WorldWideScience

Sample records for antiferroelectric materials

  1. Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures

    Science.gov (United States)

    Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing

    2015-04-01

    Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.

  2. From antiferroelectricity to ferroelectricity in smectic mesophases ...

    Indian Academy of Sciences (India)

    PRAMANA c Indian Academy of Sciences. Vol. 61, No. 2. — journal of. August 2003 physics pp. 455–481. From antiferroelectricity to ferroelectricity in smectic mesophases formed by bent-core ... Hence, the materials themselves .... nar mesophases there is an energetic and entropic penalty resulting from the unfavourable.

  3. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino

    2016-05-01

    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  4. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    Science.gov (United States)

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  5. Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires

    Science.gov (United States)

    Herchig, Ryan Christopher

    Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first

  6. Critical role of the coupling between the octahedral rotation and A -site ionic displacements in PbZr O3 -based antiferroelectric materials investigated by in situ neutron diffraction

    Science.gov (United States)

    Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun

    2017-12-01

    This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.

  7. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance.

    Science.gov (United States)

    Zhao, Lei; Liu, Qing; Gao, Jing; Zhang, Shujun; Li, Jing-Feng

    2017-08-01

    Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O 3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm -3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm -1 versus 175 kV cm -1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. From antiferroelectricity to ferroelectricity in smectic mesophases ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 2. From antiferroelectricity to ... In this discussion particular attention will be made to polyphilic bent-core molecules, composed of three incompatible units, a bent aromatic core, alkyl chains and an oligosiloxane unit. The importance of the decoupling of the ...

  9. Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping.

    Science.gov (United States)

    Zhao, Lei; Gao, Jing; Liu, Qing; Zhang, Shujun; Li, Jing-Feng

    2018-01-10

    Lead-free dielectric ceramics with high recoverable energy density are highly desired to sustainably meet the future energy demand. AgNbO 3 -based lead-free antiferroelectric ceramics with double ferroelectric hysteresis loops have been proved to be potential candidates for energy storage applications. Enhanced energy storage performance with recoverable energy density of 3.3 J/cm 3 and high thermal stability with minimal energy density variation (<10%) over a temperature range of 20-120 °C have been achieved in W-modified AgNbO 3 ceramics. It is revealed that the W 6+ cations substitute the B-site Nb 5+ and reduce the polarizability of B-site cations, leading to the enhanced antiferroelectricity, which is confirmed by the polarization hysteresis and dielectric tunability. It is believed that the polarizability of B-site cations plays a dominant role in stabilizing the antiferroelectricity in AgNbO 3 system, in addition to the tolerance factor, which opens up a new design approach to achieve stable antiferroelectric materials.

  10. Composition, ferroelectric and antiferroelectric ordering in Pb2InNbO6 crystals

    International Nuclear Information System (INIS)

    Bokov, A.A.; Raevskij, I.P.; Smotrakov, V.G.

    1984-01-01

    Effect of thermal treatment on temperatures of phase transitions and electrical properties has been studied in Pb 2 InNbO 6 crystals with the high-temperature phase transition of the order-disorder type in In and Nb cations disposition in crystallographic positions. The order-disorder transition temperature (Tsub(t) approximately 1020 deg C) has been directly determined for the first time using the method of electric conductivity investigation. It has been shown that Pb 2 InNbO 6 in the ordered state represents the antiferroelectric material with the Curie point of 195 deg C, and it represents the ferroelectric material with a smeared transition to the paraelectric phase in the temperature range of 60 deg C in the disordered state. With temperature decrease crystals with the mean ordering degree-paraelectric phase pass to the antiferroelectric phase and then to the ferroelectric phase

  11. Switching and energy-storage characteristics in PLZT 2/95/5 antiferroelectric ceramic system

    Directory of Open Access Journals (Sweden)

    A. Peláiz-Barranco

    2016-12-01

    Full Text Available Switching mechanisms and energy-storage properties have been investigated in (Pb0.98La0.02(Zr0.95Ti0.050.995O3 antiferroelectric ceramics. The electric field dependence of polarization (P–E hysteresis loops indicates that both the ferroelectric (FE and antiferroelectric (AFE phases coexist, being the AFE more stable above 100∘C. It has been observed that the temperature has an important influence on the switching parameters. On the other hand, the energy-storage density, which has been calculated from the P–E hysteresis loops, shows values higher than 1J/cm3 for temperatures above 100∘C with around 73% of efficiency as average. These properties indicate that the studied ceramic system reveals as a promising AFE material for energy-storage devices application.

  12. Flexo- and piezo-electric polarization of smectic layers in ferroelectric and antiferroelectric liquid crystals

    Science.gov (United States)

    Kuczyński, W.; Hoffmann, J.; Dardas, D.; Nowicka, K.; Bielejewska, N.

    2015-11-01

    In this paper, we report on how flexoelectric and piezoelectric polarization components can be determined by a method based on simultaneous studies of dielectric and electrooptic properties of the chiral smectic liquid crystal in the regime of weak electric fields. As a rule, the measurements of spontaneous polarization are performed using switching experiments. The polarization measured in this way is not complete—it contains the piezoelectric component only. However, the knowledge of the entire local polarization of a single smectic layer is of great importance—it is necessary for correct determination of some material parameters, for instance elastic constants. Our experiments performed in a helical smectic mixture demonstrated that flexoelectric contribution to the local spontaneous polarization is significant in both ferroelectric and antiferroelectric phases. In the antiferroelectric phase, the flexoelectric polarization is less due to higher helical pitch.

  13. Designing lead-free antiferroelectrics for energy storage

    Science.gov (United States)

    Xu, Bin; Íñiguez, Jorge; Bellaiche, L.

    2017-01-01

    Dielectric capacitors, although presenting faster charging/discharging rates and better stability compared with supercapacitors or batteries, are limited in applications due to their low energy density. Antiferroelectric (AFE) compounds, however, show great promise due to their atypical polarization-versus-electric field curves. Here we report our first-principles-based theoretical predictions that Bi1−xRxFeO3 systems (R being a lanthanide, Nd in this work) can potentially allow high energy densities (100–150 J cm−3) and efficiencies (80–88%) for electric fields that may be within the range of feasibility upon experimental advances (2–3 MV cm−1). In addition, a simple model is derived to describe the energy density and efficiency of a general AFE material, providing a framework to assess the effect on the storage properties of variations in doping, electric field magnitude and direction, epitaxial strain, temperature and so on, which can facilitate future search of AFE materials for energy storage. PMID:28555655

  14. Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures

    Czech Academy of Sciences Publication Activity Database

    Fitas, J.; Marzec, M.; Kurp, K.; Żurowska, M.; Tykarska, M.; Bubnov, Alexej

    2017-01-01

    Roč. 44, č. 9 (2017), s. 1468-1476 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : liquid crystals * ferroelectric and antiferroelectric phase * binary mixture * dielectric spectroscopy * switching time * tilt angle Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 2.661, year: 2016

  15. Ferroelectric-antiferroelectric mixed systems. Equation of state, thermodynamic functions

    Directory of Open Access Journals (Sweden)

    N.A.Korynevskii

    2006-01-01

    Full Text Available The problem of equation of state for ferroelectric-antiferroelectric mixed systems in the whole region of a concentration change (0≤n≤1 is discussed. The main peculiarity of the presented model turns out to be the possibility for the site dipole momentum to be oriented ferroelectrically in z-direction and antiferroelectrically in x-direction. Such a situation takes place in mixed compounds of KDP type. The different phases (ferro-, antiferro-, paraelectric, dipole glass and some combinations of them have been found and analyzed.

  16. Chiral HPLC and physical characterisation of orthoconic antiferroelectric liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Vojtylová, Terézia; Żurowska, M.; Milewska, K.; Hamplová, Věra; Sýkora, D.

    2016-01-01

    Roč. 43, č. 9 (2016), s. 1244-1250 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007; GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : liquid crystals * chiral HPLC * orthoconic antiferroelectric LC Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.661, year: 2016

  17. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage

    Science.gov (United States)

    Ali, Faizan; Liu, Xiaohua; Zhou, Dayu; Yang, Xirui; Xu, Jin; Schenk, Tony; Müller, Johannes; Schroeder, Uwe; Cao, Fei; Dong, Xianlin

    2017-10-01

    Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent years to develop various types of nano-structural energy storage components. The electrostatic capacitors characterized by high power density are competitive; however, their implementation in practical devices is limited by the low intrinsic energy storage density (ESD) of linear dielectrics like Al2O3. In this work, a detailed experimental investigation of energy storage properties is presented for 10 nm thick silicon-doped hafnium oxide anti-ferroelectric thin films. Owing to high field induced polarization and slim double hysteresis, an extremely large ESD value of 61.2 J/cm3 is achieved at 4.5 MV/cm with a high efficiency of ˜65%. In addition, the ESD and the efficiency exhibit robust thermal stability in 210-400 K temperature range and an excellent endurance up to 109 times of charge/discharge cycling at a very high electric field of 4.0 MV/cm. The superior energy storage performance together with mature technology of integration into 3-D arrays suggests great promise for this recently discovered anti-ferroelectric material to replace the currently adopted Al2O3 in fabrication of nano-structural supercapacitors.

  18. Room-Temperature Ferrimagnet with Frustrated Antiferroelectricity: Promising Candidate Toward Multiple-State Memory

    Directory of Open Access Journals (Sweden)

    P. S. Wang

    2014-03-01

    Full Text Available On the basis of first-principles calculations, we show that the M-type hexaferrite BaFe_{12}O_{19} exhibits frustrated antiferroelectricity associated with its trigonal bipyramidal Fe^{3+} sites. The ferroelectric state of BaFe_{12}O_{19}, reachable by applying an external electric field to the antiferroelectric state, can be made stable at room temperature by appropriate element substitution or strain engineering. Thus, M-type hexaferrite, as a new type of multiferoic with coexistence of antiferroelectricity and ferrimagnetism, provides a basis for studying the phenomenon of frustrated antiferroelectricity and realizing multiple-state memory devices.

  19. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)

    2017-06-15

    Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  20. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    Science.gov (United States)

    Land, Cecil E.

    1990-01-01

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.

  1. Antiferroelectricity in thin-film ZrO2 from first principles

    Science.gov (United States)

    Reyes-Lillo, Sebastian E.; Garrity, Kevin F.; Rabe, Karin M.

    2014-10-01

    Density-functional calculations are performed to investigate the experimentally reported field-induced phase transition in thin-film ZrO2 [J. Müller et al., Nano Lett. 12, 4318 (2012), 10.1021/nl302049k]. We find a small energy difference of ˜1 meV/f.u. between the nonpolar tetragonal and polar orthorhombic structures, characteristic of antiferroelectricity. The requisite first-order transition between the two phases, which atypically for antiferroelectrics have a group-subgroup relation, results from coupling to other zone-boundary modes, as we show with a Landau-Devonshire model. Tetragonal ZrO2 is thus established as a lead-free antiferroelectric with excellent dielectric properties and compatibility with silicon. In addition, we demonstrate that a ferroelectric phase of ZrO2 can be stabilized through epitaxial strain, and suggest an alternative stabilization mechanism through continuous substitution of Zr by Hf.

  2. Twist-edge dispiration system in a finite sample of antiferroelectric liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor

    2002-01-01

    Roč. 52, č. 7 (2002), s. 865-876 ISSN 0011-4626 R&D Projects: GA ČR GA202/02/0840 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferroelectric and antiferroelectric liquid crystals * dislocations * disclinations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.311, year: 2002

  3. Unusual behaviour of binary mixtures of ferroelectric and antiferroelectric liquid crystals with three chiral centres

    Czech Academy of Sciences Publication Activity Database

    Glogarová, Milada; Novotná, Vladimíra; Kašpar, Miroslav; Hamplová, Věra

    2002-01-01

    Roč. 10, č. 1 (2002), s. 47-52 ISSN 1230-3402 R&D Projects: GA ČR GA202/99/1120 Institutional research plan: CEZ:AV0Z1010914 Keywords : binary mixture * ferroelectric phase * antiferroelectric phase * re-entrant ferroelectric phase * dielectric spectroscopy * soft anti-phase mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.466, year: 2002

  4. Phase diagram of new lactic acid derivatives exhibiting ferro- and antiferroelectric phases

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Miroslav; Novotná, Vladimíra; Hamplová, Věra; Pociecha, D.; Glogarová, Milada

    2008-01-01

    Roč. 35, č. 8 (2008), 975-985 ISSN 0267-8292 R&D Projects: GA AV ČR IAA100100710 Grant - others:ERDF(XE) WKP 1/1.4.3./1/2004/72/72/165/2005/U Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectricity * antiferroelectricity * liquid crystals * polymorphism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  5. Polarity of translation boundaries in antiferroelectric PbZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xian-Kui, E-mail: xiankui.wei@epfl.ch [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); Jia, Chun-Lin [Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); International Centre of Dielectric Research, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Roleder, Krystian [Institute of Physics, University of Silesia, Katowice 40007 (Poland); Setter, Nava [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland)

    2015-02-15

    Graphical abstract: Strain-free rigid model and aberration-corrected transmission electron microscopes are used to investigate the polarity of translation boundaries in antiferroelectric PbZrO{sub 3}. - Highlights: • Domain boundaries in antiferroelectric PbZrO{sub 3} show polar and antipolar property. • The antiphase boundary can split into “sub-domains”. • Polarization reversal possibly exists inside the translation boundaries. • Thermal treatment can alter morphology and density of the translation boundaries. - Abstract: The polarity of translation boundaries (TBs) in antiferroelectric PbZrO{sub 3} is investigated. We show that previous experimentally reported polar property of R{sub III-1} type TB can be well approximated by a strain-free rigid model. Based on this, the modeling investigation suggests that there are two additional polar TBs, three antipolar-like TBs and one antipolar antiphase boundary. High-resolution scanning-transmission-electron-microscopy study reveals that the straight R{sub III-1} type TB can split into “sub-domains” with possible polarization reversal, suggesting the occurrence of ferroic orders at the TBs. In addition, dependence of morphology and density of the TBs on thermal treatments is discussed according to our results.

  6. An Optically Isotropic Antiferroelectric Liquid Crystal (OI-AFLC) Display Mode Operating over a Wide Temperature Range using Ternary Bent-Core Liquid Crystal Mixtures.

    Science.gov (United States)

    Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R; Pellegrene, Brittany; Salamonczyk, Miroslaw; Kim, Matthew; Hwang, Jung-Im; Kim, Kyeong-Jin; Lee, Joun-Ho; Jákli, Antal; Hegmann, Torsten

    2017-04-01

    We report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC a P A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterized and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.

  7. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...... antiferroelectric double layers develop that can be distinguished from the bulk single layer structure. A model is developed that separates the electron density in a contribution from the molecular form factor, and from the structure factor of the mono- and the bilayers, respectively. It shows that (i) the first...

  8. Flexoelectricity and piezoelectricity: the reason for the rich variety of phases in antiferroelectric smectic liquid crystals.

    Science.gov (United States)

    Cepic, M; Zeks, B

    2001-08-20

    The free energy of antiferroelectric smectic liquid crystals which takes into account polar order explicitly is presented. Steric, van der Waals, piezoelectric, and flexoelectric interactions to the nearest layers, and dipolar electrostatic interactions to the nearest and to the next-nearest layers, induce indirect tilt interactions with chiral and achiral properties, which extend to the third- and to the fourth-nearest layers. Although the strength of microscopic interactions changes monotonically with decreasing temperature, the effective interlayer interactions change nonmonotonically and give rise to a nonmonotonic change of the modulation period through various phases. Increased chirality changes the phase sequence.

  9. Flexoelectricity and Piezoelectricity: The Reason for the Rich Variety of Phases in Antiferroelectric Smectic Liquid Crystals

    International Nuclear Information System (INIS)

    Cepic, Mojca; Zeks, Bostjan

    2001-01-01

    The free energy of antiferroelectric smectic liquid crystals which takes into account polar order explicitly is presented. Steric, van der Waals, piezoelectric, and flexoelectric interactions to the nearest layers, and dipolar electrostatic interactions to the nearest and to the next-nearest layers, induce indirect tilt interactions with chiral and achiral properties, which extend to the third- and to the fourth-nearest layers. Although the strength of microscopic interactions changes monotonically with decreasing temperature, the effective interlayer interactions change nonmonotonically and give rise to a nonmonotonic change of the modulation period through various phases. Increased chirality changes the phase sequence

  10. Dielectric behavior of antiferroelectric liquid crystals in presence of flexoelectric effect

    International Nuclear Information System (INIS)

    Das, Deblal; Mandal, Pravash; Majumder, Tapas Pal

    2015-01-01

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization. (author)

  11. Dielectric Behavior of Antiferroelectric Liquid Crystals in Presence of Flexoelectric Effect

    Science.gov (United States)

    Das, Deblal; Mandal, Pravash; Pal Majumder, Tapas

    2015-06-01

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization.

  12. Flexoelectricity and Piezoelectricity: The Reason for the Rich Variety of Phases in Antiferroelectric Smectic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cepic, Mojca; Zeks, Bostjan

    2001-08-20

    The free energy of antiferroelectric smectic liquid crystals which takes into account polar order explicitly is presented. Steric, van der Waals, piezoelectric, and flexoelectric interactions to the nearest layers, and dipolar electrostatic interactions to the nearest and to the next-nearest layers, induce indirect tilt interactions with chiral and achiral properties, which extend to the third- and to the fourth-nearest layers. Although the strength of microscopic interactions changes monotonically with decreasing temperature, the effective interlayer interactions change nonmonotonically and give rise to a nonmonotonic change of the modulation period through various phases. Increased chirality changes the phase sequence.

  13. Dielectric behavior of antiferroelectric liquid crystals in presence of flexoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Das, Deblal; Mandal, Pravash; Majumder, Tapas Pal, E-mail: tpm@klyuniv.ac.in [Department of Physics, University of Kalyani, West Bengal (India)

    2015-06-15

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization. (author)

  14. Antiferroelectric phase in liquid crystalline compounds with azo group in their molecular core

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Miroslav; Novotná, Vladimíra; Hamplová, Věra; Podoliak, Natalia; Nonnenmacher, D.; Giesselmann, F.; Glogarová, Milada

    2011-01-01

    Roč. 38, č. 3 (2011), s. 309-315 ISSN 0267-8292 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047 Grant - others:German Czech bilateral program(DE) D4-CZ5/2010-2011; GA UK(CZ) SVV-2011-263303 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * antiferroelectricity * azo linkage group * photosensitivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.858, year: 2011

  15. Deuteron NMR study of the role of ammonium ions in the antiferroelectric transition in ND4D2AsO4

    International Nuclear Information System (INIS)

    Blinc, R.; Slak, J.; Luzar, M.

    1977-01-01

    The antiferroelectric transition mechanism, the temperature dependence of the quadrupole coupling tensor of the ND 4 deuterons in a partially deuterated NH 4 H 2 AsO 4 (ADA) single crystal is determined. The antiferroelectric transition in ADA is connected by an ordering of the 0 - H...0 hydrogen as well as by a significant distortion of the ammonium ions, the direction of which depends on the orientation of the sublattice polarization

  16. Twist deformation in anticlinic antiferroelectric structure in smectic B.sub.2./sub. imposed by the surface anchoring

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2008-01-01

    Roč. 35, č. 1 (2008), s. 11-19 ISSN 0267-8292 R&D Projects: GA ČR GA202/05/0431 Institutional research plan: CEZ:AV0Z10100520 Keywords : smectic liquid crystals * bent-shaped molecules * anticlinic antiferroelectric structure * ferroelectric structure * twist deformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  17. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    Science.gov (United States)

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  18. High Energy Storage Density and Impedance Response of PLZT2/95/5 Antiferroelectric Ceramics.

    Science.gov (United States)

    Li, Bi; Liu, Qiuxiang; Tang, Xingui; Zhang, Tianfu; Jiang, Yanping; Li, Wenhua; Luo, Jie

    2017-02-08

    (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT2/95/5) ceramics were successfully prepared via a solid-state reaction route. The dielectric properties were investigated in the temperature region of 26-650 °C. The dielectric diffuse anomaly in the dielectric relaxation was found in the high temperature region of 600-650 °C with increasing the measuring frequency, which was related to the dynamic thermal process of ionized oxygen vacancies generated in the high temperature. Two phase transition points were detected during heating, which were found to coexist from 150 to 200 °C. Electric field induced ferroelectric to antiferroelectric phase transition behavior of the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics was investigated in this work with an emphasis on energy storage properties. A recoverable energy-storage density of 0.83 J/cm³ and efficiency of 70% was obtained in (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics at 55 kV/cm. Based on these results, (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ ceramics with a large recoverable energy-storage density could be a potential candidate for the applications in high energy-storage density ceramic capacitors.

  19. Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture.

    Science.gov (United States)

    Jain, Prashant; Dalal, Naresh S; Toby, Brian H; Kroto, Harold W; Cheetham, Anthony K

    2008-08-13

    [(CH3)2NH2]Zn(HCOO)3, 1, adopts a structure that is analogous to that of a traditional perovskite, ABX3, with A = [(CH3)2NH2], B = Zn, and X = HCOO. The hydrogen atoms of the dimethyl ammonium cation, which hydrogen bond to oxygen atoms of the formate framework, are disordered at room temperature. X-ray powder diffraction, dielectric constant, and specific heat data show that 1 undergoes an order-disorder phase transition on cooling below 156 K. We present evidence that this is a classical paraelectric to antiferroelectric phase transition that is driven by ordering of the hydrogen atoms. This sort of electrical ordering associated with order-disorder phase transition is unprecedented in hybrid frameworks and opens up an exciting new direction in rational synthetic strategies to create extended hybrid networks for applications in ferroic-related fields.

  20. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    Science.gov (United States)

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-09

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  1. Time resolved X-ray micro-diffraction measurements of the dynamic local layer response to electric field in antiferroelectric liquid crystals

    CERN Document Server

    Takahashi, Y; Takanishi, Y; Ogasawara, T; Takezoe, H

    2001-01-01

    The time-resolved synchrotron X-ray microbeam diffraction experiment has been carried out to reveal the local layer response to the electric field in the antiferroelectric liquid crystal. The X-ray microbeam of a few mu m spatial resolution was obtained with Kirkpatrick-Baez optics. The time-resolved small angle diffraction experiment was performed with a time resolution ranging from 10 mu s to a few ms. The reversible local layer change between the horizontal chevron and the quasi-bookshelf structure was confirmed by the triangular wave form. The transient layer response for the step form electric field was observed. The layer response closely related with an electric field induced antiferroelectric to ferroelectric phase transition.

