Sample records for antiferroelectric materials

  1. Properties of Three Pseudo-Spins in Ferroelectric or Ferro-Antiferroelectric Materials Described by a Transverse Ising Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; Veng-Cheong Lo


    Ferroelectric phase diagrams and the temperature dependence of polarization, dielectric properties of the three pseudo-spin in ferroelectric or ferro-antiferroelectric system described by a transverse Ising models are investigated on the basis of the effective-field theory with the differential operator technique. The effects of the transverse field and the coupling strength between the nearest-neighboring pseudo-spin on the physical properties are discussed in detail.

  2. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino


    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  3. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan


    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  4. Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics (United States)

    Lu, Biao; Li, Peilian; Tang, Zhenhua; Yao, Yingbang; Gao, Xingsen; Kleemann, Wolfgang; Lu, Sheng-Guo


    Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we report on a system, in which the structure can readily change from antiferroelectric into relaxor ferroelectric and vice versa. To this end relaxor ferroelectric Pb0.89La0.11(Zr0.7Ti0.3)0.9725O3 and antiferroelectric Pb0.93La0.07(Zr0.82Ti0.18)0.9825O3 ceramics were designed near the antiferroelectric-ferroelectric phase boundary line in the La2O3-PbZrO3-PbTiO3 phase diagram. Conventional solid state reaction processing was used to prepare the two compositions. The ECE properties were deduced from Maxwell relations and Landau-Ginzburg-Devonshire (LGD) phenomenological theory, respectively, and also directly controlled by a computer and measured by thermometry. Large electrocaloric efficiencies were obtained and comparable with the results calculated via the phenomenological theory. Results show great potential in achieving large cooling power as refrigerants. PMID:28345655

  5. Antiferroelectric films of deuterated betaine phosphate (United States)

    Balashova, E. V.; Krichevtsov, B. B.; Svinarev, F. B.; Zaitseva, N. V.


    Thin films of partially deuterated betaine phosphate have been grown by the evaporation on Al2O3(110) and NdGaO3(001) substrates with a preliminarily deposited structure of interdigitated electrodes. The grown films have a polycrystalline block structure with characteristic dimensions of blocks of the order of 0.1-1.5 mm. The degree of deuteration of the films D varies in the range of 20-50%. It has been found that, at the antiferroelectric phase transition temperature T c afe = 100-114 K, the fabricated structures exhibit an anomaly of the electrical capacitance C, which is not accompanied by a change in the dielectric loss tangent tanδ. The strong-signal dielectric response is characterized by the appearance of a ferroelectric nonlinearity at temperatures T > T c afe , which is transformed into an antiferroelectric nonlinearity at T < T c afe . With a further decrease in the temperature, double dielectric hysteresis loops appear in the antiferroelectric phase. The dielectric properties of the films have been described within the framework of the Landau-type thermodynamic model taking into account the biquadratic coupling ξ P 2η2 between the polar order parameter P and the nonpolar order parameter η with a positive coefficient ξ. The E-T phase diagram has been constructed.

  6. Flexo- and piezo-electric polarization of smectic layers in ferroelectric and antiferroelectric liquid crystals (United States)

    Kuczyński, W.; Hoffmann, J.; Dardas, D.; Nowicka, K.; Bielejewska, N.


    In this paper, we report on how flexoelectric and piezoelectric polarization components can be determined by a method based on simultaneous studies of dielectric and electrooptic properties of the chiral smectic liquid crystal in the regime of weak electric fields. As a rule, the measurements of spontaneous polarization are performed using switching experiments. The polarization measured in this way is not complete—it contains the piezoelectric component only. However, the knowledge of the entire local polarization of a single smectic layer is of great importance—it is necessary for correct determination of some material parameters, for instance elastic constants. Our experiments performed in a helical smectic mixture demonstrated that flexoelectric contribution to the local spontaneous polarization is significant in both ferroelectric and antiferroelectric phases. In the antiferroelectric phase, the flexoelectric polarization is less due to higher helical pitch.

  7. Highly tunable piezocaloric effect in antiferroelectric PbZrO3 (United States)

    Lisenkov, S.; Mani, B. K.; Cuozzo, J.; Ponomareva, I.


    A first-principles-based effective Hamiltonian approach is used to predict the existence of a highly tunable piezocaloric effect in antiferroelectric PbZrO3. The high tunability originates from a strong dependence of both the magnitude and sign of the piezocaloric temperature change on the initial temperature and the nature of the stress. The linearity of the temperature response to the applied stress allows for the doubling of the efficiency of the basic solid state refrigeration cycle. The large values and high tunability of the piezocaloric effect in antiferroelectrics is traced to the strong coupling between the multiple order parameters that coexist in such materials. An experimental setup for the demonstration of such an unusual effect is proposed.

  8. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. (United States)

    Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Müller, Johannes; Kersch, Alfred; Schroeder, Uwe; Mikolajick, Thomas; Hwang, Cheol Seong


    The recent progress in ferroelectricity and antiferroelectricity in HfO2-based thin films is reported. Most ferroelectric thin film research focuses on perovskite structure materials, such as Pb(Zr,Ti)O3, BaTiO3, and SrBi2Ta2O9, which are considered to be feasible candidate materials for non-volatile semiconductor memory devices. However, these conventional ferroelectrics suffer from various problems including poor Si-compatibility, environmental issues related to Pb, large physical thickness, low resistance to hydrogen, and small bandgap. In 2011, ferroelectricity in Si-doped HfO2 thin films was first reported. Various dopants, such as Si, Zr, Al, Y, Gd, Sr, and La can induce ferro-electricity or antiferroelectricity in thin HfO2 films. They have large remanent polarization of up to 45 μC cm(-2), and their coercive field (≈1-2 MV cm(-1)) is larger than conventional ferroelectric films by approximately one order of magnitude. Furthermore, they can be extremely thin (5 eV). These differences are believed to overcome the barriers of conventional ferroelectrics in memory applications, including ferroelectric field-effect-transistors and three-dimensional capacitors. Moreover, the coupling of electric and thermal properties of the antiferroelectric thin films is expected to be useful for various applications, including energy harvesting/storage, solid-state-cooling, and infrared sensors.


    Institute of Scientific and Technical Information of China (English)


    A new type of large-displacement actuator called reduced and internally biased oxide wafer (RAINBOW) is fabricated by chemical reduction of Pb(Sn, Zr, Ti)O3(PSZT) antiferroelectric ceramics and its properties are investigated. It is found that PSZT is easily reduced and the optimal conditions for producing RAINBOW samples are determined to be 870 ℃ for 2~3 h. The antiferroelectricsferroelectrics phase transitions occur at lower field strength in RAINBOW actuators compared with normal PSZT actuators. Large axial displacements are also obtained from the RAINBOW actuator by application of electric fields exceeding the phase switching level. However, the field-induced displacement of the RAINBOW actuator is dependent on the manner of applying load on the samples.

  10. Microstructural evolution in NaNbO3-based antiferroelectrics (United States)

    Guo, Hanzheng; Shimizu, Hiroyuki; Randall, Clive A.


    Our recent study found that CaZrO3 doping can effectively enhance the antiferroelectric P phase in NaNbO3 ceramics, leading to a double polarization hysteresis loop characteristic of a reversible antiferroelectric ↔ ferroelectric phase transition [Shimizu et al., Dalton Trans. 44, 10763 (2015)]. Here, a thorough transmission electron microscope study was performed to illustrate the CaZrO3 doping-assisted antiferroelectricity stabilization. In parallel to the bright-field imaging and selected area electron diffraction from multiple zone axes, detailed dark-field imaging was utilized to determine the superlattice structural origins, from either oxygen octahedral tilting or antiparallel cation displacements. By analogy with Pb(Zr1-xTix)O3 and rare-earth doped BiFeO3 systems, the chemical substitutions are such as to an induced polar-to-antipolar transition that is consistent with a tolerance factor reduction. The resultant chemical pressure has a similar effect to the compressive hydrostatic pressure where the antiferroelectric state is favored over the ferroelectric state.

  11. New antiferroelectric liquid crystal for use in LCD (United States)

    Dłubacz, A.; Marzec, M.; Dardas, D.; Żurowska, M.


    In this work, the physical properties of newly synthesized liquid crystalline compound exhibiting two liquid crystalline phases (ferroelectric and antiferroelectric) were studied. Based on the results of differential scanning calorimetry, polarizing microscopy, and photoelastic modulator methods, the temperature dependences of spontaneous polarization, tilt angle, switching time, and birefringence in the ferroelectric, as well as antiferroelectric phases were determined. Furthermore, the influence of the external electric field on the liquid crystalline textures was studied and the phase sequences at heating and cooling were revealed. The temperature dependence of spontaneous polarization was analysed by means of Landau mean-field theory, and the critical parameter β obtained for ferroelectric liquid crystalline and isotropic liquid transition was 0.21 which is close to 0.25, the value characteristic for tri-critical point.

  12. Influence of pulse polarity on electron emission property of antiferroelectric ceramic

    Institute of Scientific and Technical Information of China (English)

    SHENG ZhaoXuan; FENG YuJun; OUI Jie; HUANG Xuan; XU Zhuo; SUN XinLi


    The electron emission property of a novel antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) on the application of positive or negative triggering voltage pulses has been investigated. All experiments were performed in a vacuum of 10-5 Torr and at room tempera-ture. It was discovered that there were two electron emission pulses when low positive triggering voltage was applied to the rear electrode, and three electron emission pulses when high positive trig-gering voltage was applied. However there were always two electron emission pulses when negative triggering pulses were applied. This phenomenon is proposed to be a result of both field electron emission at triple junctions and electron emission caused by polarization reversal. The experimental observations indicate that domain movement in the vicinity close to the triple junction under applica-tion of the triggering voltage pulse may be a primary origin of electron emission from PLZST.

  13. Electro-optical and dielectric properties of a high tilt antiferroelectric liquid crystal mixture (W-193B)

    Energy Technology Data Exchange (ETDEWEB)

    Nayek, Prasenjit; Ghosh, Sharmistha; Kundu, Sudarshan; Roy, Subir Kr [Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700032 (India); Majumder, Tapas Pal [Department of Physics, University of Kalyani, Kalyani-741235, West Bengal (India); Bennis, Noureddine; Oton, Jose Manuel [Department of TecnologIa Fotonica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dabrowski, Roman, E-mail: spskr@iacs.res.i [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland)


    The electro-optical properties and dielectric relaxation have been investigated for an antiferroelectric liquid crystal mixture W-193B. The material exhibits smectic A*, smectic C* and a wide range of anticlinic smectic C{sub A}{sup *} phases. The high tilt and broad room temperature smectic C{sub A}{sup *} phase make it a good candidate for antiferroelectric display materials. Dielectric studies have been made in a planarly aligned cell in the frequency range 10 Hz-13 MHz. Dielectric spectroscopy reveals the existence of soft mode in the smectic A* phase and Goldstone mode in the smectic C* phase. In the smectic C{sub A}{sup *} phase the dielectric spectrum of the material exhibits two absorption peaks related to the rotational fluctuation around the short axis of the molecules and antiphase azimuthal angle fluctuation, respectively, and are separated by about two orders of frequency. Electro-optical response using a low frequency triangular wave showed a very high quasi-static contrast ratio of 132 : 1, threshold voltage of around 7 V and saturation of 17 V. Surface-stabilized, low thickness cells of this mixture showed a perfect double hysteresis loop with a 1 Hz triangular signal, reaching different transmission levels for different voltage amplitudes. These levels can be stabilized with a single holding voltage, making it possible for the material to be passively multiplexed at video rate.

  14. Small hysteresis and high energy storage power of antiferroelectric ceramics (United States)

    Wang, Jinfei; Yang, Tongqing; Chen, Shengchen; Yao, Xi


    In this paper, modified Pb(Zr,Ti)O3(PZT) antiferroelectric (AFE) ceramics system was investigated by traditional solid state method. It was observed that the effect of different contents of Zr/Sn, Zr/Ti on modified PZT antiferroelectrics. With increasing Zr/Sn content, the EAFE (electric field of AFE phase to ferroelectric (FE) phase) value was enlarged. The phase switch field was reduced from FE to AFE (EFA). The hysteresis loops were changed from "slanted" to "square"-types. With increasing Zr/Ti concentrate, the EAFE value, and also the EFA was enlarged, while the hysteresis switch ΔE was reduced. The hysteresis loops was from "square" to "slanted"-types. The samples with square hysteresis loops are suitable for energy storage capacitor applications, the composition of ceramics was Pb0.97La0.02(Zr0.90Sn0.05Ti0.05)O3, which have the largest energy storage density 4.426J/cm3 at 227 kV/cm, and ΔE was 80 kV/cm, energy efficient η was about 0.612.

  15. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)


    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  16. Theoretical investigation of antiferroelectric (SmCA*) subphases by hydrodynamical approach (United States)

    Lahiri, T.; Pal Majumder, T.


    We provide a hydrodynamical approach utilizing time dependent Landau-Ginzburg model (L-G) and the Cahn-Hilliard model (C-H) to investigate antiferroelectric liquid crystals (AFLCs) exhibiting different chiral phases between paraelectric smectic A (SmA*) phase and antiferroelectric smectic CA* phase (SmCA*). Introducing conserved and non-conserved order parameters in C-H and L-G models, we have predicted the appearance of a chiral smectic C (SmC*) phase and a ferrielectric SmCFI1* phase (three layers SmCA*) in an antiferroelectric phase sequence. The three layers periodicity for SmCFI1* phase is studied in detail with a non-uniform layer interactions among smectic layers with strong experimental support. Finally, we provide some theoretical basis for the non-uniformity of our proposed layer interactions.

  17. Pyroelectric spectrum in Pb(Zr,Sn,Ti)O3 antiferroelectric- ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)


    The pyroelectric effect of phase transition induced with temperature in Nb-modified Pb(Zr,Sn,Ti)O3 antiferroelectric-ferroelectric ceramics is studied. Experimental results reveal that the phase transitions are accompanied with marked pyroelectric peaks, there exists the close relation between the type of phase transition and the shape of pyroelectric peak. Because of the variations of phase transition, various pyroelectric spectra result. The pyroelectric spectrum can display the polarization effect and some inferior phase transitions with temperature variations, such as antiferroelectric AFEA-AFEB or ferroelectric FEL-FEH transition, which are not detected by the conventional dielectric measurement.

  18. Electron emission from La-doped Pb(Zr,Sn,Ti)O_3 anti-ferroelectrics by pulse electric field and the relevant physical mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHANG LinLi; FENG YuJun; XU Zhuo; SHENG ZhaoXuan


    We investigate the characteristics of emission current waves of antiferroelectric cathode material lanthanum-doped lead zirconate stannate titanate (PLZST) triggered by pulse field, and analyze the relationship of the emission current waveforms with the extraction voltage. The close correlation between the triggering pulse polarity and emission current waveform observed evidences the relevant physical process of electron emission. We speculate that the primary emission may result from local phase transition and field emission in the vicinity of triple junctions, and the plasma formation may enhance the electron emission.

  19. Suppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Tan, Xiaoli, E-mail: [Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)


    The ceramic Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.57}Sn{sub 0.43}){sub 0.92}Ti{sub 0.08}]{sub 0.98}O{sub 3} can exist in either an antiferroelectric or a ferroelectric phase at room temperature, depending on the thermal and electrical history. The antiferroelectric phase can be partially recovered from the induced ferroelectric phase when the applied field reverses polarity. Therefore, polarization cycling of the ferroelectric phase in the ceramic under bipolar fields at room temperature is accompanied with repeated phase transitions. In this letter, the stability of the recovered antiferroelectric phase upon electrical cycling of the ceramic is investigated. Ex-situ X-ray diffraction reveals that bipolar cycling suppresses the antiferroelectric phase; this is indirectly supported by piezoelectric coefficient d{sub 33} measurements. It is speculated that the accumulated charged point defects during polarization cycling stabilize the polar ferroelectric phase. The findings presented are important to the fundamental studies of electric fatigue and field-induced phase transitions in ferroelectrics.

  20. Microstructural evolution in NaNbO{sub 3}-based antiferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanzheng, E-mail:; Randall, Clive A. [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shimizu, Hiroyuki [Taiyo Yuden Co., Ltd., Takasaki, Gunma 370-3347 (Japan)


    Our recent study found that CaZrO{sub 3} doping can effectively enhance the antiferroelectric P phase in NaNbO{sub 3} ceramics, leading to a double polarization hysteresis loop characteristic of a reversible antiferroelectric ↔ ferroelectric phase transition [Shimizu et al., Dalton Trans. 44, 10763 (2015)]. Here, a thorough transmission electron microscope study was performed to illustrate the CaZrO{sub 3} doping-assisted antiferroelectricity stabilization. In parallel to the bright-field imaging and selected area electron diffraction from multiple zone axes, detailed dark-field imaging was utilized to determine the superlattice structural origins, from either oxygen octahedral tilting or antiparallel cation displacements. By analogy with Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} and rare-earth doped BiFeO{sub 3} systems, the chemical substitutions are such as to an induced polar-to-antipolar transition that is consistent with a tolerance factor reduction. The resultant chemical pressure has a similar effect to the compressive hydrostatic pressure where the antiferroelectric state is favored over the ferroelectric state.

  1. From antiferroelectricity to ferroelectricity in smectic mesophases formed by bent-core molecules

    Indian Academy of Sciences (India)

    Carsten Tschierske; Gert Dantlgraber


    This contribution gives an overview of ferroelectric switching liquid crystalline phases formed by bent-core molecules. First a description of some general principles behind the mesophase formation within bent-core systems will be given, followed by a short review of the mesophase structures formed by such molecules. Then, different classes of ferroelectric switching bent-core mesogens will be described. This type of switching behaviour has been reported for several subtypes of polar smectic phases (B2, B5, B7 and SmCG) and recently for columnar mesophases. In this discussion particular attention will be made to polyphilic bent-core molecules, composed of three incompatible units, a bent aromatic core, alkyl chains and an oligosiloxane unit. The importance of the decoupling of the layers into microsegregated sublayers for the ferroelectric organisation is discussed. Many of the ferroelectric switching mesophases show dark textures with distinct regions of opposite chirality in their ground states. It is discussed that this might be due to a helical superstructure formed as a result of an escape from macroscopic polar order. Hence, the materials themselves are not ferroelectric in the ground state, but upon alignment within an electric field in the measuring cells the ferroelectric states are stabilised by surface interactions, leading to a ferroelectric switching system. The designing principle was extended to mesogenic dimers with bent-core structural units. For these compounds, depending on the number of dimethylsiloxane units in the spacer either ferroelectric or antiferroelectric switching was observed, whereby the effect of parity is reversed to that observed for conventional calamitic dimesogens. Finally, a carbosilane-based first generation dendrimer is reported. It shows a ferroelectric switching phase, for which a non-correlated organisation of tilted polar smectic layers is proposed (SmCPR).

  2. The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime

    CERN Document Server

    Colomo, F; Zinn-Justin, P


    An explicit expression for the spatial curve separating the region of ferroelectric order (`frozen' zone) from the disordered one (`temperate' zone) in the six-vertex model with domain wall boundary conditions in its anti-ferroelectric regime is obtained.

  3. Antiferroelectric polarization switching and dynamic scaling of energy storage: A Monte Carlo simulation (United States)

    Huang, B. Y.; Lu, Z. X.; Zhang, Y.; Xie, Y. L.; Zeng, M.; Yan, Z. B.; Liu, J.-M.


    The polarization-electric field hysteresis loops and the dynamics of polarization switching in a two-dimensional antiferroelectric (AFE) lattice submitted to a time-oscillating electric field E(t) of frequency f and amplitude E0, is investigated using Monte Carlo simulation based on the Landau-Devonshire phenomenological theory on antiferroelectrics. It is revealed that the AFE double-loop hysteresis area A, i.e., the energy loss in one cycle of polarization switching, exhibits the single-peak frequency dispersion A(f), suggesting the unique characteristic time for polarization switching, which is independent of E0 as long as E0 is larger than the quasi-static coercive field for the antiferroelectric-ferroelectric transitions. However, the dependence of recoverable stored energy W on amplitude E0 seems to be complicated depending on temperature T and frequency f. A dynamic scaling behavior of the energy loss dispersion A(f) over a wide range of E0 is obtained, confirming the unique characteristic time for polarization switching of an AFE lattice. The present simulation may shed light on the dynamics of energy storage and release in AFE thin films.

  4. Polarity of translation boundaries in antiferroelectric PbZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xian-Kui, E-mail: [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); Jia, Chun-Lin [Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); International Centre of Dielectric Research, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Roleder, Krystian [Institute of Physics, University of Silesia, Katowice 40007 (Poland); Setter, Nava [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland)


    Graphical abstract: Strain-free rigid model and aberration-corrected transmission electron microscopes are used to investigate the polarity of translation boundaries in antiferroelectric PbZrO{sub 3}. - Highlights: • Domain boundaries in antiferroelectric PbZrO{sub 3} show polar and antipolar property. • The antiphase boundary can split into “sub-domains”. • Polarization reversal possibly exists inside the translation boundaries. • Thermal treatment can alter morphology and density of the translation boundaries. - Abstract: The polarity of translation boundaries (TBs) in antiferroelectric PbZrO{sub 3} is investigated. We show that previous experimentally reported polar property of R{sub III-1} type TB can be well approximated by a strain-free rigid model. Based on this, the modeling investigation suggests that there are two additional polar TBs, three antipolar-like TBs and one antipolar antiphase boundary. High-resolution scanning-transmission-electron-microscopy study reveals that the straight R{sub III-1} type TB can split into “sub-domains” with possible polarization reversal, suggesting the occurrence of ferroic orders at the TBs. In addition, dependence of morphology and density of the TBs on thermal treatments is discussed according to our results.

  5. Characteristics of antiferroelectric PbZrO sub 3 thin films

    CERN Document Server

    Kim, I W; Kim, K S; Kim, H K; Lee Jae Sik; Jeong, J H; Yamakawa, K


    Antiferroelectric PbZrO sub 3 thin films were synthesized on Pt/Ti/SiO sub 2 /Si substrates by using reactive magnetron co-sputtering followed by rapid thermal annealing. At an annealing temperature of 700.deg.C, the PbZrO sub 3 films exhibited a pure perovskite phase with improved crystallinity as evidenced by higher and sharper (221) and (240) X-ray diffractometer peaks. From the scanning electron microscopy observations, the grains were found to have a columnar structure, and the average grain size was 0.3 - 0.5 mu m. An electric-field-forced transformation from the antiferroelectric phase to the ferroelectric phase was observed at room temperature and had a maximum polarization value of 41 mu C/cm sup 2. The average fields for exciting the ferroelectric state and that for reversing to the antiferroelectric state, as measured by charge versus voltage curves, were 357 kV/cm and 207 kV/cm, respectively. The dielectric constant was 196 with an associated dissipation factor of 0.043 at 100kHz. The frequency-de...

  6. Crystal structure and order parameters in the phase transition of antiferroelectric PbZrO sub 3

    CERN Document Server

    Fujishita, H; Tanaka, S; Ogawaguchi, A; Katano, S


    X-ray and neutron diffraction and dielectric measurements were performed for the antiferroelectric phase of PbZrO sub 3. The antiferroelectric SIGMA sub 3 (TO) and the R sub 2 sub 5 superlattice-reflection intensities, and the pseudo-tetragonal lattice distortion of the perovskite sublattice showed the same temperature dependence below room temperature, showing a saturation below about 60 K. Above room temperature, however, they showed rather different temperature dependences. These temperature dependences can be well described by the free energy based on a group theoretical method, which includes a quantum effect. The atomic shifts do not necessarily conform to a simple concept of order parameter in soft mode condensation. However the antiferroelectric phase transition can be understood by the phenomenological theory for coupled order parameters if applied over the whole temperature region. (author)

  7. Realization of Field Sequential Color in Simple Matrix Antiferroelectric Liquid Crystal Displays by Utilizing Fast Pretransitional Response (United States)

    Suzuki, Yasushi; Chen, Guo-Ping; Manna, Uttam; Vij, Jagdish K.; Fukuda, Atsuo


    Simple matrix antiferroelectric liquid crystal displays (SM-AFLCDs) are prototyped to realize field sequential color (FSC) by utilizing the fast pretransitional response. The developed FSC-SM-AFLCDs will lead to the replacement of existing static driven FSC-SM-nematic-LCDs. Bright and clear color can be given to already market-acquired, black-and-white SM-LCDs of up to 1/64-duty and 3-in. diagonal size. To optimize the display performance, we analyze two important factors, the large pretransitional effect and the appropriate reset pulse, in terms of the interlayer interaction potential used in describing the field-induced transition of the antiferroelectric smectic phase.

  8. Dielectric behavior of antiferroelectric liquid crystals in presence of flexoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Das, Deblal; Mandal, Pravash; Majumder, Tapas Pal, E-mail: [Department of Physics, University of Kalyani, West Bengal (India)


    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization. (author)

  9. Dielectric Behavior of Antiferroelectric Liquid Crystals in Presence of Flexoelectric Effect (United States)

    Das, Deblal; Mandal, Pravash; Pal Majumder, Tapas


    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization.

