Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels;
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Graphene on graphene antidot lattices
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen;
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Screening in graphene antidot lattices
DEFF Research Database (Denmark)
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Electronic transport in disordered graphene antidot lattice devices
DEFF Research Database (Denmark)
Power, Stephen; Jauho, Antti-Pekka
2014-01-01
transistor or waveguiding devices. The desired properties have been predicted for atomically precise systems, but fabrication methods will introduce significant levels of disorder in the shape, position and edge configurations of individual antidots. We calculate the electronic transport properties of a wide...... range of finite graphene antidot devices to determine the effect of such disorders on their performance. Modest geometric disorder is seen to have a detrimental effect on devices containing small, tightly packed antidots, which have optimal performance in pristine lattices. Larger antidots display a...... range of effects which strongly depend on their edge geometry. Antidot systems with armchair edges are seen to have a far more robust transport gap than those composed from zigzag or mixed edge antidots. The role of disorder in waveguide geometries is slightly different and can enhance performance by...
Electronic properties of graphene antidot lattices
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.;
2009-01-01
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...
Optical properties of graphene antidot lattices
DEFF Research Database (Denmark)
Pedersen, Thomas Garm; Flindt, Christian; Pedersen, Jesper Goor;
2008-01-01
Undoped graphene is semimetallic and thus not suitable for many electronic and optoelectronic applications requiring gapped semiconductor materials. However, a periodic array of holes (antidot lattice) renders graphene semiconducting with a controllable band gap. Using atomistic modeling, we...
Ballistic Transport in Graphene Antidot Lattices.
Sandner, Andreas; Preis, Tobias; Schell, Christian; Giudici, Paula; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan
2015-12-01
The bulk carrier mobility in graphene was shown to be enhanced in graphene-boron nitride heterostructures. However, nanopatterning graphene can add extra damage and drastically degrade the intrinsic properties by edge disorder. Here we show that graphene embedded into a heterostructure with hexagonal boron nitride (hBN) on both sides is protected during a nanopatterning step. In this way, we can prepare graphene-based antidot lattices where the high mobility is preserved. We report magnetotransport experiments in those antidot lattices with lattice periods down to 50 nm. We observe pronounced commensurability features stemming from ballistic orbits around one or several antidots. Due to the short lattice period in our samples, we can also explore the boundary between the classical and the quantum transport regime, as the Fermi wavelength of the electrons approaches the smallest length scale of the artificial potential. PMID:26598218
Thermoelectric properties of finite graphene antidot lattices
DEFF Research Database (Denmark)
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka;
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...
Thermoelectric properties of finite graphene antidot lattices
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka; Brandbyge, Mads
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport properties converge fast toward the bulk limit with increasing length of the lattice: only a few repetitions (≃6) of the fundamental unit cell are required to recover the electronic band gap of the infinite ...
Spin qubits in antidot lattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;
2008-01-01
We suggest and study designed defects in an otherwise periodic potential modulation of a two-dimensional electron gas as an alternative approach to electron spin based quantum information processing in the solid-state using conventional gate-defined quantum dots. We calculate the band structure and...... electron transport between distant defect states in the lattice, and for a tunnel coupling of neighboring defect states with corresponding electrostatically controllable exchange coupling between different electron spins....
Electronic properties of disordered graphene antidot lattices
DEFF Research Database (Denmark)
Shengjun Yuan; Rolda´n, Rafael; Jauho, Antti-Pekka;
2013-01-01
Regular nanoscale perforations in graphene (graphene antidot lattices, GALs) are known to lead to a gap in the energy spectrum, thereby paving a possible way towards many applications. This theoretical prediction relies on a perfect placement of identical perforations, a situation not likely...... for solving the time-dependent Schro¨dinger equation in a tight-binding representation of the graphene sheet [Yuan et al., Phys. Rev. B 82, 115448 (2010)], which allows us to consider GALs consisting of 6400 × 6400 carbon atoms. The central conclusion for all kinds of disorder is that the gaps found...
Screening and collective modes in disordered graphene antidot lattices
DEFF Research Database (Denmark)
Yuan, Shengjun; Jin, Fengping; Roldan, Rafael;
2013-01-01
The excitation spectrum and the collective modes of graphene antidot lattices (GALs) are studied in the context of a π-band tight-binding model. The dynamical polarizability and dielectric function are calculated within the random-phase approximation. The effect of different kinds of disorder, su...
Clar sextets in square graphene antidot lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Electronic transport in disordered graphene antidot lattice devices
Power, Stephen; Jauho, Antti-Pekka
2014-01-01
Nanostructuring of graphene is in part motivated by the requirement to open a gap in the electronic band structure. In particular, a periodically perforated graphene sheet in the form of an antidot lattice may have such a gap. Such systems have been investigated with a view towards application in transistor or waveguiding devices. The desired properties have been predicted for atomically precise systems, but fabrication methods will introduce significant levels of disorder in the shape, posit...
Electron-phonon coupling in graphene antidot lattices: An indication of polaronic behavior
Vukmirović, N.; Stojanović, V.M.; Vanević, M.
2010-01-01
We study graphene antidot lattices—superlattices of perforations (antidots) in a graphene sheet—using a model that accounts for the phonon modulation of the π-electron hopping integrals. We calculate the phonon spectra of selected antidot lattices using two different semiempirical methods. Based on
Skyrmion-like bubbles and stripes in a thin ferromagnetic film with lattice of antidots
Energy Technology Data Exchange (ETDEWEB)
Marchenko, A.I., E-mail: marchalexx@gmail.com; Krivoruchko, V.N., E-mail: krivoruc@gmail.com
2015-03-01
We study the fundamental magnetic states of thin nanostructured (lattice of antidots) ferromagnetic film with quality factor less than unity. It was found that the analog of the skyrmions magnetic bubble lattice could be formed in such ferromagnetic film. These topological excitations are stable and confined due to the antidot lattice, unlike magnetic bubbles in continuous film. Some other magnetic structures similar to those observed in a films with strong uniaxial anisotropy perpendicular to the film plane were also found in the film at different magnitude of external magnetic field. - Highlights: • Magnetic states of film with antidot lattice and small quality factor are discussed. • Skyrmions are found in film with antidot lattice and small quality factor. • Skyrmions are stable and confined due to the antidot lattice.
Gräfe, Joachim; Weigand, Markus; Träger, Nick; Schütz, Gisela; Goering, Eberhard J.; Skripnik, Maxim; Nowak, Ulrich; Haering, Felix; Ziemann, Paul; Wiedwald, Ulf
2016-03-01
While the magnetic properties of nanoscaled antidot lattices in in-plane magnetized materials have widely been investigated, much less is known about the microscopic effect of hexagonal antidot lattice patterning on materials with perpendicular magnetic anisotropy. By using a combination of first-order reversal curve measurements, magnetic x-ray microscopy, and micromagnetic simulations we elucidate the microscopic origins of the switching field distributions that arise from the introduction of antidot lattices into out-of-plane magnetized GdFe thin films. Depending on the geometric parameters of the antidot lattice we find two regimes with different magnetization reversal processes. For small antidots, the reversal process is dominated by the exchange interaction and domain wall pinning at the antidots drives up the coercivity of the system. On the other hand, for large antidots the dipolar interaction is dominating which leads to fragmentation of the system into very small domains that can be envisaged as a basis for a bit patterned media.
International Nuclear Information System (INIS)
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background
Energy Technology Data Exchange (ETDEWEB)
Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Siegert, Christoph; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)
2013-12-04
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
Anisotropic magneto-resistance in Ni80Fe20 antidot arrays with different lattice configurations
International Nuclear Information System (INIS)
Highlights: • Detailed study of the magnetisation processes in antidot lattices. • Combined magnetic (MFM), magneto-transport (AMR) and numerical investigations. • Accounting for the experimentally observed differences in AMR signal amplitude in longitudinal and transverse configurations through numerical simulations. - Abstract: Ni80Fe20 antidot arrays having different lattice geometrical properties and irregularities were prepared via electron beam lithography and self-assembling of polystyrene nanospheres. All the samples were experimentally characterised by magnetic force microscopy and room-temperature magneto-resistance measurements in different configurations. The analysis, supported by micromagnetic simulations, has been focused on the effect of lattice geometry on the magneto-resistance behaviour of these systems. The detailed investigation through micromagnetic simulations of the magnetic domain configuration as a function of the applied field allows a complete understanding of the qualitative and quantitative difference of anisotropic magneto-resistance properties that have been measured in samples with different lattice geometries and in different measurement configurations
International Nuclear Information System (INIS)
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission
Energy Technology Data Exchange (ETDEWEB)
Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-06-29
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.
International Nuclear Information System (INIS)
The low frequency voltage noise and complex AC voltage response to weakly modulated magnetic fields have been studied in a superconducting Pb film with a square lattice of antidots. The temperature was close to Tc and the DC magnetic field was changed between ±1.5 H1 with H1=9.2 Oe corresponding to one vortex per antidot. A narrow band noise near f∼0.55 Hz has been observed which shows different dependences on the magnetic field in 4- and 5-point probe configurations. In the latter configuration one probes the correlation between the noise voltages in the two parts of the sample. We also measured the resistance when, in addition to the DC field, a small AC field with frequency f<177 Hz was applied. The data showed that the complex magnetoresistance response becomes nonlinear below 1/3 of the first matching field
International Nuclear Information System (INIS)
Superconducting Pb(x)/Au(25 nm) bilayers (x = 50, 100 nm) patterned with antidot lattices exhibit various matching field anomalies depending on experimental conditions. Magnetization peaks at applied fields H = n[20 Oe] (n = integer) resemble superconducting wire network data; cusps are also observed, consistent with predictions of 'giant' vortices in low-kappa films. Sharp 'staircase' anomalies spaced by 1-3 Oe are observed in AC magnetization, possibly a result of depinning of intermediate state domains, or macroscopic quantum tunneling between reproducible states of different quantized flux.
International Nuclear Information System (INIS)
We present new photovoltage oscillation in a pure two dimensional electron gas (2DEG) and in the presence of circular or semicircular antidot lattices. Results were interpreted as EMPs-like photovoltage oscillations. We observed and explained the photovoltage oscillation amplitude enhancement in the presence of an antidot lattice with regard to the pure 2DEG. The microwave frequency excitation range is 139 – 350 GHz. The cyclotron and magnetoplasmon resonances take place in the magnetic field range 0.4 – 0.8 T. This original experimental condition allows edge magnetoplasmons EMPs interference like observation at low magnetic field, typically B < Bc where Bc is the magnetic field at which the cyclotron resonance takes place. The different oscillation periods observed and their microwave frequency dependence were discussed. For 139 and 158 GHz microwave excitation frequencies, a unique EMPs-like interference period was found in the presence of antidots whereas two periods were extracted for 295 or 350 GHz. An explanation of this effect is given taking account of strong electron interaction with antidot at low magnetic field. Indeed, electrons involved in EMPs like phenomenon interact strongly with antidots when electron cyclotron orbits are larger than or comparable to the antidot diameter
Farmer, B.; Bhat, V. S.; Sklenar, J.; Teipel, E.; Woods, J.; Ketterson, J. B.; Hastings, J. T.; De Long, L. E.
2015-05-01
The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted according to an aperiodic Fibonacci sequence applied to two lattice translations, d1 = 1618 nm and d2 = 1000 nm. The wire segment thickness is fixed at t = 25 nm, and the width W varies from 80 to 510 nm. We measured the DC magnetization between room temperature and 5 K. Room-temperature, narrow-band (9.7 GHz) ferromagnetic resonance (FMR) spectra were acquired for various directions of applied magnetic field. The DC magnetization curves exhibited pronounced step anomalies and plateaus that signal flux closure states. Although the Fibonacci distortion breaks the fourfold symmetry of a finite periodic square ADL, the FMR data exhibit fourfold rotational symmetry with respect to the applied DC magnetic field direction.
International Nuclear Information System (INIS)
Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field
Theoretical study on electronic properties of MoS2 antidot lattices
International Nuclear Information System (INIS)
Motivated by the state of the art method for etching hexagonal array holes in molybdenum disulfide (MoS2), the electronic properties of MoS2 antidot lattices (MoS2ALs) with zigzag edge were studied with first-principles calculations. Monolayer MoS2ALs are semiconducting and the band gaps converge to constant values as the supercell area increases, which can be attributed to the edge effect. Multilayer MoS2ALs and chemical adsorbed MoS2ALs by F atoms show metallic behavior, while the structure adsorbed with H atoms remains to be semiconducting with a tiny bandgap. Our results show that forming periodically repeating structures in MoS2 can develop a promising technique for engineering nano materials and offer new opportunities for designing MoS2-based nanoscale electronic devices and chemical sensors.
Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Pedersen, Thomas Garm
2013-01-01
We study graphene antidot lattices (GALs) in magnetic fields. Using a tight-binding model and a recursive Green's function technique that we extend to deal with periodic structures, we calculate Hofstadter butterflies of GALs. We compare the results to those obtained in a simpler gapped graphene...... model. A crucial difference emerges in the behavior of the lowest Landau level, which in a gapped graphene model is independent of magnetic field. In stark contrast to this picture, we find that in GALs the band gap can be completely closed by applying a magnetic field. While our numerical simulations...... can only be performed on structures much smaller than can be experimentally realized, we find that the critical magnetic field for which the gap closes can be directly related to the ratio between the cyclotron radius and the neck width of the GAL. In this way, we obtain a simple scaling law for...
Energy Technology Data Exchange (ETDEWEB)
Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel
2016-01-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Energy Technology Data Exchange (ETDEWEB)
Pal, S.; Das, K.; Barman, A., E-mail: abarman@ybose.res.in [Thematic Unit of Excellence on Nanodevice Technology and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Klos, J. W.; Gruszecki, P.; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznań (Poland); Hellwig, O. [San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States)
2014-10-20
We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.
Clar Sextet Analysis of Triangular, Rectangular, and Honeycomb Graphene Antidot Lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
triangular, and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap the triangular arrangement displays always a shable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using, Clear sextet...
International Nuclear Information System (INIS)
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel
2016-02-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Energy Technology Data Exchange (ETDEWEB)
Jungfleisch, Matthias B., E-mail: jungfleisch@anl.gov; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Sklenar, Joseph [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)
2016-02-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni{sub 80}Fe{sub 20}/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Directory of Open Access Journals (Sweden)
Vijay Kumar Agrawal
2015-01-01
Full Text Available Aluminum phosphide (ALP poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning.
Magnetic Property in Large Array Niobium Antidot Thin Films
Tinghui, Chen; Hsiang-Hsi, Kung; Wei-Li, Lee; Institute of Physics, Academia Sinica, Taipei, Taiwan Team
2014-03-01
In a superconducting ring, the total flux inside the ring is required to be an integer number of the flux quanta. Therefore, a supercurrent current can appear within the ring in order to satisfy this quantization rule, which gives rise to certain magnetic response. By using a special monolayer polymer/nanosphere hybrid we developed previously, we fabricated a series of superconducting niobium antidot thin films with different antidot diameters. The antidots form well-ordered triangular lattice with a lattice spacing about 200 nm and extend over an area larger than 1 cm2, which enables magnetic detections simply by a SQUID magnetometer. We observed magnetization oscillation with external magnetic field due to the supercurrent screening effect, where different features for large and small antidot thin films were found. Detailed size and temperature dependencies of the magnetization in niobium antidot nanostructures will be presented.
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads;
2009-01-01
thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...
Quantum Hall effect in bilayer system with array of antidots
Pagnossin, I. R.; Gusev, G. M.; Sotomayor, N. M.; Seabra, A. C.; Quivy, A. A.; Lamas, T. E.; Portal, J. C.
2007-04-01
We have studied the Quantum Hall effect in a bilayer system modulated by gate-controlled antidot lattice potential. The Hall resistance shows plateaus which are quantized to anomalous multiplies of h/e2. We suggest that this complex behavior is due to the nature of the edge-states in double quantum well (DQW) structures coupled to an array of antidots: these plateaus may be originated from the coexistence of normal and counter-rotating edge-states in different layers.
Transport in graphene antidot barriers and tunneling devices
Pedersen, Thomas Garm; Pedersen, Jesper Goor
2012-01-01
Periodic arrays of antidots, i.e. nanoscale perforations, in graphene enable tight confinement of carriers and efficient transport barriers. Such barriers evade the Klein tunneling mechanism by being of the mass rather than electrostatic type. While all graphene antidot lattices (GALs) may support directional barriers, we show, however, that a full transport gap exists only for certain orientations of the GAL. Moreover, we assess the applicability of gapped graphene and the Dirac continuum ap...
Singh, Satinderpal; Prakash, Atish; Kaur, Shamsherjit; Ming, Long Chiau; Mani, Vasudevan; Majeed, Abu Bakar Abdul
2016-08-01
Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016. PMID:25864908
Magnetic properties engineering of nanopatterned cobalt antidot arrays
Kaidatzis, Andreas; del Real, Rafael P.; Alvaro, Raquel; Palma, Juan Luis; Anguita, José; Niarchos, Dimitrios; Vázquez, Manuel; Escrig, Juan; García-Martín, José Miguel
2016-05-01
We report on the study of arrays of 60 nm wide cobalt antidots, nanopatterned using focused ion beam milling. Square and hexagonal symmetry arrays have been studied, with varying antidot densities and lattice constant from 150 up to 300 nm. We find a strong increase of the arrays’ magnetic coercivity with respect to the unpatterned film, which is monotonic as the antidot density increases. Additionally, there is a strong influence of the array symmetry to the in-plane magnetic anisotropy: square arrays exhibit fourfold symmetry and hexagonal arrays exhibit sixfold symmetry. The above findings are corroborated by magnetic imaging and micromagnetic modeling, which show the magnetic structure of the arrays to depend strongly on the array morphology.
Resonant tunneling diode based on band gap engineered graphene antidot structures
Palla, Penchalaiah; Ethiraj, Anita S.; Raina, J. P.
2016-04-01
The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green's Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved the Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.
Deforming nanoporous metal: Role of lattice coherency
International Nuclear Information System (INIS)
Nanoporous metals prepared by alloy corrosion may assume the form of monolithic, millimeter-sized bodies containing around 1015 nanoscale ligaments per cubic millimeter. Here, we report on the fabrication and mechanical behavior of macroscopic, crack-free nanoporous gold samples which exhibit excellent ductility in compression tests. Their yield stress is significantly lower than that expected based on scaling laws or on previous nanoindentation experiments. Electron backscatter diffraction imaging reveals a polycrystalline microstructure with grains larger than 10 μm which acquire a subdomain structure during plastic flow, but remain otherwise intact. We highlight the action of lattice dislocations which can travel over distances much larger than the ligament size. This results in a collective deformation of the many ligaments in each grain. Remarkably, the dislocation cores are partly located in the pore channels. The results suggest a critical view of the conversion between indentation hardness and yield stress in previous work.
Bird, Alexander
2010-01-01
This paper explores the question: can fundamental dispositions (which have no distinct causal basis) suffer from finks and antidotes? I use my response to shed light on the question: can the fundamental laws of physics be ceteris paribus laws?
Ballistic transport in graphene antidot lattices
Sandner, Andreas; Preis, Tobias; Schell, Christian; Giudici, Paula; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan
2015-01-01
Graphene samples can have a very high carrier mobility if influences from the substrate and the environment are minimized. Embedding a graphene sheet into a heterostructure with hexagonal boron nitride (hBN) on both sides was shown to be a particularly efficient way of achieving a high bulk mobility. Nanopatterning graphene can add extra damage and drastically reduce sample mobility by edge disorder. Preparing etched graphene nanostructures on top of an hBN substrate instead of SiO2 is no rem...
Magnetoconductance of a hybrid quantum ring: Effects of antidot potentials
Kim, Nammee; Park, Dae-Han; Kim, Heesang
2016-05-01
The electronic structures and two-terminal magnetoconductance of a hybrid quantum ring are studied. The backscattering due to energy-resonance is considered in the conductance calculation. The hybrid magnetic-electric quantum ring is fabricated by applying an antidot electrostatic potential in the middle of a magnetic quantum dot. Electrons are both magnetically and electrically confined in the plane. The antidot potential repelling electrons from the center of the dot plays a critical role in the energy spectra and magnetoconductance. The angular momentum transition in the energy dispersion and the magnetoconductance behavior are investigated in consideration of the antidot potential variation. Results are shown using a comparison of the results of the conventional magnetic quantum dot.
Directory of Open Access Journals (Sweden)
Alexander BIRD
2010-01-01
Full Text Available This paper explores the question: can fundamental dispositions (which have no distinct causal basis suffer from finks and antidotes? I use my response to shed light on the question: can the fundamental laws of physics be ceteris paribus laws?
The dilemma of approving antidotes.
Steffen, Christian
2007-04-20
Clinical trials with antidotes are difficult to perform for a variety of practical, ethical, and financial reasons. As acute poisoning is a rare event, the commercial interest in basic and clinical research is low. Poisoned patients are usually not available for normal clinical trial procedures and, if they are, they cannot give informed consent. This situation results in a dilemma: antidotes are essential drugs. A resolution of the Council of Europe requests to guarantee the optimal availability of antidotes and the improvement of their use. As comprehensive data on the efficacy of antidotes are often missing, a marketing authorisation under exceptional circumstances according to Article 14(8) of Regulation (EC) No. 276/2004, will often be the only way to get an approval, as: (1) the indications for which the product in question is intended are encountered so rarely that the applicant cannot reasonably be expected to provide comprehensive evidence ("orphan drug"), (2) in the present state of scientific knowledge, comprehensive information cannot be provided, or (3) it would be contrary to generally accepted principles of medical ethics to collect such data. Typically, data on antidotes are obtained from a patchwork of studies with animals, human tissue and a few observations from human poisoning corroborated with data from clinical observations and biochemistry. Generalisations from chemical and mechanistic similarities between groups of poisons are usual, but often lack scientific evidence. Current standards of good clinical practice can rarely be observed. Therefore, public funding and other financial support are necessary incentives to initiate trials in this important area. PMID:17207900
Energy Technology Data Exchange (ETDEWEB)
Rodríguez-Suárez, R.L., E-mail: rrodriguez@fis.puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Palma, J.L.; Burgos, E.O. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Michea, S. [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J.; Denardin, J.C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Aliaga, C. [Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago (Chile)
2014-01-15
The magnetic properties of Ni{sub 80}Fe{sub 20} antidot arrays with hole diameters of 18 and 70 nm fabricated by a template-assisted method were investigated using the ferromagnetic resonance technique. Tuning the antidot arrays by changing the hole diameter enables control on the angular dependence of the ferromagnetic resonance field. The scanning electron microscope images reveal a quite regular hexagonal arrangement of the pores, however the angular dependence of the resonance field do not exhibit the six-fold symmetry expected for this symmetry. Micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our real system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects the ferromagnetic resonance field symmetry. - Highlights: • We use the FMR technique to investigate the magnetic properties of Py antidots. • We studied the effect of pore diameter on FMR angular measurement. • FMR field does not exhibit the six-fold symmetry. • For all angular positions there are two resonance modes always present. • Micromagnetic simulations agree with the experimental results with defects.
International Nuclear Information System (INIS)
The magnetic properties of Ni80Fe20 antidot arrays with hole diameters of 18 and 70 nm fabricated by a template-assisted method were investigated using the ferromagnetic resonance technique. Tuning the antidot arrays by changing the hole diameter enables control on the angular dependence of the ferromagnetic resonance field. The scanning electron microscope images reveal a quite regular hexagonal arrangement of the pores, however the angular dependence of the resonance field do not exhibit the six-fold symmetry expected for this symmetry. Micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our real system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects the ferromagnetic resonance field symmetry. - Highlights: • We use the FMR technique to investigate the magnetic properties of Py antidots. • We studied the effect of pore diameter on FMR angular measurement. • FMR field does not exhibit the six-fold symmetry. • For all angular positions there are two resonance modes always present. • Micromagnetic simulations agree with the experimental results with defects
International Nuclear Information System (INIS)
Magnetic properties of Co antidot arrays with different hole sizes fabricated by a template-assisted method have been studied by means of first-order reversal curves (FORCs) and micromagnetic simulations. Hysteresis curves show a significant increase of the coercivity of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Co thin film. This effect is related to the reversibility of the magnetic domains during magnetization reversal, since due to the appearance of pores, domains may become trapped between them. On the other hand, micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our disordered system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects its magnetic properties. Finally, FORCs show that there is greater interaction attributed to domain–domain interaction. (paper)
Magnetic modulation of the tunnelling between defect states in antidot superlattices.
Movilla, J L; Planelles, J
2012-07-11
We show theoretically that the tunnelling between properly designed defects in periodic antidot lattices can be strongly modulated by applied magnetic fields. Further, transport channels made up of linear arrangements of tunnel-coupled defects can accommodate Aharonov-Bohm cages, suggesting a magnetic control of the transport through the system. Evidence supporting an unusual robustness of the caging effect against electron-electron interactions is also provided. PMID:22713775
Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction
Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.
1991-01-01
provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.
New Direction Treatment in Antidote Treatment of OPC Intoxications
International Nuclear Information System (INIS)
The toxic effect of organophosphorus compounds (OPC) is based on inhibition of acetylcholinesterase (AChE), enzyme which plays an important physiological role in the cholinergic nervous system. The drug therapy on intoxication with OPC included mainly combination of cholinesterase reactivators and cholinolytics. There is no single AChE reactivator having the ability to sufficiently reactivate inhibited enzyme due to the high variability of chemical structure of the inhibitors. The classic oximes have antidote effect against intoxication with sarin, Vx and tabun, but are not effective against soman. HI-6 (Bulgarian ampoule form Toxidin) has an effect against sarin, soman and Vx, and to a lesser degree against tabun. In order to improve the treatment of poisoning with highly toxic OPC, in ours laboratory we synthesized a variety of mono- and dioximes. We use different numbers of pyridinium or heterocyclic rings, different length and shape of the connecting chain between pyridinium or pyridinium-heterocyclic rings; different number and position of the oxime groups at the pyridinium rings and others. The investigations of some authors and our research showed that the compounds which present a combination between HI-6 and TMB-4 have a better antidote activity against tabun intoxications. The important finding of this study is that we synthesized complex compounds, reactivators of cholinesterase activity (including HI-6) with AMP / ATP and polycarboxilats, which have prolonged action in organism compared with original oximes. Pharmacokinetic studies showed that they are eliminated more slowly. The antidotal efficacy of these compounds after soman poisoning in rats was similar like that of the original oximes. The same tendency showed and the other pharmacological (blood pressure, EKG, breathing, neuromuscular transmission), and biochemical (ChE) investigations. (author)
Graphene based dots and antidots: a comparative study from first principles.
Cui, X Y; Li, L; Zheng, R K; Liu, Z W; Stampfl, C; Ringer, S P
2013-02-01
Graphene based quantum dots and antidots are two nanostructures of primary importance for their fundamental physics and technological applications, particularly in the emerging field of graphene-based nanoelectronics and nanospintronics. Herein, based on first principles density functional theory calculations, we report a comparative study on the electronic structure of these two structurally complementary entities, where the bandgap opening, edge magnetism and the role of hydrogenation are investigated. Our results show the diversity of electronic structures of various dots and antidots, whose properties are sensitive to the edge detailed geometry (including size and shape and edge type). Hydrogen passivation plays an essential roal in affecting the related properties, in particular, it leads to larger bandgap values and suppress the edge magnetism. The frontier orbital analysis is employed to rationalize and compare the complicated nature of dots and antidots. Based on the specific geometrical consideration and the total energy competition of the ground antiferromagnetic and the ferromagnetic states, some magnetic structures (the unpassivated 42-atom-antidot and 54-atom-dot) are proposed to be useful as magnetic switches. PMID:23646613
Anisotropy engineering using exchange bias on antidot templates
Directory of Open Access Journals (Sweden)
F. J. T. Goncalves
2015-06-01
Full Text Available We explore an emerging device concept based on exchange bias used in conjunction with an antidot geometry to fine tune ferromagnetic resonances. Planar cavity ferromagnetic resonance is used to study the microwave response of NiO/NiFe bilayers with antidot structuring. A large frequency asymmetry with respect to an applied magnetic field is found across a broad field range whose underlying cause is linked to the distribution of magnetic poles at the antidot surfaces. This distribution is found to be particularly sensitive to the effects of exchange bias, and robust in regards to the quality of the antidot geometry. The template based antidot geometry we study offers advantages for practical device construction, and we show that it is suitable for broadband absorption and filtering applications, allowing tunable anisotropies via interface engineering.
Low-Temperature Magnetic Properties of Co Antidot Array
Institute of Scientific and Technical Information of China (English)
LIU Qing-Fang; JIANG Chang-Jun; FAN Xiao-Long; WANG Jian-Bo; XUE De-Sheng
2006-01-01
Cobalt antidot arrays with different thicknesses are fabricated by rf magnetron sputtering onto porous alumina substrates. Scanning electron microscopy and grazing incidence x-ray diffraction are employed to characterize the morphology and crystal structure of the antidot array, respectively. The temperature dependence of magnetic properties shows that in the temperature range 5K-300K, coercivity and squareness increase firstly, reach their maximum values, then decrease. The anomalous temperature dependences of coercivity and squareness are discussed by considering the pinning effect of the antidot and the magnetocrystalline anisotropy.
Thermodynamic properties of a quantum Hall anti-dot interferometer
Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.
2016-02-01
We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.
Thermodynamic properties of a quantum Hall anti-dot interferometer
Schreier, Sarah Levy; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.
2015-01-01
We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop....
The Role of Lattice Vibrations in Adatom Diffusion at Metal Stepped Surfaces
International Nuclear Information System (INIS)
Diffusion of a single atom on metal surfaces remains a subject of continuing interest in the surface science community because of the important role it plays in several technologically important phenomena such as thin-film and eptaxial growth, catalysis and chemical reactions. Except for a few studies, most of theoretical works, ranging from molecular dynamic simulations to first principle electronic structure calculations, are devoted to determination of the characteristics of the diffusion processes and the energy barriers, neglecting the contribution of lattice vibrations in adatom diffusion. However, in a series of theoretical works on self-diffusion on the flat surfaces of Cu(100), Ag(100) and Ni(100), Ulrike et al.[1-3], showed that the vibrational contributions are important and should be included in any complete description of the temperature dependence of the diffusion coefficient. In this work, it is our aim to examine the role of lattice vibrations in adatom diffusion at stepped surfaces of Cu(100) and Ni(100) within the framework of transition state theory. Ehrlich-Shwoebel energy barriers for an adatom diffusing over a step-edge are calculated through the inclusion of vibrational internal energy. Local vibrational density of states, main ingredient to the vibrational thermodynamic functions, are calculated in the harmonic approximation, using real space Green's function method with the force constants derived from interaction potentials based on the embedded atom method. We emphasize the sensitivity of the local vibrational density of states to the local atomic environment. We, furthermore, discuss the contribution of thermodynamic functions calculated from local vibrational density of states to the prefactors in diffusion coefficient
The Copernican Revolution as Story: an Antidote for Scientific Illiteracy
Wallace, P. M.
2005-08-01
``When a white-robed scientist, momentarily looking away from his microscope or cyclotron [or telescope], makes some pronouncement for the general public, he may not be understood but at least he is certain to be believed.'' The truth of this opening sentence of Anthony Standen's 1950 book Science is a Sacred Cow, as clear today as it was then, is the motivation for a new astronomy course at Berry College near Atlanta, GA, USA. To non-scientists, science is known by its products, not by what it is: a human progress. For this illiteracy an antidote is offered: the history of astronomy. In this course the story of the Copernican Revolution is told, for within this story the true nature of science can be found in its fullness. For example, Aristotle's uniform circular motion is used to emphasize the role of assumptions, and the occasional value of wrong ideas is evident in Tycho's theory and in Kepler's universe of perfect solids. Tycho's observations of Mars and Kepler's analysis illustrate the interplay of observation, theory, and technology. As a final example, the indirectness and often-unintentional nature of scientific advance can be seen in the work of Copernicus. The roles of personality and the intersections of science and society are themes throughout the course, as are the merging of disparate fields and the power of strong theories. There are other themes (e.g., coherence, the role of mathematics), but the emphasis is on the science and much of the work is quantitative. There is a laboratory component that features observations and experiments, and in order to bring the narrative to life the class spends two weeks in Poland, the Czech Republic, and Italy, touring sites that are relevant to the story of the Copernican Revolution.
