substrates at room temperature by aerosol deposition method. Scanning electron microscopy and energy dispersive spectroscopy mappings exhibited a high content of Al2O3 evenly distributed in the composite thick films. The relative dielectric permittivity and loss tangent of Al2O3-based polyimide composite thick films were 7.6 and 0.007, respectively. There was almost no change in the crystallite size of Al2O3-based polyimide composite thick films compared with that of starting powder due to the reduction of kinetic energy by polyimide during collision on the substrates. Moreover, it was confirmed that the residual stress of Al2O3-based polyimide composite thick films remarkably decreased compared with that of Al2O3 thick films.

  3. Interference-aided spectrum fitting method for accurately film thickness determination

    CERN Document Server

    Liu, Xingxing; Xia, Hui; Zhang, Xutao; Ji, Ruonan; Li, Tianxin; Lu, Wei

    2016-01-01

    A new approach was proposed to accurately determine the thickness of film, especially for ultra-thin film, through spectrum fitting with the assistance of interference layer. The determination limit can reach even less than 1 nm. Its accuracy is far better than traditional methods. This determination method is verified by experiments and the determination limit is at least 3.5 nm compared with the results of AFM. Furthermore, double-interference-aided spectra fitting method is proposed to reduce the requirements of determination instruments, which allow one to determine the film thickness with a low precision common spectrometer and largely lower the cost. It is a very high precision determination method for on-site and in-situ applications, especially for ultra-thin films.

  4. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Brunner, M, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Fachhochschule Koeln/University of Applied Sciences, 2 Betzdorfer str., Koeln, 50679 (Germany)

    2011-04-01

    Temperature sensitive thick films based on spinel-type NiMn{sub 2}O{sub 4}-CuMn{sub 2}O{sub 4}-MnCo{sub 2}O{sub 4} manganites with p- and p{sup +}-types of electrical conductivity and their multilayer p{sup +}-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p{sup +}-conductive films. Some part of the p{sup +}-p structures were of high stability, the relative electrical drift being no more than 1 %.

  5. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    International Nuclear Information System (INIS)

    Temperature sensitive thick films based on spinel-type NiMn2O4-CuMn2O4-MnCo2O4 manganites with p- and p+-types of electrical conductivity and their multilayer p+-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p+-conductive films. Some part of the p+-p structures were of high stability, the relative electrical drift being no more than 1 %.

  6. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    The conductimetric interdigitated thick film pH sensors based on RuO2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  7. Critical detonation thickness in vapor-deposited hexanitroazobenzene (HNAB) films with different preparation conditions

    Science.gov (United States)

    Tappan, Alexander; Knepper, Robert; Marquez, Michael; Ball, J.; Miller, Jill

    2013-06-01

    At Sandia National Laboratories, we have coined the term ``microenergetics'' to describe sub-millimeter energetic material studies aimed at gaining knowledge of combustion and detonation behavior at the mesoscale. Films of the high explosive hexanitroazobenzene (HNAB) have been deposited through physical vapor deposition. HNAB deposits in an amorphous state that crystallizes over time and modest heating accelerates this crystallization. HNAB films were prepared under different crystallization temperatures, and characterized with surface profilometry and scanning electron microscopy. The critical detonation thickness for HNAB at different crystallization conditions was determined in a configuration where charge width was large compared to film thickness, and thus side losses did not play a role in detonation propagation. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, crystal structure, and density.

  8. Thickness-dependent magnetic properties of Ce{sub 9}Fe{sub 91} films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xueyun; Wang, Dianyuan; Yu, Jianmin [Faculty of Science, Jiujiang University, Jiujiang City, Jiangxi Province (China); Wang, Zhenkun; Ge, Shihui [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University (China); Yao, Dongsheng [Tianjin Key Laboratory of Low-Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University (China)

    2014-12-01

    Ce{sub 9}Fe{sub 91} films with different thickness were fabricated by a rf magnetron sputtering method. The critical thickness t{sub c} for spin reorientation transition has been determined to be approximately 90 nm using the stripe domain model and magnetic force microscope. Above t{sub c}, the films exhibit Bloch stripe domain structure and a superhigh resonance frequency at 6 GHz is found for the parallel stripe configuration. However, below t{sub c}, the films possess an in-plane uniaxial anisotropy caused by order interface tension between the film and substrate, and the resonance frequency breaks through the Snoek limit. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    Science.gov (United States)

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly. PMID:24914613

  10. Liquid film thickness on fuel rod under high pressure and high temperature steam-water two phase flow

    International Nuclear Information System (INIS)

    This paper deals with behavior of liquid film on the fuel rod which is very important for the critical power prediction. In this study, the liquid film measurement device using an ultrasonic transducer has been developed and the liquid film thickness data has been obtained for a simulated BWR 4 x 4 rod bundle under 1 MPa condition. The cooling fluid is steam-water mixture and flow direction is vertical. Also the following results were obtained. Firstly, the liquid film thickness becomes thinner with increasing quality and the liquid film thickness is about 0.2 mm at 9.3% of quality. Secondary, the time change of liquid film thickness becomes smaller with increasing the quality. It was found that the change of liquid film thickness becomes more smoothly near the dryout condition. (author)

  11. Effect of film thickness on the transport properties of MgB2 synthesized by spray pyrolysis

    International Nuclear Information System (INIS)

    Research highlights: → Thickness of film cab be easily control by spray pyrolysis. → Critical current density of film is comparable to other film synthesized by different route. → Spray pyrolysis is a simple, economic viability technique to synthesis MgB2 film. - Abstract: Polycrystalline MgB2 films of different thickness have been prepared by employing spray pyrolysis technique on MgO (1 0 0) substrate. The MgB2 and other phases have been confirmed using X-ray diffraction technique and no trace of impurities phases have been found. The resistivity behavior shows that the superconducting transition temperature lies in the range of 37-39 K with narrow transition width. The transport critical current density vary with films thickness and achieved highest value ∼1.2 x 106 A/cm2 at 20 K for 2.0 μm thick film and its values increase as thickness increases.

  12. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.

    Science.gov (United States)

    Zhao, Chao; Li, Lingyan; Wang, Qiuming; Yu, Qiuming; Zheng, Jie

    2011-04-19

    The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ∼25-45 nm for polyHPMA and ∼20-45 nm for polyHEMA can achieve almost zero protein adsorption (thickness of ∼20-30 nm adsorb only ∼3.0 and ∼3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ∼30 nm adsorb more proteins of ∼13.5 and ∼50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices. PMID:21405141

  13. Plasma Processing of Boron-Doped Nano-Crystalline Diamond Thin Film Fabricated on Poly-Crystalline Diamond Thick Film

    International Nuclear Information System (INIS)

    Plasma treatments of boron-doped nano-crystalline diamond (NCD) thin films were carried out in order to improve their electrical properties of the films. Boron-doped NCD thin films were fabricated on well polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor, then they were processed in methane, argon, hydrogen and B2H6 (0.1% diluted by H2) plasmas, respectively. Scanning electron microscopy (SEM) and atomic force microscope (AFM) results show that the surface morphology changed little during the 10 min treatment. Secondary ion mass spectroscopy (SIMS) results indicate that B2H6 plasma was efficient for increasing boron concentration in NCD films, while the carrier analyses demonstrates that CH4 plasma processing was effective to activate the dopants and resulted in good electrical properties.

  14. Electroplated Fe-Pt thick films prepared in plating baths with various pH values

    Science.gov (United States)

    Yanai, T.; Furutani, K.; Masaki, T.; Ohgai, T.; Nakano, M.; Fukunaga, H.

    2016-05-01

    Fe-Pt thick-films were electroplated on a Ta substrate using a direct current, and the effect of the pH value of the plating bath on the magnetic properties of the films was evaluated. For the films prepared from the baths with the same bath composition, the Fe composition and the thickness increased with increasing the pH value. In order to remove the effect of the change in the film composition on the magnetic properties, we controlled the film composition at approximately Fe50Pt50 or Fe60Pt40 by the change in the amount of the iron sulfate. The remanence of the annealed Fe60Pt40 films did not depend on the pH value clearly, and showed almost constant value of 0.75 T. We obtained the large coercivity of approximately 460 kA/m in the pH value from 4 to 7. Since the Fe52Pt48 film prepared at pH ≈ 4 shows much higher (BH)max value of 70 kJ/m3 than that of 57 kJ/m3 for our previously-reported Fe50Pt50 film (pH ≈ 2), we concluded that slight higher pH value than not-adjusted one (pH ≈ 2) is effective to increase the coercivity.

  15. Effects of thickness on the statistical properties of the Barkhausen noise in amorphous films

    International Nuclear Information System (INIS)

    The statistical properties of the Barkhausen noise (BN) in thin amorphous films are studied as a function of both the nominal composition and the thickness. BN was observed in single films with nominal compositions Fe73.5Cu1Nb3Si22.5-xBx (with x=4 and 9) in the thickness range 20nm-5μm. The distributions of Barkhausen jump sizes and duration times were obtained and fitted to power laws with critical exponents τ=1.25+/-0.05 and α=1.60+/-0.05, respectively

  16. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.; Stipp, Susan L.S.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  17. Thin film thickness measurement error reduction by wavelength selection in spectrophotometry

    International Nuclear Information System (INIS)

    Fast and accurate volumetric profilometry of thin film structures is an important problem in the electronic visual display industry. We propose to use spectrophotometry with a limited number of working wavelengths to achieve high-speed control and an approach to selecting the optimal working wavelengths to reduce the thickness measurement error. A simple expression for error estimation is presented and tested using a Monte Carlo simulation. The experimental setup is designed to confirm the stability of film thickness determination using a limited number of wavelengths

  18. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    Science.gov (United States)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  19. Morphology and thickness distribution of sputtered W-C-Co films deposited on differently shaped substrates

    International Nuclear Information System (INIS)

    The performance of a coated cutting tool depends on the correct coverage of all of the sample. Previous work on sputtered W-C-Co films showed the excellent wear behaviour of these films if suitable deposition conditions, particularly the substrate bias, were selected. In this work we have studied the influence of the rake face angle of a cutting insert and of the substrate bias on the morphology and on the thickness distribution of sputtered W-C-Co films. When the deposition was carried out just by one side, the best thickness distribution in the lateral face was achieved for unbiased films and large rake face angles or for biased films and small angles. The substrate bias led to worse uniformity of the thickness in the plane face and to a greater difference between thickness values in the plane and lateral faces. For the inserts coated on both sides, the lateral faces showed a uniform coverage irrespective of the rake face angle and the substrate bias used in the deposition. The morphology of the plane faces was always featureless while, in the lateral faces, less dense morphologies were obtained; the compactness degree on these faces depended on the substrate bias. (orig.)

  20. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  1. Phenomenological theory of 1-3 type multiferroic composite thin film: thickness effect

    International Nuclear Information System (INIS)

    The effect of thickness on the para-ferro-phase transition temperatures, the spontaneous polarization and magnetization and hysteresis loops of 1-3 type multiferroic composite thin films was studied in the framework of Landau phenomenological theory. We took into account the electrostrictive and magnetostrictive effects, misfit strains induced from the interfaces of ferroelectric/ferromagnetic portions and film/substrate. Butterfly loops under external fields were also simulated.

  2. Phenomenological theory of 1-3 type multiferroic composite thin film: thickness effect

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaoyan; Wang Biao; Zheng Yue [School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Ryba, Earle [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States)], E-mail: wangbiao@mail.sysu.edu.cn

    2009-01-07

    The effect of thickness on the para-ferro-phase transition temperatures, the spontaneous polarization and magnetization and hysteresis loops of 1-3 type multiferroic composite thin films was studied in the framework of Landau phenomenological theory. We took into account the electrostrictive and magnetostrictive effects, misfit strains induced from the interfaces of ferroelectric/ferromagnetic portions and film/substrate. Butterfly loops under external fields were also simulated.

  3. Thickness-dependent polarization of strained BiFeO3 films with constant tetragonality

    OpenAIRE

    Rault, J. E.; W Ren; Prosandeev, S.; Lisenkov, S.; Sando, D.; S. Fusil; Bibes, M.; Barthelemy, A.; Bellaiche, L.; Barrett, N.

    2012-01-01

    We measure the remnant polarization of ferroelectric domains in BiFeO3 films down to 3.6 nm using low energy electron and photoelectron emission microscopy. The measured polarization decays strongly below a critical thickness of 5-7 nm predicted by continuous medium theory whereas the tetragonal distortion does not change. We resolve this apparent contradiction using first-principles-based effective Hamiltonian calculations. In ultra thin films the energetics of near open circuit electrical b...

  4. Infrared Transmissometer to Measure the Thickness of NbN Thin Films

    CERN Document Server

    Sunter, Kristen A; Lang, Christopher I; Berggren, Karl K

    2015-01-01

    We present an optical setup that can be used to characterize the thicknesses of thin NbN films to screen samples for fabrication and to better model the performance of the resulting superconducting nanowire single photon detectors. The infrared transmissometer reported here is easy to use, gives results within minutes and is non-destructive. Thus, the thickness measurement can be easily integrated into the workflow of deposition and characterization. Comparison to a similar visible-wavelength transmissometer is provided.

  5. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    Science.gov (United States)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-11-01

    For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave-convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant film even showed a larger water contact angle and lower friction and depletion than the full UV-irradiated film. These indicate that UV-patterning of nanometer-thick lubricant films with a minimized linewidth has a better surface functionalization effect than full UV irradiation. Enhancement of the surface functionalization effect may be attributed to a

  6. Image processing techniques for measuring non-uniform film thickness profiles

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, S.V.; Liu, An-Hong; Plawsky, J.L.; Wayner, P.C. Jr. [Rensselaer Polytechnique Institute, Troy, NY (United States)

    1996-12-31

    The long term objective of this research program is to determine the fluid flow and drying characteristics of thin liquid/solid films using image processing techniques such as Image Analyzing Interferometry (IAI) and Image Scanning Ellipsometry (ISE). The primary purpose of this paper is to present experimental data on the effectiveness of IAI and ISE to measure nonuniform film thickness profiles. Steady-state, non-isothermal profiles of evaporating films were measured using IAI. Transient thickness profiles of a draining film were measured using ISE. The two techniques are then compared and contrasted. The ISE can be used to measure transient as well as steady-state profiles of films with thickness ranging from 1 nm to > 20 {mu}m, whereas IAI can be used to directly measure Steady-state and transient profiles of only films thicker than about 100 nm. An evaluation of the reflected intensity can be used to extend the use of the IAI below 100 nm.

  7. Origin of thickness dependent spin reorientation transition of B2 type FeCo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongyoo [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden); Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-12-07

    We have investigated the origin of thickness dependent spin reorientation transition (SRT) of B2 type FeCo alloy using the full potential linearized augmented plane wave method. It has been reported that FeCo alloy films on various substrates show a SRT from perpendicular to in-plane magnetization at an approximate thickness of 15 monolayers (MLs). The enhanced perpendicular magnetic anisotropy in bulk FeCo is attributed to a tetragonal distortion. However, we have found that the tetragonal distortion tends to suppress the magnetocrystalline anisotropy (MCA) energy at increasing film thickness in two-dimensional structure. In contrast, the magnitude of the shape anisotropy energy increases at increasing FeCo film thickness. Interestingly, the shape anisotropy overcomes the MCA and the SRT, from perpendicular anisotropy to in-plane magnetization, which occurs at a thickness of 15 ML. Consequently, we are able to clearly understand the physical mechanism of the thickness dependent SRT in terms of the competing reactions of these two counteracting contributions.

  8. Comparative study on the thickness-dependent properties of ITO and GZO thin films grown on glass and PET substrates

    International Nuclear Information System (INIS)

    The thickness-dependent properties of amorphous Sn-doped In2O3 (ITO) and polycrystalline Ga-doped ZnO (GZO) films grown on polyethylene terephthalate (PET) with a polymeric hard coating were compared with those deposited on Corning glass. The film thickness varied from 20 to 1310 nm. The electrical properties of the ITO films on PET were almost similar to those of the ITO films on glass. On the other hand, GZO films showed slightly poorer electrical properties when deposited on PET, but the difference was marginal. The electrical properties of amorphous ITO films were independent of film thickness, but polycrystalline GZO films exhibited monotonically improving behavior with increasing thickness, mainly due to enhanced crystallinity and increased grain size with increasing film thickness. Although the air-referenced transmittance spectra of films on PET were about 2 - 3% lower than those on glass due to the lower transmittance of PET, the substrate-referenced optical transmittances of films on PET were higher than those on glass, reflecting the somewhat coarse structure of films on PET. Both the ITO and the GZO films on PET with a polymeric hard coating were shown to yield properties comparable to those of both films on glass.

  9. Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness

    International Nuclear Information System (INIS)

    Electrochromic properties of chemically bath deposited nanoporous NiO thin films were investigated as a function of film thickness using Ni sulphate precursor, aqueous ammonia and potassium persulphate as complexing and oxidizing agents respectively. The films were characterized for their structural, morphological, optical and electrochromic properties using X-ray diffraction, scanning electron microscopy, FT-IR spectroscopy, cyclic voltammetry, chronoamperometry and optical transmittance studies. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. Infrared spectroscopy results show the presence of free hydroxyl ion and water in NiO thin films. SEM micrographs revealed nanoporous nature composed of interconnected nanoporous network, forming well defined 3D nano envelopes. The optical band gap energy was found to be decreased from 3.22 to 2.80 eV with increasing film thickness. The electrochromic properties of all the films were investigated in aqueous (KOH) and non aqueous (LiClO4-PC) electrolyte by means of cyclic voltammetry (CV), chronocoulometry (CC) and optical studies. The transmittance modulations or optical density differences during the coloring/bleaching process were found to be increased with the film thickness. This increment in optical differences led to an increase in coloration efficiency (CE) to about 95 cm2/C, which is two times more than that observed in KOH and response time of 2.9 s for bleaching (reduction) and 3.5 s for coloration (oxidation) observed for the film deposited at 60 min with excellent electrochemical stability up to 3000 c/b cycles in LiClO4-PC electrolyte.