  10. Tunneling Motion and Antiferroelectric Ordering of Lithium Cations Trapped inside Carbon Cages (United States)

    Aoyagi, Shinobu; Tokumitu, Akio; Sugimoto, Kunihisa; Okada, Hiroshi; Hoshino, Norihisa; Akutagawa, Tomoyuki


    Dielectric and X-ray diffraction measurements of [Li@C60](PF6) single crystals reveal the motion of the Li+ cations inside the C60 cages at low temperature. An increase in the dielectric permittivity below 100 K is consistent with a combined tunneling and hopping motion of the Li+ cation between two positions inside the C60 cage. A phase transition accompanied by a decrease in the dielectric permittivity at TC = 24 K is explained by an antiferroelectric ordering of the Li+ cations. The Li+ ordering is caused by interactions among electric dipole moments formed between the Li+ cations inside and the PF6- anions outside the C60 cages. The electric dipole moments that are switched by the Li+ tunneling and interact with each other are potential qubits in a quantum computer using electric dipole moments.

  11. Polarization of antiferroelectric ceramics for pulse capacitors under transient electric field (United States)

    Xu, Ran; Xu, Zhuo; Feng, Yujun; Wei, Xiaoyong; Tian, Jingjing; Huang, Dong


    The polarization of (Pb0.94La0.04)[(Zr0.7Sn0.3)0.87Ti0.13]O3 antiferroelectric (AFE) ceramics under unipolar pulse electric field was studied, and the transient hysteresis loop was achieved. Compared to the traditional quasi-static results, the forward transition field increases and the backward transition field decreases. The forward and backward phase transitions can be deduced in microseconds scale. Under the transient field, the releasable energy density decreases significantly, while the stored energy density changes slightly. Consequently, the efficiency decreases and the declination of energy density under transient situation is verified by the charge-discharge experiment. The above results prove the necessity of the study of the transient behaviors in AFE and the limitation of quasi-static analysis.

  12. Antiferroelectric liquid crystals studied by DSC, electro-optic, and dielectric methods (United States)

    Marzec, M.; Fafara, A.; Wrobel, S.; Godlewska, Malgorzata; Dabrowski, Roman S.; Czuprynski, Krzysztof L.; Haase, Wolfgang


    Thermal properties of four liquid crystalline substances exhibiting antiferroelectric SmCA* and ferroelectric SmC* phases were studied using differential scanning calorimetry, texture observation, electrooptic measurements and dielectric spectroscopy. The measurements were performed both on heating and cooling of the samples. All four substances studied in this work are characterized by a complex polymorphism. The temperatures of phase transitions and enthalpy changes associated with them were determined. The transition from the liquid crystalline to the crystalline state showed significant hysteresis for all four substances studied. Textures observations and electrooptic measurements were performed using ITO cells having thickness from 6 to 10 micrometers . The measurements of spontaneous polarization were performed by means of reversal current method. Spontaneous polarization was measured for a few frequencies of the triangular voltage applied. Temperature dependencies of spontaneous polarization have been studied as a function of the side chain structure.

  13. Emergent Superstructural Dynamic Order due to Competing Antiferroelectric and Antiferrodistortive Instabilities in Bulk EuTiO3 (United States)

    Kim, Jong-Woo; Thompson, Paul; Brown, Simon; Normile, Peter S.; Schlueter, John A.; Shkabko, Andrey; Weidenkaff, Anke; Ryan, Philip J.


    Microscopic structural instabilities of EuTiO3 single crystals were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedron rotational order was observed alongside Ti derived antiferroelectric distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The combination of electric and magnetic fields increases the population of the modulated AFD order, illustrating how the origin of the large magnetoelectric coupling derives from the dynamic equilibrium between AFD and polar instabilities.

  14. Antiferroelectric-to-Ferroelectric Switching in CH3NH3PbI3 Perovskite and Its Potential Role in Effective Charge Separation in Perovskite Solar Cells (United States)

    Sewvandi, Galhenage A.; Hu, Dengwei; Chen, Changdong; Ma, Hao; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Feng, Qi


    Perovskite solar cells (PSCs) often suffer from large performance variations which impede to define a clear charge-transfer mechanism. Ferroelectric polarization is measured numerically using CH3NH3PbI3 (M A PbI3 ) pellets to overcome the measurement issues such as pinholes and low uniformity of thickness, etc., with M A PbI3 thin films. M A PbI3 perovskite is an antiferroelectric semiconductor which is different from typical semiconducting materials and ferroelectric materials. The effect of polarization carrier separation on the charge-transfer mechanism in the PSCs is elucidated by using the results of ferroelectric and structural studies on the perovskite. The ferroelectric polarization contributes to an inherent carrier-separation effect and the I - V hysteresis. The ferroelectric and semiconducting synergistic charge-separation effect gives an alternative category of solar cells, ferroelectric semiconductor solar cells. Our findings identify the ferroelectric semiconducting behavior of the perovskite absorber as being significant to the improvement of the ferroelectric PSCs performances in future developments.

  15. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. (United States)

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao


    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  16. Artificial Modulation of Ferroelectric Thin Films into Antiferroelectric through H+ Implantation for High-Density Charge Storage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Jun; FEI Jin-Wen; TANG Wing-Ao; JIANG An-Quan


    Hydrogen ions are implanted into Pb(Zr0.3Ti0.7)O3 thin films at the energy of 40keV with a flux of 5 ×1014 ions/cm2.Pseudo-antiferroelectric behaviour in the implanted thin films is observed,as confirmed by the measurements of polarization versus electric hysteresis loops and capacitance versus voltage curves.X-ray diffraction patterns show the film structures before and after H+ implantation both to be perovskite of a tetragonal symmetry.These findings indicate that hydrogen ions exist as stable dopants within the films.It is believed that the dopants change domain-switching behaviour via the boundary charge compensation.Meanwhile,time dependence of leakage current density after time longer than lOs indicates the enhancement of the leakage current nearly in one order for the implanted film,but the current at time shorter than I s is mostly the same as that of the original film without the ionic implantation.The artificial tailoring of the antiferroelectric behaviour through H+ implantation in ferroelectric thin films is finally proven to be achievable for the device application of high-density charge storage.

  17. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times. (United States)

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won


    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  18. Global and local structural variations near the antiferroelectric regime in Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thangavelu, Karthik [Advanced Functional Materials Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, ODF-Campus-502205 (India); Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, ODF-Campus-502205 (India); Rayaprol, S. [UGC-DAE CSR Mumbai Centre, BARC Campus, Mumbai - 400085 (India); Siruguri, V. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India); Sastry, P. U.; Asthana, Saket, E-mail:


    Rietveld refinement of neutron and x-ray diffraction data of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} shows R3c phase stabilization at room temperature. The intermediate antiferroelectric region between 180°C to 280°C exhibits phase coexistence i.e R3c + Pnma, along with decrease in octahedral tilt angle and increase in unit cell volume. The local structural changes observed from Raman scattering in the A-O, Ti-O and TiO{sub 6} phonon modes favor the global structural variation. A possible antiparallel cation displacement due to Pnma phase formation leads to the origin of antiferroelectric ordering in Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}.

  19. Global and local structural variations near the antiferroelectric regime in Na0.5Bi0.5TiO3 (United States)

    Thangavelu, Karthik; Rayaprol, S.; Siruguri, V.; Sastry, P. U.; Asthana, Saket


    Rietveld refinement of neutron and x-ray diffraction data of Na0.5Bi0.5TiO3 shows R3c phase stabilization at room temperature. The intermediate antiferroelectric region between 180°C to 280°C exhibits phase coexistence i.e R3c + Pnma, along with decrease in octahedral tilt angle and increase in unit cell volume. The local structural changes observed from Raman scattering in the A-O, Ti-O and TiO6 phonon modes favor the global structural variation. A possible antiparallel cation displacement due to Pnma phase formation leads to the origin of antiferroelectric ordering in Na0.5Bi0.5TiO3.

  20. Antiferroelectric instability in the kagome francisites Cu3Bi (SeO3)2O2X (X =Cl ,Br ) (United States)

    Prishchenko, Danil A.; Tsirlin, Alexander A.; Tsurkan, Vladimir; Loidl, Alois; Jesche, Anton; Mazurenko, Vladimir G.


    Density-functional calculations of lattice dynamics and high-resolution synchrotron powder diffraction uncover antiferroelectric distortion in the kagome francisite Cu3Bi (SeO3)2O2Cl below 115 K. Its Br-containing analog is stable in the room-temperature crystal structure down to at least 10 K, although the Br compound is on the verge of a similar antiferroelectric instability and reveals local displacements of Cu and Br atoms. The I-containing compound is stable in its room-temperature structure according to density-functional calculations. We show that the distortion involves cooperative displacements of Cu and Cl atoms, and originates from the optimization of interatomic distances for weakly bonded halogen atoms. The distortion introduces a tangible deformation of the kagome spin lattice and may be responsible for the reduced net magnetization of the Cl compound compared to the Br one. The polar structure of Cu3Bi (SeO3)2O2Cl is only slightly higher in energy than the nonpolar antiferroelectric structure, but no convincing evidence of its formation could be obtained.

  1. Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO{sub 3}:Sn

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Kim, Tae Hyun [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Gągor, Anna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Jankowska-Sumara, Irena [Institute of Physics, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków (Poland); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Kojima, Seiji [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)


    Highlights: • Phase transition mechanisms were studied in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3.} • Acoustic phonons showed anomalies at 472 and 426 K due to phase transitions. • Brillouin data showed evidence for presence of polar clusters in paraelectric phase. • An order-disorder mechanism of the PE to AFE2 transition was proved. - Abstract: Specific heat, dielectric, powder X-ray diffraction and Brillouin scattering studies of phase transitions in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3} crystal were performed. The specific heat data revealed clear anomalies at T{sub 1} = 473.5 and T{sub 2} = 426.3 K on cooling, which could be attributed to onset of first order phase transitions from the paraelectric (PE) phase to an intermediate antiferroelectric phase (AFE2) and the AFE2 phase to another antiferroelectric phase (AFE1), respectively. The estimated entropy changes at T{sub 1} and T{sub 2} pointed to mainly an order-disorder and displacive character of these transitions, respectively. X-ray diffraction data showed a complex superstructure of the intermediate phase with a = 11.895(6) Å, b = 11.936(4) Å, c = 8.223(3) Å at 453 K. Brillouin studies revealed pronounced softening of longitudinal acoustic (LA) mode in the PE phase associated with its broadening. The broadening and softening exhibited maximum values at T{sub 1}. Additional acoustic anomalies, that is, abrupt frequency shifts for LA and transverse acoustic (TA) modes were also observed at T{sub 2}. Brillouin scattering data also showed presence of a broad central peak (CP) that exhibited highest intensity at T{sub 1}. The observed temperature dependences of acoustic modes and CP indicate order-disorder character of the FE to AFE2 phase transition and importance of polar precursor clusters in the PE phase. The obtained data also suggest that the intermediate antiferroelectric phases in Sn{sup 4+} doped PbHfO{sub 3} and PbZrO{sub 3} may have very similar structures

  2. Behaviour of a polar relaxation mode around the phase transition point in the antiferroelectric PbZrO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Roleder, K.; Dec, J. [Univ. of Silesia, Katowice (Poland). Inst. of Physics; Maglione, M. [Univ. of Bourgogne, Dijon (France). Lab. de Physique; Fontana, M.D. [Univ. of Metz (France). Lab. Materiaux Optiques a Proprietes Specifiques


    In measurements of the dielectric dispersion carried out on single crystals of antiferroelectric lead zirconate (PbZrO{sub 3}) a polar relaxation mode in the frequency range from 10{sup 6} to 10{sup 9} Hz has been found. Using the Cole-Cole relation for the complex {epsilon}({omega}) response the relaxation frequency and dielectric step of the mode have been determined as functions of temperature. In the paraelectric phase the squared relaxation frequency well obeys a relation f{sub r}{sup 2} {approx} (T-T{sub o}) with T{sub o} = 222.9 deg. C. The temperature dependence of the dielectric step corresponds to a sharp anomaly of the dielectric permittivity observed at the phase transition between the paraelectric and antiferroelectric states in PbZrO{sub 3}. The phase transition mechanism of order-disorder type is discussed considering a disorder of the Pb sublattice in the paraelectric phase. It should be pointed out that similar dipolar relaxation in ABO{sub 3} perovskites is known to appear only in those with ferroelectric properties. (author)

  3. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells (United States)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi


    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  4. Electron Emission from Ferroelectric/Antiferroelectric Cathodes Excited by Short High-Voltage Pulses

    CERN Document Server

    Benedek, G; Handerek, J; Riege, H


    Un-prepoled Lead Zirconate Titanate Lanthanum doped-PLZT ferroelectric cathodes have emitted intense current pulses under the action of a high voltage pulse of typically 8 kV/cm for PLZT of 8/65/35 composition and 25 kV/cm for PLZT of 4/95/5 composition. In the experiments described in this paper, the exciting electric field applied to the sample is directed from the rear surface towards the emitting surface. The resulting emission is due to an initial field emission from the metal of the grid deposited over the emitting surface with the consequent plasma formation and the switching of ferroelectric domains. These electrons may be emitted directly form the crystal or from the plasma. This emission requires the material in ferroelectric phase. In fact, PLZT cathodes of the 8/65/35 type, that is with high Titanium content, showing ferroelectric-paraelectric phase sequence, emit at room temperature, while PLZT cathodes of the 4/95/5 type, that is with low Titanium content, having antiferro-ferro-paraelectric pha...

  5. Domain configuration changes under electric field-induced antiferroelectric-ferroelectric phase transitions in NaNbO{sub 3}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanzheng, E-mail:; Randall, Clive A. [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shimizu, Hiroyuki; Mizuno, Youichi [Taiyo Yuden Co., Ltd., Takasaki, Gunma 370-3347 (Japan)


    We recently developed a feasible crystal chemistry strategy to stabilize the antiferroelectricity in NaNbO{sub 3} through a chemical substitution to decrease the tolerance factor and increase the average electronegativity of the system [Shimizu et al., Dalton Trans. 44, 10763 (2015) and Guo et al., J. Appl. Phys. 117, 214103 (2015)]. Two novel lead-free antiferroelectric (AFE) solid solutions, (1-x)NaNbO{sub 3}-xCaZrO{sub 3} and (1-x)NaNbO{sub 3}-xSrZrO{sub 3}, have been found to exhibit the double polarization hysteresis typical of a reversible AFE ↔ ferroelectric (FE) phase transition. In this study, as demonstrated by (1-x)NaNbO{sub 3}-xCaZrO{sub 3} system, the influence of chemical modification and electrical poling on the AFE/FE phase stability was investigated, primarily focusing on the microstructural and crystallographic evolutions. Together with the macroscopic polarization hysteresis measurements, a well-demonstrated structure-property relationship was presented. It was found that the CaZrO{sub 3} substitution into NaNbO{sub 3} can effectively destabilize the FE Q phase and correspondingly lead to a spontaneous reverting to AFE P phase. In contrast to the reversible AFE ↔ FE phase transition, the domain morphology evolution exhibits irreversible nature with a growing process of the orientational domains after applying electric field. Moreover, a multiple-zone axes electron diffraction map of P and Q phases has been summarized and is believed to be an efficient diagram to determine the AFE/FE nature of the NaNbO{sub 3}-based systems.

  6. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P2{sub 1}ma) to establish double loop hysteresis in lead-free (1−x)NaNbO{sub 3}-xSrZrO{sub 3} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanzheng, E-mail:; Randall, Clive A. [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shimizu, Hiroyuki; Mizuno, Youichi [Taiyo Yuden Co., Ltd., Takasaki, Gunma 370-3347 (Japan)


    A new lead-free antiferroelectric solid solution system, (1−x)NaNbO{sub 3}-xSrZrO{sub 3}, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO{sub 3} doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO{sub 3} without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1−x)NaNbO{sub 3}-xCaZrO{sub 3} [H. Shimizu et al. “Lead-free antiferroelectric: xCaZrO{sub 3} - (1−x)NaNbO{sub 3} system (0 ≤ x ≤ 0.10),” Dalton Trans. (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.

  7. Understanding and Revisiting Properties of EuTiO3 Bulk Material and Films from First Principles (United States)

    Yang, Yurong; Ren, Wei; Wang, Dawei; Bellaiche, L.


    Ab initio computations are performed to investigate properties of bulk material and epitaxial films made of EuTiO3 (ETO). A whole family of nanoscale twinned phases, that present complex oxygen octahedra tilting (OOT) and unusual antiferroelectricity, is found to be degenerate in energy with simpler phases (all possessing typical OOT) in bulk ETO. Such degeneracy provides a successful explanation of recently observed anomalous phenomena. The calculations also lead to revisiting the (rich) phase diagram of ETO films.

  8. Degeneracy lifting due to thermal fluctuations around the frustration point between anticlinic antiferroelectric SmC(A)* and synclinic ferroelectric SmC*. (United States)

    Sandhya, K L; Chandani, A D L; Fukuda, Atsuo; Vij, Jagdish K; Emelyanenko, A V; Ishikawa, Ken


    In the binary mixture phase diagram of MC881 and MC452, the borderline between anticlinic antiferroelectric SmC(A)(*) and synclinic ferroelectric SmC(*) becomes apparently parallel to the temperature ordinate axis at the critical concentration r(c). The free energy difference between SmC(A)(*) and SmC^{*} is extremely small in a wide temperature range near r(c). In such circumstances, by observing Bragg reflection spectra due to the director helical structure and electric-field-induced birefringence, we have observed the continuous change from SmC(A)(*) to SmC(*) for r/~r(c). These intriguing phenomena have been explained, successfully at least in the high-temperature region, by a thermal equilibrium between the synclinic and anticlinic orderings and the resulting Boltzmann distribution for the ratio between them; the thermal equilibrium is considered to be attained in a nonuniform defect-assisted way through solitary waves moving around dynamically. We have also discussed qualitatively an important role played by the effective long-range interlayer interactions in the low-temperature region.

  9. An anti-ferroelectric gated Landau transistor to achieve sub-60 mV/dec switching at low voltage and high speed (United States)

    Karda, Kamal; Jain, Ankit; Mouli, Chandra; Alam, Muhammad Ashraful


    Landau field effect transistors promise to lower the power-dissipation of integrated circuits (ICs) by reducing the subthreshold swing (S) below the Boltzmann limit of 60 mV/dec. The key idea is to replace the classical gate insulator with dielectrics that exhibit negative capacitance (NC) associated with double-well energy landscape, for example, ferroelectrics (FE), air-gap capacitors, or a combination thereof. Indeed, S is dramatically reduced, constrained only by the limits of hysteresis-free operation. Unfortunately, the following limitations apply (i) the need for capacitance matching constrains steep S only to the small subthreshold region for FE based negative capacitance field effect transistor (NCFET) and requires an insulator too thick for sub-20 nm scaling; (ii) the kinetics of mechanical switching for airgap based NCFET obviate high-speed operation; and (iii) the lattice mismatch between the substrate and the dielectric makes defect-free integration difficult. In this article, we demonstrate that a FET integrated with 10 nm HfO2-based anti-ferroelectric and FE hetero stack would achieve ultralow S with ON-current ( Io n) at par with classical transistors at significantly lower voltage and would simplify integration. Our results address the well-known challenges/criticisms of classical Landau transistors, thereby, making them technology relevant for modern ICs.

  10. Electric response in the antiferroelectric crystal of 4,4‧-di-t-butyl-2,2‧-bipyridyl with chloranilic acid (United States)

    Rok, M.; Piecha-Bisiorek, A.; Szklarz, P.; Bator, G.; Sobczyk, L.


    The electric response was analyzed in the vicinity of the structural phase transition at 412 K in the single crystals of 2,5-dichloro-3,6-dihydroxy-p-benzoquinone (chloranilic acid, CLA) with 4,4‧-di-t-butyl-2,2‧-bipyridyl (dtBBP). The dielectric permittivity of the complex measured along the b direction between 300 and 440 K and at frequencies ranging from 500 Hz to 2 MHz indicates two phenomena. At low frequencies, dielectric losses are ascribed to the electric conductivity of the crystal, while at high frequencies, to the dielectric relaxation described by means of the Cole-Cole relationship. The parameters of the dielectric response: the relaxation time, τ, the dielectric increment, εο - ε∞, and the distribution parameter of the relaxation time, α, were estimated and analyzed. The low-temperature structure of the crystals indicates the antiferroelectric arrangement of the supramolecular hydrogen bonds. The dielectric results also presented for the deuterated crystals of dtBBP·CLA proved that the dynamics of protons in the hydrogen bonds are responsible for the mechanism of phase transition.

  11. Electric response in the antiferroelectric crystal of 4,4′-di-t-butyl-2,2′-bipyridyl with chloranilic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rok, M., E-mail:; Piecha-Bisiorek, A.; Szklarz, P.; Bator, G.; Sobczyk, L.


    Highlights: • The semiconducting properties of the crystals were disclosed in the organic complex. • Dielectric relaxation and dc conductivity were investigated. • Activation energy for the thermally activated processes of the σ{sub dc} was estimated. • The effect of hydrogen bonds on the mechanism of the phase transition and the electric properties of the crystal was discussed. - Abstract: The electric response was analyzed in the vicinity of the structural phase transition at 412 K in the single crystals of 2,5-dichloro-3,6-dihydroxy-p-benzoquinone (chloranilic acid, CLA) with 4,4′-di-t-butyl-2,2′-bipyridyl (dtBBP). The dielectric permittivity of the complex measured along the b direction between 300 and 440 K and at frequencies ranging from 500 Hz to 2 MHz indicates two phenomena. At low frequencies, dielectric losses are ascribed to the electric conductivity of the crystal, while at high frequencies, to the dielectric relaxation described by means of the Cole–Cole relationship. The parameters of the dielectric response: the relaxation time, τ, the dielectric increment, ε{sub ο} − ε{sub ∞}, and the distribution parameter of the relaxation time, α, were estimated and analyzed. The low-temperature structure of the crystals indicates the antiferroelectric arrangement of the supramolecular hydrogen bonds. The dielectric results also presented for the deuterated crystals of dtBBP·CLA proved that the dynamics of protons in the hydrogen bonds are responsible for the mechanism of phase transition.

  12. Complex vibrational analysis of an antiferroelectric liquid crystal based on solid-state oriented quantum chemical calculations and experimental molecular spectroscopy. (United States)

    Drużbicki, Kacper; Mikuli, Edward; Kocot, Antoni; Ossowska-Chruściel, Mirosława Danuta; Chruściel, Janusz; Zalewski, Sławomir


    The experimental and theoretical vibrational spectroscopic study of one of a novel antiferroelectric liquid crystals (AFLC), known under the MHPSBO10 acronym, have been undertaken. The interpretation of both FT-IR and FT-Raman spectra was focused mainly on the solid-state data. To analyze the experimental results along with the molecular properties, density functional theory (DFT) computations were performed using several modern theoretical approaches. The presented calculations were performed within the isolated molecule model, probing the performance of modern exchange-correlations functionals, as well as going beyond, i.e., within hybrid (ONIOM) and periodic boundary conditions (PBC) methodologies. A detailed band assignment was supported by the normal-mode analysis with SQM ab initio force field scaling. The results are supplemented by the noncovalent interactions analysis (NCI). The relatively noticeable spectral differences observed upon Crystal to AFLC phase transition have also been reported. For the most prominent vibrational modes, the geometries of the transition dipole moments along with the main components of vibrational polarizability were analyzed in terms of the molecular frame. One of the goals of the paper was to optimize the procedure of solid-state calculations to obtain the results comparable with the all electron calculations, performed routinely for isolated molecules, and to test their performance. The presented study delivers a complex insight into the vibrational spectrum with a noticeable improvement of the theoretical results obtained for significantly attracting mesogens using modern molecular modeling approaches. The presented modeling conditions are very promising for further description of similar large molecular crystals.

  13. Materials (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.


    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  14. Phase diagram and incommensurate antiferroelectric structure in (Pb{sub 1−1.5x}La{sub x})(Zr{sub 0.42}Sn{sub 0.40}Ti{sub 0.18})O{sub 3} ceramics discovered by band-to-band optical transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. J.; Xu, L. P.; Hu, Z. G., E-mail:; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Department of Electronic Engineering, East China Normal University, Ministry of Education, Shanghai 200241 (China); Chen, X. F.; Wang, G. S.; Dong, X. L. [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)


    Optical properties and phase transitions of (Pb{sub 1−1.5x}La{sub x})(Zr{sub 0.42}Sn{sub 0.40}Ti{sub 0.18})O{sub 3} (PLZST 100x/42/40/18) ceramics with different compositions have been investigated by temperature dependent spectroscopic ellipsometry. Two interband critical points (E{sub cp1} and E{sub cp2}) located at about 3.9 and 5.1 eV can be obtained by fitting standard line shapes to the second derivatives of the complex dielectric functions. Based on the band-to-band transitions, the phase diagram of PLZST ceramics can be well presented. Moreover, a peculiar incommensurate antiferroelectric state has been found to exist above the temperature of the normal commensurate antiferroelectric tetragonal structure. It can be stable below Curie temperature, evolving slowly with decreasing temperature towards the commensurate structure, which is due to strong pinning of incommensurate domain walls. The phenomena can result from a competition between ferroelectric ordering and antiferroelectric ordering caused by the lanthanum modification.

  15. Energy-storage properties and electrocaloric effect of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. (United States)

    Zhao, Ye; Hao, Xihong; Zhang, Qi


    Antiferroelectric (AFE) thick (1 μm) films of Pb(1-3x/2)LaxZr0.85Ti0.15O3 (PLZT) with x = 0.08, 0.10, 0.12, and 0.14 were deposited on LaNiO3/Si (100) substrates by a sol-gel method. The dielectric properties, energy-storage performance, electrocaloric effect, and leakage current behavior were investigated in detail. With increasing La content, dielectric constant and saturated polarizations of the thick films were gradually decreased. A maximum recoverable energy-storage density of 38 J/cm(3) and efficiency of 71% were achieved in the thick films with x = 0.12 at room temperature. A large reversible adiabatic temperature change of ΔT = 25.0 °C was presented in the thick films with x = 0.08 at 127 °C at 990 kV/cm. Moreover, all the samples had a lower leakage current density below 10(-6) A/cm(2) at room temperature. These results indicated that the PLZT AFE thick films could be a potential candidate for applications in high energy-storage density capacitors and cooling devices.