Creativity: Performativity's Poison or Its Antidote?
Munday, Ian
2014-01-01
A common move in the study of creativity and performativity is to present the former as an antidote to the latter. Might we, therefore, see work on creativity in education as heralding an era of post-performativity? In this paper I argue that the portrayal of performativity in the literature on creativity presents an overly simplistic (vulgar?)…
Sodium dimercaptopropane sulfonate as antidote against non-metallic pesticides
Institute of Scientific and Technical Information of China (English)
Zhi-kang CHEN; Zhong-qiu LU
2004-01-01
@@ INTRODUCTION With the advent of World War II, dimercaptol was first developed in England as an effective antidote against arsenical agents. In 1950' s, scientists from the Soviet Union developed a water-soluble compound, sodium dimercaptopropane sulfonate (Na-DMPS) named as Unithiol (or Unitiol), which was able to chelate heavy metals and metalloids.
International Nuclear Information System (INIS)
The thermodynamic and spectral properties of a two-dimensional electron gas with an antidot in a strong magnetic field, rc≤r0, where rc is the cyclotron radius and r0 is the antidot effective radius, are studied via a solvable model with the antidot confinement potential U∼1/r2. The edge states localized at the antidot boundary result in an Aharonov-Bohm-type oscillatory dependence of the magnetization as a function of the magnetic field flux through the antidot. These oscillations are superimposed on the de Haas--van Alphen oscillations. In the strong-field limit, ℎωc∼εF, where ωc is the cyclotron frequency and εF is the Fermi energy, the amplitude of the Aharonov-Bohm-type oscillations of the magnetization due to the contribution of the lowest edge state is ∼μBkFrc (μB is the Bohr magneton and kF is the Fermi wave vector). When the magnetic field is decreased, higher edge states can contribute to the magnetization, leading to the appearance of a beating pattern in the Aharonov-Bohm oscillations. The role of temperature in suppressing the oscillatory contribution due to higher edge states is analyzed. Rapid oscillations of the magnetization as a function of the Aharonov-Bohm flux, occurring on a scale of a small fraction of the flux quantum hc/e, are demonstrated. The appearance of a manifold of non- equidistant frequencies in the magneto-optical-absorption spectrum, due to transitions between electronic edge states localized near the antidot boundary, is predicted
Chubb, Scott R
2005-01-01
As opposed to the conventional, approximate theory of electrical conduction in solids, which is based on energy band, quasi-particle states in infinite lattices, a rigorous theory exists that can be used to explain transport phenomena, in finite lattices, at reduced temperature, through the effects of a broken gauge symmetry: The loss of translational invariance with respect to Galilean transformations that maintain particle-particle separation. Implications of this result in areas related to...
Observation of Novel Low-Field FMR modes in Permalloy Antidot Arrays
de Long, Lance; Bhat, Vinayak; Farmer, Barry; Woods, Justin; Hastings, Todd; Sklenar, Joseph; Ketterson, John
2013-03-01
Permalloy films of thickness 23 nm were patterned with square arrays of square antidots (AD) with feature size D = 120 nm, and lattice constants d = 200, 300, 500 and 700 nm (total sample area = 2 mm x 2mm), using electron beam lithography. Our broad-band (frequencies f = 10 MHz-15 GHz) and narrow-band (9.7 GHz) FMR measurements of even dilute (D/d <<1) AD lattices (ADL) reveal remarkably reproducible absorption spectra in the low-frequency, hysteretic regime in which disordered domain wall (DW) patterns and unsaturated magnetization textures are expected for unpatterned films, but in the present case are strongly affected by the periodic ADL. Other modes in the saturated regime exhibit strong dependence on the angle between the applied DC field H and the ADL axes, as confirmed by our micromagnetic simulations. Novel modes are observed at DC fields above that of the uniform mode, which simulations indicate are localized at AD edges. Other novel modes are observed for DC fields below that of the uniform mode, which simulated power and phase maps indicate are confined to ADL interstices oriented parallel to H. These results show even dilute AD concentrations can effect strong control of DW evolution. Research at Kentucky is supported by U.S. DoE Grant DE-FG02-97ER45653 and NSF Grant EPS-0814194.
Role of paramagnetic ions and water proton spin-lattice relaxation time in biological systems
International Nuclear Information System (INIS)
This paper summarizes the observations of different studies concerning the influence of paramagnetic ions on spin-lattice relaxation times in magnetic resonance imaging. Based on findings that manganese ion content in cancer tissues is decreased in comparison to normal tissues, the results of different papers analysing the influence of tissue manganese concentration on spinlattice relaxation times are collected and compared. Neither the comparison between different organs, different animals nor the comparison between different tissues (normal and malignant) showed correlations of practical consequences between manganese concentrations and spin-lattice relaxation times. These results are consistent with those from studies with copper and iron ions in living systems. (orig.)
Strengthening positive interpersonal relationships at work: An antidote for burnout
Directory of Open Access Journals (Sweden)
CORALIA SULEA
2014-05-01
Full Text Available Burnout is an important phenomenon for organizations and employees associated with negative outcomes. Key organizational areas, like fairness and workplace community, are responsible for employee burnout. This editorial argues for the importance of workplace community and presents the mechanisms through which dysfunctional relationships at work may contribute to burnout, as well as the processes that explain how healthy interpersonal relationships can be an antidote for burnout.
Photostability of antidotal oxime HI-6, impact on drug development.
Bogan, Reinhard; Worek, Franz; Koller, Marianne; Klaubert, Bernd
2012-01-01
HI-6 exhibits superior efficacy in the therapy of intoxication by different highly toxic organophosphorus nerve agents. Therefore HI-6 is a promising candidate for the development of new antidotes against nerve agents. For ethical and safety reasons antidotes containing HI-6 should get marketing authorization. Active pharmaceutical ingredients of medicinal products have to fulfil regulatory conditions in terms of purity and stability. Photostability is an essential parameter in this testing strategy. HI-6 was tested under conditions of ICH Q1B 'Photostability testing of new drug substances and products'. The data showed a marked degradation of HI-6 after exposure to daylight. The mechanism of degradation could be detected as photoisomerism. The light burden dependent rate of photoisomerism was followed quantitatively. Based on these quantitative results on the amount of light induced isomeric product a pharmacological qualification was made. A standardized in vitro test showed a decreased ability of light exposed HI-6 to reactivate sarin- and paraoxon-inhibited human acetylcholinesterase. These results have an impact on the further development of antidotes containing HI-6, as light protection will probably be necessary during handling, packaging, storage and application. PMID:22359386
Selection of an aptamer antidote to the anticoagulant drug bivalirudin.
Directory of Open Access Journals (Sweden)
Jennifer A Martin
Full Text Available Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT. Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug, and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.
Nanometer Scale Hard/Soft Bilayer Magnetic Antidots.
Béron, Fanny; Kaidatzis, Andreas; Velo, Murilo F; Arzuza, Luis C C; Palmero, Ester M; Del Real, Rafael P; Niarchos, Dimitrios; Pirota, Kleber R; García-Martín, José Miguel
2016-12-01
The effect of arrays of nanometer scale pores on the magnetic properties of thin films has been analyzed. Particularly, we investigated the influence of the out-of-plane magnetization component created by the nanopores on the in-plane magnetic behavior of patterned hard/soft magnetic thin films in antidot morphology. Its influence on the coupling in Co/Py bilayers of few tens of nanometer thick is compared for disordered and ordered antidots of 35-nm diameter. The combination of magneto-optical Kerr effect (MOKE) and first-order reversal curve (FORC) technique allows probing the effects of the induced perpendicular magnetization component on the bilayer magnetic behavior, while magnetic force microscopy (MFM) is used to image it. We found that ordered antidots yield a stronger out-of-plane component than disordered ones, influencing in a similar manner the hard layer global in-plane magnetic behavior if with a thin or without soft layer. However, its influence changes with a thicker soft layer, which may be an indication of a weaker coupling. PMID:26873261
International Nuclear Information System (INIS)
The fate of acetochlor herbicide was investigated in corn (Zea mays L.) in nutrition solution culture experiments with and without R-25788 antidote. The antidote was found to slightly stimulate the absorption but to retard the translocation of acetochlor labelled with sup(14)C in the carbonyl group. The degradation of the herbicide and the formation of the acetochlor GSH conjugate were faster in the antidote treated plants than in the untreated controls. (author)
Coffee as an Antidote to Knowledge Stickiness
Blackman, Deborah; Phillips, Diane
2011-01-01
This paper considers the concept of space and its role in both knowledge creation and overcoming knowledge stickiness. Aristotelian concepts of "freedom to" and "freedom from" are used to reconceptualise space. Informal and formal spaces, concepts and places are discussed as both specific locations and as gaps providing space for knowledge…
The role of diffusion measurements in the study of crystal lattice defects
International Nuclear Information System (INIS)
Measurements of atomic mobility in solids are frequently of direct interest to those concerned with the design, development and utilization of materials in engineering. Increasing attention, however, is currently devoted to an under standing of such properties in terms of the occurrence and nature of point and line defects in the crystals. This paper reviews some recent diffusion studies conducted at C.R,N.L. that provide, in addition to data of interest in nuclear technology, a means of gaining some insight into the more fundamental nature of the lattice defects occurring in the materials. The systems discussed are (i) self diffusion in the high temperature phase of pure zirconium (ii) solute diffusion in lead and (iii) interdiffusion of aluminum and zirconium The unusual and at present incompletely understood results described in (i) are briefly reviewed. Evidence is given to suggest that diffusion occurs either through a dense dislocation network produced as a result of a martensitic phase transformation, or, alternatively, by excess vacancies introduced into the crystal by impurities. In (ii) the extraordinarily rapid diffusion of noble metal solutes in high purity lead single crystals will be discussed n terms of the state of solution of the solute atoms. It will be shown that their diffusion behaviour can be understood by assuming that a fraction fi of the dissolved solute atoms occupy interstitial sites, The measured diffusion coefficient Dm is related to the interstitial diffusion coefficient by Dm = fi Di. In (iii) the formation and rapid growth of single intermetallic compound ZrAl3 in the diffusion zone formed between pure zirconium and pure aluminum is described and the diffusion mechanism is interpreted in terms of the structure of the compound lattice. The results indicate that ZrAl3 forms a defect lattice, leading to the relatively rapid migration of aluminum atoms. (author)
The Role of Diffusion Measurements in the Study of Crystal Lattice Defects
International Nuclear Information System (INIS)
Measurements of atomic mobility in solids are frequently of direct interest to those concerned with the design, development and utilization of materials in engineering. Increasing attention, however, is currently devoted to an understanding of such properties in terms of the occurrence and nature of point and line defects in the crystals. This paper reviews some recent diffusion studies conducted at CRNL that provide, in addition to data of interest in nuclear technology, a means of gaining some insight into the more fundamental nature of the lattice defects occurring in the materials. The systems discussed are (i) self diffusion in the high temperature phase of pure zirconium, (ii) solute diffusion in lead, and (iii) interdiffusion of aluminium and zirconium. The unusual and at present incompletely understood results described in (i) are briefly reviewed. Evidence is given to suggest that diffusion occurs either through a dense dislocation network produced as a result of a martensitic phase transformation, or, alternatively, by excess vacancies introduced into the crystal by impurities. In (ii) the extraordinarily rapid diffusion of noble metal solutes in high-purity lead single crystals will be discussed in terms of the state of solution of the solute atoms. It will be shown that their diffusion behaviour can be understood by assuming that a fraction fi of the dissolved solute atoms occupy interstitial sites. The measured diffusion coefficient Dm is related to the interstitial diffusion coefficient by Dm = fiDi. In (iii) the formation and rapid growth of a single intermetallic compound ZrAl3 in the diffusion zone formed between pure zirconium and pure aluminium is described and the diffusion mechanism is interpreted in terms of the structure of the compound lattice. The results indicate that ZrAl3 forms a defect lattice, leading to the relatively rapid migration of aluminium atoms. (author)
Ravichandran, S.; Bagchi, Biman
1996-01-01
We have carried out a computer ``experiment'' of orientational relaxation in a spatially random and orientationally disordered dipolar lattice (RDL), generated by quenching only the translational motion of a dense liquid. In the high polarity limit, the orientational relaxation of the RDL is dramatically different from that of the parent liquid, the former exhibits a very slow, nonexponential long time decay of the orientational correlation functions and markedly non-Debye dielectric relaxation. These results clearly demonstrate the importance of spatial density fluctuations in orientational relaxation.
Do gastric contents modify antidotal efficacy of oral activated charcoal?
Olkkola, K T; Neuvonen, P J
1984-01-01
The effect of food on the antidotal efficacy of activated charcoal was studied in six healthy volunteers, who ingested aspirin 1000 mg, mexiletine 200 mg and tolfenamic acid 400 mg in a randomized cross-over study. Activated charcoal 25 g, suspended in water, was administered 5 min or 60 min after the drugs were taken on an empty stomach or after a standard meal. The serum concentrations and the cumulative excretion into urine of the drugs were followed for 48 h. When the drugs were taken on ...
Flavor Physics in the LHC era: the role of the lattice
Laiho, Jack; Van de Water, Ruth
2012-01-01
We discuss the present status of global fits to the CKM unitary triangle using the latest experimental and theoretical constraints. For the required nonperturbative weak matrix elements, we use three-flavor lattice QCD averages from www.latticeaverages.org; these have been updated from Ref. [1] to reflect all available lattice calculations as of the "End of 2011". Because of the greater than 3 sigma disagreement between the extraction of |Vub| from inclusive and exclusive semileptonic b -> u l nu (l = e,mu) decays, particular emphasis is given to a clean fit in which we remove the information from these decays. Given current theoretical and experimental inputs, we observe an approximately 3 sigma tension in the CKM unitarity triangle that may indicate the presence of new physics in the quark-flavor sector. Using a model-independent parameterization of new-physics effects, we test the compatibility of the data with scenarios in which the new physics is in kaon mixing, in B-mixing, or in B -> tau nu decay. We f...
Role of structural factors in formation of chiral magnetic soliton lattice in Cr1/3NbS2
International Nuclear Information System (INIS)
The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr1/3NbS2 intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr1/3NbS2 are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr3+ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr3+ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M1/3NbX2 and M1/3TaX2 (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.
Lee, Deok-Sun; Sadjadi, Zeinab; Rieger, Heiko
2014-07-01
Recently, anomalous scaling properties of front broadening during spontaneous imbibition of water in Vycor glass, a nanoporous medium, were reported: the mean height and the width of the propagating front increase with time t both proportional to t(1/2). Here, we propose a simple lattice imbibition model and elucidate quantitatively how the correlation range of the hydrostatic pressure and the disorder strength of the pore radii affect the scaling properties of the imbibition front. We introduce an effective tension of liquid across neighboring pores, which depends on the aspect ratio of each pore, and show that it leads to a dynamical crossover: both the mean height and the roughness grow faster in the presence of tension in the intermediate-time regime but eventually saturate in the long-time regime. The universality class of the long-time behavior is discussed by examining the associated scaling exponents and their relation to directed percolation. PMID:25122378
基于概念格模型的角色提取%Roles Acquisition Based on Concept Lattice Model
Institute of Scientific and Technical Information of China (English)
韩道军; 侯彦娥; 贾培艳
2012-01-01
角色工程研究基于角色的访问控制模型(RBAC)中角色的提取与优化,但在应用的场景中忽视了复杂信息系统(CIS)这一重要对象.RBAC是CIS中的重要访问控制模型,但由于现有的角色及其权限之间的关系由人工指定,导致成本较高.针对此问题,将角色工程引入至CIS中,使用概念格模型和主谓宾需求获取方法,通过数据变换,从系统的需求中直接提取分层角色及其权限关系,以降低成本.最后,通过实验验证了本方法的有效性.%Role engineering focuses on the role mining and optimizing of Role-Based Access Control(RBAC),but it o-mits the scenario of complex information system(CIS) among those applications. The popular model for access control in CIS is RBAC, where relations between roles are assumed to have been built by humans beforehand. However, building these relations is time-consuming,even for experts. We introduced the role engineering into CIS, exploited concept lattice model and subject-predicate-object method to generate roles and their corresponding hierarchical relations from the requirement information acquired from domains,and the costing is lower. In the end,our experimental results show that our algorithm is effective.
Characterization and Magnetic Properties of Iron-Based Alloy Antidot Arrays
Institute of Scientific and Technical Information of China (English)
LIU Qing-Fang; JIANG Chang-Jun; WANG Jian-Bo; FAN Xiao-Long; XUE De-Sheng
2007-01-01
Fe29Co71 and Fe19Ni8 antidot arrays, with different dimensions, are prepared with the rf magnetron sputtering method onto the porous alumina substrate. The size and shape of antidot arrays are characterized by scanning electron microscopy. The glancing angle x-ray diffraction patterns of Fe29Co71 and Fe1gNis1 antidot arrays indicate the bcc and fcc structures, respectively. The coercivities of both the alloys show abnormal thickness dependence, which are discussed qualitatively by considering the pinning and the thickness effect to the films.
Comparisons of antidotal efficacy of chelating drugs upon acute toxicity of Ni(II) in rats
Energy Technology Data Exchange (ETDEWEB)
Horak, E.; Sunderman, F.W. Jr.; Sarkar, B.
1976-05-01
Six chelating drugs were administered to rats by im injection at equimolar dosages in order to compare their relative effectiveness in prevention of death after a single parenteral injection of NiCl/sub 2/. Triethylenetetramine and d-penicillamine were the most effective antidotes for acute Ni(II)-toxicity. In order of decreasing antidotal effectiveness, diglycyl-L-histidine-N-methylamide, sodium diethyldithiocarbamate and calcium disodium versenate significantly reduced the acute mortality of rats following ip injection of Ni(II). ..cap alpha..-Lipoic acid was not effective as an antidote for acute Ni(II)-toxicity.
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.;
2010-01-01
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...
Vortices trapped in the damaged surroundings of antidots in Nb films - Depinning transition
International Nuclear Information System (INIS)
The depinning transition of Vortex Matter in the presence of antidots in superconducting Nb films has been investigated. The antidots were fabricated using two different techniques, resulting in samples with arrays of diverse pinning efficiency. At low temperatures and fields, the spatial arrangement of Vortex Matter is governed by the presence of the antidots. Keeping the temperature fixed, an increase of the field induces a depinning transition. As the temperature approaches Tc, the depinning frontier exhibits a characteristic kink at the temperature Tk, above which the phase boundary exhibits a different regime. The lower-temperature regime is adequately described by a power-law expression, whose exponent n was observed to be inversely proportional to the pinning capability of the antidot, a feature that qualifies this parameter as a figure of merit to quantify the pinning strength of the defect.
Vortices trapped in the damaged surroundings of antidots in Nb films - Depinning transition
Energy Technology Data Exchange (ETDEWEB)
Nunes-Kapp, J.S. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Faculdade de Tecnologia SENAI ' Antonio Adolpho Lobbe' , Sao Carlos, SP (Brazil); Zadorosny, R.; Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Vaz, A.R.; Moshkalev, S.A. [Centro de Componentes Semicondutores, UNICAMP, Campinas, SP (Brazil); Lepienski, M. [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil); Ortiz, W.A., E-mail: wortiz@df.ufscar.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)
2010-10-01
The depinning transition of Vortex Matter in the presence of antidots in superconducting Nb films has been investigated. The antidots were fabricated using two different techniques, resulting in samples with arrays of diverse pinning efficiency. At low temperatures and fields, the spatial arrangement of Vortex Matter is governed by the presence of the antidots. Keeping the temperature fixed, an increase of the field induces a depinning transition. As the temperature approaches T{sub c}, the depinning frontier exhibits a characteristic kink at the temperature T{sub k}, above which the phase boundary exhibits a different regime. The lower-temperature regime is adequately described by a power-law expression, whose exponent n was observed to be inversely proportional to the pinning capability of the antidot, a feature that qualifies this parameter as a figure of merit to quantify the pinning strength of the defect.
A micromagnetic study of the hysteretic behavior of antidot Fe films
Energy Technology Data Exchange (ETDEWEB)
Torres Bruna, J.M. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Bartolome, J. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Garcia Vinuesa, L.M. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Garcia Sanchez, F. [Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, Sor Juana Ines de la Cruz s/n, 28049 Madrid P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Chubykalo-Fesenko, O.A. [Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid (Spain)]. E-mail: oksana@icmm.csic.es
2005-04-15
We report on the results of a micromagnetic study of the magnetization reversal process taking place in square arrays of antidots lithographed in Fe thin films. Our study focuses on the influence on the reversal process of the antidot diameter and the distance between adjacent antidots. It is shown that the minimization of the dipolar energy term of the total system energy originates inhomogeneous moment distributions at the antidot surfaces, and that these structures and their coupling rule the reversal process. We also show that the variation of the interantidot distance in the range of a few units of the exchange length allows varying the coercive force value by a factor of four approximately.
Reprint of : Thermodynamic properties of a quantum Hall anti-dot interferometer
Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.
2016-08-01
We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.
Nitrocobinamide, a New Cyanide Antidote That Can Be Administered by Intramuscular Injection
Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T.; Shelton, G. Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J.; Patel, Hemal H.; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Sari B. Mahon; Brenner, Matthew
2015-01-01
Currently available cyanide antidotes must be given by intravenous injection over 5–10 min, making them illsuited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intram...
Magnetic characteristics of CoPd and FePd antidot arrays on nanoperforated Al2O3 templates
Maximenko, A.; Fedotova, J.; Marszałek, M.; Zarzycki, A.; Zabila, Y.
2016-02-01
Hard magnetic antidot arrays show promising results in context of designing of percolated perpendicular media. In this work the technology of magnetic FePd and CoPd antidot arrays fabrication is presented and correlation between surface morphology, structure and magnetic properties is discussed. CoPd and FePd antidot arrays were fabricated by deposition of Co/Pd and Fe/Pd multilayers (MLs) on porous anodic aluminum oxide templates with bowl-shape cell structure with inclined intercellular regions. FePd ordered L10 structure was obtained by successive vacuum annealing at elevated temperatures (530 °C) and confirmed by XRD analysis. Systematic analysis of magnetization curves evidenced perpendicular magnetic anisotropy of CoPd antidot arrays, while FePd antidot arrays revealed isotropic magnetic anisotropy with increased out-of-plane magnetic contribution. MFM images of antidots showed more complicated contrast, with alternating magnetic dots oriented parallel and antiparallel to tip magnetization moment.
Klotz, C; Garreau de Loubresse, N; Ruiz, F; Beisson, J
1997-01-01
Within the superfamily of "EF-hand Ca2+-modulated proteins," centrins constitute a family of cytoskeletal proteins that are highly conserved from lower eukaryotes to man. Their cytoskeletal specialization is manifest in their capacity to form filamentous contractile arrays of various shapes and functions and by their association with microtubule organizing centres (MTOCs). While the latter property has been conserved throughout the evolution of eukaryotes, centrin-based contractile structures are only found in protists where they form arrays of widely diverse organization and function. In the ciliate Paramecium tetraurelia, three centrin genes have been characterized, which may be part of a larger centrin gene family [Madeddu et al., 1996: Eur J. Biochem. 238:121-128]. The products of these genes were originally identified as components of the infraciliary lattice, a contractile cytoskeletal network [Garreau de Loubresse et al., 1991: Biol. Cell 71:217-225]. We show here that centrins are localized not only in this lattice but also in basal bodies and in the cord, a filamentous structure associated with the oral apparatus. We demonstrate that in the infraciliary lattice, but not in basal bodies, centrins are associated with high-molecular-weight proteins (ca. 350 kD). Their role in the biogenesis of the infraciliary lattice is documented by cytological and biochemical properties of the mutant "démaillé" (dem1) characterized by altered centrin-associated proteins and abnormal organization and dynamics of the infraciliary lattice. PMID:9331221
Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system
International Nuclear Information System (INIS)
The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The ki values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, kr, in both zebrafish and human AChE. However, differences between the Kox and k2 constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, Ki and αKi, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not charged aldoximes. • Zebrafish are
Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects
J. Masek; Maca, F.
2005-01-01
We apply the density-functional technique to determine the lattice constant of GaAs supercells containing Mn_Ga, Mn_int, and As_Ga impurities, and use a linear interpolation to describe the dependence of the lattice constant a of Ga_{1-x}Mn_xAs on the concentrations of these impurities. The results of the supercell calculations confirm that Mn_Ga does not contribute to the lattice expansion. The increase of a is due to both Mn_int and As_Ga, that are both created in the as-grown (Ga,Mn)As in ...
Antidotal Efficacy of Antioxidants against Cyanide Poisoning in vitro.
Directory of Open Access Journals (Sweden)
R. Bhattacharya
1999-01-01
Full Text Available Cyanide is a potent homicidal, genocidal and chemical warfare agent. Besides, its known inhibitory effects on various enzyme Systems, its other pronounced toxic effects include lipid peroxidation (LPx, particularly in the central nervous system or neuronal cells in vitro. The present study assessed the cytotoxicity of potassium cyanide (KCN in two non-neuronal mammalian cell cultures, viz., human embryonic lung epithelium (L-132 and baby hamster kidney (BHK-21 cells. In addition, the cytoprotective potential of two antioxidant agents, namely, curcumin (CMN and N-acetylcysteine (NAC against KCN (2 and 4 mM in vitro was evaluated. In both the cell lines, KCN reduced cell viability as indicated by trypan blue dye exclusion, leakage of cytosolic lactate dehydrogenase and neutral red uptake. Protein content was unaffected in L-132 cells while cellular respiration determined by MTT assay was impaired in both the cells. A dose-dependent glutathione mediated LPx was observed in BHK-21 cells alone. The above cytotoxic changes produced by KCN were more effectively minimised by NAC as compared to CMN. Efficacy of CMN and NAC have therapeutic implications as adjuncts to existing cyanide antidotes.
International Nuclear Information System (INIS)
Cyanide is a well-known toxic terrorism agent and is a major cause of mortality and morbidity in smoke inhalation victims. Terrorist attacks could start enclosed-space fires with cyanide-poisoned victims, even if cyanide itself was not utilized. Cyanide poisoning cannot be emergent confirmed by laboratory analysis and treatment with safe and efficacious antidotes must be administered empirically. Hydroxocobalamin has been recently approved by the US FDA and is a safe and efficacious antidote. Its efficacy is comparable to that of other, more toxic, cyanide antidotes. Its mechanism of action involves both direct cyanide chelation (forming non-toxic cyanocobalamin which is excreted in the urine) and nitric oxide scavenging. Adverse effects are usually limited to transient dark red-brown discoloration of urine, skin, sclera, and mucous membranes. Antidotal doses have not caused allergic reactions in cyanide-poisoned patients and only minor and easily-treated allergic reactions occurred in 2 of 136 normal volunteers. Transient, asymptomatic hypertension and reflex bradycardia have occurred in some normal volunteers, but not in seriously ill smoke inhalation victims not having significant cyanide poisoning. Hydroxocobalamin is a safe and efficacious antidote and can be empirically administered in pre-hospital or emergency department settings. It is therefore suitable for inclusion in national or multinational medication stockpiles and is already included in some national programs in the European Union.(author)
An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action.
Jin, Shan; Sarkar, Kumar S; Jin, Youngnam N; Liu, Yan; Kokel, David; Van Ham, Tjakko J; Roberts, Lee D; Gerszten, Robert E; Macrae, Calum A; Peterson, Randall T
2013-01-01
Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry-based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures. PMID:22960781
International Nuclear Information System (INIS)
Hazardous materials paradigms call for definitive treatment of chemical victims to begin in the 'warm zone' during decontamination. This delay may result in lethal outcomes, particularly in the case of multiple victims, where rescue may be delayed due to insufficient numbers of rescue teams. It is virtually impossible for rescuers in full protective gear to establish intravenous lines. In recent years, significant advances have been made in intraosseous (IO) infusion devices. An IO device developed in our institution, the EZ-IO, is very easily placed by rescuers in typical work uniforms. IO placement takes longer while in protective gear, but is feasible. The IO is equivalent to an intravenous line, allowing more rapid administration of antidotes in the event of chemical mass casualties. Antidotes not amenable to intramuscular administration and even those often given IM may be more effective given IO. IO administration has the following possible advantages over intravenous or intramuscular antidote administration: 1. Drugs administered IO reach the vascular system virtually instantaneously. 2. IO administration may be performed in protective clothing and could theoretically be employed while awaiting rescue. 3. IO administration may be preferred over intravenous administration in the warm zone. In summary, IO administration of antidotes should be further evaluated for use in chemical disasters. The ease and speed of placement, ready access to the vascular tree, and potential for earlier intervention make it a potentially ideal means of vascular access and antidotal administration in the mass casualty situation. (author)
Energy Technology Data Exchange (ETDEWEB)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadovnikov, A. V.; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Grishin, S. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2015-10-19
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.
On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite
International Nuclear Information System (INIS)
In the present study high energy ball mill was implemented to produce aluminum (Al) matrix composite powders reinforced with silicon carbide (SiC). To clarify the role of particle size of SiC on lattice strain and grain size of Al two series of SiC with micron and nano-size were selected. Aluminum and SiC powders were mixed mechanically and milled at different times (2, 5, 10 h) to achieve Al-2.5 vol%SiC and Al-5 vol%SiC composite powders. The produced composites were investigated using X-ray diffraction pattern (XRD) to elucidate the role of particle size, secondary phase content and milling time on grain size and lattice strain of Al matrix. The results showed that an increase in milling time caused to reduce the grain size unlike the lattice strain of Al matrix. At the same condition a faster grain refinement for Al/SiC nanocomposites were observed with respect to Al/SiC composites.
Monitoring the Effects and Antidotes of the Non-vitamin K Oral Anticoagulants
DEFF Research Database (Denmark)
Rahmat, Nur A; Lip, Gregory Y H
2015-01-01
In the last decade, we have witnessed the emergence of the oral non-vitamin K oral anticoagulants (NOACs), which have numerous advantages compared with the vitamin K antagonists, particularly their lack of need for monitoring; as a result their use is increasing. Nonetheless, the NOACs face two...... major challenges: the need for reliable laboratory assays to assess their anticoagulation effect, and the lack of approved antidotes to reverse their action. This article provides an overview of monitoring the anticoagulant effect of NOACs and their potential specific antidotes in development....
dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots.
Tsindlekht, M I; Genkin, V M; Felner, I; Zeides, F; Katz, N; Gazi, Š; Chromik, Š; Dobrovolskiy, O V; Sachser, R; Huth, M
2016-06-01
dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above [Formula: see text] and [Formula: see text] the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode. PMID:27143621
International Nuclear Information System (INIS)
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Prehospital diagnosis of massive ethylene glycol poisoning and use of an early antidote.