  2. Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO{sub 3}:Sn

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Kim, Tae Hyun [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Gągor, Anna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Jankowska-Sumara, Irena [Institute of Physics, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków (Poland); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Kojima, Seiji [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-02-15

    Highlights: • Phase transition mechanisms were studied in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3.} • Acoustic phonons showed anomalies at 472 and 426 K due to phase transitions. • Brillouin data showed evidence for presence of polar clusters in paraelectric phase. • An order-disorder mechanism of the PE to AFE2 transition was proved. - Abstract: Specific heat, dielectric, powder X-ray diffraction and Brillouin scattering studies of phase transitions in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3} crystal were performed. The specific heat data revealed clear anomalies at T{sub 1} = 473.5 and T{sub 2} = 426.3 K on cooling, which could be attributed to onset of first order phase transitions from the paraelectric (PE) phase to an intermediate antiferroelectric phase (AFE2) and the AFE2 phase to another antiferroelectric phase (AFE1), respectively. The estimated entropy changes at T{sub 1} and T{sub 2} pointed to mainly an order-disorder and displacive character of these transitions, respectively. X-ray diffraction data showed a complex superstructure of the intermediate phase with a = 11.895(6) Å, b = 11.936(4) Å, c = 8.223(3) Å at 453 K. Brillouin studies revealed pronounced softening of longitudinal acoustic (LA) mode in the PE phase associated with its broadening. The broadening and softening exhibited maximum values at T{sub 1}. Additional acoustic anomalies, that is, abrupt frequency shifts for LA and transverse acoustic (TA) modes were also observed at T{sub 2}. Brillouin scattering data also showed presence of a broad central peak (CP) that exhibited highest intensity at T{sub 1}. The observed temperature dependences of acoustic modes and CP indicate order-disorder character of the FE to AFE2 phase transition and importance of polar precursor clusters in the PE phase. The obtained data also suggest that the intermediate antiferroelectric phases in Sn{sup 4+} doped PbHfO{sub 3} and PbZrO{sub 3} may have very similar structures

  3. On the observation of a chemical reaction, between defects in ND4D2AsO4, being reversibly triggered by the antiferroelectric-paraelectric phase transition

    International Nuclear Information System (INIS)

    Lamotte, B.

    1975-01-01

    Two distinct radical species (AsO 4 ) 4- and (AsO 3 ) 2- created by irradiation in crystals of Nd 4 D 2 AsO 4 (DADA), clearly undergo (taking into account the deuterons) the following chemical reaction: AsO 3 D - +OD - →AsO 4 D 2 2- . The effects occurs at the antiferroelectric-paraelectric phase transition of the compound. Its essential feature is that the reaction is completely reversible i.e. that it can be reversibly triggered by the phase transition. This phenomenon is also observed on the same radicals in NH 4 H 2 AsO 4 (ADA) [fr

  4. High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics

    International Nuclear Information System (INIS)

    Wang, Jinfei; Yang, Tongqing; Chen, Shengchen; Li, Gang

    2013-01-01

    Graphical abstract: Polarization hysteresis (P–E) loops of the (Pb 0.85 Ba 0.08 Sr 0.03 La 0.03 ) (Zr 0.74 Sn 0.22 Ti 0.04 ) samples: (a) measured at different applied electric-field and (b) measured at different temperatures is shown. It is typical antiferroelectrics whose remnant polarization is zero. As the remnant polarization of AFE is small and the ceramics are accompanied by the formation of the anti-parallel domain structure, energy stored in PLZST can be effectively released. Thus we calculated the energy density from the P–E loop and obtained the power density was up to 1.2 J/cm 3 at 55 °C, and at 45 °C the energy density was ∼1.24 J/cm 3 . As usual, for bulk ceramics, the switching between the AFE and FE states occurs at lower field. This value is much higher than that reported previously for the PLZT bulk ceramic (0.4 J/cm 3 ). - Highlights: • Ba 2+ , Sr 2+ co-doping caused the T c of PLZST moved to the lower temperature (T c ≈ 40 °C). • The ΔE was so smaller, E AF ≈ 90 kV/cm and E FA ≈ 85 kV/cm. • Ba, Sr co-doped PLZST ceramic exhibited slanted P–E loops with a large breakdown field (100 kV/cm). • A high energy density was up to 1.2 J/cm 3 . - Abstract: (Pb 0.85 Ba 0.08 Sr 0.03 La 0.03 )(Zr 0.74 Sn 0.22 Ti 0.04 ) (Ba, Sr co-doped PLZST) co-doping antiferroelectric (AFE) ceramics with orthorhombic perovskite structure were prepared by the traditional solid state reaction process. It was observed that the doping of barium and strontium caused the Curie temperature of PLZST move to the lower temperature (T c ≈ 40 °C). Ba, Sr co-doped PLZST AFE ceramics exhibited excellent electrical properties, the AFE to ferroelectric (FE) transition occurred at field E AF ≈ 90 kV/cm, and the transition from FE to AFE occurred at E FA ≈ 85 kV/cm. The maximum relative permittivity was about 4800, occurring at a field near the AFE to FE transition point, with a dielectric loss of 0.006. The samples exhibited small ΔE and slanted hysteresis

  5. Biaxial and antiferroelectric structure of the orthogonal smectic phase of a bent-shaped molecule and helical structure in a chiral mixture system

    Science.gov (United States)

    Kang, Sungmin; Nguyen, Ha; Nakajima, Shunpei; Tokita, Masatoshi; Watanabe, Junji

    2013-05-01

    We examined the biaxial and antiferroelectric properties in the Smectic-APA (Sm-APA) phase of bent-shaped DC-S-8. The biaxiality, which results from the existence of a secondary director, was well established from birefringence observations in the homeotropically aligned Sm-APA. By entering into Sm-APA phase, the birefringence (Δn, difference between two refractive indices of short axes) continuously increased from 0 to 0.02 with decreasing temperature. The antiferroelectric switching and second harmonic generation (SHG) activity on the field-on state were also observed in the Sm-APA phase, and the evaluated spontaneous polarization (PS) value strongly depended on temperature. The temperature dependence of Δn and PS resembles each other and follows Haller's approximation, showing that the biaxiality is due to polar packing in which the molecules are preferentially packed with their bent direction arranged in the same direction, and that the phase transition of Sm-APA to Sm-A is second order. The biaxiality was further examined in chiral Sm-APA*. Doping with chiral components induced the helical twisting of the secondary director in the Sm-APA* phase, which was confirmed by observing the reflection of the circular dichroism (CD) bands in the homeotropically aligned cell. The helical pitch of Sm-APA* is tunable in the range of 300-700 nm wavelength with a variation in the chiral content of 5 to 10 weight (wt)%.

  6. Electron Emission from Ferroelectric/Antiferroelectric Cathodes Excited by Short High-Voltage Pulses

    CERN Document Server

    Benedek, G; Handerek, J; Riege, H

    1997-01-01

    Un-prepoled Lead Zirconate Titanate Lanthanum doped-PLZT ferroelectric cathodes have emitted intense current pulses under the action of a high voltage pulse of typically 8 kV/cm for PLZT of 8/65/35 composition and 25 kV/cm for PLZT of 4/95/5 composition. In the experiments described in this paper, the exciting electric field applied to the sample is directed from the rear surface towards the emitting surface. The resulting emission is due to an initial field emission from the metal of the grid deposited over the emitting surface with the consequent plasma formation and the switching of ferroelectric domains. These electrons may be emitted directly form the crystal or from the plasma. This emission requires the material in ferroelectric phase. In fact, PLZT cathodes of the 8/65/35 type, that is with high Titanium content, showing ferroelectric-paraelectric phase sequence, emit at room temperature, while PLZT cathodes of the 4/95/5 type, that is with low Titanium content, having antiferro-ferro-paraelectric pha...

  7. Reduction of anti-ferroelectric temperature region in NBT-BT ceramics using 100 MeV O{sup 7+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmuga Sundari, S. [Crystal Growth Centre, Anna University, Chennai 600025 (India); Murugan, Ramaswamy [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Dhanasekaran, R., E-mail: rdcgc@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600025 (India)

    2014-01-01

    NBT-BT (sodium bismuth titanate-barium titanate) lead-free ceramics were prepared via the conventional solid-state reaction method in the Morphotropic Phase Boundary (MPB) composition. The prepared ceramics were irradiated with 100 MeV O{sup 7+} ions using four different fluences of 5 × 10{sup 11}, 1 × 10{sup 12}, 5 × 10{sup 12} and 1 × 10{sup 13} ions/cm{sup 2}. The dielectric constants of the pristine and irradiated samples were determined from 300 to 623 K for a broad range of frequencies from 20 Hz to 2 MHz. Irradiation with oxygen ions decreased the anti-ferroelectric temperature region present in the samples. The structural stability of the samples against the irradiation was investigated via XRD and Raman spectroscopy before and after the irradiation.

  8. Terahertz and infrared studies of antiferroelectric phase transition in multiferroic Bi.sub.0.85./sub.Nd.sub.0.15./sub.FeO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Goian, Veronica; Kamba, Stanislav; Greicius, S.; Nuzhnyy, Dmitry; Karimi, S.; Reaney, I. M.

    2011-01-01

    Roč. 110, č. 7 (2011), 074112/1-074112/5 ISSN 0021-8979 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GA202/09/0682 Grant - others:GA UK(CZ) SVV-2011-263303 Institutional research plan: CEZ:AV0Z10100520 Keywords : multiferroics * infrared and THz spectroscopy * phonons * antiferroelectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011

  9. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available community. The construction industry is a significantly consumer of materials, using 50 per cent of all products produced globally. Building materials is any material which is used for a construction purpose. Many of these materials are sources from natural...

  10. Separate Kinetics of the Polar and Antiferrodistortive Order Parameters in the Antiferroelectric Transition of PbZr1-xTixO3 and the Influence of Defects

    Directory of Open Access Journals (Sweden)

    Cordero F.

    2015-04-01

    Full Text Available The transition from the rhombohedral-ferroelectric to the lower temperature orthorhombic-antiferroelectric phase in Zr-rich PZT involves two order parameters (OPs: 1 the polar OP for the displacements of the cations with respect to the O octahedra; 2 an antiferrodistortive OP responsible for tilting of the octahedra. It is shown that at Ti compositions near the morphotropic boundary with the FE phase (0.046 ≤ x ≤ 0.054, the two OPs may be almost independent of each other at cooling rates of 0.5 K/min or faster, depending on the sample history. This fact gives rise to a great variety of shapes of the curves of the elastic compliance s(T, but all of them can be fitted very well as superpositions of variously broadened steps for each of the modes involved in the transitions, including the tilt transition occurring in the untransformed FE fraction. The evolution of the s(T curves includes enhancements up to a factor of four during aging for weeks in the region of the AFE/FE coexistence. Restiffening and reduction of the thermal hysteresis of the AFE/FE transition are recovered by heating up to 800-900 K. It is proposed that ageing is due to the clustering of relatively mobile defects, most likely O vacancies, at the domain walls in the coexisting AFE/FE phases. Such defect structures are probably at the origin of intense thermally activated relaxation processes observed above TC in the dielectric and anelastic spectra, and can be annealed out above 800 K, allowing the AFE transition to recover a fast kinetics.

  11. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} ceramics through cobalt substitution

    Energy Technology Data Exchange (ETDEWEB)

    Thangavelu, Karthik [Advanced Functional Materials Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Andhra Pradesh - 502 205, India. (India); Department of Materials Science and Engineering, Indian Institute of Technology Hyderabad, Andhra Pradesh - 502 205, India. (India); Ramadurai, Ranjith [Department of Materials Science and Engineering, Indian Institute of Technology Hyderabad, Andhra Pradesh - 502 205, India. (India); Asthana, Saket, E-mail: asthanas@iith.ac.in [Advanced Functional Materials Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Andhra Pradesh - 502 205, India. (India)

    2014-01-15

    Co-ion (5 mol %) substitution in Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) host lattice and their effects on the structural, ferroelectric and dielectric behavior has been investigated thoroughly in this present study. The substituted Co-ion at Ti-site acts an acceptor type doping and hardens (i.e., increase in coercivity) the system without any noticeable change in the remanent polarization values. However, the intermediate antiferroelectric (AFE) ordering which exists between 200 °C–280 °C in NBT system has been suppressed due to Co-ion substitution, which is an interesting feature for device applications.

  13. Enhanced piezoelectric and antiferroelectric properties of high-TC perovskite of Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3

    Science.gov (United States)

    Chen, Jun; Li, Jianyong; Fan, Longlong; Zou, Ning; Ji, Pengfei; Liu, Laijun; Fang, Liang; Kang, Huajun; Xing, Xianran

    2012-10-01

    Bi(Mg1/2Ti1/2)O3-PbTiO3 is a promising high-TC piezoelectrics in the Bi-based perovskite family of BiMeO3-PbTiO3. In this study, zirconium is utilized to further improve the high temperature piezoelectric properties of Bi(Mg1/2Ti1/2)O3-PbTiO3. Substitution of Zr for Ti is observed to decrease the tetragonality (c/a) near the morphotropic phase boundary, while TC can be well maintained by the substitution of smaller and ferroelectrically active Ti by a larger and ferroelectrically weaker Zr cation. A softer coercive field and enhanced domain mobility is observed, ultimately leading to a strong ferroelectric activity. The piezoelectric property of Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3 is enhanced to 260 pC/N, when compared with Bi(Mg1/2Ti1/2)O3-PbTiO3 (225 pC/N). Good high temperature piezoelectric property was found in the tetragonal phase of Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3. Thermal depoling of aligned domains for this composition occurs at approximately 300 °C. Thus, Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3 could be used for high temperature actuator applications. Furthermore, an apparent ferroelectric-antiferroelectric phase transition was observed as a function of both the composition in the rhombohedral phase and the temperature. An antiferroelectric relaxor exists in the Zr-substituted Bi(Mg1/2Ti1/2)O3-PbTiO3.

  14. A study of the dielectric and magnetic properties of multiferroic materials using the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    A. Sosa

    2012-03-01

    Full Text Available A study of the dielectric and magnetic properties of multiferroic materials using the Monte Carlo (MC method is presented. Two different systems are considered: the first, ferroelectric-antiferromagnetic (FE-AFM recently studied by X. S. Gaoand J. M. Liu and the second antiferroelectric-ferromagnetic (AFE-FM. Based on the DIFFOUR-Ising hybrid microscopic model developed by Janssen, a Hamiltonian that takes into account the magnetoelectric coupling in both ferroic phases is proposed. The obtained results show that the existence of such coupling modifies the ferroelectric and magnetic ordering in both phases. Additionally, it is shown that the presence of a magnetic or an electric field influences the electric polarization and the magnetization, respectively, making evident the magnetoelectric effect.

  15. From antiferroelectricity to ferroelectricity in smectic mesophases ...

    Indian Academy of Sciences (India)

    to complex self-organised structures. In liquid crystal (LC) systems reduction of the phase symmetry can be achieved by segregation, tilting, restriction of the rotational disorder and by reduction of the molecular symmetry. The introduction of chirality into mesogenic molecules is a well-known approach to reduce the phase ...

  16. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  17. Structural and orientational properties of the ferro, antiferroelectric, and re-entrant smectic C.sup.*./sup. phases of ZLL7/.sup.*./sup. by deuterium NMR and other experimental techniques

    Czech Academy of Sciences Publication Activity Database

    Catalano, D.; Domenici, V.; Marini, A.; Veracini, C.A.; Bubnov, Alexej; Glogarová, Milada

    2006-01-01

    Roč. 100, - (2006), s. 16459-16470 ISSN 1520-6106 R&D Projects: GA ČR GP202/03/P011; GA ČR GA202/05/0431 Grant - others:European Project(XE) COST D14 WG15 Institutional research plan: CEZ:AV0Z10100520 Keywords : NMR * deuterated materials * liquid crystal * polar mesophases * x-ray structural properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.115, year: 2006

  18. 2. Home 3. Journals 4. Bulletin of Materials Science 5. Volume 33 6 ...

    Indian Academy of Sciences (India)

    Administrator

    Synthesis of nanosized barium titanate/epoxy resin com- posites and measurement of microwave absorption. 657. Antiferroelectrics. Dielectric properties of electron irradiated PbZrO3 thin films. 191. Antiferromagnet. Solution combustion synthesis of (La, K) FeO3 orthoferrite ceramics: structural and magnetic property ...

  19. Phase transition scheme of isolated hydrogen-bonded material h-MeHPLN studied by neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Kimura, Hiroyuki; Watanabe, Masashi; Noda, Yukio; Kojima, Akiko; Mochida, Tomoyuki; Sugawara, Tadashi

    2005-01-01

    The antiferroelectric material with an isolated hydrogen-bond, h-MeHPLN (5-methyl-9-hydroxyphenalenon), was structurally investigated by X-ray and neutron diffraction experiments in the low-temperature phase (T c =42K). The formation of a superlattice of 2 x b was found below T c , and the space group was identified to be P2 1 /c transformed from C2 c . Accordingly, the number of crystallographically independent molecules became two. The electron density distribution and the nuclear density distribution revealed some significant features below T c . One of the independent molecules exhibits an ordering of the hydrogen atom in the hydrogen-bond region, a conformational ordering of the methyl group and a molecular rotation around the a-axis. Moreover, a static electronic dipole moment is found in the hydrogen-bond region in this molecule. In contrast, the other molecule shows a disordered hydrogen atom, disordered conformation of the methyl group, no molecular rotation and a disordered electronic dipole moment. These features can be described simply in terms of a modulation wave of an order parameter. (author)

  20. Strategic Materials

    National Research Council Canada - National Science Library

    Buhler, Carl; Burke, Adrian; Davis, Kirk; Gerhard, Michelle; Heil, Valerie; Hulse, Richard; Kwong, Ralph; Mahoney, Michael; Moran, Scott; Peek, Michael

    2006-01-01

    Some materials possess greater value than others. Materials that provide essential support for the nation's economic viability or enable critical military capabilities warrant special attention in security studies...

  1. Characterization, Modeling, and Energy Harvesting of Phase Transformations in Ferroelectric Materials

    Science.gov (United States)

    Dong, Wenda

    Solid state phase transformations can be induced through mechanical, electrical, and thermal loading in ferroelectric materials that are compositionally close to morphotropic phase boundaries. Large changes in strain, polarization, compliance, permittivity, and coupling properties are typically observed across the phase transformation regions and are phenomena of interest for energy harvesting and transduction applications where increased coupling behavior is desired. This work characterized and modeled solid state phase transformations in ferroelectric materials and assessed the potential of phase transforming materials for energy harvesting applications. Two types of phase transformations were studied. The first type was ferroelectric rhombohedral to ferroelectric orthorhombic observed in lead indium niobate lead magnesium niobate lead titanate (PIN-PMN-PT) and driven by deviatoric stress, temperature, and electric field. The second type of phase transformation is ferroelectric to antiferroelectric observed in lead zirconate titanate (PZT) and driven by pressure, temperature, and electric field. Experimental characterizations of the phase transformations were conducted in both PIN-PMN-PT and PZT in order to understand the thermodynamic characteristics of the phase transformations and map out the phase stability of both materials. The ferroelectric materials were characterized under combinations of stress, electric field, and temperature. Material models of phase transforming materials were developed using a thermodynamic based variant switching technique and thermodynamic observations of the phase transformations. These models replicate the phase transformation behavior of PIN-PMN-PT and PZT under mechanical and electrical loading conditions. The switching model worked in conjunction with linear piezoelectric equations as ferroelectric/ferroelastic constitutive equations within a finite element framework that solved the mechanical and electrical field equations

  2. Ferroelectric, antiferroelectric and TGB phases in lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Novotná, Vladimíra; Kašpar, Miroslav; Hamplová, Věra; Podoliak, Natalia; Glogarová, Milada; Pociecha, D.

    2012-01-01

    Roč. 39, č. 4 (2012), s. 477-486 ISSN 0267-8292 R&D Projects: GA ČR(CZ) GAP204/11/0723 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * lactate derivatives * TGB phases Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.959, year: 2012 http://www.tandfonline.com/doi/abs/10.1080/02678292.2011.653411

  3. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  4. Mechanical Material

    International Nuclear Information System (INIS)

    Kim, Gap Yong; Jang, Gun Ik; Kim, Dung Jung; Kim, Ui Do

    1999-02-01

    This book introduces characteristics of metal with crystal structure and plastic deformation of metal, equilibrium diagram of alloy, steel such as constitutional diagram and structure of carbon steel, and heat treatment of steel, structural alloy steel, tool material, corrosion and anticorrosion of steel and stainless steel, heat resisting material and properties of steel against high temperature, strengthening of surface of steel, cast iron, nonferrous metal material and materials test.

  5. Magnetic Materials

    Science.gov (United States)

    Spaldin, Nicola A.

    2003-04-01

    Magnetic materials are the foundation of multi-billion dollar industries and the focus of intensive research across many disciplines. This book covers the fundamentals, basic theories and applications of magnetism and conventional magnetic materials. Based on a lecture course given by Nicola Spaldin in the Materials Department at University of California, Santa Barbara, the book is ideal for a one- semester course in magnetic materials. It contains numerous homework problems and solutions.

  6. Material Programming

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Boer, Laurens; Tsaknaki, Vasiliki

    2017-01-01

    In the near future every other smart material will have computational power embedded in the form of graphene transistors or nanotubes. These will be the ultimate computational composites: materials that hold classic material qualities, such as structural durability, flexibility, texture, weight, ...

  7. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  8. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  9. Nano Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu; and others

    2006-02-15

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  10. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  11. Material Systems

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael

    2009-01-01

    This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...... approaches the subject through the construction of a logic-driven system aiming to explore the possibilities of a material system that fulfills spatial, structural and performative requirements concurrently and how these are negotiated in situations where they might be conflicting....

  12. Material focus

    DEFF Research Database (Denmark)

    Sokoler, Tomas; Vallgårda, Anna K. A.

    2009-01-01

    In this paper we build on the notion of computational composites, which hold a material perspective on computational technology. We argue that a focus on the material aspects of the technology could be a fruitful approach to achieve new expressions and to gain a new view on the technology's role...... in design. We study two of the computer's material properties: computed causality and connectability and through developing two computational composites that utilize these properties we begin to explore their potential expressions....

  13. Materials characterisation

    International Nuclear Information System (INIS)

    Azali Muhammad

    2005-01-01

    Various nuclear techniques have been developed and employed by technologies and scientists worldwide to physically and chemically characterise the material particularly those that have applications in industry. These include small angle neutron scattering (SANS), x-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) for the internal structural study of material, whereas, the x-ray fluorescence (XRF) for the chemical analysis, while the Moessbauer spectroscopy for the study on the magnetic properties and structural identity of material. Basic principle and instrumentations of the techniques are discussed in this chapter. Example of their applications in various disciplines particularly in characterisation of industrial materials also described

  14. New materials

    International Nuclear Information System (INIS)

    Joshi, S.K.; Rao, C.N.R.; Tsuruta, T.

    1992-01-01

    The book contains the state-of-the art lectures delivered at the discussion meeting on new materials, a field in which rapid advances are taking place. The main objective of the meeting was to bring active scientists in this area from Japan and India together. The topics covered diverse aspects of modern materials including high temperature superconducting compounds. (M.G.B.)