  16. Leakage current characteristics and dielectric breakdown of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film capacitors grown on metal foils (United States)

    Ma, Beihai; Kwon, Do-Kyun; Narayanan, Manoj; Balachandran, U. Balu


    We have grown crack-free antiferroelectric (AFE) Pb0.92La0.08Zr0.95Ti0.05O3 (PLZT) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, we applied a conductive buffer layer of lanthanum nickel oxide (LNO) on the nickel foil by chemical solution deposition prior to the PLZT deposition. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be prepared at high temperatures in air. With the AFE PLZT deposited on LNO-buffered Ni foils, we observed field-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, EAF = 260 kV cm-1, and the reverse phase transition field, EFA = 220 kV cm-1, were measured at room temperature on a ~1.15 µm thick PLZT film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were ~530 and ~740, respectively, with dielectric loss <0.05 at room temperature. P-E hysteresis loop measured at room temperature confirmed the field-induced phase transition. The time-relaxation current density was investigated under various applied electric fields. The leakage current density of a 1.15 µm thick AFE PLZT film-on-foil capacitor was 5 × 10-9 A cm-2 at room temperature under 87 kV cm-1 applied field. The breakdown behaviour of the AFE PLZT film-on-foil capacitors was studied by Weibull analysis. The mean breakdown time decreased exponentially with increasing applied field. The mean breakdown time was over 610 s when a field of 1.26 MV cm-1 was applied to a 1.15 µm thick AFE PLZT film-on-foil capacitor.

  17. 手性化合物S811的强热释效应及反铁电特性%Large Pyroelectric Effect and Anti-ferroelectric Properties of Chiral Compound S811

    Institute of Scientific and Technical Information of China (English)

    牛小玲; 刘卫国; 刘鹏


    用热释电流谱、介电温谱、电滞回线谱、差示扫描量热仪(DSC)、热台偏光显微镜(PLM)对手性化合物S811的电学性能及相变行为进行了研究.热释电流谱、介电温谱显示S811在相变附近具有强热释电电流,其最大热释电系数达到384nC/(cm2·K),介电常数在相变过程也发生了突变.电滞回线谱显示,在冷却过程依次出现了反铁电体-铁电体转变的双电滞回线和单电滞回线,揭示了S811作为热释电探测材料的应用潜力,拓展了其应用范围.%The electrical properties and phase transition behaviors of chiral compound S811 have been investigated by pyroelectric, dielectric, polarization spectroscopy, DSC and PLM at different temperatures. It is found that S811 appeared a large pyroelectric current peak and a sharp growth of dielectric constants near the phase transition temperature The maximum value of the pyroelectric coefficient p obtained is 384nC/(cm2 · K). In the cooling process, the sample presented the transition of anti-ferroelectric to ferroelectric phase. The outstanding pyroelectric performances of S811 make it possible as a novel pyroelectric detectors.

  18. Temperature-dependent stability of energy storage properties of Pb{sub 0.97}La{sub 0.02}(Zr{sub 0.58}Sn{sub 0.335}Ti{sub 0.085})O{sub 3} antiferroelectric ceramics for pulse power capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen; Chen, Xuefeng; Peng, Wei; Xu, Chenhong; Dong, Xianlin; Cao, Fei; Wang, Genshui, E-mail: [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)


    The dielectric properties and electrical hysteresis behaviors of Pb{sub 0.97}La{sub 0.02}(Zr{sub 0.58}Sn{sub 0.335}Ti{sub 0.085})O{sub 3} antiferroelectric (AFE) ceramics were investigated in this work with an emphasis on energy storage properties. Three phase transition points can be detected as temperature increases. AFE and paraelectric phases are found to coexist from 100 °C to 170 °C. The room temperature recoverable energy density is 1.37 J/cm{sup 3} at 8.6 kV/mm. With increasing temperature (from 20 °C to 100 °C) and frequency (from 0.01 to 100 Hz) under 8.6 kV/mm, the variation of recoverable energy density was less than 15%, all higher than 1.2 J/cm{sup 3}. All the corresponding energy efficiencies were no less than 75%. The high energy density, high energy efficiency, and their weak dependence on temperature and frequency during a wide scope indicate that these antiferroelectric ceramics are quite promising to be used for pulse power capacitors applications.

  19. Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3-SrTiO3-(K0.5Na0.5)NbO3 solid solutions (United States)

    Liu, Laijun; Shi, Danping; Knapp, Michael; Ehrenberg, Helmut; Fang, Liang; Chen, Jun


    The effect of (K0.5Na0.5)NbO3 (KNN) addition on the ferroelectric and dielectric behavior of 90Bi0.5Na0.5TiO3-10SrTiO3 (BNT-ST) lead-free piezoceramics was investigated. Polarization and strain hysteresis loops indicate that a relaxor-antiferroelectric coherence will be produced with the addition of KNN as a replacement for ST up to 5% and the destabilization of the phase coherence is accompanied by an enhancement of the bipolar strain with the increase of temperature, which is ˜0.37% (corresponding to a large signal d33* of ˜530 pm/V at 90 °C) at 5 mol. % KNN content. This strain was analyzed as derived from an electrostrictive effect at lower electric fields and a field-induced antiferroelectric-ferroelectric phase transition at higher electric fields. The large polar strain response would be of great interest for environmental friendly high-temperature actuators.

  20. A study of the dielectric and magnetic properties of multiferroic materials using the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    A. Sosa


    Full Text Available A study of the dielectric and magnetic properties of multiferroic materials using the Monte Carlo (MC method is presented. Two different systems are considered: the first, ferroelectric-antiferromagnetic (FE-AFM recently studied by X. S. Gaoand J. M. Liu and the second antiferroelectric-ferromagnetic (AFE-FM. Based on the DIFFOUR-Ising hybrid microscopic model developed by Janssen, a Hamiltonian that takes into account the magnetoelectric coupling in both ferroic phases is proposed. The obtained results show that the existence of such coupling modifies the ferroelectric and magnetic ordering in both phases. Additionally, it is shown that the presence of a magnetic or an electric field influences the electric polarization and the magnetization, respectively, making evident the magnetoelectric effect.

  1. Electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Abouimrane, Ali; Belharouak, Ilias


    A process for forming a surface-treatment layer on an electroactive material includes heating the electroactive material and exposing the electroactive material to a reducing gas to form a surface-treatment layer on the electroactive material, where the surface-treatment layer is a layer of partial reduction of the electroactive material.

  2. Building Materials

    Institute of Scientific and Technical Information of China (English)


    @@ Building Materials Sub-council of CCPIT is the other sub-council in construction field. CCPIT Building Materials Sub-council (CCPITBM), as well as CCOIC Build-ing Materials Chamber of Commerce, is au-thorized by CCPIT and state administration of building materials industry in 1992. CCPITBM is a sub-organization of CCPIT and CCOIC.

  3. Materials Development

    Institute of Scientific and Technical Information of China (English)

    Brian Tomlinson


    @@ Introduction Materials development is both a field of study and a practical undertaking. As a field it studies the principles and procedures of the design, implementation and evaluation and adaptation of language teaching materials, by teachers for their own classrooms and by materials writers for sale or distribution. Ideally these two aspects of materials development are interactive in that the theoretical studies inform and are informed by the development and use of classroom materials (e. g. Tomlinson 1998c).

  4. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D


    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  5. Hazardous materials (United States)

    ... can cause cancer. Know how to use the material and how to store it or throw it away when you are done. Other tips include: Never enter an area where radiation ... materials from one area to another. Check bottles, containers, ...

  6. Analytic Materials

    CERN Document Server

    Milton, Graeme W


    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer $p$. If $p$ takes its maximum value then we have a complete analytic material. Otherwise it is incomplete analytic material of rank $p$. For two-dimensional materials further progress can be made in the identification of analytic materials by using the well-known fact that a $90^\\circ$ rotation applied to a divergence free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  7. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R


    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  8. Nanostructured Materials (United States)


    MIT for the use of facilities. Supporting Online Material full /318/5856/1618/DC1 Materials and Methods SOM Text Figs. S1...AFRL-RZ-ED-TR-2012-0034 Nanostructured Materials Joseph M. Mabry Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd...ORGANIZATION REPORT NO. Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd Edwards AFB CA 93524-7680 9. SPONSORING

  9. Material Systems

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael;


    This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...... approaches the subject through the construction of a logic-driven system aiming to explore the possibilities of a material system that fulfills spatial, structural and performative requirements concurrently and how these are negotiated in situations where they might be conflicting....

  10. Materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Nicolet, M.A.


    This book presents the papers given at a symposium on the methods used in the chemical analysis of materials. Topics considered at the symposium included emerging techniques for materials microanalysis, scanning electron microscopy, Raman spectroscopy, Auger electron spectroscopy, crystal lattices, computerized tomography using synchrotron radiation, epitaxy, photoconductivity, elastic properties, neutron-induced particle track mapping of elemental distributions, and point defects in crystals.

  11. Composite material (United States)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.


    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  12. Periodontal materials. (United States)

    Darby, I


    Periodontics is more associated with debridement of periodontal pockets and not generally thought of as using dental materials in the treatment of patients. However, the last 30 years have seen the development of materials used in regeneration of the periodontal tissues following periodontal disease, guided tissue regeneration, and the use of these materials in bone regeneration more recently, guided bone regeneration. The materials used include bone grafts and membranes, but also growth factors and cells-based therapies. This review provides an overview of the materials currently used and looks at contemporary research with a view to what may be used in the future. It also looks at the clinical effectiveness of these regenerative therapies with an emphasis on what is available in Australia.

  13. Bioresponsive materials (United States)

    Lu, Yue; Aimetti, Alex A.; Langer, Robert; Gu, Zhen


    'Smart' bioresponsive materials that are sensitive to biological signals or to pathological abnormalities, and interact with or are actuated by them, are appealing therapeutic platforms for the development of next-generation precision medications. Armed with a better understanding of various biologically responsive mechanisms, researchers have made innovations in the areas of materials chemistry, biomolecular engineering, pharmaceutical science, and micro- and nanofabrication to develop bioresponsive materials for a range of applications, including controlled drug delivery, diagnostics, tissue engineering and biomedical devices. This Review highlights recent advances in the design of smart materials capable of responding to the physiological environment, to biomarkers and to biological particulates. Key design principles, challenges and future directions, including clinical translation, of bioresponsive materials are also discussed.

  14. Radioactive Material

    CERN Multimedia


    The Radiation Protection Group of the Safety Commission is responsible for shipping of radioactive material from CERN to any external institute or organisation. The RP group is equally responsible for the reception of radioactive material shipped to any of the CERN sites. Anyone who needs to ship from or import into CERN radioactive material must contact the Radioactive Shipping Service of the RP group in advance. Instructions are available at: or in the Radiation Protection Procedure PRP13: Radiation Protection Group

  15. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous...

  16. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)


    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  17. Encountering Materiality

    DEFF Research Database (Denmark)

    Svabo, Connie


    DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016.......DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016....

  18. Utopian Materialities

    DEFF Research Database (Denmark)

    Elgaard-Jensen, Torben


    In various ways, this paper makes the counter-intuitive claim that the utopian and the material are thoroughlyinterdependent, rather than worlds apart. First, through a reading of Thomas More's Utopia, it is argued thatUtopia is the product of particular kinds of relations, rather than merely...... a detachment from the known world.Second, the utopianism of a new economy firm is examined. It is argued that the physical set-up of the firm -in particular the distribution of tables and chairs - evoke a number of alternatives to ordinary work practice.In this way the materialities of the firm are crucial...

  19. Electronic materials

    CERN Document Server

    Kwok, H L


    The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new conc

  20. Touching Materiality

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Rosén


    Dripping ink pens, colourful paint on skin, vegetables pots on a school roof. In interviews with three generations of former school pupils, memories of material objects bore a relation to everyday school life in the past. Interwoven, these objects entered the memorising processes, taking...

  1. Background Material

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia;


    This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....

  2. Emerging Materiality

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren


    The authors examine how materiality emerges from complex chains of mediation in creative software use. The primarily theoretical argument is inspired and illustrated by interviews with two composers of electronic music. The authors argue that computer mediated activity should not primarily...

  3. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L


    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  4. Magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Stinus


    New and improved magnetocaloric materials are one of the cornerstones in the development of room temperature magnetic refrigeration. Magnetic refrigeration has been used since the 1930ies in cryogenic applications, but has since the discovery of room temperature refrigerants received enormous attention. This Ph.D. work has been mainly concerned with developing a new technique to characterize the magnetocaloric effect (MCE) and using this technique in the investigations on new and improved magnetocaloric materials. For this purpose a novel differential scanning calorimeter (DSC) with applied magnetic fields was developed for measuring heat capacity as function of magnetic field. Measurements using the developed DSC demonstrate a very high sensitivity, fast measurements and good agreement with results obtained by other techniques. Furthermore, two material systems have been described in this work. Both systems take basis in the mixed-valence manganite system La{sub 1-x}Ca{sub x}MnO{sub 3} well known from research on colossal magnetoresistance (CMR). The mixed-valence manganite crystallizes in the perovskite structure of general formula ABO{sub 3}. The first material system is designed to investigate the influence of low level Cu doping on the B-site. Six different samples were prepared with over-stoichiometric compositions La{sub 0.67}Ca{sub 0.33}Mn{sub 1.05}Cu{sub x}O{sub 3}, x=0, 1, 2, 3, 4 and 5%. All compositions crystallized well in the same perovskite structure, but the morphology of the samples changed drastically with doping. Investigation on the magnetocaloric properties revealed that small levels of Cu up to around 3% could improve the magnetocaloric performance of the materials. Furthermore, Cu could be used to tune the temperature interval without deteriorating the MCE, which is a much desired characteristic for potential use in magnetic refrigerators. A less comprehensive part of the work has been concerned with the investigation of doping on the A

  5. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling


    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  6. Strategic Materials (United States)


    Titanium exists primarily in the minerals anatase , brookite, ilmenite, perovskite, rutile , titanite (sphene), as well in many iron ores. Of these minerals...raw materials ( anatase , ilmenite, and rutile ) are estimated at over 2 billion tons (U.S.G.S., 2007, p. 175). Due to its tendency to react with air at...only rutile (titanium dioxide) and ilmenite (iron-titanium oxide) have any economic importance. Unfortunately, high concentrations of the mineral

  7. Material monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, W.; Zirker, L.; Hancock, J.A.


    Waste Reduction Operations Complex (WROC) facilities are located at the Idaho National Engineering Laboratory (INEL). The overall goal for the Pollution Prevention/Waste Minimization Unit is to identify and establish the correct amount of waste generated so that it can be reduced. Quarterly, the INEL Pollution Prevention (P2) Unit compares the projected amount of waste generated per process with the actual amount generated. Examples of waste streams that would be addresses for our facility would include be are not limited to: Maintenance, Upgrades, Office and Scrap Metal. There are three potential sources of this variance: inaccurate identification of those who generate the waste; inaccurate identification of the process that generates the waste; and inaccurate measurement of the actual amount generated. The Materials Monitoring Program was proposed to identify the sources of variance and reduce the variance to an acceptable level. Prior to the implementation of the Material Monitoring Program, all information that was gathered and recorded was done so through an informal estimation of waste generated by various personnel concerned with each processes. Due to the inaccuracy of the prior information gathering system, the Material Monitoring Program was established. The heart of this program consists of two main parts. In the first part potential waste generators provide information on projected waste generation process. In the second part, Maintenance, Office, Scrap Metal and Facility Upgrade wastes from given processes is disposed within the appropriate bin dedicated to that process. The Material Monitoring Program allows for the more accurate gathering of information on the various waste types that are being generated quarterly.

  8. Research on the Crystal Growth and Dielectric Properties of High Permittivity Ferroelectric Materials. (United States)


    Paraclastic 8a 2 . 14L0 .71 222 NOW 42m 4/amm Nb2.5762.501 Three Antiferroelectric *Ferroelectric *Paraelectric *Paraelectric eroel astic Ferroel astic Paraci ...astic Paraci astic 8 01 Rockwell International Science Center SC5345.3AR (BaSr)5Nbj0O30 as Ba2 _xSrxK.yNayNb505 , yields more stuffed and stable

  9. FOREWORD: Materials metrology Materials metrology (United States)

    Bennett, Seton; Valdés, Joaquin


    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  10. Materializing Superghosts

    CERN Document Server

    Alexandrov, Victor; Losev, Andrei; Lysov, Vyacheslav


    We construct the off-shell BV realization of N=1, d=10 SYM with 7 auxillary fields. This becomes possible due to materialized ghost phenomenon. Namely, supersymmetry ghosts are coordinates on a manifold B of 10-dimensional spinors with pure spinors cut out. Auxillary fields are sections of a bundle over B, and supersymmetry transformations are nonlinear in ghosts. By integrating out axillary fields we obtain on-shell supersymmetric BV action with terms quadratic in antifields. Exactly this on-shell BV action was obtained in our previous paper after integration out of auxiliary fields in the framework of Pure Spinor Superfield Formalism.

  11. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela


    experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... characteristics of atmosphere as a spatial phenomenon, the aim of this text is to illustrate these associations and draw out design protocols, focusing on ways in which atmosphere can be conditioned architecturally. In other words, the objective is to trace the conceptual contours of ‘atmospheric materiality’....

  12. Energy materials

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I


    In an age of global industrialisation and population growth, the area of energy is one that is very much in the public consciousness. Fundamental scientific research is recognised as being crucial to delivering solutions to these issues, particularly to yield novel means of providing efficient, ideally recyclable, ways of converting, transporting and delivering energy. This volume considers a selection of the state-of-the-art materials that are being designed to meet some of the energy challenges we face today. Topics are carefully chosen that show how the skill of the synthetic chemist can

  13. Casting materials

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)


    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  14. Construction material (United States)

    Wagh, Arun S.; Antink, Allison L.


    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  15. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.


    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  16. Materializing superghosts (United States)

    Alexandrov, V.; Krotov, D.; Losev, A.; Lysov, V.


    The off-shell Batalin-Vilkovysky (BV) realization has been constructed for N = 1, d = 10 super-Yang-Mills theory with seven auxiliary fields. This becomes possible due to the materialized ghost phenomenon. Namely, supersymmetry ghosts are coordinates on a manifold B of ten-dimensional spinors with the pure spinors cut out. Auxiliary fields are sections of a bundle over B, and supersymmetry transformations are nonlinear in ghosts. By integrating out the auxiliary fields, we obtain an on-shell supersymmetric BV action with quadratic terms in the antifields. Exactly this on-shell BV action was obtained in our previous paper after integration out of auxiliary fields in the framework of a pure spinor superfield formalism.

  17. Virtual materiality

    DEFF Research Database (Denmark)

    Søndergaard, Dorte Marie

    to bullying practices in school. The theoretical question concerns the conceptual challenges that arise from empirical data which contain 1. children’s narratives about matter and meaning as they intertwine in their nightly dreams, 2. the observations of children’s’ computer gaming practices as well...... the character and effects of the skeleton army, which came across the sea to drown the boys in Phillip’s school class: a central scene in one of the dreams he recounted? Are the boat and the water in that dream materialities? Discourse? Part of some kind of enacted subjectivity? How will our decision of which......, experiences etc. Among these many interacting forces technologies play a crucial part – as do bodies, whether they are fighting, playing, dreaming, loving or hating bodies. And as do weapons - whether in the shape of virtual weapons of the computer games (as in e.g. Battlefield, Counter Strike, Grand Theft...

  18. Materializing ideas

    DEFF Research Database (Denmark)

    Strandvad, Sara Malou


    to investigate how the evolving object may form an active part in the collaborative process of its making. The article identifies three moments when the evolving object becomes decisive for the collaboration: the idea has to be detached to enable collaboration; attachments between collaborators are made via...... the evolving object; and closure of the product is postponed to enhance creative development. Thus, the article suggests that cultural objects and the processes of their making are co-produced, evolve simultaneously and are mutually constitutive. In this way, the object may have effects even while......Based on a qualitative study of development processes in the Danish film industry, this article sketches a socio-material perspective for analysing the production of culture. Whereas previous studies of cultural production have identified social factors in cultural production, this article sets out...

  19. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.


    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  20. Biointegrating Materials (United States)

    Amédée, J.; Bordenave, L.; Durrieu, M.-C.; Fricain, J.-C.; Pothuaud, L.

    The extraordinary increase in human longevity explains the growing need for replacement organs. The remarkable successes of conventional transplants (associated with the development of effective antirejection drugs and improved control of their administration) are also accompanied by certain drawbacks. First on the list is an inadequate supply of replacement organs: the number of candidates for transplants grows larger, opposition to the removal of organs increases, and the number of transplants has reached a ceiling. Furthermore, it has come to light over the past few years that organ transplants carry a significant risk of transmitting pathogens. Finally, the main drawback lies in the need to pursue an immunosuppression treatment. Scientists and doctors have long been in search of alternatives to human organ transplants. According to the definition drawn up in Chester in 1986 at the Consensus Conference organised under the aegis of the European Society for Biomaterials, biomaterials are non-viable materials used in a medical device and destined to interact with biological systems, whether they contribute to the constitution of a diagnostic device, a tissue or organ substitute, or a device designed to provide functional assistance or replacement.

  1. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad


    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  2. The materials physics companion

    CERN Document Server

    Fischer-Cripps, Anthony C


    Introduction to Materials Physics: Structure of matter. Solid state physics. Dynamic properties of solids. Dielectric Properties of Materials: Dielectric properties. Ferroelectric and piezoelectric materials. Dielectric breakdown. Applications of dielectrics. Magnetic Properties of Materials: Magnetic properties. Magnetic moment. Spontaneous magnetization. Superconductivity.

  3. Photorefractive Materials and Their Applications 2 Materials

    CERN Document Server

    Günter, Peter


    Photorefractive Materials and Their Applications 2: Materials is the second of three volumes within the Springer Series in Optical Sciences. The book gives a comprehensive review of the most important photorefractive materials and discusses the physical properties of organic and inorganic crystals as well as poled polymers. In this volume, photorefractive effects have been investigated at wavelengths covering the UV, visible and near infrared. Researchers in the field and graduate students of solid-state physics and engineering will gain a thorough understanding of the properties of materials in photorefractive applications. The other two volumes are: Photorefractive Materials and Their Applications 1: Basic Effects. Photorefractive Materials and Their Applications 3: Applications.

  4. Coated electroactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Abouimrane, Ali


    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  5. Investigations on Electronic Materials


    E. Pugnor; T. Kormány


    Electronics has been described as a materials oriented technology. In this sense a short review is given concerning: the connection of materials characterization to the design and processing of electronic components; the most important materials characterization methods used for electronic materials; the strategy of organizing a complete material characterization system for selected electronic components.

  6. Nanocrystalline ceramic materials (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.


    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  7. Material efficiency: providing material services with less material production. (United States)

    Allwood, Julian M; Ashby, Michael F; Gutowski, Timothy G; Worrell, Ernst


    Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.

  8. Thermoelectric materials and devices (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Talcott, Noel A. (Inventor)


    New thermoelectric materials comprise highly [111]-oriented twinned group IV alloys on the basal plane of trigonal substrates, which exhibit a high thermoelectric figure of merit and good material performance, and devices made with these materials.

  9. Materials for Fusion Applications

    Directory of Open Access Journals (Sweden)

    Jiří Matějíček


    Full Text Available An overview of materials foreseen for use or already used in fusion devices is given. The operating conditions, material requirements and characteristics of candidate materials in several specific application segments are briefly reviewed. These include: construction materials, electrical insulation, permeation barriers and plasma facing components. Special attention will be paid to the latter and to the issues of plasma-material interaction, materials joining and fuctionally graded interlayers.

  10. Nonlinear Materials Characterization Facility (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  11. High Temperature Materials Laboratory (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  12. Physically Functional Materials

    DEFF Research Database (Denmark)


    of information (holographic data storage), nonlinear optics (NLO), as photoconductors, photonic band-gap materials, electrically conducting materials, electroluminescent materials, piezo-electric materials, pyroelectric materials, magnetic materials, ferromagnetic materials, ferroelectric materials...... acids or peptides having azobenzenes or other physicially functional groups, e.g., photoresponsive groups, as side chains. These compounds may be synthesized using solid phase peptide synthesis techniques. Materials, e.g., thin films, comprising such compounds may be used for optical storage......, photorefractive materials, or materials in which light-induced conformational changes can be produced. Optical anisotropy may reversibly be generated with polarized laser light whereby a hologram is formed. First order diffraction efficiencies of up to around 80% have been obtained....

  13. Materials Analysis and Modeling of Underfill Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Nicholas B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  14. Giant magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    LIU JingHua; JIANG ChengBao; XU HuiBin


    Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.

  15. Nanocrystalline ceramic materials (United States)

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.


    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  16. Enhanced magnetocaloric effect material (United States)

    Lewis, Laura J. H.


    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  17. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh


    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  18. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.


    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  19. EC Transmission Line Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Tim S [ORNL


    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.



  1. Practical materials characterization

    CERN Document Server


    Presents cross-comparison between materials characterization techniquesIncludes clear specifications of strengths and limitations of each technique for specific materials characterization problemFocuses on applications and clear data interpretation without extensive mathematics

  2. Bridged graphite oxide materials (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)


    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  3. Renewable smart materials (United States)

    Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan


    The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.