Amathieu, Roland; Merouani, Medhi; Borron, Stephen W; Lapostolle, Frédéric; Smail, Nadia; Adnet, Frédéric
2006-08-01
We report the case of a patient suspected of voluntary massive poisoning by ethylene glycol. Prehospital diagnosis was established by portable blood analyser and an early antidote with 4 MP treatment initiated in out-of-hospital setting. Use of portable blood analyser in prehospital care should be considered in case of suspected massive poisoning by ethylene glycol. PMID:16808995
International Nuclear Information System (INIS)
We consider the problem of correlated percolation on a Husimi cactus, which allows finite loops of size l, to investigate the effects of loop formation on percolation properties. In particular, we calculate how the percolation threshold and the percolation probability depend on l and the loop activity n. We calculate the contribution and its dependence on l and n from finite and infinite clusters to all densities. We show that macroscopic loops are formed immediately after percolation, and we calculate their density dependence on l and n. We compare the results on Husimi cactus with those on a Bethe lattice. We finally establish that the Husimi cactus turns into a Bethe lattice as l→∞. (author)
Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Hayden R. [Department of Biology, Whittier College, Whittier, CA 90608 (United States); Radić, Zoran; Taylor, Palmer [Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650 (United States); Fradinger, Erica A., E-mail: efrading@whittier.edu [Department of Biology, Whittier College, Whittier, CA 90608 (United States)
2015-04-15
The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not
International Nuclear Information System (INIS)
A definition of lattice BRS invariance is given. The requirement of lattice BRS invariance successfully replaces that of local gauge invariance as a principle for selecting allowed actions. This replacement also works to any finite order in perturbation theory, but, on the nonperturbative level one encounters an obstacle reflecting the existence of an even number of solutions to the gauge fixing problem. The problem of latticizing the classical action for open bosonic strings discovered by Witten is discussed and a possible direction for dealing with it is pointed out. 3 refs
An All-Hazards Approach to Antidotal Therapy in Cyanide Poisoning
International Nuclear Information System (INIS)
In recent years in the USA, increased emphasis has been placed on utilizing an 'all-hazards approach' in the development and testing of disaster plans. Disaster plans developed in this way should prepare the community to deal with a wide variety of natural and man-made emergencies, both anticipated and unanticipated in etiology. The basic approach in each disaster remains the same, with adaptation as necessary to deal with specific threats. Such an approach 'enables communities to be prepared to manage any number or type of emergencies. It facilitates prevention, preparation, response, and recovery, based on the broad scope of what could happen within and beyond the community.' (JCAHO) An all-hazards approach appears to have merit as well in the selection of antidotes for mass casualty use. Using cyanide as an example, we examine several criteria which permit a disaster preparedness entity to choose among available cyanide antidotes to permit the broadest application possible in the context of a cyanide-related chemical emergency. These criteria include: source of exposure, efficacy, safety (in the presence and absence of poisoning), safety in adults and children, ease of administration, conditions for storage and maintenance, stock rotation, and cost. The greatest limitation to the all-hazards approach in antidote selection is geographic availability. Because of the high cost of regulatory approval and historical protectionism / preferences by governments, certain regions may have little or no choice in the selection of antidotes. Hydroxocobalamin appears to best meet the requirements of an 'all-hazards' antidote for cyanide.(author)
Directory of Open Access Journals (Sweden)
V.V. Kulish
2015-06-01
Full Text Available The paper investigates the antiferromagnetic vector distribution in an antiferromagnetic film with a system of antidots. A static distribution of the antiferromagnetic vector is written and a method – based on the minimization of the antiferromagnet energy – that allows reducing the number of boundary conditions required for finding the constants of this distribution is proposed. Equations for the distribution constants are obtained for the both cases of minimizing the antiferromagnet energy by one and by two distribution constants that enter the expression for the antiferromagnet energy. The method is illustrated on a system of one isolated antidot. For such system, one additional condition – for the case when two boundary conditions on the surface of the antidot are given – and two additional conditions – for the case when one boundary condition on the surface of the antidot is given – on the distribution constants are written.
International Nuclear Information System (INIS)
Non-perturbative phenomena are essential to understanding quantum chromodynamics (QCD), the theory of the strong interactions. The particles observed are mesons and baryons, but the fundamental fields are quarks and gluons. Most properties of the hadrons are inaccessible in perturbation theory. Aside from their mere existence, the most blatant example is the mass spectrum. The lack of an accurate, reasonably precise, calculation of the mass spectrum is a major piece of unfinished business for theoretical particle physics. In addition, a wide variety of other non-perturbative calculations in QCD are necessary to interpret ongoing experiments. For example, it is impossible to extract the Cabibbo-Kobayashi-Maskawa angles without knowing matrix elements of operators in the K, D and B mesons. Furthermore, non-perturbative analyses of quarkonia can determine the strong coupling constant with uncertainties already comparable to perturbative analyses of high-energy data. These lectures cover lattice field theory, the only general, systematic approach that can address quantitatively the non-perturbative questions raised above. Sects. 2--8 explain how to formulate quantum field theory on a lattice and why lattice field theory is theoretically well-founded. Sect. 9 sketches some analytic calculations in scalar lattice field theory. They serve as an example of how lattice field theory can contribute to particle physics without necessarily using computers. Sect. 10 turns to the most powerful tool in lattice field theory: large-scale Monte Carlo integration of the functional integral. Instead of discussing algorithms in gory detail, the general themes of computational field theory are discussed. The methods needed for spectroscopy, weak matrix elements, and the strong coupling constant are reviewed. 52 refs., 7 figs., 1 tab
Role of structural factors in formation of chiral magnetic soliton lattice in Cr{sub 1/3}NbS₂
Energy Technology Data Exchange (ETDEWEB)
Volkova, L. M.; Marinin, D. V. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)
2014-10-07
The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr{sub 1/3}NbS₂ intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr{sub 1/3}NbS₂ are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr³⁺ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr³⁺ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M{sub 1/3}NbX{sub 2} and M{sub 1/3}TaX₂ (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.
Magnetic properties of Fe{sub 20} Ni{sub 80} antidots: Pore size and array disorder
Energy Technology Data Exchange (ETDEWEB)
Palma, J.L., E-mail: juan.palma.s@usach.cl [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Gallardo, C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Spinu, L.; Vargas, J.M. [Advanced Material Research Institute (AMRI) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Dorneles, L.S. [Departamento de Fisica, Universidade Federal de Santa Maria UFSM, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900 (Brazil); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)
2013-10-15
Magnetic properties of nanoscale Fe{sub 20}Ni{sub 80} antidot arrays with different hole sizes prepared on top of nanoporous alumina membranes have been studied by means of magnetometry and micromagnetic simulations. The results show a significant increase of the coercivity as well as a reduction of the remanence of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Fe{sub 20}Ni{sub 80} thin film. When the external field is applied parallel to the antidots, the reversal of magnetization is achieved by free-core vortex propagation, whereas when the external field is applied perpendicular to the antidots, the reversal occurs through a process other than the coherent rotation (a maze-like pattern). Besides, in-plane hysteresis loops varying the angle show that the degree of disorder in the sample breaks the expected hexagonal symmetry. - Highlights: • Magnetic properties are strongly influenced by the pore diameter of the samples. • Coercive fields for antidots are higher than the values for the continuous film. • Disorder breaks the hexagonal symmetry of the sample. • Each hole acts as a vortex nucleation point. • Antidots have unique properties that allow them to be used in applications.
International Nuclear Information System (INIS)
The finite-element method enables us to convert the operator differential equations of a quantum field theory into operator difference equations. These difference equations are consistent with the requirements of quantum mechanics and they do not exhibit fermion doubling, a problem that frequently plagues lattice treatments of fermions. Guage invariance can also be incorporated into the difference equations. On a finite lattice the operator difference equations can be solved in closed form. For the case of the Schwinger model the anomaly is computed and results in excellent agreement are obtained with the known continuum value
dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots
Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.
2016-06-01
dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above 0.66{{T}\\text{c}} and 0.78{{T}\\text{c}} the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode.
Spin Waves in a Ferromagnetic Film with a Periodic System of Antidots
Directory of Open Access Journals (Sweden)
V.V. Kulish
2015-03-01
Full Text Available In the paper, spin waves in a thin film (composed of a uniaxial ferromagnet with a two-dimensional periodical system of antidots are studied. The film ferromagnet is considered to have the “easy axis” type. To describe such waves, the magnetostatic approximation with account for the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects is used. For such waves, an equation for the magnetic potential is derived; for the case of remote antidots, the dispersion relation and the transverse wavenumber spectrum are found. For the case of a film thin compared to the exchange length and for the case of a film bounded by a high-conductivity metal, the longitudinal wavenumber spectrum and the frequency spectrum of such spin waves are also obtained.
Quantum Hall effect in semiconductor systems with quantum dots and antidots
International Nuclear Information System (INIS)
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable
Marshall, John M
2011-01-01
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops, and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems--Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest. PMID:21876382
Consolidarea relațiilor interpersonale pozitive la locul de muncă: antidot pentru burnout
Directory of Open Access Journals (Sweden)
CORALIA SULEA
2014-05-01
Full Text Available Burnout is an important phenomenon for organizations and employees associated with negative outcomes. Key organizational areas, like fairness and workplace community, are responsible for employee burnout. This editorial argues for the importance of workplace community and presents the mechanisms through which dysfunctional relationships at work may contribute to burnout, as well as the processes that explain how healthy interpersonal relationships can be an antidote for burnout.
Signatures of fractional Hall quasiparticles in moments of current through an antidot
Braggio, A.; Magnoli, N; M. Merlo; Sassetti, M.
2006-01-01
The statistics of tunneling current in a fractional quantum Hall sample with an antidot is studied in the chiral Luttinger liquid picture of edge states. A comparison between Fano factor and skewness is proposed in order to clearly distinguish the charge of the carriers in both the thermal and the shot limit. In addition, we address effects on current moments of non-universal exponents in single-quasiparticle propagators. Positive correlations, result of propagators behaviour, are obtained in...
Resonance Patterns of an Antidot Cluster: From Classical to Quantum Ballistics
Kirczenow, George; Johnson, Brad L.; Kelly, P. J.; Gould, C.; Sachrajda, A. S.; Feng, Y.; Delage, A.
1997-01-01
We explain the experimentally observed Aharonov-Bohm (AB) resonance patterns of an antidot cluster by means of quantum and classical simulations and Feynman path integral theory. We demonstrate that the observed behavior of the AB period signals the crossover from a low B regime which can be understood in terms of electrons following classical orbits to an inherently quantum high B regime where this classical picture and semiclassical theories based on it do not apply.
An effective method to probe local magnetostatic properties in a nanometric FePd antidot array
Energy Technology Data Exchange (ETDEWEB)
Beron, F; Pirota, K R; Knobel, M [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Rua Sergio Buarque de Holanda, 777, Cidade Universitaria ' Zeferino Vaz' , Campinas 13083-859, SP (Brazil); Vega, V; Prida, V M; Fernandez, A; Hernando, B, E-mail: fberon@ifi.unicamp.br [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)
2011-01-15
A simple method to quantitatively characterize the local magnetic behaviour of a patterned nanostructure, like a ferromagnetic thin film of antidot arrays, is proposed. The first-order reversal curve (FORC) analysis, coupled with simulations using physically meaningful hysterons, allows us to obtain a quantitative and physically related description of the interaction field and each magnetization reversal process. The hysterons system is built from previously known hypotheses on the magnetic behaviour of the sample. This method was successfully applied to a highly hexagonal ordered FePd antidot array with nanometric dimensions. We achieved a complete characterization of the two different magnetization reversal mechanisms in function of the in-plane applied field angle. For a narrow range of high fields, the magnetization initiates rotating reversibly around the pores, while at lower fields, domain walls are nucleated and propagated. This in-plane magnetization reversal mechanism, partly reversible and partly irreversible, is the only angularly dependent one. While going away from the easy axis, its reversible proportion increases, as well as its switching field distribution. Finally, the results indicate that the high surface roughness between adjacent holes of the antidot thin film induces a parallel interaction field. The proposed method demonstrates its ability also to be applied to characterizing patterned nanostructures with rather complex magnetization reversal processes.
International Nuclear Information System (INIS)
A 3D lattice Boltzmann model is developed and used to calculate the water and gas permeabilities of model cement pastes at different degrees of water saturation. In addition to permeable micron-sized capillary pores and impermeable solid inclusions, the lattice Boltzmann model comprises weakly-permeable nano-porous calcium silicate hydrate (C-S-H). The multi-scale problem is addressed by using an effective media approach based on the idea of partial bounce-back. The model cement paste microstructures are generated with the platform µic. The critical parameters, C-S-H density and capillary porosity, are taken from 1H nuclear magnetic resonance relaxation analysis. The distribution of water and air is defined according to the Kelvin–Laplace law. It is found that when the capillary porosity is completely saturated with a fluid (either water or gas), the calculated intrinsic permeability is in good agreement with measurements of gas permeability on dried samples (10−17–10−16 m2). However, as the water saturation is reduced, the calculated apparent water permeability decreases and spans the full range of experimentally measured values (10−16–10−22 m2). It is concluded that the degree of capillary water saturation is the major cause for variation in experimental permeability measurements. It is further concluded that the role of the weakly-permeable C-S-H, omitted in earlier modelling studies, is critical for determining the permeability at low capillary saturation. (paper)
Global Financial Regulations:An Antidote to Economic Predicament
Institute of Scientific and Technical Information of China (English)
BIN; ZHANG
2014-01-01
Due to the lack of public order in the international financial arena, asset bubbles and resource misallocations persisted over a long period of time and resulted in global financial crisis in 2008. Global financial rules, which can take on a role like that of WTO in the international trade, are urgently needed for global economic recovery. They will balance the pressure of economic restructuring between large and small countries, and push forward some countries’ domestic reforms which may hardly be implemented due to domestic politics.
Smith, Anthony S. G.; Rawlings, Douglas E
1998-01-01
The stabilization of a test plasmid by the proteic, poison-antidote plasmid addiction system (pas) of plasmid pTF-FC2 was host strain dependent, with a 100-fold increase in stability in Escherichia coli CSH50, a 2.5-fold increase in E. coli JM105, and no detectable stabilization in E. coli strains JM107 and JM109. The lethality of the PasB toxin was far higher in the E. coli strains in which the pas was most effective. Models for the way in which poison-antidote systems stabilize plasmids req...
Tummala, Ramyashree; Kavtaradze, Ana; Gupta, Anjan; Ghosh, Raktim Kumar
2016-07-01
The Vitamin K antagonist warfarin was the only oral anticoagulant available for decades for the treatment of thrombosis and prevention of thromboembolism until Direct Oral Anticoagulants (DOACs); a group of new oral anticoagulants got approved in the last few years. Direct thrombin inhibitor: dabigatran and factor Xa inhibitors: apixaban, rivaroxaban, and edoxaban directly inhibit the coagulation cascade. DOACs have many advantages over warfarin. However, the biggest drawback of DOACs has been the lack of specific antidotes to reverse the anticoagulant effect in emergency situations. Activated charcoal, hemodialysis, and activated Prothrombin Complex Concentrate (PCC) were amongst the nonspecific agents used in a DOAC associated bleeding but with limited success. Idarucizumab, the first novel antidote against direct thrombin inhibitor dabigatran was approved by US FDA in October 2015. It comprehensively reversed dabigatran-induced anticoagulation in a phase I study. A phase III trial on Idarucizumab also complete reversal of anticoagulant effect of dabigatran. Andexanet alfa (PRT064445), a specific reversal agent against factor Xa inhibitors, showed a complete reversal of anticoagulant activity of apixaban and rivaroxaban within minutes after administration without adverse effects in two recently completed parallel phase III trials ANNEXA-A and ANNEXA-R respectively. It is currently being studied in ANNEXA-4, a phase IV study. Aripazine (PER-977), the third reversal agent, has shown promising activity against dabigatran, apixaban, rivaroxaban, as well as subcutaneous fondaparinux and LMWH. This review article summarizes pharmacological characteristics of these novel antidotes, coagulation's tests affected, available clinical and preclinical data, and the need for phase III and IV studies. PMID:27082776
Antidotal Efficacy of a New Combination in Treatment of Subacute T-2 Toxin Poisoning in Rats
International Nuclear Information System (INIS)
Trichothecene mycotoxin, T-2 toxin is a natural metabolite of Fusarium fungi. T-2 toxin possesses several properties (significant persistence in the environment, cheap manufacture, difficult detection and absence of a specific antidote) that make it a very dangerous potential chemical warfare agent. In our previous experiments, nonsteroidal anti-inflammatory drug (NSAID) nimesulide (NIM), as a selective COX-2 inhibitor, and zeolite absorbent (Min-a-zel Plus, MINplus) administered separately showed a good protective effects against general toxicity induced by T-2 toxin (T2). The aim of this study was to evaluate the antidotal potential of the combination of these two antidotes. T2 was given in a dose of 0.15 mg/kg sc (0.1 LD50), 5 times per week, 4 weeks to adult Wistar rats. Protected animals were given NIM (20 mg/kg im) or/and MINplus (40 mg/kg po) each time immediately after T2. Mortality, general condition, body weight gain, food and water consumption and gut alterations of the animals were registered on a daily basis during 4 weeks. Treatment with NIM or/and MINplus significantly reduced mortality of the rats treated only with T2. Body weight gain, food and water consumption were significantly decreased in T2-treated animals compared to control ones (p < 0.001), what was not the case in the protected rats. In the groups treated with NIM and MINplus gut alterations were significantly less severe than those observed in animals receiving T2 alone (p less than 0.001). These results imply that combined treatment with nimesulide and zeolite absorbent affords a significant protection against subacute T-2 toxin poisoning in rats.(author)
Cyclotron resonance in two-dimensional electron system with self-organized antidots
Suchalkin, S D; Zundel, M; Nachtwei, G; Klitzing, K V; Eberl, K
2001-01-01
The data on the experimental study on the cyclotron resonance in the two-dimensional electron system with the random scattering potential, conditioned by the massif of the AlInAs self-organized quantum islands, formed in the AlGaAs/GaAs heterotransition plane, are presented. The sharp narrowing of the cyclotron resonance with increase in the magnetic field, explained by the charge scattering peculiarities in the given potential is established. The obtained results suggest the strongly correlated electron state in the strong magnetic fields by the carriers concentrations lesser than the antidots concentrations
SNAKE BITE, SNAKE VENOM, ANTI-VENOM AND HERBAL ANTIDOTE – A REVIEW
Paul Rita; Datta K. Animesh; Mandal Aninda; Ghosh K Benoy; Halder Sandip
2011-01-01
The mortality associated with snake bites is a serious public health problem as the estimated death incidence per year is about 1,25,000 globally. In India about 35,000 to 50,000 people reportedly die of snake bite; although, unreported cases may be even more in rural areas. Considering the socio-medical problem due to snake bite, a review is being conducted on snake bite (management aspects), snake venom (nature and its utility), anti-venom and herbal antidote to provide adequate information...
8102 and 7601 as antidotes for acute uranyl nitrate intoxication in rats
International Nuclear Information System (INIS)
The effect of phenolic chelating agents, 8102 and 7601, as antidotes for acute uranyl nitrate (100-500 mg/kg) intoxication was examined. The results show that after intraperitoneal injection of 50 mg of uranyl nitrate per kg, all the control rats died at 3rd and 4th days and exhibited acute renal tubular necrosis and protein casts. 8102 and 7601 could promote the animals survival and reduce the histologic lesion of kidneys in rats intoxicated with uranyl nitrate (100-350 mg/kg). 8102 is more effective than 7601
Role of the lattice dynamics in La2-xBaxCuO4 superconductor based on DFT method
Directory of Open Access Journals (Sweden)
A Tavana
2010-09-01
Full Text Available Electron-phonon coupling parameters are calculated for La2-x BaxCuO4 cuprate superconductor in a wide range of dopings, from undoped to overdoped compounds. In this study we aim to study the quality of such calculations based on DFT method so, the results of σ GGA+U electronic structure calculations are also investigated. The obtained value for electron-phonon coupling is in the same order of previous calculations but, the value obtained for the Hubbard U parameter shows that, such methods are poor in the estimation of electronic correlations to decide about the role of phonons in these compounds based on their results. Moreover, existence of several structural phase transitions with temperature and doping, lead to larger error in these calculations. Based on the calculated phonon dispersions, structural phase transitions can be resulted which shows the ability of DFT in the study of structural properties and the weakness of the strongly correlations in this properties.
Kenneth Wilson and Lattice QCD
Ukawa, Akira
2015-09-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
DEFF Research Database (Denmark)
Zhu, Xiaolong; Wang, Weihua; Yan, Wei;
2014-01-01
Nanostructured graphene on SiO2 substrates paves the way for enhanced light–matter interactions and explorations of strong plasmon–phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with...
Kinyon, Michael
2012-01-01
Categorical skew lattices are a variety of skew lattices on which the natural partial order is especially well behaved. While most skew lattices of interest are categorical, not all are. They are characterized by a countable family of forbidden subalgebras. We also consider the subclass of strictly categorical skew lattices.
Managing Workplace Incivility: The Role of Conflict Management Styles--Antecedent or Antidote?
Trudel, Jeannie; Reio, Thomas G., Jr.
2011-01-01
The workforce of the 21st century is dealing with rapid changes and increased competition across industries. Such changes place stress on management and workers alike, increasing the potential for workplace conflict and deviant workplace behaviors, including incivility. The importance of effective conflict management in the workplace has been…
Liu, Yang; Du, Juanjuan; Yan, Ming; Lau, Mo Yin; Hu, Jay; Han, Hui; Yang, Otto O.; Liang, Sheng; Wei, Wei; Wang, Hui; Li, Jianmin; Zhu, Xinyuan; Shi, Linqi; Chen, Wei; Ji, Cheng; Lu, Yunfeng
2013-03-01
Organisms have sophisticated subcellular compartments containing enzymes that function in tandem. These confined compartments ensure effective chemical transformation and transport of molecules, and the elimination of toxic metabolic wastes. Creating functional enzyme complexes that are confined in a similar way remains challenging. Here we show that two or more enzymes with complementary functions can be assembled and encapsulated within a thin polymer shell to form enzyme nanocomplexes. These nanocomplexes exhibit improved catalytic efficiency and enhanced stability when compared with free enzymes. Furthermore, the co-localized enzymes display complementary functions, whereby toxic intermediates generated by one enzyme can be promptly eliminated by another enzyme. We show that nanocomplexes containing alcohol oxidase and catalase could reduce blood alcohol levels in intoxicated mice, offering an alternative antidote and prophylactic for alcohol intoxication.
Two new species of Curcuma (Zingiberaceae) used as cobra-bite antidotes
Institute of Scientific and Technical Information of China (English)
Arunrat CHAVEERACH; Runglawan SUDMOON; Tawatchai TANEE; Piya MOKKAMUL; Nison SATTAYASAI; Jintana SATTAYASAI
2008-01-01
Two new species of Curcuma, C. sattayasaii A. Chaveerach & R. Sudmoon and C. zedoaroides A. Chaveerach & T. Tanee with rhizomes traditionally used for many decades as cobra-bite antidotes are described and illustrated. Curcuma sattayasaii is similar to C. longa L., but differs in rhizome horizontally branching on ground;coma bracts pinkish-white or pinkish-pale green;corolla pale yellow with orange tip;labellum pale orange with an orange central band;anther crest very short, broadly ovate, wider than long. Curcuma zedoaroides is similar to C. zedoaria (Christm.) Roscoe, but differs in rhizome branching pattern;the protruding secondary rhizomes curved down;blades oblong to oblong-lanceolate;peduncle glabrous;fertile and coma bracts glabrous;corolla lobes pale yellow to white, lateral lobe ovate, dorsal lobe broadly ovate. The new taxa have been found in a village of Khon Kaen Province, Northeastern Thailand.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yungang; Yang, Ping; Zu, Haoyue; Gao, Fei; Zu, Xiaotao
2013-04-24
MoS2-based nanostructures, including atomic defect, nanohole, nanodot and antidot, are characterized with spin-polarized density functional theory. The S-vacancy defect is more likely to form than the Mo-vacancy defect due to the formation of Mo-Mo metallic bonds. Among different shaped nanoholes and nanodots, triangle ones associated with ferromagnetic characteristic are the most energetically favorable, and exhibit unexpected large spin moment that is scaled linearly with edged length.
Reactor lattice transport calculations
International Nuclear Information System (INIS)
The present lecture is a continuation of the lecture on Introduction to the Neutron Transport Phenomena. It comprises three aspects of lattice calculations. First the idea of a reactor lattice is introduced. Then the main definitions used in reactor lattice analysis are given, and finally two basic methods applied for solution of the transport equations are defined. Several remarks on secondary results from lattice transport calculations are added. (author)
Sober Topological Molecular Lattices
Institute of Scientific and Technical Information of China (English)
张德学; 李永明
2003-01-01
A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.
Querying Relational Concept Lattices
Azmeh, Zeina; Huchard, Marianne; Napoli, Amedeo; Rouane Hacene, Amine Mohamed; Valtchev, Petko
2011-01-01
Relational Concept Analysis (RCA) constructs conceptual abstractions from objects described by both own properties and inter-object links, while dealing with several sorts of objects. RCA produces lattices for each category of objects and those lattices are connected via relational attributes that are abstractions of the initial links. Navigating such interrelated lattice family in order to find concepts of interest is not a trivial task due to the potentially large size of the lattices and t...
Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Linusson, Anna; Ekström, Fredrik J.
2016-01-01
Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme–sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics. PMID:27140636
Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Linusson, Anna; Ekström, Fredrik J
2016-05-17
Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics. PMID:27140636
Marichal, Jean-Luc
2007-01-01
We define the concept of weighted lattice polynomial functions as lattice polynomial functions constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a median based decomposition formula.
Zakrzewski, W J
2004-01-01
We consider some lattices and look at discrete Laplacians on these lattices. In particular we look at solutions of the equation $\\triangle(1)\\phi = \\triangle(2)Z$ where $\\triangle(1)$ and $\\triangle(2)$ are two such laplacians on the same lattice. We discuss solutions of this equation in some special cases.
Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View
Meurice, Yannick
2011-01-01
Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.
Memory load as a cognitive antidote to performance decrements in data entry.
Chapman, Mary J; Healy, Alice F; Kole, James A
2016-10-01
In two experiments, subjects trained in data entry, typing one 4-digit number at a time. At training, subjects either typed the numbers immediately after they appeared (immediate) or typed the previous number from memory while viewing the next number (delayed). In Experiment 2 stimulus presentation time was limited and either nothing or a space (gap) was inserted between the second and third digits. In both experiments after training, all subjects completed a test with no gap and typed numbers immediately. Training with a memory load improved speed across training blocks (Experiment 1) and eliminated the decline in accuracy across training blocks (Experiment 2), thus serving as a cognitive antidote to performance decrements. An analysis of each keystroke revealed different underlying processes and strategies for the two training conditions, including when encoding took place. Chunking (in which the first and last two digits are treated separately) was more evident in the immediate than in the delayed condition and was exaggerated with a gap, even at test when there was no gap. These results suggest that such two-digit chunking is due to stimulus encoding and motor planning processes as well as memory, and those processes transferred from training to testing. PMID:26390366
International Nuclear Information System (INIS)
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
Lattice theory for nonspecialists
International Nuclear Information System (INIS)
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
Spight, Marshall
2008-01-01
Relational lattice is a formal mathematical model for Relational algebra. It reduces the set of six classic relational algebra operators to two: natural join and inner union. We continue to investigate Relational lattice properties with emphasis onto axiomatic definition. New results include additional axioms, equational definition for set difference (more generally anti-join), and case study demonstrating application of the relational lattice theory for query transformations.
kunz, Milan
2006-01-01
Ferrers graphs and tables of partitions are treated as vectors. Matrix operations are used for simple proofs of identities concerning partitions. Interpreting partitions as vectors gives a possibility to generalize partitions on negative numbers. Partitions are then tabulated into lattices and some properties of these lattices are studied. There appears a new identity counting Ferrers graphs packed consecutively into isoscele form. The lattices form the base for tabulating combinatorial ident...
Lattice degeneracies of fermions
International Nuclear Information System (INIS)
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots
Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, S.; Chromik, S.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.
2015-01-01
dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above $H_{c1}$, but in fi...
Entropy favours open colloidal lattices
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Counting Hexagonal Lattice Animals
Mohammed, Mohamud
2002-01-01
We describe Maple packages for the automatic generation of generating functions(and series expansions) for counting lattice animals(fixed polyominoes), in the two-dimensional hexagonal lattice, of bounded but arbitrary width. Our Maple packages(complete with source code) are easy-to-use and available from my website.
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
Active Optical Lattice Filters
Gary Evans; MacFarlane, Duncan L.; Govind Kannan; Jian Tong; Issa Panahi; Vishnupriya Govindan; L. Roberts Hunt
2005-01-01
Optical lattice filter structures including gains are introduced and analyzed. The photonic realization of the active, adaptive lattice filter is described. The algorithms which map between gains space and filter coefficients space are presented and studied. The sensitivities of filter parameters with respect to gains are derived and calculated. An example which is relevant to adaptive signal processing is also provided.
Flat Band Quastiperiodic Lattices
Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo
2014-03-01
Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.
Directory of Open Access Journals (Sweden)
Motahareh Soltani
2016-08-01
Full Text Available Objectives: Aluminium phosphide (AlP is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3, a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01. Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01. A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.
International Nuclear Information System (INIS)
The post-Chernobyl 137Cs contamination caused gut uptake of this nuclide by ruminants, pigs and laying hens. The application of several clay minerals, stable caesium as well as hexacyanoferrate and related compounds has shown to be effective in reducing the gut uptake. The aim of this study was focused on a possibility of the suppression of gut uptake of 13'7Cs from the contaminated feed mixture to broiler chicken and/or increasing the rate of excretion of 137Cs from tissues of broiler chicken by a special food additive (RADECONT, i.e. 98% of clinoptilolite + 2% of FeHCF, made by BIOPOR, CZ). The antidote material RADECONT was added to the feed mixture 2 hours after application of artificially contaminated feed (5kBq of 137Cs per chicken). The dose of the material was 0.5g per kg body weight and it was repeated daily. The control chickens were given137Cs but not antidote in the feed. Lower radiocaesium activities in breast and leg muscles (statistically significant, P137Cs administration. The biological half-lives of 137Cs in the controls treated animals were similar. Application of RADECONT decreased the uptake of radiocaesium in tissues (by up to 20% in muscles) but did not enhance the excretion rate of 137Cs. (author)
Energy Technology Data Exchange (ETDEWEB)
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Lattice defects in lithium tantalate
International Nuclear Information System (INIS)
Lithium tantalate single crystals are used for piezoelectric devices. The lattice defects of this structure and their possible role on piezoelectric performances are investigated. Synthetic crystals are grown by a Czochralski process. To get homogeneous material it is necessary to start from a non-equimolar mixture of Li2O and Ta2O5 powders leading to a congruent melt. The resulting crystals are non-stoichiometric with an atomic ratio [Li]/[Li + Ta] ∼ 48%, and this induces a first kind of lattice defects: the point defects associated to this non-stoichiometry. When cooled down from high temperature, LiTaO3 suffers a second-order phase transition from a paraelectric phase R3-barc to a ferroelectric phase R3c which is the stable phase at room temperature. A second kind of lattice defects (ferroelectric domains) is generally nucleated at the transition. These defects constitute a poison for piezoelectric applications because the polarization vector c is reversed. One can in principle prevent their occurrence by a poling process (cooling under a static electric field). Dislocations and twins are other as-grown lattice defects; they can also be introduced by the usual machining processes (sawing, grinding ...). Furthermore because of the very high values of the piezoelectric constants, the stress field of the dislocations can induce ferroelectric domains around them, even at room temperature, and such domains cannot be removed by poling. The experimental techniques used are infrared spectroscopy and differential scanning calorimetry for the characterization of point defects and non-stoichiometry; chemical etching and transmission electron microscopy for the characterization of dislocations and twins. As-grown defects are studied and the ones introduced by machining; these latter ones are simulated by scratching and by plastic deformation under confining pressure. A few constant strain rate tests are also performed in the temperature range 20 to 700 0C. The subsequent
International Nuclear Information System (INIS)
Lattice gauge theory is now ten years old. Apart from the theoretical insight the lattice formulation gives, it is very well suited for computer simulations, as its inventor advocated already some five years ago at this school. Since three years this approach has extracted useful information out of lattice gauge theory and spurred many interesting questions. In the first lecture, I will assume there are no experts in the audience and explain some basic facts in quarkless quantumchromodynamics on a lattice (QCD). Then, in the second lecture, we shall review tests for the consistency of the numerical results so far obtained. The third lecture shall deal with a more esoteric subject: that of large N reduced models. The list of references is by no means meant to be exhaustive; for that the reader is referred to ref. 27
Lattice supersymmetric ward identities
International Nuclear Information System (INIS)
SUSY Ward identities for the N=1 SU(2) SUSY Yang-Mills theory are studied on the lattice in a non-perturbative numerical approach. As a result a determination of the subtracted gluino mass is obtained
International Nuclear Information System (INIS)
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
International Nuclear Information System (INIS)
The structure of a new coumarin type compound isolated from the entitled species was elucidated by the full spectral analysis consisting of FTIR, 1H NMR, DQF COSY, 13C NMR, DEPT, EIMS (HR-EIMS), HMQC and HMBC. The antidote activities of the fresh juice and the ethanolic extract of the plant, and the isolated compound alternamin were also determined
Vector Lattice Vortex Solitons
Institute of Scientific and Technical Information of China (English)
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
International Nuclear Information System (INIS)
Full text: We sketch the general concepts of the lattice regularisation in quantum field theory, which enables Monte Carlo simulations and non-perturbative numerical measurements of observables in particle physics. We then address the status of lattice QCD with 2+1 flavours of dynamical quarks, where hadron masses can now be evaluated from the first principles of QCD close to the percent level. (author)
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Universidad Nacional Autonoma de Mexico (UNAM) (Mexico)
2011-07-01
Full text: We sketch the general concepts of the lattice regularisation in quantum field theory, which enables Monte Carlo simulations and non-perturbative numerical measurements of observables in particle physics. We then address the status of lattice QCD with 2+1 flavours of dynamical quarks, where hadron masses can now be evaluated from the first principles of QCD close to the percent level. (author)
Automated Lattice Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Lattice Operators and Topologies
Eva Cogan
2009-01-01
Working within a complete (not necessarily atomic) Boolean algebra, we use a sublattice to define a topology on that algebra. Our operators generalize complement on a lattice which in turn abstracts the set theoretic operator. Less restricted than those of Banaschewski and Samuel, the operators exhibit some surprising behaviors. We consider properties of such lattices and their interrelations. Many of these properties are abstractions and generalizations of topological spaces. The approach is...