  15. Materializing ideas

    DEFF Research Database (Denmark)

    Strandvad, Sara Malou

    2011-01-01

    Based on a qualitative study of development processes in the Danish film industry, this article sketches a socio-material perspective for analysing the production of culture. Whereas previous studies of cultural production have identified social factors in cultural production, this article sets out...... it is becoming materialized....

  16. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    . The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  17. Touching Materiality

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Rosén

    2012-01-01

    Dripping ink pens, colourful paint on skin, vegetables pots on a school roof. In interviews with three generations of former school pupils, memories of material objects bore a relation to everyday school life in the past. Interwoven, these objects entered the memorising processes, taking...... the interviewer and interviewee beyond an exclusively linguistic understanding of memory. This article analyses how the shifting objects of materiality in personal and generational school memories connects to material as well as sensuous experiences of everyday school life and its complex processes of learning....... Drawing on anthropological writings, the article argues that the objects of materiality are part of important but non-verbalised memories of schooling. The Dutch philosopher Eelco Runia’s notions of presence and metonymy are incorporated as tools for approaching objects of materiality in memory studies....

  18. Composite material

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O' Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  19. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  20. Utopian Materialities

    DEFF Research Database (Denmark)

    Elgaard-Jensen, Torben

    2004-01-01

    a detachment from the known world.Second, the utopianism of a new economy firm is examined. It is argued that the physical set-up of the firm -in particular the distribution of tables and chairs - evoke a number of alternatives to ordinary work practice.In this way the materialities of the firm are crucial...... to its persuasive image of being the office of the future.The notion that utopia is achieved through material arrangements is finally related to the analysis of facts andfictions in ANT. It is argued, that even though Utopias are neither fact nor fiction, they are both material andeffective......In various ways, this paper makes the counter-intuitive claim that the utopian and the material are thoroughlyinterdependent, rather than worlds apart. First, through a reading of Thomas More's Utopia, it is argued thatUtopia is the product of particular kinds of relations, rather than merely...

  1. Hazardous materials

    Science.gov (United States)

    ... DO NOT put the material in the normal trash. DO NOT let it get into the air. ... Accessed February 21, 2018. Occupational Safety and Health Administration website. Healthcare. www.osha.gov/SLTC/healthcarefacilities/index. ...

  2. CURRICULUM MATERIALS.

    Science.gov (United States)

    New Jersey State Dept. of Education, Trenton.

    MATERIALS ARE LISTED BY 36 TOPICS ARRANGED IN ALPHABETICAL ORDER. TOPICS INCLUDE APPRENTICE TRAINING, BAKING, DRAFTING, ENGLISH, GLASSBLOWING, HOME ECONOMICS, INDUSTRIAL CHEMISTRY, MACHINE SHOP, NEEDLE TRADES, REFRIGERATION, AND UPHOLSTERY. PRICES ARE GIVEN FOR EACH ITEM. (EL)

  3. Utopian Materialities

    DEFF Research Database (Denmark)

    Elgaard-Jensen, Torben

    2004-01-01

    In various ways, this paper makes the counter-intuitive claim that the utopian and the material are thoroughlyinterdependent, rather than worlds apart. First, through a reading of Thomas More's Utopia, it is argued thatUtopia is the product of particular kinds of relations, rather than merely...... a detachment from the known world.Second, the utopianism of a new economy firm is examined. It is argued that the physical set-up of the firm -in particular the distribution of tables and chairs - evoke a number of alternatives to ordinary work practice.In this way the materialities of the firm are crucial...... to its persuasive image of being the office of the future.The notion that utopia is achieved through material arrangements is finally related to the analysis of facts andfictions in ANT. It is argued, that even though Utopias are neither fact nor fiction, they are both material andeffective...

  4. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  5. Encountering Materiality

    DEFF Research Database (Denmark)

    Svabo, Connie

    2016-01-01

    DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016.......DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016....

  6. Nano Materials

    Science.gov (United States)

    2007-03-01

    AlOOH Argonide www.argonide.com Perovskite Fuel Cell Materials www.fuelcellmaterials.com Metal rubber Nanosonic www.nanosonic.com ZnO , optical layer... perovskites are being discussed as electrode materials for use as cathodes. Specifically the high surface area and the high ionic conductivity of the...Nanoparticles • Perovskites • Metal rubber • Nanoclays • Nanoshells & quatum dots • Nanopores • Molecular nanotechnology • Software • Conclusion 3

  7. Background Material

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia

    This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders.......This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....

  8. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    A disjunction between the material and the immaterial has been at the heart of the architectural debate for decades. In this dialectic tension, the notion of atmosphere which increasingly claims attention in architectural discourse seems to be parallactic, leading to the re-evaluation of perceptual...... experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... and complex interferences revealed through our perception; ‘the atmospheric’ is explored as a spatial and affective quality as well as a sensory background, and materiality as a powerful and almost magical agency in shaping of atmosphere. Challenging existing dichotomies and unraveling intrinsic...

  9. Electronic materials

    CERN Document Server

    Kwok, H L

    2010-01-01

    The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new conc

  10. Material Imagination

    DEFF Research Database (Denmark)

    Folkmann, Mads Nygaard

    2018-01-01

    As a mass medium of modern culture, design sets the frame for human imaginative interaction with the world. In its many appearances, design can be seen as kind of material imagination where concepts and sensual appearances meet in different constellations. In this process something is made present...... as the product of a series of constructive factors related to schematization. Second, I discuss in two examples of design, how these factors operate and how the process of imagination is conditioned by the specific materiality of the design....

  11. Telling materials.

    OpenAIRE

    Crang, M.

    2003-01-01

    This chapter asks us to think carefully about what we do with material we have created out in the field. The way it is going to approach this is by thinking about the actions involved in analysis making sense out of the material you have so painstakingly gathered. However, I am not going to present a discussion of the criteria of a ‘good’ or ‘valid’ analysis, since there are many types of epistemological theories that underlie different sorts of analysis. That is, there are theories about how...

  12. Ferroic Materials

    Indian Academy of Sciences (India)

    For many ferro- electrics, this response function becomes particularly large when the material is at or near the temperature of the ferroelectric phase transition. An analogy from sociology may help explain why this should be so. When things are in a state of flux (say, when there a revolution under way, or a war is going on), ...

  13. Emerging Materiality

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren

    2009-01-01

    The authors examine how materiality emerges from complex chains of mediation in creative software use. The primarily theoretical argument is inspired and illustrated by interviews with two composers of electronic music. The authors argue that computer mediated activity should not primarily...

  14. Materials development

    International Nuclear Information System (INIS)

    McCoy, H.E.

    1976-01-01

    The main thrust of the materials program is the development of a structural material for the MSBR primary circuit which has adequate resistance to embrittlement by neutron irradiation and to shallow intergranular attack by fission product penetration. A modified Hastelloy N containing 2 percent Ti has good resistance to irradiation embrittlement; however, it remains to be shown that the alloy has sufficient resistance to shallow intergranular cracking. Numerous laboratory tests are in progress to answer this important question. Laboratory programs to study Hastelloy N--salt--tellurium interactions are being established, including the development of methods for exposing test materials under simulated reactor operating conditions. The procurement of products from two commercial heats (8000 and 10,000 lb) of 2 percent Ti--modified Hastelloy N continued. All products except seamless tubing were received, and much experience was gained in the fabrication of the new alloy. The work on chemical processing materials is concentrated on graphite. Capsule tests are in progress to study possible chemical interactions between graphite and bismuth-lithium solutions and to evaluate the mechanical intrusion of these solutions into the graphite

  15. Supplementary Material

    Indian Academy of Sciences (India)

    mraga

    1. Supplementary Material. A soluble-lead Redox Flow Battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors by A Banerjee et al (pp 163-. 170). Figure S1. SEM images for bare substrates: (a) graphite sheet, (b) 20 ppi RVC, (c) 30 ppi. RVC and (d) 45 ppi RVC.

  16. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  17. Magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Stinus

    2008-10-15

    New and improved magnetocaloric materials are one of the cornerstones in the development of room temperature magnetic refrigeration. Magnetic refrigeration has been used since the 1930ies in cryogenic applications, but has since the discovery of room temperature refrigerants received enormous attention. This Ph.D. work has been mainly concerned with developing a new technique to characterize the magnetocaloric effect (MCE) and using this technique in the investigations on new and improved magnetocaloric materials. For this purpose a novel differential scanning calorimeter (DSC) with applied magnetic fields was developed for measuring heat capacity as function of magnetic field. Measurements using the developed DSC demonstrate a very high sensitivity, fast measurements and good agreement with results obtained by other techniques. Furthermore, two material systems have been described in this work. Both systems take basis in the mixed-valence manganite system La{sub 1-x}Ca{sub x}MnO{sub 3} well known from research on colossal magnetoresistance (CMR). The mixed-valence manganite crystallizes in the perovskite structure of general formula ABO{sub 3}. The first material system is designed to investigate the influence of low level Cu doping on the B-site. Six different samples were prepared with over-stoichiometric compositions La{sub 0.67}Ca{sub 0.33}Mn{sub 1.05}Cu{sub x}O{sub 3}, x=0, 1, 2, 3, 4 and 5%. All compositions crystallized well in the same perovskite structure, but the morphology of the samples changed drastically with doping. Investigation on the magnetocaloric properties revealed that small levels of Cu up to around 3% could improve the magnetocaloric performance of the materials. Furthermore, Cu could be used to tune the temperature interval without deteriorating the MCE, which is a much desired characteristic for potential use in magnetic refrigerators. A less comprehensive part of the work has been concerned with the investigation of doping on the A

  18. Material monitoring

    International Nuclear Information System (INIS)

    Kotter, W.; Zirker, L.; Hancock, J.A.

    1995-01-01

    Waste Reduction Operations Complex (WROC) facilities are located at the Idaho National Engineering Laboratory (INEL). The overall goal for the Pollution Prevention/Waste Minimization Unit is to identify and establish the correct amount of waste generated so that it can be reduced. Quarterly, the INEL Pollution Prevention (P2) Unit compares the projected amount of waste generated per process with the actual amount generated. Examples of waste streams that would be addresses for our facility would include be are not limited to: Maintenance, Upgrades, Office and Scrap Metal. There are three potential sources of this variance: inaccurate identification of those who generate the waste; inaccurate identification of the process that generates the waste; and inaccurate measurement of the actual amount generated. The Materials Monitoring Program was proposed to identify the sources of variance and reduce the variance to an acceptable level. Prior to the implementation of the Material Monitoring Program, all information that was gathered and recorded was done so through an informal estimation of waste generated by various personnel concerned with each processes. Due to the inaccuracy of the prior information gathering system, the Material Monitoring Program was established. The heart of this program consists of two main parts. In the first part potential waste generators provide information on projected waste generation process. In the second part, Maintenance, Office, Scrap Metal and Facility Upgrade wastes from given processes is disposed within the appropriate bin dedicated to that process. The Material Monitoring Program allows for the more accurate gathering of information on the various waste types that are being generated quarterly

  19. Energy materials

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2011-01-01

    In an age of global industrialisation and population growth, the area of energy is one that is very much in the public consciousness. Fundamental scientific research is recognised as being crucial to delivering solutions to these issues, particularly to yield novel means of providing efficient, ideally recyclable, ways of converting, transporting and delivering energy. This volume considers a selection of the state-of-the-art materials that are being designed to meet some of the energy challenges we face today. Topics are carefully chosen that show how the skill of the synthetic chemist can

  20. Casting materials

    Science.gov (United States)

    Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  1. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  2. Construction material

    Science.gov (United States)

    Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  3. Photographic materials

    International Nuclear Information System (INIS)

    Jamieson, P.B.

    1980-01-01

    Radiographic films based on silver halides are normally handled under red or orange safelights to prevent fogging due to their sensitivity to white light. The present invention relates to ultraviolet radiation sensitive material which can be handled under virtually white light without significant fogging. The film material is comprised of a base having at least one layer of a photographic silver halide emulsion and a yellow filter dye screening the emulsion from visible radiation. The silver halide emulsion contains 50-100 mole % of silver chloride, the higher the silver chloride content, the lower the visible light sensitivity. The nature and properties of the yellow filter dye are described. When recording an X-ray image, the film is loaded into the camera under white safelight conditions from which light of wavelength shorter than 400 nm is excluded. The film is in contact with one or more phosphor screens capable when struck by X-rays of emitting ultraviolet radiation, the screens having a peak ultraviolet emission within the wavelength range of 250-380 nm. After X-ray exposure, the film is removed and developed. Two examples illustrating the invention are given. (U.K.)

  4. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition having properties as good as thermosetting acrylic or amino alkid resins is provided by employing active energy irradiation, particularly electron beams, using a radically polymerizable low molecular compound (A) (hereafter called an oligomer) containing at least two vinyl radicals in one molecule. This oligomer is produced by reacting an epoxy-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The composition (I) contains 10% - 100% of this oligomer. In embodiments, an oligomer having a fiberous trivinyl construction is produced by reacting 180 parts by weight of glycidyl methacrylate ester with 130 parts of itaconic acid in the presence of a polymerization-inhibitor and an addition reaction catalyst at 90 0 C for 6 hours. In practice, the coating material compositions (1), consist of the whole oligomer [I-1]; (2), consist of 10-90% of (A) component and 90%-10% of vinyl monomers containing at least 30% (meth) acrylic monomer [I-2]; (3), 10%-90% of component (A) and 90%-10% of other monomers containing at least two vinyl radicals [I-3]; (4), a mixture of (I-2) and (I-3), [I-4]; and (5), consist of 50% or less unsaturated polyester of 500-5,000 molecular weight range or drying oil, or alkyd resin of 500-5,000 molecular weight range modified by drying oil, [I-5]. As a catalyst a tertiary amino vinyl compound is preferred. Five examples are given. (Iwakiri, K.)

  5. Photographic materials

    International Nuclear Information System (INIS)

    1980-01-01

    Radiographic films based on silver halides are normally handled under red or orange safelights to prevent fogging due to their sensitivity to white light. The present invention relates to ultraviolet radiation sensitive material which can be handled under virtually white light without significant fogging. A photographic, chemically sensitised silver halide emulsion is described, containing 50-100 mole % of silver chloride, the higher the silver chloride content, the lower the visible light sensitivity. The remaining silver halide, if any, is silver bromide and/or silver iodide. The silver halide grains are grown in the presence of ammonia, an excess of chloride ions and tetraazaindene growth controller. Examples illustrating the invention are given. (U.K.)

  6. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  7. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition is provided which can be hardened by irradiation with active energy, particularly electron beams, using a composition which contains 10%-100% of a radically polymerizable low molecular compound (A), (hereafter called an oligomer), having at least two vinyl radicals in one molecule. These compositions have a high degree of polymerization and characteristics equivalent to thermosetting acrylic or amino alkyd resin. The oligomer (A) is produced by reacting an epoxy-containing vinyl monomer with saturated polycarboxylic acids or anhydrides. In one embodiment, 146 parts by weight of adipic acid and 280 parts of glycidyl methacrylate ester undergo addition reaction in the presence of a polymerization-inhibitor and a catalyst at 90 0 C for 6 hours to produce an oligomer having a fiberous divinyl construction. The coating composition utilizes this oligomer in the forms of (I-1), a whole oligomer; (I-2), 0%-90% of this oligomer and 90%-10% of a vinyl monomer containing at least 30% of (meth) acrylic monomer; (I-3), 10%-90% of such oligomer and 90%-10% of other monomers containing at least two vinyl radicals in one molecule; (I-4), a mixture of (I-2) and (I-3) in proportion of 1/9 to 9/1, and (I-5), above four compositions each containing 50% or less unsaturated polyester or drying oil having 500-5,000 molecules or a drying oil-modified alkyd resin having 500-5,000 molecules. Four examples are given. (Iwakiri, K.)

  8. The Newest Machine Material

    International Nuclear Information System (INIS)

    Seo, Yeong Seop; Choe, Byeong Do; Bang, Meong Sung

    2005-08-01

    This book gives descriptions of machine material with classification of machine material and selection of machine material, structure and connection of material, coagulation of metal and crystal structure, equilibrium diagram, properties of metal material, elasticity and plasticity, biopsy of metal, material test and nondestructive test. It also explains steel material such as heat treatment of steel, cast iron and cast steel, nonferrous metal materials, non metallic materials, and new materials.

  9. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2018-01-09

    A product formed from a first material including a geopolymer resin material, a geopolymer material, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  10. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Science.gov (United States)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  11. Towards Materials Sustainability through Materials Stewardship

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2016-10-01

    Full Text Available Materials sustainability requires a concerted change in philosophy across the entire materials lifecycle, orienting around the theme of materials stewardship. In this paper, we address the opportunities for improved materials conservation through dematerialization, durability, design for second life, and diversion of waste streams through industrial symbiosis.

  12. The materials physics companion

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Introduction to Materials Physics: Structure of matter. Solid state physics. Dynamic properties of solids. Dielectric Properties of Materials: Dielectric properties. Ferroelectric and piezoelectric materials. Dielectric breakdown. Applications of dielectrics. Magnetic Properties of Materials: Magnetic properties. Magnetic moment. Spontaneous magnetization. Superconductivity.

  13. Photorefractive Materials and Their Applications 2 Materials

    CERN Document Server

    Günter, Peter

    2007-01-01

    Photorefractive Materials and Their Applications 2: Materials is the second of three volumes within the Springer Series in Optical Sciences. The book gives a comprehensive review of the most important photorefractive materials and discusses the physical properties of organic and inorganic crystals as well as poled polymers. In this volume, photorefractive effects have been investigated at wavelengths covering the UV, visible and near infrared. Researchers in the field and graduate students of solid-state physics and engineering will gain a thorough understanding of the properties of materials in photorefractive applications. The other two volumes are: Photorefractive Materials and Their Applications 1: Basic Effects. Photorefractive Materials and Their Applications 3: Applications.

  14. Gear materials, properties, and manufacture

    National Research Council Canada - National Science Library

    Davis, J. R

    2005-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Gear Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  15. Transporting particulate material

    Science.gov (United States)

    Aldred, Derek Leslie [North Hollywood, CA; Rader, Jeffrey A [North Hollywood, CA; Saunders, Timothy W [North Hollywood, CA

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  16. Thermochromic and thermotropic materials

    CERN Document Server

    Seeboth, Arno

    2013-01-01

    Thermochromic materials based on reflectionThermochromic materials based on light absorptionThermochrmic and thermotropic materials based on light scatteringApplication of thermochromic and thermotropic materialsActive triggering and energetic characterization of thermotropic and of thermochromic materialsConcluding remarks. All chapters by Dr. Arno Seeboth and Dr. Detlef Lötzsch.

  17. Nanocrystalline ceramic materials

    Science.gov (United States)

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  18. Nanoscale materials in chemistry

    National Research Council Canada - National Science Library

    Klabunde, Kenneth J; Richards, Ryan

    2009-01-01

    ...: Disordered, Porous Nanostructures Stephanie L. Brock 209 9 Ordered Microporous and Mesoporous Materials Freddy Kleitz 243 10 Applications of Microporous and Mesoporous Materials Anirban Ghosh,...

  19. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  20. Physically Functional Materials

    DEFF Research Database (Denmark)

    2002-01-01

    of information (holographic data storage), nonlinear optics (NLO), as photoconductors, photonic band-gap materials, electrically conducting materials, electroluminescent materials, piezo-electric materials, pyroelectric materials, magnetic materials, ferromagnetic materials, ferroelectric materials...... acids or peptides having azobenzenes or other physicially functional groups, e.g., photoresponsive groups, as side chains. These compounds may be synthesized using solid phase peptide synthesis techniques. Materials, e.g., thin films, comprising such compounds may be used for optical storage......, photorefractive materials, or materials in which light-induced conformational changes can be produced. Optical anisotropy may reversibly be generated with polarized laser light whereby a hologram is formed. First order diffraction efficiencies of up to around 80% have been obtained....

  1. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  2. Materials Analysis and Modeling of Underfill Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Nicholas B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  3. Plasma-material interactions

    International Nuclear Information System (INIS)

    Wilson, K.L.

    1984-01-01

    Plasma-interactive components must be resistant to erosion processes, efficient in heat removal, and effective in minimizing tritium inventory and permeation. As long as plasma edge temperatures are 50 eV, no one material can satisfy the diverse requirements imposed by these plasma materials interactions. The only solution is the design of duplex, or even more complicated, structures. The material that faces the plasma should be low atomic number, with acceptable erosion and evaporation characteristics. The substrate material must have high thermal conductivity for heat removal. Finally, materials must be selected judiciously for tritium compatibility. In conclusion, materials play a critical role in the achievement of safe and economical magnetic fusion energy. Improvements in materials have already led to many advances in present day device operation, but additional innovative materials solutions are required for the critical plasma materials interaction issues in future power reactors

  4. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  5. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  6. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  7. Advancing materials research

    International Nuclear Information System (INIS)

    Langford, H.D.; Psaras, P.A.

    1987-01-01

    The topics discussed in this volume include historical perspectives in the fields of materials research and development, the status of selected scientific and technical areas, and current topics in materials research. Papers are presentd on progress and prospects in metallurgical research, microstructure and mechanical properties of metals, condensed-matter physics and materials research, quasi-periodic crystals, and new and artifically structured electronic and magnetic materials. Consideration is also given to materials research in catalysis, advanced ceramics, organic polymers, new ways of looking at surfaces, and materials synthesis and processing

  8. Methods of materiality

    DEFF Research Database (Denmark)

    Aagaard, Jesper; Matthiesen, Noomi Christine Linde

    2016-01-01

    that researchers should start paying attention to the material world (consisting of both human bodies and material objects) and what it means for how people live their lives. It is argued that this can be done by incorporating the concept of material presence to capture embodied and material layers of existence......, and the method of participant observation is suggested as a viable approach to achieve this end. An empirical example of how authority is produced in a parent-teacher conference, not only through language but also through material objects and embodied being, is then presented. The article concludes by suggesting...... practical guidelines for incorporating attention to materiality in qualitative research....

  9. Supplements to Textbook Materials.

    Science.gov (United States)

    Holmes, Ken

    1994-01-01

    Describes the many kinds of materials that English teachers can draw upon to enrich and expand students' experiences with literature. Outlines ancillary materials used to supplement the study of William Shakespeare's "Julius Caesar." (HB)

  10. Practical materials characterization

    CERN Document Server

    2014-01-01

    Presents cross-comparison between materials characterization techniquesIncludes clear specifications of strengths and limitations of each technique for specific materials characterization problemFocuses on applications and clear data interpretation without extensive mathematics

  11. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  12. Erodibility of cemented materials

    CSIR Research Space (South Africa)

    Gass, BG

    1993-03-01

    Full Text Available The use of stabilised layers is cost effective in road construction in South Africa. Some stabilised materials have however been found to be susceptible to erosion. To identify erodible materials the Erosion Test was developed in 1989...