  10. Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, D.S.; Suryavanshi, M.J.; Patil, D.S.; Mali, S.S. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India); Moholkar, A.V. [Department of Materials Science and Engineering, Chonnam National University (Korea, Republic of); Kalagi, S.S.; Vanalkar, S.A. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India); Kang, S.R.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University (Korea, Republic of); Patil, P.S., E-mail: patilps_2000@yahoo.com [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India)

    2011-01-15

    Electrochromic properties of chemically bath deposited nanoporous NiO thin films were investigated as a function of film thickness using Ni sulphate precursor, aqueous ammonia and potassium persulphate as complexing and oxidizing agents respectively. The films were characterized for their structural, morphological, optical and electrochromic properties using X-ray diffraction, scanning electron microscopy, FT-IR spectroscopy, cyclic voltammetry, chronoamperometry and optical transmittance studies. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. Infrared spectroscopy results show the presence of free hydroxyl ion and water in NiO thin films. SEM micrographs revealed nanoporous nature composed of interconnected nanoporous network, forming well defined 3D nano envelopes. The optical band gap energy was found to be decreased from 3.22 to 2.80 eV with increasing film thickness. The electrochromic properties of all the films were investigated in aqueous (KOH) and non aqueous (LiClO{sub 4}-PC) electrolyte by means of cyclic voltammetry (CV), chronocoulometry (CC) and optical studies. The transmittance modulations or optical density differences during the coloring/bleaching process were found to be increased with the film thickness. This increment in optical differences led to an increase in coloration efficiency (CE) to about 95 cm{sup 2}/C, which is two times more than that observed in KOH and response time of 2.9 s for bleaching (reduction) and 3.5 s for coloration (oxidation) observed for the film deposited at 60 min with excellent electrochemical stability up to 3000 c/b cycles in LiClO{sub 4}-PC electrolyte.

  11. Effects of depositing temperature and film thickness on residual stress of TiN coated materials

    International Nuclear Information System (INIS)

    Large residual stress is formed in the coating of ceramic material deposited on a metal substrate because of difference in thermal expansion coefficient between the film and the substrate and of some other reasons. The residual stress greatly influences the mechanical properties of the film and the coated material. Therefore, the residual stress is one of the most important factors on evaluating the strength of coated materials. In the present investigation, we studied the residual stress in TiN film deposited on a substrate of spring steel by a multi-arc method as a function of depositing temperature and film thickness. The residual stress in the substrate layer near the interface was also investigated. The TiN film exhibited highly {111}-orientation, i.e., [111] of TiN crystals orients parallel to the surface normal of the substrate within ± 10 degrees. The residual stress in the TiN film could be evaluated by the two-exposure method with getting the lattice strains for 222 diffraction at ψ=0deg and 70.5deg determined by the relation of crystallographic orientation. The results revealed the compressive residual stress of (-5.5)-(-3.5) GPa which is very large compared with the thermal residual stress due to the thermal strain mismatch between the film and the substrate. The residual stress value was greatly depended on the depositing temperature ; it decreased with increasing temperature, and thickness of TiN film and increased with increasing film thickness. The residual stress in the substrate was compressive and below -30 MPa probably due to the implantation of Ti ions into a shallow layer of the substrate. (author)

  12. Evidence of a critical film thickness for the early growth stage transition in YBa2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    YBa2 Cu3 O7-δ thin films were grown by pulsed laser deposition on (100) SrTiO3 substrates with 0 and 5 deg. miscut angles along the [010] direction to observe and manipulate the growth at the early stages. For films on 0 deg miscut substrates, the first 30 A of growth was by island nucleation, and the areal density of nuclei increased with the film thickness. The transition from island nucleation to growth was between 30 and 60 A. Islands grew larger with the film thickness for films thicker than 30 A while the areal density was dramatically reduced. For the films on 5 deg. miscut substrates, the step-flow growth and island nucleation competed with each other for film thicknesses up to 30 A. When the film thickness increased above 60 A, the step-flow mode was dominant and no islands were observed. (author)

  13. A new approach for the measurement of film thickness in liquid face seals

    OpenAIRE

    Reddyhoff, T.; Dwyer-Joyce, R.S.; Harper, P

    2008-01-01

    Face seals operate by allowing a small volume of the sealed fluid to escape and form a thin film between the contacting parts. The thickness of this film must be optimized to ensure that the faces are separated, yet the leakage is minimized. In this work the liquid film is measured using a novel ultrasonic approach with a view to developing a condition monitoring tool. The trials were performed in two stages. Initially tests were based on a lab simulation, where it was possible to compare the...

  14. Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

    Science.gov (United States)

    Khan, M. A. Majeed; Khan, Wasi

    2016-08-01

    In this work, nanostructured In2O3 thin films with thickness in the range of 40-160 nm were deposited on glass substrates by the chemical spray pyrolysis technique. The microstructural, surface morphology and optical properties were investigated as a function of film thickness through x-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy, UV-visible spectroscopy and photoluminescence measurements. The x-ray diffraction analysis showed that the deposited films were polycrystalline in nature with a cubic structure having (222) as preferred orientation. The morphological analyses of the samples exhibited uniform and smooth surface of the films with systematical increments in the surface roughness with increasing film thickness. The grain size increased from 9 nm to 13 nm with increasing film thickness. Raman spectroscopy has been employed to study the crystalline quality and the structural disorder of the films. A blue-shift in the energy band gap ( E g) from 3.74 eV to 3.98 eV was observed with the increase of film thickness. Moreover, photoluminescence peaks of the In2O3 films appeared at 443 nm and 527 nm for all films. The thickness had a substantial influence on the microstructural and optical properties as well as on the luminescence intensity of the films. The strategy presented here indicates that the prepared films could be suitable candidates for optoelectronic device applications.

  15. Raman spectroscopy and microstructure of the pulsed laser-treated silver-anatase thick film

    Science.gov (United States)

    Joya, Yasir F.; Joya, K. S.; Bashir, S.; Anwar, A. W.; Rafique, M. S.; Ahmed, Riaz

    2015-09-01

    The present research describes the effect of laser pulses on crystalline titanium dioxide thick film with self-adsorbed silver ions. Anatase film of up to 4 µm thickness was deposited on ITO glass by doctor-blading technique. The film was heated at 450 °C for 60 min and cooled before immersion in silver nitrate aqueous solution. After drying, films were subjected to nanosecond pulses of the excimer laser, and their structural, microstructural and optical properties were investigated. Scanning electron microscopy and EDX analysis revealed the formation of silver nanoparticles (SNPs) dispersed in the anatase matrix. There was no significant change in the anatase structure as revealed by Raman spectroscopy. The intensity of Raman signals from pristine anatase film was increased after the laser treatment of silver ions on the film. This observation is associated with the phenomenon of localized surface plasmon resonance conferred by the crystalline SNPs. The results obtained by the UV-visible spectroscopy also support the role of SNPs to enhance the photoabsorption of the anatase film in the visible region.

  16. Modulation of ZnO film thickness and formation of water-hyacinth nanostructure

    Science.gov (United States)

    Gunasekaran, Ezhilarasan; Shankar, Prabakaran; Mani, Ganesh Kumar; Bosco Balaguru Rayappan, John

    2014-08-01

    The influence of precursor medium was investigated on the structural, morphological, optical and electrical properties of spray pyrolysis deposited nanostructured ZnO thin films. Three batches of ZnO thin films were deposited on glass substrates using three different solvents (water, water-ethanol [ratio of 1:1] and ethanol) based precursor solution of zinc nitrate hexahydrate. The substrate temperature was fixed at 523 K. The variation in film thickness from 150 to 875 nm was observed as the effect of changing solvent medium. X-ray diffraction (XRD) data confirmed the formation of polycrystalline ZnO thin films with hexagonal wurtzite crystallite structure and the estimated crystallite size was found to be ranging from 31 to 55 nm. Scanning electron micrographs revealed the formation of water-hyacinth shaped nanostructures when water-ethanol mixture was used as the solvent medium. Interestingly, UV-vis spectrophotometer revealed the formation of ZnO film with twin optical band gap of 3.15 eV and 3.56 eV when ethanol was used as the solvent medium. The modulation of film thickness and grain size by solvent medium has strongly influenced the electrical conductivity of ZnO thin films. The homogenous nano-spherical grains with uniform grain boundaries showed a good response towards 100 ppm of ammonia at room temperature.

  17. Amorphous/microcrystalline transition of thick silicon film deposited by PECVD

    Science.gov (United States)

    Elarbi, N.; Jemaï, R.; Outzourhit, A.; Khirouni, K.

    2016-06-01

    Thick silicon films were deposited by plasma-enhanced chemical vapor deposition at different plasma power densities. Annealing treatment was performed on these deposited films. As-deposited and annealed films were characterized by X-ray diffraction, Raman scattering spectroscopy and reflectance spectroscopy. Before annealing, only the film deposited at the plasma power density of 500 mW/cm2 exhibits a diffraction peak corresponding to the (111) plane orientation. Raman spectrum of this film confirms the presence of crystalline phase. After annealing, a transition from amorphous phase to crystalline one occurs for all samples. This transition is accompanied by an increase of the crystalline fraction volume deduced from Raman spectra analysis and by a reduction of optical gap energy.

  18. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si (100) alloy thin films

    Science.gov (United States)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ∼200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ∼1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ∼75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  19. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.;

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  20. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian;

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...

  1. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian;

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...

  2. Thick-film amperometric zirconia oxygen sensors: influence of cobalt oxide as a sintering aid

    International Nuclear Information System (INIS)

    Amperometric thick-film zirconia oxygen sensors are electrochemical devices in which the zirconia thick-film acts as both electrolyte and diffusion barrier. Their preparation involves temperatures of 1300–1400 °C to sinter the thick-film and reduce the through-porosity to a sufficiently low value to restrict oxygen diffusion rates and hence sensor limiting currents. The resulting sensors normally require an operating temperature of 800 °C to enable operation in the percentage oxygen concentration range. In this work sensors were prepared with and without doping with cobalt oxide. Thick-films were characterized using scanning electron microscopy to view a fracture edge and by plotting current–voltage curves of the prepared sensors operated at 600–800 °C in oxygen concentrations up to 21% at atmospheric pressure. It was found that doping with cobalt oxide markedly increased the sintering rate and enabled a reduction of 100–110 °C in sintering temperature for a given final through-porosity. As a result it was possible to operate doped sensors at a temperature around 200 °C lower than otherwise identically-prepared undoped sensors. This is expected to have a beneficial effect on sensor life and reduce operating power. (paper)

  3. Neutron methods for the direct determination of the magnetic induction in thick films

    OpenAIRE

    Kozhevnikov, S. V.; Ott, F.; Radu, F.

    2015-01-01

    We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed.

  4. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    International Nuclear Information System (INIS)

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected

  5. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment.

    Science.gov (United States)

    Sahafi, A; Benetti, A R; Flury, S; Peutzfeldt, A

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment. PMID:25764045

  6. Thick-Film and LTCC Passive Components for High-Temperature Electronics

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2013-04-01

    Full Text Available At this very moment an increasing interest in the field of high-temperature electronics is observed. This is a result of development in the area of wide-band semiconductors’ engineering but this also generates needs for passives with appropriate characteristics. This paper presents fabrication as well as electrical and stability properties of passive components (resistors, capacitors, inductors made in thick-film or Low-Temperature Co-fired Ceramics (LTCC technologies fulfilling demands of high-temperature electronics. Passives with standard dimensions usually are prepared by screen-printing whereas combination of standard screen-printing with photolithography or laser shaping are recommenced for fabrication of micropassives. Attainment of proper characteristics versus temperature as well as satisfactory long-term high-temperature stability of micropassives is more difficult than for structures with typical dimensions for thick-film and LTCC technologies because of increase of interfacial processes’ importance. However it is shown that proper selection of thick-film inks together with proper deposition method permit to prepare thick-film micropassives (microresistors, air-cored microinductors and interdigital microcapacitors suitable for the temperature range between 150°C and 400°C.

  7. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.; Hansen, K.; Guizzetti, M.; Birkelund, Karen; Thomsen, E. V.; Hansen, Ole

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material. It pr...

  8. Thickness-Gradient Films for High Gauge Factor Stretchable Strain Sensors.

    Science.gov (United States)

    Liu, Zhiyuan; Qi, Dianpeng; Guo, Peizhi; Liu, Yan; Zhu, Bowen; Yang, Hui; Liu, Yaqing; Li, Bin; Zhang, Chenguang; Yu, Jiancan; Liedberg, Bo; Chen, Xiaodong

    2015-10-28

    High-gauge-factor stretchable strain sensors are developed by utilizing a new strategy of thickness-gradient films with high durability, and high uniaxial/isotropic stretchability based on the self-pinning effect of SWCNTs. The monitoring of detailed damping vibration modes driven by weak sound based on such sensors is demonstrated, making a solid step toward real applications. PMID:26376000

  9. Control-monitoring systems of environment temperature and humidity based on oxyspinel thick films

    Directory of Open Access Journals (Sweden)

    Vakiv N. M.

    2010-02-01

    Full Text Available The possibility to use planar-type multilayer thick-film structures based on manganite CuxNi1–x–yCo2yMn2–yO4 and aluminate MgAl2O4 spinel oxide ceramics as integrated temperature-humidity sensors for environmental control-monitoring systems is analysed.

  10. In situ Raman spectroscopy of topological insulator BiTe films with varying thickness

    DEFF Research Database (Denmark)

    Wang, C.; Zhu, X.; Nilsson, Louis;

    2013-01-01

    )-MBE-Raman spectroscopy system. When the thickness of Bi2Te3 films decreases from 40 quintuple-layers (QL) to 1 QL, the spectral characteristics of some Raman modes appearing in bulk Bi2Te3 vary and a new vibrational mode appears, which has not been reported in previous studies and might be related to quantum size...

  11. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.;

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...

  12. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Benetti, Ana Raquel; Peutzfeldt, Anne; Flury, Simon

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc...

  13. Predicting the Mean Liquid Film Thickness and Profile along the Annular Length of a Uniformly Heated Channel at Dryout

    Directory of Open Access Journals (Sweden)

    V.Y. Agbodemegbe

    2011-03-01

    Full Text Available The objective of this study was to predict the mean liquid film thickness and profile at high shear stress using a mechanistic approach. Knowledge of the liquid film thickness and its variation with two-phase flow parameters is critical for the estimation of safety parameters in the annular flow regime. The mean liquid film thickness and profile were predicted by the PLIFT code designed in Fortran 95 programming language using the PLATO FTN95 compiler. The film thickness was predicted within the annular flow regime for a flow boiling quality ranging from 40 to 80 % at high interfacial shear stress. Results obtained for a laminar liquid film flow were dumped into an excel file when the ratio of the actual predicted film thickness to the critical liquid film thickness lied within the range of 0.9 to unity. The film thickness was observed to decrease towards the exit of the annular regime at high flow boiling qualities and void fractions. The observation confirmed the effect of evaporation in decreasing the film thickness as quality is increased towards the exit of the annular regime.

  14. Dependence of resistivity of electrodeposited Ni single layer and Ni/Cu multilayer thin films on the film thickness, and electron mean free path measurements of these films

    Directory of Open Access Journals (Sweden)

    Gholamreza Nabiyouni

    2007-09-01

    Full Text Available   The Boltzmann equation is a semiclassical approach to the calculation of the electrical conductivity. In this work we will first introduce a simple model for calculation of thin film resistivity and show that in an appropriate condition the resistivity of thin films depends on the electron mean free path, so that studying and measurement of thin films resistivity as a function of film thickness would lead to calculation of the electron mean free path in the films. Ni single layers and Ni/Cu multilayers were grown using electrodeposition technique in potentiostatic mode. The films also characterized using x-ray diffraction technique and the results show at least in the growth direction, the films were grown epitaxially and follow their substrate textures.

  15. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, N.; Christensen, Bo Toftmann; Bilde-Sørensen, Jørgen;

    2006-01-01

    Films of yuria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive Xray spectrome......Films of yuria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive Xray...