Bergner, Georg
2016-01-01
We discuss the motivations, difficulties and progress in the study of supersymmetric lattice gauge theories focusing in particular on ${\\cal N}=1$ and ${\\cal N}=4$ super Yang-Mills in four dimensions. Brief reviews of the corresponding lattice formalisms are given and current results are presented and discussed. We conclude with a summary of the main aspects of current work and prospects for the future.
Lattice calculation of nonleptonic charm decays
International Nuclear Information System (INIS)
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order Gf in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D → Kπ, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin 1/2 channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation
Lattice supersymmetry and string phenomenology
Giedt, Joel
2003-01-01
I discuss the usefulness of lattice supersymmetry in relation to string phenomenology. I suggest how lattice results might be incorporated into string phenomenology. I outline difficulties and describe some constructions that contain an exact lattice version of supersymmetry, thereby reducing fine-tuning of the regulator. I mention some problems that occur for these lattices.
Directory of Open Access Journals (Sweden)
Poplas-Sušić Tonka
2010-01-01
Full Text Available Introduction. Data on emergency interventions in poisonings are scarce. Objective. To determine the effectiveness of antidote therapy in acute poisoning-related emergency medical services (EMS interventions. Methods. A prospective observational study included all poisoning-related intervention cases over 3 years (1999-2001 in the Celje region, Slovenia, covering 125,000 inhabitants. Data were recorded on an EMS form. Results. Psychoactive agents were present in 56.5% out of 244 poisoning-related EMS interventions. Prescription drugs were a cause of intoxication in 93 (39.2% cases alone or in combination with alcohol or illegal drugs. More than one fifth of poisonings were due to the use of illegal drugs in 52 (21.9% cases, 43 (18.1% out of them heroin related. At the time of EMS arrival, more patients who ingested illegal drugs were in coma or comatose than the rest. 24 (45.3% vs. 32 (17.3% of poisoned patients were in coma (p<0.001. Glasgow Coma Scale (GCS at the first contact was lower in patients who ingested illegal drugs than in the remaining patients (9.0 vs. 11.6, p=0.001. In 23.2% of the cases, an antidote was administered. In 29 (12.2% naloxone and in 16 (6.7% flumazenil was administered. Mean GCS after intervention was higher in all cases but significantly higher in illegal drug cases, 13.4 vs. 12.2 (p=0.001, with a mean positive change in GCS of 4.5 vs. 0.6 (p<0.001. In illegal drug users, mean change after antidote administration was 8.2 vs. 0.5 without antidote administration (p<0.001. Conclusion. High rate of successful antidote use during the intervention indicated the importance of good EMS protocols and the presence of a skilled doctor in the EMS team.
Invisibility in non-Hermitian tight-binding lattices
International Nuclear Information System (INIS)
Reflectionless defects in Hermitian tight-binding lattices, synthesized by the intertwining operator technique of supersymmetric quantum mechanics, are generally not invisible and time-of-flight measurements could reveal the existence of the defects. Here it is shown that, in a certain class of non-Hermitian tight-binding lattices with complex hopping amplitudes, defects in the lattice can appear fully invisible to an outside observer. The synthesized non-Hermitian lattices with invisible defects possess a real-valued energy spectrum; however, they lack parity-time (PT) symmetry, which does not play any role in the present work.
Connecting Structure Functions on the Lattice with Phenomenology
International Nuclear Information System (INIS)
We examine the extraction of moments of parton distributions from lattice data, focusing in particular on the chiral extrapolation as a function of the quark mass. Inclusion of the correct chiral behavior of the spin-averaged isovector distribution resolves a long-standing discrepancy between the lattice moments and experiment. We extract the x-dependence of the valence u-d distribution from the lowest few lattice moments, and discuss the implications for the quark mass dependence of meson masses lying on the a2 Regge trajectory. The role of chiral symmetry in spin-dependent distributions, and in particular the lattice axial vector charge, gA, is discussed
Progress in lattice field theory algorithms
International Nuclear Information System (INIS)
I present a summary of recent algorithmic developments for lattice field theories. In particular I give a pedagogical introduction to the new Multicanonical algorithm, and discuss the relation between the Hybrid Overrelaxation and Hybrid Monte Carlo algorithms. I also attempt to clarify the role of the dynamical critical exponent z and its connection with 'computational cost'. (orig.)
Goswami, Soumik; Haldar, Chandana
2015-12-01
The sun rays brings along the ultraviolet radiations (UVRs) which prove deleterious for living organisms. The UVR is a known mutagen and is the prime cause of skin carcinomas. UVR causes acute oxidative stress and this in turn deteriorates other physiological functions. Inflammatory conditions and elevation of pro-inflammatory molecules are also associated with UVR mediated cellular damages. The inflammatory conditions can secondarily trigger the generation of free radicals and this act cumulatively in further deterioration of tissue homeostasis. Photoimmunologists have also related UVR to the suppression of not only cutaneous but also systemic immunity by different mechanisms. Some researchers have proposed the use of various plant products as antioxidants against UVR induced oxidative imbalances but Melatonin is gaining rapid interest as a product that can be utilized to delineate the pathological effects of UVR since it is an established antioxidant. Besides the antioxidative nature, the capacity of melatonin to attenuate apoptosis and more importantly the efficacy of its metabolites to further aid in the detoxification of free radicals have made it a key player to be utilized against UVR mediated aggravated conditions. However, there is need for further extensive investigation to speculate melatonin as an antidote to UVR. Although too early to prescribe melatonin as a clinical remedy, the hormone can be integrated into dermal formulations or oral supplements to prevent the ever increasing incidences of skin cancers due to the prevalence of the UVR on the surface of the earth. The present review focuses and substantiates the work by different photo-biologists demonstrating the protective effects of melatonin and its metabolites against solar UVR - Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: an overview. J Photochem Photobiol B. PMID:26496791
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Light Localization and Magneto-Optic Enhancement in Ni Antidot Arrays.
Rollinger, Markus; Thielen, Philip; Melander, Emil; Östman, Erik; Kapaklis, Vassilios; Obry, Björn; Cinchetti, Mirko; García-Martín, Antonio; Aeschlimann, Martin; Papaioannou, Evangelos Th
2016-04-13
We reveal an explicit strategy to design the magneto-optic response of a magneto-plasmonic crystal by correlating near- and far-fields effects. We use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nanopatterned magnetic surface that supports plasmon polaritons. By using different photon energies and polarization states of the incident light we reveal that the electric near-field is either concentrated in spots forming a hexagonal lattice with the same symmetry as the Ni nanopattern or in stripes oriented along the Γ-K direction of the lattice and perpendicular to the polarization direction. We show that the polarization-dependent near-field enhancement on the patterned surface is directly correlated to both the excitation of surface plasmon polaritons on the patterned surface as well as the enhancement of the polar magneto-optical Kerr effect. We obtain a relationship between the size of the enhanced magneto-optical behavior and the polarization and wavelength of optical excitation. The engineering of the magneto-optic response based on the plasmon-induced modification of the optical properties introduces the concept of a magneto-plasmonic meta-structure. PMID:27018661
Lattice W-algebras and logarithmic CFTs
International Nuclear Information System (INIS)
This paper is part of an effort to gain further understanding of 2D logarithmic conformal field theories (LCFTs) by exploring their lattice regularizations. While all work so far has dealt with the Virasoro algebra (or the product Vir⊗ Vir-bar ), the best known (although maybe not the most relevant physically) LCFTs in the continuum are characterized by a W-algebra symmetry, whose presence is powerful, but whose role as a ‘symmetry’ remains mysterious. We explore here the origin of this symmetry in the underlying lattice models. We consider Uqsℓ(2) XXZ spin chains for q a root of unity, and argue that the centralizer of the ‘small’ quantum group U-bar qsℓ(2) goes over the W-algebra in the continuum limit. We justify this identification by representation theoretic arguments, and give, in particular, lattice versions of the W-algebra generators. In the case q=i, which corresponds to symplectic fermions at central charge c=−2, we provide a full analysis of the scaling limit of the lattice Virasoro and W generators, and show in details how the corresponding continuum Virasoro and W-algebras are obtained. Striking similarities between the lattice W algebra and the Onsager algebra are observed in this case. (paper)
Optimality and uniqueness of the Leech lattice among lattices
Cohn, Henry; Kumar, Abhinav
2004-01-01
We prove that the Leech lattice is the unique densest lattice in R^24. The proof combines human reasoning with computer verification of the properties of certain explicit polynomials. We furthermore prove that no sphere packing in R^24 can exceed the Leech lattice's density by a factor of more than 1+1.65*10^(-30), and we give a new proof that E_8 is the unique densest lattice in R^8.
Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team
2015-05-01
Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).
Bursa, Francis; Kroyter, Michael
2010-01-01
String field theory is a candidate for a full non-perturbative definition of string theory. We aim to define string field theory on a space-time lattice to investigate its behaviour at the quantum level. Specifically, we look at string field theory in a one dimensional linear dilaton background. We report the first results of our simulations.
Mickelsson, J
1996-01-01
A calculation of the chiral anomaly on a finite lattice without fermion doubling is presented . The lattice gauge field is defined in the spirit of noncommutative geometry. Standard formulas for the continuum anomaly are obtained as a limit.
Poplas-Sušić Tonka; Klemenc-Ketis Zalika; Komericki-Grzinić Marija; Kersnik Janko
2010-01-01
Introduction. Data on emergency interventions in poisonings are scarce. Objective. To determine the effectiveness of antidote therapy in acute poisoning-related emergency medical services (EMS) interventions. Methods. A prospective observational study included all poisoning-related intervention cases over 3 years (1999-2001) in the Celje region, Slovenia, covering 125,000 inhabitants. Data were recorded on an EMS form. Results. Psychoactive agents were present in 56.5% out of 244 poisoning-re...
Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K
2016-01-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
International Nuclear Information System (INIS)
A set of eight test lattices for the SSC have been devised for such purposes as the investigation of the dependences of chromatic properties and dynamic aperture on the type, field, physical aperture and errors of the magnets, on the sextupole correction scheme, on the tunes and on the cell phase advances. They are distinguished from realistic lattices in that certain features of the latter are missing - most notably the crossing magnets that bring the two counter-rotating proton beams into collision at the interaction points, and the utility insertions, which are the sites for the injection, beam abort, and radiofrequency systems. Furthermore the placement of magnets in the cells is simplified. 7 refs., 9 figs., 2 tabs
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter
2005-07-01
The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.
Jipsen, Peter
1992-01-01
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
International Nuclear Information System (INIS)
This review concentrates on progress in lattice QCD during the last two years and, particularly, its impact on phenomenology. The two main technical developments have been successful implementations of lattice actions with exact chiral symmetry, and results from simulations with two light dynamical flavours which provide quantitative estimates of quenching effects for some quantities. Results are presented for the hadron spectrum, quark masses, heavy-quark decays and structure functions. Theoretical progress is encouraging renewed attempts to compute non-leptonic kaon decays. Although computing power continues to be a limitation, projects are underway to build multi-teraflops machines over the next three years, which will be around ten times more cost-effective than those of today. (author)
International Nuclear Information System (INIS)
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author's charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
International Nuclear Information System (INIS)
The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs
International Nuclear Information System (INIS)
One of the major recent developments in particle theory has been the use of very high performance computers to obtain approximate numerical solutions of quantum field theories by formulating them on a finite space-time lattice. The great virtue of this new technique is that it avoids the straitjacket of perturbation theory and can thus attack new, but very fundamental problems, such as the calculation of hadron masses in quark-gluon field theory (quantum chromodynamics - QCD)
Digital lattice gauge theories
Zohar, Erez(Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching, Germany); Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards exp...
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K was...
Homomorphisms on Lattices of Measures
Directory of Open Access Journals (Sweden)
Norris Sookoo
2009-01-01
Full Text Available Problem statement: Homomorphisms on lattices of measures defined on the quotient spaces of the integers were considered. These measures were defined in terms of Sharma-Kaushik partitions. The homomorphisms were studied in terms of their relationship with the underlying Sharma-Kaushik partitions. Approach: We defined certain mappings between lattices of Sharma-Kaushik partitions and showed that they are homomorphisms. These homomorphisms were mirrored in homorphisms between related lattices of measures. Results: We obtained the structure of certain homomorphisms of measures. Conclusion: Further information about homomorphisms between lattices of measures of the type considered here can be obtained by investigating the underlying lattices of Sharma-Kaushik partitions.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-06-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.
International Nuclear Information System (INIS)
We present a unified framework to describe lattice gauge theories by means of tensor networks: this framework is efficient as it exploits the high local symmetry content native to these systems by describing only the gauge invariant subspace. Compared to a standard tensor network description, the gauge invariant model allows one to increase real and imaginary time evolution up to a factor that is square of the dimension of the link variable. The gauge invariant tensor network description is based on the quantum link formulation, a compact and intuitive formulation for gauge theories on the lattice, which is alternative to and can be combined with the global symmetric tensor network description. We present some paradigmatic examples that show how this architecture might be used to describe the physics of condensed matter and high-energy physics systems. Finally, we present a cellular automata analysis which estimates the gauge invariant Hilbert space dimension as a function of the number of lattice sites that might guide the search for effective simplified models of complex theories. (paper)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Online Determination of Graphene Lattice Orientation Through Lateral Forces
Zhang, Yu; Yu, Fanhua; Li, Guangyong; Liu, Lianqing; Liu, Guangjie; Zhang, Zhiyong; Wang, Yuechao; Wejinya, Uchechukwu C.; Xi, Ning
2016-08-01
Rapid progress in graphene engineering has called for a simple and effective method to determine the lattice orientation on graphene before tailoring graphene to the desired edge structures and shapes. In this work, a wavelet transform-based frequency identification method is developed to distinguish the lattice orientation of graphene. The lattice orientation is determined through the different distribution of the frequency power spectrum just from a single scan line. This method is proven both theoretically and experimentally to be useful and controllable. The results at the atomic scale show that the frequencies vary with the lattice orientation of graphene. Thus, an adjusted angle to the desired lattice orientation (zigzag or armchair) can easily be calculated based on the frequency obtained from the single scan line. Ultimately, these results will play a critical role in wafer-size graphene engineering and in the manufacturing of graphene-based nanodevices.
Online Determination of Graphene Lattice Orientation Through Lateral Forces.
Zhang, Yu; Yu, Fanhua; Li, Guangyong; Liu, Lianqing; Liu, Guangjie; Zhang, Zhiyong; Wang, Yuechao; Wejinya, Uchechukwu C; Xi, Ning
2016-12-01
Rapid progress in graphene engineering has called for a simple and effective method to determine the lattice orientation on graphene before tailoring graphene to the desired edge structures and shapes. In this work, a wavelet transform-based frequency identification method is developed to distinguish the lattice orientation of graphene. The lattice orientation is determined through the different distribution of the frequency power spectrum just from a single scan line. This method is proven both theoretically and experimentally to be useful and controllable. The results at the atomic scale show that the frequencies vary with the lattice orientation of graphene. Thus, an adjusted angle to the desired lattice orientation (zigzag or armchair) can easily be calculated based on the frequency obtained from the single scan line. Ultimately, these results will play a critical role in wafer-size graphene engineering and in the manufacturing of graphene-based nanodevices. PMID:27484859
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
A Mechanical Lattice Aid for Crystallography Teaching.
Amezcua-Lopez, J.; Cordero-Borboa, A. E.
1988-01-01
Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)
Ivanova, Juliana; Gluhcheva, Yordanka G; Kamenova, Kalina; Arpadjan, Sonja; Mitewa, Mariana
2012-10-01
In this study, the ability of the chelating agent monensic acid (administered as the tetraethylammonium salt) to reduce the cadmium (Cd) concentration in the kidneys, liver, heart, lungs, spleen and testes of Cd-intoxicated mice was investigated. Chelation therapy with the tetraethylammonium salt of monensic acid led to a significant decrease of the Cd concentration in all of the organs of the Cd-treated mice. This effect varied from 50% in the kidneys to 90% in the hearts of the sacrificed animals (compared to the Cd-treated controls). No redistribution of the toxic metal ions to the brain of the animals as a result of the detoxification with the chelating agent was observed. The detoxification of the animals with the antibiotic salt did not perturb the endogenous levels of copper (Cu) or zinc (Zn). The tetraethylammonium salt of monensic acid significantly ameliorated the Cd-induced total iron (Fe) depletion in the liver and spleen of Cd-treated mice. It also restored to control levels the values of transferrin-bound Fe and the total iron binding capacity (TIBC) of the plasma. These results imply that the tetraethylammonium salt of monensic acid could be an efficient antidote in cases of Cd-intoxication. PMID:22677540
Energy Technology Data Exchange (ETDEWEB)
Albuquerque, E.X.
1994-03-16
There are several major motivators behind this work. We need to understand OP intoxication sufficiently to provide insight and direction for development of improved antidotal therapy. The persistent environmental use of chemical insecticides, which some feel is necessary for optimal agricultural production but others challenge vehemently, requires that we understand the toxicological consequences of such use. Also, OPs have such a powerful effect or, vital functions, it could be immensely beneficial to understand in great detail the physiological mechanisms that are targeted by OPs. Such information could benefit medical treatments of diseases and pathologies other than those directly caused by OPs. Finally, we hope to present the material in a manner that will be instructive to a broad spectrum of professionals in pharmacology and toxicology. Where it is appropriate, we may draw heavily from other topical reviews. In all cases, we will provide citations to original work and/or well-referenced RA I, Lab Animals, Rats, Frogs, Compounds, Nerve Agents, Organophosphorous, BD, CD Agents, XCSM, Neurotransmitters, Receptors, Ion Channel, Oximes.
Collapsing lattice animals and lattice trees in two dimensions
Hsu, Hsiao-Ping; Grassberger, Peter
2005-01-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second order transitions from an extended to a coll...
Lattice p-Form Electromagnetism and Chain Field Theory
Derek K. Wise
2005-01-01
Since Wilson's work on lattice gauge theory in the 1970s, discrete versions of field theories have played a vital role in fundamental physics. But there is recent interest in certain higher dimensional analogues of gauge theory, such as p-form electromagnetism, including the Kalb-Ramond field in string theory, and its nonabelian generalizations. It is desirable to discretize such `higher gauge theories' in a way analogous to lattice gauge theory, but with the fundamental geometric structures ...
Sortable elements and Cambrian lattices
Reading, Nathan
2005-01-01
We show that the Coxeter-sortable elements in a finite Coxeter group W are the minimal congruence-class representatives of a lattice congruence of the weak order on W. We identify this congruence as the Cambrian congruence on W, so that the Cambrian lattice is the weak order on Coxeter-sortable elements. These results exhibit W-Catalan combinatorics arising in the context of the lattice theory of the weak order on W.
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, S. [Los Alamos National Lab., NM (United States)]|[Santa Fe Institute, NM (United States); Smith, J.R. [Santa Fe Institute, NM (United States)]|[Massachusetts Media Lab., Cambridge, MA (United States). Physics and Media Group
1995-05-01
We present a new style of molecular dynamics and self-assembly simulation, the Lattice Polymer Automaton (LPA). In the LPA all interactions, including electromagnetic forces, are decomposed and communicated via propagating particles, {open_quotes}photons.{close_quotes} The monomer-monomer bondforces, the molecular excluded volume forces, the longer range intermolecular forces, and the polymer-solvent interactions may all be modeled with propagating particles. The LPA approach differs significantly from both of the standard approaches, Monte Carlo lattice methods and Molecular Dynamics simulations. On the one hand, the LPA provides more realism than Monte Carlo methods, because it produces a time series of configurations of a single molecule, rather than a set of causally unrelated samples from a distribution of configurations. The LPA can therefore be used directly to study dynamical properties; one can in fact watch polymers move in real time. On the other hand, the LPA is fully discrete, and therefore much simpler than traditional Molecular Dynamics models, which are continuous and operate on much shorter time scales. Due to this simplicity it is possible to simulate longer real time periods, which should enable the study of molecular self-organization on workstations supercomputers are not needed.
Syer, D; Syer, D; Tremaine, S
1995-01-01
We describe a technique for solving the combined collisionless Boltzmann and Poisson equations in a discretised, or lattice, phase space. The time and the positions and velocities of `particles' take on integer values, and the forces are rounded to the nearest integer. The equations of motion are symplectic. In the limit of high resolution, the lattice equations become the usual integro-differential equations of stellar dynamics. The technique complements other tools for solving those equations approximately, such as N-body simulation, or techniques based on phase-space grids. Equilibria are found in a variety of shapes and sizes. They are true equilibria in the sense that they do not evolve with time, even slowly, unlike existing N-body approximations to stellar systems, which are subject to two-body relaxation. They can also be `tailor-made' in the sense that the mass distribution is constrained to be close to some pre-specified function. Their principal limitation is the amount of memory required to store ...
Sparse and composite coherent lattices
International Nuclear Information System (INIS)
A method is described that yields a series of (D+1)-element wave-vector sets giving rise to (D=2 or 3)-dimensional coherent sparse lattices of any desired Bravais symmetry and primitive cell shape, but of increasing period relative to the excitation wavelength. By applying lattice symmetry operations to any of these sets, composite lattices of N>D+1 waves are constructed, having increased spatial frequency content but unchanged crystal group symmetry and periodicity. Optical lattices of widely spaced excitation maxima of diffraction-limited confinement and controllable polarization can thereby be created, possibly useful for quantum optics, lithography, or multifocal microscopy
Directory of Open Access Journals (Sweden)
Kazuhiko Kuroki
2008-01-01
Full Text Available We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr. Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.
Convection-diffusion lattice Boltzmann scheme for irregular lattices
Sman, van der R.G.M.; Ernst, M.H.
2000-01-01
In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the Maxwell-Boltzman
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
International Nuclear Information System (INIS)
Full text: Lattice-resolution scanning transmission electron microscopy (STEM) contrast, derived from coherent or incoherent scattering mechanisms, is finding application over a diverse range of problems on the atomic scale, particularly with the availability of coherent FEGs. Fundamental for the understanding of such contrast is the propagation within a crystal of a focused coherent probe formed by a collapsing spherical wave. Current Bloch wave descriptions construct the total wave function from a coherent superposition of Bloch states excited from a series of incident plane waves that span the full range of transverse momentum components in the focused probe. However this implementation of boundary conditions using phase-linked plane waves may be misleading in that the possibility of exciting antisymmetric states which provides the cross-talk between adjacent columns of atoms - appears at first sight to be excluded. We match the total probe wave function to a crystal wave function which incorporates all transverse momenta in the incident probe. This revised implementation of boundary conditions leads to a simple formula for excitation amplitude which enables the probe position dependent excitation of both symmetric and antisymmetric Bloch states to be predicted. Shortcomings of previous models for incoherent contrast are that interference between waves associated with mixed dynamic form factors for incoherent contrast is not addressed, and that an intensity contribution from dechannelled electrons is not taken into account. This simple revision of boundary conditions leads to a rigorous formulation for (i) coherent and (n) incoherent lattice resolution STEM contrast. The former (i) does not require principles of reciprocity to be invoked, and the latter (n) follows from a simple generalization of the theory of channelling contrast for ADF, BSE and ALCHEMI for an incident plane wave. Phase associated with products of transition amplitudes that occur in mixed
Lattice Boltzmann Model for Compressible Fluid on a Square Lattice
Institute of Scientific and Technical Information of China (English)
SUN Cheng-Hai
2000-01-01
A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated
Entangling gates in even Euclidean lattices such as Leech lattice
Planat, Michel
2010-01-01
We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].
Neutrinoless double beta decay from lattice QCD
Nicholson, Amy; Chang, Chia Cheng; Clark, M A; Joo, Balint; Kurth, Thorsten; Rinaldi, Enrico; Tiburzi, Brian; Vranas, Pavlos; Walker-Loud, Andre
2016-01-01
While the discovery of non-zero neutrino masses is one of the most important accomplishments by physicists in the past century, it is still unknown how and in what form these masses arise. Lepton number-violating neutrinoless double beta decay is a natural consequence of Majorana neutrinos and many BSM theories, and many experimental efforts are involved in the search for these processes. Understanding how neutrinoless double beta decay would manifest in nuclear environments is key for understanding any observed signals. In these proceedings we present an overview of a set of one- and two-body matrix elements relevant for experimental searches for neutrinoless double beta decay, describe the role of lattice QCD calculations, and present preliminary lattice QCD results.
Lattice Location of Transition Metals in Semiconductors
2002-01-01
%IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...
Logarithmic Conformal Field Theory: a Lattice Approach
Gainutdinov, A M; Read, N; Saleur, H; Vasseur, R
2013-01-01
Logarithmic Conformal Field Theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self avoiding walks, etc.), or of critical points in several classes of disordered systems (transition between plateaus in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non semi-simple associative algebras underlying these lattice models - such as the Temperley-Lieb algebra or the blob algebra - indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies to the structure of indecomposable modules, but also to fusion rules, and provides an `experimental' way of measuring couplings, such as the `number b' quantifying the logarithmic coupling of the stress energy tensor with its partner. Most results obtained so far have concerned boundary LCF...
International Nuclear Information System (INIS)
The organophosphates (ORPs) or war fare agents toxicity results from inhibition of acetylcholinesterase (AchE). phosphylation of the active serin of AchE leads to accumulation of acetylcholine in synaptic clefts leading to generalized cholinergic over-stimulation. Standard treatment of ORP poisoning includes a muscarinic antagonist such as Atropine, and acetylcholinesterase reactivator (oxime). Presently, oximes like abidoxime and pralidoxime are approved as antidotes against ORP poisoning but are considered to be rather ineffective against certain ORP. Like Soman. In this study, the protective effect of Varthemia persica DC extract on acetylcholinesterase was examined in rats. Animals in weight range of 200-225 g were divided in 8 groups. The negative control group received only 0.4 ml normal saline, reference group, received ethylparaoxone in dose of 50 percent of LD50, positive control group, received ethylparaoxone (50% LD50) and one minute later 50 mol of pralidoxime. Test group 1: received ethylparaoxone and one minute later single dose of methanolic extract of Varthemia persica (250 mg/kg), Test Group 2: daily received methanolic extract of V.persica (250 mg/kg) in six days and one minute after last dose of extract, ethylparaoxone (50% LD50) were injected, Test Group 3: received ethylparaoxone (50% LD50) and then six doses of methanolic extract of V.persica (250 mg/kg) in six continuous days. Test Group 4: received ethylparaoxone and then single dose of dichloromethane extract of V.persica (250 mg/kg). Test Group 5: received ethylparaoxone and one minute later single high dose of methanolic extract of V.persica (1000 mg/kg). Then blood withdrawn and acetylcholinesterase activity was measured according to modified Ellman's method. Only in groups which received extract of V. persica before and after injection of ethylparaoxone, the mean of acetylcholinesterase activity was significantly different with reference group (p 0.05) but no significant difference with
Directory of Open Access Journals (Sweden)
Pandeya S
2016-02-01
Full Text Available Tramadol overdose has been one of the most frequent causes of drug poisoning in the recent years, especially in young adult males. In the current work, the in-vitro study on adsorption kinetics and the effect of pH on antidotal effect of activated charcoal (AC in tramadol hydrochloride intoxication were carried out. For adsorption study tramadol hydrochloride solutions of various concentrations were prepared in both simulated gastric fluid (SGF and simulated intestinal fluid (SIF and analyzed by UV spectrophotometer. For kinetics study tramadol hydrochloride and charcoal in ratio 1:5 was kept in 6 different flasks and sonicated for 5, 10, 15, 20, 25 and 30 minutes and analyzed spectrophotometrically. The data were plotted among two most commonly used adsorption isotherm, Langmuir isotherm and Freundlich isotherm and their coefficient of determination (R2 was compared to get the best adsorption isotherm equation. The kinetics study was done in both SGF and SIF. The result showed that AC 50 gm can adsorb 4802.692 mg tramadol hydrochloride at gastric environment and 8064.516 mg tramadol hydrochloride at intestinal environment. The R2 value in the current study is found to be more in SIF (0.986 than in SGF (0.985. In accordance to the value of R2, the pseudo second order kinetics model fit best for this study with R2 value of 0.9997 in SGF and 0.9994 in SIF. From the current study it can be concluded that 50g AC has the capacity to adsorb sufficient amount of tramadol hydrochloride and the kinetics followed during the adsorption was pseudo-second order.
Directory of Open Access Journals (Sweden)
Antonijević Biljana
2011-01-01
Full Text Available Introduction/Aim. In acute organophosphate poisoning the issue of special concern is the appearance of muscle fasciculations and convulsions that cannot be adequately antagonised by the use of atropine and oxime therapy. The aim of this study was to examine atidotal effect of obidoxime or HI-6 combinations with memantine in mice poisoned with soman, dichlorvos or heptenophos. Methods. Male Albino mice were pretreated intravenously (iv with increasing doses of oximes and/or memantine (10 mg/kg at various times before poisoning with 1.3 LD-50 of soman, dichlorvos or heptenophos, in order to determine the median effective dose and the efficacy half-time. In a separate experiment, cerebral extravasation of Evans blue dye (40 mg/kg iv was examined after application of memantine (10 mg/kg iv, midazolam (2.5 mg/kg intraperitonealy - ip and ketamine (20 mg/kg ip 5 minutes before soman (1 LD-50 subcutaneously - sc. Results. Coadministration of memantine induced a significant decrease in median effective dose in null time of both HI-6 (7.96 vs 1.79 mmoL/kg in soman poisoning and obidoxime (16.80 vs 2.75 mmoL/kg in dichlorvos poisoning; 21.56 vs 6.63 mmoL/kg in heptenophos poisoning. Memantine and midazolam succeded to counteract the soman-induced proconvulsive activity. Conclusion. Memantine potentiated the antidotal effect of HI-6 against a lethal dose of soman, as well as the ability of obidoxime to antagonize the toxic effects of dichlorvos and heptenophos probably partly due to its anticonvulsive properties.