  13. Materials risk analysis.

    Science.gov (United States)

    2010-02-01

    State highway authorities routinely examine the quality of the materials used to build highway construction projects. Some : materials are tested, some are accepted through a manufacturers certification of quality or compliance, some are physicall...

  14. Sustainable Materials Management

    Science.gov (United States)

    To introduce businesses, NGOs, and government officials to the concept of Sustainable Materials Management (SMM). To provide tools to allow stakeholders to take a lifecycle approach managing their materials, & to encourage them to join a SMM challenge.

  15. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  16. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  17. Mechanical meta-materials

    OpenAIRE

    Zadpoor, A.A.

    2016-01-01

    The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed micro/nano-architecture of mechanical meta-materials gives rise to unprecedented or rare mechanical properties that could be exploited to create advanced materials with novel functionalities. This paper pr...

  18. Modern electronic materials

    CERN Document Server

    Watkins, John B

    2013-01-01

    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  19. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  20. Contributions to materials science

    International Nuclear Information System (INIS)

    Asbeck, O.W.; Matucha, K.H.

    1989-01-01

    The ten papers presented at a festive colloquium held on November 14, 1988 in Frankfurt to honour Prof. Peter Wincierz deal with the texture and mechanical anisotropy of zirconium alloys (by E. Tenckhoff), materials for cladding tubes (H. Boehm), aluminium materials achieved by near technology (W. Bunk), dispersion-strengthened materials (H. Fischmeister), materials for plain bearings (K.H. Matucha), and the archeometallurgy of copper (H.-G. Bachmann). (MM) [de

  1. Molecules to Materials

    Indian Academy of Sciences (India)

    apparently leads to high quality amorphous materials with high ... mobility. With the additional advantage in terms of easier processability that these systems possess over conventional semiconductor materials, organic materials are promising candidates for ... temperature conductivity of -1 Q-6 Scm-1 and field effect mobility.

  2. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  3. Computing and Material

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2013-01-01

    The digital is often said to bring us away from material. The adverse is true: digital design and fabrication grants new interfaces towards material and allows architectural design to engage with material on architectural scale in a way that is further reaching than ever before....

  4. Fingerprinting Of Materials

    Science.gov (United States)

    Workman, Gary L.

    1994-01-01

    Collection of three reports surveys emerging technology of chemical fingerprinting, which can be defined, loosely, as systematic application of modern methods of analysis to determine elemental or molecular compositions of materials, measure relative amounts of constituents of materials, and/or measure other relevant properties of materials.

  5. Chemicals in material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas Fruergaard

    2015-01-01

    Material recycling has been found beneficial in terms of resource and energy performance and is greatly promoted throughout the world. A variety of chemicals is used in materials as additives and data on their presence is sparse. The present work dealt with paper as recyclable material and diisob...

  6. Biotechnology and Composite Materials

    Science.gov (United States)

    1993-04-01

    enzymes to yield 25 kb fragments. These fragments were cloned into a Lambda phage vector to generate a genomic library. RNA was purified fran the...of Layered Materials," Materials Research Society Bulletin, 12 (3) 24 (1987). 4. Metallic Superlattices: Artificially Strong Materials, edited , T

  7. Materials for Space Exploration

    Science.gov (United States)

    Robertson, Luke B.; Williams, Martha

    2010-01-01

    Topics include a lab overview, testing and processing equipment, hemochromic hydrogen sensors, antimicrobial materials, wire system materials, CNT ink formulations, CNT ink dust screens, CNT ink printed circuitry, cryogenic materials development, fire and polymers, the importance of lighting, electric lighting systems, LED for plant growth, and carbon nanotube fiber filaments.

  8. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  9. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  10. Materials science and architecture

    Science.gov (United States)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  11. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  12. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  13. New materials in defence

    International Nuclear Information System (INIS)

    Khan, Sikandar S.; Khan, Shahid A.; Butt, N.M.

    1992-01-01

    National defence is very important and always needs new such materials which have technological and socio-economic development of human society. The types of materials used by a society reflect its level of sophistication. These modern materials are basically the same conventional materials but with a greater knowledge content which include superalloys, modern polymers, engineering ceramics and the advanced composite. The production and use of new materials is playing and important role in the recent development in the defence industry. (A.B.)

  14. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  15. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.

    2011-02-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  16. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  17. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  18. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  19. Comprehensive nuclear materials

    CERN Document Server

    Allen, Todd; Stoller, Roger; Yamanaka, Shinsuke

    2012-01-01

    Comprehensive Nuclear Materials encapsulates a panorama of fundamental information on the vast variety of materials employed in the broad field of nuclear technology. The work addresses, in five volumes, 3,400 pages and over 120 chapter-length articles, the full panorama of historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. It synthesizes the most pertinent research to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

  20. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    , imitate and articulate the students’ inclusion of materials. This paper particularly discusses the experiences made and ideas generated after the execution of a material science course for second year students, with emphasis on the concept of the material selection matrix as an educational tool......This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students...... with emphasis on sustainability. The experiments aim to develop an understanding of, how product design students include materials in their design practice and how tools can be developed that further enhance this. Hence experiments are essential for the progress of the PhD project as they help to observe...

  1. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students...... with emphasis on sustainability. The experiments aim to develop an understanding of, how product design students include materials in their design practice and how tools can be developed that further enhance this. Hence experiments are essential for the progress of the PhD project as they help to observe......, imitate and articulate the students’ inclusion of materials. This paper particularly discusses the experiences made and ideas generated after the execution of a material science course for second year students, with emphasis on the concept of the material selection matrix as an educational tool...

  2. Materials 2014: a great success for materials sector

    International Nuclear Information System (INIS)

    Isnard, Olivier; Crepin, Jerome

    2014-01-01

    In this work are presented the summaries of the 19 symposiums presented at the conference: 'Materials 2014' and whose topics were: eco-materials, materials for energy storage and conversion, strategic materials, rare elements and recycling, surfaces functionalization and physico-chemical characterization, interfaces and coatings, corrosion, aging, durability, damage mechanical behaviours, disordered materials, glasses and their functionalization, materials and health, functional materials, porous, granular and with a high surface area materials, nano-materials, nano-structured systems, assembling processes, carbonaceous materials, great instruments and studies of materials, materials in severe conditions, powder forming processes, metallic materials and structures lightening. (O.M.)

  3. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  4. The Time of Materiality

    Directory of Open Access Journals (Sweden)

    Estrid Sørensen

    2007-01-01

    Full Text Available While time and space form a classic duality in social science, this article demonstrates a perspective on time, space and materiality as a core trinity. As a prominent figure in contemporary discussions on materiality in the social sciences Science and Technology Studies (STS emphasizes relational approaches. STS however lacks a clear relational definition of materiality and tends instead to focus on the agency of entities, on for instance material agency. The article suggests a relational definition of materiality and notes that this move implies turning the question of the time of materiality into an empirical question. It is argued that relational materiality must be studied spatially, and thus a spatial approach describing patterns of relations is presented. Based on field work in a primary school classroom and computer lab, three materials are analyzed: the blackboard, a bed-loft and an online 3D virtual environment. The empirical descriptions depict three different materialities, and it is shown how time is formed differently in each of them. Time, it is argued, is an emergent and characterizing aspect of materialities as spatial formations. URN: urn:nbn:de:0114-fqs070122

  5. Computational materials design

    International Nuclear Information System (INIS)

    Snyder, R.L.

    1999-01-01

    Full text: Trial and error experimentation is an extremely expensive route to the development of new materials. The coming age of reduced defense funding will dramatically alter the way in which advanced materials have developed. In the absence of large funding we must concentrate on reducing the time and expense that the R and D of a new material consumes. This may be accomplished through the development of computational materials science. Materials are selected today by comparing the technical requirements to the materials databases. When existing materials cannot meet the requirements we explore new systems to develop a new material using experimental databases like the PDF. After proof of concept, the scaling of the new material to manufacture requires evaluating millions of parameter combinations to optimize the performance of the new device. Historically this process takes 10 to 20 years and requires hundreds of millions of dollars. The development of a focused set of computational tools to predict the final properties of new materials will permit the exploration of new materials systems with only a limited amount of materials characterization. However, to bound computational extrapolations, the experimental formulations and characterization will need to be tightly coupled to the computational tasks. The required experimental data must be obtained by dynamic, in-situ, very rapid characterization. Finally, to evaluate the optimization matrix required to manufacture the new material, very rapid in situ analysis techniques will be essential to intelligently monitor and optimize the formation of a desired microstructure. Techniques and examples for the rapid real-time application of XRPD and optical microscopy will be shown. Recent developments in the cross linking of the world's structural and diffraction databases will be presented as the basis for the future Total Pattern Analysis by XRPD. Copyright (1999) Australian X-ray Analytical Association Inc

  6. Heterogeneous Materials I and Heterogeneous Materials II

    International Nuclear Information System (INIS)

    Knowles, K M

    2004-01-01

    In these two volumes the author provides a comprehensive survey of the various mathematically-based models used in the research literature to predict the mechanical, thermal and electrical properties of hetereogeneous materials, i.e., materials containing two or more phases such as fibre-reinforced polymers, cast iron and porous ceramic kiln furniture. Volume I covers linear properties such as linear dielectric constant, effective electrical conductivity and elastic moduli, while Volume II covers nonlinear properties, fracture and atomistic and multiscale modelling. Where appropriate, particular attention is paid to the use of fractal geometry and percolation theory in describing the structure and properties of these materials. The books are advanced level texts reflecting the research interests of the author which will be of significant interest to research scientists working at the forefront of the areas covered by the books. Others working more generally in the field of materials science interested in comparing predictions of properties with experimental results may well find the mathematical level quite daunting initially, as it is apparent that the author assumes a level of mathematics consistent with that taught in final year undergraduate and graduate theoretical physics courses. However, for such readers it is well worth persevering because of the in-depth coverage to which the various models are subjected, and also because of the extensive reference lists at the back of both volumes which direct readers to the various source references in the scientific literature. Thus, for the wider materials science scientific community the two volumes will be a valuable library resource. While I would have liked to see more comparison with experimental data on both ideal and 'real' heterogeneous materials than is provided by the author and a discussion of how to model strong nonlinear current--voltage behaviour in systems such as zinc oxide varistors, my overall

  7. Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures

    Czech Academy of Sciences Publication Activity Database

    Pociecha, D.; Glogarová, Milada; Gorecka, E.; Mieczkowski, J.

    2000-01-01

    Roč. 61, č. 6 (2000), s. 6674-6677 ISSN 1063-651X R&D Projects: GA ČR GA202/99/1120; GA AV ČR KSK1010601 Grant - others:KBN(XX) 3T09A 04615 Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.142, year: 2000

  8. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...

  9. Micromechanics of hierarchical materials

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon, Jr.

    2012-01-01

    A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...

  10. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  11. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...... mineral and the organic matrix in biomineralized calcite. High resolution powder diffraction was used to study how calcite in chalk, coccoliths, and mollusk shell is affected by the co-existent organic matrix. The calcified attachment organ in the saddle oyster, Anomia simplex serves as a brilliant...

  12. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  13. Auditing nuclear materials statements

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    A standard that may be used as a guide for persons making independent examinations of nuclear materials statements or reports regarding inventory quantities on hand, receipts, production, shipment, losses, etc. is presented. The objective of the examination of nuclear materials statements by the independent auditor is the expression of an opinion on the fairness with which the statements present the nuclear materials position of a nuclear materials facility and the movement of such inventory materials for the period under review. The opinion is based upon an examination made in accordance with auditing criteria, including an evaluation of internal control, a test of recorded transactions, and a review of measured discards and materials unaccounted for (MUF). The standard draws heavily upon financial auditing standards and procedures published by the American Institute of Certified Public Accountants

  14. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  15. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  16. ANS materials databook

    Energy Technology Data Exchange (ETDEWEB)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  17. Micromechanics of heterogeneous materials

    CERN Document Server

    Buryachenko, Valeriy

    2007-01-01

    Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.

  18. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  19. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  20. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Syllabus of Dental Materials

    Science.gov (United States)

    1984-07-01

    WOOLSEY 27 Zinc oxide and eugenol materials and resin cavity varnishes are contraindicated for use with all resin restorative materials. S.S. White has a...varnish of methyl cellulose which does not appear to affect the organic matrix in resin restorations. Low strength disalicylate bases, like "Dycal...34 (L.D.Caulk) and "Life" (Kerr), can be used to cover dentin surfaces in place of zinc oxide and eugenol materials ( eugenol inhibits the set of the organic

  3. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  4. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  5. Femtosecond laser materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  6. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  7. Material for radioactive protection

    Science.gov (United States)

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  8. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Kummerer, K.R.; Roth, E.

    1987-01-01

    Ceramic materials are under investigation as potential breeder material in fusion reactors. This paper will review candidate materials with respect to fabrication routes and characterization, properties in as-fabricated and irradiated condition, and experimental results from laboratory and inpile investigations on tritium transport and release. Also discussed are the resources of beryllium, which is being considered as a neutron multiplier. The comparison of ceramic properties that is attempted here aims at the identification of the most-promising material for use in a tritium breeding blanket. 82 refs., 12 figs., 5 tabs

  9. Selecting Extensive Reading Materials

    Directory of Open Access Journals (Sweden)

    George M Jacobs

    2014-05-01

    Full Text Available This article offers guidance to teachers and students in selecting materials for extensive reading (ER. First, the article explains characteristics of ER and reviews some of the potential gains for students who do ER. Second, the article considers criteria for teachers to bear in mind when selecting ER materials. Third, the article then suggests ways that teachers and students can find ER materials. Fourth, guidance is provided to students for when they select what to read from among the ER materials available to them. Finally, advice is given on integrating ER with course textbooks.

  10. Closing global material loops

    DEFF Research Database (Denmark)

    Prosman, Ernst-Jan; Wæhrens, Brian Vejrum; Liotta, Giacomo

    2017-01-01

    Replacing virgin materials with waste materials, a practice known as Industrial Symbiosis (IS), has been identified as a key strategy for closing material loops. This article adopts a critical view on geographic proximity and external coordinators – two key enablers of IS. By ‘uncovering’ a case ...... for geographic proximity and external coordinators. In doing so, our insights into firm-level challenges of long-distance IS exchanges contribute to closing global material loops by increasing the number of potential circular pathways....

  11. Materials characterization techniques

    National Research Council Canada - National Science Library

    Zhang, Sam; Li, L; Kumar, Ashok

    2009-01-01

    "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization...

  12. Flexible Material Systems Testing

    Science.gov (United States)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  13. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  14. Materials development for TESOL

    CERN Document Server

    Mishan, Freda

    2015-01-01

    Materials development has become much more important in the field of TESOL in the last twenty years: modules on materials development are now commonplace on MA TESOL courses around the world. The overall aim of the book is to introduce readers to a wide range of theoretical and practical issues in materials development to enable them to make informed and principled choices in the selection, evaluation, adaptation and production of materials. The book aims to show how these choices need to be informed by an awareness of culture, context and purpose.

  15. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  16. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  17. Frontiers in Magnetic Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Magnetic Materials focuses on the current achievements and state-of-the-art advancements in magnetic materials. Several lines of development- High-Tc Superconductivity, Nanotechnology and refined experimental techniques among them – raised knowledge and interest in magnetic materials remarkably. The book comprises 24 chapters on the most relevant topics written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students.

  18. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  19. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  20. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  1. Mechanics of materials model

    Science.gov (United States)

    Meister, Jeffrey P.

    1987-01-01

    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  2. [Materials for construction sector].

    Science.gov (United States)

    Macchia, C

    2012-01-01

    The construction sector is characterized by high complexity due to several factors. There are a lot of processes within the building sites and they need the use of different materials with the help of appropriate technologies. Traditional materials have evolved and diversified, meanwhile new products and materials appeared and still appear, offering services which meet user needs, but that often involve risks to the health of workers. Research in the field of materials, promoted and carried out at various levels, has led to interesting results, encoded in the form of rules and laws.

  3. Is the materialization of architecture necessarily material?

    Directory of Open Access Journals (Sweden)

    Čarapić Ana

    2008-01-01

    Full Text Available Architectural dematerialization process has started in the first half of the previous century, and has intensively developed at the beginning of this one. Architectural form decomposition on homo­geneous envelope and dependent internal structure, affect on façade materials to liberate from the ballast of supported role, and to gain the privilege to be the main holder of symbolic and sensual dimension. Therefore, on semantic level, they became primary driving force of dematerialization of form, and architecture in the whole. With new technological development, continuity in 'relieving' of matter has been brought to the extreme. Striving for complete liberty of conventional firmness and stability (in functional and phenomenal mode architecture take over the efemer 'week' substances from nature: water, air light, sound, and turn them in it's proper frame. Therefore, the general thesis of this paper is the absurd of architectural materialization with it's on demateriality. Being brought to the turning point, this absurd transforms both architecture (as artificial matter as well as nature itself. The goal of this paper is to predicate principles of material, formal and architectural genesis, in relation to the theoretical sources, as well as by examples of two developed constructions (pavilion 'Blur building' by Diller & Skofidio, and 'Tower of sound' by Toyo Ito.

  4. Molecules to Materials

    Indian Academy of Sciences (India)

    history of materials. T P Radhakrishnan. With the advent of modern physics and chemistry, fundamentally new types of materials have been created in this century. Various types of forces ... The growth of the electronic industry, propelled primarily by the advances in .... another fashion, if one so desires. The extra handle that ...

  5. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    can potentially be optimized to create capacitors with unprecedented energy density. 14. SUBJECT TERMS capacitor , supercapacitor, super ... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...EDLC and far above ceramic capacitors , after [5] ............................................9 Table 3. Super Dielectric Material Capacitors from

  6. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  7. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  8. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  9. Light as experiential material

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve

    2013-01-01

    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education.......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which we can approach the experience and design of architectural lighting in research and education....

  10. Light as experiential material

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin

    2013-01-01

    'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education......'Light as experiential material' is concerned with the development of a psychophysical method of investigation, by which the experience and design of architectural lighting can be approached in research and education...

  11. Detecting Illicit Nuclear Materials

    International Nuclear Information System (INIS)

    Kouzes, Richard T.

    2005-01-01

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide

  12. Social character of materialism.

    Science.gov (United States)

    Chatterjee, A; Hunt, J M; Kernan, J B

    2000-06-01

    Scores for 170 undergraduates on Richins and Dawson's Materialism scale were correlated with scores on Kassarjian's Social Preference Scale, designed to measure individuals' character structure. A correlation of .26 between materialism and other-directed social character suggested that an externally oriented reference system guides materialists' perceptions, judgments, acquisitions, and possessions.

  13. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  14. Chemistry of Materials

    Indian Academy of Sciences (India)

    I am really glad to have this opportunity to write to you, specially about a subject in which I have worked for half a century. When I was your age, if somebody had told me that I would be working in chemistry of materials most of my life, I would not have believed it. At that time, chemistry of materials meant studying something.

  15. Between material and ideas

    DEFF Research Database (Denmark)

    Dahlstedt, Palle

    2012-01-01

    between a dynamic concept and the changing material form of the work. Combining ideas, tools, material and memory, creativity is described as a coherent, dynamic, and iterative process that navigates the space of the chosen medium, guided by the tools at hand, and by the continuously revised ideas...

  16. Material model for wood

    NARCIS (Netherlands)

    Sandhaas, C.; Van de Kuilen, J.W.G.

    2013-01-01

    Wood is highly anisotropic and shows ductile behaviour in compression and brittle behaviour in tension and shear where both failure modes can occur simultaneously. A 3D material model for wood based on the concepts of continuum damage mechanics was developed. A material subroutine containing the

  17. The Computational Materials Repository

    DEFF Research Database (Denmark)

    Landis, David D.; Hummelshøj, Jens S.; Nestorov, Svetlozar

    2012-01-01

    The possibilities for designing new materials based on quantum physics calculations are rapidly growing, but these design efforts lead to a significant increase in the amount of computational data created. The Computational Materials Repository (CMR) addresses this data challenge and provides...... a software infrastructure that supports the collection, storage, retrieval, analysis, and sharing of data produced by many electronic-structure simulators....

  18. Materials testing 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The following subjects were dealt with at the meeting: Testing with vibration loads; Hardness testing; Calibration of test devices and equipment; Test technique for compound materials; Vibration strength testing and expense of experiments; Solving problems in introducing forces into samples and components and process of ambulant materials testing. There are 17 separate abstracts from among 43 lectures. (orig./PW) [de

  19. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    In this feature essay, Ninna Meier reflects on the materiality of the writing – and re-writing – process in academic research. She explores the ways in which our ever-accummulating thoughts come to form layers on the material objects in which we write our notes and discusses the pleasures of co-authorship....

  20. Materials modified by irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2007-01-01

    Application of radiation in pharmaceutical sciences and cosmetology, polymer materials, food industry, environment, health camre products and packing production is described. Nano-technology is described more detailed, because it is less known as irradiation using technology. Economic influence of the irradiation on the materials value addition is shown

  1. Material Tracking Using LANMAS

    International Nuclear Information System (INIS)

    Armstrong, F.

    2010-01-01

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

  2. Laser processing of materials

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    minimal collateral thermal damage over conventional tissue welding. 7.6 Summary and future scope. Laser joining is one of the earliest recorded applications of laser material processing. That laser can heat a material irrespective of its chemistry, state, bonding or size/geometry, is obviously a big advantage in joining a ...

  3. Structural and Material Instability

    DEFF Research Database (Denmark)

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three...

  4. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  5. Designing Material Materialising Design

    DEFF Research Database (Denmark)

    Nicholas, Paul

    2013-01-01

    Designing Material Materialising Design documents five projects developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts, School of Architecture. These projects explore the idea that new designed materials might require new design methods...

  6. Radioactivity in building materials

    International Nuclear Information System (INIS)

    1985-01-01

    The present report, drawn up at the request of the former Minister of Public Health and Environmental Affairs of the Netherlands, discusses the potential radiological consequences for the population of the Netherlands of using waste materials as building materials in housing construction. (Auth.)

  7. Mechanical meta-materials

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2016-01-01

    The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed

  8. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  9. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  10. Materials and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The focus of the Materials and Nanotechnology Program is technology development related to processing, analysis, testing and characterization of materials in general. These are achieved through execution of R&D projects in engineering and materials science, cooperative projects with private and public sector companies, universities and other research institutes. Besides technology development, this Program also fosters training and human resource development in association with the University of São Paulo and many industrial sectors. This Program is divided into sub-programs in broad areas such as ceramic, composite and metallic materials as well as characterization of physical and chemical properties of materials. The sub-programs are further divided into general topics and within each topic, R&D projects. A brief description of progress in each topic during the last three years follows. (author)

  11. Of 'other' materialities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    within the ‘new materiality’ literature in philosophy as well as in cultural theory. Important lessons are drawn in from across different positions such as non-representational theory, the nonhuman turn, Object-Oriented-Ontology to mention a few. It is argued that to create the necessary materially......In this article, the notion of materialities is rearticulated as an important field for the future of mobilities research. We focus on the intersection between situational mobilities research and design/architecture. The vocabulary and material imaginary developed within the latter are an important...... sensitive imaginary, mobilities research should be looking to architecture and design, as well as it may profit from engaging with these new materially sensitive thinkers. The article ends with some concrete themes for future research inspired by these intersections and identifies ‘material pragmatism...