  16. The measurement of conductivity of copper indium disulphide thin films against temperature and thickness

    International Nuclear Information System (INIS)

    Ternary semiconductor copper indium disulphide (CuInS sub 2) thin films have been prepared by thermal evaporation. Three stacked layers of film starting with copper, indium and finally sulphur was deposited on glass substrate in the thickness ratio of 1: 1: I0. The films were then annealed in carbon block by method known as encapsulated sulphurization at 350 degree C for 4 hours. The XRD analysis for four samples of thickness of 449.5, 586, 612 and 654 nm showed that stoichiometric CuInS sub 2, were formed at this annealing condition. The electrical conductivity of CuInS sub 2 thin films were measured against temperature from 150K to 300K. The conductivity values were between 76.6 Sm sup -1 to 631.26 Sm sup -1 and the result showed that it increase exponentially with temperature for the above temperature range. The resulting activation energies were found to be in the range 0.05 to 0.08 eV. This suggested that hopping mechanism predominant to the conducting process. It also found that the conductivity decreased with increasing film thickness

  17. Thickness-dependent structural investigation of thin GaN films by photoelectron diffraction

    International Nuclear Information System (INIS)

    Thin films of hexagonal gallium nitride have been grown on 6H-SiC by ion-beam assisted MBE. The thickness ranges from submonolayers to bulk-like samples of more than 100 monolayers. The samples were characterised by XPS, LEED and XPD. During growth, two different types of wetting layers were observed (i) a Ga metal wetting layer on the SiC substrate and (ii) a Ga metal wetting layer on top of the growing GaN film. They prove essential for the spreading wetting growth mechanism and were used to derive interface electronic parameters of the Ga/SiC and Ga/GaN Schottky barriers. The substrate and the films have been examined by x-ray photoelectron diffraction XPD, a method capable of determining the local atomic structure of crystalline materials. By choosing different photoemission lines, the environments of gallium and nitrogen have been investigated separately and are compared to each other. The differences between Ga2p and Ga3d emission have been evaluated, with Ga3d photoelectrons being bulk sensitive while Ga2p photoelectrons are probing the surface. Features evolving with thickness are identified and interpreted. The experiments are supported by multiple scattering cluster calculations, showing clear trends with increasing film thickness. The simulations also allow the determination of the polarity of the films, which is found to be Ga-terminated for all samples

  18. Magnetic relaxation due to spin pumping in thick ferromagnetic films in contact with normal metals

    Science.gov (United States)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.

    2013-07-01

    Spin pumping is the most important magnetic relaxation channel in ultrathin ferromagnetic layers in contact with normal metals (NMs). Recent experiments indicate that in thick films of insulating yttrium iron garnet (YIG) there is a large broadening of the ferromagnetic resonance (FMR) lines with deposition of a thin Pt layer which cannot be explained by the known damping processes. Here we present a detailed study of the magnetic relaxation due to spin pumping in bilayers made of a ferromagnetic material (FM) and a NM. Two alternative approaches are used to calculate the transverse and longitudinal relaxation rates used in the Bloch-Bloembergen formulation of damping. In one we consider that the dynamic exchange coupling at the interface transfers magnetic relaxation from the heavily damped conduction electron spins in the NM layer to the magnetization of the FM layer while the other utilizes spin currents and the concept of the spin-mixing conductance at the interface. While in thin FM films, the relaxation rates vary with the inverse of the FM layer thickness; in thick films, they become independent of the thickness because in the FM/NM structure the FMR excitation has a surface mode character. Regardless of the thickness range the longitudinal relaxation rate is twice the transverse rate resulting in damping of the magnetization with constant amplitude characterizing a Gilbert process. The enhanced spin-pumping damping explains the experimental observations in YIG/Pt bilayers.

  19. Thickness effect on magnetocrystalline anisotropy of Co/Pd(111) films: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Jekal, Soyoung; Rhim, S. H., E-mail: sonny@ulsan.ac.kr, E-mail: schong@ulsan.ac.kr; Kwon, Oryong; Hong, Soon Cheol, E-mail: sonny@ulsan.ac.kr, E-mail: schong@ulsan.ac.kr [Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2015-05-07

    In this study, we carried out first-principles calculations on magnetocrystalline anisotropy (MCA) of Co/Pd thin films by adopting two different systems of (i) n-Co/3-Pd and (ii) n-Pd/3-Co. In one system, we vary the thickness of Co layer, fixing the thickness of the Pd layer to 3-monolayers, and in the other system vice versa. MCA is mainly governed by the surface and interface Co atoms, while contributions from other Co atoms are smaller. MCA energy (E{sub MCA}) of the Co/Pd thin film shows oscillatory behavior with the thickness of the Co layer, but is insensitive to the thickness of the Pd layer. In particular, the n-Co/3-Pd films of n = 2, 4, and 6 exhibit strong perpendicular MCA of about 1 meV. Our results suggest that controlling the thickness of the Co layer in Co/Pd (111) is crucial in achieving strong perpendicular MCA.

  20. A study of some production parameter effects on the resistance-temperature characteristics of thick film strain gauges

    International Nuclear Information System (INIS)

    Experiments aimed at investigating the possible factors affecting the temperature performance of thick-film resistors are presented. Particular emphasis is given to the temperature coefficient of resistance (TCR) of thick film strain gauges printed on both alumina and stainless steel substrates. The results confirmed that the resistance versus temperature curve is nearly parabolic, but showed that Tmin, the temperature at which the TCR changes to zero, is largely affected by the choice of resistor and substrate materials and also the thickness of the thick-film resistors. A possible explanation is proposed for the observed relationship between resistor thickness and TCR. Other factors, such as the thickness of the substrates, the choice of conductor materials, and whether single- or double-sided printing of the substrate was employed in fabrication were found to make little difference to the temperature performance of the thick-film resistors. (author)

  1. Determination of Optical Constant and Thickness for Thin Film by Using Improved FTM

    Institute of Scientific and Technical Information of China (English)

    CHEN Qian; XIE Yi; CHEN Gong-jing; ZHANG Wei

    2006-01-01

    A new method to determine the optical constant and thickness of thin films is proposed. Based on the Fresnel's optical expression,the improved flexible tolerance method(FTM) is employed in the case of a digital model of thin film to fit the curve of measured reflectance spectrum. The simulation results show a satisfactory correlation of the optical constant with the thickness of the target film. By taking the influence of nonlinear condition into account as well as more direct and indirect limitation,the precision and value-searching efficiency have been improved. Furthermore,the problem of dimension degradation,which exists in "Downhill Simplex",has been successfully avoided. No initial input is needed for the procedure of optimization to achieve optical solution,which makes the whole processing of value calculation much more convenient and efficient.

  2. Field-Assisted and Thermionic Contributions to Conductance in SnO Thick-Films

    Directory of Open Access Journals (Sweden)

    C. Malagù

    2009-01-01

    Full Text Available A deep analysis of conductance in nanostructured SnO2 thick films has been performed. A model for field-assisted thermionic barrier crossing is being proposed to explain the film conductivity. The model has been applied to explain the behavior of resistance in vacuum of two sets of nanostructured thick-films with grains having two well-distinct characteristic radii (=25 nm and =125 nm. In the first case the grain radius is shorter than the depletion region width, a limit at which overlapping of barriers takes place, and in the second case it is longer. The behavior of resistance in the presence of dry air has been explained through the mechanism of barrier modulation through gas chemisorption.

  3. Y-Ba-Cu-O thick films prepared by electrophoresis on silver substrates

    International Nuclear Information System (INIS)

    In the present paper some preliminary results obtained by the electrophoretic preparation of YBCO thick films are given. Films about 5μm in thickness have been deposited on silver substrates and have been characterized by XRD, SEM and electrical measurements. The critical temperature is near 89 K, whereas values of Jc at 77 K and in zero field in the range of 1000 A/cm2 have been achieved. The relatively high transport properties have been ascribed to the fine grain dimensions of the films (less than 1 μm) which result in a good intergrain continuity and in a c-axis texturing of samples perpendicular to their surface

  4. Measurement of oil film thickness for application to elastomeric Stirling engine rod seals

    Science.gov (United States)

    Krauter, A. I.

    1981-01-01

    The rod seal in the Stirling engine has the function of separating high pressure gas from low or ambient pressure oil. An experimental apparatus was designed to measure the oil film thickness distribution for an elastomeric seal in a reciprocating application. Tests were conducted on commercial elastomeric seals having a 76 mm rod and a 3.8 mm axial width. Test conditions included 70 and 90 seal durometers, a sliding velocity of 0.8 m/sec, and a zero pressure gradient across the seal. An acrylic cylinder and a typical synthetic base automotive lubricant were used. The experimental results showed that the effect of seal hardness on the oil film thickness is considerable. A comparison between analytical and experimental oil film profiles for an elastomeric seal during relatively high speed reciprocating motion showed an overall qualitative agreement.

  5. Systems Issues Pertaining to Holographic Optical Data Storage in Thick Bacteriorhodopsin Films

    Science.gov (United States)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Oezcan, Meric; Smithey, Daniel T.; Crew, Marshall; Lau, Sonie (Technical Monitor)

    1998-01-01

    The optical data storage capacity and raw bit-error-rate achievable with thick photochromic bacteriorhodopsin (BR) films are investigated for sequential recording and read- out of angularly- and shift-multiplexed digital holograms inside a thick blue-membrane D85N BR film. We address the determination of an exposure schedule that produces equal diffraction efficiencies among each of the multiplexed holograms. This exposure schedule is determined by numerical simulations of the holographic recording process within the BR material, and maximizes the total grating strength. We also experimentally measure the shift selectivity and compare the results to theoretical predictions. Finally, we evaluate the bit-error-rate of a single hologram, and of multiple holograms stored within the film.

  6. Analysis of variance on thickness and electrical conductivity measurements of carbon nanotube thin films

    Science.gov (United States)

    Li, Min-Yang; Yang, Mingchia; Vargas, Emily; Neff, Kyle; Vanli, Arda; Liang, Richard

    2016-09-01

    One of the major challenges towards controlling the transfer of electrical and mechanical properties of nanotubes into nanocomposites is the lack of adequate measurement systems to quantify the variations in bulk properties while the nanotubes were used as the reinforcement material. In this study, we conducted one-way analysis of variance (ANOVA) on thickness and conductivity measurements. By analyzing the data collected from both experienced and inexperienced operators, we found some operation details users might overlook that resulted in variations, since conductivity measurements of CNT thin films are very sensitive to thickness measurements. In addition, we demonstrated how issues in measurements damaged samples and limited the number of replications resulting in large variations in the electrical conductivity measurement results. Based on this study, we proposed a faster, more reliable approach to measure the thickness of CNT thin films that operators can follow to make these measurement processes less dependent on operator skills.

  7. Film thickness degradation of Au/GaN Schottky contact characteristics

    International Nuclear Information System (INIS)

    Electrical characteristics of Au/n-GaN Schottky contacts with different Au film thicknesses up to 1300 A, have been investigated using current-voltage (I-V) and capacitance-voltage (C-V) techniques. Results show a steady decrease in the quality of the Schottky diodes for increasing Au film thickness. I-V measurements indicate that thin (500 A). Depth profiling Auger electron spectroscopy (AES) shows that the width of the Au/GaN junction interface increases with increasing Au thickness, suggesting considerable inter-mixing of Au, Ga and N. The results have been interpreted in terms of Ga out-diffusion from the GaN giving rise to gallium vacancies that in turn act as sites for electron-hole pair generation within the depletion region. The study supports the recent suggestion that gallium vacancies associated with threaded dislocations are playing an important role in junction breakdown

  8. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring.

    Science.gov (United States)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (∼1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process. PMID:26724022

  9. Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy.

    Science.gov (United States)

    Picart, Catherine; Gergely, Csilla; Arntz, Youri; Voegel, Jean-Claude; Schaaf, Pierre; Cuisinier, Frédéric J G; Senger, Bernard

    2004-10-15

    Up to now, most studies based on optical waveguide lightmode spectroscopy (OWLS) were dedicated to thin adlayers, assumed to be isotropic and homogeneous, for which data analysis was based on an approximation of the mode equations valid when the thickness is small with respect to the wavelength of the laser light. The aim of the present paper is to extend the use of OWLS to thicker deposited layers (up to approximately 400 nm). Both the simplified and extended models are compared in terms of optical parameters, i.e. the refractive index nA, the thickness dA, and the optical mass QA, for experimental data obtained with polyelectrolyte multilayer films. The deviation of these parameters can be quite large when derived using the simplified model instead of the extended model. This observation evidences that OWLS is well suited for the study of "thick" films if the appropriate model is applied to the data analysis. PMID:15494239

  10. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring

    Science.gov (United States)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (˜1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  11. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

    International Nuclear Information System (INIS)

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications. (paper)

  12. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

    Science.gov (United States)

    Wu, Wei; Yu, Qingkai; Peng, Peng; Liu, Zhihong; Bao, Jiming; Pei, Shin-Shem

    2012-01-01

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications.

  13. Optical absorption in SiGe thin films and its dependency on film thickness and annealing temperature

    International Nuclear Information System (INIS)

    Silicon germanium (SiGe) thin films were grown on glass substrate by a thermal diffusion method, and some of the optical properties were investigated. In general, the optical absorption was found to be as functions of films thickness and annealing temperature. From Bardeen's equations and the various (αℎν)1/2 - ℎν plots, the resulting optical band gaps were between 0.71-1.05 eV which corresponded to indirect allowed transition. The results were in a good agreement with those reported earlier. (Author)

  14. The dependence of equilibrium film thickness on grain orientation at interphase boundaries in ceramic-ceramic composites

    Science.gov (United States)

    Knowles; Turan

    2000-06-01

    High-resolution transmission electron microscope observations of hexagonal boron nitride - 3C silicon carbide interphase boundaries suggest that where one or more phases is highly anisotropic, an orientation dependence on equilibrium film thickness can arise. Theoretical considerations of this phenomenon in terms of the equilibrium thickness of an amorphous film between two crystalline media are consistent with the trend seen experimentally. PMID:10841337

  15. Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol-gel spin coating

    Science.gov (United States)

    Wu, Chung-Yi; Lee, Yuan-Ling; Lo, Yu-Shiu; Lin, Chen-Jui; Wu, Chien-Hou

    2013-09-01

    TiO2 nanocrystalline thin films on soda lime glass have been prepared by sol-gel spin coating. The thin films were characterized for surface morphology, crystal structure, chemical composition, thickness, and transparency by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ellipsometry, and UV-vis spectrophotometry. The films prepared by titanium tetraisopropoxide (TTIP) as the precursor under pH of 3.5 ± 0.5 and with calcination temperature of 450 ̊C for 3 h exhibited superior homogeneous aggregation, good optical transparency, superhydrophilicity, and reliable thickness. The effect of film thickness on the photocatalytic degradation of acid yellow 17 was investigated under UV irradiation. The photocatalytic activity was strongly correlated with the number of coatings and followed Langmuir-type kinetics. Under the same film thickness, TiO2 thin films prepared by 0.1 M TTIP exhibited more efficient photocatalytic activity than those prepared by 0.3 M TTIP. For thin films prepared by 0.1 M TTIP, the maximum specific photocatalytic activity occurred at 5 coatings with thickness of 93 ± 1 nm. A model was proposed to rationalize the dependence of the film thickness on the photocatalytic activity, which predicts the existence of an optimum film thickness.

  16. Effect of bottom electrodes on polarization switching and energy storage properties in Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films

    Science.gov (United States)

    Fang, X. G.; Lin, S. X.; Zhang, A. H.; Lu, X. B.; Gao, X. S.; Zeng, M.; Liu, J.-M.

    2015-10-01

    Polarization switching and energy storage properties of a series of Pb0.97La0.02Zr0.95Ti0.05O3 (PLZT) thin films deposited on (100)-textured LaNiO3 (LNO)-buffered Si substrates and (111)-textured Pt/Ti/SiO2/Si substrates were investigated. It was revealed that the PLZT films deposited on the (100)-textured LNO-buffered Si substrates prefer the (100) textured structure, while the orientation of the films deposited on the (111)-textured Pt-coated Si substrates is random. With respect to the films on the Pt-coated Si substrates, the (100) textured PLZT films have bigger compressive residual stress, larger electrical polarization, better dielectric properties, and better energy storage performances. For the (100)-orientated PLZT films, the energy density (Ws) and efficiency (η) measured at room temperature are about 15.3 J/cm3 and 56% respectively. Moreover, the better frequency stability in the range from 20 Hz to 10 kHz, and temperature stability in the range from 25 to 270 °C are demonstrated in the (100)-orientated PLZT films. These results indicate that the PLZT films with LNO bottom electrode could be potential candidate for applications in high energy storage density capacitors.

  17. Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity.

    Science.gov (United States)

    Gu, Cheng; Huang, Ning; Wu, Yang; Xu, Hong; Jiang, Donglin

    2015-09-21

    Porous organic polymers allow the integration of various π-units into robust porous π-networks, but they are usually synthesized as unprocessable solids with poor light-emitting performance as a result of aggregation-related excitation dissipation. Herein, we report a general strategy for the synthesis of highly emissive photofunctional porous polymer films on the basis of a complementary scheme for the structural design of aggregation-induced-emissive π-systems. We developed a high-throughput and facile method for the direct synthesis of large-area porous thin films at the liquid-electrode interface. The approach enables the preparation of microporous films within only a few seconds or minutes and allows precise control over their thickness with sub-nanometer precision. By virtue of rapid photoinduced electron transfer, the thin films can detect explosives with enhanced sensitivity to low parts-per-million levels in a selective manner. PMID:26234636

  18. Direct electrochemical measurements inside a 2000 angstrom thick polymer film by scanning electrochemical microscopy.

    Science.gov (United States)

    Mirkin, M V; Fan, F R; Bard, A J

    1992-07-17

    An extremely small, conically shaped Pt microelectrode tip (with a radius of 30 nanometers) and the precise positioning capabilities of the scanning electrochemical microscope were used to penetrate a thin (200 nanometers) polymer film and obtain directly the standard potential and kinetic parameters of an electrode reaction within the film. The thickness of the film was determined while it was immersed in and swollen by an electrolyte solution. The film studied was the perfluorosulfonate Nafion containing Os(bpy)(3)(2+) (bpy, 2,2'-bipyridine) cast on an indium tin oxide surface. The steady-state response at the ultramicroelectrode allowed direct determination of the rate constant for heterogeneous electron transfer K(o) and the diffusion coefficient D without complications caused by transport in the liquid phase, charge exchange at the liquid-polymer interface, and resistive drop. PMID:17832832

  19. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    A method for thickness determination of thin amalgamable metallic films by total-reflection X-ray fluorescence (TXRF) is presented. The peak's intensity in TXRF spectra are directly related to the surface density of the sample, i.e. to its thickness in a homogeneous film. Performing a traditional TXRF analysis on a thin film of an amalgamated metal, and determining the relative peak intensity of a specific metal line, the layer thickness can be precisely obtained. In the case of gold thickness determination, mercury and gold peaks overlap, hence we have developed a general data processing scheme to achieve the most precise results.