International Nuclear Information System (INIS)
We introduce a new framework for constructing black hole solutions that are holographically dual to strongly coupled field theories with explicitly broken translation invariance. Using a classical gravitational theory with a continuous global symmetry leads to constructions that involve solving ODEs instead of PDEs. We study in detail D=4 Einstein-Maxwell theory coupled to a complex scalar field with a simple mass term. We construct black holes dual to metallic phases which exhibit a Drude-type peak in the optical conductivity, but there is no evidence of an intermediate scaling that has been reported in other holographic lattice constructions. We also construct black holes dual to insulating phases which exhibit a suppression of spectral weight at low frequencies. We show that the model also admits a novel AdS3×ℝ solution
Excitonic surface lattice resonances
Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.
2016-08-01
Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.
International Nuclear Information System (INIS)
A group theoretical analysis of modes of vibrations in hexagonal close-packed lattices has been made. The results have been used to classify the phonons at some special points in the Brillouin zone and factorized the secular determinant. Dispersion relations for phonons in magnesium along the two symmetry directions [0001] and [0110] have been measured (at room temperature) more accurately than reported earlier. The measurements have been made using a triple-axis spectrometer and a ''window filter'' spectrometer, both operated in the ''constant-Q'' mode. The results are compared with calculations based on three- and four-neighbour axially symmetric models. It is observed that the four-neighbour model gives a reasonably good description of the data. Even better agreement is obtained with a four-neighbour tensor force model. The force constants derived from the experiment have been used to compute the frequency distribution. (author)
Foerst, M.; Tobey, R. I.; Bromberger, H.; Wilkins, S. B.; Khanna, V.; Caviglia, A. D.; Chuang, Y. -D.; Lee, W. S.; Schlotter, W. F.; Turner, J. J.; Minitti, M. P.; Krupin, O.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Dhesi, S. S.; Cavalleri, A.; Hill, J. P.
2014-01-01
We report femtosecond resonant soft x-ray diffraction measurements of the dynamics of the charge order and of the crystal lattice in nonsuperconducting, stripe-ordered La1.875Ba0.125CuO4. Excitation of the in-plane Cu-O stretching phonon with a midinfrared pulse has been previously shown to induce a
Nuclear Physics and Lattice QCD
Savage, Martin J.
2005-01-01
Lattice QCD is progressing toward being able to impact our understanding of nuclei and nuclear processes. I discuss areas of nuclear physics that are becoming possible to explore with lattice QCD, the techniques that are currently available and the status of numerical explorations.
Lattice gauge theory: Present status
International Nuclear Information System (INIS)
Lattice gauge theory is our primary tool for the study of non- perturbative phenomena in hadronic physics. In addition to giving quantitative information on confinement, the approach is yielding first principles calculations of hadronic spectra and matrix elements. After years of confusion, there has been significant recent progress in understanding issues of chiral symmetry on the lattice
An Introduction to Lattice QCD
Pène, O
1995-01-01
Lattice QCD is the only non-perturbative method based uniquely on the first principles of QCD. After a very simple introduction to the principles of lattice QCD, I discuss its present limitations and the type of processes it can deal with. Then I present some striking results in the light and heavy quarks sectors. Finally I try to guess the prospects.
Network coding with modular lattices
Kendziorra, Andreas
2010-01-01
In [1], K\\"otter and Kschischang presented a new model for error correcting codes in network coding. The alphabet in this model is the subspace lattice of a given vector space, a code is a subset of this lattice and the used metric on this alphabet is the map d: (U, V) \\longmapsto dim(U + V) - dim(U \\bigcap V). In this paper we generalize this model to arbitrary modular lattices, i.e. we consider codes, which are subsets of modular lattices. The used metric in this general case is the map d: (x, y) \\longmapsto h(x \\bigvee y) - h(x \\bigwedge y), where h is the height function of the lattice. We apply this model to submodule lattices. Moreover, we show a method to compute the size of spheres in certain modular lattices and present a sphere packing bound, a sphere covering bound, and a singleton bound for codes, which are subsets of modular lattices. [1] R. K\\"otter, F.R. Kschischang: Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory, Vol. 54, No. 8, 2008
Computing the writhe on lattices
International Nuclear Information System (INIS)
Given a polygonal closed curve on a lattice or space group, we describe a method for computing the writhe of the curve as the average of weighted projected writhing numbers of the polygon in a few directions. These directions are determined by the lattice geometry, the weights are determined by areas of regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix to the polygonal curve. We give a new formula for the writhe of polygons on the face centred cubic lattice and prove that the writhe of polygons on the body centred cubic lattice, the hexagonal simple lattice, and the diamond space group is always a rational number, and discuss applications to ring polymers
Lattice Induced Transparency in Metasurfaces
Manjappa, Manukumara; Singh, Ranjan
2016-01-01
Lattice modes are intrinsic to the periodic structures and their occurrence can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report the first experimental observation of a lattice induced transparency (LIT) by coupling the first order lattice mode (FOLM) to the structural resonance of a metamaterial resonator at terahertz frequencies. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM mediated dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes large change in its bandwidth and resonance position. Besides controlling the transparency behaviour, LIT also shows a huge enhancement in the Q-factor and record high group delay of 28 ps, which could be pivotal in ultrasensitive sensing and slow light device applications.
Building a Consonance Between Religion and Science: an Antidote for the Seeming Conflict
Directory of Open Access Journals (Sweden)
Omomia O. Austin
2014-05-01
Full Text Available It is commonly argued by a school of thought that there is no relationship between religion and science. This extreme position has led to a lasting conflict, which has pitched religion against science and science against religion. The attempt in this paper is to articulate the fact that there can be an enduring consonance between religion and science. No doubt, the conflict and debate on the subject of religion and science has taken the front burner in both religious and philosophical discusses. Some scholars have argued that science has no role in religious or theological domain, while others contest that all religious concerns and considerations must be exposed to empirical investigations, and, proven by the dynamics of our intellect or reason. This paper, therefore, attempts to examine how religion and science complement each other. The author applied philosophical, sociological and historical methodology in his research. It is recommended that there is the need for dialogue between religion and science.
Nonlinear theory of dust lattice mode coupling in dust crystals
Kourakis, I; Kourakis, Ioannis; Shukla, Padma Kant
2004-01-01
Quasi-crystals formed by charged mesoscopic dust grains (dust lattices), observed since hardly a decade ago, are an exciting paradigm of a nonlinear chain. In laboratory discharge experiments, these quasi-lattices are formed spontaneously in the sheath region near a negative electrode, usually at a levitated horizontal equilibrium configuration where gravity is balanced by an electric field. It is long known (and experimentally confirmed) that dust-lattices support linear oscillations, in the longitudinal (acoustic mode) as well as in the transverse, in plane (acoustic-) or off-plane (optic-like mode) directions. Either due to the (typically Yukawa type) electrostatic inter-grain interaction forces or to the (intrinsically nonlinear) sheath environment, nonlinearity is expected to play an important role in the dynamics of these lattices. Furthermore, the coupling between the different modes may induce coupled nonlinear modes. Despite this evidence, the elucidation of the nonlinear mechanisms governing dust cr...
Lattice design of FELI accelerator system
International Nuclear Information System (INIS)
FELI is constructing an S-band linac accelerator system for generating wide range FEL (Free Electron Laser). The accelerator system has for lasing sections, almost isochronous offsetting lattices, and returning lattices. This paper describes the lattice design. (author)
The lattice dimension of a tree
Ovchinnikov, Sergei
2004-01-01
The lattice dimension of a graph G is the minimal dimension of a cubic lattice in which G can be isometrically embedded. We prove that the lattice dimension of a tree with n leaves is $\\lceil n/2 \\rceil$.
Lattice gas cellular automata and lattice Boltzmann models an introduction
Wolf-Gladrow, Dieter A
2000-01-01
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
$EE_8$-lattices and dihedral groups
Griess Jr., Robert L.; lam, Ching Hung
2008-01-01
We classify integral rootless lattices which are sums of pairs of $EE_8$-lattices (lattices isometric to $\\sqrt 2$ times the $E_8$-lattice) and which define dihedral groups of orders less than or equal to 12. Most of these may be seen in the Leech lattice. Our classification may help understand Miyamoto involutions on lattice type vertex operator algebras and give a context for the dihedral groups which occur in the Glauberman-Norton moonshine theory.
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Pion structure from the lattice
International Nuclear Information System (INIS)
In this thesis, we have discussed several aspects of the pion structure that are accessible with lattice QCD. In our introduction, we briefly mentioned QCD phenomenology for the pion that is obtained from experiments, namely the electromagnetic form factor connected to the charge radius, and the parton distribution functions (PDFs) which provide probabilities of finding a parton with a certain momentum fraction. These are embedded in the more general framework of generalised parton distributions (GPDs) which from the basis of this work. Special attention was paid to Mellin moments of GPDs that are parametrised in generalised form factors relevant for lattice calculations. The two subsequent Chapters were devoted to an introduction to lattice QCD and the lattice techniques we used. Here we started from the QCD Lagrangian and the path integral, to then explain our lattice gauge and fermion action, both going back to Wilson. For the latter we used the clover improved version for our dynamical two flavour simulations. We then gave details of the calculation of two- and three-point functions on the lattice, as well as the operators involved and how the matrix elements are extracted from the lattice data by building suitable ratios. The pion form factor was used for an exhaustive explanation of our methods to analyse the data. We investigated the momentum dependence of the form factor and its extrapolation to physical pion masses. We also payed attention to the lattice artifacts appearing in any lattice simulation. We also tried to estimate the size of finite volume corrections. We applied the established methods to the analysis of higher moments of the forward distributions and the second moment of the non-forward case. Finally, we gave an outlook on the densities of polarised quarks in the pion. (orig.)
Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?
Brumas, V; Hacht, B; Filella, M; Berthon, G
1992-07-01
N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose. PMID:1529808
Legless locomotion in lattices
Schiebel, Perrin; Goldman, Daniel I.
2014-11-01
Little is known about interactions between an animal body and complex terrestrial terrain like sand and boulders during legless, undulatory travel (e.g. snake locomotion). We study the locomotor performance of Mojave shovel-nosed snakes (Chionactisoccipitalis , ~ 35 cm long) using a simplified model of heterogeneous terrain: symmetric lattices of obstacles. To quantify performance we measure mean forward speed and slip angle, βs, defined as the angle between the instantaneous velocity and tangent vectors at each point on the body. We find that below a critical peg density the presence of granular media results in high speed (~ 60 cm/s), low average slip (βs ~6°) snake performance as compared to movement in the same peg densities on hard ground (~ 25 cm/s and βs ~15°). Above this peg density, performance on granular and hard substrates converges. Speed on granular media decreases with increasing peg density to that of the speed on hard ground, while speed on hard ground remains constant. Conversely, βs on hard ground trends toward that on granular media as obstacle density increases.
Reliability analysis of interdependent lattices
Limiao, Zhang; Daqing, Li; Pengju, Qin; Bowen, Fu; Yinan, Jiang; Zio, Enrico; Rui, Kang
2016-06-01
Network reliability analysis has drawn much attention recently due to the risks of catastrophic damage in networked infrastructures. These infrastructures are dependent on each other as a result of various interactions. However, most of the reliability analyses of these interdependent networks do not consider spatial constraints, which are found important for robustness of infrastructures including power grid and transport systems. Here we study the reliability properties of interdependent lattices with different ranges of spatial constraints. Our study shows that interdependent lattices with strong spatial constraints are more resilient than interdependent Erdös-Rényi networks. There exists an intermediate range of spatial constraints, at which the interdependent lattices have minimal resilience.
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Perfect Matchings in Lattice Animals and Lattice Paths with Constraints
Došlić, Tomislav
2005-01-01
In the first part of this paper it is shown how to use ear decomposition techniques in proving existence and establishing lower bounds to the number of perfect matchings in lattice animals. A correspondence is then established between perfect matchings in certain classes of benzenoid graphs and paths in the rectangular lattice that satisfy certain diagonal constraints. This correspondence is used to give explicit formulas for the number of perfect matchings in hexagonal benzenoid graphs and t...
Institute of Scientific and Technical Information of China (English)
SUN Peng; HAN Jiyuan; WENG Yuying
2007-01-01
To investigate the therapeutic effect of high-dosage γ-aminobutyric acid (GABA) on acute tetramine (TET) poisoning, 50 Kunming mice were divided into 5 groups at random and the antidotal effects of GABA or sodium dimercaptopropane sulfonate (Na-DMPS) on poisoned mice in different groups were observed in order to compare the therapeutic effects of high-dosage GABA with those of Na-DMPS. Slices of brain tissue of the poisoned mice were made to examine pathological changes of cells. The survival analysis was employed. Our results showed that both high-dosage GABA and Na-DMPS could obviously prolong the survival time, delay onset of convulsion and muscular twitch, and ameliorate the symptoms after acute tetramine poisoning in the mice.Better effects could be achieved with earlier use of high dosage GABA or Na-DMPS. There was no significant difference in prolonging the survival time between high-dose GABA and Na-DMPS used immediately after poisioning. It is concluded that high-dosage GABA can effectively antagonize acute toxicity of teramine in mice. And it is suggested that high-dosage GABA may be used as an excellent antidote for acute TET poisoning in clinical practice. The indications and correct dosage for clinical use awaits to be further studied.
Patel, Sunny; Steen, Dylan
2016-02-01
There remains a need for safe, immediately effective, and easy to administer antidotes for patients taking novel oral anticoagulants (NOACs) in the settings of major bleeding, need for emergency surgery, and accidental overdose. We review considerations for the successful safety and effectiveness evaluation of potential antidotes currently under development. These compounds are in expedited regulatory approval programs aimed at accelerating the preclinical and clinical evaluation and approval processes for treatments of serious conditions. We review the features of these expedited programs as well as the FDA's efforts to broadly advance the efficiency of drug development and increase the number of new compounds brought to market. The critical path initiative and regulatory science initiative have resulted in numerous successful programs to address current challenges such as a paucity of validated biomarkers and surrogate endpoints as well as unreliable animal models of toxicity. The FDA has also advocated for increased use of pharmacokinetic/pharmacodynamic modeling and adaptive trial design. These efforts foster collaboration between academia, industry and the public sector across interdisciplinary sciences and may continue to widen the pathway for NOAC-specific reversal agents and other novel compounds. PMID:26374107
Directory of Open Access Journals (Sweden)
Motahareh Soltani
2013-01-01
Full Text Available Aluminium phosphide (AlP is a storage fumigant pesticide, which is used to protect stored grains especially from insects and rodents. It releases phosphine (PH3 gas, a highly toxic mitochondrial poison, in contact with moisture, particularly if acidic. Although the exact mechanism of action is unknown so far, the major mechanism of PH3 toxicity seems to be the inhibition of cytochrome-c oxidase and oxidative phosphorylation which eventually results in adenosine triphosphate (ATP depletion and cell death. Death due to AlP poisoning seems to be as a result of myocardial damage. No efficient antidote has been found for AlP poisoning so far, and unfortunately, most of the poisoned human cases die. PH3, like ammonia (NH3, is a Lewis base with a lone-pair electron. However, boric acid (B(OH3 is a Lewis acid with an empty p orbital. It is predicted that lone-pair electron from PH3 is shared with the empty p orbital from B(OH3 and a compound forms in which boron attains its octet. In other words, PH3 is trapped and neutralised by B(OH3. The resulting polar reaction product seems to be excretable by the body due to hydrogen bonding with water molecules. The present article proposes boric acid as a non-toxic and efficient trapping agent and an antidote for PH3 poisoning by investigating the chemical reaction between them.
Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions
Institute of Scientific and Technical Information of China (English)
Zhong Yi; Zhang Yong; Wang Jiao; Zhao Hong
2013-01-01
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions.Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough.Because only the harmonic interactions are involved,the result confirms,without ambiguity,that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices.Both equilibrium and nonequilibrium simulations are performed to support the conclusion.
On Lattice-Free Orbit Polytopes
Herr, Katrin; Rehn, Thomas; Schürmann, Achill
2014-01-01
Given a permutation group acting on coordinates of $\\mathbb{R}^n$, we consider lattice-free polytopes that are the convex hull of an orbit of one integral vector. The vertices of such polytopes are called \\emph{core points} and they play a key role in a recent approach to exploit symmetry in integer convex optimization problems. Here, naturally the question arises, for which groups the number of core points is finite up to translations by vectors fixed by the group. In this paper we consider ...
Hadron properties from lattice QCD
International Nuclear Information System (INIS)
We discuss the status of current dyanmical lattice QCD simulations in connection to the emerging results on the low-lying baryon spectrum, excited states of the nucleon and the investigation of the structure of scalar mesons
De Soto, F; Carbonell, J; Leroy, J P; Pène, O; Roiesnel, C; Boucaud, Ph.
2007-01-01
We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.
Integrating out lattice gauge fields
Vairinhos, Helvio
2014-01-01
The sign problem is a major obstacle to our understanding of the phase diagram of QCD at finite baryon density. Several numerical methods have been proposed to tackle this problem, but a full solution to the sign problem is still elusive. Motivated by this problem and by recent advances in diagrammatic Monte Carlo methods, we find a new exact representation of the partition function of pure lattice gauge theory that contains no link variables. This approach can be easily extended to include staggered fermions, and results in a diagrammatic representation of fermionic states as arrangements of monomers, dimers, and fermionic loops saturating the spacetime lattice. Our representations are exact for any value of the lattice coupling, and extend previous representations that are only valid in the strong coupling limit and at $O(\\beta)$. As a concrete example, we construct a monomer-dimer-loop representation of compact lattice QED.
Lattice tube model of proteins
Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos
2004-01-01
We present a new lattice model for proteins that incorporates a tube-like anisotropy by introducing a preference for mutually parallel alignments in the conformations. The model is demonstrated to capture many aspects of real proteins.
Lattice Tube Model of Proteins
Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos
2004-11-01
We present a new lattice model for proteins that incorporates a tubelike anisotropy by introducing a preference for mutually parallel alignments in the conformations. The model is demonstrated to capture many aspects of real proteins.
Hadronic Interactions with Lattice QCD
Savage, Martin J.
2008-01-01
I discuss recent results of the NPLQCD Collaboration regarding the calculation of hadronic interactions with lattice QCD. A particular emphasis will be spent on pi-pi scattering and other meson interactions.
Lubicz, Vittorio
2010-01-01
I review lattice calculations and results for hadronic parameters relevant for kaon physics, in particular the vector form factor f+(0) of semileptonic kaon decays, the ratio fK/fpi of leptonic decay constants and the kaon bag parameter BK. For each lattice calculation a colour code rating is assigned, by following a procedure which is being proposed by the Flavianet Lattice Averaging Group (FLAG), and the following final averages are obtained: f+(0)=0.962(3)(4), fK/fpi = 1.196(1)(10) and \\hat BK = 0.731(7)(35). In the last part of the talk, the present status of lattice studies of non-leptonic K--> pi pi decays is also briefly summarized.
International Nuclear Information System (INIS)
The frequency/wave-vector dispersion relation for the normal modes of vibration in the major symmetry directions of body-centred cubic rubidium has been measured at 120° K. The large (∼ 75 cm3) single crystal was aligned with either a [110] or a [100] axis vertical, and constant incident frequencies between 3.8 and 5.5 x 1012 c,s were employed. The measurements were taken with the McMaster University triple-axis spectrometer at Chalk River in the constant-Q mode of operation. The dispersion curves are similar in shape to those of sodium and potassium. The ratio for a set of 104 values of q common to both sets of data, is 1.667 ± 0.005 with a standard deviation for an individual ratio from the mean of 0.05. The homology of the lattice vibrations for Na and Rb is poorer than for K and Rb. A Born-von Kármán analysis of the measurements has been made, and it is found that third nearest neighbour forces must be included to obtain reasonable agreement. More distant neighbour forces improve the fit relatively little. Axially symmetric constraints do not change the force constants significantly. As expected, the force constant 1XY is larger than 1XX, which suggests that the forces between nearest neighbours are repulsive. The initial slopes of the dispersion curves are considerably larger than the slopes deduced from ultrasonic measurements. The errors, mainly in the ultrasonic measurements, are barely sufficient to account for the differences. (author)
QCD thermodynamics from the lattice
International Nuclear Information System (INIS)
We review the current methods and results of lattice simulations of quantum chromodynamics at nonzero temperatures and densities. The review is intended to introduce the subject to interested nonspecialists and beginners. It includes a brief overview of lattice gauge theory, a discussion of the determination of the crossover temperature, the QCD phase diagram at zero and nonzero densities, the equation of state, some in-medium properties of hadrons including charmonium, and some plasma transport coefficients. (orig.)
Interacting atoms in optical lattices
Mentink, Johan; Kokkelmans, Servaas
2008-01-01
We propose an easy to use model to solve for interacting atoms in an optical lattice. This model allows for the whole range of weakly to strongly interacting atoms, and it includes the coupling between relative and center-of-mass motion via anharmonic lattice terms. We apply this model to a high-precision spin dynamics experiment, and we discuss the corrections due to atomic interactions and the anharmonic coupling. Under suitable experimental conditions, energy can be transferred between the...
Local Rigidity Of Uniform Lattices
Gelander, Tsachik; Levit, Arie
2016-01-01
We establish local topological rigidity for uniform lattices in compactly generated groups, extending the result of Weil from the realm of Lie groups. We generalize the classical local rigidity theorem of Selberg, Calabi and Weil to irreducible uniform lattices in $\\text{Isom}(X)$ where $X$ is a proper $\\text{CAT}(0)$ space with no Euclidian factors, not isometric to the hyperbolic plane. We deduce an analog of Wang's finiteness theorem for certain non-positively curved metric spaces.
Boolean filters of distributive lattices
Directory of Open Access Journals (Sweden)
M. Sambasiva Rao
2013-07-01
Full Text Available In this paper we introduce the notion of Boolean filters in a pseudo-complemented distributive lattice and characterize the class of all Boolean filters. Further a set of equivalent conditions are derived for a proper filter to become a prime Boolean filter. Also a set of equivalent conditions is derived for a pseudo-complemented distributive lattice to become a Boolean algebra. Finally, a Boolean filter is characterized in terms of congruences.
Baryon spectroscopy in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Derek B. Leinweber; Wolodymyr Melnitchouk; David Richards; Anthony G. Williams; James Zanotti
2004-04-01
We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Transport in Sawtooth photonic lattices
Weimann, Steffen; Real, Bastián; Cantillano, Camilo; Szameit, Alexander; Vicencio, Rodrigo A
2016-01-01
We investigate, theoretically and experimentally, a photonic realization of a Sawtooth lattice. This special lattice exhibits two spectral bands, with one of them experiencing a complete collapse to a highly degenerate flat band for a special set of inter-site coupling constants. We report the ob- servation of different transport regimes, including strong transport inhibition due to the appearance of the non-diffractive flat band. Moreover, we excite localized Shockley surfaces states, residing in the gap between the two linear bands.
International Nuclear Information System (INIS)
We discuss here lattice results for hadronic couplings and matrix elements relevant for weak transitions in heavy systems. Specifically, we present numerical computations of pseudoscalar and vector decay constants such as fD, fJ/Ψ, the B parameter for the charmed D-anti D system, as well as some preliminary results related to a lattice evaluation of the equivalent quantities for the bottom system. (orig./HSI)
Lattice Structures for Attractors I
Kalies, William D.; Mischaikow, Konstantin; Vandervorst, Robert C. A. M.
2013-01-01
We describe the basic lattice structures of attractors and repellers in dynamical systems. The structure of distributive lattices allows for an algebraic treatment of gradient-like dynamics in general dynamical systems, both invertible and noninvertible. We separate those properties which rely solely on algebraic structures from those that require some topological arguments, in order to lay a foundation for the development of algorithms to manipulate these structures computationally.
Multifractal behaviour of -simplex lattic
Indian Academy of Sciences (India)
Sanjay Kumar; Debaprasad Giri; Sujata Krishna
2000-06-01
We study the asymptotic behaviour of resistance scaling and ﬂuctuation of resistance that give rise to ﬂicker noise in an -simplex lattice. We propose a simple method to calculate the resistance scaling and give a closed-form formula to calculate the exponent, , associated with resistance scaling, for any . Using current cumulant method we calculate the exact noise exponent for -simplex lattices.
Capacities on a finite lattice
Machida, Motoya
2011-01-01
In his influential work Choquet systematically studied capacities on Boolean algebras in a topological space, and gave a probabilistic interpretation for completely monotone (and completely alternating) capacities. Beyond complete monotonicity we can view a capacity as a marginal condition for probability distribution over the distributive lattice of dual order ideals. In this paper we discuss a combinatorial approach when capacities are defined over a finite lattice, and investigate Fr\\'{e}c...
Lattice splitting under intermittent flows
Schläpfer, Markus; Trantopoulos, Konstantinos
2010-01-01
We study the splitting of regular square lattices subject to stochastic intermittent flows. Various flow patterns are produced by different groupings of the nodes, based on their random alternation between two possible states. The resulting flows on the lattices decrease with the number of groups according to a power law. By Monte Carlo simulations we reveal how the time span until the occurrence of a splitting depends on the flow patterns. Increasing the flow fluctuation frequency shortens t...
International Nuclear Information System (INIS)
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and αs (Mz), and B-anti B mixing. 67 refs., 36 figs
Yamamoto, Arata
2016-01-01
We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Chiral symmetry and lattice fermions
Creutz, Michael
2013-01-01
Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.
Large intervals in the clone lattice
Goldstern, Martin; Shelah, Saharon
2002-01-01
We give three examples of large intervals in the lattice of (local) clones on an infinite set X, by exhibiting clones C_1, C_2, C_3 such that: (1) the interval [C_1, O] in the lattice of local clones is (as a lattice) isomorphic to {0,1,2, ...} under the divisibility relation, (2) the interval [C_2, O] in the lattice of local clones is isomorphic to the congruence lattice of an arbitrary semilattice, (3) the interval [C_3, O] in the lattice of all clones is isomorphic to the lattice of all fi...
Solving the local cohomology problem in U(1) chiral gauge theories within a finite lattice
Energy Technology Data Exchange (ETDEWEB)
Kadoh, Daisuke; Nakayama, Yoichi; Kikukawa, Yoshio [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)]. E-mail: kikukawa@eken.phys.nagoya-u.ac.jp
2004-12-01
In the gauge-invariant construction of abelian chiral gauge theories on the lattice based on the Ginsparg-Wilson relation, the gauge anomaly is topological and its cohomologically trivial part plays the role of the local counter term. We give a prescription to solve the local cohomology problem within a finite lattice by reformulating the Poincare lemma so that it holds true on the finite lattice up to exponentially small corrections. We then argue that the path-integral measure of Weyl fermions can be constructed directly from the quantities defined on the finite lattice. (author)
Lucini, Biagio
2014-01-01
Recent numerical calculations of the glueball spectrum in QCD, in SU($N$) Yang-Mills theory in the large-$N$ limit and in candidate theories of strongly interacting dynamics beyond the standard model (in which the lowest-lying scalar plays the role of the Higgs boson) are reviewed and their implications for our theoretical understanding of glueballs in QCD-like theories and in strongly coupled gauge theories with a (near-)conformal dynamics are discussed.
Directory of Open Access Journals (Sweden)
Patrick Durel
2006-06-01
Full Text Available Cette étude examine les opérations mentales d'apprenants utilisant l'assistant grammatical Antidote en phase de révision de leurs productions écrites. Analysant des données obtenues à partir de la méthode des protocoles verbaux, ce travail montre comment ce type d'activité de révision assistée par ordinateur conduit l'apprenant à manipuler, construire, renforcer ou élargir le champ d'application de ses connaissances, qu'elles soient déclaratives ou procédurales. Les éléments dégagés indiquent que l'utilisation d'Antidote peut être vecteur d'apprentissage et offrent quelques pistes permettant de concevoir des activités de révision assistée par ordinateur qui s'inscrivent dans le cadre d'une didactique de la production scripturale.This study explores learners' cognitive processes when using the grammar assistant software Antidote during the revision phase of their composition. Analysing data obtained using a hybrid form of verbal protocols, it shows how computer-assisted revision activity can lead learners to manipulate, build or reinforce declarative and procedural knowledge. We argue that using grammar assistant software can be conducive to learning. The results of the analysis provide an insight into how such a tool can be integrated into classroom activities, contributing to writing quality and the acquisition of revision strategies.
Electronic structures and spin magnetic properties of CoFe: lattice strain effects
International Nuclear Information System (INIS)
The effects of lattice strain on the electronic structures and the spin magnetic properties of CoFe in the CsCl (B2) structure were studied using first-principles electronic-structure calculations based on the density functional theory. The calculations in this study showed that the lattice stain induces significant changes in the peak positions of the majority-spin and the minority-spin densities of states: In the case of lattice expansion, band narrowing was observed while in the case of lattice compression, band broadening was observed. As a result, when the lattice strain of CoFe was increased to 4.7%, the minority-spin density of states at the Fermi energy decreased by 32% as compared to that of the unstrained CoFe. This suggests that lattice strain can play an important role in the functioning of spin electronic devices of CoFe.
Lattice dislocation in Si nanowires
Energy Technology Data Exchange (ETDEWEB)
Omar, M.S., E-mail: dr_m_s_omar@yahoo.co [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Taha, H.T. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)
2009-12-15
Modified formulas were used to calculate lattice thermal expansion, specific heat and Bulk modulus for Si nanowires with diameters of 115, 56, 37 and 22 nm. From these values and Gruneisen parameter taken from reference, mean lattice volumes were found to be as 20.03 A{sup 3} for the bulk and 23.63, 29.91, 34.69 and 40.46 A{sup 3} for Si nanowire diameters mentioned above, respectively. Their mean bonding length was calculated to be as 0.235 nm for the bulk and 0.248, 0.269, 0.282 and 0.297 nm for the nanowires diameter mentioned above, respectively. By dividing the nanowires diameter on the mean bonding length, number of layers per each nanowire size was found to be as 230, 104, 65 and 37 for the diameters mentioned above, respectively. Lattice dislocations in 22 nm diameter wire were found to be from 0.00324 nm for the 1st central lattice to 0.2579 nm for the last surface lattice. Such dislocation was smaller for larger wire diameters. Dislocation concentration found to change in Si nanowires according to the proportionalities of surface thickness to nanowire radius ratios.
Lattice magnetic analog of branched polymers, lattice animals and percolation
González, A E
1985-01-01
It is shown that the n = 0 limit of a magnetic system consisting of nq-component spins on a lattice, interacting with multibody forces and with an external magnetic field coupled to the first q components, gives us a correspondence with a system of branched polymers in a good solvent For certain specific values of the fugacities, a lattice animal point and a « quasi-percolation » point (in which only the exponents αP and νP can be extracted) are obtained.
Kaon fluctuations from lattice QCD
Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia
2016-01-01
We show that it is possible to isolate a set of kaon fluctuations in lattice QCD. By means of the Hadron Resonance Gas (HRG) model, we calculate the actual kaon second-to-first fluctuation ratio, which receives contribution from primordial kaons and resonance decays, and show that it is very close to the one obtained for primordial kaons in the Boltzmann approximation. The latter only involves the strangeness and electric charge chemical potentials, which are functions of $T$ and $\\mu_B$ due to the experimental constraint on strangeness and electric charge, and can therefore be calculated on the lattice. This provides an unambiguous method to extract the kaon freeze-out temperature, by comparing the lattice results to the experimental values for the corresponding fluctuations.