  4. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie


    This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students......, imitate and articulate the students’ inclusion of materials. This paper particularly discusses the experiences made and ideas generated after the execution of a material science course for second year students, with emphasis on the concept of the material selection matrix as an educational tool...... for material exploration. The course was the first course I was involved in as a PhD student and has served as the first observation case in my project. The purpose of this analysis has been to explore and demonstrate that data from material selection matrices generated during the course, help mature the tool...

  5. Materials modelling in London (United States)

    Ciudad, David


    Angelos Michaelides, Professor in Theoretical Chemistry at University College London (UCL) and co-director of the Thomas Young Centre (TYC), explains to Nature Materials the challenges in materials modelling and the objectives of the TYC.

  6. Nanostructured composite reinforced material (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.


    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  7. Informing material specification

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Karmon, Ayelet


    programmable architectural design tools and advanced computer numerically controlled (CNC) knitting machines we understand the practice of textile design as a particular class of material design that enables variegation across both material and structure. Our aim for the experiments is firstly: the design......Architecture is entering a radical rethinking of its material practice. Advancements in material science and more complex models of material simulation as well as the interfaces between design and fabrication are fundamentally changing the way we conceive and design our built environment. This new...... technological platform allows an unprecedented control over the material. Creating direct links between the space of design and the space of fabrication, the idea of the hyper specified material developed in direct response to defined design criteria calls upon a new material practice in which designers...

  8. Crystallography of modular materials

    CERN Document Server

    Ferraris, Giovanni; Merlino, Stefano


    This comprehensive text is addressed at scientists who are interested in considering crystalline materials from a non-conventional but inspiring viewpoint. It contains the first systematic theoretical and illustrative presentation of crystalline materials built from modules.

  9. Electronics materials research (United States)


    The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.

  10. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo


    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  11. Modern electronic materials

    CERN Document Server

    Watkins, John B


    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  12. Materials Genome Initiative Element (United States)

    Vickers, John


    NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.

  13. New materials for Inductors

    NARCIS (Netherlands)

    Roc'h, A.; Iannarelli, R.; Leferink, F.B.J.


    Traditional materials for coils and common mode chokes are iron and ferrites. Iron has a high saturation level but low permeability, and ferrite has low saturation and high permeability. Nanocrystalline materials are a rather new material with a high saturation and a high permeability. The advantage

  14. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel


    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  15. Bibliography of Citizenship Materials (United States)

    CASAS - Comprehensive Adult Student Assessment Systems (NJ1), 2008


    The 2008 CASAS "Bibliography of Citizenship Materials" lists available instructional resources for citizenship education. It focuses on materials appropriate for preparing people for the naturalization process and the standardized citizenship examination. Resources include textbooks, audio materials, software and Videos/DVDs. The bibliography also…

  16. Advances in dental materials. (United States)

    Fleming, Garry J P


    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  17. Multifunctional Metallosupramolecular Materials (United States)


    University, Dallas, Texas Invited Lecture: Supramolecular Chemistry in Polymeric Systems: From Nanoassemblies to Dynamic Materials Aug 2009 ACS Fall...Supramolecular Chemistry in Polymeric Systems: From Nanoassemblies to Dynamic Materials April 2009 University of Michigan, Ann Arbour, Michigan Invited... Nanoassemblies to Dynamic Materials Sept 2008 College of Wooster, Department of Chemistry Invited Lecture: Supramolecular Polymer Chemistry: A Route to

  18. Computing and Material

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin


    The digital is often said to bring us away from material. The adverse is true: digital design and fabrication grants new interfaces towards material and allows architectural design to engage with material on architectural scale in a way that is further reaching than ever before....

  19. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)



    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  20. Advanced neutron absorber materials (United States)

    Branagan, Daniel J.; Smolik, Galen R.


    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  1. Advanced Materials Technology (United States)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)


    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  2. Safer Aviation Materials Tested (United States)

    Palaszewski, Bryan A.


    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation

  3. Terminology of carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, G.N.; Nagornyi, V.G.; Ostrovskii, V.S.


    The need is discussed to standardize definition of carbonaceous material. Terms related to carbonaceous materials and their products are selected and analyzed. Diagramatic representation is given of relationships between carbonaceous materials. Carbon has two forms of structure, cubic and hexagonal, characterized by sp/sup 3/-hybrid groups of atoms forming spatial system of tetrahedral bonds. Hexagonal form of carbon is represented by natural materials such as graphite, shungite, anthracite and a number of artificial materials obtained during thermal treatment of organic substances at temperatures above carbonization temperature. 4 references.

  4. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G


    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  5. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)



    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  6. Microporous polymeric materials

    Directory of Open Access Journals (Sweden)

    Peter M Budd


    Full Text Available Microporous materials are solids that contain interconnected pores of molecular dimensions (i.e. <2 nm. Such materials possess large surface areas, typically 300-1500 m2 g−1, and are of great technological importance for adsorption and heterogeneous catalysis1. There are two main classes of microporous materials widely used in industry: crystalline zeolites (aluminosilicates and activated carbons. In the past decade, there has been an intense effort to optimize the porosity of these materials for various applications2,3. However, it is recognized that the design of entirely new microporous materials would open up exciting opportunities for fundamental research and industrial applications3.

  7. Applied Electromagnetism and Materials

    CERN Document Server

    Moliton, André


    Applied Electromagnetism and Materials picks up where the author's Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics and semiconductors, to non-linear effects and electromagnetic cavities, to ion-beam applications in materials science.

  8. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.


    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  9. Comprehensive nuclear materials

    CERN Document Server

    Allen, Todd; Stoller, Roger; Yamanaka, Shinsuke


    Comprehensive Nuclear Materials encapsulates a panorama of fundamental information on the vast variety of materials employed in the broad field of nuclear technology. The work addresses, in five volumes, 3,400 pages and over 120 chapter-length articles, the full panorama of historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. It synthesizes the most pertinent research to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  10. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  11. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit


    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  12. Comprehensive hard materials

    CERN Document Server


    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  13. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.


    of the mechanics of hierarchical materials are listed, among them, the development of "concurrent" modeling techniques for hierarchical materials, optimal microstructure design at multiple scale levels using synergy effects, and the mechanical modeling of atomistic effects.......A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them...

  14. Optical material. Hikari zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Sakate, N.; Ueoka, T.; Iwakuni, H. (Mazda Motor Corp., Hiroshima (Japan))


    It is obvious that various electronic technologies will be positively adopted in automobiles in the future and optical materials are supporting the above trend greatly. In this article, with regard to the optical materials now adopted in automobiles or those expected to be adopted therein in the future, their principles as well as usage, etc. are outlined. Furthermore, the prospect of the materials in the future is stated. The optical materials selected in this article are as follows: as for optical communications; optical fibers, photo emission/reception components, connecting technologies, and photo switches, etc., concerning materials for display such as meters and instrument panels for automobiles, etc.; liquid crystal, electroluminescent elements, light emitting diodes, and polarization films, with regard to dimmering materials; electrochromism and photochromism, and concerning other optical materials; solar cells, and transparent electroconductive films. 13 refs., 4 figs., 6 tabs.

  15. Biological materials: a materials science approach. (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M


    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko.

  16. Materials and structures (United States)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul


    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  17. The Time of Materiality

    Directory of Open Access Journals (Sweden)

    Estrid Sørensen


    Full Text Available While time and space form a classic duality in social science, this article demonstrates a perspective on time, space and materiality as a core trinity. As a prominent figure in contemporary discussions on materiality in the social sciences Science and Technology Studies (STS emphasizes relational approaches. STS however lacks a clear relational definition of materiality and tends instead to focus on the agency of entities, on for instance material agency. The article suggests a relational definition of materiality and notes that this move implies turning the question of the time of materiality into an empirical question. It is argued that relational materiality must be studied spatially, and thus a spatial approach describing patterns of relations is presented. Based on field work in a primary school classroom and computer lab, three materials are analyzed: the blackboard, a bed-loft and an online 3D virtual environment. The empirical descriptions depict three different materialities, and it is shown how time is formed differently in each of them. Time, it is argued, is an emergent and characterizing aspect of materialities as spatial formations. URN: urn:nbn:de:0114-fqs070122

  18. Materials research for fusion (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.


    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  19. Thermodynamic studies of induced antiferroelectric phases in chiral and racemic systems (United States)

    Filipowicz, M.; Kula, P.; Czuprynski, Krzysztof


    Bi- and multicomponent mixtures consisted of two groups of synclinic chiral esters: first one with a partially fluorinated terminal chain and the second one with hydrogenated terminal chain have been used for investigations. For some systems the induction of the anticlinic smectic CA* phase was observed. Enthalpies of the phase transitions for the systems with induced smectic CA phase upon compositions and specific heat were measured by DSC method.

  20. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage


    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few an...

  1. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André


    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  2. Chemicals in material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas Fruergaard


    Material recycling has been found beneficial in terms of resource and energy performance and is greatly promoted throughout the world. A variety of chemicals is used in materials as additives and data on their presence is sparse. The present work dealt with paper as recyclable material and diisob......Material recycling has been found beneficial in terms of resource and energy performance and is greatly promoted throughout the world. A variety of chemicals is used in materials as additives and data on their presence is sparse. The present work dealt with paper as recyclable material...... and diisobutyl phthalate (DiBP) as chemical in focus. The results showed variations, between 0.83 and 32 μg/g, in the presence of DiBP in Danish waste paper and board and potential accumulation due to recycling....

  3. Joining of advanced materials

    CERN Document Server

    Messler, Robert W


    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  4. Emerging smart materials systems

    Energy Technology Data Exchange (ETDEWEB)

    Strock, H.B. [Strock Technology Associates Inc., Holden, MA (United States)


    Smart materials systems are nonliving systems that integrate the functions of sensing, actuation, logic and control to respond adaptively to changes in their condition or the environment to which they are exposed, in a useful and usually repetitive manner. Smart materials possess both sensing and actuation capability. They can adaptively respond to changing stimuli, e.g., the variable darkening of photochromic glass or plastic on exposure to sunlight. Such passively smart materials behavior has relatively limited, although marketable, functionality.

  5. Strongly Correlated Materials


    Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H.; Si, Qimiao


    Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective ...

  6. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe


    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  7. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V


    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  8. ANS materials databook

    Energy Technology Data Exchange (ETDEWEB)

    Marchbanks, M.F.


    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  9. Absolute nuclear material assay (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA


    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. [Materials for construction sector]. (United States)

    Macchia, C


    The construction sector is characterized by high complexity due to several factors. There are a lot of processes within the building sites and they need the use of different materials with the help of appropriate technologies. Traditional materials have evolved and diversified, meanwhile new products and materials appeared and still appear, offering services which meet user needs, but that often involve risks to the health of workers. Research in the field of materials, promoted and carried out at various levels, has led to interesting results, encoded in the form of rules and laws.

  11. The Materials Genome Project (United States)

    Aourag, H.


    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  12. Thermoelectric materials having porosity (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred


    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  13. Mechanics of materials model (United States)

    Meister, Jeffrey P.


    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  14. Materials Characterization Facility (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  15. Materials Behavior Research Laboratory (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  16. Frontiers in Magnetic Materials

    CERN Document Server

    Narlikar, Anant V


    Frontiers in Magnetic Materials focuses on the current achievements and state-of-the-art advancements in magnetic materials. Several lines of development- High-Tc Superconductivity, Nanotechnology and refined experimental techniques among them – raised knowledge and interest in magnetic materials remarkably. The book comprises 24 chapters on the most relevant topics written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students.

  17. Radiation Shielding Materials (United States)

    Adams, James H., Jr.; Rose, M. Franklin (Technical Monitor)


    NASA has relied on the materials to provide radiation shielding for astronauts since the first manned flights. Until very recently existing materials in the structure of manned spacecraft as well as the equipment and consumables onboard have been taken advantage of for radiation shielding. With the advent of the International Space Station and the prospect of extended missions to the Moon or Mars, it has been found that the materials, which were included in the spacecraft for other reasons, do not provide adequate shielding. For the first time materials are being added to manned missions solely to improve the radiation shielding. It is now recognized that dual use materials must be identified/developed. These materials must serve a purpose as part of the spacecraft or its cargo and at the same time be good shielding. This paper will review methods for evaluating the radiation shielding effectiveness of materials and describe the character of materials that have high radiation shielding effectiveness. Some candidate materials will also be discussed.

  18. Materials development for TESOL

    CERN Document Server

    Mishan, Freda


    Materials development has become much more important in the field of TESOL in the last twenty years: modules on materials development are now commonplace on MA TESOL courses around the world. The overall aim of the book is to introduce readers to a wide range of theoretical and practical issues in materials development to enable them to make informed and principled choices in the selection, evaluation, adaptation and production of materials. The book aims to show how these choices need to be informed by an awareness of culture, context and purpose.

  19. Innovative Solar Optical Materials (United States)

    Lampert, Carl M.


    A variety of optical coatings are discussed in the context of solar energy utilization. Well-known coatings such as transparent conductors (heat mirrors), selective absorbers, and reflective films are surveyed briefly. Emphasis is placed on the materials' limitations and on use of lesser-known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, cold mirrors, fluorescent concentrator materials, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials, research has only recently been considered, so various design and durability issues need to be addressed.

  20. Multifunctional Composite Materials Project (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  1. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E


    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  2. Materials Science Laboratory (United States)

    Jackson, Dionne


    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  3. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken


    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  4. Nanoprobes, nanostructured materials and solid state materials (United States)

    Yin, Houping


    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  5. Alloy catalyst material

    DEFF Research Database (Denmark)


    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  6. Light as experiential material

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve


    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education.......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education....

  7. Material Writer's Guide. (United States)

    Byrd, Patricia, Ed.

    This guide is a collection of essays on the writing of English-as-a-Second-Language (ESL) textbooks and other instructional materials. Articles include: "Writing and Publishing Textbooks (Patricia Byrd); "The Craft of Materials Writing" (Fraida Dubin); "Considering Culture: Guidelines for ESL/EFL Textbook Writers" (Gayle Nelson); "Issues in the…

  8. Dielectric material for dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Moran, P.R.; Podgorsak, E.; Fullerton, G.D.; Fuller, G.E.


    A RITAD dosimeter is described having a dielectric material such as sapphire wherein the efficiency as measured by mean drift distance and trapping efficiency is increased by making use of a dielectric material in which the total active impurity does not exceed 50 ppm and in which any one active impurity does not exceed 10 ppm.

  9. Materials inventory management manual (United States)


    This NASA Materials Inventory Management Manual (NHB 4100.1) is issued pursuant to Section 203(c)(1) of the National Aeronautics and Space Act of 1958 (42 USC 2473). It sets forth policy, performance standards, and procedures governing the acquisition, management and use of materials. This Manual is effective upon receipt.


    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, F.


    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.


    Energy Technology Data Exchange (ETDEWEB)



    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  12. Designing Material Materialising Design

    DEFF Research Database (Denmark)

    Nicholas, Paul


    Designing Material Materialising Design documents five projects developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts, School of Architecture. These projects explore the idea that new designed materials might require new design methods...

  13. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj


    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  14. OISE Materials for Schools. (United States)

    Ontario Inst. for Studies in Education, Toronto.

    This annotated bibliography lists published and unpublished elementary and secondary school materials developed in connection with projects of the Ontario Institute for Studies in Education (OISE) from 1970 through 1978. The major portion of the document lists teaching materials. This section first lists documents produced by the Major Thrust in…

  15. A Material Focus

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.; Sokoler, Tomas


    In this paper we build on the notion of computational composites, which hold a material perspective on computational technology. We argue that a focus on the material aspects of the technology could be a fruitful approach to achieve new expressions and to gain a new view on the technology's role...

  16. Light as experiential material

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin


    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education...

  17. The Computational Materials Repository

    DEFF Research Database (Denmark)

    Landis, David D.; Hummelshøj, Jens S.; Nestorov, Svetlozar


    The possibilities for designing new materials based on quantum physics calculations are rapidly growing, but these design efforts lead to a significant increase in the amount of computational data created. The Computational Materials Repository (CMR) addresses this data challenge and provides...... a software infrastructure that supports the collection, storage, retrieval, analysis, and sharing of data produced by many electronic-structure simulators....

  18. Detecting Illicit Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.


    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide.

  19. Chromogenic smart materials

    Directory of Open Access Journals (Sweden)

    Carl M. Lampert


    Full Text Available Smart materials cover a wide and developing range of technologies. A particular type of smart material, known as chromogenics, can be used for large area glazing in buildings, automobiles, planes, and for certain types of electronic display. These technologies consist of electrically-driven media including electrochromism, suspended particle electrophoresis, polymer dispersed liquid crystals, electrically heated thermotropics, and gaschromics.

  20. Strongly correlated materials. (United States)

    Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao


    Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO₂ and Fe₃O₄, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials.

  1. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna


    In this feature essay, Ninna Meier reflects on the materiality of the writing – and re-writing – process in academic research. She explores the ways in which our ever-accummulating thoughts come to form layers on the material objects in which we write our notes and discusses the pleasures of co-authorship....

  2. Nanocrystalline Heterojunction Materials (United States)

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.


    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  3. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R


    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  4. Architected Cellular Materials (United States)

    Schaedler, Tobias A.; Carter, William B.


    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  5. Of 'other' materialities

    DEFF Research Database (Denmark)

    Jensen, Ole B.


    In this article, the notion of materialities is rearticulated as an important field for the future of mobilities research. We focus on the intersection between situational mobilities research and design/architecture. The vocabulary and material imaginary developed within the latter are an important...... source of inspiration for the future mobilities research interested in the pragmatic question: What makes this particular mobile situation possible? The argument is based on a critique of an abstract and universal notion of materiality or the material. Rather, it is argued, we should partly look...... and design intersects with research into situational mobilities design in two dimensions. Firstly, there are direct links to the ways in which designers and architects perceive, gestate and articulate their ideas about things, spaces and materialities. Secondly, the article draws on the recent thinking...

  6. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid


    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  7. Combinatorial materials synthesis

    Directory of Open Access Journals (Sweden)

    Ichiro Takeuchi


    Full Text Available The pace at which major technological changes take place is often dictated by the rate at which new materials are discovered, and the timely arrival of new materials has always played a key role in bringing advances to our society. It is no wonder then that the so-called combinatorial or high-throughput strategy has been embraced by practitioners of materials science in virtually every field. High-throughput experimentation allows simultaneous synthesis and screening of large arrays of different materials. Pioneered by the pharmaceutical industry, the combinatorial method is now widely considered to be a watershed in accelerating the discovery and optimization of new materials1–5.

  8. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    example of biological design. We investigated the architecture of A. simplex and found that an advanced hierarchical biomineralized structure acts as the interface between soft musculature and a stiff substrate, thus securing underwater attachment. In bone, the mechanical properties of the material......, and the nanoscale response of bone in compression. Lastly, a framework for the investigation of biological design principles has been developed. The framework combines parametric modeling, multi-material 3D-printing, and direct mechanical testing to efficiently screen large parameter spaces of biological design. We......Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...

  9. Materials for advanced packaging

    CERN Document Server

    Wong, CP


    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  10. Materials at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory


    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory

  11. NSUF Irradiated Materials Library

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  12. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)


    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  13. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.


    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  14. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince


    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  15. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh


    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  16. Materials for syngas coolers (United States)

    Perkins, R. A.; Morse, G.; Coons, W. C.


    A technical basis for materials selection and laboratory testing of practical boiler tube materials which will provide reliable long term service in syngas coolers for coal gasification combined cycle power plants is outlined. The resistance of low alloy steel, stainless steels, and aluminum rich coatings to attach by a high sulfur, medium Btu coal gasification atmosphere was evaluated at 300 to 500 deg C. The materials may have adequate resistance for long time service in radiant coolers operating up to 500 deg C on high sulfur medium Btu gas. Performance is analyzed for thermodynamic and kinetic properties and recommendations for long term tests and development of protective coatings are presented.

  17. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren


    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...... are the charge transfer elements are intrinsically conducting polymers, where the electrical conductivity is a result of delocalized electrons along the polymer backbone, with polyaniline, polypyrrole, and PEDOT as prominent examples. Already in 2000 Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa were...

  18. Bioinspired structural materials (United States)

    Wegst, Ulrike G. K.; Bai, Hao; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.


    Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.

  19. Superconducting material development (United States)


    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  20. On materials destruction criteria


    Kremnev, L. S.


    In terms of nonlinear material fracture mechanics, the real (discrete)-structure material fracture model has been developed. The model rests on the demonstration of the fact that crack resistance $K_{1c}=2\\sigma \\sqrt l$ and fracture toughness are $G_{1c}=J_{1c}=2\\sigma l$ obtained on the basis of energy conservation law and derived without linear material fracture mechanics assumptions can be respectively taken as force and energy criteria for non-linear fracture mechanics. It is shown that ...

  1. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Holden, T.M.


    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  2. Optical materials and applications

    CERN Document Server

    Wakaki, Moriaki; Kudo, Keiei


    The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also detai

  3. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin


    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  4. Materials at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory


    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory

  5. Nuclear material operations manual

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.P.


    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  6. Quasicrystals: Making invisible materials

    CERN Document Server

    Boriskina, Svetlana V


    All-dielectric photonic quasicrystals may act as zero-refractive-index homogeneous materials despite their lack of translational symmetry and periodicity, stretching wavelengths to infinity and offering applications in light wavefront sculpting and optical cloaking.

  7. The Materiality of Learning

    DEFF Research Database (Denmark)

    Sørensen, Estrid

    or postgraduate students interested in a variety of fields, including educational studies, educational psychology, social anthropology, and STS. Original ethnographic descriptions showing the fine details of how materials influence the learning process Introduces the advanced and complex Actor-Network Theory......The field of educational research lacks a methodology for the study of learning that does not begin with humans, their aims, and their interests. The Materiality of Learning seeks to overcome this human-centered mentality by developing a novel spatial approach to the materiality of learning....... Drawing on science and technology studies (STS), Estrid Sørensen compares an Internet-based 3D virtual environment project in a fourth-grade class with the class's work with traditional learning materials, including blackboards, textbooks, notebooks, pencils, and rulers. Taking into account pupils...

  8. Intelligent Radiative Materials Project (United States)

    National Aeronautics and Space Administration — An opportunity to boost energy efficiency in homes and buildings exists through the design of functional radiative properties in glass and other building materials....

  9. Evaluation of learning materials

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe; Hansen, Thomas Illum


    This paper presents a holistic framework for evaluating learning materials and designs for learning. A holistic evaluation comprises investigations of the potential learning potential, the actualized learning potential, and the actual learning. Each aspect is explained and exemplified through...

  10. Developing Teaching Materials

    Institute of Scientific and Technical Information of China (English)

    杨菁; 罗江霞


    In China, English teachers have more choices to select teaching materials for their students. In the teaching of English, there are several main sets of textbooks available for non-majors of English. These textbooks are compiled based on China ’s Na-tional Syllabus of College English. In order to learn these materials better, both teachers and students should know how to use and develop the teaching materials. In the essay, the book of“College English”will be used to explain the ways to develop teach-ing materials. As teachers and learners, textbooks are so important that every teacher and learner should choose the best and the most suitable one for their learning.

  11. Materials research at CMAM

    Energy Technology Data Exchange (ETDEWEB)

    Zucchiatti, Alessandro [Centro de Micro Analisis de Materiales CMAM, Universidad Autonoma de Madrid, c/ Faraday 3, 28049 Madrid (Spain)


    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  12. Materials research at CMAM (United States)

    Zucchiatti, Alessandro


    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  13. Mechanics of moving materials

    CERN Document Server

    Banichuk, Nikolay; Neittaanmäki, Pekka; Saksa, Tytti; Tuovinen, Tero


    This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials.   The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches.  Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters.   The book is intended for researchers and specialists in the field, providin...

  14. Moldable cork ablation material (United States)


    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  15. Material and Virtuality

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders


    world and a physical world can interchange. The paper suggest an approach where an overlapping of virtuality and the tangible material output from digital fabrication machines create a method of using materialisation tools as instruments to connect the reality of materials and to an exploring process....... In this paper investigations in sheet steel form a substance of concrete experiments. The experiments set up shuttling processes in between different domains. Through those processes connections and intermingling between information from digital drawing and materiality is created. The dialogues established...... through these experiments is both tangible and directly connected to real actions in digital drawing or material processing but also the base for theoretical contemplations of the relation between virtual and actual and control and uncertainty....

  16. Materials Test Station (United States)

    Federal Laboratory Consortium — When completed, the Materials Test Station at the Los Alamos Neutron Science Center will meet mission need. MTS will provide the only fast-reactor-like irradiation...

  17. Citations in supplementary material


    Weiss, Manfred S.; Einspahr, Howard; Edward N. Baker; Dauter, Zbigniew; Kaysser-Pyzalla, Anke R.; Kostorz, Gernot; Larsen, Sine


    The problem of undercounting of citations that are published only in supplementary material is studied for the journals Nature, Science, Cell and the Proceedings of the National Academy of Sciences (USA).

  18. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo


    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  19. Photoconductivity in Dirac materials

    Energy Technology Data Exchange (ETDEWEB)

    Shao, J. M.; Yang, G. W., E-mail: [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials & Engineering, School of Physics & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong (China)


    Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.

  20. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  1. Materials engineering data base (United States)


    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  2. Designing Printed Instructional Materials. (United States)

    Burbank, Lucille; Pett, Dennis


    Discusses the importance of identifying the audience and determining specific objectives when designing printed instructional materials that will communicate effectively and provides detailed guidelines for dealing with such design factors as content, writing style, typography, illustrations, and page organization. (MBR)

  3. Photoconductivity in Dirac materials

    Directory of Open Access Journals (Sweden)

    J. M. Shao


    Full Text Available Two-dimensional (2D Dirac materials including graphene and the surface of a three-dimensional (3D topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.