  20. In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF.

    Science.gov (United States)

    Peng, Song; Liu, Zhiguo; Sun, Tianxi; Wang, Guangfu; Ma, Yongzhong; Ding, Xunliang

    2014-08-01

    Confocal micro X-ray fluorescence (CM-XRF) with quasi-monochromatic excitation based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. The relative errors of measuring an Fe film with a thickness of 16.3 μm and a Cu film with a thickness of 24.5 μm were 7.3% and 0.4%, respectively. The non-destructive and in-situ measurement of the thickness and uniformity of multi-ply films of Cu, Fe and Ni on a silicon surface was performed. CM-XRF was convenient in in-situ and elementally resolved analysis of the thickness of multi-ply films without a cumbersome theoretical correction model. PMID:24705010

  1. A model for thickness effect on the band gap of amorphous germanium film

    Science.gov (United States)

    Wang, Xiao-Dong; Wang, Hai-Feng; Chen, Bo; Li, Yun-Peng; Ma, Yue-Ying

    2013-05-01

    A Mott-Davis-Paracrystalline model was proposed to interpret thickness effect of the band gap for amorphous germanium (a-Ge). We believe that a-Ge has a semiconductor-alloy-like structure, it may contain medium-range order (MRO) and continuous random network (CRN) simultaneously and there is a dependence of MRO/CRN ratio on film thickness and preparation methods/parameters. For MRO is dominant, thickness effect can be described by one-dimensional quantum confinement (ODQC) effect of nanocrystals and strain-induced shrinkage of the band gap; For CRN is dominant, thickness dependence can be interpreted by changes in the quality of a CRN and ODQC effect of nanoamorphous phase.

  2. The damping model for sea waves covered by oil films of a finite thickness

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanmin; ZHANG Jie; WANG Yunhua; MENG Junmin; ZHANG Xi

    2015-01-01

    In combination with a wave action balance equation, a damping model for sea waves covered by oil films of a finite thickness is proposed. The damping model is not only related to the physical parameters of the oil film, but also related to environment parameters. Meanwhile, the parametric analyses have been also conducted to understand the sensitivity of the damping model to these parameters. And numerical simulations demonstrate that a kinematic viscosity, a surface/interfacial elasticity, a thickness, and a fractional filling factor cause more significant effects on a damping ratio than the other physical parameters of the oil film. From the simulation it is also found that the influences induced by a wind speed and a wind direction are also remarkable. On the other hand, for a thick emulsified oil film, the damping effect on the radar signal induced by the reduction of an effective dielectric constant should also be taken into account. The simulated results are compared with the damping ratio evaluated by the 15 ENVISAT ASAR images acquired during the Gulf of Mexico oil spill accident.

  3. Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition

    International Nuclear Information System (INIS)

    Atomic layer deposition is adopted to prepare HfO2 and Al2O3 high-k thin films. The HfO2 thin films are amorphous at the initial growth stage, but become crystallized when the film thickness (h) exceeds a critical value (hcritical*). This phase transition from amorphous to crystalline is enhanced at higher temperatures and is discussed, taking into account the effect of kinetic energy. At lower temperatures, the amorphous state can be maintained even when h>hcritical* owing to the small number of activated atoms. However, the number of activated atoms increases with the temperature, allowing crystallization to occur even in films with smaller thickness. The Al2O3 thin films, on the other hand, maintain their amorphous state independent of the film thickness and temperature owing to the limited number of activated atoms. A thermodynamic model is proposed to describe the thickness-dependent phase transition

  4. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  5. Thickness determination of molecularly thin lubricant films by angle-dependent X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    An angle-dependent X-ray photoelectron spectroscopy (XPS) method used to measure the thickness of molecularly thin lubricants was developed. The method was built based on an island model of patched overlayer on a flat substrate by using the photoemission signal solely from the lubricant film. Typical molecularly thin Zdol films on the CHx overcoat of unused commercial magnetic disks were measured to verify the metrology. The lubricant thickness determined by the metrology was equal to the recent result by thermostatic high vacuum atomic force microscopy. The measured deduction in the thickness of the molecularly thin lubricant films, successively irradiated by the monochromatic source operated at 14 kV/250 W, was as low as 1 A during the first irradiation hour. XPS spectra showed that no hydrocarbons, water or oxygen were adsorbed over the Zdol outer surfaces in the tested XPS conditions. The inelastic mean free path (IMFP) of C 1s in Zdol or in CHx was found to be independent of take off angle (TOA) when TOA o. The IMFP of C 1s in Zdol was ∼63.5 A and the lubricant island thickness was ∼35 A

  6. Indium-Nitrogen Codoped Zinc Oxide Thin Film Deposited by Ultrasonic Spray Pyrolysis on n-(111 Si Substrate: The Effect of Film Thickness

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2014-01-01

    Full Text Available Indium-nitrogen codoped zinc oxide (INZO thin films were fabricated by spray pyrolysis deposition technique on n-(111 Si substrate with different film thicknesses at 450°C using a precursor containing zinc acetate, ammonium acetate, and indium nitrate with 1 : 3 : 0.05 at.% concentration. The morphology and structure studies were carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The grain size of the films increased when increasing the film thickness. From XRD spectra, polycrystalline ZnO structure can be observed and the preferred orientation behavior varied from (002 to (101 as the film thickness increased. The concentration and mobility were investigated by Hall effect measurement. the p-type films with a hole mobility around 3 cm2V−1s−1 and hole concentration around 3×1019 cm−3 can be achieved with film thickness less than 385 nm. The n-type conduction with concentration 1×1020 cm−3 is observed for film with thickness 1089 nm. The defect states were characterized by photoluminescence. With temperature-dependent conductivity analysis, acceptor state with activation energy 0.139 eV dominate the p type conduction for thin INZO film. And the Zn-related shallow donors with activation energy 0.029 eV dominate the n-type conduction for the thick INZO film.

  7. Case study on the ultrafast laser ablation of thin aluminum films: dependence on laser parameters and film thickness

    Science.gov (United States)

    Olbrich, M.; Punzel, E.; Roesch, R.; Oettking, R.; Muhsin, B.; Hoppe, H.; Horn, A.

    2016-03-01

    Laser ablation using ultra-short pulsed laser radiation allows the removing of thin films with very high spatial resolution, and working with high repetition rate as well with high through-put. The ultrafast ablation of thin films of aluminum on float glass is investigated using focused femtosecond laser radiation ( λ = 1028 nm, t H = 200 fs, sech2, p f = 1 MHz) as function of the number of pulses N p per point (1-10) and the film thickness d (30-300 nm). It is observed that two thresholds are derived simultaneously for thin films with a thickness thicker than 100 nm by irradiating the metal with single pulsed laser radiation exhibiting a Gaussian intensity distribution: one threshold for gentle ablation H thr,gentle and the other for strong ablation H thr,strong. Multi-pulse irradiation varying the number of pulses per point identifies the incubation effect described by Jee et al. (J Opt Soc Am B 5(3):648, 1968). This model was applied on the thresholds for gentle and strong ablation. Also, varying the layer thickness reducing the thresholds for thin films due heat accumulation. To quantify the experimental data, numerical simulations solving the coupled heat transfer equation of the two-temperature model were performed. A new approach including the temperature dependence of the reflectivity is presented based on the model proposed by Brückner et al. (J Appl Phys 66:1326, 1989). The results of the simulation fit qualitative well to the experimental data of gentle ablation. Theoretical investigation for double pulses with a variable pulse separation time of 1-300 ps were performed in comparison with a single pulse.

  8. Evidence for improvement of critical current by Ag in YBaCuO-Ag thick films

    Energy Technology Data Exchange (ETDEWEB)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D. (Institute of Micro- and Opto-electronics, Department of Physics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland (CH))

    1991-04-15

    The evidence is reported for enhancement of critical current density {ital J}{sub {ital c}} in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thick films with the addition of Ag, which is correlated with improvements in structural properties. An improvement of 50% in {ital J}{sub {ital c}} (up to {similar to}500 A/cm{sup 2} at {ital T}=4.2 K) was obtained in films made from YBCO+60wt % Ag powder, fabricated by the spin-on technique on (100) SrTiO{sub 3}, which is correlated with improvements in structure. The resulting films are 10 {mu}m thick, uniform, partially textured, and show good adherence. The critical temperature {ital T}{sub {ital c}} is improved by the addition of Ag, and a reduction in the density of microcracks and in the amount of secondary phases in the sintered films was observed. Normal-state resistivity is reduced by almost three orders of magnitude, making these films potentially useful for electronic applications in interconnects and novel hybrid circuits.

  9. Evidence for improvement of critical current by Ag in YBaCuO-Ag thick films

    Science.gov (United States)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D.

    1991-04-01

    The evidence is reported for enhancement of critical current density J(c) in YBa2Cu3O(7-delta) thick films with the addition of Ag, which is correlated with improvements in structural properties. An improvement of 50 percent in J(c) (up to about 500 A/sq cm at T = 4.2 K) was obtained in films made from YBCO + 60 wt pct Ag powder, fabricated by the spin-on technique on (100) SrTiO3, which is correlated with improvements in structure. The resulting films are 10 microns thick, uniform, partially textured, and show good adherence. The critical temperature Tc is improved by the addition of Ag, and a reduction in the density of microcracks and in the amount of secondary phases in the sintered films was observed. Normal-state resistivity is reduced by almost three orders of magnitude, making these films potentially useful for electronic applications in interconnects and novel hybrid circuits.

  10. Development of liquid film thickness measurement technique by high-density multipoint electrodes method

    International Nuclear Information System (INIS)

    High-density multipoint electrode method was developed to measure a liquid film thickness transient on a curved surface. The devised method allows us to measure spatial distribution of liquid film with its conductance between electrodes. The sensor was designed and fabricated as a multilayer print circuit board, where electrode pairs were distributed in reticular pattern with narrow interval. In order to measure a lot of electrode pairs at a high sampling rate, signal-processing method used by the wire mesh sensor measurement system was applied. An electrochemical impedance spectrometry concludes that the sampling rate of 1000 slices/s is feasible without signal distortion by electric double layer. The method was validated with two experimental campaigns: (1) a droplet impingement on a flat film and (2) a jet impingement on a rod-shape sensor surface. In the former experiment, a water droplet having 4 mm in diameter impinged onto the 1 mm thick film layer. A visual observation study with high-speed video camera shows after the liquid impingement, the water layer thinning process was clearly demonstrated with the sensor. For the latter experiment, the flexible circuit board was bended to form a cylindrical shape to measure water film on a simulated fuel rod in bundle geometry. A water jet having 3 mm in diameter impinged onto the rod-shape sensor surface. The process of wetting area enlargement on the rod surface was demonstrated in the same manner that the video-frames showed. (author)

  11. Origin of thickness dependence of structural phase transition temperatures in highly strained BiFeO3 thin films

    Science.gov (United States)

    Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; Schlepütz, Christian M.; Senabulya, Nancy; Clarke, Roy; Christen, Hans M.

    2016-03-01

    Two structural phase transitions are investigated in highly strained BiFeO3 thin films as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA to tetragonal) decrease as the film becomes thinner. A film-substrate interface layer, evidenced by half-order peaks, contributes to this behavior, but at larger thicknesses (above a few nanometers), the temperature dependence results from electrostatic considerations akin to size effects in ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase. For ultra-thin films, the tetragonal structure is stable to low temperatures.

  12. (Hg, Sb)Ba2Ca2Cu3O8+δ thick films on YSZ substrates

    International Nuclear Information System (INIS)

    Superconducting thick films of (Hg, Sb)Ba2Ca2Cu3O8+δ have been fabricated on polycrystalline yttria-stabilized-zirconia substrates utilizing an Hg-free precursor film reacted with Hg vapour, released from a solid Hg source, in a sealed quartz tube. The resulting films have been studied by x-ray diffraction, scanning electron microscopy, ac susceptibility and resistance measurement techniques. A high quality Hg(Sb)-1223 superconducting thick film on YSZ can be fabricated by using a pre-melted Hg-free precursor film. The zero resistance superconducting transition temperature in the post-growth oxygenated thick film is in excess of 130 K and the transport critical current density for the film is 510 A cm-2 at 77 K. (author)

  13. In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF

    International Nuclear Information System (INIS)

    Confocal micro X-ray fluorescence (CM-XRF) with quasi-monochromatic excitation based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. The relative errors of measuring an Fe film with a thickness of 16.3 μm and a Cu film with a thickness of 24.5 μm were 7.3% and 0.4%, respectively. The non-destructive and in-situ measurement of the thickness and uniformity of multi-ply films of Cu, Fe and Ni on a silicon surface was performed. CM-XRF was convenient in in-situ and elementally resolved analysis of the thickness of multi-ply films without a cumbersome theoretical correction model. - Highlights: • Confocal micro X-ray fluorescence based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. • In-situ elemental resolved measurement of multi-ply films thickness was carried out. • The uniformity of multiply films was measured and spatially resolved

  14. Laser-based ultrasonic generation in metal film with nanometer thickness used in ICF experiment

    International Nuclear Information System (INIS)

    The generation and detection of laser-based ultrasound were introduced. The experiment was performed. A beam of laser with pulse width of 7 ns produced by Q switch Nd : YAG was used to irradiate Al/Au/Ag metal films with thickness of 200 nm. The signal was detected by Michael interference method and transferred by Fourier method. The ultrasonic vibration frequencies excited in the sample are 32.36, 26.17 and 29.39 MHz, respectively. The work is valuable to detect nano- and micro-meter films used to ICF experiment for the future. (authors)

  15. Impact of nitrogen doping on growth and hydrogen impurity incorporation of thick nanocrystalline diamond films

    Institute of Scientific and Technical Information of China (English)

    Gu Li-Ping; Tang Chun-Jiu; Jiang Xue-Fan; J.L.Pintob

    2011-01-01

    A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline diamond (MCD) films, grown using the same growth parameters except for nitrogen. These experimental results clearly evidence that defect formation and impurity incorporation (for example, N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CHX (x = 1,2,3) growth species for adsorption sites.

  16. Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films.

    Science.gov (United States)

    Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang

    2011-11-01

    In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation. PMID:21936570

  17. A comparative investigation of thickness measurements of ultra-thin water films by scanning probe techniques

    International Nuclear Information System (INIS)

    The reliable operation of micro- and nanomechanical devices necessitates a precise knowledge of the water film thickness present on the surfaces of these devices with accuracy in the nanometer range. In this work, the thickness of an ultra-thin water film was measured by distance tunneling spectroscopy and distance dynamic force spectroscopy during desorption in an ultra-high vacuum system, from about 2.5 nm up to complete desorption at 10-8 mbar. The tunneling current and the amplitude of vibration and the normal force were detected as a function of the probe-sample distance. In these experiments, a direct comparison of both methods was possible. It was determined that dynamic force spectroscopy provides the most accurate values. The previously reported tunneling spectroscopy, which requires the application of significantly high voltages generally leads to values that are 25 times higher than values determined by dynamic force spectroscopy

  18. Influence of Tm-doping on microstructure and luminescence behavior of barium strontium titanate thick films

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingyang [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China); Zhang Tianjin, E-mail: tj65zhang@yahoo.com.cn [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062 (China); Pan Ruikun; Ma Zhijun; Wang Jinzhao [School of Materials Science and Engineering, Hubei University, Wuhan, 430062 (China)

    2012-01-15

    Tm-doped Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} thick films were prepared by the screen-printing technique on the alumina substrate. The microstructure of the Tm-doped BST thick films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy, respectively. All the samples showed a typical perovskite polycrystalline structure when sintered at 1260 Degree-Sign C. The substitution behavior of Tm{sup 3+} ion in BST was found to change with increasing the Tm{sup 3+} concentration. The observed Tm-related red emission reaches the maximum at 0.2 mol% Tm{sup 3+} concentration. The effects of concentration quenching on the luminescence intensity were discussed.

  19. Stress relaxation and critical layer thickness of high temperature superconductor thin films, heterostructures and superlattices

    International Nuclear Information System (INIS)

    The heteroepitaxial growth of high temperature superconductor thin films on single crystal substrates produces strained heterostructures when the mismatch is small and the thickness of the epilayer is not large. Although a large number of studies have been carried out in the case of semiconductor epitaxy, only a few papers report models or experimental results dealing with the relaxation of the elastic strain in cuprate heterostructures. The authors apply here the calculations performed for semiconductor epitaxial layers and pseudomorphic superlattices to estimate the critical layer thickness of cuprate thin films, heterostructures and superlattices. The result of these calculations is discussed with respect to the previously reported data and also to the results in the case of YBaCuO heterostructures. 50 refs., 8 figs., 1 tab

  20. Evaluation of Cadmium-Free Thick Film Materials on Alumina Substrates

    Energy Technology Data Exchange (ETDEWEB)

    L. H. Perdieu

    2009-09-01

    A new cadmium-free material system was successfully evaluated for the fabrication of thick film hybrid microcircuits at Honeywell Federal Manufacturing & Technologies (FM&T). The characterization involved screen printing, drying and firing two groups of resistor networks which were made using the current material system and the cadmium-free material system. Electrical, environmental and adhesion tests were performed on both groups to determine the more suitable material system. Additionally, untrimmed test coupons were evaluated to further characterize the new materials. The cadmiumfree material system did as well or better than the current material system. Therefore, the new cadmium-free material system was approved for use on production thick film product.