Algebraic Lattices in QFT Renormalization
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Phonons dispersions in auxetic lattices
Energy Technology Data Exchange (ETDEWEB)
Sparavigna, A [Dipartimento di Fisica, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin (Italy)
2007-12-15
The modes of vibrations in auxetic structures are studied, with models where the two-dimensional lattice is represented by a planar mesh with rod-like particles connected by strings. An auxetic membrane can be obtained modifying a honeycomb one, according to a model proposed by Evans et al. in 1991 and used to explain a negative elastic Poisson's ratio. This property means that auxetic materials have a lateral extension, instead to shrink, when they are stretched. The models here proposed with rod-like particles inserted in the structure have interesting behaviour of acoustic and rotational branches of phonon dispersions. Complete bandgaps of vibrations can be obtained for a proper choice of lattice coupling parameters and distribution of masses in the unit cell of the lattice.
Algebraic Lattices in QFT Renormalization
Borinsky, Michael
2016-04-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Nuclear Reactions from Lattice QCD
Briceño, Raúl A; Luu, Thomas C
2014-01-01
One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path ...
Quantum Gravity on the Lattice
Hamber, Herbert W
2009-01-01
I review the lattice approach to quantum gravity, and how it relates to the non-trivial ultraviolet fixed point scenario of the continuum theory. After a brief introduction covering the general problem of ultraviolet divergences in gravity and other non-renormalizable theories, I cover the general methods and goals of the lattice approach. An underlying theme is an attempt at establishing connections between the continuum renormalization group results, which are mainly based on diagrammatic perturbation theory, and the recent lattice results, which should apply to the strong gravity regime and are inherently non-perturbative. A second theme in this review is the ever-present natural correspondence between infrared methods of strongly coupled non-abelian gauge theories on the one hand, and the low energy approach to quantum gravity based on the renormalization group and universality of critical behavior on the other. Towards the end of the review I discuss possible observational consequences of path integral q...
Algebraic lattices in QFT renormalization
Borinsky, Michael
2015-01-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the Standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, the lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Inelastic neutron scattering and lattice dynamics of minerals
Indian Academy of Sciences (India)
Narayani Choudhury; S L Chaplot
2008-10-01
We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in various thermodynamic properties. The role of theoretical lattice dynamics calculations in the planning, interpretation and analysis of neutron experiments are discussed. These studies provide important insights in understanding various anomalous behaviour including pressure-induced amorphization, phonon and elastic instabilities, prediction of novel high pressure phase transitions, high pressure{temperature melting, etc.
Two-dimensional quantum conformal group, strings and lattices
International Nuclear Information System (INIS)
The two-dimensional conformal group plays an important role in two-dimensional quantum field theory. The Virasoro algebra commutation relations are given. Local currents and affine Kac-Moody algebras, the simplest class of infinite Lie algebras, are discussed. In relation to these topics, the theory of Integral Lattices plays a role. Applications of conformal groups in the theories of extended supergravity and superstrings are reviewed. 47 refs.,
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a2) discretization effects.
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Hadronic structure from the lattice
International Nuclear Information System (INIS)
In recent years the investigation of hadron structure using lattice techniques has attracted growing attention. The computation of several important quantities has become feasible. Furthermore, theoretical developments as well as progress in algorithms and an increase in computing resources have contributed to a significantly improved control of systematic errors. In this article we give an overview on the work that has been carried out in the framework of the Hadron Physics I3 (I3HP) network ''Computational (lattice) hadron physics''. Here we not restrict ourselves to spin physics but focus on results for nucleon spectrum and structure from the QCDSF collaboration. (orig.)
Machines for lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig.
Machines for lattice gauge theory
International Nuclear Information System (INIS)
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
Chiral symmetry on the lattice
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Hadron Interactions from lattice QCD
Aoki, Sinya
2016-01-01
We review our strategy to study hadron interactions from lattice QCD using newly proposed potential method. We first explain our strategy in the case of nuclear potentials and its application to nuclear physics. We then discuss the origin of the repulsive core, by adding strange quarks to the system. We also explore a possibility for H-dibaryon to exist in flavor SU(3) limit of lattice QCD. We conclude the paper with an application of our strategy to investigate the maximum mass of neutron stars.
Chiral Fermions on the Lattice
Bietenholz, Wolfgang
2010-01-01
In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.
Directory of Open Access Journals (Sweden)
Dawson Andrew H
2010-06-01
Full Text Available Abstract Background Cardiac toxicity due to ingestion of oleander plant seeds in Sri Lanka and some other South Asian countries is very common. At present symptomatic oleander seed poisoning carries a mortality of 10% in Sri Lanka and treatment of yellow oleander poisoning is limited to gastric decontamination and atropine administration. The only proven effective antidote is digoxin antibodies but these are not available for routine use because of the high cost. The main objective of this study is to investigate the effectiveness of a new and inexpensive antidote for patients with life threatening arrhythmias due oleander poisoning. Method/design We set up a randomised double blind clinical trial to assess the effectiveness of Fructose 1, 6 diphosphate (FDP in acute yellow oleander poisoning patients admitted to the adult medical wards of a tertiary hospital in Sri Lanka. Patients will be initially resuscitated following the national guidelines and eligible patients will be randomised to receive either FDP or an equal amount of normal saline. The primary outcome measure for this study is the sustained reversion to sinus rhythm with a heart rate greater than 50/min within 2 hours of completion of FDP/placebo bolus. Secondary outcomes include death, reversal of hyperkalaemia on the 6, 12, 18 and 24 hour samples and maintenance of sinus rhythm on the holter monitor. Analysis will be on intention-to-treat. Discussion This trial will provide information on the effectiveness of FDP in yellow oleander poisoning. If FDP is effective in cardiac glycoside toxicity, it would provide substantial benefit to the patients in rural Asia. The drug is inexpensive and thus could be made available at primary care hospitals if proven to be effective. Trial Registration Current Controlled trial ISRCTN71018309
Non-perturbative renormalization on the lattice
International Nuclear Information System (INIS)
Strongly-interacting theories lie at the heart of elementary particle physics. Their distinct behaviour shapes our world sui generis. We are interested in lattice simulations of supersymmetric models, but every discretization of space-time inevitably breaks supersymmetry and allows renormalization of relevant susy-breaking operators. To understand the role of such operators, we study renormalization group trajectories of the nonlinear O(N) Sigma model (NLSM). Similar to quantum gravity, it is believed to adhere to the asymptotic safety scenario. By combining the demon method with blockspin transformations, we compute the global flow diagram. In two dimensions, we reproduce asymptotic freedom and in three dimensions, asymptotic safety is demonstrated. Essential for these results is the application of a novel optimization scheme to treat truncation errors. We proceed with a lattice simulation of the supersymmetric nonlinear O(3) Sigma model. Using an original discretization that requires to fine tune only a single operator, we argue that the continuum limit successfully leads to the correct continuum physics. Unfortunately, for large lattices, a sign problem challenges the applicability of Monte Carlo methods. Consequently, the last chapter of this thesis is spent on an assessment of the fermion-bag method. We find that sign fluctuations are thereby significantly reduced for the susy NLSM. The proposed discretization finally promises a direct confirmation of supersymmetry restoration in the continuum limit. For a complementary analysis, we study the one-flavor Gross-Neveu model which has a complex phase problem. However, phase fluctuations for Wilson fermions are very small and no conclusion can be drawn regarding the potency of the fermion-bag approach for this model.
Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi
2014-01-01
We investigate the contribution from each Dirac modes to the Polyakov loop based on a gauge-invariant analytical relation connecting the Polyakov loop and the Dirac modes on a temporally odd-number lattice, where the temporal lattice size is odd, with the normal (nontwisted) periodic boundary condition. The dumping factor in the relation plays crucial role for the negligible contribution of low-lying Dirac modes to the Polyakov loop. The zero-value of the Polyakov loop in the confinement phas...
Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
Directory of Open Access Journals (Sweden)
Bruce L. Davis
2011-12-01
Full Text Available The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell and the phononic crystal lattice (defined by a supercell contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant, dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.
Effective field theory as the bridge between lattice QCD and nuclear physics
Kaplan, David B.
2006-01-01
A confluence of theoretical and technological developments are beginning to make possible contributions to nuclear physics from lattice QCD. Effective field theory plays a critical role in these advances. I give several examples.
Inelastic neutron scattering and lattice dynamics studies in complex solids
Indian Academy of Sciences (India)
Mala N Rao; R Mittal; Narayani Choudhury; S L Chaplot
2004-07-01
At Trombay, lattice dynamics studies employing coherent inelastic neutron scattering (INS) experiments have been carried out at the two research reactors, CIRUS and Dhruva. While the early work at CIRUS involved many elemental solids and ionic molecular solids, recent experiments at Dhruva have focussed on certain superconductors (cuprates and intermetallics), geophysically important minerals (Al2SiO5, ZrSiO4, MnCO3) and layered halides (BaFCl, ZnCl2). In most of the studies, theoretical modelling of lattice dynamics has played a significant role in the interpretation and analysis of the results from experiments. This talk summarises the developments and current activities in the field of inelastic neutron scattering and lattice dynamics at Trombay.
Statistical-mechanical description of diffusion in interacting lattice gases
Bokun, G. S.; Groda, Ya. G.; Uebing, C.; Vikhrenko, V. S.
2001-07-01
A Mori-type equation for the lattice concentration of an interacting lattice gas is constructed on the basis of the master equation in the framework of the nonequilibrium statistical ensemble method due to Zubarev. The general expression for the diffusion coefficient, which takes into account particle jumps of arbitrary length, spatial dispersion and memory effects is derived. In contrast to systems with reversible dynamics the relevant or quasiequilibrium distribution significantly contributes to the diffusion coefficient. This contribution is represented by two cofactors, namely the kinetic diffusion coefficient and the correlation function of concentration fluctuations. For lattice gases with thermally activated hopping dynamics in hydrodynamic (zero frequency and long wave) limit the former is reduced to Zhdanov's form that reflects an important role of equilibrium characteristics, i.e. the chemical potential and the two-site vacancy distribution function. The self-consistent diagram approximation is used to evaluate these characteristics for a two-dimensional lattice gas with nearest-neighbor attractive interaction on a square lattice. Results for the diffusion coefficient coincide within a few per cent with Monte-Carlo simulation data.
Modular equations and lattice sums
Rogers, Mathew; Yuttanan, Boonrod
2010-01-01
We highlight modular equations discovered by Somos and Ramanujan, and use them to prove new relations between lattice sums and hypergeometric functions. We also discuss progress towards solving Boyd's Mahler measure conjectures, and we conjecture a new formula for $L(E,2)$ of conductor 17 elliptic curves.
Method of manufacturing support lattice
International Nuclear Information System (INIS)
The present invention concerns a method of manufacturing a support lattice for a reactor fuel assembly. A plurality of strip-like plates each having recesses formed at a predetermined longitudinal distance from the lateral end toward the lateral center intersect each other with the recesses being engaged to each other to assemble into a lattice-like configuration. Protrusions each extended from the lateral end faces are formed to the upper and the lower portions on the intersection for each of the strip-like plates and a window having a protrusion extended in the lateral direction is disposed in the central portion. Laser beams are condensed by a condenser lens so that the center line thereof agrees with the intersecting line of the strip-like plates. The condensed beams are irradiated vertically to the surface of the strip-like plates in the intermediate portion, to easily elevate temperature locally in the intermediate portion. Thus, a plurality of portions to be welded on the intersecting line of the support lattice can be welded all at once, to shorten the production step for the support lattices. (I.N.)
Confinement and lattice gauge theory
International Nuclear Information System (INIS)
The motivation for formulating gauge theories on a lattice to study non-perturbative phenomena is reviewed, and recent progress supporting the compatibility of asymptotic freedom and quark confinement in the standard SU(3) Yang-Mills theory of the strong interaction is discussed
Nucleon structure using lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Constantinou, M.; Hatziyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Drach, V. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Jansen, K. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Koutsou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Leontiou, T. [Frederick Univ, Nicosia (Cyprus). General Dept.
2013-03-15
A review of recent nucleon structure calculations within lattice QCD is presented. The nucleon excited states, the axial charge, the isovector momentum fraction and helicity distribution are discussed, assessing the methods applied for their study, including approaches to evaluate the disconnected contributions. Results on the spin carried by the quarks in the nucleon are also presented.
Differential geometry of group lattices
International Nuclear Information System (INIS)
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Nuclear Lattice Simulations with EFT
International Nuclear Information System (INIS)
This proceedings article is a summary of results from work done in collaboration with Bugra Borasoy and Thomas Schaefer. We study nuclear and neutron matter by combining chiral effective field theory with non-perturbative lattice methods. We present results for hot neutron matter at temperatures 20 to 40 MeV and densities below twice nuclear matter density
International Nuclear Information System (INIS)
We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case
Logarithmic conformal field theory: a lattice approach
International Nuclear Information System (INIS)
Logarithmic conformal field theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self-avoiding walks, etc), or of critical points in several classes of disordered systems (transition between plateaux in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non-semi-simple associative algebras underlying these lattice models—such as the Temperley–Lieb algebra or the blob algebra—indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies not only to the structure of indecomposable modules, but also to fusion rules, and provides an ‘experimental’ way of measuring couplings, such as the ‘number b’ quantifying the logarithmic coupling of the stress–energy tensor with its partner. Most results obtained so far have concerned boundary LCFTs and the associated indecomposability in the chiral sector. While the bulk case is considerably more involved (mixing in general left and right moving sectors), progress has also recently been made in this direction, uncovering fascinating structures. This study provides a short general review of our work in this area. (review)
Logarithmic conformal field theory: a lattice approach
Gainutdinov, A. M.; Jacobsen, J. L.; Read, N.; Saleur, H.; Vasseur, R.
2013-12-01
Logarithmic conformal field theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self-avoiding walks, etc), or of critical points in several classes of disordered systems (transition between plateaux in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non-semi-simple associative algebras underlying these lattice models—such as the Temperley-Lieb algebra or the blob algebra—indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies not only to the structure of indecomposable modules, but also to fusion rules, and provides an ‘experimental’ way of measuring couplings, such as the ‘number b’ quantifying the logarithmic coupling of the stress-energy tensor with its partner. Most results obtained so far have concerned boundary LCFTs and the associated indecomposability in the chiral sector. While the bulk case is considerably more involved (mixing in general left and right moving sectors), progress has also recently been made in this direction, uncovering fascinating structures. This study provides a short general review of our work in this area.
Orbital optical lattices with bosons
Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.
2016-02-01
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.
On the Convergence of Monotone Lattice Matrices
Jing Jiang; Lan Shu; Xin’an Tian
2013-01-01
Since lattice matrices are useful tools in various domains like automata theory, design of switching circuits, logic of binary relations, medical diagnosis, markov chains, computer network, traffic control and so on, the study of the properties of lattice matrices is valuable. A lattice matrix A is called monotone if A is transitive or A is monotone increasing. In this paper, the convergence of monotone matrices is studied. The results obtained here develop the corresponding ones on lattice m...
Counting Lattice Animals in High Dimensions
Luther, Sebastian; Mertens, Stephan
2011-01-01
We present an implementation of Redelemeier's algorithm for the enumeration of lattice animals in high dimensional lattices. The implementation is lean and fast enough to allow us to extend the existing tables of animal counts, perimeter polynomials and series expansion coefficients in $d$-dimensional hypercubic lattices for $3 \\leq d\\leq 10$. From the data we compute formulas for perimeter polynomials for lattice animals of size $n\\leq 11$ in arbitrary dimension $d$. When amended by combinat...
Remarks on left-handed lattice fermions
Gattringer, Christof; Pak, Markus
2007-01-01
We study whether applying lattice projectors on a vector-like Ginsparg-Wilson Dirac operator is the only way to construct left-handed lattice fermions. Using RG transformations we derive an equation for the generating functional on the lattice, obtained by blocking from the continuum. We analyze how symmetries of the continuum theory manifest themselves in this lattice generating functional and how anomalies emerge. The formalism is applied to left-handed continuum fermions and we derive two ...
Feynman diagrams and their algebraic lattices
Borinsky, Michael
2015-01-01
We present the lattice structure of Feynman diagram renormalization in physical QFTs from the viewpoint of Dyson-Schwinger-Equations and the core Hopf algebra of Feynman diagrams. The lattice structure encapsules the nestedness of diagrams. This structure can be used to give explicit expressions for the counterterms in zero-dimensional QFTs using the lattice-Moebius function. Different applications for the tadpole-free quotient, in which all appearing elements correspond to semimodular lattices, are discussed.
Rootless pairs of $EE_8$-lattices
Griess, Jr., Robert L.; lam, Ching Hung
2008-01-01
We describe a classification of pairs $M, N$ of lattices isometric to $EE_8:=\\sqrt 2 E_8$ such that the lattice $M + N$ is integral and rootless and such that the dihedral group associated to them has order at most 12. It turns out that most of these pairs may be embedded in the Leech lattice. Complete proofs will appear in another article. This theory of integral lattices has connections to vertex operator algebra theory and moonshine.
Lattice QCD with dynamical chirally improved quarks
International Nuclear Information System (INIS)
Full text: We simulate lattice QCD with two flavors of chirally improved dynamical (sea) quarks. The chirally improved lattice action allows to address some of the questions concerning chiral symmetry in lattice QCD.We discuss the status and prospects of our simulations as well as recent results. (author)
Trees, Animals, and Percolation on Hyperbolic Lattices
Madras, Neal; Wu, C.
2010-01-01
We study lattice trees, lattice animals, and percolation on non-Euclidean lattices that correspond to regular tessellations of two- and three-dimensional hyperbolic space. We prove that critical exponents of these models take on their mean field values. Our methods are mainly combinatorial and geometric.
Lattice QCD. A critical status report
International Nuclear Information System (INIS)
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Perfect and Quasi-Perfect Lattice Actions
Bietenholz, W
1998-01-01
Perfect lattice actions are exiting with several respects: they provide new insight into conceptual questions of the lattice regularization, and quasi-perfect actions could enable a great leap forward in the non-perturbative solution of QCD. We try to transmit a flavor of them, also beyond the lattice community.
Spatiotemporal complexity in coupled map lattices
International Nuclear Information System (INIS)
Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)
The weighted lattice polynomials as aggregation functions
Marichal, Jean-Luc
2006-01-01
We define the concept of weighted lattice polynomials as lattice polynomials constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a remarkable median based decomposition formula.
Possible lattice organs in Cretaceous Thylacocephala
Lange, Sven; Schram, Frederick R.
2002-01-01
Structures, reminiscent of the lattice organs in thecostracan crustaceans, are described from the carapace cuticle of Cretaceous thylacocephalans. The new lattice organ like structures occur in pairs along the dorsal midline. While these have a similar outline to true lattice organs, they seem to la
Review of lattice studies of resonances
Mohler, Daniel
2012-01-01
I review recent progress in extracting resonance parameters using lattice field theory, with an emphasis on determining hadron resonances from lattice quantum chromodynamics. Until recently, the \\rho-meson channel was the only one considered, while, during the last year, several resonant channels have been investigated for the first time. Recent lattice results for scattering phase shifts in resonant channels are presented.
Lattice gaugefixing and other optics in lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Yee, Ken
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Lattice gaugefixing and other optics in lattice gauge theory
International Nuclear Information System (INIS)
We present results from four projects. In the first, quark and gluon propagators and effective masses and ΔI = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N → ∞ limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to ΔI = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are ξ invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the Δ = -1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories
Nuclear Physics from Lattice Quantum Chromodynamics
Savage, Martin J
2015-01-01
Quantum Chromodynamics and Quantum Electrodynamics, both renormalizable quantum field theories with a small number of precisely constrained input parameters, dominate the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exascale during the next decade will provide the ability to determine a range of important strong interaction processes directly from QCD using the numerical technique of Lattice QCD. This will complement the nuclear physics experimental program, and in partnership with new thrusts in nuclear many-body theory, will enable unprecedented understanding and refinement of nuclear forces and, more generally, the visible matter in our universe. In th...
Lattice inputs to Flavor Physics
Della Morte, Michele
2015-01-01
We review recent lattice results for quark masses and low-energy hadronic parameters relevant for flavor physics. We do that by describing the FLAG initiative, with emphasis on its scope and rating criteria. The emerging picture is that while for light quantities a large number of computations using different approaches exist, and this increases the overall confidence on the final averages/estimates, in the heavy-light case the field is less advanced and, with the exception of decay constants, only a few computations are available. The precision reached for the light quantities is such that electromagnetic (EM) corrections, beyond the point-like approximation, are becoming relevant. We discuss recent computations of the spectrum based on direct simulations of QED+QCD. We also present theoretical developments for including EM effects in leptonic decays. We conclude describing recent results for the $K \\to \\pi \\pi$ transition amplitudes and prospects for tackling hadronic decays on the lattice.
Innovations in lattice QCD algorithms
International Nuclear Information System (INIS)
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today
Superconductivity in Anderson lattice model
International Nuclear Information System (INIS)
We study the superconducting instabilities generated by the inclusion in the Anderson lattice model of a density-density attractive potential between correlated electrons on nearest-neighbouring sites. Using a description of the normal phase based on a perturbative expansion around the atomic limit, we treat the attractive potential in the broken symmetry Hartree-Fock scheme and analyze which of the possible symmetries of the superconducting order parameter leads to the highest possible transition temperature in the case of a two-dimensional square lattice. For values of the on-site f-repulsion large compared to the hopping amplitude, a suppression of any possible superconducting phase occurs, regardless of the of the symmetry of the order parameter. (author)
Innovations in Lattice QCD Algorithms
International Nuclear Information System (INIS)
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today
Fractional random walk lattice dynamics
Michelitsch, Thomas; Riascos, Alejandro Perez; Nowakowski, Andrzeij; Nicolleau, Franck
2016-01-01
We analyze time-discrete and continuous `fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in $n=1,2,3,..$ dimensions.The fractional random walk dynamics is governed by a master equation involving {\\it fractional powers of Laplacian matrices $L^{\\frac{\\alpha}{2}}$}where $\\alpha=2$ recovers the normal walk.First we demonstrate thatthe interval $0\\textless{}\\alpha\\leq 2$ is admissible for the fractional random walk. We derive analytical expressions for fractional transition matrix and closely related the average return probabilities. We further obtain thefundamental matrix $Z^{(\\alpha)}$, and the mean relaxation time (Kemeny constant) for the fractional random walk.The representation for the fundamental matrix $Z^{(\\alpha)}$ relates fractional random walks with normal random walks.We show that the fractional transition matrix elements exihibit for large cubic $n$-dimensional lattices a power law decay of an $n$-dimensional infinite spaceRiesz fractional deriva...
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
Qcd Thermodynamics On A Lattice
Levkova, L A
2004-01-01
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero- temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvemen...
Lattice dynamics of strontium tungstate
Indian Academy of Sciences (India)
Prabhatasree Goel; R Mittal; S L Chaplot; A K Tyagi
2008-11-01
We report here measurements of the phonon density of states and the lattice dynamics calculations of strontium tungstate (SrWO4). At ambient conditions this compound crystallizes to a body-centred tetragonal unit cell (space group I41/a) called scheelite structure. We have developed transferable interatomic potentials to study the lattice dynamics of this class of compounds. The model parameters have been fitted with respect to the experimentally available Raman and infra-red frequencies and the equilibrium unit cell parameters. Inelastic neutron scattering measurements have been carried out in the triple-axis spectrometer at Dhruva reactor. The measured phonon density of states is in good agreement with the theoretical calculations, thus validating the inter-atomic potential developed.
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Prabhatasree Goel; N Choudhury; S L Chaplot
2004-08-01
Li2O finds several important technological applications, as it is used in solid-state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures around 1200 K. We have carried out lattice-dynamical calculations of Li2O using a shell model in the quasi-harmonic approximation. The calculated phonon frequencies are in excellent agreement with the reported inelastic neutron scattering data. Thermal expansion, specific heat, elastic constants and equation of state have also been calculated which are in good agreement with the available experimental data.
Innovations in Lattice QCD Algorithms
Energy Technology Data Exchange (ETDEWEB)
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Symplectic maps for accelerator lattices
International Nuclear Information System (INIS)
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
Hadron Physics from Lattice QCD
Bietenholz, Wolfgang
2016-01-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
Lattice engineering technology and applications
Wang, Shumin
2012-01-01
This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bonding and heterostructure nanowires etc. Basic knowledge on dislocations in semiconductors and innovative methods to eliminate threading dislocations are provided, and successful device applications are reviewed. It covers a variety of important semicon
Gauge invariance and lattice monopoles
International Nuclear Information System (INIS)
The number and the location of monopoles in Lattice configurations depend on the choice of the gauge, in contrast to the obvious requirement that monopoles, as physical objects, have a gauge-invariant status. It is proved, starting from non-abelian Bianchi identities, that monopoles are indeed gauge-invariant: the technique used to detect them has instead an efficiency which depends on the choice of the abelian projection, in a known and well understood way.
Harmonic Lattice Dynamics of Germanium
International Nuclear Information System (INIS)
The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field
International Nuclear Information System (INIS)
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Anharmonic parametric excitation in optical lattices
Jauregui, R; Roati, G; Modugno, G
2001-01-01
We study both experimentally and theoretically the losses induced by parametric excitation in far-off-resonance optical lattices. The atoms confined in a 1D sinusoidal lattice present an excitation spectrum and dynamics substantially different from those expected for a harmonic potential. We develop a model based on the actual atomic Hamiltonian in the lattice and we introduce semiempirically a broadening of the width of lattice energy bands which can physically arise from inhomogeneities and fluctuations of the lattice, and also from atomic collisions. The position and strength of the parametric resonances and the evolution of the number of trapped atoms are satisfactorily described by our model.
Counting lattice animals in high dimensions
Luther, Sebastian; Mertens, Stephan
2011-09-01
We present an implementation of Redelemeier's algorithm for the enumeration of lattice animals in high-dimensional lattices. The implementation is lean and fast enough to allow us to extend the existing tables of animal counts, perimeter polynomials and series expansion coefficients in d-dimensional hypercubic lattices for 3 lattice animals of size n lattice animals of size n <= 14 and arbitrary d. We also use the enumeration data to compute numerical estimates for growth rates and exponents in high dimensions that agree very well with Monte Carlo simulations and recent predictions from field theory.
Present status of lattice gauge theories
International Nuclear Information System (INIS)
The lattice formulation of the quark-gluon theory of strong interactions is outlined. No matter a version of the lattice gauge theory the ''string bit'' representation is used to solve the problem of the strong coupling expansion. A brief discussion is given of some major problems arising for: (1) large coupling and large lattice spacing, (2) the crossover from the gluon representation at small distances to the string representation at large ones, (3) constructing the strong coupling ground state at each lattice site independently, and (4) formulating the free quark theory on the lattice
A Lattice-Gas Model of Microemulsions
Boghosian, B M; Emerton, A N; Boghosian, Bruce M.; Coveney, Peter V.; Emerton, Andrew N.
1995-01-01
We develop a lattice gas model for the nonequilibrium dynamics of microemulsions. Our model is based on the immiscible lattice gas of Rothman and Keller, which we reformulate using a microscopic, particulate description so as to permit generalisation to more complicated interactions, and on the prescription of Chan and Liang for introducing such interparticle interactions into lattice gas dynamics. We present the results of simulations to demonstrate that our model exhibits the correct phenomenology, and we contrast it with both equilibrium lattice models of microemulsions, and to other lattice gas models.
Varieties of lattices with geometric descriptions
Santocanale, Luigi
2011-01-01
A lattice L is spatial if every element of L is a join of completely join-irreducible elements of L (points), and strongly spatial if it is spatial and the minimal coverings of completely join-irreducible elements are well-behaved. Herrmann, Pickering, and Roddy proved in 1994 that every modular lattice can be embedded, within its variety, into an algebraic and spatial lattice. We extend this result to n-distributive lattices, for fixed n. We deduce that the variety of all n-distributive lattices is generated by its finite members, thus it has a decidable word problem. We prove that every modular (resp., n-distributive) lattice embeds within its variety into some strongly spatial lattice. Every lattice which is either algebraic modular spatial or bi-algebraic is strongly spatial. We also construct a lattice that cannot be embedded, within its variety, into any algebraic and spatial lattice. This lattice has a least and a largest element, and it generates a locally finite variety. Furthermore, it is join-semid...
Lattice QCD study of the lowest mass negative parity excitation of the nucleon
Liu, Zhan-Wei; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2015-01-01
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying $J^P=1/2^-$ nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Deterministic aperiodic composite lattice-structured silicon thin films for photon management
Xavier, Jolly; Becker, Christiane
2016-01-01
Exotic manipulation of the flow of photons in nanoengineered semiconductor materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced and industrially viable broadband photonic technologies. Through a generic deterministic nanotechnological route, in addition to periodic, transversely quasicrystallographic or disordered random photonic lattices, here we show scalable nanostructured semiconductor thin films on large area nanoimprinted substrates up to 4cm^2 with advanced functional features of aperiodic composite nanophotonic lattices having tailorable supercell tiles. The richer Fourier spectra of the presented artificially nanostructured materials with well-defined lattice point morphologies are designed functionally akin to two-dimensional incommensurate intergrowth aperiodic lattices-comprising periodic photonic crystals and in-plane quasicrystals as subgroups. The composite photonic lattice-structured crystalline silicon thin films with tapered nanoholes or nanocone...
Minimally doubled chiral fermions with C, P and T symmetry on the staggered lattice
Haegeman, Jutho
2008-01-01
Recently, the interest in local lattice actions for chiral fermions has revived, with the proposition of new local actions in which only the minimal number of doublers appear. The trigger role of graphene having a minimally doubled, chirally invariant, Dirac-like excitation spectrum can not be neglected. The challenge is to construct an action which preserves enough symmetries to be useful in lattice gauge calculations. We present a new approach to obtain local lattice actions for fermions using a reinterpretation of the staggered lattice approach of Kogut and Susskind. This interpretation is based on the similarity with the staggered lattice approach in FDTD simulations of acoustics and electromagnetism. It allows us to construct a local action for chiral fermions which has all discrete symmetries and the minimal number of fermion flavors, but which is non-Hermitian in real space. However, we argue that this will not pose a threat to the usability of the theory.
The Algebraic Properties of Concept Lattice
Institute of Scientific and Technical Information of China (English)
KaisheQu; JiyeLiang; JunhongWang; ZhongzhiShi
2004-01-01
Concept lattice is a powerful tool for data analysis. It has been applied widely to machine learning, knowledge discovery and software engineering and so on. Some aspects of concept lattice have been studied widely such as building lattice and rules extraction, as for its algebraic properties, there has not been discussed systematically. The paper suggests a binary operation between the elements for the set of all concepts in formal context. This turns the concept lattice in general significance into those with operators. We also proved that the concept lattice is a lattice in algebraic significance and studied its algebraic properties.These results provided theoretical foundation and a new method for further study of concept lattice.
Diagonal lattices and rootless $EE_8$ pairs
Griess, Robert L; Lam, Ching Hung
2011-01-01
Let E be an integral lattice. We first discuss some general properties of an SDC lattice, i.e., a sum of two diagonal copies of E in E \\bot E. In particular, we show that its group of isometries contains a wreath product. We then specialize this study to the case of E = E_8 and provide a new and fairly natural model for those rootless lattices which are sums of a pair of EE_8-lattices. This family of lattices was classified in [7]. We prove that this set of isometry types is in bijection with the set of conjugacy classes of rootless elements in the isometry group O(E_8), i.e., those h \\in O(E_8) such that the sublattice (h - 1)E_8 contains no roots. Finally, our model gives new embeddings of several of these lattices in the Leech lattice.
Properties of complements in the lattice of convergence structures
C. V. Riecke
1980-01-01
Relative complements and differences are investigated for several convergence structure lattices, especially the lattices of Kent convergence structures and the lattice of pretopologies. Convergence space properties preserved by relative complementation are studied. Mappings of some convergence structure lattices into related lattices of lattice homomorphisms are considered.