  12. Materials and nanotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The focus of the Materials and Nanotechnology Program is technology development related to processing, analysis, testing and characterization of materials in general. These are achieved through execution of R&D projects in engineering and materials science, cooperative projects with private and public sector companies, universities and other research institutes. Besides technology development, this Program also fosters training and human resource development in association with the University of São Paulo and many industrial sectors. This Program is divided into sub-programs in broad areas such as ceramic, composite and metallic materials as well as characterization of physical and chemical properties of materials. The sub-programs are further divided into general topics and within each topic, R&D projects. A brief description of progress in each topic during the last three years follows. (author)

  13. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  14. Articulating Material Criteria

    DEFF Research Database (Denmark)

    Hasling, Karen Marie

    2013-01-01

    This paper discusses the experiences and potentials with materials teaching at the Institute for Product Design at Kolding School of Design, using materials teaching as experiments in my PhD project. The project intents to create a stronger material awareness among product design students...... with emphasis on sustainability. The experiments aim to develop an understanding of, how product design students include materials in their design practice and how tools can be developed that further enhance this. Hence experiments are essential for the progress of the PhD project as they help to observe....... Furthermore the purpose is to initiate a discussion on, how to create educational tools for material awareness creation in the design education e.g. by applying objective and quantitative methods in an otherwise often subjective design process....

  15. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  16. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  17. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  18. Materials of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  19. Security of material

    International Nuclear Information System (INIS)

    Nilsson, A.

    2001-01-01

    Full text: From the early days of discovery and experimentation with nuclear science, nuclear and radioactive materials have held extraordinary potential for being of great benefit to humankind, as well as for causing significant harm. For the past forty years, the IAEA has played an important role in ensuring that nuclear technologies and materials are used only for peaceful purposes. The Agency's safeguards programme has been providing assurances that States honour their undertakings to use nuclear facilities and materials for peaceful purposes only. The potential of nuclear materials and other radioactive materials being used in subversive activities, such as theft, illicit trafficking, sabotage and threats thereof, has been recognized by the international community. The tragic events in New York have given new light to and increased concern for this potential. No target may be considered immune from terrorism. Since 1993, States have confirmed over 370 cases of illicit trafficking. Information is also available on potential attempts of and actual acts of sabotage. For any State, the first step in ensuring the security of their materials is an effective national system. Such a system must contain multiple elements, including physical protection measures, material accountability arrangements, reliable detection capabilities, and plans for rapid and effective response when material is found to be lost, stolen or otherwise not under proper control. The system must also cover illegal waste dumping and other activities that would result in the release of radioactive material into the environment. All these measures should be based on well founded legal and regulatory structures. In many cases, the responsibility for these various elements lies with different bodies, and co-operation between them is vital to the success of the national system. The Agency's programme Security of Material aims at being of service to States in their efforts to upgrade their security

  20. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  1. Materials at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory

  2. NSUF Irradiated Materials Library

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  3. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  4. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  5. Critical properties of a ferroelectric superlattice described by a transverse spin-1/2 Ising model

    International Nuclear Information System (INIS)

    Tabyaoui, A; Saber, M; Baerner, K; Ainane, A

    2007-01-01

    The phase transition properties of a ferroelectric superlattice with two alternating layers A and B described by a transverse spin-1/2 Ising model have been investigated using the effective field theory within a probability distribution technique that accounts for the self spin correlation functions. The Curie temperature T c , polarization and susceptibility have been obtained. The effects of the transverse field and the ferroelectric and antiferroelectric interfacial coupling strength between two ferroelectric materials are discussed. They relate to the physical properties of antiferroelectric/ferroelectric superlattices

  6. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  7. Multifunctional materials and modeling

    CERN Document Server

    Korepanov, M A; Zaikov, Gennady E; Haghi, A K

    2015-01-01

    This important book presents a valuable collection of new research and new trends in nanomaterials, mesoscopy, quantum chemistry, and chemical physics processes. It highlights the development of nanomaterials as well as investigation of combustion and explosion processes. It highlights new trends in processes and methods of the treatment of polymeric materials and also covers material modification, including super small quantities of metal/carbon nanocomposites as well as new information on the modeling of processes and quantum calculations. Nonlinear kinetic appearances and their applications are highlighted as well. The chapters are divided into three major sections: computational modeling, surface and interface investigations, and nanochemistry, nanomaterials, and nanostructured materials.

  8. Materials for Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří

    2013-01-01

    Roč. 53, č. 2 (2013), s. 197-212 ISSN 1210-2709. [Symposium on Plasma Physics and Technology/25./. Praha, 18.06.2012-21.06.2012] R&D Projects: GA ČR(CZ) GAP108/12/1872; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : nuclear fusion * materials * plasma facing components * plasma-material interaction * functionally graded materials Subject RIV: BL - Plasma and Gas Discharge Physics http://ctn.cvut.cz/ap/download.php?id=797

  9. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  10. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2003-01-01

    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  11. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin

    2016-01-01

    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  12. Material control evaluation

    International Nuclear Information System (INIS)

    Waddoups, I.G.; Anspach, D.A.; Abbott, J.A.

    1993-01-01

    Changes in the Department of Energy's (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel

  13. Investigating Encrypted Material

    Science.gov (United States)

    McGrath, Niall; Gladyshev, Pavel; Kechadi, Tahar; Carthy, Joe

    When encrypted material is discovered during a digital investigation and the investigator cannot decrypt the material then s/he is faced with the problem of how to determine the evidential value of the material. This research is proposing a methodology of extracting probative value from the encrypted file of a hybrid cryptosystem. The methodology also incorporates a technique for locating the original plaintext file. Since child pornography (KP) images and terrorist related information (TI) are transmitted in encrypted format the digital investigator must ask the question Cui Bono? - who benefits or who is the recipient? By doing this the scope of the digital investigation can be extended to reveal the intended recipient.

  14. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  15. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  16. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

    2005-07-01

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  17. Phase-change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  18. The Materiality of Learning

    DEFF Research Database (Denmark)

    Sørensen, Estrid

    The field of educational research lacks a methodology for the study of learning that does not begin with humans, their aims, and their interests. The Materiality of Learning seeks to overcome this human-centered mentality by developing a novel spatial approach to the materiality of learning...... or postgraduate students interested in a variety of fields, including educational studies, educational psychology, social anthropology, and STS. Original ethnographic descriptions showing the fine details of how materials influence the learning process Introduces the advanced and complex Actor-Network Theory...... to the educational field, clarified for the reader through detailed ethnographic descriptions The approach to the ‘materiality of learning' is summed up and explained in six boxes throughout the book...

  19. Mechanics of moving materials

    CERN Document Server

    Banichuk, Nikolay; Neittaanmäki, Pekka; Saksa, Tytti; Tuovinen, Tero

    2014-01-01

    This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials.   The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches.  Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters.   The book is intended for researchers and specialists in the field, providin...

  20. Fissile material proliferation risk

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The proliferation risk of a facility depends on the material attractiveness, level of safeguards, and physical protection applied to the material in conjunction with an assessment of the impact of the socioeconomic circumstances and threat environment. Proliferation risk is a complementary extension of proliferation resistance. The authors believe a better determination of nuclear proliferation can be achieved by establishing the proliferation risk for facilities that contain nuclear material. Developing a method that incorporates the socioeconomic circumstances and threat environment inherent to each country enables a global proliferation assessment. To effectively reduce the nuclear danger, a broadly based set of criteria is needed that provides the capability to relatively assess a wide range of nuclear related sites and facilities in different countries and still ensure a global decrease in proliferation risk for fissile material (plutonium and highly enriched uranium)

  1. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  2. Materials Test Station

    Data.gov (United States)

    Federal Laboratory Consortium — When completed, the Materials Test Station at the Los Alamos Neutron Science Center will meet mission need. MTS will provide the only fast-reactor-like irradiation...

  3. Active Materials Characterization Laboratory

    National Research Council Canada - National Science Library

    Lagoudas, Dimitris

    2001-01-01

    The Active Materials Laboratory has recently acquired upgraded and new equipment made possible by the AFOSR in the form of a research grant as a part of the Defense University Research Instrumentation Program...

  4. High Performance Macromolecular Materials

    National Research Council Canada - National Science Library

    Forest, M. G; Choate, Eric; Zheng, Xiaoyu; Zhou, Ruhai; Cui, Zhenlu; Zhou, Hong

    2006-01-01

    ... property characterization. The materials considered are nano-rods and nano-clays in aqueous and polymeric solvents, which are flight technology targets for high performance properties ranging from electrical, thermal...

  5. Educational Materials - Burn Wise

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  6. Objects, materiality and meaning

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Lindegaard, Hanne

    2008-01-01

    The present research work investigates the relation between physical objects, their materiality, understood as the physical substances they are made from, and the communication from the objects. In product design of physical objects the communicative aspects are just as important as the function...... of the object, and the designers aim is therefore to tune both in order to achieve a desired goal. To do so the designer basically has 2 options: Alteration of the physical shape of the object and the selection of materials. Through the manipulation of shape and materials can symbolic and sensory information...... be written into the object. The materials are therefore carriers of communication, even though this is dependent of the cultural context and the environment which the object will be part of. However the designer has only minor influence on those....

  7. The materialization of fear

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    Perhaps more than ever before Western societies are shaped by powerful imaginaries of terror, security treats and the politics of fear. Copenhagen, while often perceived as a liberal and ‘walkable city’, is no exception. With little public involvement or democratic participation, recent political...... to matter in ways not simply reducible to security optimization, risk management and symbolic politics? To reach this aim, I draw on material studies, mobilities design and non-representational theories to provide a rich socio-material tale of how granite stones, bollards and other counter......-terrorist materials contribute to the construction and ‘feel’ of contemporary urban tourism. How do such prominent material designs influence, both affectively, practically and emotionally, tourists? How are they re-appropriated and imbued with (inter)subjective meanings, and how may a richer understanding of how...

  8. Materials Genome Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop computational tools to assist in the manufacture, design and certification of new materials and processes. These tools will reduce the time and costs to...

  9. Advanced EDL Materials (AEDLM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Via the exploration of alternate resins and substrate materials for ablative TPS, and the development of new high heat flux resistant flexible TPS systems, we intend...

  10. Biological Responses to Materials

    Science.gov (United States)

    Anderson, James M.

    2001-08-01

    All materials intended for application in humans as biomaterials, medical devices, or prostheses undergo tissue responses when implanted into living tissue. This review first describes fundamental aspects of tissue responses to materials, which are commonly described as the tissue response continuum. These actions involve fundamental aspects of tissue responses including injury, inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the biomaterial, medical device, or prosthesis. The second part of this review describes the in vivo evaluation of tissue responses to biomaterials, medical devices, and prostheses to determine intended performance characteristics and safety or biocompatibility considerations. While fundamental aspects of tissue responses to materials are important from research and development perspectives, the in vivo evaluation of tissue responses to these materials is important for performance, safety, and regulatory reasons.

  11. Handling Hazardous Materials.

    Science.gov (United States)

    Piper, James; Piverotto, John

    1990-01-01

    Describes a 16-hour course in hazard communication for vocational instructors, which teaches the proper use, storage, and disposal of hazardous materials in the laboratory as well as techniques for teaching safety. (SK)

  12. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  13. Materials research at CMAM

    International Nuclear Information System (INIS)

    Zucchiatti, Alessandro

    2013-01-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming

  14. Evaluation of learning materials

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe; Hansen, Thomas Illum

    2011-01-01

    This paper presents a holistic framework for evaluating learning materials and designs for learning. A holistic evaluation comprises investigations of the potential learning potential, the actualized learning potential, and the actual learning. Each aspect is explained and exemplified through...

  15. Material Religion - Hinduism

    DEFF Research Database (Denmark)

    Aktor, Mikael

    2017-01-01

    Comprehensive bibliography on material religion in Hinduism. Monographs, anthologies, anthology chapters, journal articles, web articles, documentation on cultic elements of the landscape (mountains, rivers, trees, stones), three- and two-dimensional cultic artefacts, textiles, ritual accessories...

  16. New Materials Design

    National Research Council Canada - National Science Library

    Voth, Gregory

    1999-01-01

    Progress has been made on several projects under the Challenge Project award. In the area of high energy density materials, calculations are under way on Al atoms embedded in clusters of H2 molecule...

  17. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  18. Materials Sciences Programs

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. (GHT)

  19. Advanced materials-2005

    International Nuclear Information System (INIS)

    Farooque, M.; Rizvi, S.A.; Mirza, J.A.

    2005-01-01

    The 9. International Symposium on Advanced Materials (ISAM) was held from 19-22 September, 2005. This popular biennial event is one of the prime international forums in South Asia where material scientists and engineers can keep abreast with recent technologies involving advanced structural and functional materials. The technical committee of ISAM received 213 papers, 49 from abroad 164 from within the country. These papers were submitted in response to five important topics; i) Processing, Production and Developments, ii) Surface Engineering, iii) Phase Transformation and Characterization, iv) Advances in Magnetic Materials and v) Reliability and Life Assessment. The proceedings of the 9. ISAM consists of 108 reviewed papers. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers, and researchers. (A.B.)

  20. Materials engineering data base

    Science.gov (United States)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  1. Material and Virtuality

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    world and a physical world can interchange. The paper suggest an approach where an overlapping of virtuality and the tangible material output from digital fabrication machines create a method of using materialisation tools as instruments to connect the reality of materials and to an exploring process....... In this paper investigations in sheet steel form a substance of concrete experiments. The experiments set up shuttling processes in between different domains. Through those processes connections and intermingling between information from digital drawing and materiality is created. The dialogues established...... through these experiments is both tangible and directly connected to real actions in digital drawing or material processing but also the base for theoretical contemplations of the relation between virtual and actual and control and uncertainty....

  2. Materials research at CMAM

    Energy Technology Data Exchange (ETDEWEB)

    Zucchiatti, Alessandro [Centro de Micro Analisis de Materiales CMAM, Universidad Autonoma de Madrid, c/ Faraday 3, 28049 Madrid (Spain)

    2013-07-18

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  3. Guest Editorial - Smart materials

    Czech Academy of Sciences Publication Activity Database

    Barber, Z. H.; Clyne, T. W.; Šittner, Petr

    2014-01-01

    Roč. 30, 13a (2014), s. 1515-1516 ISSN 0267-0836 Institutional support: RVO:68378271 Keywords : smart materials * shape memory effect ( SME ) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.995, year: 2014

  4. Materials research at CMAM

    Science.gov (United States)

    Zucchiatti, Alessandro

    2013-07-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  5. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  6. Radioactive Material Containment Bags

    National Research Council Canada - National Science Library

    2000-01-01

    The audit was requested by Senator Joseph I. Lieberman based on allegations made by a contractor, Defense Apparel Services, about the Navy's actions on three contracts for radioactive material containment bags...

  7. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  8. Authentic Material 2.

    Science.gov (United States)

    Beeching, Kate

    1982-01-01

    Discusses techniques for the exploitation of authentic material, with reference to the self-instruction manual, designed for highly literate, undergraduate students, which accompanies the BBC course "Allez France." (EKN)

  9. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  10. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  11. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM...

  12. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  13. Nuclear material operations manual

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  14. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  15. Construction and material specification

    Science.gov (United States)

    2002-01-01

    These Construction and Material Specifications are written to the Bidder before award of the : Contract and to the Contractor after award of the Contract. The sentences that direct the Contractor to perform Work are written as commands. For example, ...

  16. Calibration of thermoluminiscent materials

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1989-07-01

    In this report the relation between exposure and absorbed radiation dose in various materials is represented, on the base of recent data. With the help of this a calibration procedure for thermoluminescent materials, adapted to the IRI radiation standard is still the exposure in rontgen. In switching to the air kerma standard the calibration procedure will have to be adapted. (author). 6 refs.; 4 tabs

  17. Fusion reactor materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Data are given for each of the following areas: (1) depth distribution of bubbles in 20-keV 4 He + irradiated nickel, (2) surface damage of Al irradiated with 4 He + to high doses, (3) secondary photon emission from ion bombarded surfaces, (4) dosimetry and damage analysis work in support of the MFE materials program, (5) hydrogen permeation and materials behavior in alloys, (6) radiation damage of diagnostic windows in TFTR, and (7) fast neutron irradiations of superconducting Nb 3 Sn

  18. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  19. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  20. Beam-Material Interaction

    CERN Document Server

    Mokhov, N.V.

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  1. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  2. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  3. Noise Abatement Materials

    Science.gov (United States)

    1986-01-01

    A former NASA employee who discovered a kind of plastic that soaked up energy, dampened vibrations, and was a good noise abatement material, founded a company to market noise deadening adhesives, sheets, panels and enclosures. Known as SMART products, they are 75-80% lighter than ordinary soundproofing material and have demonstrated a high degree of effectiveness. The company, Varian Associates, makes enclosures for high voltage terminals and other electronic system components, and easily transportable audiometric test booths.

  4. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  5. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  6. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  7. Architects and Materials

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    . One of the reasons the digital drawing has become essential is clearly because of the level of interchange and versatility it provides. However, this is also where much capacity is still left unexplored and unused. Digital material has enormous potential to intermingle with the world, in which we live...... and for which architecture is created. Through the interface of digital drawing, data can feed into digital production, linking the architect directly to the materials. Drawing can morph directly into materialisation instead of representation....

  8. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  9. Teaching materials physics

    International Nuclear Information System (INIS)

    Quere, Y.

    1997-01-01

    The important role of materials and their behaviour under radiation exposure, for nuclear research and industry, is pointed out, and the development of nuclear applied metallurgy research at the Cea and in French Universities is reviewed. The teaching policy at the Cea in the field of materials science involved four action types: laboratory courses and theses, teaching outside and inside the Cea, summer schools, which allowed for a synergetic cooperation between the Cea, Universities and research centers, since the 50's

  10. Food Packaging Materials

    Science.gov (United States)

    1978-01-01

    The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.

  11. LDEF materials data bases

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  12. Radiosterilization of thermolabile material

    Science.gov (United States)

    Miranda, J. Fernandez; Serra, R.

    A methodology for radiosterilizing thermolabile material for biomedical use was established in Cuba. The material is packed with double nylon wrapping, and then hermetically sealed in order to assure that there is a minimal amount of air inside. In order to establish the conditions for radiosterilization of the material, irradiation tests were conducted in batches of nylon for sterile-product packing and batches of surgical instruments. The total count of microorganisms prior to batch irradiation was always below 10 3 CFU per sample. The evaluations of the doses needed for sterilization were carried out with a program pack designed by our Laboratory. The optimum sterilization dose for the processed thermolabile material was 8 kGy with a security factor of 2. Using the irradiation methodology described in this paper, non-reusable plastic syringes, flasks and plates for different types of cellular structures were radiosterilized. The value of optimum sterilization dose proved to be efficient for all treated material; no contamination of any of the processed material was reported.

  13. Nuclear Material Management Abstract

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    Nevada Test Site (NTS) has transitioned from its historical and critical role of weapons testing to another critical role for the nation. This new role focuses on being a integral element in solving the multiple challenges facing the National Nuclear Security Administration (NNSA) with nuclear material management. NTS is positioned to be a solution for other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to consolidate and modernize the production complex . With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through disposition and consolidation. This includes moving material from other sites to NTS. State of the art nuclear material management and control practices at NTS are essential for NTS to ensure that assigned activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS activities and challenges will be addressed

  14. Tribological comparison of materials

    Science.gov (United States)

    Shi, Bing

    Approximately 600,000 total joint replacement surgeries are performed each year in the United States. Current artificial joint implants are mainly metal-on-plastic. The synthetic biomaterials undergo degradation through fatigue and corrosive wear from load-bearing and the aqueous ionic environment of the human body. Deposits of inorganic salts can scratch weight-bearing surfaces, making artificial joints stiff and awkward. The excessive wear debris from polyethylene leads to osteolysis and potential loosening of the prosthesis. The lifetime for well-designed artificial joints is at most 10 to 15 years. A patient can usually have two total joint replacements during her/his lifetime. Durability is limited by the body's reaction to wear debris of the artificial joints. Wear of the artificial joints should be reduced. A focus of this thesis is the tribological performance of bearing materials for Total Replacement Artificial Joints (TRAJ). An additional focus is the scaffolds for cell growth from both a tissue engineering and tribological perspective. The tribological properties of materials including Diamond-like Carbon (DLC) coated materials were tested for TRAJ implants. The DLC coatings are chemically inert, impervious to acid and saline media, and are mechanically hard. Carbon-based materials are highly biocompatible. A new alternative to total joints implantation is tissue engineering. Tissue engineering is the replacement of living tissue with tissue that is designed and constructed to meet the needs of the individual patient. Cells were cultured onto the artificial materials, including metals, ceramics, and polymers, and the frictional properties of these materials were investigated to develop a synthetic alternative to orthopedic transplants. Results showed that DLC coated materials had low friction and wear, which are desirable tribological properties for artificial joint material. Cells grew on some of the artificial matrix materials, depending on the

  15. Electrocaloric effect and luminescence properties of lanthanide doped (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3} lead free materials

    Energy Technology Data Exchange (ETDEWEB)

    Zannen, M. [Institute for Materials and Surface Technology, University of Applied Sciences, Kiel D-24149 (Germany); Ferroelectric Materials Laboratory (LMF), LR Physics-Mathematics and Applications, Faculty of Sciences of Sfax (FSS), University of Sfax, Street Soukra km 3.5 BP 1171, 3000 Sfax (Tunisia); Lahmar, A., E-mail: abdel.ilah.lahmar@u-picardie.fr, E-mail: zdravko.kutnjak@ijs.si [Institute for Materials and Surface Technology, University of Applied Sciences, Kiel D-24149 (Germany); Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France); Asbani, B.; El Marssi, M. [Laboratory of Physics of Condensed Matter (LPMC), University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France); Khemakhem, H. [Ferroelectric Materials Laboratory (LMF), LR Physics-Mathematics and Applications, Faculty of Sciences of Sfax (FSS), University of Sfax, Street Soukra km 3.5 BP 1171, 3000 Sfax (Tunisia); Kutnjak, Z., E-mail: abdel.ilah.lahmar@u-picardie.fr, E-mail: zdravko.kutnjak@ijs.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Es Souni, M. [Institute for Materials and Surface Technology, University of Applied Sciences, Kiel D-24149 (Germany)

    2015-07-20

    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE{sup 3+} ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  16. BUILDING MATERIALS RECLAMATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  17. Building Materials Reclamation Program

    International Nuclear Information System (INIS)

    Weggel, David C.; Chen, Shen-En; Hilger, Helene; Besnard, Fabien; Cavalline, Tara; Tempest, Brett; Alvey, Adam; Grimmer, Madeleine; Turner, Rebecca

    2011-01-01

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C and D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C and D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C and D materials. Table 1 summarizes the six subprojects, including the C and D material studied and the graduate student and the faculty advisor on each subproject.