  4. Spacecraft Material Outgassing Data (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...


    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P C; Dehaven, M; McClelland, M; Chidester, S; Maienschein, J L


    Thermal damage experiments were conducted on LX-04, LX-10, and LX-17 at high temperatures. Both pristine and damaged samples were characterized for their material properties. A pycnometer was used to determine sample true density and porosity. Gas permeability was measured in a newly procured system (diffusion permeameter). Burn rate was measured in the LLNL strand burner. Weight losses upon thermal exposure were insignificant. Damaged pressed parts expanded, resulting in a reduction of bulk density by up to 10%. Both gas permeabilities and burn rates of the damaged samples increased by several orders of magnitude due to higher porosity and lower density. Moduli of the damaged materials decreased significantly, an indication that the materials became weaker mechanically. Damaged materials were more sensitive to shock initiation at high temperatures. No significant sensitization was observed when the damaged samples were tested at room temperature.

  6. Nano-composite materials (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland


    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  7. Nano semiconducting materials

    CERN Document Server

    Saravanan, R


    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  8. Auxetic materials and structures

    CERN Document Server

    Lim, Teik-Cheng


    This book describes the fundamentals of the mechanics and design of auxetic solids and structures, which possess a negative Poisson’s ratio. It will benefit two groups of readers: (a) industry practitioners, such as product and structural designers, who need to control mechanical stress distributions using auxetic materials, and (b) academic researchers and students who intend to produce structures with unique mechanical and other physical properties using auxetic materials.

  9. Electronics Devices and Materials (United States)


    materials. This involves using several advanced computer codes such as SRIM, MCNPX , GEANT4 and MULASSIS e Calculation and use of no ionizing energy loss... calculations , using several different codes ( MCNPX , Mulassis, SRIM, MathCAD, and Shieldose) to simulate particle transport in materials such as...radiation belts. Perform calculations using various computer codes available at NRL on the response of test structures and integrated circuits to

  10. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I


    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  11. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke


    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  12. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik


    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  13. A new material practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul; Ramsgaard Thomsen, Mette


    The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding...... of the aggregated behavior of matter in an environment. Advances in material science and in computational tools are creating new opportunities within architectural design. However, these approaches are challenging the current practices of design and representation....

  14. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN


    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  15. Beam-Material Interaction

    CERN Document Server

    Mokhov, N.V.


    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  16. Shape memory materials

    Institute of Scientific and Technical Information of China (English)


    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  17. LDEF materials data bases (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.


    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  18. Tribological comparison of materials (United States)

    Shi, Bing

    Approximately 600,000 total joint replacement surgeries are performed each year in the United States. Current artificial joint implants are mainly metal-on-plastic. The synthetic biomaterials undergo degradation through fatigue and corrosive wear from load-bearing and the aqueous ionic environment of the human body. Deposits of inorganic salts can scratch weight-bearing surfaces, making artificial joints stiff and awkward. The excessive wear debris from polyethylene leads to osteolysis and potential loosening of the prosthesis. The lifetime for well-designed artificial joints is at most 10 to 15 years. A patient can usually have two total joint replacements during her/his lifetime. Durability is limited by the body's reaction to wear debris of the artificial joints. Wear of the artificial joints should be reduced. A focus of this thesis is the tribological performance of bearing materials for Total Replacement Artificial Joints (TRAJ). An additional focus is the scaffolds for cell growth from both a tissue engineering and tribological perspective. The tribological properties of materials including Diamond-like Carbon (DLC) coated materials were tested for TRAJ implants. The DLC coatings are chemically inert, impervious to acid and saline media, and are mechanically hard. Carbon-based materials are highly biocompatible. A new alternative to total joints implantation is tissue engineering. Tissue engineering is the replacement of living tissue with tissue that is designed and constructed to meet the needs of the individual patient. Cells were cultured onto the artificial materials, including metals, ceramics, and polymers, and the frictional properties of these materials were investigated to develop a synthetic alternative to orthopedic transplants. Results showed that DLC coated materials had low friction and wear, which are desirable tribological properties for artificial joint material. Cells grew on some of the artificial matrix materials, depending on the

  19. Catalog of Martian Materials (United States)

    Newsom, Horton E.; Hagerty, J. J.


    The long-term exploration of Mars will require the utilization of surface and near-surface materials for construction, radiation shielding, and life support. Eventually, such materials could be used as raw materials in manufacturing. While there is a resemblance between the surface of Mars, as revealed in Viking and Pathfinder images, and terrestrial desert environments, there are distinct differences that will affect the utilization of in situ resources. In general, the surface geological features are extremely old compared to Earth, dating back to the early evolution of the solar system. Therefore, materials created by processes such as impact cratering are important on Mars. Impact cratering probably created extensive sheets of impact melt bearing breccias on the surface and resulted in the formation of a thick regolith of broken rock fragments in the ancient terrains of Mars. Another key feature is the lack of rainfall over most of Mars' history. This resulted in the lack of extensive erosion. On Earth, extensive erosion of volcanic centers, for example, has exposed deep hydrothermal deposits that are mined for Cu, Mo, and W, but such deposits are not likely to be exposed at the surface on Mars. Similarly, deposits of quartz sand, used for glass making, are created by the erosion of granitic terrains on Earth, and are not likely to be found on Mars. The soil on Mars is also very different from wind-blown material on Earth. Virtually no organic material is present, and the material is enriched in volatile elements, such as S and Cl, and possibly also toxic heavy metals, derived from volcanic gases and hydrothermal waters that poured onto the surface. The volatile elements have remained in the soil due to the absence of processes that recycle volatile elements back into the planet's crust. Hydrogen peroxide originally formed in the atmosphere is also mixed into the soil and regolith, and was probably responsible for the "oxidant" found in the soil by the Viking

  20. Thermodynamics of Thermoelectric Materials (United States)

    Doak, Jeff W.

    One challenge facing society is the responsible use of our energy resources. Increasing the efficiency of energy generation provides one path to solving this challenge. One commonality among most current energy generation methods is that waste heat is generated during the generation process. Thermoelectrics can provide a solution to increasing the efficiency of power generation and automotive systems by converting waste heat directly to electricity. The current barrier to implementation of thermoelectric systems is the low efficiencies of underlying thermoelectric materials. The efficiency of a thermoelectric material depends on the electronic and thermal transport properties of the material; a good thermoelectric material should be an electronic conductor and a thermal insulator, traits which generally oppose one another. The thermal properties of a thermoelectric material can be improved by forming nanoscale precipitates with the material which scatter phonons, reducing the thermal conductivity. The electronic properties of a thermoelectric material can be improved by doping the material to increase the electronic conductivity or by alloying the material to favorably alter its band structure. The ability of these chemical modifications to affect the thermoelectric efficiency of material are ultimately governed by the chemical thermodynamics of the system. PbTe is a prototypical thermoelectric material: Alloying PbTe with PbS (or other materials) creates nanostructures which scatter phonons and reduce the lattice thermal conductivity. Doping PbTe with Na increases the hole concentration, increasing the electronic conductivity. In this work, we investigate the thermodynamics of PbTe and similar systems using first principles to understand the underlying mechanisms controlling the formation of nanostructures and the amount of doping allowed in these systems. In this work we: 1) investigate the thermodynamics of pseudo-binary alloys of IV--VI systems to identify the


    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner


    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  2. Astrophysics with Extraterrestrial Materials (United States)

    Nittler, Larry R.; Ciesla, Fred


    Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.

  3. Nanostructured materials in potentiometry. (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier


    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  4. Objects, materiality and meaning

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Lindegaard, Hanne


    The present research work investigates the relation between physical objects, their materiality, understood as the physical substances they are made from, and the communication from the objects. In product design of physical objects the communicative aspects are just as important as the function ...... be written into the object. The materials are therefore carriers of communication, even though this is dependent of the cultural context and the environment which the object will be part of. However the designer has only minor influence on those.......The present research work investigates the relation between physical objects, their materiality, understood as the physical substances they are made from, and the communication from the objects. In product design of physical objects the communicative aspects are just as important as the function...... of the object, and the designers aim is therefore to tune both in order to achieve a desired goal. To do so the designer basically has 2 options: Alteration of the physical shape of the object and the selection of materials. Through the manipulation of shape and materials can symbolic and sensory information...

  5. EDITORIAL: Electroactive polymer materials (United States)

    Bar-Cohen, Yoseph; Kim, Kwang J.; Ryeol Choi, Hyouk; Madden, John D. W.


    Imitating nature's mechanisms offers enormous potential for the improvement of our lives and the tools we use. This field of the study and imitation of, and inspiration from, nature's methods, designs and processes is known as biomimetics. Artificial muscles, i.e. electroactive polymers (EAPs), are one of the emerging technologies enabling biomimetics. Polymers that can be stimulated to change shape or size have been known for many years. The activation mechanisms of such polymers include electrical, chemical, pneumatic, optical and magnetic. Electrical excitation is one of the most attractive stimulators able to produce elastic deformation in polymers. The convenience and practicality of electrical stimulation and the continual improvement in capabilities make EAP materials some of the most attractive among activatable polymers (Bar-Cohen Y (ed) 2004 Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges 2nd edn, vol PM136 (Bellingham, WA: SPIE Press) pp 1-765). As polymers, EAP materials offer many appealing characteristics that include low weight, fracture tolerance and pliability. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored to suit a broad range of requirements. These capabilities and the significant change of shape or size under electrical stimulation while being able to endure many cycles of actuation are inspiring many potential possibilities for EAP materials among engineers and scientists in many different disciplines. Practitioners in biomimetics are particularly excited about these materials since they can be used to mimic the movements of animals and insects. Potentially, mechanisms actuated by EAPs will enable engineers to create devices previously imaginable only in science fiction. For many years EAP materials received relatively little attention due to their poor actuation capability and the small number of available materials. In the last fifteen

  6. EDITORIAL: Computational materials science Computational materials science (United States)

    Kahl, Gerhard; Kresse, Georg


    Special issue in honour of Jürgen Hafner On 30 September 2010, Jürgen Hafner, one of the most prominent and influential members within the solid state community, retired. His remarkably broad scientific oeuvre has made him one of the founding fathers of modern computational materials science: more than 600 scientific publications, numerous contributions to books, and a highly cited monograph, which has become a standard reference in the theory of metals, witness not only the remarkable productivity of Jürgen Hafner but also his impact in theoretical solid state physics. In an effort to duly acknowledge Jürgen Hafner's lasting impact in this field, a Festsymposium was held on 27-29 September 2010 at the Universität Wien. The organizers of this symposium (and authors of this editorial) are proud to say that a large number of highly renowned scientists in theoretical condensed matter theory—co-workers, friends and students—accepted the invitation to this celebration of Hafner's jubilee. Some of these speakers also followed our invitation to submit their contribution to this Festschrift, published in Journal of Physics: Condensed Matter, a journal which Jürgen Hafner served in 2000-2003 and 2003-2006 as a member of the Advisory Editorial Board and member of the Executive Board, respectively. In the subsequent article, Volker Heine, friend and co-worker of Jürgen Hafner over many decades, gives an account of Hafner's impact in the field of theoretical condensed matter physics. Computational materials science contents Theoretical study of structural, mechanical and spectroscopic properties of boehmite (γ-AlOOH) D Tunega, H Pašalić, M H Gerzabek and H Lischka Ethylene epoxidation catalyzed by chlorine-promoted silver oxide M O Ozbek, I Onal and R A Van Santen First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applicationsA Nagoya, R Asahi and G Kresse Renormalization group study of random quantum magnetsIstván A Kovács and

  7. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert


    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  8. Stimuli-Adaptable Materials

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl

    The work presented in this Thesis deals with the development of a stimuli-adaptable polymer material based on the UV-induced dimerisation of cinnamic acid and its derivatives. It is in the nature of an adhesive to adhere very well to its substrate and therefore problems can arise upon removal...... but the presented work has a new approach to the field by basing itself on the idea of developing a network into which a photo-active polymer is mixed and which function as an adhesive. Upon irradiation with UV-light for a short time a non-adhering inter-penetrating network material would be formed. Two simple...... models for the extent of reaction for the system are presented and show that the timescale for the reaction is minutes to hours. This was further investigated with IR-spectroscopy and UV-absorbance spectroscopy. UV-spectroscopy confirmed that a change in the material occurs upon irradiation with UV...

  9. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.


    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  10. Synthesis of superhard materials

    Directory of Open Access Journals (Sweden)

    Vladimir L. Solozhenko


    Full Text Available The study of solids at high pressures and temperatures is an important area of modern condensed matter physics, chemistry, and materials science. The last decade has seen revolutionary developments in the field of high-pressure experimentation: new types of cells allow a wider range of experiments at higher pressures, and third-generation synchrotrons have brought the possibility of conducting X-ray diffraction experiments that were unthinkable only 10 years ago. In this review, we give some recent examples to illustrate how modern high-pressure tools, such as the diamond anvil cell (DAC, multianvil press, and shock compression, can be used to answer questions relevant to the synthesis of new advanced materials. Our examples will be related mostly to superhard materials.

  11. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George


    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  12. Ceramic laser materials (United States)

    Ikesue, Akio; Aung, Yan Lin


    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  13. Heat-resistant materials

    CERN Document Server


    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  14. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van


    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  15. Hysteresis in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    von Moos, Lars

    , obtained at the initial low and final high field. However, in first order materials thermal entropy hysteresis loops are obtained through characterization, corresponding to measurements done in an increasing and a decreasing temperature mode. Indirectly determining the MCE through the use of the Maxwell...... characterization of the magnetocaloric effect (MCE) in these materials is done through conventional indirect magnetometric and calorimetric methods, as well as newly developed direct methods. The determination of the MCE due to a magnetic field change is in principle given by the isofield material entropy curves...... relation or calorimetric measurements done only in a heating or cooling mode, estimate the MCE as the reversible difference between the set isofield heating-heating or cooling-cooling entropy curves. Here it is shown that direct measurements suggest that the real MCE is given by the difference between...

  16. Edible packaging materials. (United States)

    Janjarasskul, Theeranun; Krochta, John M


    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  17. Porous Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Julian Goldsmid


    Full Text Available Thermoelectric materials are sometimes prepared using a sintering process in which the achievement of a high density is often one of the objectives. However, it has recently been shown that the introduction of a highly porous material is desirable in synthetic transverse thermoelements. Porosity may also be an advantage in conventional longitudinal thermoelectric modules in which a high thermal flux density creates problems, but heat transfer within the pores can degrade the thermoelectric figure of merit. The amount of this degradation is calculated and it is shown that it can be small enough to be acceptable in practical devices.

  18. Materiality, Practice and Body

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Skovbjerg-Karoff, Helle


    In order to understand the interaction between human and technology, the relationship must be emphasized as a triangulation between materiality, body and practice. By introducing play situations from a just finished empirical study in three bigger cities in Denmark, this paper will address...... the interplay from the human‟s point of view, as a body doing a certain practice, which is constantly produced by taking approaches which comes from phenomenology and practice theory. We introduce aspects of play understood as a dynamic between materiality, body and practice with the goal of inspiring not only...

  19. Materiality for Musical Expressions

    DEFF Research Database (Denmark)

    Lindell, Rikard; Tahiroğlu, Koray; Riis, Morten S.


    We organised an elven day intense course in materiality for musical expressions to explore underlying principles of New Interfaces for Musical Expression (NIME) in higher education. We grounded the course in different aspects of ma-teriality and gathered interdisciplinary student teams from three...... technology and possible musical expression with a strong connection to culture and place. The emphasis on performance provided closure and motivated teams to move forward in their design and artistic processes. On the basis of the course we discuss an interdisciplinary NIME course syllabus, and we infer...

  20. Magnetic refrigeration materials

    Institute of Scientific and Technical Information of China (English)

    戴闻; 沈保根; 高政祥


    Magnetic refrigeration has drawn much attention because of its greater efficiency and higher reliability than the traditional gas-cycle refrigeration technology. Recently, a kind of new materials with a giant magnetocaloric effect in the subroom temperature range, Gd5 (Six Ge1- x)4, was discovered, which boosts the search for high-performance magnetic refrigerants. However, the intermetallic compounds Gd5 (SixGe1 - x )4 belong to the first order transition materials; their performance in practical magnetic refrigeration cycles remains controversial. In this paper the developing tendency of the refrigerants are discussed on the basis of our work.

  1. Walter Benjamin and 'materialism'


    Homburg, Phillip


    This thesis examines the emergence of Walter Benjamin’s materialism, within his early\\ud thought, from within the context of post-Kantian philosophy. The original contribution\\ud made by this thesis is that it differentiates Benjamin’s materialism from both Romanticism\\ud and neo-Kantianism, on the one side, and empiricism, on the other. In contrast to those\\ud who identify Benjamin as a practitioner of a Romantic form of immanence, a neo-Kantian\\ud or a mystical empiricist, I place Benjamin’...

  2. Materials for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Andreas Züttel


    The goal is to pack hydrogen as close as possible, i.e. to reach the highest volumetric density by using as little additional material as possible. Hydrogen storage implies the reduction of an enormous volume of hydrogen gas. At ambient temperature and atmospheric pressure, 1 kg of the gas has a volume of 11 m3. To increase hydrogen density, work must either be applied to compress the gas, the temperature decreased below the critical temperature, or the repulsion reduced by the interaction of hydrogen with another material.

  3. Electron Beam Materials Irradiators (United States)

    Cleland, Marshall R.


    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  4. Losses in Ferroelectric Materials. (United States)

    Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu


    Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy


    Directory of Open Access Journals (Sweden)

    V. A. Sedykh


    Full Text Available The main types of materials used in the manufacture of packaging. Analyzed trends in further development of packaging materials. Shows how to improve the quality of plastic packaging materials in today's market.

  6. Composite materials for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo


    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  7. Encapsulated microenergetic material

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jeffery James; Aines, Roger D.; Duoss, Eric B.; Spadaccini, Christopher M.; Vandersall, Kevin S.


    Providing high energy materials that can be placed in previously created fractures and activating them in place to extend or change an existing fracture system. Also detecting the location of fractures or permeable pathways and a means to assess the extent and efficiency of proppant emplacement.

  8. Tritium Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, Donald F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Metallurgical Science Dept.; Luo, Weifang [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Metallurgical Science Dept.; Smugeresky, John E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Metallurgical Science Dept.; Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Fares, Stephen James [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Ong, Markus D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Arslan, Ilke [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; Tran, Kim L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy Systems Dept.; McCarty, Kevin F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics Dept.; Sartor, George B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Thermal/Fluid Science and Engineering; Stewart, Kenneth D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engineered Material Dept.; Clift, W. Miles [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engineered Material Dept.


    Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.

  9. Materials Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)



    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  10. Macrocyclic fragrance materials

    DEFF Research Database (Denmark)

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen;


    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a “group approach” is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds f...

  11. Uigur. Materials Status Report. (United States)

    Center for Applied Linguistics, Washington, DC. Language/Area Reference Center.

    The materials status report for Uigur, a Turkic language spoken in the Sinkiang-Uigur Autonomous Region in northwest China and in the Soviet Socialist Republics of Kazakh and Uzbek, is one of a series intended to provide the nonspecialist with a picture of the availability and quality of texts for teaching various languages to English speakers.…

  12. Self-Decontaminating Materials (United States)


    elements containing only the specific activity required. Table 1. Rate of kill of E. coli on surface of nonwoven material modified by incorporation of...Summary A wide spectrum of polymers that are used in construction of equipment items of all types, commercial or military-unique, can be modified to

  13. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas


    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  14. Protocol Materials: A Clarification. (United States)

    Innerd, Wilfred; O'Gorman, David

    "Protocol materials" are records or recordings of a wide variety of behavioral situations. Characteristically they are neither simulated nor extensively edited. They are to be used for the empirical verification of concepts derived from both educational theory and the social sciences. They are attempts to capture reality so that it may be studied…


    Directory of Open Access Journals (Sweden)

    Cătălin IANCU


    Full Text Available The paper presents the properties of a new but allready known material – graphene. Graphene is a 2-dimensional network of carbon atoms. Are presented the estonished characteristics of this form of carbon, alongwith some interesting field of use.

  16. Methods of materiality

    DEFF Research Database (Denmark)

    Aagaard, Jesper; Matthiesen, Noomi


    , and the method of participant observation is suggested as a viable approach to achieve this end. An empirical example of how authority is produced in a parent-teacher conference, not only through language but also through material objects and embodied being, is then presented. The article concludes by suggesting...

  17. Structure - materials - production

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders; Gammel, Peder; Busch, Jens


    For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies....

  18. Multifunctional Mechatronic Materials (United States)


    actuating structures based on the properties of the Kagome system. This final report contains the following studies: (1) Effective Properties of the Octet...truss Lattice Material, by V.S. Deshpande, N.A. Fleck, and M.F. Ashby; (2) Kagome Plate Structures for Actuation, by R.G. Hutchinson, N. Wicks, A.G

  19. Making Biological Materials

    Institute of Scientific and Technical Information of China (English)

    Julian F.V.Vincent


    @@ 1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a string of fairy lights, side branches that meet between the strands and hold them together.

  20. Geological and Inorganic Materials. (United States)

    Jackson, L. L.; And Others


    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…




  2. Review on Superconducting Materials


    Hott, Roland; Kleiner, Reinhold; Wolf, Thomas; Zwicknagl, Gertrud


    Short review of the topical comprehension of the superconductor materials classes Cuprate High-Temperature Superconductors, other oxide superconductors, Iron-based Superconductors, Heavy-Fermion Superconductors, Nitride Superconductors, Organic and other Carbon-based Superconductors and Boride and Borocarbide Superconductors, featuring their present theoretical understanding and their aspects with respect to technical applications.

  3. Complex Materials and Devices (United States)


    Disruptive Basic Research Areas” – Metamaterials and Plasmonics – Quantum Information Science – Cognitive Neuroscience – Nanoscience and...Sayir, Fuller) Bio-Sensing of Magnetic Fields (Larkin, Bradshaw, Curcic, DeLong 2D Materials & Devices Beyond Graphene (Hwang, Pomrenke, Harrison

  4. Shakespeare Materials. Potpourri 7. (United States)

    Mathis, N. Reed

    This publication provides a source of practical ideas for teaching Shakespeare, taken from materials in the teaching notebooks of N. Reed Mathis, a Shakespeare specialist. It contains: (1) "As You Like It"--a study guide and composition topics; (2) "Romeo and Juliet"--an objective-type final exam; (3) "Sonnets"--a way of analyzing a poem, critical…

  5. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E


    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  6. Rudiments of materials science

    CERN Document Server

    Pillai, SO


    Writing a comprehensive book on Materials Science for the benefit of undergraduate courses in Science and Engineering was a day dream of the first author, Dr. S.O. Pillai for a long period. However, the dream became true after a lapse of couple of years. Lucid and logical exposition of the subject matter is the special feature of this book.

  7. Weightless Materials Science (United States)

    Curtis, Jeremy


    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  8. Catalogue of Materials. (United States)

    Tufts Univ., Medford, MA. Lincoln Filene Center for Citizenship and Public Affairs.

    This catalogue lists resource materials available to secondary social studies teachers using an inductive approach and multi-media techniques to create a variety of learning experiences. Seven supplemental classroom instructional programs were developed by the Center: 1) Dimensions of Citizenship; 2) Politics and Policy Making; 3) Urban Problems…

  9. Amharic. Materials Status Report. (United States)

    Center for Applied Linguistics, Washington, DC. Language/Area Reference Center.

    The materials status report for Amharic, the dominant language of Ethiopia, is one of a series intended to provide the nonspecialist with a picture of the availability and quality of texts for teaching various languages to English speakers. The report consists of: (1) a brief narrative description of Amharic, the areas where it is spoken, its…

  10. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ainscow, J.W.H.


    Carbonaceous materials such as coal or oil shale are distilled by being passed in a continuous stream through a retort heated externally and at temperatures increasing from the inlet to the outlet end, the distillates being taken off through openings in the retort wall.

  11. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede


    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic....... This results in high transport costs. The building materials situation in Greenland may potentially be improved by intensifying the reuse of building materials or by promoting the local production of building materials....

  12. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J


    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  13. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)


    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  14. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)


    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  15. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R V Ramanujan


    Research and development in nanostructured materials is one of the most intensely studied areas in science. As a result of concerted R & D efforts, nanostructured electronic and magnetic materials have achieved commercial success. Specific examples of novel industrially important nanostructured electronic and magnetic materials are provided. Advantages of nanocrystalline magnetic materials in the context of both materials and devices are discussed. Several high technology examples of the use of nanostructured magnetic materials are presented. Methods of processing nanostructured materials are described and the examples of sol gel, rapid solidification and powder injection moulding as potential processing methods for making nanostructured materials are outlined. Some opportunities and challenges are discussed.

  16. Materials Engineering Research Facility (MERF) (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...


    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.; Eberl, K.


    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  18. Electrocaloric effect and luminescence properties of lanthanide doped (Na1/2Bi1/2)TiO3 lead free materials (United States)

    Zannen, M.; Lahmar, A.; Asbani, B.; Khemakhem, H.; El Marssi, M.; Kutnjak, Z.; Es Souni, M.