Confinement of the flux line lattice in nanostructured superconducting films and multilayers
International Nuclear Information System (INIS)
The authors have studied the flux-line confinement by a triangular and square array of submicron holes (antidots) in superconducting films (Pb, WGe) and multilayers (Pb/Ge). For large antidots, sharp cusp-like magnetization anomalies appear at the matching fields Hm, caused by the formation of multi-quanta vortices at each subsequent Hm. Critical current density jc and pinning force fp are strongly enhanced due to the pinning of single- or multiple-quanta vortices at antidots and single vortices at the interstices are observed at temperatures close to the critical temperature. The measurements of jc and fp for several antidot radii demonstrate that pinning centers with a size considerably larger than the coherence length are very efficient
On the characterization and software implementation of general protein lattice models.
Directory of Open Access Journals (Sweden)
Alessio Bechini
Full Text Available models of proteins have been widely used as a practical means to computationally investigate general properties of the system. In lattice models any sterically feasible conformation is represented as a self-avoiding walk on a lattice, and residue types are limited in number. So far, only two- or three-dimensional lattices have been used. The inspection of the neighborhood of alpha carbons in the core of real proteins reveals that also lattices with higher coordination numbers, possibly in higher dimensional spaces, can be adopted. In this paper, a new general parametric lattice model for simplified protein conformations is proposed and investigated. It is shown how the supporting software can be consistently designed to let algorithms that operate on protein structures be implemented in a lattice-agnostic way. The necessary theoretical foundations are developed and organically presented, pinpointing the role of the concept of main directions in lattice-agnostic model handling. Subsequently, the model features across dimensions and lattice types are explored in tests performed on benchmark protein sequences, using a Python implementation. Simulations give insights on the use of square and triangular lattices in a range of dimensions. The trend of potential minimum for sequences of different lengths, varying the lattice dimension, is uncovered. Moreover, an extensive quantitative characterization of the usage of the so-called "move types" is reported for the first time. The proposed general framework for the development of lattice models is simple yet complete, and an object-oriented architecture can be proficiently employed for the supporting software, by designing ad-hoc classes. The proposed framework represents a new general viewpoint that potentially subsumes a number of solutions previously studied. The adoption of the described model pushes to look at protein structure issues from a more general and essential perspective, making
Attribute Extended Algorithm of Lattice-Valued Concept Lattice Based on Congener Formal Context
Directory of Open Access Journals (Sweden)
Li Yang
2014-01-01
Full Text Available This paper is the continuation of our research work about lattice-valued concept lattice based on lattice implication algebra. For a better application of lattice-valued concept lattice into data distributed storage and parallel processing, it is necessary to research attribute extended algorithm based on congener formal context. The definitions of attribute extended formal context and congener formal context are proposed. On condition that the extent set stays invariable when the new attribute is increased, the necessary and sufficient conditions of forming attribute values are researched. Based on these conditions, the algorithms of generating lattice-valued congener formal context and establishing concept lattice are given, by which we can provide a useful basis for union algorithm and constructing algorithm of lattice-valued concept lattices in distributed and parallel system.
Unbiased sampling of lattice Hamilton path ensembles
Mansfield, Marc L.
2006-10-01
Hamilton paths, or Hamiltonian paths, are walks on a lattice which visit each site exactly once. They have been proposed as models of globular proteins and of compact polymers. A previously published algorithm [Mansfield, Macromolecules 27, 5924 (1994)] for sampling Hamilton paths on simple square and simple cubic lattices is tested for bias and for efficiency. Because the algorithm is a Metropolis Monte Carlo technique obviously satisfying detailed balance, we need only demonstrate ergodicity to ensure unbiased sampling. Two different tests for ergodicity (exact enumeration on small lattices, nonexhaustive enumeration on larger lattices) demonstrate ergodicity unequivocally for small lattices and provide strong support for ergodicity on larger lattices. Two other sampling algorithms [Ramakrishnan et al., J. Chem. Phys. 103, 7592 (1995); Lua et al., Polymer 45, 717 (2004)] are both known to produce biases on both 2×2×2 and 3×3×3 lattices, but it is shown here that the current algorithm gives unbiased sampling on these same lattices. Successive Hamilton paths are strongly correlated, so that many iterations are required between statistically independent samples. Rules for estimating the number of iterations needed to dissipate these correlations are given. However, the iteration time is so fast that the efficiency is still very good except on extremely large lattices. For example, even on lattices of total size 10×10×10 we are able to generate tens of thousands of uncorrelated Hamilton paths per hour of CPU time.
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
Energy Technology Data Exchange (ETDEWEB)
Liao, Zongmeng [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Qiu, Wujie [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ke, Xuezhi, E-mail: xzke@phy.ecnu.edu.cn [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Zhang, Wenqing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Zhiyuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2014-11-15
The elastic and thermodynamic properties of ThC{sub 2} with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C{sub 2} dimer in ThC{sub 2} is similar to that of a free standing C{sub 2} dimer. This indicates that the C{sub 2} dimer in ThC{sub 2} is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC{sub 2} was calculated by means of the Debye–Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC{sub 2} contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
Unconventional superconductivity in honeycomb lattice
P. Sahebsara; R Mohammadi
2013-01-01
The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb latt...
CANDU lattice uncertainties during burnup
International Nuclear Information System (INIS)
Uncertainties associated with fundamental nuclear data accompany evaluated nuclear data libraries in the form of covariance matrices. As nuclear data are important parameters in reactor physics calculations, any associated uncertainty causes a loss of confidence in the calculation results. The quantification of output uncertainties is necessary to adequately establish safety margins of nuclear facilities. In this work, microscopic cross-section has been propagated through lattice burnup calculations applied to a generic CANDU® model. It was found that substantial uncertainty emerges during burnup even when fission yield fraction and decay rate uncertainties are neglected. (author)
Blocking transformations for lattice fermions
International Nuclear Information System (INIS)
We introduce a class of chiral-symmetry breaking real space renormalization transformations, intended for renormalization group studies of lattice theories involving fermions. In massless free fermion theory (for a sensible choice of a certain parameter of the transformation) the scheme yields an acceptably local, Wilson-fermion-like fixed point action. We attempt to calculate a certain critical exponent in the two-flavour Schwinger model via a cumulant expansion based on our scheme. Possibilities for Monte Carlo renormalization group calculations are briefly mentioned. (orig.)
Solitary waves on tensegrity lattices
Fraternali, F.; Senatore, L.; Daraio, C.
2012-06-01
We study the dynamics of lattices formed by masses connected through tensegrity prisms. By employing analytic and numerical arguments, we show that such structures support two limit dynamic regimes controlled by the prisms' properties: (i) in the low-energy (sonic) regime the system supports the formation and propagation of solitary waves which exhibit sech2 shape and (ii) in the high-energy (ultrasonic) regime the system supports atomic-scale localization. Such peculiar features found in periodic arrays of tensegrity structures suggest their use for the creation of new composite materials (here called "tensegrity materials") of potential interest for applications in impact absorption, energy localization and in new acoustic devices.
Beautiful Baryons from Lattice QCD
Alexandrou, C.; Borrelli, A; Güsken, S.; Jegerlehner, F.; K. Schilling; Siegert, G.; Sommer, R
1994-01-01
We perform a lattice study of heavy baryons, containing one ($\\Lambda_b$) or two $b$-quarks ($\\Xi_b$). Using the quenched approximation we obtain for the mass of $\\Lambda_b$ $$ M_{\\Lambda_b}= 5.728 \\pm 0.144 \\pm 0.018 {\\rm GeV}.$$ The mass splitting between the $\\Lambda_b$ and the B-meson is found to increase by about 20\\% if the light quark mass is varied from the chiral limit to the strange quark mass.
The lattice dynamics of imidazole
International Nuclear Information System (INIS)
The lattice dynamics of imidazole have been investigated. To this end dispersion curves have been determined at 10 K by inelastic coherent neutron scattering. RAMAN measurements have been done to investigate identical gamma - point modes. The combination of extinction rules for RAMAN - and neutron scattering leads to the symmetry assignment of identical gamma - point modes. The experiment yields a force constant of the streching vibration of the hydrogen bond of 0.33 mdyn/A. A force model has been developed to describe the intermolecular atom - atom Interactions in imidazole. (orig./BHO)
Gluonic interactions from lattice QCD
International Nuclear Information System (INIS)
Gluonic interactions are studied within lattice QCD. Hybrid mesons in which the gluonic field is excited into a higher energy state are evidenced from studying the static source potential and discovering that there is a spectrum of such potentials V/sub i/(R) unlike the unique potential obtained in electrodynamics. Results of the string tension K, namely (V(R+a)-V(R))/a, have been reanalyzed and using variational methods excellent consistency was achieved and is presented as a plot of V(R) versus R. Potentials corresponding to excited states of the gluonic field are obtained as main new results
Lattice Stern-Gerlach experiment
Luschevskaya, E V; Teryaev, O V
2016-01-01
We investigate the dependence of ground state energies of charged vector $\\rho$ and $K^{*}$ mesons on the value of magnetic field in the $SU(3)$ lattice gauge theory. It has been shown that the energy of a vector particle strongly depends on its spin projection on the field axis, and the magnetic dypole polarizability and hyperpolarizabilities give a large contribution to the meson energy at large fields. We calculate the g-factor of $\\rho^{\\pm}$ and $K^{*\\pm}$ mesons. Tensor of the dypole magnetic polarizability of the charged $\\rho$ meson at rest has been found.
Counting arithmetic lattices and surfaces
Belolipetsky, Mikhail; Gelander, Tsachik; Lubotzky, Alexander; Shalev, Aner
2010-01-01
We give estimates on the number $AL_H(x)$ of arithmetic lattices $\\Gamma$ of covolume at most $x$ in a simple Lie group $H$. In particular, we obtain a first concrete estimate on the number of arithmetic 3-manifolds of volume at most $x$. Our main result is for the classical case $H=PSL(2,R)$ where we compute the limit of $\\log AL_H(x) / x\\log x$ when $x\\to\\infty$. The proofs use several different techniques: geometric (bounding the number of generators of $\\Gamma$ as a function of its covolu...
Performance comparisons of low emittance lattices
International Nuclear Information System (INIS)
The results of a performance analysis of four low emittance electron storage ring lattices provided to the authors by various members of the Lattice Working Group is presented. Altogether, four lattices were investigated. The beam energies of the four lattices are, respectively, 1.1, 2, 3, 4 GeV). A brief summary of the lattice parameters relevant to this study is given. The performance issues studied include an estimation of the longitudinal emittance expected for each lattice based on the effects of the longitudinal microwave instability, an estimation of the transverse emittance growth of the (required) dense bunches under the influence of intrabeam scattering (IBS), and an estimate of the Touschek lifetime. The analysis described here has been carried out with the LBL accelerator physics code ZAP
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
High frequency homogenisation for elastic lattices
Colquitt, D J; Makwana, M
2014-01-01
A complete methodology, based on a two-scale asymptotic approach, that enables the homogenisation of elastic lattices at non-zero frequencies is developed. Elastic lattices are distinguished from scalar lattices in that two or more types of coupled waves exist, even at low frequencies. Such a theory enables the determination of effective material properties at both low and high frequencies. The theoretical framework is developed for the propagation of waves through lattices of arbitrary geometry and dimension. The asymptotic approach provides a method through which the dispersive properties of lattices at frequencies near standing waves can be described; the theory accurately describes both the dispersion curves and the response of the lattice near the edges of the Brillouin zone. The leading order solution is expressed as a product between the standing wave solution and long-scale envelope functions that are eigensolutions of the homogenised partial differential equation. The general theory is supplemented b...
Correlation between oxygen tension and spin-lattice relaxation rate in tumors
International Nuclear Information System (INIS)
The role of oxygen in influencing the spin-lattice and spin-spin relaxation mechanism in liquids has been known for decades. However, no concerted efforts has been made to find a correlation between relaxation rates and oxygen dissolved in cell water. A procedure has been developed that allows both in vitro and in vivo measurement of oxygen tension in tumors and helps to calculate spin-lattice relaxation rate. (orig.)
Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel
Morris, V. N.; Farrell, R. A.; Sexton, A. M.; Morris, M. A.
2006-02-01
High surface area ceria nanoparticles have been prepared using a citrate solgel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures, and X-ray methods used to determine their lattice parameters. The particle sizes have been assessed using transmission electron microscopy (TEM) and the lattice parameter found to fall with decreasing particle size. The results are discussed in the light of the role played by surface tension effects.
Unimodular Lattices for the Gaussian Wiretap Channel
Belfiore, Jean-Claude
2010-01-01
In a recent paper, the authors introduced a lattice invariant called "Secrecy Gain" which measures the confusion experienced by a passive eavesdropper on the Gaussian Wiretap Channel. We study, here, the behavior of this invariant for unimodular lattices by using tools from Modular Forms and show that, for some families of unimodular lattices, indexed by the dimension, the secrecy gain exponentially goes to infinity with the dimension.
Computing Shortest Lattice Vectors on Special Hardware
Schneider, Michael
2011-01-01
The shortest vector problem (SVP) in lattices is related to problems in combinatorial optimization, algorithmic number theory, communication theory, and cryptography. In 1996, Ajtai published his breakthrough idea how to create lattice-based one-way functions based on the worst-case hardness of an approximate version of SVP. Worst-case hardness is one of the outstanding properties of all modern lattice-based cryptographic schemes. Furthermore, there are no sub-exponential time algorithms know...
Simulations of lattice animals and trees
Hsu, Hsiao-Ping; Nadler, Walter; Grassberger, Peter
2004-01-01
The scaling behaviour of randomly branched polymers in a good solvent is studied in two to nine dimensions, using as microscopic models lattice animals and lattice trees on simple hypercubic lattices. As a stochastic sampling method we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. Essentially we start simulating percolation clusters (either site or bond), re-weigh them according to the...
A Viscosity Adaptive Lattice Boltzmann Method
Conrad, Daniel
2015-01-01
The present thesis describes the development and validation of a viscosity adaption method for the numerical simulation of non-Newtonian fluids on the basis of the Lattice Boltzmann Method (LBM), as well as the development and verification of the related software bundle SAM-Lattice. By now, Lattice Boltzmann Methods are established as an alternative approach to classical computational fluid dynamics methods. The LBM has been shown to be an accurate and efficient tool for the numerical...
Improved Lattice Actions with Chemical Potential
Bietenholz, W
1998-01-01
We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.
Topological Summation in Lattice Gauge Theory
Bietenholz, Wolfgang; Hip, Ivan
2012-01-01
In gauge theories the field configurations often occur in distinct topological sectors. In a lattice regularised system with chiral fermions, these sectors can be defined by referring to the Atiyah-Singer Index Theorem. However, if such a model is simulated with local updates of the lattice gauge configuration, the Monte Carlo history tends to get stuck in one sector for many steps, in particular on fine lattices. Then expectation values can be measured only within specific sectors. Here we p...
Soliton dynamics in deformable nonlinear lattices
Sukhorukov, Andrey A.
2005-01-01
We describe wave propagation and soliton localization in photonic lattices which are induced in a nonlinear medium by an optical interference pattern, taking into account the inherent lattice deformations at the soliton location. We obtain exact analytical solutions and identify the key factors defining soliton mobility, including the effects of gap merging and lattice imbalance, underlying the differences with discrete and gap solitons in conventional photonic structures.
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
The set of d-structures on a topological space form a lattice and in fact a locale. There is a Galois connection between the lattice of subsets of the space and the lattice of d-structures. Variation of the d-structures induces change in the spaces of directed paths. Hence variation of d-structur......-structures and variation of the “forbidden area” may be considered together via for instance (co)homology and homotopy sequences....
Collapsing lattice animals and lattice trees in two dimensions
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the
Trace maps of general Padovan lattices
Tong, Peiqing
2000-07-01
The two kinds of seven-dimensional trace maps of a new class of three-component quasiperiodic lattices, which are constructed based on the general Padovan sequences Sl+1 ={ Sl-1 m, Sl-2 n}, are derived for arbitrary integer value of m and n. It is shown that these lattices can be grouped into two distinct class. The lattices in class I correspond to n=1 and arbitrary m. They are shown to have volume-preserving second kind maps. The results are compared with those of other three-component quasiperiodic lattices.
Enumerations of lattice animals and trees
Jensen, Iwan
2000-01-01
We have developed an improved algorithm that allows us to enumerate the number of site animals on the square lattice up to size 46. We also calculate the number of lattice trees up to size 44 and the radius of gyration of both lattice animals and trees up to size 42. Analysis of the resulting series yields an improved estimate, $\\lambda = 4.062570(8)$, for the growth constant of lattice animals, and, $\\lambda_0 = 3.795254(8)$, for the growth constant of trees, and confirms to a very high degr...
Subwavelength lattice optics by evolutionary design.
Huntington, Mark D; Lauhon, Lincoln J; Odom, Teri W
2014-12-10
This paper describes a new class of structured optical materials--lattice opto-materials--that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens. PMID:25380062
Light propagation in optically induced Fibonacci lattices
Boguslawski, Martin; Timotijevic, Dejan V; Denz, Cornelia; Savic, Dragana M Jovic
2015-01-01
We report on the optical induction of Fibonacci lattices in photorefractive strontium barium niobate by use of Bessel beam waveguide-wise writing techniques. Fibonacci elements A and B are used as lattice periods. We further use the induced structures to execute probing experiments with variously focused Gaussian beams in order to observe light confinement owing to the quasiperiodic character of Fibonacci word sequences. Essentially, we show that Gaussian beam expansion is just slowed down in Fibonacci lattices, as compared with appropriate periodic lattices.
Midwest cousins of Barnes-Wall lattices
Griess Jr., Robert L.
2009-01-01
Given a rational lattice and suitable set of linear transformations, we construct a cousin lattice. Sufficient conditions are given for integrality, evenness and unimodularity. When the input is a Barnes-Wall lattice, we get multi-parameter series of cousins. There is a subseries consisting of unimodular lattices which have ranks $2^{d-1}\\pm 2^{d-k-1}$, for odd integers $d\\ge 3$ and integers $k=1,2, ..., \\frac {d-1}2$. Their minimum norms are moderately high: $2^{\\lfloor \\frac d2 \\rfloor -1}$.
Lattice QCD calculations on commodity clusters at DESY
International Nuclear Information System (INIS)
Lattice Gauge Theory is an integral part of particle physics that requires high performance computing in the multi-Tflops regime. These requirements are motivated by the rich research program and the physics milestones to be reached by the lattice community. Over the last years the enormous gains in processor performance, memory bandwidth, and external I/O bandwidth for parallel applications have made commodity clusters exploiting PCs or workstations also suitable for large Lattice Gauge Theory applications. For more than one year two clusters have been operated at the two DESY sites in Hamburg and Zeuthen, consisting of 32 resp. 16 dual-CPU PCs, equipped with Intel Pentium 4 Xeon processors. Interconnection of the nodes is done by way of Myrinet. Linux was chosen as the operating system. In the course of the projects benchmark programs for architectural studies were developed. The performance of the Wilson-Dirac Operator (also in an even-odd preconditioned version) as the inner loop of the Lattice QCD (LQCD) algorithms plays the most important role in classifying the hardware basis to be used. Using the SIMD streaming extensions (SSE/SSE2) on Intel's Pentium 4 Xeon CPUs give promising results for both the single CPU and the parallel version. The parallel performance, in addition to the CPU power and the memory throughput, is nevertheless strongly influenced by the behavior of hardware components like the PC chip-set and the communication interfaces. The paper starts by giving a short explanation about the physics background and the motivation for using PC clusters for Lattice QCD. Subsequently, the concept, implementation, and operating experiences of the two clusters are discussed. Finally, the paper presents benchmark results and discusses comparisons to systems with different hardware components including Myrinet-, GigaBit-Ethernet-, and Infiniband-based interconnects. (orig.)
Fuzzy Ideals and Fuzzy Distributive Lattices%Fuzzy Ideals and Fuzzy Distributive Lattices*
Institute of Scientific and Technical Information of China (English)
S.H.Dhanani; Y. S. Pawar
2011-01-01
Our main objective is to study properties of a fuzzy ideals (fuzzy dual ideals). A study of special types of fuzzy ideals (fuzzy dual ideals) is also furnished. Some properties of a fuzzy ideals (fuzzy dual ideals) are furnished. Properties of a fuzzy lattice homomorphism are discussed. Fuzzy ideal lattice of a fuzzy lattice is defined and discussed. Some results in fuzzy distributive lattice are proved.
Expansion in high dimension for the growth constants of lattice trees and lattice animals
Miranda, Yuri Mejia; Slade, Gordon
2012-01-01
We compute the first three terms of the 1/d expansions for the growth constants and one-point functions of nearest-neighbour lattice trees and lattice (bond) animals on the integer lattice Zd, with rigorous error estimates. The proof uses the lace expansion, together with a new expansion for the one-point functions based on inclusion-exclusion.
A Classification of Unimodular Lattice Wiretap Codes in Small Dimensions
Lin, Fuchun
2012-01-01
Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characterize the confusion that a chosen lattice can cause at the eavesdropper: the higher the secrecy gain of the lattice, the more confusion. In this paper, a formula for the secrecy gain of unimodular lattices is derived. Secrecy gains of extremal odd unimodular lattices as well as unimodular lattices in dimension n, 16 \\leq n \\leq 23 are computed, covering the 4 extremal odd unimodular lattices and all the 111 nonextremal unimodular lattices (both odd and even) providing thus a classification of the best wiretap lattice codes coming from unimodular lattices in dimension n, 8 < n \\leq 23. Finally, to permit lattice encoding via Construction A, the corresponding error correction codes are determined.
Lattice Instability in β1-AgZn
Morii, Yukio; Nagasawa, Akira; Matsuo, Yoshie; Funahashi, Satoru; Child, Harry R.; Nicklow, Robert M.
1991-12-01
Phase transition of β1-AgZn alloy was studied by means of neutron inelastic and diffuse scattering techniques. Acoustic phonon dispersion relation along the main crystal axes of the alloy was obtained. No [\\zeta\\zeta\\zeta]LA phonon anomalies related to the \\zeta-phase was observed, although previous sound experiment followed by elastic constant analysis predicts that possibility. The observed anomalies in phonon energy of both [\\zeta\\zeta 0]TA1 and [\\zeta\\zeta-2\\zeta]TA modes associated with the diffuse scattering peaks indicate that a strong lattice instability is involved in the phonon modes. It is pointed out that the lattice instability plays important roles in the structure transition from β1-phase to \\zeta-phase or to the martensitic phase in the AgZn alloy.
YN and YY interactions from lattice QCD simulations
International Nuclear Information System (INIS)
One of the main motivations for investing human and economic effort in Lattice QCD calculations of nuclear physics quantities is to explore sectors that cannot be accessed experimentally, or which can be measured with only limited precision. Two lines of research where such kind of calculations may have a clear impact are the study of the evolution of supernova and of the structure and decay of conventional and strange nuclei. Key ingredients for both investigations are the low energy interactions among baryons. Unfortunately, due to the short lifetime of hyperons, the interactions among baryons in the strange sector are only approximately known. The unsatisfactory amount of data coming from scattering experiments produces large uncertainties in the scattering amplitudes. Lattice QCD simulations of baryon-baryon interactions can play a crucial role, and points out as a reliable way to obtain complementary information to what can be obtained from experiments involving baryons in the low energy region.
Gluonic Transversity from Lattice QCD
Detmold, W
2016-01-01
We present an exploratory study of the gluonic structure of the $\\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.
Entropy of unimodular Lattice Triangulations
Knauf, Johannes F; Mecke, Klaus
2014-01-01
Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where its entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achive excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is $C=2.196(3)$ consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Lattice mechanics of origami tessellations.
Evans, Arthur A; Silverberg, Jesse L; Santangelo, Christian D
2015-07-01
Origami-based design holds promise for developing materials whose mechanical properties are tuned by crease patterns introduced to thin sheets. Although there have been heuristic developments in constructing patterns with desirable qualities, the bridge between origami and physics has yet to be fully developed. To truly consider origami structures as a class of materials, methods akin to solid mechanics need to be developed to understand their long-wavelength behavior. We introduce here a lattice theory for examining the mechanics of origami tessellations in terms of the topology of their crease pattern and the relationship between the folds at each vertex. This formulation provides a general method for associating mechanical properties with periodic folded structures and allows for a concrete connection between more conventional materials and the mechanical metamaterials constructed using origami-based design. PMID:26274299
Defect solitons in photonic lattices.
Yang, Jianke; Chen, Zhigang
2006-02-01
Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focusing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesimal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain parameter regimes. PMID:16605473
Mesons on a transverse lattice
Dalley, S
2001-01-01
The meson eigenstates of the light-cone Hamiltonian in a coarse transverse lattice gauge theory are investigated. Building upon previous work in pure gauge theory, the Hamiltonian and its Fock space are expanded in powers of dynamical fields. In the leading approximation, the couplings appearing in the Hamiltonian are renormalised by demanding restoration of space-time symmetries broken by the cut-off. Additional requirements from chiral symmetry are discussed and difficulties in imposing them from first principles in the leading approximation are noted. A phenomenological calculation is then performed, in which chiral symmetry in spontaneously broken form is modelled by imposing the physical pion-rho mass splitting as a constraint. The light-cone wavefunctions of the resulting Hamiltonian are used to compute decay constants, form factors and quark momentum and spin distributions for the pion and rho mesons. Extensions beyond leading order, and the implications for first principles calculations, are briefly d...
Lattice quantum gravity - an update
Ambjorn, J; Loll, R
2010-01-01
We advocate lattice methods as the tool of choice to constructively define a background-independent theory of Lorentzian quantum gravity and explore its physical properties in the Planckian regime. The formulation that arguably has most furthered our understanding of quantum gravity (and of various pitfalls present in the nonperturbative sector) uses dynamical triangulations to regularize the nonperturbative path integral over geometries. Its Lorentzian version in terms of Causal Dynamical Triangulations (CDT) - in addition to having a definite quantum signature on short scales - has been shown to reproduce important features of the classical theory on large scales. This article recaps the most important developments in CDT of the last few years for the physically relevant case of four spacetime dimensions, and describes its status quo at present.
Fermion determinants in lattice QCD
Johnson, C A
2001-01-01
The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniqu...
Monte Carlo lattice program KIM
International Nuclear Information System (INIS)
The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed
DEFF Research Database (Denmark)
Stassis, C.; Zaretsky, J.; Misemer, D. K.;;
1983-01-01
A large single crystal of FCC Ca was grown and was used to study the lattice dynamics of this divalent metal by coherent inelastic neutron scattering. The phonon dispersion curves were measured, at room temperature, along the [ξ00], [ξξ0], [ξξξ], and [0ξ1] symmetry directions. The dispersion curves...... to the propagation of elastic waves. The frequencies of the T1[ξξ0] branch for ξ between approximately 0.5 and 0.8 are slightly above the velocity-of-sound line determined from the low-frequency measurements. Since a similar effect has been observed in FCC Yb, it is natural to assume that the anomalous dispersion...
Lattice image studies of ordered alloys
International Nuclear Information System (INIS)
Lattice imaging in electron microscopy was successfully applied to the study of ordering in alloys. The approach included computer simulation (Mg3Cd), study of atomic arrangements near ordered lattice defects (Ni4Mo), fringe changes during phase transformation, and identification of fringe periodicities in alloys quenched from above the critical ordering temperature. (U.S.)
Compact lattice QED with Wilson fermions
International Nuclear Information System (INIS)
We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)
Two-color surface lattice solitons
Xu, Zhiyong; Kivshar, Yuri S.
2008-01-01
We study the properties of surface solitons generated at the edge of a semi-infinite photonic lattice in nonlinear quadratic media, namely two-color surface lattice solitons. We analyze the impact of phase mismatch on existence and stability of surface modes, and find novel classes of two-color twisted surface solitons which are stable in a large domain of their existence.
Quantum theory and the lattice join
International Nuclear Information System (INIS)
An informal explanation is presented of Birkhoff's and von Neumann's proposal according to which it is necessary, due to quantum theory, to replace the well-known lattice of properties, which is a heritage from George Boole, by a new quantum lattice of properties mirroring the structure of the Hilbert space. (Z.S.). 4 figs., 12 refs
Lattice dynamics of ferromagnetic superconductor UGe2
Indian Academy of Sciences (India)
Satyam Shinde; Prafulla K Jha
2008-11-01
This paper reports the lattice dynamical study of the UGe2 using a lattice dynamical model theory based on pairwise interactions under the framework of the shell model. The calculated phonon dispersion curves and phonon density of states are in good agreement with the measured data.
Secrecy Gain: a Wiretap Lattice Code Design
Belfiore, Jean-Claude
2010-01-01
We propose the notion of secrecy gain as a code design criterion for wiretap lattice codes to be used over an additive white Gaussian noise channel. Our analysis relies on the error probabilites of both the legitimate user and the eavesdropper. We focus on geometrical properties of lattices, described by their theta series, to characterize good wiretap codes.
Strongly correlated electrons on frustrated lattices
Directory of Open Access Journals (Sweden)
P. Fulde
2008-06-01
Full Text Available We give an overview of recent work on charge degrees of freedom of strongly correlated electrons on geometrically frustrated lattices. Special attention is paid to the checkerboard lattice, i.e., the two-dimensional version of a pyrochlore lattice and to the kagomé lattice. For the checkerboard lattice it is shown that at half filling when spin degrees of freedom are neglected and at quarter filling when they are included excitations with fractional charges ±e/2 may exist. The same holds true for the three-dimensional pyrochlore lattice. In the former case the fractional charges are confined. The origin of the weak, constant confining force is discussed and some similarities to quarks and to string theory are pointed out. For the checkerboard lattice a formulation in terms of a compact U(1 gauge theory is described. Furthermore a new kinetic mechanism for ferromagnetism at special fillings of a kagomé lattice is discussed.
Resummation of Cactus Diagrams in Lattice QCD
Panagopoulos, H
1998-01-01
We show how to perform a resummation, to all orders in perturbation theory, of a certain class of gauge invariant diagrams in Lattice QCD. These diagrams are often largely responsible for lattice artifacts. Our resummation leads to an improved perturbative expansion. Applied to a number of cases of interest, this expansion yields results remarkably close to corresponding nonperturbative estimates.
Minimal Varieties of Representable Commutative Residuated Lattices
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav
2012-01-01
Roč. 100, č. 6 (2012), s. 1063-1078. ISSN 0039-3215 R&D Projects: GA ČR GAP202/10/1826 Institutional research plan: CEZ:AV0Z10300504 Keywords : commutative residuated lattice * subvariety lattice * minimal variety * substructural logic * maximally consistent logic Subject RIV: BA - General Mathematics Impact factor: 0.342, year: 2012
Soliton control in fading optical lattices
Kartashov, Yaroslav V.; Vysloukh, Victor A.; Torner, Lluis
2006-01-01
We predict new phenomena, such as soliton steering and soliton fission, in optical lattices that fade away exponentially along the propagation direction. Such lattices, featuring tunable decay rates, arise in photorefractive crystals in the wavelength range 360-400 nm. We show that the predicted phenomena offer different opportunities for soliton control.
Beautiful mass predictions from scalar lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Samuel, S.; Moriarty, K.J.M.
1986-07-31
Scalar lattice QCD methods are used to accurately predict the masses of hadrons with beauty, that is, states which contain a b quark. These states have not yet been seen in the laboratory. The accuracy of the predictions (approx.=25 MeV) make the calculation a good test of lattice methods as well as providing useful guidance for experimentalists.