  18. Alternative geochemical barrier materials

    International Nuclear Information System (INIS)

    1991-07-01

    Previous investigations of the effects of neutralization and reduction on uranium mill tailings pore fluids by the Technical Support Contractor indicated that arsenic, selenium, and molybdenum continue to remain in solution in all but reducing conditions. These hazardous constituents are present in groundwaters as oxyanions and, therefore, are not expected to be removed by adsorption into clays and most other soil constituents. It was decided to investigate the attenuation capacity of two commonly available crystalline iron oxides, taconite and scoria, and a zeolite, a network aluminosilicate with a cage structure. Columns of the candidate materials were exposed to solutions of individual constituents, including arsenic, molybdenum, selenium, and, uranium, and to the spiked tailings pore fluid from the Bodo Canyon disposal cell near Durango, Colorado. In addition to the single material columns, a homogeneous blend of the three materials and layers of the materials were exposed to spiked tailings pore fluids. The results of these experiments indicate that with the exception of molybdenum, the constituents of concern are attenuated by the taconite; however, they are not sufficiently attenuated to meet the groundwater protection standards applicable to the UMTRA Project. Therefore, the candidate barrier materials did not prove to be useful to the UMTRA Project for the cleanup of groundwaters

  19. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  20. Nanostructured materials in potentiometry.

    Science.gov (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  1. Hysteresis in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    von Moos, Lars

    In this thesis the effects of hysteresis on magnetocaloric material properties and their performance in magnetic refrigeration devices are investigated. This is done through an experimental and model study of first order magnetocaloric materials MnFe(P,As) and Gd5Si2Ge2. The experimental characte......In this thesis the effects of hysteresis on magnetocaloric material properties and their performance in magnetic refrigeration devices are investigated. This is done through an experimental and model study of first order magnetocaloric materials MnFe(P,As) and Gd5Si2Ge2. The experimental...... cases. The Gd5Si2Ge2 model is based on detailed first order reversal curve data, taking both reversible and irreversible properties into account, and is able to reproduce a series of independent experimental results. The Preisach models are applied to simulate material behavior under realistic...... set points, which is demonstrated to induce partial hysteresis loop behavior that will generally underestimate thermal hysteresis. Furthermore it is shown that care should be taken in non-isofield type experiments, as is the case for direct MCE experiments. Measuring the temperature dependence...

  2. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  3. EDITORIAL: Electroactive polymer materials

    Science.gov (United States)

    Bar-Cohen, Yoseph; Kim, Kwang J.; Ryeol Choi, Hyouk; Madden, John D. W.

    2007-04-01

    Imitating nature's mechanisms offers enormous potential for the improvement of our lives and the tools we use. This field of the study and imitation of, and inspiration from, nature's methods, designs and processes is known as biomimetics. Artificial muscles, i.e. electroactive polymers (EAPs), are one of the emerging technologies enabling biomimetics. Polymers that can be stimulated to change shape or size have been known for many years. The activation mechanisms of such polymers include electrical, chemical, pneumatic, optical and magnetic. Electrical excitation is one of the most attractive stimulators able to produce elastic deformation in polymers. The convenience and practicality of electrical stimulation and the continual improvement in capabilities make EAP materials some of the most attractive among activatable polymers (Bar-Cohen Y (ed) 2004 Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges 2nd edn, vol PM136 (Bellingham, WA: SPIE Press) pp 1-765). As polymers, EAP materials offer many appealing characteristics that include low weight, fracture tolerance and pliability. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored to suit a broad range of requirements. These capabilities and the significant change of shape or size under electrical stimulation while being able to endure many cycles of actuation are inspiring many potential possibilities for EAP materials among engineers and scientists in many different disciplines. Practitioners in biomimetics are particularly excited about these materials since they can be used to mimic the movements of animals and insects. Potentially, mechanisms actuated by EAPs will enable engineers to create devices previously imaginable only in science fiction. For many years EAP materials received relatively little attention due to their poor actuation capability and the small number of available materials. In the last fifteen

  4. Material Testing Device

    Science.gov (United States)

    1993-01-01

    Small Business Innovation Research (SBIR) contracts led to two commercial instruments and a new subsidiary for Physical Sciences, Inc. (PSI). The FAST system, originally developed for testing the effect of space environment on materials, is now sold commercially for use in aging certification of materials intended for orbital operation. The Optical Temperature Monitor was designed for precise measurement of high temperatures on certain materials to be manufactured in space. The original research was extended to the development of a commercial instrument that measures and controls fuel gas temperatures in industrial boilers. PSI created PSI Environmental Instruments to market the system. The company also offers an Aerospace Measurement Service that has evolved from other SBIR contracts.

  5. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  6. Macrocyclic fragrance materials

    DEFF Research Database (Denmark)

    Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen

    2011-01-01

    A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a “group approach” is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds...... for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required....../L and for macrocyclic lactones/lactides is 2.7 μg/L. The results of this screening-level aquatic ecological risk assessment indicate that at their current tonnage, often referred to as volumes of use, macrocyclic fragrance materials in Europe and North America, pose a negligible risk to aquatic biota; with no PEC...

  7. Heat-resistant materials

    CERN Document Server

    1997-01-01

    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  8. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  9. Optimized nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  10. Nuclear material accounting handbook

    International Nuclear Information System (INIS)

    2008-01-01

    The handbook documents existing best practices and methods used to account for nuclear material and to prepare the required nuclear material accounting reports for submission to the IAEA. It provides a description of the processes and steps necessary for the establishment, implementation and maintenance of nuclear material accounting and control at the material balance area, facility and State levels, and defines the relevant terms. This handbook serves the needs of State personnel at various levels, including State authorities, facility operators and participants in training programmes. It can assist in developing and maintaining accounting systems which will support a State's ability to account for its nuclear material such that the IAEA can verify State declarations, and at the same time support the State's ability to ensure its nuclear security. In addition, the handbook is useful for IAEA staff, who is closely involved with nuclear material accounting. The handbook includes the steps and procedures a State needs to set up and maintain to provide assurance that it can account for its nuclear material and submit the prescribed nuclear material accounting reports defined in Section 1 and described in Sections 3 and 4 in terms of the relevant agreement(s), thereby enabling the IAEA to discharge its verification function as defined in Section 1 and described in Sections 3 and 4. The contents of the handbook are based on the model safeguards agreement and, where applicable, there will also be reference to the model additional protocol. As a State using The handbook consists of five sections. In Section 1, definitions or descriptions of terms used are provided in relation to where the IAEA applies safeguards or, for that matter, accounting for and control of nuclear material in a State. The IAEA's approach in applying safeguards in a State is also defined and briefly described, with special emphasis on verification. In Section 2, the obligations of the State

  11. Radiation shielding material

    International Nuclear Information System (INIS)

    Matsumoto, Akio; Isobe, Eiji.

    1976-01-01

    Purpose: To increase the shielding capacity of the radiation shielding material having an abundant flexibility. Constitution: A mat consisting of a lead or lead alloy fibrous material is covered with a cloth, and the two are made integral by sewing in a kilted fashion by using a yarn. Thereafter, the system is covered with a gas-tight film or sheet. The shielding material obtained in this way has, in addition to the above merits, advantages in that (1) it is free from restoration due to elasticity so that it can readily seal contaminants, (2) it can be used in a state consisting of a number of overlapped layers, (3) it fits the shoulder well and is readily portable and (4) it permits attachment of fasteners or the like. (Ikeda, J.)

  12. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  13. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  14. A new material practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul; Ramsgaard Thomsen, Mette

    2012-01-01

    The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding of the aggr...... of the aggregated behavior of matter in an environment. Advances in material science and in computational tools are creating new opportunities within architectural design. However, these approaches are challenging the current practices of design and representation.......The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding...

  15. Organic optoelectronic materials

    CERN Document Server

    Li, Yongfang

    2015-01-01

    This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

  16. Photoactive energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  17. A new material practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul; Ramsgaard Thomsen, Mette

    2012-01-01

    The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding of the aggr......The first generation of digital architecture was fascinated with the extension of digital possibilities into the physical world. Today, we are seeing the emergence of a new material practice. This practice is focusing on a design and production process that is seeking an understanding...... of the aggregated behavior of matter in an environment. Advances in material science and in computational tools are creating new opportunities within architectural design. However, these approaches are challenging the current practices of design and representation....

  18. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  19. MATERIAL CONTROL ACCOUNTING INMM

    Energy Technology Data Exchange (ETDEWEB)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  20. Lasers in Materials Processing

    Science.gov (United States)

    Kukreja, L. M.; Paul, C. P.; Kumar, Atul; Kaul, R.; Ganesh, P.; Rao, B. T.

    Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.

  1. 77 FR 58179 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2012-09-19

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of... materials SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard Nixon Presidential Library and Museum, a division of the National Archives and Records...

  2. 76 FR 35918 - Nixon Presidential Historical Materials; Opening of Materials

    Science.gov (United States)

    2011-06-20

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Nixon Presidential Historical Materials; Opening of... Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard Nixon Presidential Library and Museum, a division of the National Archives and Records...

  3. 75 FR 68384 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2010-11-05

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of... Materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard Nixon Presidential Library and Museum, a division of the National Archives and Records...

  4. 75 FR 30863 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2010-06-02

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of... materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard Nixon Presidential Library and Museum, a division of the National Archives and Records...

  5. 76 FR 27092 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2011-05-10

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of... materials. SUMMARY: This notice announces the opening of additional Nixon Presidential Historical Materials by the Richard Nixon Presidential Library and Museum, a division of the National Archives and Records...

  6. 76 FR 62856 - Nixon Presidential Historical Materials: Opening of Materials

    Science.gov (United States)

    2011-10-11

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION Nixon Presidential Historical Materials: Opening of... materials. SUMMARY: This notice announces the opening of Nixon Presidential Historical Materials by the Richard Nixon Presidential Library and Museum, a division of the National Archives and Records...

  7. Adhesive dental materials

    International Nuclear Information System (INIS)

    Unlu, N.

    2005-01-01

    Two main classes of material are involved, the glass-ionomer cements and the composite resins. This investigation describes the way they are bonded to the tooth and highlights their differences. Glass ionomers develop a zone of interaction with the tooth as they age which ultimately gives an extremely strong bond, and results in excellent retention rates. By contrast, bonding of composite resins is more complicated and possibly less effective, though these materials have better wear resistance and better aesthetics than glass ionomers. Assessment of bond durability is difficult. This is because a dental restorative can fail by a number of mechanisms apart from de bonding: for example, through wear or fracture

  8. Losses in Ferroelectric Materials

    Science.gov (United States)

    Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu

    2015-01-01

    Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy

  9. Thermal energy storage material

    Science.gov (United States)

    Leifer, Leslie

    1976-01-01

    A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

  10. Materiality, Practice and Body

    DEFF Research Database (Denmark)

    Johansen, Stine Liv; Skovbjerg-Karoff, Helle

    2009-01-01

    In order to understand the interaction between human and technology, the relationship must be emphasized as a triangulation between materiality, body and practice. By introducing play situations from a just finished empirical study in three bigger cities in Denmark, this paper will address...... the interplay from the human‟s point of view, as a body doing a certain practice, which is constantly produced by taking approaches which comes from phenomenology and practice theory. We introduce aspects of play understood as a dynamic between materiality, body and practice with the goal of inspiring not only...

  11. The materiality of Code

    DEFF Research Database (Denmark)

    Soon, Winnie

    2014-01-01

    , Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...

  12. Microstructure of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.

    1995-01-01

    The focus of the symposium was on the changes produced in the microstructure of metals, ceramics, and semiconductors by irradiation with energetic particles. the symposium brought together those working in the different material systems, which revealed that there are a remarkable number of similarities in the irradiation-produced microstructures in the different classes of materials. Experimental, computational and theoretical contributions were intermixed in all of the sessions. This provided an opportunity for these groups, which should interact, to do so. Separate abstracts were prepared for 58 papers in this book

  13. Lasers in materials processing

    International Nuclear Information System (INIS)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out

  14. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  15. Designing through Material

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2014-01-01

    as an opportunity to connect the digital environment with the reality of materials – and use realisation and materialisation to generate architectural developments and findings through an iterative mode of thinking about the dialogue between drawing, materials and fabrication. Consequently the interest and mind-set...... of architectural tools is indeed changing. Digital drawing and design tools have either replaced or supplemented sketching and drawing by hand. Alone however these new tools still – with Evans’s words – put the architects at the disadvantage of newer working directly with the object of their thoughts...

  16. Material control assessment procedure

    International Nuclear Information System (INIS)

    Adams, R.W.; Spogen, L.R.

    1977-06-01

    The material control system assessment procedure being developed by the Lawrence Livermore Laboratory for the U.S. Nuclear Regulatory Commission is reviewed. It consists of five major sections: Target Identification, Adversary Sequence and Simuli Generation, Material Control System Response Determination, Safeguard System Outcome Determination, and Safeguard System Utility Determination. When adopted, this procedure will reduce safeguards licensing problems by providing compatibility with future performance based regulations, explicit evaluation rules and requirements, well-defined trade-off structures, and user-oriented and systematic evaluation and design tools

  17. Automated nuclear materials accounting

    International Nuclear Information System (INIS)

    Pacak, P.; Moravec, J.

    1982-01-01

    An automated state system of accounting for nuclear materials data was established in Czechoslovakia in 1979. A file was compiled of 12 programs in the PL/1 language. The file is divided into four groups according to logical associations, namely programs for data input and checking, programs for handling the basic data file, programs for report outputs in the form of worksheets and magnetic tape records, and programs for book inventory listing, document inventory handling and materials balance listing. A similar automated system of nuclear fuel inventory for a light water reactor was introduced for internal purposes in the Institute of Nuclear Research (UJV). (H.S.)

  18. Reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Suzuki, K.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 3 offers a detailed treatment of the selection criteria and properties of reactor pressure vessel materials. The main attention is directed towards steel and ingot making and the subsequent material processing

  19. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  20. Structure - materials - production

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders; Gammel, Peder; Busch, Jens

    2002-01-01

    For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies.......For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies....

  1. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  2. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  3. Reference materials and measurement traceability

    International Nuclear Information System (INIS)

    Bingham, C.D.

    1980-01-01

    Nuclear materials safeguards within the U.S.A. are accomplished by the integration of activities involving physical protection, material control and material accountability. Material accountability requires both sound measurement technology and well-defined accounting procedures to provide final evidence that physical protection and materials control have achieved their purpose. 5 refs

  4. Materials Best Paper Award 2013

    OpenAIRE

    Ophelia Han; Maryam Tabrizian

    2013-01-01

    Materials is instituting an annual award to recognize the outstanding papers in the area of materials science and engineering published in Materials. We are pleased to announce the first “Materials Best Paper Award” for 2013. Nominations were selected by the Section Editor-in-Chiefs and Editorial Board members of Materials from all papers published in 2009.

  5. Supercapacitors specialities - Materials review

    Energy Technology Data Exchange (ETDEWEB)

    Obreja, Vasile V. N. [National Research and Development Institute for Microtechnologies (IMT-Bucuresti), Bucharest, 126A Erou Iancu Nicolae Street, 077190 (Romania)

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  6. Supercapacitors specialities - Materials review

    International Nuclear Information System (INIS)

    Obreja, Vasile V. N.

    2014-01-01

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  7. New Materialism: Interviews & Cartographies

    NARCIS (Netherlands)

    van der Tuin, I.; Dolphijn, R.

    2012-01-01

    This book is the first monograph on the theme of “new materialism,” an emerging trend in 21st century thought that has already left its mark in such fields as philosophy, cultural theory, feminism, science studies, and the arts. The first part of the book contains elaborate interviews with some of

  8. Materials research at NPS

    OpenAIRE

    McNelley, Terry R.; Hales, Stephen J.

    1987-01-01

    Metals are useful partly because they can bend permanently before they break, i.e. they can deform plastically. Metal plasticity is usually evaluated by measurement of the percentage elongation during tensile testing and the result is referred to as the ductility of the material. Ductility of structural metals is typically 10-50% at ambient temperature and perhaps attains 100% at elevated temperatures .

  9. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    Propellants used in rockets, pyrotechnics used in festivities, explosives used for military purposes, blasting chemicals used in construction activities, etc., are high energy materials. There is a lot of fascinating chemistry and interesting history behind them. This article gives an overview of these aspects, with somewhat more ...

  10. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    Propellants used in rockets, pyrotechnics used in festivities, explosives used for ... working of rockets, and the chemistry of fireworks. 1. Introduction. High energy materials are compounds which store chemical energy. They are either single compounds like trinitrotoluene. (TNT) containing .... ets stabilized by bamboo sticks.

  11. Material Induced Anisotropic Damage

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.; Hora, P.

    2012-01-01

    The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based

  12. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  13. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  14. RECON training materials

    International Nuclear Information System (INIS)

    This collection of materials for use in a DOE/RECON training session includes information about terminal commands, logging on, document availability, search strategy models, and some of the data bases available on DOE/RECON. An evaluation questionnaire is included

  15. upplementary material to:

    African Journals Online (AJOL)

    NICO

    C using CH3CN at r.t. upplementary material to: Z.N. Tetana, S.D. Mhlanga, G. Bepete, R.W.M. Krause and N.J. Coville, S. Afr. J. Chem., 2012, 65, 39–49. Page 2. 2. Figure S1b Diameter distributions of the purified N-MWCNTs grown at ...

  16. Complex Materials and Devices

    Science.gov (United States)

    2013-03-07

    Disruptive Basic Research Areas” – Metamaterials and Plasmonics – Quantum Information Science – Cognitive Neuroscience – Nanoscience and...function Complex Electronics and Fundamental Quantum Processes Complex engineered materials and devices Devices based on quantum phenomena...fundamental quantum processes Quantum Electronic Solids (Weinstock) Photonics and Optoelectronics (Pomrenke) GHz-THz Electronics (Hwang) Natural

  17. Magnetism, Nanosized Magnetic Materials

    Science.gov (United States)

    Miller, Joel S.; Drillon, Marc

    2002-01-01

    Magnetic behaviour, once thought to be mature, has gained a new momentum as it is being expanded by contributions from molecular chemistry, materials sciences to solid state physics. The spectrum spans molecule-based - organic, inorganic, and hybrid - compounds, metallic materials as well as their oxides forming, for example, thin films, nanoparticles, nanowires. New phenomena are explored that open promising perspectives for commercially applied "smart" materials. As a depository of contemporary knowledge on key topics related to magnetism, this open series of volumes provides a much-needed comprehensive overview of this growing interdisciplinary field. The topical reviews are written by the foremost scientists in the area, and the trends and recent advances are explained in a clear and detailed manner with a focus on the correlations between electronic structure and magnetic properties. The balance between theory and experiment within this series will guide advanced students and specialists in evaluating experimental observations and will serve as a basis for the design of new magnetic materials. This is a unique reference work, indispensable for everyone concerned with the phenomena of magnetism!

  18. Chemistry and Materials Science

    International Nuclear Information System (INIS)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director's initiatives and individual projects, and transactinium institute studies

  19. Dental impression material

    African Journals Online (AJOL)

    2015-03-06

    eugenol paste,[10] amalgam filling,[11] and gutta‑percha.[12] The present report presents a case of dental impression material that passed through an oro‑antral fistula while in its plastic form, solidified inside the maxillary sinus, and ...

  20. Rudiments of materials science

    CERN Document Server

    Pillai, SO

    2007-01-01

    Writing a comprehensive book on Materials Science for the benefit of undergraduate courses in Science and Engineering was a day dream of the first author, Dr. S.O. Pillai for a long period. However, the dream became true after a lapse of couple of years. Lucid and logical exposition of the subject matter is the special feature of this book.

  1. Synthesis of Energetic Materials.

    Science.gov (United States)

    1986-03-31

    of the diazabicyclooctanes 11 and 12. The starting materials in this work were gbtained by the reaction of c-anogen with sodio diethylmalonate to give...effortto find routes which would lead to 11 and 12. Catalytic hydrogenation of 27 gave the doy~le lactam 28. The sodio derivative 26 was methylated to

  2. GRAPHENE: A NEW MATERIAL

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2011-07-01

    Full Text Available The paper presents the properties of a new but allready known material – graphene. Graphene is a 2-dimensional network of carbon atoms. Are presented the estonished characteristics of this form of carbon, alongwith some interesting field of use.

  3. Molecules to Materials

    Indian Academy of Sciences (India)

    voltages sourced from small batteries or solar cells. However, most of the liquid crystals that were known around the time of the discovery of this effect are not stable .... Metals like gold, silver and copper are excellent conductors. Semiconductors based on pure materials such as silicon or gallium arsenide are called intrinsic.

  4. INSTRUCTIONAL MATERIALS CATALOG.

    Science.gov (United States)

    Ohio Vocational Agriculture Instructional Materials Service, Columbus.

    THE TITLE, IDENTIFICATION NUMBER, DATE OF PUBLICATION, PAGINATION, A BRIEF DESCRIPTION, AND PRICE ARE GIVEN FOR EACH OF THE INSTRUCTIONAL MATERIALS AND AUDIOVISUAL AIDS INCLUDED IN THIS CATALOG. TOPICS COVERED ARE FIELD CORPS, HORTICULTURE, ANIMAL SCIENCE, SOILS, AGRICULTURAL ENGINEERING, AND FARMING PROGRAMS. AN ORDER FORM IS INCLUDED. (JM)

  5. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  6. Revisiting Mathematics Manipulative Materials

    Science.gov (United States)

    Swan, Paul; Marshall, Linda

    2010-01-01

    It is over 12 years since "APMC" published Bob Perry and Peter Howard's research on the use of mathematics manipulative materials in primary mathematics classrooms. Since then the availability of virtual manipulatives and associated access to computers and interactive whiteboards have caused educators to rethink the use of mathematics…

  7. Encapsulated microenergetic material

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jeffery James; Aines, Roger D.; Duoss, Eric B.; Spadaccini, Christopher M.; Vandersall, Kevin S.

    2017-02-07

    Providing high energy materials that can be placed in previously created fractures and activating them in place to extend or change an existing fracture system. Also detecting the location of fractures or permeable pathways and a means to assess the extent and efficiency of proppant emplacement.

  8. Renewable material resource potential

    NARCIS (Netherlands)

    van Weenen, H.; Wever, R.; Quist, J.; Tukker, A.; Woudstra, J.; Boons, F.A.A.; Beute, N.