  1. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    Science.gov (United States)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  2. DESIGN OF FILM THICKNESS INSTRUMENT FOR FIBRE POLYMER COMPOSITES TRIBOLOGICAL EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    B. F. YOUSIF

    2014-04-01

    Full Text Available New technique to measure film thickness in tribological experiments is presented in the current study. The technique is based on strain gauges circuit fixed on a lever of the block on ring (BOR machine. Conversion of strain gauge readings was made to determine the film thickness values. For testing purposes, experiments were conducted using the new machine to investigate the wear performance of glass/polyester composites. The tests were performed against aluminium counterface at different applied loads (0.5 N to 3 N for 10 minutes sliding time under wet contact conditions. From the results, the new technique highly assisted to analysis the tribological results. The SEM showed different damage features.

  3. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness

    International Nuclear Information System (INIS)

    Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al2O3 films were grown on a moving polymer web substrate at 100 °C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13 nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/s and a vertical gap height of 0.5 mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD

  4. Thickness-dependent thin-film resistivity: Application of quantitative scanning-tunneling-microscopy imaging

    Science.gov (United States)

    Reiss, G.; Hastreiter, E.; Brückl, H.; Vancea, J.

    1991-02-01

    The dependence of thin-film resistivity on the thickness is known to be strongly influenced by the interaction of the conduction electrons with the surface. Great efforts have been made in recent years, mainly concerning the quantum-mechanical description of the surface scattering. Detailed discussions of this problem, however, suffer from the lack of information concerning the real topography of thin-film surfaces. The development of scanning tunneling microscopy (STM) now gives the chance of direct, quantitative imaging. In this paper, we use the topographic information of STM to improve the fitting of theoretical descriptions to the measured thickness-dependence of the resistivity. The transport parameters obtained from these calculations show a high degree of physical consistency.

  5. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Science.gov (United States)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Geng, De-qiang; Wu, Di; Lu, Yan-qing

    2016-07-01

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (˜28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  6. Characterization of Thick and Thin Film SiCN for Pressure Sensing at High Temperatures

    Directory of Open Access Journals (Sweden)

    Rama B. Bhat

    2010-02-01

    Full Text Available Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA, thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40–60 µm and thick (about 2–3 mm films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated.

  7. Ultrasonic transducers based on curved lead-free piezoelectric thick films for high resolution medical imaging

    OpenAIRE

    Levassort, Franck; Astafiev, Konstantin; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Nielsen, Lise; Wolny, Wanda W.; Lethiecq, Marc

    2012-01-01

    KNN-based lead free ferroelectric materials are receiving much attention due to their high electromechanical properties that make them promising candidates to replace the lead-based piezoceramics that will eventually be banned by environmental regulations in many countries over the world. Studies include the development of KNN thick films that are particularly well adapted for high frequency applications due to higher wave velocities and a dielectric constant in an acceptable range for single...

  8. Degradation effect on the stress fluctuation spectrum in thick high-temperature superconducting films

    International Nuclear Information System (INIS)

    The noise parameters of high-temperature superconductors (yttrium-barium cuprates) before and after degradation are studied. The samples presented thick films - 10.5 mm x 5.5 mm x 8 μm, obtained through magnetron spraying on the ZrO sublayer. The model of originating tress fluctuations is proposed. The measurements results prove the notion that the noise spectrum observed is related to resistance fluctuations

  9. Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.

    Science.gov (United States)

    Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun

    2016-08-01

    The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material. PMID:27166762

  10. [Determination of film thickness, component and content based on glass surface by using XRF spectrometry].

    Science.gov (United States)

    Mei, Yan; Ma, Mi-Xia; Nie, Zuo-Ren

    2013-12-01

    Film thickness, component and content based on glass surface were determined by using XRF technic, measure condition and instrument work condition in every layer were set and adjusted for the best measure effect for every element. Background fundamental parameter (BG-FP) method was built up. Measure results with this method were consistent with the actual preparation course and the method could fit to production application. PMID:24611412

  11. Preparation and characterization of Cu and Zn modified nickel manganite NTC powders and thick film thermistors

    International Nuclear Information System (INIS)

    Highlights: ► Simple ball milling/thermal treatment procedure of starting oxide powders. ► Good thermistor characteristics (thermal constant, activation energy). ► Low resistivity drift obtained for Zn and Cu modified nickel manganite thermistors. ► Candidates for temperature and heat loss sensor applications. - Abstract: A simple ball milling/thermal treatment procedure was applied to obtain fine thermistor powders. Three different powder compositions were analyzed–Cu0.2Ni0.5Zn1.0Mn1.3O4, Cu0.25Ni0.5Zn1.0Mn1.25O4 and Cu0.4Ni0.5Mn2.1O4. XRD analysis showed that all three powder compositions had a cubic spinel structure. Correlation between the sintering temperature, structure and resulting electrical properties was analyzed on bulk samples. Thick film pastes were composed and segmented thick film thermistors were screen printed on alumina, dried and fired. SEM analysis revealed a typical dendrite structure with small grains and a developed surface area. Thick film sheet resistance was measured on a test matrix and the resistance decreased with increasing Cu content. The temperature dependence of sample resistance was measured in a climatic chamber enabling calculation of the material constant and activation energy. Aging of the obtained segmented thermistors was analyzed and the resistivity drift was 0.23% for the Cu0.2Ni0.5Zn1.0Mn1.3O4 NTC thick film thermistor confirming greater stability of thermistors containing Zn and Cu that in combination with the determined good thermistor characteristics make them good candidates for temperature and heat loss sensor applications.

  12. Extraction of optical constants and thickness of nanometre scale TiO2 film

    Institute of Scientific and Technical Information of China (English)

    Yang Ying-Ge; Liu Pi-Jun; Wang Ying; Zhang Ya-Fei

    2005-01-01

    TiO2 thin filmswere deposited on glass substrates by sputtering in a conventional rf magnetron sputtering system. X-ray diffraction pattern and transmission spectrum were measured. The curves of refraction index and extinction coefficient distributions as well as the thickness of films calculated from transmission spectrum were obtained. The optimization problem was also solved using a method based on a constrained nonlinear programming algorithm.

  13. Characterization of thick and thin film SiCN for pressure sensing at high temperatures.

    Science.gov (United States)

    Leo, Alfin; Andronenko, Sergey; Stiharu, Ion; Bhat, Rama B

    2010-01-01

    Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA), thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40-60 μm) and thick (about 2-3 mm) films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated. PMID:22205871

  14. Critical current density of Bi-2212 thick films processed by partial melting

    International Nuclear Information System (INIS)

    Bi2Sr2CaCu2O8+δ (Bi-2212) thick films were produced via tape casting and partial melting. The aim of the study was to investigate the influence of the different heat treatment steps on the critical current density of the films. Five processing parameters were studied: maximum densification temperature, cooling rate during crystallization, annealing time after crystallization, reduction treatment and processing atmosphere. It will also be demonstrated that the critical current density strongly depends on the sample thickness. In 20 μm thick films we achieved 20,000 A cm-2 at 77 K - 0 T and 300,000 A cm-2 at 10 K - 0 T. The critical current density at 77 K - 0 T dropped to 6200 A cm-2 in 130 μm thick films and levelled out at 3000 A cm-2 in bulk samples thicker than 500 μm. These high critical current densities were reached only using a narrow processing window. The maximum densification temperature had to be within 5 - 10 deg. C above the solidus temperature (875 deg. C). Cooling from the maximum temperature to an annealing temperature of 850 deg. C had to be around 5 to 10 deg. C h-1 and the final annealing step was prolonged up to 70 h to optimize the critical current density. All processing steps were carried out in pure oxygen (1 atm) except the last step, reduction annealing at 500 deg. C for 20 h, that was performed in nitrogen (p(O2) approx. 0.01 atm). Processing in air (p(O2) = 0.21 atm) instead of oxygen leads to strongly decreased critical current densities in the high-temperature region above 30 K. (author)

  15. Influence of doped silver on transport current characteristics of Bi(2223) thick film

    International Nuclear Information System (INIS)

    We measured the characteristics of transport current of thick films doped and undoped Ag with nominal composition Bi1.8Pb0.4Sr2Ca2Cu3Oy at applied magnetic field H parallel to ab-plane at 77K, respectively. We also measured the influence of the cooling cycles on critical current density. The results show that doping Ag strengthens the junctions between grains, while can not raise the critical current density effectively

  16. Ceramic on Metal Substrates Produced by Plasma Spraying for Thick Film Technology

    OpenAIRE

    Lech Pawłowski; Leszek Gołonka

    1983-01-01

    The arc plasma spraying process was applied to obtain ceramic coatings on stainless steel substrates. The outer coatings were formed from pure alumina or alumina + 2 wt. % titania mixture. The nichrome intermediate coating was applied to increase adhesion of ceramic coating to stainless steel. The X-ray analysis, metallographic and SEM investigations of the sprayed coatings were also carried out. The effect of interaction of thick film conductor and resistor compositions was studied. Conducto...

  17. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    International Nuclear Information System (INIS)

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical support materials since only Pb(ZrxTi1-x)O3 (PZT) is strained; as a result, the effective system coupling coefficient is increased, and thus a potential for significantly higher output power is released. In addition, when the two layers are connected in series, the output voltage is increased, and as a result the relative power loss in the necessary rectifying circuit is reduced. We describe an improved process scheme for the energy harvester, which resulted in a robust fabrication process with a record high fabrication yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit. (paper)

  18. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    International Nuclear Information System (INIS)

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time

  19. Ultrathin magnesia films as support for molecules and metal clusters: Tuning reactivity by thickness and composition

    Energy Technology Data Exchange (ETDEWEB)

    Vaida, Mihai E.; Bernhardt, Thorsten M. [Institute of Surface Chemistry and Catalysis, University of Ulm (Germany); Barth, Clemens [CINAM-CNRS, Marseille (France); Esch, Friedrich; Heiz, Ueli [Department of Chemistry, Technical University of Munich, Garching (Germany); Landman, Uzi [School of Physics, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2010-05-15

    Ultrathin metal oxide films have attracted considerable interest in recent years as versatile substrate for the design of nanocatalytic model systems. In particular, it has been proposed theoretically and confirmed experimentally that the electronic structure of adsorbates can be influenced by the layer thickness and the stoichiometry, i.e., the type and number of defects, of the oxide film. This has important consequences on the chemical reactivity of the oxide surface itself and of oxide supported metal clusters. It also opens new possibilities to influence and to control chemical reactions occurring at the surface of these systems. The present feature focuses on very recent experiments that illustrate the effects of a proper adjustment of layer thickness and composition of ultrathin MgO(100) films on chemical transformations. On the magnesia surface itself, the photodissociation dynamics of methyl iodide molecules is investigated via femtosecond-laser pump-probe mass spectrometry. Furthermore, the catalytic oxidation of carbon monoxide at mass-selected Au{sub 20} clusters deposited on magnesia is explored through temperature programmed reaction measurements. In the latter case, detailed first principles calculations are able to correlate the experimentally observed reactivity with structural dimensionality changes that are induced by the changing thickness and composition of the magnesia support. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Thickness dependence of Young's modulus and residual stress of sputtered aluminum nitride thin films

    Science.gov (United States)

    Schneider, M.; Bittner, A.; Schmid, U.

    2014-11-01

    Aluminum nitride thin films are commonly used as active layer in micro-/nanomachined devices due to their piezoelectric properties. In order to predict the performance of advanced device architectures, careful modelling and simulation using techniques such as finite element analysis are of the utmost importance. An accurate knowledge of the corresponding thin film material properties is therefore required. This work focuses on the mechanical properties residual stress and Young's modulus over a wide thickness range from 100 to 1200 nm. The load-deflection technique is used to measure the bending curve of a circumferentially clamped, circular aluminum nitride diaphragm under a uniformly distributed pressure load. The bending curves are analyzed using an advanced analytical approach rather than commonly used models for load-deflection methods, thus resulting in a higher accuracy. It is found that the Young's modulus is nearly independent of film thickness, whereas the tensile residual stress exhibits a maximum at a thickness of about 600 nm. A thorough discussion of possible error sources is presented and approaches to minimize their impact are discussed.

  1. Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors

    Indian Academy of Sciences (India)

    D R Patil; L A Patil; D P Amalnerkar

    2007-12-01

    The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ethanol vapours at 300°C. Aluminium oxide grains dispersed around ZnO grains would result into the barrier height among the grains. Upon exposure of ethanol vapours, the barrier height would decrease greatly leading to drastic increase in conductance. It is reported that the surface misfits, calcination temperature and operating temperature can affect the microstructure and gas sensing performance of the sensor. The efforts are, therefore, made to create surface misfits by doping Al2O3 into zinc oxide and to study the sensing performance. The quick response and fast recovery are the main features of this sensor. The effects of microstructure and additive concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of ethanol vapours were studied and discussed.

  2. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    Science.gov (United States)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun

    2013-12-01

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  3. Pulsed laser deposition of thick YBa2Cu3O7-δ films with Jc≥1 MA/cm2

    International Nuclear Information System (INIS)

    Using pulsed laser deposition, YBa2Cu3O7-δ (YBCO) films ranging in thickness from 0.065 to 6.4 μm have been deposited on yttria-stabilized zirconia substrates with an intermediate layer of CeO2. The thinnest films have critical current densities of over 5 MA/cm2 at 75 K with zero applied field; as film thickness is increased, Jc decreases asymptotically to 1 MA/cm2. X-ray analysis of a 2.2-μm-thick film shows that the YBCO is predominantly c-axis oriented and textured in-plane, while a Rutherford backscattering spectrometry minimum channeling yield of ∼75% indicates that the film contains disordered material at this thickness

  4. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    Science.gov (United States)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-11-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO3 film grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ˜12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  5. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  6. Microstructural evolution in NaNbO3-based antiferroelectrics

    International Nuclear Information System (INIS)

    Our recent study found that CaZrO3 doping can effectively enhance the antiferroelectric P phase in NaNbO3 ceramics, leading to a double polarization hysteresis loop characteristic of a reversible antiferroelectric ↔ ferroelectric phase transition [Shimizu et al., Dalton Trans. 44, 10763 (2015)]. Here, a thorough transmission electron microscope study was performed to illustrate the CaZrO3 doping-assisted antiferroelectricity stabilization. In parallel to the bright-field imaging and selected area electron diffraction from multiple zone axes, detailed dark-field imaging was utilized to determine the superlattice structural origins, from either oxygen octahedral tilting or antiparallel cation displacements. By analogy with Pb(Zr1−xTix)O3 and rare-earth doped BiFeO3 systems, the chemical substitutions are such as to an induced polar-to-antipolar transition that is consistent with a tolerance factor reduction. The resultant chemical pressure has a similar effect to the compressive hydrostatic pressure where the antiferroelectric state is favored over the ferroelectric state

  7. Estimation of appropriate lubricating film thickness in ceramic-on-ceramic hip prostheses

    Science.gov (United States)

    Tauviqirrahman, M.; Muchammad, Bayuseno, A. P.; Ismail, R.; Saputra, E.; Jamari, J.

    2016-04-01

    Artificial hip prostheses, consisting of femoral head and acetabular cup are widely used and have affected the lives of many people.However, the primary issue associated with the long term performance of hip prostheses is loosening induced by excessive wear during daily activity. Therefore, an effective lubrication is necessary to significantly decrease the wear. To help understand the lubricating performance of such typical hip joint prostheses, in the present paper a hydrodynamic lubrication model based on Reynolds equationwas introduced. The material pairs of ceramic acetabular cup against ceramic femoral head was investegated.The main aim of this study is to investigate of the effect of loading on the formation of lubricating film thickness.The model of a ball-in-socket configuration was considered assuming that the cup was stationary while the ball was to rotate at a steady angular velocityvarying loads.Based on simulation result, it was found that to promote fluid film lubrication and prevent the contacting components leading to wear, the film thickness of lubricant should be determined carefully based on the load applied. This finding may have useful implication in predicting the failure of lubricating synovial fluid film and wear generation in hip prostheses.

  8. Electrochemical Deposition of Thick Iron Oxide Films on Nickel Based Superalloy Substrates

    International Nuclear Information System (INIS)

    Iron oxide films have been grown on two nickel-chromium-based superalloys, Inconel 600 and 690, by cathodic electrodeposition from an alkaline Fe(III)-Triethanolamine electrolytic solution. The deposition mechanism has been studied by combining thermodynamic calculations, linear sweep voltammetry and the quartz crystal microbalance techniques. Films have been grown at constant potential ranging between −1.01 and −1.30 V versus the saturated calomel electrode (SCE). They have been thoroughly characterized by scanning electron microscopy, focused ion beam, magnetometry and X-ray diffraction. Magnetite (Fe3O4) is deposited between −1.01 and −1.09 V vs. SCE. Between −1.10 and −1.20 V vs. SCE a dual layered structure composed of a dense inner layer and a porous outer thick layer is obtained. These duplex structures are shown to be mainly composed of magnetite and contain some maghemite. Below −1.20 V vs.SCE, a dense metallic iron layer is deposited. We have defined experimental protocol parameters to grow dense, highly crystallized, adhesive, magnetite films with controlled thicknesses up 50 μm. These magnetite films show a high saturation magnetization of 91.6 emu g−1 and a small coercivity of 40 Oe

  9. Ultra-soft 100 nm thick zero Poisson's ratio film with 60% reversible compressibility

    Science.gov (United States)

    Nguyen, Chieu; Szalewski, Steve; Saraf, Ravi

    2013-03-01

    Squeezing films of most solids, liquids and granular materials causes dilation in the lateral dimension which is characterized by a positive Poisson's ratio. Auxetic materials, such as, special foams, crumpled graphite, zeolites, spectrin/actin membrane, and carbon nanotube laminates shrink, i.e., their Poisson's ratio is negative. As a result of Poisson's effect, the force to squeeze an amorphous material, such as a viscous thin film coating adhered to rigid surface increases by over million fold as the thickness decreases from 10 μm to 100 nm due to constrain on lateral deformations and off-plane relaxation. We demonstrate, ultra-soft, 100 nm films of polymer/nanoparticle composite adhered to 1.25 cm diameter glass that can be reversibly squeezed over 60% strain between rigid plates requiring (very) low stresses below 100 KPa. Unlike non-zero Poisson's ratio materials, stiffness decreases with thickness, and the stress distribution is uniform over the film as mapped electro-optically. The high deformability at very low stresses is explained by considering reentrant cellular structure found in cork and the wings of beetles that have Poisson's ratio near zero.