    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE3+ ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  19. Electrocaloric effect and luminescence properties of lanthanide doped (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3} lead free materials

    Energy Technology Data Exchange (ETDEWEB)

    Zannen, M. [Institute for Materials and Surface Technology, University of Applied Sciences, Kiel D-24149 (Germany); Ferroelectric Materials Laboratory (LMF), LR Physics-Mathematics and Applications, Faculty of Sciences of Sfax (FSS), University of Sfax, Street Soukra km 3.5 BP 1171, 3000 Sfax (Tunisia); Lahmar, A., E-mail:, E-mail: [Institute for Materials and Surface Technology, University of Applied Sciences, Kiel D-24149 (Germany); Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France); Asbani, B.; El Marssi, M. [Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France); Khemakhem, H. [Ferroelectric Materials Laboratory (LMF), LR Physics-Mathematics and Applications, Faculty of Sciences of Sfax (FSS), University of Sfax, Street Soukra km 3.5 BP 1171, 3000 Sfax (Tunisia); Kutnjak, Z., E-mail:, E-mail: [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Es Souni, M. [Institute for Materials and Surface Technology, University of Applied Sciences, Kiel D-24149 (Germany)


    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE{sup 3+} ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  20. Ultrasonic Processing of Materials (United States)

    Han, Qingyou


    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  1. Materials Testing and Automation (United States)

    Cooper, Wayne D.; Zweigoron, Ronald B.


    The advent of automation in materials testing has been in large part responsible for recent radical changes in the materials testing field: Tests virtually impossible to perform without a computer have become more straightforward to conduct. In addition, standardized tests may be performed with enhanced efficiency and repeatability. A typical automated system is described in terms of its primary subsystems — an analog station, a digital computer, and a processor interface. The processor interface links the analog functions with the digital computer; it includes data acquisition, command function generation, and test control functions. Features of automated testing are described with emphasis on calculated variable control, control of a variable that is computed by the processor and cannot be read directly from a transducer. Three calculated variable tests are described: a yield surface probe test, a thermomechanical fatigue test, and a constant-stress-intensity range crack-growth test. Future developments are discussed.

  2. Porosity in hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)


    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  3. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos


    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  4. Structural and Material Instability

    DEFF Research Database (Denmark)

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three...... use of interface elements) is used successfully to model cases where the path of the discontinuity is known in advance, as is the case of the analysis of pull-out of fibers embedded in a concrete matrix. This method is applied to the case of non-straight fibers and fibers with forces that have....... Numerical problems associated with the use of elements with embedded cracks based on the extended finite element method are presented in the next part of this work. And an alternative procedure is used in order to successfully remove these numerical problems. In the final part of this work, a computer...

  5. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich


    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  6. Gravitation in material media

    Energy Technology Data Exchange (ETDEWEB)

    Ridgely, Charles T, E-mail: charles@ridgely.w [Thienes Engineering, Inc, La Mirada, CA 90638 (United States)


    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  7. Environmental Mineralogical Materials

    Institute of Scientific and Technical Information of China (English)


    @@Basic properties, including surface absorption, porous filtration, ion exchange, heat effect and chemical solubility of environmental mineralogical materials, are widely applied to the pollution prevention environment improvement. The pollunian prevenition environmenr means the quality improvement of surface water, groundwater, river, lake and ground reservoir: the improvement of soil, the disposal of nuclear waste, the purification of domestic sewage, the collection of smoke and dust and the treatment of waste water. The prospective investigation and utilization of environmental mineralogical materials have been dealt with in more detail by the author of this paper with emphases on the prevention and control of soil contamination by heavy metals, on the quality im provement and treatment of surface water and groundwater,and on the collection of smoke and dust arising from burning coals.

  8. Designing through Material

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders


    . They are to be seen as 1:1 existences both in their form and their behaviour. They should be perceived directly and not be interpreted in relation to another scale. They, however, should neither be perceived as concluded objects. Rather they are to the seen as openings, preludes or fragments that potentially could...... of control through digital drawing and fabrication and the field of materials and their properties and capacities. Within this span the project is situated in a shuttling between the virtual and the actual, investigating levels of control and uncertainty originating from these (Fig. 1). Throughout...... be a part, a component or part of a component in a larger context or construction. Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion...

  9. Architects and Materials

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders


    One set of tools that has become predominant in the recent decades is the series of digital drawing and modelling software that today more than anything else defines the architect’s workflow. Digital drawing has become the keystone throughout the process from early sketching to building realisation...... and for which architecture is created. Through the interface of digital drawing, data can feed into digital production, linking the architect directly to the materials. Drawing can morph directly into materialisation instead of representation....

  10. Materials for Optical Cryocoolers (United States)


    December 2013 | Pages 7461–7644 HIGHLIGHT Markus P. Hehlen et al. Materials for Optical Cryocoolers Report Documentation Page Form ApprovedOMB No. 0704-0188...Chemistry from the University of Bern, Switzerland, and conducted postdoctoral work at LANL and the University of Michigan. He was Senior Research Scientist...and Project Manager at Gemre Corpora- tion, where he developed phosphors and ber-optic ampliers. He rejoined LANL in 2003 and focuses on the

  11. Microwave Processing of Materials (United States)


    Pennsylvania: Materials Research Society. Wagner, C., and W. Schottky. 1930. Zeitschrift fuer Physikalische Chemie. BL11:163. Walkiewicz, J. W., A. E. Clark...Science and Engineering. 66:468--469. Bloch, F. 1928. Zeitschrift fuer Physik. 52:555. Boch, P., N. Lequeux and P. Piluso. 1992. Reaction Sintering...Frankel, J. 1926. Zeitschrift fuer Physik. 35:652. Fukushima, H., T. Yamaka, and M. Matsui. 1990. Microwave Heating of Ceramics and its Application to

  12. Material and Virtuality

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders


    Through tangible experiments this paper discusses the dialogues between digital architectural drawing and the process of materialisation. The paper sets op the spans between virtual and actual and control and uncertainty making these oppositions a combined spaces where information between a digital....... In this paper investigations in sheet steel form a substance of concrete experiments. The experiments set up shuttling processes in between different domains. Through those processes connections and intermingling between information from digital drawing and materiality is created. The dialogues established...

  13. Nuclear material detection techniques (United States)

    Christian, James F.; Sia, Radia; Dokhale, Purushottam; Shestakova, Irina; Nagarkar, Vivek; Shah, Kanai; Johnson, Erik B.; Stapels, Christopher J.; Ryan, James M.; Macri, John; Bravar, Ulisse; Leung, Ka-Ngo; Squillante, Michael R.


    Illicit nuclear materials represent a threat for the safety of the American citizens, and the detection and interdiction of a nuclear weapon is a national problem that has not been yet solved. Alleviating this threat represents an enormous challenge to current detection methods that have to be substantially improved to identify and discriminate threatening from benign incidents. Rugged, low-power and less-expensive radiation detectors and imagers are needed for large-scale wireless deployment. Detecting the gamma rays emitted by nuclear and fissionable materials, particularly special nuclear materials (SNM), is the most convenient way to identify and locate them. While there are detectors that have the necessary sensitivity, none are suitable to meet the present need, primarily because of the high occurrence of false alarms. The exploitation of neutron signatures represents a promising solution to detecting illicit nuclear materials. This work presents the development of several detector configurations such as a mobile active interrogation system based on a compact RF-Plasma neutron generator developed at LBNL and a fast neutron telescope that uses plastic scintillating-fibers developed at the University of New Hampshire. A human-portable improved Solid-State Neutron Detector (SSND) intended to replace pressurized 3He-tubes will be also presented. The SSND uses an ultra-compact CMOS-SSPM (Solid-State Photomultiplier) detector, developed at Radiation Monitoring devices Inc., coupled to a neutron sensitive scintillator. The detector is very fast and can provide time and spectroscopy information over a wide energy range including fast neutrons.

  14. Organic Materials Chemistry (United States)


    connecting more modules Carbon nanotubes + Paper (cellulose fibers) Carbon nanotubes + Poly- ethyleneimeine ( PEI ) + NaBH4 treatment 21...Double-walled carbon nanotubes (DWNT) are stabilized with two different molecules in poly(vinyl acetate) latex:  PEDOT:PSS (conductive)  TCPP...correlation orders due very small dephasing A Thick BSO Crystal Point source (δ- function input) A T Nitt Denko Organic Material Thick

  15. Engineered monodisperse mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, R.S.; Small, J.H.; Lagasse, R.R.; Schroeder, J.L.; Jamison, G.M.


    Porous materials technology has developed products with a wide variety of pore sizes ranging from 1 angstrom to 100`s of microns and beyond. Beyond 15{angstrom} it becomes difficult to obtain well ordered, monodisperse pores. In this report the authors describe efforts in making novel porous material having monodisperse, controllable pore sizes spanning the mesoporous range (20--500 {angstrom}). They set forth to achieve this by using unique properties associated with block copolymers--two linear homopolymers attached at their ends. Block copolymers phase separate into monodisperse mesophases. They desired to selectively remove one of the phases and leave the other behind, giving the uniform monodisperse pores. To try to achieve this the authors used ring-opening metathesis polymerization to make the block copolymers. They synthesized a wide variety of monomers and surveyed their polymers by TGA, with the idea that one phase could be made thermally labile while the other phase would be thermally stable. In the precipitated and sol-gel processed materials, they determined by porosimetry measurements that micropores, mesopores, and macropores were created. In the film processed sample there was not much porosity present. They moved to a new system that required much lower thermal treatments to thermally remove over 90% of the labile phase. Film casting followed by thermal treatment and solvent extraction produced the desired monodisperse materials (based solely on SEM results). Modeling using Density Functional Theory was also incorporated into this project. The modeling was able to predict accurately the domain size and spacing vs. molecular weight for a model system, as well as accurate interfacial thicknesses.

  16. Materials for advanced packaging

    CERN Document Server

    Lu, Daniel


    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  17. Ritualizing and Materializing Citizenship

    DEFF Research Database (Denmark)

    Damsholt, Tine


      This paper focuses on the possible transformation of the self in citizenship ceremonies in Western countries. It is argued that the transformation in these life defining moments is not only a question of ritual objectification or intentionality. The rituals are often experienced as emotional by....... These transformations engage a so called ‘ontological choreography' in which processes of ritual objectification and subjectification are intertwined, involving materiality, performativity, structural constraint, and the co-dependence of the performers....

  18. Biotechnology and Composite Materials (United States)


    Biotechnology, in general terms, is the science and engineering of using living organisms for making useful products such as pharmaceuticals, foods , fuels...chemicals, materials or in waste treatment processes and clinical and chemical analyses. It encompases the prosaic form of using yeast cells to make...ductile component of the composite. Table 1. Mechanical Properties of Ceramics, Cermets, and Abalone Shell •if KIC Hardness MPa MPam 1n 2 /2 Mohs KIlN

  19. Materials for advanced packaging

    CERN Document Server

    Wong, CP


    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  20. Energy Education Materials Inventory

    Energy Technology Data Exchange (ETDEWEB)


    The two volumes of the Energy Education Materials Inventory (EEMI) comprise an annotated bibliography of widely available energy education materials and reference sources. This systematic listing is designed to provide a source book which will facilitate access to these educational resources and hasten the inclusion of energy-focused learning experiences in kindergarten through grade twelve. EEMI Volume II expands Volume I and contains items that have become available since its completion in May, 1976. The inventory consists of three major parts. A core section entitled Media contains titles and descriptive information on educational materials, categorized according to medium. The other two major sections - Grade Level and Subject - are cross indexes of the items for which citations appear in the Media Section. These contain titles categorized according to grade level and subject and show the page numbers of the full citations. The general subject area covered includes the following: alternative energy sources (wood, fuel from organic wastes, geothermal energy, nuclear power, solar energy, tidal power, wind energy); energy conservation, consumption, and utilization; energy policy and legislation, environmental/social aspects of energy technology; and fossil fuels (coal, natural gas, petroleum). (RWR)

  1. Material and energy productivity. (United States)

    Steinberger, Julia K; Krausmann, Fridolin


    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  2. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)


    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  3. Organic photomechanical materials. (United States)

    Kim, Taehyung; Zhu, Lingyan; Al-Kaysi, Rabih O; Bardeen, Christopher J


    Organic molecules can transform photons into Angstrom-scale motions by undergoing photochemical reactions. Ordered media, for example, liquid crystals or molecular crystals, can align these molecular-scale motions to produce motion on much larger (micron to millimeter) length scales. In this Review, we describe the basic principles that underlie organic photomechanical materials, starting with a brief survey of molecular photochromic systems that have been used as elements of photomechanical materials. We then describe various options for incorporating these active elements into a solid-state material, including dispersal in a polymer matrix, covalent attachment to a polymer chain, or self-assembly into molecular crystals. Particular emphasis is placed on ordered media, such as liquid-crystal elastomers and molecular crystals, that have been shown to produce motion on large (micron to millimeter) length scales. We also discuss other mechanisms for generating photomechanical motion that do not involve photochemical reactions, such as photothermal expansion and photoinduced charge transfer. Finally, we identify areas for future research, ranging from the study of basic phenomena in solid-state photochemistry, to molecular and host matrix design, and the optimization of photoexcitation conditions. The ultimate realization of photon-fueled micromachines will likely involve advances spanning the disciplines of chemistry, physics and engineering.

  4. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L


    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  5. Entropy, materials, and posterity (United States)

    Cloud, P.


    Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations

  6. Cathode material for lithium batteries (United States)

    Park, Sang-Ho; Amine, Khalil


    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  7. Numerical modeling of advanced materials

    NARCIS (Netherlands)

    Meinders, T.; Perdahcioglu, E.S.; Riel, van M.; Wisselink, H.H.


    The finite element (FE) method is widely used to numerically simulate forming processes. The accuracy of an FE analysis strongly depends on the extent to which a material model can represent the real material behavior. The use of new materials requires complex material models which are able to descr

  8. Composite materials processing, applications, characterizations

    CERN Document Server


    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  9. Simulation Methods for Functional Materials

    Institute of Scientific and Technical Information of China (English)

    Youqi Yang


    @@ Functional materials embrace a broad area, ranging from functional information materials to special polymers, from special chemicals for printing to materials used in making paints. Inasmuch as most functional materials are particulate, the present contribution is considered pertinent to the present FORUM.

  10. Platinum Group Metals New Material

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; ZHANG Jiankang; WANG Saibei; HU Jieqiong; LIU Manmen; CHEN Yongtai; ZHANG Jiming; YANG Youcai; YANG Yunfeng; ZHANG Guoquan


    Platinum group metals (PGM) include six elements,namely Pt,Pd,Rh,Ir,Os and Ru.PGM and their alloys are the important fundamental materials for modern industry and national defense construction,they have special physical and chemical properties,widely used in metallurgy,chemical,electric,electronic,information,energy,environmental protection,aviation,aerospace,navigation and other high technology industry.Platinum group metals and their alloys,which have good plasticity and processability,can be processed to electrical contact materials,resistance materials,solder,electronic paste,temperature-measurement materials,elastic materials,magnetic materials and high temperature structural materials.

  11. Advanced composite materials and processes (United States)

    Baucom, Robert M.


    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  12. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke


    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  13. High temperature materials and mechanisms

    CERN Document Server


    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  14. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    and ends of artefacts/ materials. They explored artefacts/materials and how they could be used and through this exemplified materiality in the objects. More deliberate and focused attention to what constitutes materiality can support collaboration and communication to support and enhance learning...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...... and constrain forms of action and insights that are likely to “emerge” (Wells, 2003). Methods The study's teachers considered that students enjoy and benefit from “hands–on” learning activities and many commented that tasks and interactions incorporated the use of materials. These included material objects...

  15. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail:; Mohanty, Debasish, E-mail:; Li, Jianlin, E-mail:; Wood, David L., E-mail: [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)


    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  16. Cathode materials review (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.


    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  17. Bioprospecting keratinous materials. (United States)

    Jones, L N; Sinclair, R D; Carver, J; Ecroyd, H; Lui, Y; Bennett, L E


    The concept of bioprospecting for bioactive peptides from keratin-containing materials such as wool, hair, skin and feathers presents an exciting opportunity for discovery of novel functional food ingredients and nutraceuticals, while value-adding to cheap and plentiful natural sources. The published literature reports multiple examples of proline-rich peptides with productive bio-activity in models of human disease including tumour formation, hypertension control and Alzheimer's disease. Bioactive peptides have been identified from food and other protein sources however the bioactivity of keratin-related proteins and peptides is largely unknown. Considering the high representation of proline-rich peptides among proven bioactive peptides, the proline-rich character of keratinous proteins supports current research. A selection of mammalian (cow epidermis, sheep wool) and avian (chicken feather) keratinous materials were subjected to enzymatic hydrolysis using established processing methods. A bio-assay of determining inhibition of early stage amyloid aggregation involved using a model fibril-forming protein - reduced and carboxymethylated bovine K-casein (RCMk-CN) and quantitation of fibril development with the amyloid-specific fluorophore, Thioflavin T (ThT). The assay was fully validated for analytical repeatability and used together with appropriate positive controls. Peptide library products derived from chicken feather (n=9), sheep wool (n=9) and bovine epidermis (n=9) were screened in the fibril inhibition assay based on K-casein. 3 of 27 products exhibited interesting levels of bio-activity with regard to fibril inhibition. HPLC profiles provide an indication of the complexity of the assemblage of peptides in the three active products. We conclude the bioprospecting research using keratinous materials shows promise for discovery of useful bioactive peptides.

  18. LFR Demonstrator Materials Viability

    Energy Technology Data Exchange (ETDEWEB)

    Caro, M


    Interest in fast reactor development has increased with the Department of Energy's introduction of the Global Nuclear Energy Partnership (GNEP) [1]. The GNEP program plans development of a sodium cooled Advanced Burner Reactor (ABR) that can be used to reduce the amount spent LWR fuel in storage and the number of high level waste sites needed for expansion of nuclear power throughout the world over the 21st century. In addition, the program proposes to make nuclear power more available while reducing the proliferation concerns by revising policies and technology for control of weapons useable materials. This would be accomplished with establishment of new institutional arrangements based on selective siting of reprocessing, enrichment and waste disposal facilities. The program would also implement development of small reactors suitable for use in developing countries or remote regions with small power grids. Over the past several years, under the Department of Energy (DOE) NERI and GEN IV programs research has been conducted on small lead cooled reactors. The Small Secure Transportable Autonomous Reactor (SSTAR) [2] is the most recent version of this type of reactor and research is continuing on it in the GEN IV program in parallel with GNEP. SSTAR is a small (10MWe-100MWe) reactor that is fueled once for life. It complements the GNEP program very well in that it serves one of the world markets not currently addressed by large reactors and its development requirements are similar to those for the ABRs. In particular, the fuel and structural materials for these fast spectrum reactors share common thermal and neutron environments. The coolants, sodium in ABR and lead or lead-bismuth eutectic (LBE) in SSTAR, are the major developmental difference. This report discusses the status of structural materials for fast reactor core and primary system components and selected aspects of their development.

  19. Aerospace Materials Process Modelling (United States)


    deTresca La d~termination du coefficient de frottement de Tresca 9 est effectu~e de facon courante en forgeant un anneau de g~oan~trie fix~e. On mesure la...ailleurs et vaut a= 105 xt 0 , 2 5 Les riductions relatives du diam~tre int~rieur sont report~es sur l1abaque TVM(fig. 2a). Les coefficient de frottement ...validated material data bass. Information such as constitutive equations, intrinsic workability maps, effective heat-transfer coefficients , interface

  20. Mycotoxins in building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Frisvad, Jens Christian


    as in future energy efficient buildings. It brings together different disciplinary points of view on indoor mold, ranging from physics and material science to microbiology and health sciences. The contents have been outlined according to three main issues: Fundamentals, particularly addressing the crucial...... for avoiding adverse health effects is the prevention (or minimization) of persistent dampness and microbial growth on interior surfaces and in building structures. This book aims to describe the fundamentals of indoor mold growth as a prerequisite to tackle mold growth in the existing building stock as well...

  1. Radioactive Materials Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Laing, W.R.; Corbin, L.T.


    The Radioactive Materials Analytical Laboratory was completed 15 years ago and has been used since as an analytical chemistry support lab for reactor, fuel development, and reprocessing programs. Additions have been made to the building on two occasions, and a third addition is planned for the future. Major maintenance items include replacement of ZnBr/sub 2/ windows, cleanup of lead glass windows, and servicing of the intercell conveyor. An upgrading program, now in progress, includes construction of new hot-cell instrumentation and the installation of new equipment such as an x-ray fluorescence analyzer and a spark source mass spectrometer.

  2. Ultrasonic materials characterization (United States)

    Smith, R. L.


    The National NDT Center at Harwell has been developing methods for the characterization of materials using ultrasonics. This paper reviews the progress made in applying ultrasonic attenuation measurements to the determination of such quantities as grain size and dislocation content. A method, ultrasonic attenuation spectral analysis, has been developed, which enables the contributions of scattering and absorption to the total attenuation to be separated. The theoretical advances that have been made are also described. Some of the practical applications of the technique are illustrated and future development discussed.

  3. Metallic carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.L.; Crespi, V.H.; Louie, S.G.S.; Zettl, A.K.


    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  4. Tectonic Vocabulary & Materialization

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Beim, Anne; Bundgaard, Charlotte


    to establish a Nordic Network for Research and Teaching in Tectonics is currently forming. This paper seeks to jointly reflect upon these initiatives in order to bring them further, with the intention to clad a discourse on the future of tectonic architectural research that addresses the conditions of everyday...... architectural practice. In this matter the paper focuses on the need to juxtapose theoretical studies, to bring the present vocabulary of the tectonic further, as well as to spur further practical experiments enabling theory to materialize in the everyday of the current practice....

  5. Ordering, materiality and multiplicity

    DEFF Research Database (Denmark)

    van der Duim, René; Ren, Carina Bregnholm; Jóhannesson, Gunnar Thór


    In this article we discuss how ANT has been translated into tourism research and show how it has impacted the field by presenting three concepts integral to the ANT approach: ordering, materiality and multiplicity. We first introduce ANT and draw attention to current ANT studies in tourism......, followed by a discussion of how newer approaches within post-ANT urge us to face the ontological politics, which we engage in when performing tourism research. In conclusion we argue that ANT enables a radical new way at looking at tourism, tourism destinations and objects and investigations...... into the ontological condition of tourism....

  6. Heat Pipe Materials Compatibility (United States)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.


    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  7. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke


    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  8. Advanced materials for space (United States)

    Tenney, D. R.; Slemp, W. S.; Long, E. R., Jr.; Sykes, G. F.


    The principal thrust of the LSST program is to develop the materials technology required for confident design of large space systems such as antennas and platforms. Areas of research in the FY-79 program include evaluation of polysulfones, measurement of the coefficient of thermal expansion of low expansion composite laminates, thermal cycling effects, and cable technology. The development of new long thermal control coatings and adhesives for use in space is discussed. The determination of radiation damage mechanisms of resin matrix composites and the formulation of new polymer matrices that are inherently more stable in the space environment are examined.

  9. Semiconductor surface protection material (United States)

    Packard, R. D. (Inventor)


    A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.

  10. Material Flows and Carbon Cycles (United States)

    Worrell, E.


    The industrial sector emits almost 43 percent of the global anthropogenic carbon dioxide emissions to produce materials and products. Furthermore, energy is used to move materials and products and process the waste. Hence, a large amount of energy is consumed and CO2 is emitted to sustain our materials system. Until recently, studies investigating mitigation options focused on changes in the energy system. For industrial processes most studies evaluate how the current materials system can be maintained producing fewer greenhouse gas emissions. Three elements of a strategy to improve the long-term materials productivity are the reduction of dissipative uses of non-biodegradable materials, secondly, the re-design of products to use less material or design for re-use or recycling, and thirdly, develop more efficient technologies for material conversion and recycling. This will reduce or eliminate the need to extract virgin materials from the environment, and reduce CO2 emissions from the energy-intensive production processes. To assess measures to reduce materials consumption, fossil fuels consumption and CO2 emissions, detailed understanding of the material system is needed. The lifecycle of materials has to be investigated including all branches of industry with all the inputs and outputs. We start with a discussion of materials and the carbon cycle focusing on the contribution of materials to anthropogenic carbon flows. We discuss CO2 emissions from energy use in materials extraction and production, fossil (e.g. plastics) and biomass carbon (e.g. lumber, paper) used as feedstock of materials, and mineral sources (e.g. cement). We discuss opportunities to reduce CO2 emissions by improving the efficiency with which society uses materials through product design, material substitution, product reuse and material recycling.

  11. Electroactivity in Polymeric Materials

    CERN Document Server


    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  12. Using materials science. (United States)

    Baker, W O


    The science of the solid state has joined nuclear science and molecular biology as a field of major importance in the latter half of the 20th century. It took particular shape during the genesis of solid-state electronics and the post-transistor era of integrated circuits for telecommunications, computers, and digital signal machines. However, these developments were soon joined by techniques from the ancient fields of metallurgy and ceramics and contributions from the more current fields of synthetic polymers, rubbers, plastics, and modified bioorganic substances. This vast realm was characterized by a National Academy of Sciences study of the 1970's as "materials science and engineering." The public, as well as the scientific and engineering community, are currently concerned about the uses of research and development and the applications of knowledge for national progress. Consideration is given here to how well we are using the science of materials for industrial strength and such governmental objectives as national security and energy economy.

  13. Bulldozing of granular material

    CERN Document Server

    Sauret, A; Caulfield, C P; McElwaine, J N


    We investigate the bulldozing motion of a granular sandpile driven forwards by a vertical plate. The problem is set up in the laboratory by emplacing the pile on a table rotating underneath a stationary plate; the continual circulation of the bulldozed material allows the dynamics to be explored over relatively long times, and the variation of the velocity with radius permits one to explore the dependence on bulldozing speed within a single experiment. We measure the time-dependent surface shape of the dune for a range of rotation rates, initial volumes and radial positions, for four granular materials, ranging from glass spheres to irregularly shaped sand. The evolution of the dune can be separated into two phases: a rapid initial adjustment to a state of quasi-steady avalanching perpendicular to the blade, followed by a much slower phase of lateral spreading and radial migration. The quasi-steady avalanching sets up a well-defined perpendicular profile with a nearly constant slope. This profile can be scale...