The contact polytope of the Leech lattice
Dutour Sikiric, M.; Schuermann, A.; Vallentin, Frank
2010-01-01
The contact polytope of a lattice is the convex hull of its shortest vectors. In this paper we classify the facets of the contact polytope of the Leech lattice up to symmetry. There are 1, 197, 362, 269, 604, 214, 277, 200 many facets in 232 orbits.
Ultracold quantum gases in triangular optical lattices
International Nuclear Information System (INIS)
Over recent years, exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand experimental environments with non-cubic lattice geometries. In this paper, we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step, the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this, we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that, below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly, this opens up new perspectives for a lattice-driven tuning of a spin dynamics resonance occurring through the interplay of the quadratic Zeeman effect and spin-dependent interaction. Finally, we discuss further lattice configurations that can be realized with our setup.
Ultracold quantum gases in triangular optical lattices
Energy Technology Data Exchange (ETDEWEB)
Becker, C; Soltan-Panahi, P; Doerscher, S; Sengstock, K [Institut fuer Laserphysik, Universitaet Hamburg, Hamburg D-22761 (Germany); Kronjaeger, J; Bongs, K, E-mail: cbecker@physnet.uni-hamburg.d [MUARC, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)
2010-06-15
Over recent years, exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand experimental environments with non-cubic lattice geometries. In this paper, we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step, the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this, we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that, below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly, this opens up new perspectives for a lattice-driven tuning of a spin dynamics resonance occurring through the interplay of the quadratic Zeeman effect and spin-dependent interaction. Finally, we discuss further lattice configurations that can be realized with our setup.
Parrondo games as lattice gas automata
Meyer, David A.; Blumer, Heather
2001-01-01
Parrondo games are coin flipping games with the surprising property that alternating plays of two losing games can produce a winning game. We show that this phenomenon can be modelled by probabilistic lattice gas automata. Furthermore, motivated by the recent introduction of quantum coin flipping games, we show that quantum lattice gas automata provide an interesting definition for quantum Parrondo games.
Lattice Platonic Solids and their Ehrhart polynomial
Directory of Open Access Journals (Sweden)
E. J. Ionascu
2013-01-01
Full Text Available First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedra and those for regular lattice octahedra. These relations allow one to reduce the calculation of these polynomials to only one coefficient.
The Pfaff lattice on symplectic matrices
Energy Technology Data Exchange (ETDEWEB)
Kodama, Yuji [Department of Mathematics, Ohio State University, Columbus, OH 43210 (United States); Pierce, Virgil U, E-mail: kodama@math.ohio-state.ed, E-mail: piercevu@utpa.ed [Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539 (United States)
2010-02-05
The Pfaff lattice is an integrable system arising from the SR-group factorization in an analogous way to how the Toda lattice arises from the QR-group factorization. In our earlier paper (Kodama and Pierce 2007 Int. Math. Res. Not. (arXiv:0705.0510)), we studied the Pfaff lattice hierarchy for the case where the Lax matrix is defined to be a lower Hessenberg matrix. In this paper we deal with the case of a symplectic lower Hessenberg Lax matrix, this forces the Lax matrix to take a 2 x 2 block tridiagonal shape. We then show that the odd members of the Pfaff lattice hierarchy are trivial, while the even members are equivalent to the indefinite Toda lattice hierarchy defined in Kodama and Ye (1996 Physica D 91 321-39). This is analogous to the case of the Toda lattice hierarchy in relation to the Kac-van Moerbeke system. In the case with the initial matrix having only real or imaginary eigenvalues, the fixed points of the even flows are given by 2 x 2 block diagonal matrices with zero diagonals. We also consider a family of skew-orthogonal polynomials with a symplectic recursion relation related to the Pfaff lattice and find that they are succinctly expressed in terms of orthogonal polynomials appearing in the indefinite Toda lattice.
Producing Bose condensates using optical lattices
Olshanii, Maxim; Weiss, David
2002-01-01
We relate the entropies of ensembles of atoms in optical lattices to atoms in simple traps. We then determine which ensembles of lattice-bound atoms will adiabatically transform into a Bose condensate. This shows a feasible approach to Bose condensation without evaporative cooling.
Different lattice geometries with synthetic dimension
Suszalski, Dominik; Zakrzewski, Jakub
2016-01-01
The possibility of creating different geometries with the help of an extra synthetic dimension in optical lattices is studied. Additional linear potential and Raman assisted tunnelings are used to engineer well controlled tunnelings between available states. The great flexibility of the system allows us to obtain different geometries of synthetic lattices with possibility of adding synthetic gauge fields.
Distribution of angles in hyperbolic lattices
DEFF Research Database (Denmark)
Risager, Morten Skarsholm; Truelsen, Jimi Lee
2010-01-01
We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result from the study by Boca.......We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result from the study by Boca....
Distribution of Angles in Hyperbolic Lattices
DEFF Research Database (Denmark)
S. Risager, Morten; L. Truelsen, Jimi
2008-01-01
We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result due to F. P. Boca.......We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result due to F. P. Boca....
Lattice Platonic Solids and their Ehrhart polynomial
Ionascu, Eugen J
2011-01-01
First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedrons and those for regular lattice octahedrons. These relations allow one to reduce the calculation of these polynomials to only one coefficient.
Supersymmetry on a space-time lattice
International Nuclear Information System (INIS)
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Counting lattice animals in high dimensions
International Nuclear Information System (INIS)
We present an implementation of Redelemeier's algorithm for the enumeration of lattice animals in high-dimensional lattices. The implementation is lean and fast enough to allow us to extend the existing tables of animal counts, perimeter polynomials and series expansion coefficients in d-dimensional hypercubic lattices for 3 ≤ d ≤ 10. From the data we compute formulae for perimeter polynomials for lattice animals of size n ≤ 11 in arbitrary dimension d. When amended by combinatorial arguments, the new data suffice to yield explicit formulae for the number of lattice animals of size n ≤ 14 and arbitrary d. We also use the enumeration data to compute numerical estimates for growth rates and exponents in high dimensions that agree very well with Monte Carlo simulations and recent predictions from field theory
Fast Lattice Monte Carlo Simulations of Polymers
Wang, Qiang; Zhang, Pengfei
2014-03-01
The recently proposed fast lattice Monte Carlo (FLMC) simulations (with multiple occupancy of lattice sites (MOLS) and Kronecker δ-function interactions) give much faster/better sampling of configuration space than both off-lattice molecular simulations (with pair-potential calculations) and conventional lattice Monte Carlo simulations (with self- and mutual-avoiding walk and nearest-neighbor interactions) of polymers.[1] Quantitative coarse-graining of polymeric systems can also be performed using lattice models with MOLS.[2] Here we use several model systems, including polymer melts, solutions, blends, as well as confined and/or grafted polymers, to demonstrate the great advantages of FLMC simulations in the study of equilibrium properties of polymers.
Ising antiferromagnet on the Archimedean lattices
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Cold collisions in dissipative optical lattices
Piilo, J
2004-01-01
In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The developed quantum-mechanical model is based on Monte Carlo wave-function simulations and combines atomic cooling and collision dynamics in a single framework. It turns out, that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position dependent light-matter coupling introduces selectivity of collision partners. Atoms, which are most mobile and energetic, are strongly favored to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. For blue-detuned lattices, we study how optical shielding emerges as ...
Supersymmetry on a space-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kaestner, Tobias
2008-10-28
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results. PMID:20866540
A lattice approach to spinorial quantum gravity
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Exotic mesons in quenched lattice QCD
Bernard, C W; DeTar, C E; Gottlieb, S; Heller, U M; Hetrick, J E; McNeile, C; Rummukainen, K; Sugar, B; Toussaint, D; Wingate, M; Bernard, Claude; Grand, Thomas A. De; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Hetrick, James E.; Neile, Craig Mc; Rummukainen, Kari; Sugar, Bob; Toussaint, Doug; Wingate, Matthew
1997-01-01
Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks and gluons). In general, these states would mix strongly with the conventional q-bar-q mesons. However, they can also have exotic quantum numbers inaccessible to q-bar-q mesons. Confirmation of such states would give information on the role of "dynamical" color in low energy QCD. In the quenched approximation we present a lattice calculation of the masses of mesons with exotic quantum numbers. These hybrid mesons can mix with four quark (q-bar-q-bar-q-q) states. The quenched approximation partially suppresses this mixing. Nonetheless, our hybrid interpolating fields also couple to four quark states. Using a four quark source operator, we demonstrate this mixing for the 1-+ meson. Using the conventional Wilson quark action, we calculate both at reasonably light quark masses, intend...
J.J. Sakurai Prize for Theoretical Particle Physics: 40 Years of Lattice QCD
Lepage, Peter
2016-03-01
Lattice QCD was invented in 1973-74 by Ken Wilson, who passed away in 2013. This talk will describe the evolution of lattice QCD through the past 40 years with particular emphasis on its first years, and on the past decade, when lattice QCD simulations finally came of age. Thanks to theoretical breakthroughs in the late 1990s and early 2000s, lattice QCD simulations now produce the most accurate theoretical calculations in the history of strong-interaction physics. They play an essential role in high-precision experimental studies of physics within and beyond the Standard Model of Particle Physics. The talk will include a non-technical review of the conceptual ideas behind this revolutionary development in (highly) nonlinear quantum physics, together with a survey of its current impact on theoretical and experimental particle physics, and prospects for the future. Work supported by the National Science Foundation.
Toward a realistic low-field SSC lattice
Energy Technology Data Exchange (ETDEWEB)
Heifets, S. [Univ. of Houston, TX (United States)
1985-10-01
Three six-fold lattices for 3 T superferric SSC have been generated at TAC. The program based on the first order canonical transformation was used to compare lattices. On this basis the realistic race-track lattices were generated.
On the Product and Factorization of Lattice Implication Algebras
Institute of Scientific and Technical Information of China (English)
秦克云; 宋振明; 等
1993-01-01
In this paper,the concepts of product and factorization of lattice implication algebra are proposed,the relation between lattice implication product algebra and its factors and some properties of lattice implication product algebras are discussed.
Lattice Code Design for the Rayleigh Fading Wiretap Channel
Belfiore, Jean-Claude
2010-01-01
It has been shown recently that coding for the Gaussian Wiretap Channel can be done with nested lattices. A fine lattice intended to the legitimate user must be designed as a usual lattice code for the Gaussian Channel, while a coarse lattice is added to introduce confusion at the eavesdropper, whose theta series must be minimized. We present a design criterion for both the fine and coarse lattice to obtain wiretap lattice codes for the Rayleigh fading Wiretap Channel.
Lattice Based Tools in Cryptanalysis for Public Key Cryptography
R.Santosh Kumar; C.Narasimham; S.Pallam Setty
2012-01-01
Lattice reduction is a powerful concept for solving diverse problems involving point lattices. Latticereduction has been successfully utilizing in Number Theory, Linear algebra and Cryptology. Not only the existence of lattice based cryptosystems of hard in nature, but also has vulnerabilities by lattice reduction techniques. In this survey paper, we are focusing on point lattices and then describing an introduction to the theoretical and practical aspects of lattice reduction. Finally, we de...
Directed and multi-directed animals on the king's lattice
Bacher, Axel
2013-01-01
This article introduces a new, simple solvable lattice for directed animals: the directed king's lattice, or square lattice with next nearest neighbor bonds and preferred directions {W, NW, N, NE, E}. We show that the directed animals in this lattice have an algebraic generating function linked to the Schr\\"oder numbers and belong to the same universality class as the ones in the square and triangular lattices. We also define multi-directed animals in the king's lattice, which form a supercla...
Scaling of Hamiltonian walks on fractal lattices.
Elezović-Hadzić, Suncica; Marcetić, Dusanka; Maletić, Slobodan
2007-07-01
We investigate asymptotical behavior of numbers of long Hamiltonian walks (HWs), i.e., self-avoiding random walks that visit every site of a lattice, on various fractal lattices. By applying an exact recursive technique we obtain scaling forms for open HWs on three-simplex lattice, Sierpinski gasket, and their generalizations: Given-Mandelbrot (GM), modified Sierpinski gasket (MSG), and n -simplex fractal families. For GM, MSG and n -simplex lattices with odd values of n , the number of open HWs Z(N), for the lattice with N>1 sites, varies as omega(N)}N(gamma). We explicitly calculate the exponent gamma for several members of GM and MSG families, as well as for n-simplices with n=3, 5, and 7. For n-simplex fractals with even n we find different scaling form: Z(N) approximately omega(N)mu(N1/d(f), where d(f) is the fractal dimension of the lattice, which also differs from the formula expected for homogeneous lattices. We discuss possible implications of our results on studies of real compact polymers. PMID:17677410
Dynamic Behavior of Engineered Lattice Materials.
Hawreliak, J A; Lind, J; Maddox, B; Barham, M; Messner, M; Barton, N; Jensen, B J; Kumar, M
2016-01-01
Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697
Dynamic Behavior of Engineered Lattice Materials
Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.
2016-06-01
Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations.
Delaunay polytopes derived from the Leech lattice
Sikiric, Mathieu Dutour
2009-01-01
Given a lattice L of R^n, a polytope D is called a Delaunay polytope in L if the set of its vertices is S\\cap L where S is a sphere having no lattice points in its interior. D is called perfect if the only ellipsoid in R^n that contains S\\cap L is exactly S. For a vector v of the Leech lattice \\Lambda_{24} we define \\Lambda_{24}(v) to be the lattice of vectors of \\Lambda_{24} orthogonal to v. We studied Delaunay polytopes of L=\\Lambda_{24}(v) for |v|^2<=22. We found some remarkable examples of Delaunay polytopes in such lattices and disproved a number of long standing conjectures. In particular, we discovered: --Perfect Delaunay polytopes of lattice width 4; previously, the largest known width was 2. --Perfect Delaunay polytopes in L, which can be extended to perfect Delaunay polytopes in superlattices of L of the same dimension. --Polytopes that are perfect Delaunay with respect to two lattices $L\\subset L'$ of the same dimension. --Perfect Delaunay polytopes D for L with |Aut L|=6|Aut D|: all previously ...
On Decompositions of Matrices over Distributive Lattices
Directory of Open Access Journals (Sweden)
Yizhi Chen
2014-01-01
Full Text Available Let L be a distributive lattice and Mn,q (L(Mn(L, resp. the semigroup (semiring, resp. of n × q (n × n, resp. matrices over L. In this paper, we show that if there is a subdirect embedding from distributive lattice L to the direct product ∏i=1mLi of distributive lattices L1,L2, …,Lm, then there will be a corresponding subdirect embedding from the matrix semigroup Mn,q(L (semiring Mn(L, resp. to semigroup ∏i=1mMn,q(Li (semiring ∏i=1mMn(Li, resp.. Further, it is proved that a matrix over a distributive lattice can be decomposed into the sum of matrices over some of its special subchains. This generalizes and extends the decomposition theorems of matrices over finite distributive lattices, chain semirings, fuzzy semirings, and so forth. Finally, as some applications, we present a method to calculate the indices and periods of the matrices over a distributive lattice and characterize the structures of idempotent and nilpotent matrices over it. We translate the characterizations of idempotent and nilpotent matrices over a distributive lattice into the corresponding ones of the binary Boolean cases, which also generalize the corresponding structures of idempotent and nilpotent matrices over general Boolean algebras, chain semirings, fuzzy semirings, and so forth.
Infinitesimal diffeomorfisms on the lattice
CERN. Geneva
2015-01-01
The energy-momentum tensor and local translation Ward identities constitute the essential toolkit to probe the response of a QFT to an infinitesimal change of geometry. This is relevant in a number of contexts. For instance in order to get the thermodynamical equation of state, one wants to study the response of a Euclidean QFT in a finite box to a change in the size of the box. The lattice formulation of QFTs is a prime tool to study their dynamics beyond perturbation theory. However Poincaré invariance is explicitly broken, and is supposed to be recovered only in the continuum limit. Approximate local Ward identities for translations can be defined, by they require some care for two reasons: 1) the energy-momentum tensor needs to be properly defined through a renormalization procedure; 2) the action of infinitesimal local translations (i.e. infinitesimal diffeomorfisms) is ill-defined on local observables. In this talk I will review the issues related to the renormalization of the energy-momentum tensor ...
International Nuclear Information System (INIS)
The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice
Superconductivity in the Kondo lattice
International Nuclear Information System (INIS)
Superconductivity in the Kondo lattice was theoretically studied in connection with superconductivity in CeCu2Si2 and UBe13. To achieve superconductivity in these systems, coherence between Ce ions or U ions is of crucial importance. To take account of the coherence, the periodic Anderson model with a small dispersion of the f band was used. With the use of a single-site approximation for the self-energy of the f electron, the heavy fermion state near the Fermi level was derived. This state is a highly correlated state, and the Coulomb repulsive interaction is strongly reduced. The f electrons are found to be responsible for superconductivity. Both the specific heat in the normal state C/sub N/(T) and the specific-heat jump ΔC at T/sub c/ are very large, and the ratio ΔC/C/sub N/(T/sub c/) has the BCS value in the weak-coupling approximation. The thermodynamic critical field is very high
XXIVth International Symposium on Lattice Field Theory
2006-12-01
Lattice 2006, the XXIV International Symposium on Lattice Field Theory, was held from July 23-28, 2006 at the Starr Pass Hotel near Tucson, Arizona, USA, hosted by the University of Arizona Physics Department. The scientific program contained 25 plenary session talks and 193 parallel session contributions (talks and posters). Topics in lattice QCD included: hadron spectroscopy; hadronic interactions and structure; algorithms, machines, and networks; chiral symmetry; QCD confinement and topology; quark masses, gauge couplings, and renormalization; electroweak decays and mixing; high temperature and density; and theoretical developments. Topics beyond QCD included large Nc, Higgs, SUSY, gravity, and strings.
Construction of Capacity Achieving Lattice Gaussian Codes
Alghamdi, Wael
2016-04-01
We propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3].
Density redistribution effects in fermionic optical lattices
Soni, Medha; Troyer, Matthias
2016-01-01
We simulate a one dimensional fermionic optical lattice to analyse heating due to non-adiabatic lattice loading. Our simulations reveal that, similar to the bosonic case, density redistribution effects are the major cause of heating in harmonic traps. We suggest protocols to modulate the local density distribution during the process of lattice loading, in order to reduce the excess energy. Our numerical results confirm that linear interpolation of the trapping potential and/or the interaction strength is an efficient method of doing so, bearing practical applications relevant to experiments.
The operator product expansion on the lattice
International Nuclear Information System (INIS)
We investigate the Operator Product Expansion (OPE) on the lattice by directly measuring the product left angle JμJν right angle (where J is the vector current) and comparing it with the expectation values of bilinear operators. This will determine the Wilson coefficients in the OPE from lattice data, and so give an alternative to the conventional methods of renormalising lattice structure function calculations. It could also give us access to higher twist quantities such as the longitudinal structure function FL = F2 - 2xF1. We use overlap fermions because of their improved chiral properties, which reduces the number of possible operator mixing coefficients. (orig.)
Greedy lattice animals: Geometry and criticality
Hammond, Alan
2006-01-01
Assign to each site of the integer lattice ℤd a real score, sampled according to the same distribution F, independently of the choices made at all other sites. A lattice animal is a finite connected set of sites, with its weight being the sum of the scores at its sites. Let Nn be the maximal weight of those lattice animals of size n that contain the origin. Denote by N the almost sure finite constant limit of n−1Nn, which exists under a mild condition on the positive tail of F. We study certa...
Continuum methods in lattice perturbation theory
International Nuclear Information System (INIS)
We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions
Statistics of lattice animals (polyominoes) and polygons
Jensen, Iwan; Guttmann, Anthony J.
2000-01-01
We have developed an improved algorithm that allows us to enumerate the number of site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields an improved estimate, $\\tau = 4.062570(8)$, for the growth constant of lattice animals and confirms to a very high degree of certainty that the generating function has a logarithmic divergence. We prove the bound $\\tau > 3.90318.$ We also calculate the radius of gyration of both lattice animals and polygons en...
International Nuclear Information System (INIS)
We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With Nf=2 flavours of light quark, this is the so-called η2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the η2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses. (orig.)
Dynamical Regge calculus as lattice gravity
International Nuclear Information System (INIS)
We propose a hybrid approach to lattice quantum gravity by combining simultaneously the dynamical triangulation with the Regge calculus, called the dynamical Regge calculus (DRC). In this approach lattice diffeomorphism is realized as an exact symmetry by some hybrid (k, l) moves on the simplicial lattice. Numerical study of 3D pure gravity shows that an entropy of the DRC is not exponetially bounded if we adopt the uniform measure Πidli. On the other hand, using the scale-invariant measure Πidli/li, we can calculate observables and observe a large hysteresis between two phases that indicates the first-order nature of the phase transition
Multiphase lattice Boltzmann methods theory and application
Huang, Haibo; Lu, Xiyun
2015-01-01
Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the
Chiral symmetry breaking in lattice electrodynamics
International Nuclear Information System (INIS)
Chiral symmetry breaking is studied in lattice quantum electrodynamics in the quenched approximation by computer-simulation methods. Simulations at zero temperature show that in non-zero for all couplings e2 greater than a critical value e2/sub c/. The sensitivity of to short-distance features of the lattice Action is studied by simulating variant gauge Actions. Simulations on asymmetric lattices do not reveal significant temperature dependence in the symmetry-breaking dynamics. Subtle effects and limitations of quenched calculations are discussed
Reactive Orthotropic Lattice Diffuser for Noise Reduction
Khorrami, Mehdi R. (Inventor)
2016-01-01
An orthotropic lattice structure interconnects porous surfaces of the flap with internal lattice-structured perforations to equalize the steady pressure field on the flap surfaces adjacent to the end and to reduce the amplitude of the fluctuations in the flow field near the flap end. The global communication that exists within all of the perforations provides the mechanism to lessen the pressure gradients experienced by the end portion of the flap. In addition to having diffusive effects (diffusing the incoming flow), the three-dimensional orthogonal lattice structure is also reactive (acoustic wave phase distortion) due to the interconnection of the perforations.
Lattice distortion in disordered antiferromagnetic XY models
Institute of Scientific and Technical Information of China (English)
Li Peng-Fei; Cao Hai-Jing
2012-01-01
The behavior of lattice distortion in spin 1/2 antiferromagnetic XY models with random magnetic modulation is investigated with the consideration of spin-phonon coupling in the adiabatic limit.It is found that lattice distortion relies on the strength of the random modulation.For strong or weak enough spin-phonon couplings,the average lattice distortion may decrease or increase as the random modulation is strengthened.This may be the result of competition between the random magnetic modulation and the spin-phonon coupling.
Performance comparisons of low emittance lattices
International Nuclear Information System (INIS)
In this paper, the results of a performance analysis of several low emittance electron storage ring lattices provided by various members of the Lattice Working Group are presented. Altogether, four lattices were investigated. There are two different functions being considered for the low beam emittance rings discussed here. The first is to serve as a Damping Ring (DR), i.e., to provide the emittance damping required for a high energy linear collider. The second is to provide beams for a short wavelength Free Electron Laser (FEL), which is envisioned to operate in the wavelength region near 40 A
A Lattice Study of the Glueball Spectrum
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2001-01-01
Glueball spectrum is studied using an improved gluonic action on asymmetric lattices in the pure SU(3)gauge theory. The smallest spatial lattice spacing is about 0.08 fm which makes the extrapolation to the continuum limit more reliable. In particular, attention is paid to the scalar glueball mass which is known to have problems in the extrapolation. Converting our lattice results to physical units using the scale set by the static quark potential,we obtain the following results for the glueball masses: MG(0++) = 1730(90) MeV for the scalar glueball mass and MG(2++) = 2400(95) MeV for the tensor glueball.
Rank 72 high minimum norm lattices
Griess, Robert L
2009-01-01
Given a polarization of an even unimodular lattice and integer $k\\ge 1$, we define a family of unimodular lattices $L(M,N,k)$. Of special interest are certain $L(M,N,3)$ of rank 72. Their minimum norms lie in $\\{4, 6, 8\\}$. Norms 4 and 6 do occur. Consequently, 6 becomes the highest known minimum norm for rank 72 even unimodular lattices. We discuss how norm 8 might occur for such a $L(M,N,3)$. We note a few $L(M,N,k)$ in dimensions 96, 120 and 128 with moderately high minimum norms.
International Nuclear Information System (INIS)
Demonstration of the diffraction patterns from the two-dimensional Bravais lattice has been studied by use of the two single line lattice grating sheets and a laser pointer. A variable two-dimensional lattice grating was prepared using two grating sheets which are closely attached to each other. The five types of two-dimensional Bravais lattices can be produced by adjusting the relative angle between two single line lattices. The light diffraction patterns from the two-dimensional Bravais lattices indicate the reciprocal lattices of these basic two-dimensional lattice structures. (paper)
Tsutaoka, Takanori; Tokunaga, Tomohito; Umeda, Takashi; Maehara, Toshinobu
2014-09-01
Demonstration of the diffraction patterns from the two-dimensional Bravais lattice has been studied by use of the two single line lattice grating sheets and a laser pointer. A variable two-dimensional lattice grating was prepared using two grating sheets which are closely attached to each other. The five types of two-dimensional Bravais lattices can be produced by adjusting the relative angle between two single line lattices. The light diffraction patterns from the two-dimensional Bravais lattices indicate the reciprocal lattices of these basic two-dimensional lattice structures.
Lattice Gauge Theory and the Origin of Mass
Energy Technology Data Exchange (ETDEWEB)
Kronfeld, Andreas S.
2013-08-01
Most of the mass of everyday objects resides in atomic nuclei/ the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.
Friction anisotropy dependence on lattice orientation of graphene
Zhang, Yu; Liu, LianQing; Xi, Ning; Wang, YueChao; Dong, ZaiLi; Wejinya, Uchechukwu C.
2014-04-01
The observation of friction anisotropy on graphene by friction measurement at atomic scale has been reported in this paper. Atomic-scale friction measurement revealed friction anisotropy with a periodicity of 60°, which is consistent with the hexagonal periodicity of the graphene. Both experiments and theory show that the value of the friction force is related to the graphene lattice orientation, and the friction force along armchair orientation is also larger than the one along zigzag orientation. These results will play a critical role in the use of graphene to manufacture nanoscale devices.
Analysis of quantum spin models on hyperbolic lattices and Bethe lattice
Daniška, Michal; Gendiar, Andrej
2016-04-01
The quantum XY, Heisenberg, and transverse field Ising models on hyperbolic lattices are studied by means of the tensor product variational formulation algorithm. The lattices are constructed by tessellation of congruent polygons with coordination number equal to four. The calculated ground-state energies of the XY and Heisenberg models and the phase transition magnetic field of the Ising model on the series of lattices are used to estimate the corresponding quantities of the respective models on the Bethe lattice. The hyperbolic lattice geometry induces mean-field-like behavior of the models. The ambition to obtain results on the non-Euclidean lattice geometries has been motivated by theoretical studies of the anti-de Sitter/conformal field theory correspondence.
Bishop, R. F.; Li, P. H. Y.
2011-04-01
An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1)/(2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.
International Nuclear Information System (INIS)
An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-(1/2) Heisenberg antiferromagnetic) spin-lattice models, namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm) and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm, and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications.
Analysis of quantum spin models on hyperbolic lattices and Bethe lattice
International Nuclear Information System (INIS)
The quantum XY, Heisenberg, and transverse field Ising models on hyperbolic lattices are studied by means of the tensor product variational formulation algorithm. The lattices are constructed by tessellation of congruent polygons with coordination number equal to four. The calculated ground-state energies of the XY and Heisenberg models and the phase transition magnetic field of the Ising model on the series of lattices are used to estimate the corresponding quantities of the respective models on the Bethe lattice. The hyperbolic lattice geometry induces mean-field-like behavior of the models. The ambition to obtain results on the non-Euclidean lattice geometries has been motivated by theoretical studies of the anti-de Sitter/conformal field theory correspondence. (paper)
Semiconductor Laser with Aperiodic Photonic Lattice
Subhasish Chakraborty
2008-01-01
A semiconductor laser and method for selecting laser frequency emission from the semiconductor laser are disclosed. The semiconductor laser provides selectable frequency emission and includes an aperiodic photonic lattice.
International Nuclear Information System (INIS)
Results of inelastic neutron scattering (INS) on Cr3Si (non-superconductor) for the low energy phonon branches Δ1, Δ5, Σ3, Σ1 are compared with equivalent modes of V3Si. In Cr3Si the modes have higher excitation energies, Σ3 is independent of energy in the temperature range from 80 to 300 K. A short review on the literature about INS-work concerning the lattice dynamics of A15-compounds is given. Theoretical results on lattice dynamics and electronic structure of A15 compounds have been used partly. The connection between superconducting transition temperature and lattice dynamics as well as between neutron scattering cross section and lattice dynamics is pointed out. Using Cr3Si as an example it is shown, how specific phonon modes can be measured appropriately. (author)
Generalized parton distributions from lattice QCD
International Nuclear Information System (INIS)
We perform a quenched lattice calculation of the first moment of twist-two generalized parton distribution functions of the proton, and assess the total quark (spin and orbital angular momentum) contribution to the spin of the proton
Generalized parton distributions from lattice QCD
International Nuclear Information System (INIS)
We perform a quenched lattice calculation of the first moment of twist-two generalized parton distribution functions of the proton, and assess the total quark (spin and orbital angular momentum) contribution to the spin of the proton. (orig.)
Regge calculus models of closed lattice universes
Liu, Rex G.; Williams, Ruth M.
2016-01-01
This paper examines the behavior of closed "lattice universes" wherein masses are distributed in a regular lattice on the Cauchy surfaces of closed vacuum universes. Such universes are approximated using a form of Regge calculus originally developed by Collins and Williams to model closed Friedmann-Lemaître-Robertson-Walker universes. We consider two types of lattice universes, one where all masses are identical to each other and another where one mass gets perturbed in magnitude. In the unperturbed universe, we consider the possible arrangements of the masses in the Regge Cauchy surfaces and demonstrate that the model will only be stable if each mass lies within some spherical region of convergence. We also briefly discuss the existence of Regge models that are dual to the ones we have considered. We then model a perturbed lattice universe and demonstrate that the model's evolution is well behaved, with the expansion increasing in magnitude as the perturbation is increased.
Fractional Bloch oscillations in photonic lattices
Corrielli, Giacomo; Della Valle, Giuseppe; Longhi, Stefano; Osellame, Roberto; 10.1038/ncomms2578
2013-01-01
Bloch oscillations, the oscillatory motion of a quantum particle in a periodic potential, are one of the most fascinating effects of coherent quantum transport. Originally studied in the context of electrons in crystals, Bloch oscillations manifest the wave nature of matter and are found in a wide variety of different physical systems. Here we report on the first experimental observation of fractional Bloch oscillations, using a photonic lattice as a model system of a two-particle extended Bose-Hubbard Hamiltonian. In our photonic simulator, the dynamics of two correlated particles hopping on a one-dimensional lattice is mapped into the motion of a single particle in a two-dimensional lattice with engineered defects and mimicked by light transport in a square waveguide lattice with a bent axis.
Visualization of 3D optical lattices
Lee, Hoseong; Clemens, James
2016-05-01
We describe the visualization of 3D optical lattices based on Sisyphus cooling implemented with open source software. We plot the adiabatic light shift potentials found by diagonalizing the effective Hamiltonian for the light shift operator. Our program incorporates a variety of atomic ground state configurations with total angular momentum ranging from j = 1 / 2 to j = 4 and a variety of laser beam configurations including the two-beam lin ⊥ lin configuration, the four-beam umbrella configuration, and four beams propagating in two orthogonal planes. In addition to visualizing the lattice the program also evaluates lattice parameters such as the oscillation frequency for atoms trapped deep in the wells. The program is intended to help guide experimental implementations of optical lattices.
Colloquium: Physics of optical lattice clocks
International Nuclear Information System (INIS)
Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10-18 fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.
Topological phase transitions in superradiance lattices
Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao
2015-01-01
The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...