  10. Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness

    International Nuclear Information System (INIS)

    The current demand in the automobile industry is in the control of air-fuel mixture in the combustion engine of automobiles. Oxygen partial pressure can be used as an input parameter for regulating or controlling systems in order to optimize the combustion process. Our goal is to identify and optimize the material system that would potentially function as the active sensing material for such a device that monitors oxygen partial pressure in these systems. We have used thin film samaria doped ceria (SDC) as the sensing material for the sensor operation, exploiting the fact that at high temperatures, oxygen vacancies generated due to samarium doping act as conducting medium for oxygen ions which hop through the vacancies from one side to the other contributing to an electrical signal. We have recently established that 6 atom% Sm doping in ceria films has optimum conductivity. Based on this observation, we have studied the variation in the overall conductivity of 6 atom% samaria doped ceria thin films as a function of thickness in the range of 50 nm to 300 nm at a fixed bias voltage of 2 volts. A direct proportionality in the increase in the overall conductivity is observed with the increase in sensing film thickness. For a range of oxygen pressure values from 1 mTorr to 100 Torr, a tolerable hysteresis error, good dynamic response and a response time of less than 10 seconds was observed

  11. Critical thickness of GaN thin films on sapphire (0001)

    International Nuclear Information System (INIS)

    Synchrotron x-ray diffraction was employed to measure the lattice constants a and c of GaN films grown with an AlN buffer layer on sapphire (0001) over a thickness range of 50 A to 1 μm. We used multiple reflections and a least-squares fit method for high reliability. As the thickness increased, the lattice constant a increased from 3.133 A to 3.196 A and c decreased from 5.226 A to 5.183 A. The expected trend was fitted to an equilibrium theory, allowing the critical thickness of GaN on AlN to be estimated at 29 A ± 4 A in good agreement with a theoretical prediction. copyright 1996 American Institute of Physics

  12. Thin-thick coexistence behavior of 8CB liquid crystalline films on silicon.

    Science.gov (United States)

    Garcia, R; Subashi, E; Fukuto, M

    2008-05-16

    The wetting behavior of thin films of 4-n-octyl-4'-cyanobiphenyl (8CB) on Si is investigated via optical and x-ray reflectivity measurement. An experimental phase diagram is obtained showing a broad thick-thin coexistence region spanning the bulk isotropic-to-nematic (T(IN)) and the nematic-to-smectic-A (T(NA)) temperatures. For Si surfaces with coverages between 47 and 72 +/- 3 nm, reentrant wetting behavior is observed twice as we increase the temperature, with separate coexistence behaviors near T(IN) and T(NA). For coverages less than 47 nm, however, the two coexistence behaviors merge into a single coexistence region. The observed thin-thick coexistence near the second-order NA transition is not anticipated by any previous theory or experiment. Nevertheless, the behavior of the thin and thick phases within the coexistence regions is consistent with this being an equilibrium phenomenon. PMID:18518487

  13. Thickness dependent stresses and thermal expansion of epitaxial LiNbO{sub 3} thin films on C-sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Bartasyte, A., E-mail: ausrine.bartasyte@femto-st.fr [Institute FEMTO-ST, CNRS (UMR 6174), University of Franche-Comté, 15B avenue des Montboucons, 25030 Besançon (France); Institute Jean Lamour, (UMR 7198) CNRS – Lorraine University, Parc de Saurupt, 54042 Nancy (France); Plausinaitiene, V.; Abrutis, A.; Stanionyte, S. [University of Vilnius, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania); Margueron, S. [Laboratoire Matériaux Optiques, Photonique et Systèmes, EA 4423, Lorraine University and Supelec, 2 rue Eduard Belin, Metz (France); Kubilius, V. [University of Vilnius, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania); Boulet, P. [Institute Jean Lamour, (UMR 7198) CNRS – Lorraine University, Parc de Saurupt, 54042 Nancy (France); Huband, S.; Thomas, P.A. [Department of Physics, University of Warwick, Coventry (United Kingdom)

    2015-01-15

    LiNbO{sub 3} films of high epitaxial quality and with thicknesses of 120–500 nm were deposited at 650 °C on C-sapphire by atmospheric pressure metal-organic chemical vapour deposition. Li nonstoichiometry, residual stresses, twinning, and thermal expansion of the films as a function of the film thickness were investigated by means of Raman spectroscopy and X-ray diffraction. The relaxation of residual stresses, Li{sub 2}O loss, inelastic deformation and elastic hysteresis during cycles of heating up to 860 °C and cooling down to room temperature were studied, as well. The residual stresses and thermal expansion of films were highly thickness dependent. It was shown that the {011"¯2} twinning contributed to the stress relaxation in the thick LiNbO{sub 3} films. - Highlights: • Identification of ((011{sup ¯}2)) system twins in LiNbO{sub 3} films by means of XRD. • Stress relaxation by mechanical twinning in LiNbO{sub 3} thin films. • Tunning of in-plane and out-of-plane thermal expansion of thin films. • Better understanding of the relaxation mechanisms and residual stresses. • Relationship between clamped thermal expansion and film thickness.

  14. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  15. Antiferroelectric-to-Ferroelectric Switching in CH3NH3PbI3 Perovskite and Its Potential Role in Effective Charge Separation in Perovskite Solar Cells

    Science.gov (United States)

    Sewvandi, Galhenage A.; Hu, Dengwei; Chen, Changdong; Ma, Hao; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Feng, Qi

    2016-08-01

    Perovskite solar cells (PSCs) often suffer from large performance variations which impede to define a clear charge-transfer mechanism. Ferroelectric polarization is measured numerically using CH3NH3PbI3 (M A PbI3 ) pellets to overcome the measurement issues such as pinholes and low uniformity of thickness, etc., with M A PbI3 thin films. M A PbI3 perovskite is an antiferroelectric semiconductor which is different from typical semiconducting materials and ferroelectric materials. The effect of polarization carrier separation on the charge-transfer mechanism in the PSCs is elucidated by using the results of ferroelectric and structural studies on the perovskite. The ferroelectric polarization contributes to an inherent carrier-separation effect and the I - V hysteresis. The ferroelectric and semiconducting synergistic charge-separation effect gives an alternative category of solar cells, ferroelectric semiconductor solar cells. Our findings identify the ferroelectric semiconducting behavior of the perovskite absorber as being significant to the improvement of the ferroelectric PSCs performances in future developments.

  16. TFA-MOD (Metal Organic Deposition Using Trifluoroacetates) Films with Thickness Greater Than 1 Micron by a Single Deposition

    Science.gov (United States)

    Araki, Takeshi; Hayashi, Mariko; Fuke, Hiroyuki

    The key to obtaining films with thickness greater than 1 micron by a single TFA-MOD deposition is a crack-preventing material. The ratio of fluorine atoms to total fluorine and hydrogen atoms (RF) of the chemical is important for forming excellent superconducting films. Although hydrogen atoms lead to carbon residue, which fatally deteriorates superconducting properties of the resulting film, hydrogen atoms form strong hydrogen bonds with trifluoroacetates and have an excellent crack-prevention effect. The RF range from 0.75 to 0.96 is effective for obtaining single-coated, thick, high-critical-current-density superconducting films.

  17. Measurement of 2-dimensional local instantaneous liquid film thickness around simulated nuclear fuel rod by ultrasonic transmission technique

    International Nuclear Information System (INIS)

    An accurate knowledge of hydro-dynamic behavior of a liquid film flow on nuclear fuel rods is indispensable for analysis of the CHF under postulated loss-of-coolant-accidents in boiling water reactors. This work is concerned with a new development of ultrasonic transmission technique for film flow measurements. The technique adopted a rotating reflector, capable of measuring time-dependent spatial distribution of liquid film thickness around a simulated nuclear fuel rod. The scanning time is currently 4 ms for reconstruction of one image of the circumferential film thickness distribution. (orig.)

  18. Development of Low-cost Chemical and Micromechanical Sensors Based on Thick-film,Thin-film and Electroplated Films

    Institute of Scientific and Technical Information of China (English)

    Wenmin Qu; Kurt Drescher

    2000-01-01

    Various films could be used as sensing materials or as constructional materials for the fabrication of chemical and micromechanical sensors. To illustrate this potential, three sensors fabricated by very different film deposition technologies are given as examples. The sensors are a humidity sensor in thickfilm technology, a multi-functional gas sensor in thin-film technology and a three-dimensional acceleration sensor chip manufactured by electroplating techniques. Design, fabrication and characterisation of these sensors are described in this paper.

  19. Fabrication and characterization of annular-array, high-frequency, ultrasonic transducers based on PZT thick film

    OpenAIRE

    Wang, D; Filoux, E; Levassort, F; Lethiecq, M.; Rocks, SA; Dorey, RA

    2014-01-01

    In this work, low temperature deposition of ceramics, in combination with micromachining techniques have been used to fabricate a kerfed, annular-array, high-frequency, micro ultrasonic transducer (with seven elements). This transducer was based on PZT thick film and operated in thickness mode. The 27 μm thick PZT film was fabricated using a low temperature (720 °C) composite sol-gel ceramic (sol + ceramic powder) deposition technique. Chemical wet etching was used to pattern the PZT thick fi...

  20. Large area deposition of YBCO thick films for applications in resistive fault current limiting devices

    International Nuclear Information System (INIS)

    The preparation of the switching element of a resistive superconducting fault current limiter requires the up-scaling of deposition techniques for thin YBa2Cu3O7-x (YBCO) films to large areas and high film thicknesses. For a projected 100 kVA limiter model an area of about 400 cm2 and a film thickness of up to 5 μm will be necessary, depending on the material properties like critical current density jc and normal state resistivity ρn. Within a joint project various deposition methods including pulsed laser deposition (PLD), magnetron sputtering (MS), thermal evaporation (TE) and plasma flash evaporation (PFE) are evaluated as possible candidates for the operation of deposition systems capable of coating 20 x 20 cm2 substrates. Both single crystalline wafers and polycrystalline ceramic plates are considered as substrates. To achieve high jc on polycrystalline substrate materials an additional zirconia buffer layer consisting of biaxially orientated crystallites has to be prepared by ion beam assisted deposition (IBAD). In small samples with IBAD buffer critical currents above 105 A cm-2 with a maximum of 1 x 106 A cm-2 have been achieved. The presently available sample sizes depend on the installed systems for YBCO and buffer deposition, respectively and on the commercial availability of the substrate material. The largest samples which have been prepared and characterised have sizes of 1 x 25 cm2 and 5 x 5 cm2 for PLD, 10 x 10 cm2 for TE and IBAD, 2 in. (1 in.=2.54 cm) diameter for MS, and 3 x 7 cm2 for PFE. The corresponding highest film thicknesses are 4.5 μm for PLD, 1.4 μm for TE, 1.6 μm for IBAD and 0.4 μm for MS. (orig.)

  1. Effects of CdS film thickness on the photovoltaic properties of sintered CdS/CdTe solar cells

    Science.gov (United States)

    Lee, J. S.; Jun, Y. K.; Im, H. B.

    1987-01-01

    All polycrystalline CdS/CdTe heterojunction solar cells with various thicknesses of CdS film were prepared by the coating and sintering method in an attempt to optimize the thickness of the sintered CdSfilm whose role is to be the window as well as the front contact for the CdS/CdS/CdTe solar cell. The thickness of the CdS films was varied from 14 to 55 microns by changing the screen mesh size of a screen printer and the solid-liquid ratio of the slurry which consisted of CdS powder, 9 weight percent CdCl2 and propylene glycol. Average grain size of the sintered CdS films increases and porosity decreases with an increase in film thickness. Electrical resistivity of the sintered CdS films shows a minimum value in 35-micron thick film. Highest optical transmission is observed in 20-micron thick CdS film. The CdCl2 remaining in the CdS film after the sintering causes an increase in the thickness of the CdS(1-x)Te(x) solid solution layer, acting as a sintering aid, at the interface between the CdS and the CdTe films. The combination of the optical transmission, the solid solution layer, and the sheet resistance effects resulted in the highest solar efficiency in a CdS/CdTe heterojunction solar cell with 20-micron thick CdS layer.

  2. Thickness dependence of grain growth orientation in MgB2 films fabricated by hybrid physical-chemical vapor deposition

    International Nuclear Information System (INIS)

    We have investigated the effect of thickness of the MgB2 film on the grain growth direction as well as on their superconducting properties. MgB2 films of various thicknesses were fabricated on c-cut Al2O3 substrates at a temperature of 540 degree by using hybrid physical-chemical vapor deposition (HPCVD) technique. The superconducting transition temperature (Tc) was found to increase with increase in the thickness of the MgB2 film. X-ray diffraction analysis revealed that the orientation of grains changed from c-axis to a-axis upon increasing the thickness of the MgB2 film from 0.6 to 2.0 μm. MgB2 grains of various orientations were observed in the microstructures of the films examined by scanning electron microscopy. It is observed that at high magnetic fields the 2.0-μm-thick film exhibit considerably larger critical current density (Jc) as compared to 0.6-μm-thick film. The results are discussed in terms of an intrinsic-pinning in MgB2 similarly as intrinsic-pinning occurring in high-Tc cuprate superconductors with layered structure.

  3. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Birgit eHebler

    2016-02-01

    Full Text Available Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an effective composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  4. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    International Nuclear Information System (INIS)

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (Rp) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 1016 ions/cm2. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  5. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Renguo [Graduate School of Information Science, Nagoya University, Nagoya 464-8601 (Japan); Zhang, Hedong, E-mail: zhang@is.nagoya-u.ac.jp [Graduate School of Information Science, Nagoya University, Nagoya 464-8601 (Japan); Mitsuya, Yasunaga [Nagoya Industrial Science Research Institute, Nagoya 464-0035 (Japan); Fukuzawa, Kenji; Itoh, Shintaro [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2013-09-01

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (R{sub p}) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 10{sup 16} ions/cm{sup 2}. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  6. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    Science.gov (United States)

    Lu, Renguo; Zhang, Hedong; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2013-09-01

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (Rp) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 1016 ions/cm2. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  7. Influence of CuO addition on dielectric properties of (Ba,Sr)TiO3 thick films

    International Nuclear Information System (INIS)

    The structural and the dielectric properties of CuO doped (Ba,Sr)TiO3 thick film interdigital capacitors on the alumina substrates have been investigated. Various contents of CuO dopants were added to the (Ba,Sr)TiO3 thick films to lower the sintering temperature of the (Ba,Sr)TiO3 thick films on alumina substrates. Thick films were screen printed on the alumina substrates; then, interdigital capacitors with five pairs of fingers with a finger gap of 50 μm, a width of 100 μm, and a length of 200 μm were fabricated with 1-μm-thick silver electrodes through an e-beam evaporation process. For the analysis of the structural and dielectric properties, X-ray diffraction and dielectric spectroscopy were employed, respectively. Scanning electron microscopy was used to determine the morphologies of the thick films. In this experiment, we found that the lattice parameters as well as the dielectric constant were decreased with increasing CuO dopants. The 3-wt% CuO-doped BST thick film have the lowest loss tangent of 0.21% at 1 MHz and the lowest leakage current density of 10 pA at 20 kV/cm.

  8. Influence of CuO addition on dielectric properties of (Ba,Sr)TiO{sub 3} thick films

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Seok-Woo; Koh, Jung-Hyuk [Kwangwoon University, Seoul (Korea, Republic of)

    2011-03-15

    The structural and the dielectric properties of CuO doped (Ba,Sr)TiO{sub 3} thick film interdigital capacitors on the alumina substrates have been investigated. Various contents of CuO dopants were added to the (Ba,Sr)TiO{sub 3} thick films to lower the sintering temperature of the (Ba,Sr)TiO{sub 3} thick films on alumina substrates. Thick films were screen printed on the alumina substrates; then, interdigital capacitors with five pairs of fingers with a finger gap of 50 {mu}m, a width of 100 {mu}m, and a length of 200 {mu}m were fabricated with 1-{mu}m-thick silver electrodes through an e-beam evaporation process. For the analysis of the structural and dielectric properties, X-ray diffraction and dielectric spectroscopy were employed, respectively. Scanning electron microscopy was used to determine the morphologies of the thick films. In this experiment, we found that the lattice parameters as well as the dielectric constant were decreased with increasing CuO dopants. The 3-wt% CuO-doped BST thick film have the lowest loss tangent of 0.21% at 1 MHz and the lowest leakage current density of 10 pA at 20 kV/cm.