  14. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)


    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  15. Target Housing Material Options

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    With gas cooling, heat transfer coefficients are low compared to water. The benefit of gas from a heat transfer point of view is that there is really no upper temperature limit for the coolant, as compared to water, which is limited ultimately by the critical point, and in practice the critical heat flux. In our case with parallel flow channels, water is limited to even lower operating limits by nucleate boiling. So gas can get as hot as the containment material will allow, but to get the density and heat transfer up to something reasonable, we must also increase pressure, thus increasing stress on the containment, namely the front and back faces. We are designing to ASME BPVC, which, for most materials allows a maximum stress of UTS/3. So we want the highest possible UTS. For reference, the front face stress in the 12 mm target at 300 psi was about 90 MPa. The inconel 718 allowable stress at 900°C is 1/3 of 517 or 172 MPa. So we are in a very safe place, but the uTS is dropping rapidly with temperature above 900°C. As we increase target diameter, the challenge will be to keep the stress down. We are probably looking at keeping the allowable at or above the present value, and at as high a temperature as possible.

  16. Aerogel nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.J.; Ayers, M.; Cao, W. [Lawrence Berkeley Laboratory, CA (United States)] [and others


    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  17. Laser processing of materials

    Indian Academy of Sciences (India)

    J Dutta Majumdar; I Manna


    Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with negligible divergence and occur in a wide range of wavelength, energy/power and beam-modes/configurations. As a result, lasers find wide applications in the mundane to the most sophisticated devices, in commercial to purely scientific purposes, and in life-saving as well as life-threatening causes. In the present contribution, we provide an overview of the application of lasers for material processing. The processes covered are broadly divided into four major categories; namely, laser-assisted forming, joining, machining and surface engineering. Apart from briefly introducing the fundamentals of these operations, we present an updated review of the relevant literature to highlight the recent advances and open questions. We begin our discussion with the general applications of lasers, fundamentals of laser-matter interaction and classification of laser material processing. A major part of the discussion focuses on laser surface engineering that has attracted a good deal of attention from the scientific community for its technological significance and scientific challenges. In this regard, a special mention is made about laser surface vitrification or amorphization that remains a very attractive but unaccomplished proposition.

  18. Materials Microcharacterization Collaboratory

    Energy Technology Data Exchange (ETDEWEB)

    James C. Mabon; Gernot Metze; Ivan Petrov


    The Center for Microanalysis of Materials (CMM) is one of the four electron microscopy and microcharacterization user facilities participating in the Materials Microcharacterization Collaboratory (MMC) supported by the DOE-SC, Office of Basic Energy Science, and DOE Energy Efficiency & Renewable Energy Program, Office of Transportation Technology. The MMC unites the four DOE BES electron microscopy user facilities at ANL, LBNL, ORNL, and the CMM at the University of Illinois at Urbana-Champaign. Also participating in the MMC are the DOE EE microcharacterization user center at ORNL and the NAMT program at NIST. MMC also has several industrial partners. The purpose of the MMC is to bring the microanalytical and microcharacterization tools and expertise at these centers of excellence and other participating facilities together in an on-line interactive collaboratory and make them available to educators and researchers working in industry, universities, and government laboratories through telepresence access and operation. The MMC, however, is about remote collaboration, not just remote instrument control. The approach of the MMC also emphasizes providing the tools for establishing a sense of community and performing research using the MMC. The CMM has several instruments and peripherals available on-line emphasizing a Web-centric approach with varying levels of access and functionality. This program has developed and implemented hardware and software tools for remote and collaborative operation.

  19. Holistic evaluations of learning materials

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe; Hansen, Thomas Illum


    The aim of this paper is to present a holistic framework for evaluating learning materials and designs for learning. A holistic evaluation of learning material comprises investigations of - the potential learning potential, i.e. the affordances and challenges of the learning material......, and the competences supposedly supported when working with the material - the actualized learning potential, i.e. the potential for learning when the design for learning is enacted by integrating the learning material in a situation in a given context, and - the actual learning, i.e. how the participants actually...... develop their competences through working with a learning material or enacting a design for learning....

  20. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza


    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  1. Materials research at Stanford University. [composite materials, crystal structure, acoustics (United States)


    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.


    Seven materials that are currently being considered for use as backpacking around deeply buried protective structures and silos were investigated for...characteristics necessary for a better understanding of a material’s behavior when used as a backpacking were also determined. The materials studied included

  3. Disordered hyperuniform heterogeneous materials (United States)

    Torquato, Salvatore


    Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space {{{R}}d} . Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be ‘multihyperuniform’. We then consider hyperuniformity for general two-phase media in {{{R}}d} . Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family of

  4. Porous bioactive materials (United States)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10

  5. Journal of Materials Protection

    Institute of Scientific and Technical Information of China (English)


    Effect of Rare Earth on Corrosion Resistance of Trivalent Chromium Color Passivation Film onElects'opiated Zinc Coaling LIU Yah, ZHANG Jian-gang, FENG Li-ming( School of Material Science and Engineering, Shandong Jianzhu University, Jinan 250101 ). Cailiao Baohu 2012,45 ( 04 ), 01 -04 (Ch). Rare earth elements ( La^3 + , Ce^3 + and Ce^4 + ) were introduced into trivalent chromium passivation fluid. The effect of rare earth content on the corrosion resistance of the color passivafion film on electro- plated Ni coating was investigated by dripping test of aqueous lead acetate, measurement of Tafel curves, and saline water soaking test. It was found that the addition of rare earth contributed to improved corrosion resistance of trivalent Cr passivation Fdm even in the absence of sealing, and Ce^4+ was the most effective in improving the corrosion resistance.

  6. Materials support for HITAF

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J.; Lin, H.T.


    The purpose of this project is to compare structural ceramic materials proposed for use in the air heater of a coal fired high temperature furnace (HITAF) for power generation. This new generation of coal fired power plants with increased efficiency, fewer emissions and lower costs are currently being developed under the Combustion 2000 program funded by Pittsburgh Energy Technology Center (PETC). Large improvements in efficiencies will require a change to combined cycles that employ gas turbines and steam turbines (Brayton Cycle) instead of exclusive reliance on steam turbines. Extremely high temperature working fluid is required to boost the efficiency, and the result is that the power plant sub-systems will be exposed to much more corrosive environments than in the present systems. The uses of ceramic heat exchangers are being investigated for those new power plants because of the potential for producing a clean, hot working fluid for the gas turbine.

  7. Embodying material ideation

    DEFF Research Database (Denmark)

    Wilde, Danielle


    New materials and technologies offer the potential for highly innovative systems. Yet also challenge us to expand how we design. ‘Post-disciplinary embodied ideation’ is an emerging approach to knowledge generation and exchange amongst designers, scientists and the public. Its purpose is to enrich...... the conception and design of innovative on-body systems, informed – yet unconstrained – by current knowledge. In this paper I describe three approaches to engaging the public in post- disciplinary embodied ideation. In each case, the use of video, photography, audio, and other forms of documentation...... are carefully curated to support and fruitfully disrupt – rather than interfere with – the aesthetic experience. So, while micro-analysis of video and audio might promise deep insights, significant challenges remain if such approaches are to be effectively leveraged. By opening this work up to the research...

  8. Innovative materials in winemaking

    Directory of Open Access Journals (Sweden)

    Luchian Camelia Elena


    Full Text Available Wineries have been trying to reduce metallic content of wines by adding various substances. The most used treatment with potassium ferrocyanide causes the elimination of the majority of iron content, together with a significant reduction in the content of other metals. Potassium ferrocyanide also leads to the formation of undesirable hazes. White wines composition and organoleptic properties are influenced by many and diverse factors corresponding to the specific production area, such as grape variety, soil and climate, culture, yeast, winemaking practices and storage. The aim of this research was to investigate variations in metals and volatiles content of Feteasca regală wine samples treated with SBA-15, AlMCM-41, KIT-6 and Clinoptilolite materials with GS-MS and MP-AES.

  9. Laser materials production (United States)

    Gianinoni, I.; Musci, M.


    The characteristics and the perspectives of the new photochemical laser techniques for materials production will be briefly analysed and some recent experimental results both on large area deposition of thin films and on synthesis of powders will be reported. As an example of an IR laser process, the cw CO 2 laser-induced deposition of hydrogenated amorphous silicon will be described in some detail. The results of some UV experiments for semiconductor, metal and insulating film depositions will also be discussed. The features of the process for laser-driven synthesis of powders and the characteristics of the produced particles will be evidenced, and some of their technological applications will be outlined. The requirements of the laser sources suitable for this kind of applications are in general the same as in gas-phase laser chemistry, however it will be pointed out how some parameters are more significant for this specific use.

  10. Electrical properties of materials

    CERN Document Server

    Solymar, L; Syms, R R A


    An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microele...

  11. Disordered Materials An Introduction

    CERN Document Server

    Ossi, Paolo M


    This self-contained text introduces the physics of structurally disordered condensed systems at the level of advanced undergraduate and graduate students. Among the topics are the geometry and symmetries of the structural units used as building blocks of extended structures, the various kinds of disorder, the phenomenology and the main theories of the glass transition, the structure of amorphous systems and the techniques to investigate it, the evolution of system's structure with its size (clusters) and the presence of orientational order in the absence of translational order (quasicrystals). In the second edition, the treatment of the mode coupling theory of the glass transition has been enlarged and connects now to a new section on collective excitations in disordered systems. Special attention has been devoted to nanometer-sized disordered systems, with emphasis on cluster-assembled materials. Questions of what governs the occurrence and stability of quasicrystals, the features of the amorphous to quasicr...

  12. Magnetism and magnetic materials

    CERN Document Server

    Coey, J M D


    Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data. Accessible, authoritative, and assuming undergraduate familiarity with vectors, electromagnetism and quantum mechanics, this textbook is well suited to graduate courses. Emphasis is placed on practical calculations and numerical magnitudes - from nanoscale to astronomical scale - focussing on modern applications, including permanent magnet structures and spin electronic devices. Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and clearly explain ideas. Easily digestible tables and data sheets provide a wealth of useful information on magnetic properties. The 38 principal magnetic materials, and many more related compounds, are treated in detail

  13. Talk, Mobility and Materialities

    DEFF Research Database (Denmark)

    McIlvenny, Paul

    The intersection of the quotidian practices of social interaction, learning and mobility outside of the classroom – for example, the ways in which talk shapes how children learn to be actively mobile – has been little studied until recently. This paper develops a social interactional approach...... to analysing talk and mobile action in what are arguably two quintessentially Nordic mobility practices, namely cycling and skiing. More specifically the focus is on investigating and comparing how a child learns to cycle in a bike-friendly urban infrastructure, and how a child learns to ski cross...... is collaboratively constructed in interaction by the participants as part and parcel of their kinaesthetic experience of the respective material environment and infrastructure. Especially when skiing, the more malleable snowscape is (re)territorialised by laying down tracks, which can be reused by participants, both...

  14. Skyrmions in magnetic materials

    CERN Document Server

    Seki, Shinichiro


    This brief reviews current research on magnetic skyrmions, with emphasis on formation mechanisms, observation techniques, and materials design strategies. The response of skyrmions, both static and dynamical, to various electromagnetic fields is also covered in detail. Recent progress in magnetic imaging techniques has enabled the observation of skyrmions in real space, as well as the analysis of their ordering manner and the details of their internal structure. In metallic systems, conduction electrons moving through the skyrmion spin texture gain a nontrivial quantum Berry phase, which provides topological force to the underlying spin texture and enables the current-induced manipulation of magnetic skyrmions. On the other hand, skyrmions in an insulator can induce electric polarization through relativistic spin-orbit interaction, paving the way for the control of skyrmions by an external electric field without loss of Joule heating. Because of its nanometric scale, particle nature, and electric controllabil...

  15. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E


    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  16. Packaging - Materials review

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Matthias [Hoppecke Advanced Battery Technology GmbH, 08056 Zwickau (Germany)


    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  17. Packaging - Materials review (United States)

    Herrmann, Matthias


    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  18. Sustainable Materials Management Challenge Data (United States)

    U.S. Environmental Protection Agency — Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change...

  19. Erosion-resistant composite material (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  20. Extrusion of ECC-Material

    DEFF Research Database (Denmark)

    Stang, Henrik; Li, Victor C.


    in recent years at Department of Civil and Envirionmetal Engineering, University of Michigan. These materials have been developed with the special aim of producing high performance , strain hardening materials with low volume concentrations of short fibers in a cementitious material.ECC material spcimens...... have until now been produced by traditional casting processes. In the present paper results from a recent collaborative reserach project are documented - demonstrating that ECC materials can be extruded in the process referred to above.......An extrusion process especially designed for extrusion of pipes made from fiber reinforced cementitious materials has been developed at Department of Structural Engineering and Materials at the Technical University of DenmarkEngineered Cementitious Composite (ECC) materials have been developed...

  1. Failure Modes in Composite Materials. (United States)


    Derek, An Introduction to Composite Materials , New York: Cambridge University Press, 1981. 12. Jamison, R. D., Mechanical Engineering Department...1978. 19. Tsai, Stephen W., Introduction to Composite Materials , Lancaster, Pennsylvania: Technomic Publishing Company, Inc., 1980. 4,’ * .20. Vernon

  2. Material efficiency: a white paper

    NARCIS (Netherlands)

    Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E.


    For most materials used to provide buildings, infrastructure, equipment and products, global stocks are still sufficient to meet anticipated demand, but the environmental impacts of materials production and processing, particularly those related to energy, are rapidly becoming critical. These impact

  3. Lunar Materials Handling System Project (United States)

    National Aeronautics and Space Administration — The Lunar Materials Handling System (LMHS) is a method for transfer of bulk materials and products into and out of process equipment in support of lunar and Mars in...

  4. High Temperature Materials Laboratory (HTML) (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  5. The physical chemistry of materials

    Directory of Open Access Journals (Sweden)

    Moran Wang


    Full Text Available This book presents methods for synthesizing and characterizing adsorbents, ion exchangers, ionic conductors, heterogeneous catalysts, and permeable porous materials. The material properties and their applications in chemical, sustainable energy, and pollution abatement are discussed.

  6. Materials Used in Bilingual Programs. (United States)

    New York City Board of Education, Brooklyn, NY. Bilingual Resource Center.

    This list, prepared by the Bilingual Resource Center in New York City, of instructional materials used in bilingual programs includes textbooks, educational materials, and audio-visual aids used in the various school districts of New York City. (SK)

  7. Radiation effects on structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, N.M.


    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support.

  8. Methods for Coating Particulate Material (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)


    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  9. Accelerating advanced-materials commercialization (United States)

    Maine, Elicia; Seegopaul, Purnesh


    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  10. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.


    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  11. Essentials of inorganic materials synthesis

    CERN Document Server

    Rao, C N R


    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  12. Selecting materials in product design

    NARCIS (Netherlands)

    Van Kesteren, I.E.H.


    This thesis exists of several studies and design steps that resulted in a new material selection technique for user-centred design, which is supported by tools. The tools use examples of materials in products and stimulate the discussions about the user-interaction aspects of those materials desired

  13. Methods of synthesizing thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang


    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  14. Material Efficiency of Building Construction

    Directory of Open Access Journals (Sweden)

    Antti Ruuska


    Full Text Available Better construction and use of buildings in the European Union would influence 42% of final energy consumption, about 35% of our greenhouse gas emissions and more than 50% of all extracted materials. It could also help to save up to 30% of water consumption. This paper outlines and draws conclusions about different aspects of the material efficiency of buildings and assesses the significance of different building materials on the material efficiency. The research uses an extensive literature study and a case-study in order to assess: should the depletion of materials be ignored in the environmental or sustainability assessment of buildings, are the related effects on land use, energy use and/or harmful emissions significant, should related indicators (such as GHGs be used to indicate the material efficiency of buildings, and what is the significance of scarce materials, compared to the use of other building materials. This research suggests that the material efficiency should focus on the significant global impacts of material efficiency; not on the individual factors of it. At present global warming and greenhouse gas emissions are among the biggest global problems on which material efficiency has a direct impact on. Therefore, this paper suggests that greenhouse gas emissions could be used as an indicator for material efficiency in building.

  15. Nanostructured materials for hydrogen storage (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.


    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  16. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  17. Educational Materials for Mobile Learning (United States)

    Kaneko, Kosuke; Okada, Yoshihiro; Yoshida, Motofumi; Inoue, Hitoshi; Fujimura, Naomi


    This paper introduces several educational materials developed by ICER (Innovation Center for Educational Resource) of Kyushu University Library and considers about what are better designs for mobile educational materials through their development experiences and their investigations about its learning effectiveness. The introduced materials are…

  18. Electronic, magnetic, and optical materials

    CERN Document Server

    Fulay, Pradeep


    Technological aspects of ferroelectric, piezoelectric and pyroelectric materials are discussed in detail, in a way that should allow the reader to select an optimal material for a particular application. The basics of magnetostatics are described clearly, as are a wide range of magnetic properties of materials … .-Tony Harker, Department of Physics and Astronomy, University College London

  19. The Science of Smart Materials (United States)

    Boohan, Richard


    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…


    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk


    Full Text Available The article presents solution for the task of evaluating exergy of the substance in the flow for textile and woven fabrics based on thermodynamic analysis of the corresponding technical systems. The exergy method allows estimating the energy effectiveness for the most problematic heat-technological systems of substance transformation and thus outlining the ways for decreasing the electric-power component in the production prime cost. The actuality of the issue stems from the renowned scenario alteration on the world energy market and is aggravated by necessity of retaining and building up the export potential of the light industry as an important component of the republic national-economic complex. The exergy method has been here for quite a long time and saw the interest fading and appearing again with periodicity of the research-generations alternation. Cooling down of every new generation towards the specified method is explained mostly by unresolved problem of the exergy evaluation for diverse materials, which poses a problem in the course of analysis of the substance transformation systems. The specified problem as a general rule does not create obstacles for energyconversion systems. However, the situation with substance-transformation systems is by far more complicated primarily due to diversity of the materials and respectively of the specification peculiarities of such component of the substance exergy in the flow as chemical component. Abeyance of conclusion in finding the chemical component of the substance exergy does not allow performing thermodynamic valuation of the energy provision for the heat-technological process in full measure. Which complicates the matters of decision-making and finding a medium for reduction of their energy consumption. All stated above relates to the textile industry and in the first instance to the finishing production departments.The authors present the exergy-evaluation problem solution for the

  1. Photonic band gap materials (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  2. Nanostructured conductive polymeric materials (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  3. Improved flywheel materials :

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Bell, Nelson S; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth


    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).

  4. Materials design for new superconductors. (United States)

    Norman, M R


    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  5. Materials for energy conversion devices

    CERN Document Server

    Sorrell, C C; Sugihara, S


    As the finite capacity and pollution problems of fossil fuels grow more pressing, new sources of more sustainable energy are being developed. Materials for energy conversion devices summarises the key research on new materials which can be used to generate clean and renewable energy or to help manage problems from existing energy sources. The book discusses the range of materials that can be used to harness and convert solar energy in particular, including the properties of oxide materials and their use in producing hydrogen fuel. It covers thermoelectric materials and devices for power genera

  6. Materials design for new superconductors (United States)

    Norman, M. R.


    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  7. Designing Biomimetic, Dissipative Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology


    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  8. Reference materials and representative test materials: the nanotechnology case

    Energy Technology Data Exchange (ETDEWEB)

    Roebben, G., E-mail: [Joint Research Centre of the European Commission, Institute for Reference Materials and Measurements (Belgium); Rasmussen, K. [Joint Research Centre of the European Commission, Institute for Health and Consumer Protection (Italy); Kestens, V.; Linsinger, T. P. J. [Joint Research Centre of the European Commission, Institute for Reference Materials and Measurements (Belgium); Rauscher, H. [Joint Research Centre of the European Commission, Institute for Health and Consumer Protection (Italy); Emons, H. [Joint Research Centre of the European Commission, Institute for Reference Materials and Measurements (Belgium); Stamm, H. [Joint Research Centre of the European Commission, Institute for Health and Consumer Protection (Italy)


    An increasing number of chemical, physical and biological tests are performed on manufactured nanomaterials for scientific and regulatory purposes. Existing test guidelines and measurement methods are not always directly applicable to or relevant for nanomaterials. Therefore, it is necessary to verify the use of the existing methods with nanomaterials, thereby identifying where modifications are needed, and where new methods need to be developed and validated. Efforts for verification, development and validation of methods as well as quality assurance of (routine) test results significantly benefit from the availability of suitable test and reference materials. This paper provides an overview of the existing types of reference materials and introduces a new class of test materials for which the term 'representative test material' is proposed. The three generic concepts of certified reference material, reference material(non-certified) and representative test material constitute a comprehensive system of benchmarks that can be used by all measurement and testing communities, regardless of their specific discipline. This paper illustrates this system with examples from the field of nanomaterials, including reference materials and representative test materials developed at the European Commission's Joint Research Centre, in particular at the Institute for Reference Materials and Measurements (IRMM), and at the Institute for Health and Consumer Protection (IHCP).

  9. Reference material systems: a sourcebook for material assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, N. (ed.)


    A reference set of data related to material systems and a framework for carrying out the material technologies assessment are presented. While the bulk of renewables have been considered in this report, the nonrenewable materials dealt with here include structural materials only, such as steel, aluminum, cement and concrete, and bricks. The complete data set is supposed to include material flows, energy requirements, capital and labor inputs, and environmental effects for each process that a resource must go through to become a useful material for an end use. Although effort has been made to obtain as much information as possible, considerable gaps in data, apparent throughout this report, could not be avoided. A new material technology can be evaluated by substituting that technology for appropriate elements of the reference materials system and calculating the net change in material resource, energy, capital and labor requirements, and environmental impacts. This combination of information thus serves as a means of evaluating the potential benefits to be gained by research in various material technologies.

  10. Vanadium based materials as electrode materials for high performance supercapacitors (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo


    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  11. Mechanical Properties of Materials

    CERN Document Server

    Pelleg, Joshua


    The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years.  This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a differ...

  12. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas


    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  13. Sheared solid materials

    Indian Academy of Sciences (India)

    Akira Onuki; Akira Furukawa; Akihiko Minami


    We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.

  14. Polymeric materials in medication

    CERN Document Server

    Carraher, Charles


    The art of using chemical agents for medication dates back into antiquity, although most of the earliest examples used plants, herbs, and other natural materials. The old Egyptian medical papyri, which date from before 1400 B. C. , contain dozens of examples of such medicinal plants and animal extracts. In the Old Testament of the Bible, we can find references to using oil to soften the skin and sores (Isaiah 1:6), the use of tree leaves for medicine (Ezekiel 47:12) and various medical balms (Jeremiah 8:22). Not all these recipes were effective in curing the ailments for which they were used and sometimes the treatment was worse than the disease. Nevertheless, the art of using chemical derived agents for medicines continued to develop and received great impetus during the present century with the rise of synthetic organic chemistry. One of the most vexing problems has always been to achieve specifici­ ty with the medications. While some medical agents do indeed possess a relatively high degree of specificity...

  15. Metacomprehension of text material. (United States)

    Maki, R H; Berry, S L


    Subjects' abilities to predict future multiple-choice test performance after reading sections of text were investigated in two experiments. In Experiment 1, subjects who scored above median test performance showed some accuracy in their predictions of that test performance. They gave higher mean ratings to material related to correct than to incorrect test answers. Subjects who scored below median test performance did not show this prediction accuracy. The retention interval between reading and the test was manipulated in Experiment 2. Subjects who were tested after at least a 24-hr delay showed results identical to those of Experiment 1. However, when subjects were tested immediately after reading, subjects above and below median test performance gave accurate predictions for the first immediate test. In contrast, both types of subjects gave inaccurate predictions for the second immediate test. Structural variables, such as length, serial position, and hierarchical level of the sections of text were related to subjects' predictions. These variables, in general, were not related to test performance, although the predictions were related to test performance in the conditions described above.

  16. IR materials producibility (United States)

    Berding, M. A.


    This quarter focus was on completing a paper containing the details of our calculations on the defect concentration in x = 0.2 Hg(1-x)Cd(x)Te. This involved the refinement of the calculations of all the defects. Our ideas about the formation and annihilation of tellurium precipitates in HgCdTe continue to be developed. Our work on dislocations and the reanalysis of the electronic band structure of narrow-gap HgCdTe was presented at the IRIS materials meeting in August and at the MCT Workshop in October. A paper on the electronic mobility in Hg(0.78)Cd(0.22)Te was submitted for publication in the Journal of Applied Physics. The calculations of the lithium vacancy and niobium antisite formation energies in LiNbO3 were completed and these energies are being incorporated into a thermodynamical analysis. Our calculations on the defect concentrations in ZnSe continue to be refined and preliminary predictions of the dominant defects in that system were made.