    2010-01-01

    Renewable material resources, consist of complex systems and parts. Their sub-systems and sub-sub-systems, have unique, specific, general and common properties. The character of the use that is made of these resources, depends on the availability of knowledge, experience, methods, tools, machines

  9. Conducting and insulating materials

    OpenAIRE

    Bolotinha, Manuel

    2016-01-01

    Conducting materials may be classified into three groups: conductors, semiconductors and imperfect insulators. This section will cover only conductors. In general, metals and alloys are conductors of electricity. The most common metals used in electricity are copper, aluminium and their alloys. info:eu-repo/semantics/publishedVersion

  10. Material and methods

    African Journals Online (AJOL)

    Schalk Cloete

    This trend was confirmed by divergence in yearly averaged direct breeding values in the H and L lines. Expressed as percentage of the overall phenotypic mean for ... No selection on reproduction was thus directed at the current flock. .... and the number of the model fitted are provided in brackets (see Material and Methods).

  11. Disposition of excess material

    International Nuclear Information System (INIS)

    Hall, J.C.

    1978-01-01

    This paper reviews briefly the means available to an enrichment customer to dispose of excess material scheduled for delivery under a fixed-commitment contract, other than through termination of the related separative work. The methods are as follows: (1) sales; (2) use in facilities covered by other DOE contracts; and (3) assignment

  12. Encapsulated microenergetic material

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jeffery James; Aines, Roger D.; Duoss, Eric B.; Spadaccini, Christopher M.; Vandersall, Kevin S.

    2018-02-20

    Providing high energy materials that can be placed in previously created fractures and activating them in place to extend or change an existing fracture system. Also detecting the location of fractures or permeable pathways and a means to assess the extent and efficiency of proppant emplacement.

  13. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  14. Materials and technology

    International Nuclear Information System (INIS)

    Gockel, E.; Simon, J.

    1998-01-01

    New materials and the processes for their economical fabrication and use are the factors which drive innovation in totally different fields of technology, such as energy engineering, transport, and information. But they also open up new fields of technology such as micro systems or medicine technology. Five out of a total of twelve articles are separately listed in the ENERGY database [de

  15. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  16. Molecules to Materials

    Indian Academy of Sciences (India)

    Design and fabrication of molecular materials combines the versatility of synthetic chemistry and the ... to the fabrication of molecular devices will be discussed in the last part of the series. This article presents an .... These and related systems have become highly successful commercially. Extensive research in this area has ...

  17. Molecules to Materials

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Molecules to Materials Liquid Crystals and Molecular Conductors. T P Radhakrishnan. Series Article Volume 3 Issue 5 May 1998 pp 6-23. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Phase change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  19. Package for radioactive material

    International Nuclear Information System (INIS)

    Van Rossem, H.

    1983-01-01

    A holder for use with a labelled vial containing a radiopharmaceutical or other dangerous material is claimed. It comprises a hollow body with a closed bottom and an open top. There is at least one transparent portion through which the labelled vial may be inspected, and a holding means to secure the vial in the holder

  20. Materials Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  1. Ferrocement as a Material

    DEFF Research Database (Denmark)

    Jensen, Jens Kristian Jehrbo

    FERROCEMENT is not a new material. In 1850 Jean Louis Lambot took out a patent on FERCIMENT, and in 1930's Pier Luigi Nervi created FERROCEMENT. In this report the structure (meshes, rods and mortar) and composition (diameter and widths of meshes and rods, water/cement ratio, aggregat e/ cement...

  2. Magnetism and magnetic materials

    International Nuclear Information System (INIS)

    1990-01-01

    It describes the actual status of physics in Brazil concerning the study of magnetism and magnetic materials. It gives an overview of different research groups in Brazil, their needs, as well as the investments needed to improve the area. (A.C.A.S.)

  3. Teaching Materials and Methods.

    Science.gov (United States)

    Physiologist, 1987

    1987-01-01

    Contains abstracts of presented papers which deal with teaching materials and methods in physiology. Includes papers on preconceptual notions in physiology, somatosensory activity recorded in the dorsal root ganglion of the bull frog, and the use of the Apple Macintosh microcomputer in teaching human anatomy and physiology. (TW)

  4. Femtosecond laser materials processing

    International Nuclear Information System (INIS)

    Stuart, B.C.

    1997-01-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas

  5. Construction materials and Radon

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Loriane, Fior; Schelin, Hugo R.; Pottker, Fabiana; Paula Melo, Vicente de

    2008-01-01

    Full text: Current studies have been performed with the aim to find the correlation of radon concentration in the air and used construction materials. At the first stage of the measurements different samples of materials used in civil construction were studied as a source of radon in the air and at the second step it was studied the radon infiltration insulation using different samples of finishing materials. For 222 Rn concentration measurements related to different construction materials as well as for the studies of radon emanation and its reduction, the sealed cell chambers, of approximately 60 x 60cm 2 , have been built using the ceramic and concrete blocks. This construction has been performed within protected and isolated laboratory environment to maintain the air humidity and temperature stable. These long term measurements have been performed using polycarbonate alpha track passive detectors. The exposure time was set about 15 days considering previous calibration performed at the Institute of Radiation Protection and Dosimetry (IRD/CNEN), where the efficiency of 70% was obtained for the density of alpha particle tracks about 13.8 cm -2 per exposure day and per kBq/m 3 of radon activity concentration. The chemical development of alpha tracks has been achieved by electrochemical etching. The track identification and counting have been done using a code based on the MATLAB Image Processing Toolbox. The cell chambers have been built following four principle steps: 1) Assembling the walls using the blocks and mortar; 2) Plaster installation; 3) Wall surface finishing using the lime; 4) Wall surface insulation by paint. Making the comparison between three layers installed at the masonry walls from concrete and ceramic blocks, it could be concluded that only wall painting with acrylic varnish attended the expectation and reduced the radon emanation flow by the factor of 2.5 approximately. Studied construction materials have been submitted the instant

  6. Indigenous lunar construction materials

    Science.gov (United States)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  7. Beneficial Use of Dredged Material

    Science.gov (United States)

    An important goal of managing dredged material is to ensure that the material is used or disposed of in an environmentally sound manner.Most of this dredged material could be used in a beneficial manner instead.

  8. Material Transfer Agreement (MTA) | FNLCR

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  9. Materials Best Paper Award 2015

    OpenAIRE

    Maryam Tabrizian

    2015-01-01

    Materials has established an annual award for the best article and for the best review published in Materials in order to acknowledge the outstanding contributions of our authors in the area of materials science and engineering.[...

  10. Extrusion of ECC-Material

    DEFF Research Database (Denmark)

    Stang, Henrik; Li, Victor C.

    1999-01-01

    An extrusion process especially designed for extrusion of pipes made from fiber reinforced cementitious materials has been developed at Department of Structural Engineering and Materials at the Technical University of DenmarkEngineered Cementitious Composite (ECC) materials have been developed...

  11. Frustrated phases induced in binary mixtures of hockey-stick and chiral rod-like mesogens

    Czech Academy of Sciences Publication Activity Database

    Novotná, Vladimíra; Glogarová, Milada; Kozmík, V.; Svoboda, J.; Hamplová, Věra; Kašpar, Miroslav; Pociecha, D.

    2013-01-01

    Roč. 9, č. 3 (2013), s. 647-653 ISSN 1744-683X R&D Projects: GA ČR(CZ) GAP204/11/0723 Grant - others:AVČR(CZ) M100101211 Institutional support: RVO:68378271 Keywords : hockey -stick mesogen * antiferroelectricity * dielectric properties Subject RIV: JJ - Other Materials Impact factor: 4.151, year: 2013

  12. Hazardous material reduction initiative

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1995-02-01

    The Hazardous Material Reduction Initiative (HMRI) explores using the review of purchase requisitions to reduce both the use of hazardous materials and the generation of regulated and nonregulated wastes. Based on an 11-month program implemented at the Hanford Site, hazardous material use and waste generation was effectively reduced by using a centralized procurement control program known as HMRI. As expected, several changes to the original proposal were needed during the development/testing phase of the program to accommodate changing and actual conditions found at the Hanford Site. The current method requires a central receiving point within the Procurement Organization to review all purchase requisitions for potentially Occupational Safety and Health Administration (OSHA) hazardous products. Those requisitions (approximately 4% to 6% of the total) are then forwarded to Pollution Prevention personnel for evaluation under HMRI. The first step is to determine if the requested item can be filled by existing or surplus material. The requisitions that cannot filled by existing or surplus material are then sorted into two groups based on applicability to the HMRI project. For example, laboratory requests for analytical reagents or standards are excluded and the purchase requisitions are returned to Procurement for normal processing because, although regulated, there is little opportunity for source reduction due to the strict protocols followed. Each item is then checked to determine if it is regulated or not. Regulated items are prioritized based on hazardous contents, quantity requested, and end use. Copies of these requisitions are made and the originals are returned to Procurement within 1-hr. Since changes to the requisition can be made at later stages during procurement, the HMRI fulfills one of its original premises in that it does not slow the procurement process

  13. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  14. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  15. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  16. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  17. Orthodontic elastic materials.

    Science.gov (United States)

    Wong, A K

    1976-04-01

    Latex elastics and synthetic elastomers have certain similarities and differences. In the fracture tests the latex elastics showed a greater amount of loss in strength than plastic elastomers when stretched over a 21 day period. There is a great variability, as much as 50%, in the tensile strength of the plastic materials taken from the same batch and stretched under the same conditions. The Ormco Power Chain was more resilient than the Unitek AlastiK chain. The Unitek AlastiKs had more force and stretched less. The force decay of synthetic elastomers, stretched over a specific length and time, exhibited a great loss in force. This loss could be as great as 73% during the first day. The decay of force continued at a slower rate during the rest of the 21 day period. Unitek AlastiK C2 double links, when stretched 17 millimeters, had a higher initial force averaging 641 grams (22.5 ounces) than the Ormco Power Chain which averages 342 grams (12.0 ounces). In one day the force was reduced to 171 grams (6.0 ounces) for both materials. The elastic materials within the same batch showed a great variation in the modulus of elasticity under different test conditions. The approximate force generated when stretched dry, within the elastic limit, was 22 grams per millimeter for 3/16 inches heavy latex elastics. The Unitek AlastiK C2 gave a force of 89 grams per millimeter, while the Ormco Power Chain had a value of 46 grams per millimeter. The modulus of elasticity of all of the materials was much lower after immersion in the water bath. The force decay under constant force application to latex, elastic, polymer chains, and tied loops showed that the greatest amount of force decay occurred during the first three hours in the water bath. The forces remained relatively the same throughout the rest of the test period. The elastic materials undergo permanent deformation in shape. The synthetic elastomers exhibited plastic deformation when the elastomers were stretched 17

  18. Alternate Materials In Design Of Radioactive Material Packages

    International Nuclear Information System (INIS)

    Blanton, P.; Eberl, K.

    2010-01-01

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  19. Smart material interfaces: "a material step to the future"

    NARCIS (Netherlands)

    Nijholt, Antinus; Giusti, Leonardo; Minuto, A.; Marti, Patrizia

    2012-01-01

    Over the past years the technology push and the creation of new technological materials made available on the market many new smart materials. Smart Material Interfaces (SMIs) want to take advantage of these materials to overcome traditional patterns of interaction, leaving behind the "digital

  20. 49 CFR 178.345-2 - Material and material thickness.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Material and material thickness. 178.345-2 Section 178.345-2 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR...

  1. Smart Material Interfaces: A Material Step to the Future

    NARCIS (Netherlands)

    Giusti, L.; Minuto, A.; Marti, P.; Morency, L.P.; Bohus, D.; Aghajan, H.; Nijholt, Antinus; Cassell, J.; Epps, J.

    2012-01-01

    Over the past years the technology push and the creation of new technological materials made available on the market many new smart materials. Smart Material Interfaces (SMIs) want to take advantage of these materials to overcome traditional patterns of interaction, leaving behind the "digital

  2. Functionally Graded Materials Database

    Science.gov (United States)

    Kisara, Katsuto; Konno, Tomomi; Niino, Masayuki

    2008-02-01

    Functionally Graded Materials Database (hereinafter referred to as FGMs Database) was open to the society via Internet in October 2002, and since then it has been managed by the Japan Aerospace Exploration Agency (JAXA). As of October 2006, the database includes 1,703 research information entries with 2,429 researchers data, 509 institution data and so on. Reading materials such as "Applicability of FGMs Technology to Space Plane" and "FGMs Application to Space Solar Power System (SSPS)" were prepared in FY 2004 and 2005, respectively. The English version of "FGMs Application to Space Solar Power System (SSPS)" is now under preparation. This present paper explains the FGMs Database, describing the research information data, the sitemap and how to use it. From the access analysis, user access results and users' interests are discussed.

  3. Materiality for Musical Expressions

    DEFF Research Database (Denmark)

    Lindell, Rikard; Tahiroğlu, Koray; Riis, Morten S.

    2016-01-01

    Nordic universities. Electronic music instrument makers participated in providing the course. In eleven days the students designed and built interfaces for musical expressions , composed a piece, and performed at the Norberg electronic music festival. The students explored the relationship between......We organised an elven day intense course in materiality for musical expressions to explore underlying principles of New Interfaces for Musical Expression (NIME) in higher education. We grounded the course in different aspects of ma-teriality and gathered interdisciplinary student teams from three...... technology and possible musical expression with a strong connection to culture and place. The emphasis on performance provided closure and motivated teams to move forward in their design and artistic processes. On the basis of the course we discuss an interdisciplinary NIME course syllabus, and we infer...

  4. Bulk material handling system

    Science.gov (United States)

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  5. Designing through Material

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2014-01-01

    . Interestingly a new set of tools seems to find the way into the architect’s toolbox. In today’s field of, especially, architectural academia and education – but also practise – the importance of making, fabrication and realising seems more and more pronounced. Many directions and opinions have already emanated...... of control through digital drawing and fabrication and the field of materials and their properties and capacities. Within this span the project is situated in a shuttling between the virtual and the actual, investigating levels of control and uncertainty originating from these (Fig. 1). Throughout...... be a part, a component or part of a component in a larger context or construction. Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion...

  6. Mycotoxins in building materials

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Frisvad, Jens Christian

    2011-01-01

    Today, indoor mold and moisture, and their associated health effects, are a society-wide problem. The economic consequences of indoor mold and moisture are enormous. Their global dimension has been emphasized in several recent international publications, stressing that the most important means...... as in future energy efficient buildings. It brings together different disciplinary points of view on indoor mold, ranging from physics and material science to microbiology and health sciences. The contents have been outlined according to three main issues: Fundamentals, particularly addressing the crucial...... roles of water and materials, Health, including a state-of-the-art description of the health-related effects of indoor molds, and Strategies, integrating remediation, prevention and policies....

  7. Materialism and food security.

    Science.gov (United States)

    Allen, M W; Wilson, M

    2005-12-01

    The present studies examined if materialists have an elevated concern about food availability, presumably stemming from a general survival security motivation. Study 1 found that materialists set a greater life goal of food security, and reported more food insecurity during their childhood. Materialists reported less present-day food insecurity. Study 2 revealed that materialists stored/hoarded more food at home, and that obese persons endorsed materialism more than low/normal weight persons. Study 3 found that experimentally decreasing participants' feelings of survival security (via a mortality salience manipulation) led to greater endorsement of materialism, food security as goal, and using food for emotional comfort. The results imply that materialists overcame the food insecurity of their childhood by making food security a top life goal, but that materialists' current concerns about food security may not wholly stem from genuine threats to their food supply.

  8. Container for radioactive materials

    International Nuclear Information System (INIS)

    Housholder, W.R.; Greer, N.L.

    1976-01-01

    The improvement of the construction of containers for the transport of nuclear fuels is proposed where above all, the insulating mass suggested is important as it acts as a safeguard in case of an accident. The container consists of a metal casing in which there is a pressure boiler and a gamma-shielding device, spacers between the metal casing and the shielding device as well as an insulation filling the space between them. The insulating material is a water-in-resin emulsion which is hardened or cross-linked by peroxide and which can furthermore contain up to 50 wt.% solid silicious material such as vermuculite or chopped glass fibre. The construction and variations of the insulating mass composition are described in great detail. (HR) [de

  9. Radioactive raw material deposits

    International Nuclear Information System (INIS)

    Danchev, V.I.; Lapinskaya, T.A.

    1980-01-01

    Presented are the data on radioactive elements of the Earth, migration conditions and concentrations of uranium, radium and thorium. Briefly considered are the problems of radiogenic heat of the Earth, as well as the main methods of determining the absolute age of minerals and rocks. The main minerals of uranium and thorium are characterized, classification of their deposits is given. Primary attention is paid to the description of uranium deposits as the main sources of raw material for nuclear industry and nuclear power engineering. Among them in detail characterized are the exogenic deposits, confined mainly to sedimentary and sedimentary - metamorphized rocks as well as endogenic deposits, mainly hydrothermal ones, giving an essential part of commercial uranium. Special sections of the book deal with the problems of uranium bonds with coaly and bitumen materials, as well as the processes of ore-forming processes with the stages of ore-bearing rock formation

  10. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  11. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  12. Fissile materials detection

    International Nuclear Information System (INIS)

    Dumesnil, P.

    1977-03-01

    Description is given of three types of apparatus intended for controlling fossile materials in view of avoiding their diversion or preventing said products to be mixed to less dangerous radioactive wastes. The gantry-type apparatus is intended for the detection of small masses of fissile materials moving through a crossing place; the neutron gantry consists of helium 3 detectors of the type 150NH100, located inside polyethylene blocks; as for the gamma gantry, it consists of two large plastic scintillators integrated to the vertical legs of said gantry. The second apparatus is a high-efficiency detector intended for controlling Pu inside waste casks. It can detect 10mg of Pu inside a 100 liters drum for one minute counting. The third apparatus intended for persons and things monitoring is still on study. Such as the gantries it is based on sampled measurement of the background noise [fr

  13. Improved magnetic material analyzer

    Science.gov (United States)

    Triner, J. E.

    1981-01-01

    Flux-controlled magnetic-core-loss tester has been developed that produces high-frequency core-loss data (within 2 percent) for any desired waveform excitation and allows magnetic characteristics of material to be measured under symmetrical and asymmetrical excitation conditions. It allows direct control of additional loss variable rather than just driving frequency as is case for all previous sinusoidal core-loss measurements.

  14. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  15. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (super dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  16. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  17. Multidisciplinary Free Material Optimization

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Kočvara, Michal; Leugering, G.; Stingl, M.

    2010-01-01

    Roč. 7, č. 70 (2010), s. 2709-2728 ISSN 0036-1399 R&D Projects: GA AV ČR IAA100750802 Grant - others:EU FP6(XE) 30717 Institutional research plan: CEZ:AV0Z10750506 Keywords : structural optimization * material optimization * H-convergence * semidefinite programming Subject RIV: BA - General Mathematics Impact factor: 1.529, year: 2010 http://library.utia.cas.cz/separaty/2013/MTR/kocvara-0421361.pdf

  18. A new Material Practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Lafuente Hernández, Elisa; Deleuran, Anders

    2012-01-01

    from the primacy of geometrical concerns to the negotiation between encoded parameters. Material behavior was the focus of the research project that led to the Dermoid 1:1 demonstrator build in Copenhagen. Dermoid was a 1:1 prototype, plywood structure that explored how the induced flex of plywood...... computational tools. The project challenge today’s protocols in design and production and emphasizes the importance of feedback channels in more holistic design and building practice....

  19. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Huck, W.

    1992-01-01

    The book presents a systematic survey of the legal provisions governing the transport of radioactive materials, placing emphasis on the nuclear licensing provisions of sections 4, 4b of the Atomic Energy, Act (AtG) and sections 8-10 of the Radiation Protection Ordinance (StrlSchV), also considering the provisions of the traffic law governing the carriage of hazardous goods. The author's goal is to establish a systematic basis by comparative analysis of the licensing regulations under atomic energy law, for the purpose of formulating a proposed amendment to the law, for the sake of clarity. The author furthermore looks for and develops criteria that can be of help in distinguishing the regulations governing the carriage of hazardous goods from the nuclear regulatory provisions. He also examines whether such a differentiation is detectable, particularly in those amendments to the StrlSchV which came after the Act on Carriage of Hazardous Goods. The regulations governing the transport of radioactive materials under the AtG meet with the problem of different classification systems being applied, to radioactive materials in the supervisory regulations on the one hand, and to nuclear materials in Annex 1 to the AtG on the other hand. A classification of natural, non-nuclear grade uranium e.g. by the financial security provisions is difficult as a result of these differences in the laws. The author shows that the transport regulations of the StrlSchV represent an isolated supervisory instrument that has no connecting factor to the sections 28 ff StrlSchV, as radiation protection is provided for by the regulations of the Act on Carriage of Hazardous Goods. The author suggests an amendment of existing law incorporating the legal intent of sections 8-10 StrlSchV and of sections 4, 4b AtG into two sections, and abolishing the supervisory provisions of the StrlSchV altogether. (orig./HP) [de

  20. Ritualizing and Materializing Citizenship

    DEFF Research Database (Denmark)

    Damsholt, Tine

    2009-01-01

    by the participants, but the emotional experience is often a matter of their own doing. From a performative approach the ritual agency is distributed, and as technologies of the civic self the subjectification is a heterogeneous and complex process, with multiple versions of transformations of the self....... These transformations engage a so called ‘ontological choreography' in which processes of ritual objectification and subjectification are intertwined, involving materiality, performativity, structural constraint, and the co-dependence of the performers....

  1. Aerospace Materials Process Modelling

    Science.gov (United States)

    1988-08-01

    Materials Researchr soc icl - STRASBOUtRG - June 1Qs(, 2 VERMOT DES ROCHES - Conf. " Transferts Tiiermiqiies ails Temp6ratuir’s 6 1 -es Fcole...consid6rer la carapaes comma des meidriaux composites at de la caractdriser an cons~quence au Prix de difficult63 exprimentales. L’Intdr~t de Is ddmarohe...COEFFICIENT DE TRANSFERT NOYAU - ONDUCTIVITC THERMIQUE - HALEUR MASS IQUE INTERFACES - COEFFICIENT DE TRANSFERI METAL-SOLE ET NOULE-SOLE EN SOLIDIFICATION

  2. UV curable materials development

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.G.

    1996-12-01

    Adhesives, coatings, and inks were selected for evaluation based on literature search and possible production applications. A differential photocalorimeter was used to measure degree of cure and allow prediction of optimum processing conditions. UV cure equipment were characterized and the ability to size equipment to specific materials cure needs established. Adhesion tests procedures were developed for the adhesives and solvent resistance testing procedures developed for the coatings and inks.

  3. Realistic Material Appearance Modelling

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří; Hatka, Martin

    2010-01-01

    Roč. 2010, č. 81 (2010), s. 13-14 ISSN 0926-4981 R&D Projects: GA ČR GA102/08/0593 Institutional research plan: CEZ:AV0Z10750506 Keywords : bidirectional texture function * texture modelling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2010/RO/haindl-realistic material appearance modelling.pdf

  4. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Moons, F.