  9. Enhancement of lower critical field by reducing the thickness of epitaxial and polycrystalline MgB2 thin films

    Directory of Open Access Journals (Sweden)

    Teng Tan

    2015-04-01

    Full Text Available For potential applications in superconducting RF cavities, we have investigated the properties of polycrystalline MgB2 films, including the thickness dependence of the lower critical field Hc1. MgB2 thin films were fabricated by hybrid physical-chemical vapor deposition on (0001 SiC substrate either directly (for epitaxial films or with a MgO buffer layer (for polycrystalline films. When the film thickness decreased from 300 nm to 100 nm, Hc1 at 5 K increased from around 600 Oe to 1880 Oe in epitaxial films and to 1520 Oe in polycrystalline films. The result is promising for using MgB2/MgO multilayers to enhance the vortex penetration field.

  10. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Melissa R., E-mail: mrbeebe@email.wm.edu; Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra [Department of Physics, The College of William & Mary, Small Hall, 300 Ukrop Way, Williamsburg, Virginia 23185 (United States)

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  11. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    International Nuclear Information System (INIS)

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB2 thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature TC, the authors are the first to report on the correlation between stoichiometry and the lower critical field HC1

  12. Effect of thickness on structural, optical, electrical and morphological properties of nanocrystalline CdSe thin films for optoelectronic applications

    Science.gov (United States)

    Purohit, Anuradha; Chander, S.; Nehra, S. P.; Lal, C.; Dhaka, M. S.

    2015-09-01

    This paper presents effect of thickness on the physical properties of thermally evaporated cadmium selenide thin films. The films of thickness 445 nm, 631 nm and 810 nm were deposited employing thermal evaporation technique on glass and ITO coated glass substrates followed by thermal annealing in air atmosphere at temperature 300 °C. The as-deposited and annealed films were subjected to the XRD, UV-Vis spectrophotometer, source meter, SEM and EDS to find the structural, optical, electrical, morphological and compositional analysis respectively. The structural analysis shows that the films have cubic phase with preferred orientation (1 1 1) and nanocrystalline nature. The structural parameters like inter-planner spacing, lattice constant, grain size, number of crystallites per unit area, internal strain, dislocation density and texture coefficient are calculated. The optical band gap is found in the range 1.69-1.84 eV and observed to decrease with thickness. The electrical resistivity is found to increase with thickness for as-deposited films and decrease for annealed films. The morphological studies show that the as-deposited and annealed films are homogeneous, smooth, fully covered and free from crystal defects like pin holes and voids. The grains in the as-deposited films are densely packed, well defined and found to be increased with thickness.

  13. Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch.

    Science.gov (United States)

    Kim, Jang-Yong; Yao, Lide; van Dijken, Sebastiaan

    2013-02-27

    Strain control of epitaxial films using piezoelectric substrates has recently attracted significant scientific interest. Despite its potential as a powerful test bed for strain-related physical phenomena and strain-driven electronic, magnetic, and optical technologies, detailed studies on the efficiency and uniformity of piezoelectric strain transfer are scarce. Here, we demonstrate that full and uniform piezoelectric strain transfer to epitaxial films is not limited to systems with small lattice mismatch or limited film thickness. Detailed transmission electron microscopy (TEM) and x-ray diffraction (XRD) measurements of 100 nm thick CoFe(2)O(4) and La(2/3)Sr(1/3)MnO(3) epitaxial films on piezoelectric 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) substrates (+4.3% and -3.8% lattice mismatch) indicate that misfit dislocations near the interface do not hamper the transfer of piezoelectric strain. Instead, the epitaxial magnetic oxide films and PMN-PT substrates are strained coherently and their lattice parameters change linearly as a function of applied electric field when their remnant growth-induced strain state is negligible. As a result, ferromagnetic properties such as the coercive field, saturation magnetization, and Curie temperature can be reversibly tuned by electrical means. The observation of efficient piezoelectric strain transfer in large-mismatch heteroepitaxial structures opens up new possibilities for the engineering of strain-controlled physical properties in a broad class of hybrid material systems. PMID:23370268

  14. Indium-Nitrogen Codoped Zinc Oxide Thin Film Deposited by Ultrasonic Spray Pyrolysis on n-(111) Si Substrate: The Effect of Film Thickness

    OpenAIRE

    Cheng-Chang Yu; Wen-How Lan; Kai-Feng Huang

    2014-01-01

    Indium-nitrogen codoped zinc oxide (INZO) thin films were fabricated by spray pyrolysis deposition technique on n-(111) Si substrate with different film thicknesses at 450°C using a precursor containing zinc acetate, ammonium acetate, and indium nitrate with 1 : 3 : 0.05 at.% concentration. The morphology and structure studies were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The grain size of the films increased when increasing the film thickness. From XRD ...

  15. Growth of crack-free thick films of rare-earth-barium-oxocuprate superconductors by liquid phase epitaxy

    International Nuclear Information System (INIS)

    The following topics were dealt with: crystal growth of YBa2Cu3O7-x cuprates, epitaxial growth from melt solutions, Crack propagation in thick films, materials parameters, solid state physical properties of the layers

  16. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD. PMID:27166737

  17. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm

    Science.gov (United States)

    Peng, Z. L.; Chen, S. H.

    2011-05-01

    Inspired by the gecko's climbing ability, adhesion between an elastic nanofilm with finite length and a rough substrate with sinusoidal roughness is studied in the present paper, considering the effects of substrate roughness and film thickness. It demonstrates that the normal adhesion force of the nanofilm on a rough substrate depends significantly on the geometrical parameters of the substrate. When the film length is larger than the wavelength of the sinusoidal roughness of the substrate, the normal adhesion force decreases with increasing surface roughness, while the normal adhesion force initially decreases then increases if the wavelength of roughness is larger than the film length. This finding is qualitatively consistent with a previously interesting experimental observation in which the adhesion force of the gecko spatula is found to reduce significantly at an intermediate roughness. Furthermore, it is inferred that the gecko may achieve an optimal spatula thickness not only to follow rough surfaces, but also to saturate the adhesion force. The results in this paper may be helpful for understanding how geckos overcome the influence of natural surface roughness and possess such adhesion to support their weights.

  18. Nanostructured Fe2O3/TiO2 thick films prepared by screen printing

    Directory of Open Access Journals (Sweden)

    Obrad S. Aleksic

    2013-09-01

    Full Text Available Nanostructured single layered (pure TiO2, pure α-Fe2O3 and mixed Fe2O3/TiO2 with two different oxide ratios, 2 : 3 and 3 : 2 and double layered (TiO2 layer over a Fe2O3 layer thick films have been fabricated by screen printing technology on a glass substrate. The pastes used for film preparation were obtained by adding an organic vehicle to the oxide powders together with a small percentage of binding glass frit. Samples were dried up to 100 °C and sintered at 650 °C/60 minutes. Structural, morphological and optical studies have been carried out using XRD, SEM analyses and UV/Vis spectroscopy. The prepared pure and mixed Fe2O3/TiO2 thick films had a homogenous nanostructure without secondary phases. Indirect band gaps were determined from the measured transmission spectra and the obtained values are in the range of literature data.

  19. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    Science.gov (United States)

    Ahn, Ho Seon; Kim, Jin Man; Kim, Taejoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, Hangjin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan

    2014-09-01

    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF.

  20. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    International Nuclear Information System (INIS)

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 μm and 1 μm deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 μm in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  1. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mugiraneza, Jean de Dieu; Shirai, Katsuya; Suzuki, Toshiharu; Okada, Tatsuya; Noguchi, Takashi [University of the Ryukyus, Okinawa (Japan); Matsushima, Hideki; Hashimoto, Takao; Ogino, Yoshiaki; Sahota, Eiji [Hitachi Computer Peripherals Co. Ltd, Kanagawa (Japan)

    2012-01-15

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 {mu}m and 1 {mu}m deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 {mu}m in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  2. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method

    International Nuclear Information System (INIS)

    This paper reports on the effects of film thickness and doping content on the optical and electrical properties of fluorine-doped tin oxide. Tin (II) chloride dehydrate, ammonium fluoride dehydrate, ethanol and HCl were used as the starting materials, dopant source, solvent and stabilizer, respectively. The doped films were deposited on a glass substrate at different concentrations varying between 0 and 5 wt% using an ultrasonic spray technique. The SnO2:F thin films were deposited at a 350 °C pending time (5, 15, 60 and 90 s). The average transmission was about 80%, and the films were thus transparent in the visible region. The optical energy gap of the doped films with 2.5 wt% F was found to increase from 3.47 to 3.89 eV with increasing film thickness, and increased after doping at 5 wt%. The decrease in the Urbach energy of the SnO2:F thin films indicated a decrease in the defects. The increase in the electrical conductivity of the films reached maximum values of 278.9 and 281.9 (Ω·cm)−1 for 2.5 and 5 wt% F, respectively, indicating that the films exhibited an n-type semiconducting nature. A systematic study on the influence of film thickness and doping content on the properties of SnO2:F thin films deposited by ultrasonic spray was reported. (semiconductor materials)

  3. Influence of various thickness metallic interlayers on opto-electric and mechanical properties of AZO thin films on PET substrates

    Science.gov (United States)

    Chang, R. C.; Li, T. C.; Lin, C. W.

    2012-02-01

    Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.

  4. Effect of thickness and Ti interlayers on stresses and texture transformations in thin Ag films during thermal cycling

    International Nuclear Information System (INIS)

    The driving forces for the (111) to (100) texture transformation often observed during annealing of thin face-centered cubic metal films were investigated. Thin passivated silver films were produced with and without Ti adhesion layers. Stresses were measured in situ during heating to induce the texture transformation, and the texture was characterized using x-ray diffraction. Sufficiently thin films did not transform and sufficiently thick films transformed fully. Intermediate thickness films transformed to an extent dependent on thickness, leading to stable mixed textures. In the prevailing thermodynamic model, texture transformation is attributed to minimization of strain and interface energies. However, calculations using the measured stresses, known elastic constants, and estimated interface energies in this model reveal that the stresses are not sufficient to cause the texture transformation and, furthermore, that variations in interface energy cannot lead to the observed behavior. The results suggest that neither the interface energy nor the stress plays decisive roles in the texture transformation

  5. Preparation and photoelectric properties of Fe-doped mesoporous TiO2 thick films used in DSSC

    Science.gov (United States)

    Xie, Yian; Shen, Yue; Gu, Feng; Lu, Huina; Wu, Mingming; Wang, Linjun

    2009-08-01

    Fe-doped mesoporous TiO2 (M-TiO2-Fe) thick films were prepared by sol-gel and screen printing process. Raman characteristics results show that the M-TiO2-Fe thick film possesses a certain degree of the anatase phase, which may have advantages on photocatalysis and photovoltaic ability. Derived from small angel X-Ray diffraction (SAXRD), the films exhibit mesoporous structure with pore size around 7-8 nm. Eg of the films was obviously narrowed from 3.4 eV to 3.0 eV, which allows the thick films using more light to initiate photovoltaic process. Dye-sensitized solar cell (DSSC) based on M-TiO2-Fe was structured and chlorophyl was used as sensitizers. The solar cells have an open circuit voltage above 260mV.

  6. Influence of various thickness metallic interlayers on opto-electric and mechanical properties of AZO thin films on PET substrates

    International Nuclear Information System (INIS)

    Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.

  7. Growth of thick MgB2 films by impinging-jet hybrid physical-chemical vapor deposition

    International Nuclear Information System (INIS)

    Thick MgB2 films are grown using a novel impinging-jet hybrid physical-chemical vapor deposition process. An increased amount of the boron source gas generates high growth rates. Superconducting properties of the thick films are comparable to previous results from other processes, which indicate that this is a promising new process for MgB2 deposition for coated conductor applications, such as wires and tapes for MRI magnets. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Growth of thick MgB{sub 2} films by impinging-jet hybrid physical-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lamborn, D.R. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Wilke, R.H.T.; Li, Q. [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Xi, X. [Department of Physics, Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16801 (United States); Snyder, D.W. [Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Redwing, J.M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16801 (United States)

    2008-01-18

    Thick MgB{sub 2} films are grown using a novel impinging-jet hybrid physical-chemical vapor deposition process. An increased amount of the boron source gas generates high growth rates. Superconducting properties of the thick films are comparable to previous results from other processes, which indicate that this is a promising new process for MgB{sub 2} deposition for coated conductor applications, such as wires and tapes for MRI magnets. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  9. Non-Planar Pad-Printed Thick-Film Focused High-Frequency Ultrasonic Transducers for Imaging and Therapeutic Applications

    OpenAIRE

    Lethiecq, Marc; Lou-Moeller, Rasmus; Ketterling, Jeffrey A.; Levassort, Franck; Tran-Huu-Hue, Louis Pascal; Filoux, Erwan; Silverman, Ronald H.; Wolny, Wanda W.

    2012-01-01

    Pad-printed thick-film transducers have been shown to be an interesting alternative to lapped bulk piezoceramics, because the film is deposited with the required thickness, size, and geometry, thus avoiding any subsequent machining to achieve geometrical focusing. Their electromechanical properties are close to those of bulk ceramics with similar composition despite having a higher porosity. In this paper, pad-printed high-frequency transducers based on a low-loss piezoceramic composition are...

  10. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.

    Science.gov (United States)

    Kang, Kibum; Xie, Saien; Huang, Lujie; Han, Yimo; Huang, Pinshane Y; Mak, Kin Fai; Kim, Cheol-Joo; Muller, David; Park, Jiwoong

    2015-04-30

    The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers, provide ideal semiconducting materials with high electrical carrier mobility, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect, bandgap modulation, indirect-to-direct bandgap transition, piezoelectricity and valleytronics. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V(-1) s(-1) at room temperature and 114 cm(2) V(-1) s(-1) at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three

  11. Development of Three-Ring Conductance Meter on Flexible Printed Circuit Board for Liquid Film Thickness Measurement

    International Nuclear Information System (INIS)

    Electrical methods which based on conductance of fluid film have been widely applied for many years. Recently, Damsohn developed a high speed liquid film sensor that has great time and spatial resolution by applying printed circuit board (PCB) and wire-mesh signal processing unit. However, the conductivity of the fluid can be affected by its temperature change and previous electrical methods have limitations of its applicability where a heat transfer is involved. In order to overcome this limitation, Kim proposed three-ring conductance method which can measure the liquid film thickness independent of the liquid temperature variation. In the present work, the three-ring conductance meter is improved by fabricating it on flexible printed circuit board (FPCB). Since the FPCB can be attached on a curved surface and can tolerate temperature up to 180 .deg. C, it is expected to be applied to more diverse experimental conditions of nuclear thermal-hydraulics. This paper introduces the three ring conductance meter on FPCB and a preliminary experimental result in order to show its feasibility for measuring liquid film thickness under temperature varying conditions. From this experimental research, the availability of three-ring conductance meter fabricated on FPCB for measuring film-thickness by using current output signal was proved. Besides, the necessity of customized electrode design depending on film-thickness was found. Also, it was confirmed that the manufactured three-ring conductance meter can measure the film-thickness regardless of temperature change

  12. Influence of the interface on the magnetic properties of ferromagnetic ultrathin films with various adjacent copper thicknesses

    Science.gov (United States)

    Zhang, Dong; Jiang, Sheng; Luo, Chen; Wang, Yukun; Rui, Wenbin; Zhai, Ya; Du, Jun; Zhai, Hongru

    2014-05-01

    The interface and magnetic properties of two series of films with Ta(5 nm)/Fe20Ni80Nd0.017(3 nm)/Cu(t nm) and Ta(5 nm)/Cu(t nm)/Fe50Co50Gd0.07(3 nm)/Cu(2 nm) structures have been investigated by atomic force microscopy, vibrating sample magnetometer, and ferromagnetic resonance (FMR). The roughness of all films increases with increasing copper thickness, which causes the different grain sizes in the surface of films. The coercivity of FeCo-Gd films increases with increasing thickness of inserted Cu layer while decreases with increasing thickness of Cu capping layer for FeNi-Nd films. FMR linewidth exhibits huge dependence on the thickness of inserted Cu layer for FeCo-Gd films, increasing from 2270 to 3680 Oe, which comes from the additional contribution of effect of the two-magnon scattering. And the thickness of Cu capping layer shows also an influence on FMR linewidth of FeNi-Nd films, increasing from 190 to 320 Oe, which mainly comes from intrinsic FMR linewidth and plus minor inhomogeneous broadening. All of these extrinsic linewidth broadening are related to the interface roughness.

  13. Influence of the interface on the magnetic properties of ferromagnetic ultrathin films with various adjacent copper thicknesses

    International Nuclear Information System (INIS)

    The interface and magnetic properties of two series of films with Ta(5 nm)/Fe20Ni80Nd0.017(3 nm)/Cu(t nm) and Ta(5 nm)/Cu(t nm)/Fe50Co50Gd0.07(3 nm)/Cu(2 nm) structures have been investigated by atomic force microscopy, vibrating sample magnetometer, and ferromagnetic resonance (FMR). The roughness of all films increases with increasing copper thickness, which causes the different grain sizes in the surface of films. The coercivity of FeCo-Gd films increases with increasing thickness of inserted Cu layer while decreases with increasing thickness of Cu capping layer for FeNi-Nd films. FMR linewidth exhibits huge dependence on the thickness of inserted Cu layer for FeCo-Gd films, increasing from 2270 to 3680 Oe, which comes from the additional contribution of effect of the two-magnon scattering. And the thickness of Cu capping layer shows also an influence on FMR linewidth of FeNi-Nd films, increasing from 190 to 320 Oe, which mainly comes from intrinsic FMR linewidth and plus minor inhomogeneous broadening. All of these extrinsic linewidth broadening are related to the interface roughness

  14. High quality MgB2 thick films and large-area films fabricated by hybrid physical chemical vapor deposition with a pocket heater

    Science.gov (United States)

    Wang, S. F.; Chen, Ke; Lee, C.-H.; Soukiassian, A.; Lamborn, D. R.; DeFrain, R.; Redwing, J. M.; Li, Qi; Schlom, D. G.; Xi, X. X.