  17. Distillation of carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Ainscow, J.W.H.


    To recover hydrocarbon products by distillation of carbonaceous material in a plurality of horizontal zones maintained at different temperatures, a retort has a plurality of superimposed (3) retort chambers, the uppermost being in communication at one end with a hopper and at the other end through coupled junction not shown with one end of the next lower chamber, whose opposite end communicates with lowermost chamber, the other end of which has a sealed discharge passage, tank, and conveyor not shown. Each retort chamber has stirring and conveying means consisting of helical blades (2) attached to radial arms on shaft mounted in water cooled bearings and driven through suitably mounted sprocket wheels and chains not shown. Each retort chamber has a gas dome, with pyrometer tube, and off-take connected to a common main opening into a dust eliminator which in turn connects with a plurality of vertical condensation towers of known construction, maintained at different temperatures by means of steam from a superheater not shown situated in one retort chamber. The retort heating gases pass from the furnace via zig-zag, (three) baffles under and around each retort chamber to a flue not shown.

  18. Selected Natural Materials in History

    Institute of Scientific and Technical Information of China (English)

    Julian F.V.Vincent


    @@ 1 Technology of natural materials Early man used conveniently shaped stones as tools."Workshop" areas have been found with large numbers of stones, some showing signs of being worked[1].However, organic materials like wood will decay under normal wet conditions in the presence of oxygen, so we won't find the same sort of evidence for wooden tools. It is safe to assume that early man used sticks as probes and clubs, and maybe even for making some sort of nestlike protection against the elements and predators, since we see chimpanzees and other animals doing this sort of thing. So wood, and almost certainly other plant materials such as fibrous leaves, and bone and other materials gleaned from dead animals, would be used from the earliest times. We need to know this in order to establish the idea that Man can be expected to have a long history of the use and manipulation of natural materials. This needs skills in choosing materials for certain uses on the basis of their mechanical properties,whether those properties are to do with the ease of shaping the material or the effectiveness of that material in use. Occasionally the material was chosen simply because it was readily available. If we find that a particular material was always used for a certain job, it's reasonable to deduce that Man was exerting materials selection criteria through experience.

  19. Perceptual qualities and material classes. (United States)

    Fleming, Roland W; Wiebel, Christiane; Gegenfurtner, Karl


    Under typical viewing conditions, we can easily group materials into distinct classes (e.g., woods, plastics, textiles). Additionally, we can also make many other judgments about material properties (e.g., hardness, rigidity, colorfulness). Although these two types of judgment (classification and inferring material properties) have different requirements, they likely facilitate one another. We conducted two experiments to investigate the interactions between material classification and judgments of material qualities in both the visual and semantic domains. In Experiment 1, nine students viewed 130 images of materials from 10 different classes. For each image, they rated nine subjective properties (glossiness, transparency, colorfulness, roughness, hardness, coldness, fragility, naturalness, prettiness). In Experiment 2, 65 subjects were given the verbal names of six material classes, which they rated in terms of 42 adjectives describing material qualities. In both experiments, there was notable agreement between subjects, and a relatively small number of factors (weighted combinations of different qualities) were substantially independent of one another. Despite the difficulty of classifying materials from images (Liu, Sharan, Adelson, & Rosenholtz, 2010), the different classes were well clustered in the feature space defined by the subjective ratings. K-means clustering could correctly identify class membership for over 90% of the samples, based on the average ratings across subjects. We also found a high degree of consistency between the two tasks, suggesting subjects access similar information about materials whether judging their qualities visually or from memory. Together, these findings show that perceptual qualities are well defined, distinct, and systematically related to material class membership.

  20. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.


    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  1. Polyphosphazine-based polymer materials (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.


    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  2. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro


    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...


    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова


    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  4. Materials policy - a Congressional perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, P.C.


    Rep. Maxwell reviewed Congressional interest in materials, triggered by the oil embargo of 1983 that made the country aware of its vulnerability, which led to passage of the National Materials and Minerals Policy, Research and Development Act of 1980. The Act calls on the Executive Branch to assess materials needs and suggest ways to resolve problems. A subsequent law, the National Critical Materials Act of 1984, created a three-member council on critical materials to develop a national research and development program on advanced materials and to stimulate innovation and technology utilization in the primary and advanced materials industries. Maxwell outlines a five-item agenda for the council that focuses on domestic minerals issues, international questions, defense, industrial innovation, and research. He suggests areas deserving top priority among these items.

  5. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L


    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  6. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.


    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  7. Material Properies of Intermediate Materials between Concrete and Gravelly Soil (United States)

    Uchimura, Taro; Kuramochi, Yuko; Thai, Bach Thuan

    Compaction and strength properties of cement-mixed well-graded gravel are studied. Such materials can also be considered as a kind of concrete materials which has much lower cement contents than usual. New concepts on material properties related to their mixture ratio of cement, gravel (aggregate) and water, as well as their compaction density, are proposed, unifying the concepts of geotechnical engineering and concrete engineering. For materials with higher cement contents, the compaction curve becomes flat, with lower maximum compaction density, and higher optimum water contents. The triaxial compressive strength are clearly affected by the dry density, as well as the cement contents.

  8. Inorganic Materials Database for Exploring the Nature of Material (United States)

    Xu, Yibin; Yamazaki, Masayoshi; Villars, Pierre


    An inorganic materials database system, AtomWork, has been developed and released on the Internet. It includes the phase diagram, crystal structure, X-ray powder diffraction, and property data of more than 80,000 inorganic materials extracted from scientific literature. The feature of this database is that the information of the synthesis, identification, and property of materials is organically linked, which enables the data reported in different papers to be grouped and compared at four different levels: chemical system, compound, substance, and material. The database can provide users with a comprehensive overview of substances and necessary information to understand the relationships among chemical component, structure, and property.

  9. Materials Selection for Aerospace Systems (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike


    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  10. Magnetic Materials in sustainable energy (United States)

    Gutfleisch, Oliver


    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research in energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conversion and transportation. Magnetic materials are essential components of energy applications (i.e. motors, generators, transformers, actuators, etc.) and improvements in magnetic materials will have significant impact in this area, on par with many ``hot'' energy materials efforts. The talk focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, will be discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, will be examined in the context of their respective markets as well as their potential impact on energy efficiency. Finally, considering future bottle-necks in raw materials and in the supply chain, options for recycling of rare-earth metals will be analyzed.ootnotetextO. Gutfleisch, J.P. Liu, M. Willard, E. Bruck, C. Chen, S.G. Shankar, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient (review), Adv. Mat. 23 (2011) 821-842.

  11. Early detection of materials degradation (United States)

    Meyendorf, Norbert


    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  12. Global nuclear material control model

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, J.S.; Rutherford, D.A.


    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material.

  13. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry


    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  14. Acoustic Absorption in Porous Materials (United States)

    Kuczmarski, Maria A.; Johnston, James C.


    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  15. Size effect in thermoelectric materials (United States)

    Mao, Jun; Liu, Zihang; Ren, Zhifeng


    Thermoelectric applications have attracted increasing interest recently due to its capability of converting waste heat into electricity without hazardous emissions. Materials with enhanced thermoelectric performance have been reported in recent two decades. The revival of research for thermoelectric materials began in early 1990s when the size effect is considered. Low-dimensional materials with exceptionally high thermoelectric figure of merit (ZT) have been presented, which broke the limit of ZT around unity. The idea of size effect in thermoelectric materials even inspired the later nanostructuring and band engineering strategies, which effectively enhanced the thermoelectric performance of bulk materials. In this overview, the size effect in low-dimensional thermoelectric materials is reviewed. We first discuss the quantum confinement effect on carriers, including the enhancement of electronic density of states, semimetal to semiconductor transition and carrier pocket engineering. Then, the effect of assumptions on theoretical calculations is presented. Finally, the effect of phonon confinement and interface scattering on lattice thermal conductivity is discussed.

  16. Materials as stem cell regulators (United States)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.


    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  17. Recent Advances in Superhard Materials (United States)

    Zhao, Zhisheng; Xu, Bo; Tian, Yongjun


    In superhard materials research, two topics are of central focus. One is to understand hardness microscopically and to establish hardness models with atomic parameters, which can be used to guide the design or prediction of novel superhard crystals. The other is to synthesize superhard materials with enhanced comprehensive performance (i.e., hardness, fracture toughness, and thermal stability), with the ambition of achieving materials harder than natural diamond. In this review, we present recent developments in both areas. The microscopic hardness models of covalent single crystals are introduced and further generalized to polycrystalline materials. Current research progress in novel superhard materials and nanostructuring approaches for high-performance superhard materials are discussed. We also clarify a long-standing controversy about the criterion for performing a reliable indentation hardness measurement.

  18. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao


    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  19. Optimal Design of Porous Materials

    DEFF Research Database (Denmark)

    Andreassen, Erik

    The focus of this thesis is topology optimization of material microstructures. That is, creating new materials, with attractive properties, by combining classic materials in periodic patterns. First, large-scale topology optimization is used to design complicated three-dimensional materials...... with exotic properties, such as isotropic negative Poisson’s ratio and negative thermal expansion. Furthermore, it is shown how topology optimization can be used to design materials with a good compromise between stiffness and damping. Both a simple quasi-static method suited for low frequency wave...... propagation, and a more general dynamic method (using Floquet-Bloch theory) applicable to arbitrary frequency ranges are presented. The quasi-static method is applied to the design of both two- and three-dimensional material microstructures. And it is shown, using two-dimensional examples, how the general...

  20. Mechanical Treatment: Material Recovery Facilities

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bilitewski, B.


    .g. shredding prior to incineration or screening after composting). The mechanical treatment unit process is in the latter case an integrated part of the overall treatment usually with the purpose of improving the quality of the input material, or the efficiency or stability of the biological or thermal process......, or improving the quality of the output material. Examples hereof appear in the chapters on biological and thermal treatment. Mechanical treatment unit processes may also appear at industries using recycled material as part of their feedstock, for example, for removing impurities and homogenizing the material....... Examples hereof appear in the chapters describing the recycling of materials. Mechanical treatment unit processes most often perform only one function, but placing different mechanical unit processes in a series or ‘treatment train’ creating a material recovery facility, often called an MRF, output...

  1. Advanced Aerospace Materials by Design (United States)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu


    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  2. Failure Criteria for Reinforced Materials

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    Failure of materials is often characterized as ductile yielding, brittle fracture, creep rupture, etc., and different criteria given in terms of different parameters have been used to describe different types of failure. Only criteria expressing failure in terms of stress are considered in what...... place until the matrix, the continuous component of the composite, fails. When an isotropic matrix is reinforced as described above, the result is an anisotropic composite material. Even if the material is anisotropic, it usually exhibits a rather high degree of symmetry and such symmetries place...... certain restrictions on the form of the failure criteria for anisotropic materials. In section 2, some failure criteria for homogenous materials are reviewed. Both isotropic and anisotropic materials are described, and in particular the constraints imposed on the criteria from the symmetries orthotropy...

  3. Materials Discovery via CALYPSO Methodology (United States)

    Ma, Yanming


    Materials design has been the subject of topical interests in materials and physical sciences for long. Atomistic structures of materials occupy a central and often critical role, when establishing a correspondence between materials performance and their basic compositions. Theoretical prediction of atomistic structures of materials with the only given information of chemical compositions becomes crucially important, but it is extremely difficult as it basically involves in classifying a huge number of energy minima on the lattice energy surface. To tackle the problems, we have developed an efficient CALYPSO (Crystal structural AnLYsis by Particle Swarm Optimization) approach for structure prediction from scratch based on particle swarm optimization algorithm by taking the advantage of swarm intelligence and the spirit of structures smart learning. The method has been coded into CALYPSO software ( which is free for academic use. Currently, CALYPSO method is able to predict structures of three-dimensional crystals, isolated clusters or molecules, surface reconstructions, and two-dimensional layers. The applications of CALYPSO into purposed materials design of layered materials, high-pressure superconductors, and superhard materials were successfully made. Our design of superhard materials introduced a useful scheme, where the hardness value has been employed as the fitness function. This strategy might also be applicable into design of materials with other desired functional properties (e.g., thermoelectric figure of merit, topological Z2 number, etc.). For such a structural design, a well-understood structure to property formulation is required, by which functional properties of materials can be easily acquired at given structures. An emergent application is seen on design of photocatalyst materials.

  4. Microstructural processes in irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald


    This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.

  5. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah


    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  6. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  7. Suture Materials in Ophthalmic Surgery


    KÖHLE, Ülkü; Demir, Canser Yılmaz


    Suture materials is one of the basic subjects which every surgeon should know. The operation of suturing, sewing together two sides of a wound, is probably one of the oldest in the history of medicine. Its purpose is to aid healing as atraumatically as possible and it has mainly the mechanical effect of holding the wound edges together. Different suture materials have been manufactured. Each material is suited to different types of tissue, but all must posses certain character...

  8. Investigating a new material Practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul; Ayres, Phil


    and detailing of buildings, provides the framework for an emerging field of architectural research. Aiming to innovate structural thinking and create better and more sustainable material usage, these new material practices rely on the ability to compute complex inter-scalar dependencies and link these directly...... to digital fabrication. However appropriate methods and techniques are just surfacing and need further development as they remain sequential in nature and lack an understanding of the inter-scalar relationship within material organization....

  9. Materials Science in Ancient Rome

    CERN Document Server

    Sparavigna, Amelia Carolina


    Two books, the "De Architectura" by Vitruvius and the "Naturalis Historia" by Pliny the Elder, give us a portrait of the Materials Science, that is, the knowledge of materials, in Rome at the beginning of the Empire. Here, I am reporting some very attractive contents that we can find in these books. The reader will see the discussion proposed in fours case studies: concretes, coatings, amorphous materials and colloidal crystals, to describe them in modern words.



    Тахира Далиевна Сидикова


    We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR) may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ce...

  11. Transport Phenomena and Materials Processing (United States)

    Kou, Sindo


    An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer

  12. Materials science for nuclear detection

    Directory of Open Access Journals (Sweden)

    Anthony Peurrung


    Full Text Available The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detection materials.

  13. Future requirements for advanced materials (United States)

    Olstad, W. B.


    Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.

  14. Energy Materials Research Laboratory (EMRL) (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  15. The Changing Materiality of Music

    DEFF Research Database (Denmark)

    Bødker, Henrik

    . Against the backdrop of recent discussions of popular music as material culture it is argued that emergent usages must be seen in relation to accumulations of different materialities and that such a perspective highlights issues related to both aesthetic reflexivity and agency. Keywords: cultural......A great deal of effort has gone into discussing issues of copyright in relation to the new materialities of the digital distribution of popular music; there has, however, been less focus on the changes that these new developments may invoke with respect to the cultural and social usages of music...... commodity, materiality, reflexivity, music, MP3...

  16. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang


    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  17. Maxwell stresses and dielectric materials

    CERN Document Server

    Kloos, Gerhard


    Electrostatic stresses are a fascinating field where materials science, continuum mechanics and electrical engineering all come together. This is one of the reasons why the study of these so-called Maxwell stresses is so interesting.This treatment of electrostatic Maxwell stresses is restricted to the macroscopic description of the phenomenon, but  an attempt is made to provide readers with methods and results which will allow them to deal with cases of low material symmetry, as well as with the effect of viscoelasticity upon the material response. Non-standard orientation of the material samp

  18. Glycopolymeric Materials for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla


    Full Text Available In recent years, glycopolymers have particularly revolutionized the world of macromolecular chemistry and materials in general. Nevertheless, it has been in this century when scientists realize that these materials present great versatility in biosensing, biorecognition, and biomedicine among other areas. This article highlights most relevant glycopolymeric materials, considering that they are only a small example of the research done in this emerging field. The examples described here are selected on the base of novelty, innovation and implementation of glycopolymeric materials. In addition, the future perspectives of this topic will be commented on.

  19. Frost resistance of building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    In this thesis it is shown that the critical degree of saturation is suitable as parameter for the frost resistance of porous building materials. A numerical model for prediction of critical degrees of saturation based on fracture mechanics and phase geometry of two-phase materials, e.g. porous...... materials, has been developed.The importance of the pore structure on the development of stresses in the material during freezing is emphasized. To verify the model, experimental investigations are made on various concretes without air-entrainment and brick tiles with different porosities...

  20. Thinking together with material representations

    DEFF Research Database (Denmark)

    Stege Bjørndahl, Johanne; Fusaroli, Riccardo; Østergaard, Svend


    How do material representations such as models, diagrams and drawings come to shape and aid collective, epistemic processes? This study investigated how groups of participants spontaneously recruited material objects (in this case LEGO blocks) to support collective creative processes in the context......, the material representations were experimented on and physical attributes were explored resulting in discoveries of new meaning potentials and creative solutions. We discuss these different ways in which material representations do their work in collective reasoning processes in relation to ideas about top...

  1. RCRA Sustainable Materials Management Information (United States)

    U.S. Environmental Protection Agency — This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource...

  2. Hydrogenated cottonseed oil as raw material for biobased materials (United States)

    There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...

  3. Materials Discovery: Informatic Strategies for Semiconducting Radiation Detection Materials (United States)

    Ferris, Kim; Jones, Dumont; Schultz, Brian


    Inorganic semiconducting materials used in gamma radiation detection applications are typically binary and ternary inorganic crystals. Performance metrics for these materials include band gap, relating to carrier concentration and thermal background current; density, relating to stopping power; and electron mobility, which limits electron transport and is typically the dominant information carrier. In this paper, we describe an information-based approach to the identification of new radiation detection materials, using the specific case of the II-VI semiconductors. Even for simple binary systems, the sheer number of potential materials considering the presence of crystal system polymorphs and higher order compositions is daunting. The key to a successful materials search is the ability to suggest promising materials and a priori eliminate unfruitful inquiry. The success of an informatics-based design program depends on the relation of materials-level properties to atomic-scale properties that change rationally with structure, and the ability to extract rules which define these mappings. A brief example of a property-level screen will be given to illustrate the materials development process. The authors gratefully acknowledge financial support from U.S. Department of Homeland Security under Contract No. HSHQDC-08-X-00872.

  4. Study on Morph-genetic Materials Derived from Natural Materials

    Directory of Open Access Journals (Sweden)

    Di Zhang


    Full Text Available The way to fabricate novel morph-genetic functional materials based on nature bio-structures is reviewed. We present the idea and methods of obtaining multi-scale porous materials by using wood, agricultural wastes and butterfly wing scales as bio-templates.

  5. Teaching Materials for German. G1: Course Materials. (United States)

    Centre for Information on Language Teaching, London (England).

    This publication is part of a bibliography of language teaching materials for German, including printed and recorded materials. It contains a contents list, the annotated entries, an index of authors, editors, compilers and adapters, and a title index. For each entry are given basic bibliographical details, an annotation describing the course, a…

  6. Fundamental properties of semiconductor materials, and material performance in detectors (United States)

    Casper, K. J.


    Procedures for determining fundamental properties of semiconductor materials, their performance as radiation detectors, and their service life as such detectors are given. Relationships were established between the minority carrier lifetime in the bulk of the material and the charge collection efficiency of the detector.

  7. Material Ecocriticism: Materiality, Agency, and Models of Narrativity

    Directory of Open Access Journals (Sweden)

    Serenella Iovino


    Full Text Available The proliferation of studies bearing on the intellectual movement known as the "new materialisms" evinces that a material turn is becoming an important paradigm in environmental humanities. Ranging from social and science studies, feminism, to anthropology, geography, environmental philosophies and animal studies, this approach is bringing innovative ways of considering matter and material relations that, coupled with reflections on agency, text, and narrativity, are going to impact ecocriticism in an unprecedented way.In consideration of the relevance of this debate, we would like to draw for Ecozon@'s readers an introductory map of the new paradigm and introduce what can be called "material ecocriticism." We will illustrate what we consider to be its main features, situating them in the conceptual horizons of the new materialisms. From this genealogical sketch, we will examine the re-definitions of concepts like matter, agency, discursivity, and intentionality, with regard to their effects on ecocriticism and in terms of their ethical perspectives.

  8. Proceedings of submicron multiphase materials

    Energy Technology Data Exchange (ETDEWEB)

    Baney, R.; Gilliom, L.; Hirano, S.I.; Schmidt, H.


    This book contains the papers presented at Symposium R of the spring 1992 Materials Research Society meeting held in San Francisco, California. The title of the symposium, Submicron Multiphase Materials, was selected by the organizers to encompass the realm of composite materials from those smaller than conventional fiber matrix composites to those with phase separation dimensions approaching molecular dimensions. The development of composite materials is as old as the development of materials. Humans quickly learned that, by combining materials, the best properties of each can be realized and that, in fact, synergistic effects often arise. For example, chopped straw was used by the Israelites to limit cracking in bricks. The famed Japanese samurai swords were multilayers of hard oxide and tough ductile materials. One also finds in nature examples of composite materials. These range form bone to wood, consisting of a hard phase which provides strength and stiffness and a softer phase for toughness. Advanced composites are generally thought of as those which are based on a high modulus, discontinuous, chopped or woven fiber phase and a continuous polymer phase. In multiphase composites, dimensions can range from meters in materials such as steel rod-reinforced concrete structures to angstroms. In macrophase separated composite materials, properties frequently follow the rule of mixtures with the properties approximating the arithmetic mean of the properties of each individual phase, if there is good coupling between the phases. As the phases become smaller, the surface to volume ratio grows in importance with respect to properties. Interfacial and interphase phenomena being to dominate. Surface free energies play an ever increasing role in controlling properties. In recent years, much research in materials science has been directed at multiphase systems where phase separations are submicron in at least some dimension.

  9. Teaching Materials Should be Authentic

    Institute of Scientific and Technical Information of China (English)



    <正>In terms of the teaching materials,we hold the opinion that authentic materials should be adapted in the process of teaching,and students should have access to the original language. According to Richards(2001),authentic materials refer to the use in teaching of texts,photographs, video selections,and other teaching resources that were not specially prepared for pedagogical purposes.Created materials refer to textbooks and other specially developed instructional resources. The use of authentic materials in an EFL classroom is what many teachers involved in foreign language teaching have discussed in recent years.Most of the teachers throughout the world agree that authentic texts or materials are beneficial to the language learning process.Authentic materials enable learners to interact with the real language and content rather than the form.Learners feel that they are learning a target language as it is used outside the classroom.Exposing students to authentic materials can also help them better understand the target culture and envision how they might participate in this community.

  10. Design Environments for Material Performance

    DEFF Research Database (Denmark)

    Tamke, Martin; Burry, Mark; Ayres, Phil


    The research project that induced the Dermoid installation investigates the making of digital tools by which architects and engineers can work intelligently with material performance. Working with wood as a material, we were especially interested in how the bend and flex of wood can become...... an active parameter in the digital design process....

  11. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  12. The Great War. [Teaching Materials]. (United States)

    Public Broadcasting Service, Washington, DC.

    This package of teaching materials is intended to accompany an eight-part film series entitled "The Great War" (i.e., World War I), produced for public television. The package consists of a "teacher's guide,""video segment index,""student resource" materials, and approximately 40 large photographs. The video series is not a war story of battles,…

  13. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B


    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  14. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)


    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  15. Composite Materials for Structural Design. (United States)


    Introduction to Composite Materials , Technomic, Westport, Connecticut, 1980, pp. 19-20, 388-401. 8. W.D. Bascom, J.L. Bitner, R.J. Moulton, and A.R. Siebert...34 Introduction to Composite Materials ", Technomic Publishing Co., pp. 8-18,(1980). [6] Beckwith, S. W., "Viscoelastic Characterization of a Nonlinear Glass

  16. Re-Using Teaching Materials (United States)

    Lokar, Matija


    When working with e-teaching materials we often find that the authors of resources, meant for the use of teachers in the teaching process, do not use the opportunities offered by the new technologies. All too often the materials are a monolithic block (or at least their main part is), constructed the way an ordinary book or workbook would be. This…

  17. Ultrafast Dynamics of Energetic Materials (United States)


    materials, and heterogeneous EM composed of nanometric fuel and oxidizer components. The latter are sometimes called nanoenergetic materials or...catalysts in acidic electrolytes, J. Catalysis 278, pp. 181-188 (2011). 43. “Study of Ethanol Electrooxidation in Alkaline Electrolytes with Isotope

  18. PERT and CPM: Workshop Material. (United States)

    Burroughs Corp., Detroit, MI.

    This is a workbook containing problems in PERT (program evaluation review technique). It is intended to be used in a workshop or classroom to train management personnel in the basic methodology and capability of PERT. This material is not adequate in depth to create an expert in these techniques, but it is felt that the material is adequate to…

  19. Biomimetics for next generation materials. (United States)

    Barthelat, Francois


    Billions of years of evolution have produced extremely efficient natural materials, which are increasingly becoming a source of inspiration for engineers. Biomimetics-the science of imitating nature-is a growing multidisciplinary field which is now leading to the fabrication of novel materials with remarkable mechanical properties. This article discusses the mechanics of hard biological materials, and more specifically of nacre and bone. These high-performance natural composites are made up of relatively weak components (brittle minerals and soft proteins) arranged in intricate ways to achieve specific combinations of stiffness, strength and toughness (resistance to cracking). Determining which features control the performance of these materials is the first step in biomimetics. These 'key features' can then be implemented into artificial bio-inspired synthetic materials, using innovative techniques such as layer-by-layer assembly or ice-templated crystallization. The most promising approaches, however, are self-assembly and biomineralization because they will enable tight control of structures at the nanoscale. In this 'bottom-up' fabrication, also inspired from nature, molecular structures and crystals are assembled with a little or no external intervention. The resulting materials will offer new combinations of low weight, stiffness and toughness, with added functionalities such as self-healing. Only tight collaborations between engineers, chemists, materials scientists and biologists will make these 'next-generation' materials a reality.

  20. Polymeric Materials - introduction and degradation

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios


    These notes support the polymer part of the courses 91742 and 91762 (Materials and Corrosion/degradation of materials) taught in IFAKthey contain a short introduction on group contribution methods for estimating properties of polymers, polymer thermodynamics, viscoelasticity models as well...