    1998-01-01

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  5. Design Drives: materials innovation

    OpenAIRE

    Oliver, Raymond; Toomey, Anne

    2010-01-01

    Design Drives Materials Innovation‘ outlines the potential of a D:STEM (Design, Science, Technology, Engineering amd Mathematics) approach to combining traditionally different fields through design-led, needs driven and technology anchored future products using electro/photo/bio-active polymers in physical formats defined in ‚dots, lines, surfaces and structures‘.It also identifies Ambient Assisted Living as a key driver for future applications.

  6. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  7. Transport of radioactive material

    International Nuclear Information System (INIS)

    Lombard, J.

    1996-01-01

    This work deals with the transport of radioactive materials. The associated hazards and potential hazards are at first described and shows the necessity to define specific safety regulations. The basic principles of radiological protection and of the IAEA regulations are given. The different types of authorized packages and of package labelling are explained. The revision, updating and the monitoring of the regulations effectiveness is the subject of the last part of this conference. (O.M.)

  8. Law - temperature material properties

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1986-01-01

    This chapter is a survey of those properties which are of greatest importance to cryogenics. Included in the discussion are the behavior of the heat capacity, electrical and thermal conductivities, thermal contraction, and some special properties of materials--specifically magnetic spin systems and superconductors. Most of the descriptions are on the basis of thermodynamic or solid-state physics principles. Figures show Deybe specific heat and internal energy functions, and the Brillouin function for different total spin quantum numbers

  9. Neutron shielding materials

    International Nuclear Information System (INIS)

    Tomoshige, Toru; Fujii, Yasumasa; Nifuku, Masataka.

    1985-01-01

    Purpose: To obtain shielding materials excellent in heat and radiation resistance, as well as having mechanical strength in a reduced weight. Constitution: A mixture comprising from 30 to 80 % by weight of epoxy resin, from 5 to 50 % by weight of polyethylene and from 1 to 50 % by weight of inorganic boron compound is cured to prepare a neutron shielding material. The epoxy resin used herein is a compound having more than 18 epoxy groups per one molecule. Polyethylene is a polyethylene homopolymer or a copolymer of ethylene and less than 10 % of other copolymerizable monomer which is preferably powdery and in the grain size of from 10 to 200 μm. The inorganic boric compound can include, for example, boron carbide, boron nitride and anhydrous boric acid. As the curing agent, all sorts of compounds known as the curing agent for epoxy resins can be used. The shielding material is excellent in heat resistance, particularly, in the strength, thermal deformation temperature and the bondability at high temperature and also satisfactory in compression strength and bondability. (Kawakami, Y.)

  10. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  11. Stimuli-Adaptable Materials

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl

    but the presented work has a new approach to the field by basing itself on the idea of developing a network into which a photo-active polymer is mixed and which function as an adhesive. Upon irradiation with UV-light for a short time a non-adhering inter-penetrating network material would be formed. Two simple......The work presented in this Thesis deals with the development of a stimuli-adaptable polymer material based on the UV-induced dimerisation of cinnamic acid and its derivatives. It is in the nature of an adhesive to adhere very well to its substrate and therefore problems can arise upon removal...... of the adhesive. This is also known from skin adhesives where it is very undesirable to cause damage to the skin. The overall idea of this project was to resolve this problem by developing a material which could switch between an adhesive and a non-adhesive state. Switchable adhesion is known in the literature...

  12. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  13. Energy Education Materials Inventory

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The two volumes of the Energy Education Materials Inventory (EEMI) comprise an annotated bibliography of widely available energy education materials and reference sources. This systematic listing is designed to provide a source book which will facilitate access to these educational resources and hasten the inclusion of energy-focused learning experiences in kindergarten through grade twelve. EEMI Volume II expands Volume I and contains items that have become available since its completion in May, 1976. The inventory consists of three major parts. A core section entitled Media contains titles and descriptive information on educational materials, categorized according to medium. The other two major sections - Grade Level and Subject - are cross indexes of the items for which citations appear in the Media Section. These contain titles categorized according to grade level and subject and show the page numbers of the full citations. The general subject area covered includes the following: alternative energy sources (wood, fuel from organic wastes, geothermal energy, nuclear power, solar energy, tidal power, wind energy); energy conservation, consumption, and utilization; energy policy and legislation, environmental/social aspects of energy technology; and fossil fuels (coal, natural gas, petroleum). (RWR)

  14. Steam generator materials

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Han, J. H.; Kim, H. P.; Lim, Y. S.; Lee, D. H.; Suh, J. H.; Hwang, S. S.; Hur, D. H.; Kim, D. J.; Kim, Y. H.

    2002-05-01

    In order to keep the nuclear power plant(NPP)s safe and increase their operating efficiency, axial stress corrosion cracking(SCC)(IGA/IGSCC, PWSCC, PbSCC) test techniques were developed and SCC property data of the archive steam generator tubing materials having been used in nuclear power plants operating in Korea were produced. The data obtained in this study were data-based, which will be used to clarify the damage mechanisms, to operate the plants safely, and to increase the lifetime of the tubing. In addition, the basic technologies for the improvement of the SCC property of the tubing materials, for new SCC inhibition, for damaged tube repair, and for manufacturing processes of the tubing were developed. In the 1 phase of this long term research, basic SCC test data obtained from the archive steam generator tubing materials used in NPPs operating in Korea were established. These basic technologies developed in the 1 phase will be used in developing process optimization during the 2 phase in order to develop application technologies to the field nuclear power plants

  15. Hydrolysis of biomass material

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  16. Artificially structured materials

    International Nuclear Information System (INIS)

    Cho, A.Y.

    1988-01-01

    Recent developments in crystal growth methods such as molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) allow us to artifically structure new materials on an atomic scale. These structures may have electrical or optical properties that cannot be obtained in bulk crystals. There has been a dramatic increase in the study of layered structures during the past decade which has led to the discovery of many unexpected physical phenomena and opened a completely new branch of device physics. Since the advanced crystal growth techniques can tailor the compositions and doping profiles of the material to atomic scales, it pushes the frontier of devices to the ultimate imagination of device physicists and engineers. It is likely that for the next century the new generation of devices will rely heavily on artifically structured materials. This article will be limited to a discussion of recent developments in the area of semiconductor thin epitaxial films which may have technological impact. 21 refs., 12 figs

  17. RLG's Cultural Materials Initiative

    Directory of Open Access Journals (Sweden)

    Karen Smith-Yoshimura

    2001-10-01

    Full Text Available

    頁次:5-12

    RLG members have formed a "Cultural Materials Alliance" to develop a pool of digitized research materials and a coherent, integrated discovery service. Alliance members are identifying best practices to create and describe digital surrogates and a rights-management framework addressing institutional intellectual-property mandates. The paper outlines the issues addressed in developing this new research resource that will promote "cultural heritage" in an unprecedented way. Examples from the RLG Cultural Materials service to be released later in 2001 will illustrate the work done so far.

  18. Materials in the economy; material flows, scarcity, and the environment

    Science.gov (United States)

    Wagner, Lorie A.

    2002-01-01

    The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.

  19. Green materials for sustainable development

    Science.gov (United States)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  20. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  1. Searching for better plasmonic materials

    DEFF Research Database (Denmark)

    West, P.; Ishii, S.; Naik, G.

    2010-01-01

    challenges due to losses encountered in the constituent plasmonic materials. These large losses seriously limit the practicality of these metals for many novel applications. This paper provides an overview of alternative plasmonic materials along with motivation for each material choice and important aspects...... of fabrication. A comparative study of various materials including metals, metal alloys and heavily doped semiconductors is presented. The performance of each material is evaluated based on quality factors defined for each class of plasmonic devices. Most importantly, this paper outlines an approach...... for realizing optimal plasmonic material properties for specific frequencies and applications, thereby providing a reference for those searching for better plasmonic materials....

  2. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  3. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  4. Pyroelectric and dielectric energy conversion – A new view of the old problem

    International Nuclear Information System (INIS)

    Poprawski, W.; Gnutek, Z.; Radojewski, J.; Poprawski, R.

    2015-01-01

    The pyroelectric effect is commonly used to construct infrared radiation detectors. In this article we intend to pay attention to a possibility of the pyroelectric effect employment along with the temperature dependence of the dielectric permittivity into a direct conversion of the time-alternating heat flux and the electromagnetic radiation to the electric energy. Converters making use of the mentioned phenomena can be applied in the low-power electric energy generators mounted in autonomous electronic devices. Operation principles for pyroelectric and dielectric generators (PEG and DEG) of the electric energy are presented in this work together with a brief review on ferro- and antiferroelectric materials suitable for the generators. It was shown that for the ferroelectrics with the second-order phase transition the conversion efficiency of PEGs did not depend on temperature in a wide temperature range, and ferroelectrics showing an order–disorder phase transition together with composites and heterostructures based on these ferroelectrics had high conversion efficiency. For the first time ferro- and antiferroelectric materials were extensively reviewed with regard to their applicability in PEGs. It was also shown that ferro- and antiferroelectrics with translation-type phase transition, quantum ferroelectrics, ferro- and antiferroelectric relaxors were good materials for DEGs. Considering literature data the efficiency for the thermal-to-electrical energy conversion was estimated for a few typical material groups. Advantages and disadvantages of the individual groups were presented along with their possible limitations for PEG and DEG usage. - Highlights: • A direct conversion of the alternating heat flux to the electric energy is described. • Order–disorder-type ferroelectrics were found to be suitable for pyroelectric energy generators. • Certain ferro- and antiferroelectrics, quantum ones and relaxors were good for dielectric converters. • The

  5. Material flow of production process

    Directory of Open Access Journals (Sweden)

    Hanzelová Marcela

    2001-12-01

    Full Text Available This paper deals with material flow of the production process. We present the block diagram of material flow and capacities of engine in various plants each other. In this paper is used IPO (Input – Process – Output diagram. IPO diagram described process with aspect to input and output. Production program regards string of precision, branch and paralel processes with aspect IPO diagram.Process is not important with aspect to events. We are looking on the process as a „black box“. For process is used different materials and raw materials. The foudation for material analysis is detailed model of production process with defined flow material, energy, waste etc.Material flow is organised move of mass (material, money, informations, people etc.. Material analysis is made against destination of material flow (i.e. from ending to beginning. Material analysis is performed on the detection demand of individual materials, stocks, forms, etc.For elementary materials and raw materials in which is based production program and which to create better part of production costs is mainly necessary to dedicate the remark. The fluency of material flow concentrates on the respect of the capacitive parameters for individual node from aspect to standardized qualitative parameters and allowed limits.

  6. Ordering, materiality and multiplicity

    DEFF Research Database (Denmark)

    van der Duim, René; Ren, Carina Bregnholm; Jóhannesson, Gunnar Thór

    2013-01-01

    In this article we discuss how ANT has been translated into tourism research and show how it has impacted the field by presenting three concepts integral to the ANT approach: ordering, materiality and multiplicity. We first introduce ANT and draw attention to current ANT studies in tourism......, followed by a discussion of how newer approaches within post-ANT urge us to face the ontological politics, which we engage in when performing tourism research. In conclusion we argue that ANT enables a radical new way at looking at tourism, tourism destinations and objects and investigations...

  7. Integrated material accountancy system

    International Nuclear Information System (INIS)

    Calabozo, M.; Buiza, A.

    1991-01-01

    In this paper we present the system that we are actually using for Nuclear Material Accounting and Manufacturing Management in our UO 2 Fuel Fabrication Plant located at Juzbado, Salamanca, Spain. The system is based mainly on a real time data base which gather data for all the operations performed in our factory from UO 2 powder reception to fuel assemblies shipment to the customers. The accountancy is just an important part of the whole integrated system covering all the aspects related to manufacturing: planning, traceability, Q.C. analysis, production control and accounting data

  8. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  9. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Hamel, P.E.

    In Canada, large numbers of packages containing radioactive materials are shipped for industrial, medical and commercial purposes. The nature of the hazards and the associated risks are examined; the protection measures and regulatory requirements are indicated. The result of a survey on the number of packages being shipped is presented; a number of incidents are analyzed as a function of their consequences. Measures to be applied in the event of an emergency and the responsibility for the preparation of contingency plans are considered. (author) [fr

  10. Tectonic Vocabulary & Materialization

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Beim, Anne; Bundgaard, Charlotte

    2015-01-01

    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... architectural practice. In this matter the paper focuses on the need to juxtapose theoretical studies, to bring the present vocabulary of the tectonic further, as well as to spur further practical experiments enabling theory to materialize in the everyday of the current practice....

  11. Five dangers of materialism.

    Science.gov (United States)

    Mills, Jon

    2002-02-01

    Amidst the boon of medical, scientific, and technological progress, materialism has gained increasing explanatory power in deciphering the enigma of mind. But with the proliferation and acceptance of cognitive science, psychic reality has been largely reduced to a physical ontology. In this article, the author explores the ground, scope, and limits to the materialist framework and shows that although biological-neurochemical physiology is a necessary condition for mental functioning, it is far from a sufficient condition to adequately explain the human being. This situation becomes especially significant when one examines the issues of selfhood, freedom, personal autonomy, and the phenomenal quality of the lived experience.

  12. Natural Materials and Systems

    Science.gov (United States)

    2013-03-07

    Black Widow MA Gland 500 MHz 800 MHz τc = 7.06 x 10-10 s τc = 1.25 x 10-9 s [m m 2 /s ] Diffusion Weighted Image of Black Widow & 1H...distribution is unlimited 19 H/D Amide Exchange: Black Widow Major Glands NH/ND Black Widow Major Glands 90:10 H2O:D2O 99.9% D2O (5 mins.) Gly Hα...Narrowing silk focus to Spider and Silkworm only. Reducing cellulose footprint. • Biomolecular assembly/Programmable Materials – BRI program,

  13. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in

  14. Critical Materials Needs

    Science.gov (United States)

    1975-08-11

    vital raw materials to consider actions such as when Jamaica increased its export tax on bauxite 700 percent in 1974. (1)* In such circumstances, the...Auxiliary power units components to meet approaches and de - lb. for aircraft. domestic U.S. needs velopment of econom- « and the consequent ical...4,1641 9,574 ^4t E S R. 3.000 12.574 6.400 18,974 2,087 7,51 4.Gt 11% Crude. 6tte.( input Vacuum trtatmtnt Rewtlting coats Credit - flor

  15. Nanostructured materials in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Ali (ed.) [Avicenna Institute of Technology, Cleveland, OH (United States)

    2008-07-01

    Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications - ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices. (orig.)

  16. Ferromagnetic shape memory materials

    Science.gov (United States)

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  17. Trends in building materials

    CSIR Research Space (South Africa)

    Mapiravana, Joseph

    2012-07-01

    Full Text Available in the application of continuously reinforced thin concrete road pavement emplacement and testing and in the production and use of low cost modular concrete block building systems. 3.3 Bricks and blocks Rest of the world has used advanced characterisation... materials for bricks and concrete blocks occurs on a much smaller scale in South Africa than elsewhere. There have been greater advances made by rest of the world in the use of alternative concrete block production processes such as autoclaving...

  18. Structural Materials: 95. Concrete

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  19. Radioactivity in building materials

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    The object of this brief report is to make the pollution inspectorate aware of the radiation hazards involved in new building materials, such as gypsum boards and alum slate based concrete blocks whose radium content is high. Experience in Swedish housebuilding has shown that a significant increase in the radiation dose to the occupants can occur. Improved insulation and elimination of draughts in fuel conservation accentuate the problem. Norwegian investigations are referred to and OECD and Scandinavian discussions aiming at recommendations and standards are mentioned. Suggested measures by the Norwegian authorities are given. (JIW)

  20. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  1. Beyond the wonder material

    Science.gov (United States)

    Novoselov, Kostya

    2009-08-01

    When nature had to choose an element as the basis for life, it chose carbon. If I had to guess why, I would say the reason was carbon's extraordinary versatility. Bonding between carbon atoms is exceptionally strong; indeed, the strongest materials on Earth are all made of carbon. However, bonding between carbon and other elements, though stable, can easily be changed by chemical reactions. The resulting compounds are often surprisingly different from one another. For example, a pair of carbon atoms bonded together can accept one, two or three hydrogen atoms, forming ethyne, ethene and ethane - chemicals used in welding, anaesthesia and vodka-making, respectively.

  2. Cosmogenic activation of materials

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M. L.; Torres, L.; Villar, J.A.; Capelli, S.; Capozzi, F.

    2005-01-01

    The problem of cosmogenic activation produced at sea level in materials typically used in underground experiments looking for rare events is being studied. Several nuclear data libraries have been screened looking for relevant isotope production cross-sections and different codes which can be applied to activation studies have been reviewed. The excitation functions for some problems of interest like production of 60Co and 68Ge in germanium and production of 60Co in tellurium have been obtained taking into account both measurements and calculations and a preliminary estimate of the corresponding rates of production at sea level has been performed

  3. A new Material Practice

    DEFF Research Database (Denmark)

    Tamke, Martin; Lafuente Hernández, Elisa; Deleuran, Anders

    2012-01-01

    Advances in computational techniques allow for the integration of simulation in the initial design phase of architecture. This approach extends the range of the architectural intent to performative aspects of the overall structure and its elements. However, this also changes the process of design...... from the primacy of geometrical concerns to the negotiation between encoded parameters. Material behavior was the focus of the research project that led to the Dermoid 1:1 demonstrator build in Copenhagen. Dermoid was a 1:1 prototype, plywood structure that explored how the induced flex of plywood...

  4. Material containment enclosure

    International Nuclear Information System (INIS)

    Carlson, D.O.

    1993-01-01

    An isolation enclosure and a group of isolation enclosures are described which are useful when a relatively large containment area is required. The enclosure is in the form of a ring having a section removed so that a technician may enter the center area of the ring. In a preferred embodiment, an access zone is located in the transparent wall of the enclosure and extends around the inner perimeter of the ring so that a technician can insert his hands into the enclosure to reach any point within. The inventive enclosures provide more containment area per unit area of floor space than conventional material isolation enclosures. 3 figures

  5. Materials, critical materials and clean-energy technologies

    Directory of Open Access Journals (Sweden)

    Eggert R.

    2017-01-01

    Full Text Available Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess “what is critical” to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  6. Materials, critical materials and clean-energy technologies

    Science.gov (United States)

    Eggert, R.

    2017-07-01

    Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  7. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  8. Nuclear materials transport worldwide

    International Nuclear Information System (INIS)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy. (orig./HP) [de

  9. Cosmogenic activation of materials

    Science.gov (United States)

    Cebrián, Susana

    2017-10-01

    Experiments looking for rare events like the direct detection of dark matter particles, neutrino interactions or the nuclear double beta decay are operated deep underground to suppress the effect of cosmic rays. But, the production of radioactive isotopes in materials due to previous exposure to cosmic rays is a hazard when ultra-low background conditions are required. In this context, the generation of long-lived products by cosmic nucleons has been studied for many detector media and for other materials commonly used. Here, the main results obtained on the quantification of activation yields on the Earth’s surface will be summarized, considering both measurements and calculations following different approaches. The isotope production cross-sections and the cosmic ray spectrum are the two main ingredients when calculating this cosmogenic activation; the different alternatives for implementing them will be discussed. Activation that can take place deep underground mainly due to cosmic muons will be briefly commented too. Presently, the experimental results for the cosmogenic production of radioisotopes are scarce and discrepancies between different calculations are important in many cases, but the increasing interest on this background source which is becoming more and more relevant can help to change this situation.

  10. Materials for Sustainable Energy

    Science.gov (United States)

    Crabtree, George

    2009-03-01

    The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.

  11. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1984-12-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  12. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  13. Material for fusion reactor

    International Nuclear Information System (INIS)

    Abhishek, Anuj; Ranjan, Prem

    2011-01-01

    To make nuclear fusion power a reality, the scientists are working restlessly to find the materials which can confine the power generated by the fusion of two atomic nuclei. A little success in this field has been achieved, though there are still miles to go. Fusion reaction is a special kind of reaction which must occur at very high density and temperature to develop extremely large amount of energy, which is very hard to control and confine within using the present techniques. As a whole it requires the physical condition that rarely exists on the earth to carry out in an efficient manner. As per the growing demand and present scenario of the world energy, scientists are working round the clock to make effective fusion reactions to real. In this paper the work presently going on is considered in this regard. The progress of the Joint European Torus 2010, ITER 2005, HiPER and minor works have been studied to make the paper more object oriented. A detailed study of the technological and material requirement has been discussed in the paper and a possible suggestion is provided to make a contribution in the field of building first ever nuclear fusion reactor

  14. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  15. Radioanalysis of siliceous materials

    International Nuclear Information System (INIS)

    Das, H.A.

    2003-01-01

    Both natural and induced radioactivity as well as man-made radiotracers may be applied to assess quality and its maintenance a widely varying range of siliceous materials. One example of industrial application is given for each of these three branches. Natural Radioactivity: The measurement of 222-Rn emanation from building material components serves the determination of the internal diffusion and thus of the effective porosity as well as the usual environmental control. Radiotracers: The specific surface area of silica components can be obtained from measurements of the chemisorptions of fluoride and its kinetics, using acid fluoride solutions and carrier-free 18-F, Tl/2 = 110 min, as the radiotracer. This also enables the determination of fluoride in drinking water at the (sub-) ppm level by spiking isotope dilution and substoichiometric adsorption to small glass beads. Neutron activation analysis (NAA): Concentration profiles down to the micro m-range of trace elements in small electronic components of irregular shape are derived from combination of NAA with controlled sequential etching flux in dilute HF-solutions. The cases of Na, Mn, Co and Se by instrumental NAA and that of W by chemical isolation from the reagent solution are considered. (author)

  16. Report of the Material Control and Material Accounting Task Force

    International Nuclear Information System (INIS)

    1978-03-01

    In September 1977 a Task Force was formed to complete a study of the role of material control and material accounting in NRC's safeguards program. The Task Force's assignment was to: define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for the material control and material accounting systems based on their roles and objectives; assess the extent to which the existing safeguards regulatory base meets or provides the capability to meet the recommended goals; and provide direction for material control and material accounting development, including both near-term and long-term upgrades. The study was limited to domestic nuclear facilities possessing significant amounts of plutonium, uranium-233 or highly enriched uranium in unsealed form. The Task Force findings are reported

  17. effects of material and non-material reinforcers on academic ...

    African Journals Online (AJOL)

    EFFECTS. OF MATERIAL AND NON-MATERIAL. REINFORCERS ON ACADEMIC PERFORMANCE OF GIRLS. ON HEALTH SCIENCE IN THE SENIOR SECONDARY ... improvement in the students' performance in health science, teachers should always consider it ... methods and their inability to use reinforcement.

  18. Control of nuclear material specified equipment and specified material

    International Nuclear Information System (INIS)

    1982-04-01

    The goal and application field of NE 2.02 regulatory guide of CNEN (Comissao Nacional de Energia Nuclear), are described. This regulatory guide is about nuclear material management, specified equipment and specified material. (E.G.) [pt

  19. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  20. Innovative Materials for Aircraft Morphing

    Science.gov (United States)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.