    2008-08-01

    A hybrid physical-chemical vapor deposition process using a pocket heater was developed for the growth of high quality epitaxial large-area MgB2 thin films and c-axis textured MgB2 thick films. This technique is able to independently control the substrate and Mg source temperatures and maintain sufficient Mg overpressure to ensure phase stability. The two-inch large-area MgB2 thin films showed uniform superconducting properties with the superconducting transition temperature Tc of about 40 K, residual resistivity ratio (RRR) of about 10, and critical current density Jc of about 107 A cm-2 (0 T, 5 K). The thick films (~10 µm) on sapphire substrates showed a maximum Tc of 40 K and RRR of 15, and a Jc of 1.6 × 106 A cm-2 at low applied magnetic fields even at 20 K. High quality thick films also have been obtained on metal substrates.

  15. Highly Strained Si Films with Ultra-low Dislocation Density Grown on Virtual Substrates of Thin Thickness

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-Bin; ZHANG Xiang-Jiu

    2009-01-01

    @@ By using compositionally graded SiGe films as virtual substrates, tensile strained Si films with the strain of 1.5% and the threading dislocation density less than 1.0×105cm-2 are successfully grown in micron size windows by molecular beam epitaxy (MBE). The thickness of the virtual substrates was only 330nm. On the surface of the s-Si films no cross-hatched lines resulting from misfit dislocations could be observed. We attribute these results to the edge-induced strain relaxation of the epitaxial films in windows, and the patterned virtual substrates with compositionally graded SiGe films.

  16. Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays

    Directory of Open Access Journals (Sweden)

    Li Yuan

    2013-09-01

    Full Text Available The coupling effects in bilayer thick metal (silver films perforated with rectangular nanohole arrays are investigated using the finite-difference time-domain technique. Many interesting light phenomena are observed as the distance between the metal rectangular nanohole arrays varies. Coupling effects are found to play very important roles on the optical and electronic properties of bilayer metal rectangular nanohole arrays: antisymmetric coupling between surface plasmon polaritons near the top and bottom film plane, and antisymmetric coupling between localized surface plasmon resonances near the two long sides of the rectangular hole, are probably excited in each layer of bilayer metal rectangular nanohole arrays; antisymmetric and symmetric magnetic coupling probably occur between the metal rectangular nanohole arrays.

  17. Thermal Marangoni instability of a thin film flowing down a thick wall deformed in the backside

    Science.gov (United States)

    Dávalos-Orozco, L. A.

    2016-05-01

    The nonlinear instability of a thin liquid film flowing down a heated thick wall with deformations in the backside is investigated. Here it is assumed that the wall deformations are sinusoidal in space. Time dependent perturbations are imposed at the origin of the free surface of the film. It is found that the wall deformations have an important influence on the flow instability. Moreover, it is shown that the free surface has a large amplitude spatial response to the backside deformations of the wall. This response increases its amplitude considerably when decreasing the wall spatial wavelength down to the wavelength of the time dependent perturbations. At that point, numerical analysis reveals that the time dependent perturbations in some cases are almost impossible to observe on the free surface response. However, in other cases, their interaction produces large amplitude nonlinear wave modulations.

  18. Quasiparticle Transport in Thick Aluminum Films Coupled to Tungsten Transition Edge Sensors

    Science.gov (United States)

    Yen, J. J.; Kreikebaum, J. M.; Young, B. A.; Cabrera, B.; Moffatt, R.; Redl, P.; Shank, B.; Brink, P. L.; Cherry, M.; Tomada, A.

    2016-07-01

    We have fabricated and characterized test devices of a new geometry for cryogenic dark matter search superconducting sensors. The modified design uses the same photolithography masks used to fabricate earlier-generation devices, but with the Al and W films deposited in reverse order. This inverted film geometry (Al over W instead of our conventional W over Al) offers a simplified and robust way to dramatically increase the thickness of Al energy-collecting fins coupled to thin W-TESs—tungsten-transition edge sensors. Data are presented from experiments with inverted geometry test devices exposed to X-rays from a NaCl fluorescence source. The results are compared to data obtained with similar devices fabricated in the standard, non-inverted geometry.

  19. Mean interfacial shear stress and liquid film thickness in countercurrent air-water flow

    International Nuclear Information System (INIS)

    Countercurrent air-water flow experimental results in a tubular vertical test section 2.2 m long and 0.02 m ID are presented; the relations between the mean value of the interfacial shear stress and the mean liquid film thickness and flow rate of gas and liquid phases are derived. The experiments were performed in the laminar regime of the liquid film, for Reynolds number = 250:950, at the flooding conditions, before and after the flooding occurrence. Flooding data are compared with the Wallis correlation and with the Bharathan-Wallis theoretical model. Experimental values of the mean interfacial shear stress and wall shear stress are compared with the prediction of the empirical correlations that are used for the countercurrent flow modelling. An interfacial friction factor correlation is also presented

  20. Structural characterization of SnO2 thick film doped with SiC

    International Nuclear Information System (INIS)

    A series of thick film samples with SnO2 (active material), SiC (dopant) and ethyl cellulose and propylene glycol (organic binder) have been prepared using screen printing method. The thickness of samples prepared is between 1.10 ± 0.01 μm to 2.36 ± 0.01 μm. X-ray analysis has been done by using Philips PW Diffractometer. The diffraction peak from the X-ray analysis shows the sample have high degree of crystallinity. The lattice constant calculated for each sample shows that the samples produced has a tetragonal structure and the presence of SiC as dopant did not change the structure of SiO2. (Author)

  1. Use of polymeric compounds to produce thick YBCO films by TFA-MOD process

    International Nuclear Information System (INIS)

    One route to achieve thick YBCO layers by a single deposition on single crystal substrates (LAO) has been to modify the viscosity of the solution by using different polymeric agents in precursor solutions. A screening investigation of several polymers with different molecular weights has been performed to choose the best additive based on the following criteria : to increase viscosity, to avoid any chemical reaction with the precursors and to keep the same decomposition temperature as compared to the pyrolysis of the TFA precursors. Solution viscosity, thermal and thermo-gravimetric analysis measurements have been used to characterize the TFA solutions with the additives. An increase of the YBCO films thickness of 100% (≥600nm) has been demonstrated keeping a high Jc ≥ 1.1 MA/cm2 (77K)

  2. Measurement of thickness of thin films by the X-ray diffraction method

    International Nuclear Information System (INIS)

    X-ray diffraction method can be used to measure the thickness of thin films (coatings). The principle and the experimental details of the x-ray diffraction methods are described. The intensities of the diffracted beams are derived assuming a random orientation of the crystallites in the diffracting medium. Consequently, the expressions are not valid when the sample has preferred orientation. To check the performance of the method, thicknesses of nickel deposits on mild steel plates were determined by the x-ray diffraction method and the results compared with those obtained by the weighing method and metallographic examination. The weighing method which gives an accuracy of +- 0.1 micron is taken as the standard. The x-ray diffraction methods and the metallographic examinations give values within +- 1 micron of the value obtained by the weighing method. (author)

  3. High critical current YBCO thick films by TFA-MOD process

    International Nuclear Information System (INIS)

    As a method of the fabrication processes of YBa2Cu3O7-x (YBCO), the metalorganic deposition (MOD) process using metal trifluoroacetete (TFA) is considered to be a strong candidate due to its low cost fabrication process for coated conductors with high Jc. In our previous work, a triple coated film with 1 μm in thickness was fabricated on a CeO2/IBAD-YSZ layer buffered Hastelloy substrate by optimizing the condition of heat treatments such as PH2O in the multi-coating method [Physica C 378-381 (2002) 1013]. The Jc value of 1.6 MA/cm2 (77 K in self-field) in this film patterned 100 μm width and the Ic* value of 153 A/cm-width at 77 K in self-field were achieved. In order to obtain a thicker film with high overall Ic* for 1 cm width, the influence of the heat treatment conditions of PH2O, PO2, and the temperature in the MOD process was investigated. Subsequently, a 5 times coated film was obtained on a CeO2/IBAD-Zr2Gd2O7 layer buffered Hastelloy substrate by optimizing the conditions of heating and dip coating. As a result, the overall transport Ic value was improved to 210 A and Jc value of 1.53 MA/cm2 was obtained (77 K in self-field)

  4. Effect of Ti layer thickness on microstructure and magnetic properties of Ti/Co/Ti films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yujie; ZHANG Hanwei; FENG Shunzhen; SUN Huiyuan; HU Yanying; PENG Yan

    2006-01-01

    TiCoTi granular films were prepared by DC facing-target magnetron sputtering system onto glass substrates and subsequently in situ annealing in vacuum. Structural of Ti ( t nm)/Co (40 nm)/Ti ( t nm) films were investigated in detail, which shows that the majority Co nanograins are formed as the hexagonal-close-packed (HCP) structure. Vibrating sample magnetometer (VSM) and scanning probe microscope (SPM) were applied to study the magnetic properties, morphologies and domain structures of these samples. It has been found that the structure and magnetic properties of the Ti/Co/Ti films depend strongly on the Ti layer thickness. The out-of-plane coercivities ( Hc) of the film is maximum about 78.8 kA·m-1 when t =5 nm with annealing at 300 ℃; the distributing of grains of the sample is uniformity; and the average size of particles is about 13 nm. The obtained results suggest that this system is perpendicular anisotropy and might be applicable to perpendicular magnetic recording media.

  5. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  6. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  7. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  8. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.;

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material. It...... provides mechanical support but it also reduces the power output. Our device replaces the support with another layer of the piezoelectric material, and with the absence of an inactive mechanical support all of the stresses induced by the vibrations will be harvested by the active piezoelectric elements....

  9. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian;

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage of...... bimorph vibration energy harvesters is that strain energy is not lost in mechanical support materials since only Pb(ZrxTi1-x)O3 (PZT) is strained; as a result, the effective system coupling coefficient is increased, and thus a potential for significantly higher output power is released. In addition, when...

  10. Integrated thick-film p-i-p+ structures based on spinel ceramics

    OpenAIRE

    Klym, H.; Hadzaman, I.; Shpotyuk, O.; Q. Fu; Luo, W.; J. Deng

    2012-01-01

    Multilayered temperature/humidity sensitive thick-film p-i-p+ structures based on spinel-type semiconducting ceramics of different chemical composition Cu0.1Ni0.1Co1.6Mn1.2O4 (with p+-type of electrical conductivity), Cu0.1Ni0.8Co0.2Mn1.9O4 (with p-type of electrical conductivity) and magnesium aluminate i-type MgAl2O4 ceramics were fabricated and investigated. These structures are shown to be successfully applied for integrated environmental sensors.

  11. High-performance piezoelectric thick film based energy harvesting micro-generators for MEMS

    DEFF Research Database (Denmark)

    Zawada, Tomasz; Hansen, Karsten; Lou-Moeller, Rasmus;

    2010-01-01

    Energy harvesting, known also as energy scavenging, covers a great body of technologies and devices that transform low grade energy sources such as solar energy, environmental vibrations, thermal energy, human motion into usable electrical energy. In this paper vibrations are used as energy source...... and are transformed by the energy harvesting micro-generator into usable electrical signal. The micro-generator comprises a silicon cantilever with integrated InSensor® TF2100 PZT thick film deposited using screen-printing. The output power versus frequency and electrical load has been investigated. Furthermore...

  12. Thin-thick coexistence behavior of 8CB liquid crystalline films on silicon

    OpenAIRE

    R. Garcia; Subashi, E.; Fukuto, M.

    2007-01-01

    The wetting behavior of thin films of 4'-n-octyl-4-cyanobiphenyl (8CB) on Si is investigated via optical and x-ray reflectivity measurement. An experimental phase diagram is obtained showing a broad thick-thin coexistence region spanning the bulk isotropic-to-nematic ($T_{IN}$) and the nematic-to-smectic-A ($T_{NA}$) temperatures. For Si surfaces with coverages between 47 and $72\\pm3$ nm, reentrant wetting behavior is observed twice as we increase the temperature, with separate coexistence be...

  13. Model of Thick Film Screen Printing%厚膜印刷模型

    Institute of Scientific and Technical Information of China (English)

    刘忠安

    2000-01-01

    提出了厚膜印刷的物理模型,并用静态模型建立了丝网印刷参数和图形的压印形变量之间的关系,以解决实际印刷工艺中的图形匹配和精确套印问题。%The physical model of thick film screen printing is put forward in this paper. The relation between the printing parameters and the screen deformation is established by approximate method of static model. The overprint and match of different screen printing graph can be realised.

  14. Formation and physical properties of YBCO thick films grown by using the electrophoretic deposition method

    International Nuclear Information System (INIS)

    Thick films of the YBa2Cu3Oγ-δ (YBCO) superconductor were prepared by using the electrophoretic deposition technique and a flexible wire as the substrate. The transition temperature of the wires was 91 K, the intragranular magnetic critical current density Jcgmag was about 105 A/cm2 at 77 K in a weak field, and the transport Jctrans was about 365 A/cm2 at 77 K. We calculated the intergranular magnetic critical current JcJmag and the activation energy from the AC-susceptibility measurements, and their values were about 444 A/cm2 at 77 K and 2.02 eV, respectively

  15. Tritium method oil consumption and its relation to oil film thicknesses in a production diesel engine

    OpenAIRE

    Hartman, Richard M.

    1990-01-01

    CIVINS Approved for public release ; distribution is unlimited Oil consumption was measured in a modern production diesel engine using tritium as a radiotracer. The measurements were made primarily at two speeds and one load using first a single-grade lubricant and then a multi-grade lubricant. These values were then compared to oil flow rates up/down the liner which were based on film thickness traces of a sister engine under the same loads and speeds. The traces were obtained using th...

  16. A study of the factors effecting layer thickness uniformity and layer breakup in microlayered coextruded films

    Science.gov (United States)

    Ghumman, Bhavjit Singh

    Microlayer coextrusion offers the opportunity to economically commercialize the production of nanometer thick film. A major obstacle towards commercialization is the non-uniform thickness of these layers and their breakup into droplets, which is also known as a scattering instability. Prior research had indicated a strong interaction between material properties and process parameters. Therefore, the focus of this research effort was to better understand and then identify the coextrusion parameters and material properties that governed the layer non-uniformity and scattering. Initial studies had indicated that there existed an interaction between the two extruders, which gave rise to pressure fluctuations and non-uniform flow. The interaction of the two extruders was studied by analyzing the pressure signals at the two extruders and the junction of the two streams. A response surface method was used to analyze the two extruders individually, the number of layer multiplying elements and finally the interaction between the two extruders and the effect they had on pressure, surging, flow rate and torque. Although the interaction of the two extruders did result in higher backpressures, it did not decrease the output. The output was independent of the screw speed of the other extruder, however it did influence the melting mechanics along the screw. The more shear sensitive PMMA showed a greater degree of sensitivity than the Newtonian PC. The influence of primary; coextrusion, and secondary; chill roll, processing on the final layer thickness was studied in a second set of experiments. For this purpose primary coextrusion process parameters such as screw speed ratio, die temperature and core melt temperature were changed and the effect on the layer thickness uniformity was studied. Similarly secondary process parameters such as nip gap and chill roll speed were also investigated. Thickness was measured using an Atomic Force Microscope (AFM). The screw speed ratio was the

  17. Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers

    OpenAIRE

    Dinner, Rafael B.; Robinson, Adam P.; Wimbush, Stuart C.; MacManus-Driscoll, Judith L; Blamire, Mark G.

    2010-01-01

    Large area arrays of through-thickness nanoscale pores have been milled into superconducting Nb thin films via a process utilizing anodized aluminum oxide thin film templates. These pores act as artificial flux pinning centers, increasing the superconducting critical current, Jc, of the Nb films. By optimizing the process conditions including anodization time, pore size and milling time, Jc values approaching and in some cases matching the Ginzburg-Landau depairing current of 30 MA/cm^2 at 5 ...

  18. Nanostructured MgTiO3 thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    Science.gov (United States)

    Apostol, Irina; Mahajan, Amit; Monty, Claude J. A.; Venkata Saravanan, K.

    2015-12-01

    A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO3 nanostructured thick films is presented. Obtaining nanostructured MgTiO3 thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro - DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22-25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The thickness of the sintered samples were about 18-20 μm, which was determined by cross-sectional SEM. Films sintered at 900 °C exhibit a dielectric constant, ɛr ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz. The effects of processing techniques (SPVD and EPD) on the structure, microstructure and dielectric properties are reported in detail. The obtained results indicate that the thick films obtained in the present study can be promising for low loss materials for microwave and millimeter wave applications.

  19. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini; Linderoth, Søren

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...... process, crystal and microstructure analyses were carried out to determine the optimal sintering condition. The results show that the thermoelectric properties of pure Ca3Co4O9+δ thick film are comparable to those of cold isostatic pressing (CIP) samples. We found that the maximum power factor was...

  20. Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique

    Institute of Scientific and Technical Information of China (English)

    BAI Su-Yuan; TANG Zhen-An; HUANG Zheng-Xing; YU Jun; WANG Jia-Qi

    2008-01-01

    Thermal conductivity of submicron-thick aluminium oxide thin films prepared by middle frequency magnetron sputtering is measured using a transient thermo-reflectance technique.A three-layer model based on transmission line theory and the gentic algorithm optimization method are employed to obtain the thermal conductivity of thin films and the interfacial thermal resistance.The results show that the average thermal conductivity of 3301000nm aluminium oxide thin films is 3.3Wm-1 K-1 at room temperature.No significant thickness dependence is found.The uncertainty of the measurement is less than 10%.