Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Spin qubits in antidot lattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;
2008-01-01
and density of states for a periodic potential modulation, referred to as an antidot lattice, and find that localized states appear, when designed defects are introduced in the lattice. Such defect states may form the building blocks for quantum computing in a large antidot lattice, allowing for coherent...
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads;
2009-01-01
Graphene sheets with regular perforations, dubbed as antidot lattices, have theoretically been predicted to have a number of interesting properties. Their recent experimental realization with lattice constants below 100 nanometers stresses the urgency of a thorough understanding of their electron...
Graphene on graphene antidot lattices
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Graphene antidot lattice transport measurements
DEFF Research Database (Denmark)
Mackenzie, David; Cagliani, Alberto; Gammelgaard, Lene
2017-01-01
We investigate graphene devices patterned with a narrow band of holes perpendicular to the current flow, a few-row graphene antidot lattice (FR-GAL). Theoretical reports suggest that a FR-GAL can have a bandgap with a relatively small reduction of the transmission compared to what is typical...... for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices...... in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (
Screening in graphene antidot lattices
DEFF Research Database (Denmark)
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Electronic properties of graphene antidot lattices
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.;
2009-01-01
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...
Magnetic switching of nanoscale antidot lattices
Directory of Open Access Journals (Sweden)
Ulf Wiedwald
2016-05-01
Full Text Available We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices.
Magnetic switching of nanoscale antidot lattices
Gräfe, Joachim; Lebecki, Kristof M; Skripnik, Maxim; Haering, Felix; Schütz, Gisela; Ziemann, Paul; Goering, Eberhard; Nowak, Ulrich
2016-01-01
Summary We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py) as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices. PMID:27335762
Electronic properties of disordered graphene antidot lattices
DEFF Research Database (Denmark)
Yuan, Shengjun; Roldán, Rafael; Jauho, Antti-Pekka
2013-01-01
Regular nanoscale perforations in graphene (graphene antidot lattices, GALs) are known to lead to a gap in the energy spectrum, thereby paving a possible way towards many applications. This theoretical prediction relies on a perfect placement of identical perforations, a situation not likely to o...
Thermoelectric properties of finite graphene antidot lattices
DEFF Research Database (Denmark)
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...
Critical phenomena in ferromagnetic antidot lattices
Directory of Open Access Journals (Sweden)
R. Zivieri
2016-05-01
Full Text Available In this paper a quantitative theoretical formulation of the critical behavior of soft mode frequencies as a function of an applied magnetic field in two-dimensional Permalloy square antidot lattices in the nanometric range is given according to micromagnetic simulations and simple analytical calculations. The degree of softening of the two lowest-frequency modes, namely the edge mode and the fundamental mode, corresponding to the field interval around the critical magnetic field, can be expressed via numerical exponents. For the antidot lattices studied we have found that: a the ratio between the critical magnetic field and the in-plane geometric aspect ratio and (b the ratio between the numerical exponents of the frequency power laws of the fundamental mode and of the edge mode do not depend on the geometry. The above definitions could be extended to other types of in-plane magnetized periodic magnetic systems exhibiting soft-mode dynamics and a fourfold anisotropy.
Programmability of Co-antidot lattices of optimized geometry
Schneider, Tobias; Langer, Manuel; Alekhina, Julia; Kowalska, Ewa; Oelschlägel, Antje; Semisalova, Anna; Neudert, Andreas; Lenz, Kilian; Potzger, Kay; Kostylev, Mikhail P.; Fassbender, Jürgen; Adeyeye, Adekunle O.; Lindner, Jürgen; Bali, Rantej
2017-02-01
Programmability of stable magnetization configurations in a magnetic device is a highly desirable feature for a variety of applications, such as in magneto-transport and spin-wave logic. Periodic systems such as antidot lattices may exhibit programmability; however, to achieve multiple stable magnetization configurations the lattice geometry must be optimized. We consider the magnetization states in Co-antidot lattices of ≈50 nm thickness and ≈150 nm inter-antidot distance. Micromagnetic simulations were applied to investigate the magnetization states around individual antidots during the reversal process. The reversal processes predicted by micromagnetics were confirmed by experimental observations. Magnetization reversal in these antidots occurs via field driven transition between 3 elementary magnetization states – termed G, C and Q. These magnetization states can be described by vectors, and the reversal process proceeds via step-wise linear operations on these vector states. Rules governing the co-existence of the three magnetization states were empirically observed. It is shown that in an n × n antidot lattice, a variety of field switchable combinations of G, C and Q can occur, indicating programmability of the antidot lattices.
Electronic transport in disordered graphene antidot lattice devices
DEFF Research Database (Denmark)
Power, Stephen; Jauho, Antti-Pekka
2014-01-01
Nanostructuring of graphene is in part motivated by the requirement to open a gap in the electronic band structure. In particular, a periodically perforated graphene sheet in the form of an antidot lattice may have such a gap. Such systems have been investigated with a view towards application...... in transistor or waveguiding devices. The desired properties have been predicted for atomically precise systems, but fabrication methods will introduce significant levels of disorder in the shape, position and edge configurations of individual antidots. We calculate the electronic transport properties of a wide...... range of finite graphene antidot devices to determine the effect of such disorders on their performance. Modest geometric disorder is seen to have a detrimental effect on devices containing small, tightly packed antidots, which have optimal performance in pristine lattices. Larger antidots display...
Graphene antidot lattices: Designed defects and spin qubits
DEFF Research Database (Denmark)
Pedersen, Thomas; Flindt, Christian; Pedersen, Jesper Goor;
2008-01-01
Antidot lattices, defined on a two-dimensional electron gas at a semiconductor heterostructure, are a well-studied class of man-made structures with intriguing physical properties. We point out that a closely related system, graphene sheets with regularly spaced holes ("antidots"), should display...... qubits. We present a detailed study of the energetics of periodic graphene antidot lattices, analyze the level structure of a single defect, calculate the exchange coupling between a pair of spin qubits, and identify possible avenues for further developments....
Graphene antidot lattices as potential electrode materials for supercapacitors
Liu, Lizhao; Yue, Xin; Zhao, Jijun; Cheng, Qian; Tang, Jie
2015-05-01
Thermodynamic stabilities and electronic properties of graphene antidot lattices with hexagonal holes were examined using density functional theory calculations and several crucial factors related to the applications of supercapacitors were discussed. For the graphene antidot lattices with different hole sizes, the formation energy per edge length is about 0.50∼0.60 eV/nm, which is comparable to that of graphene nanoribbon edges. Within a hole density of 10%, the graphene antidot lattices can maintain the excellent electronic properties of perfect graphene due to negligible intervalley scattering. Further increasing the hole density will open a band gap. Taking the potassium chloride (KCl) electrolyte as an example, we further investigated the diffusion behaviors of potassium (K) and chlorine (Cl) atoms through the graphene antidot lattices. It was shown that K and Cl atoms can go through the holes with nearly no barrier at an appropriate hole size of 0.54 nm, which gives an optimum pore diameter of ∼0.86 nm. Therefore, the excellent graphene-like electronic properties and good penetrability for ions suggest promising applications of graphene antidot lattices in the field of supercapacitors.
Screening and collective modes in disordered graphene antidot lattices
DEFF Research Database (Denmark)
Yuan, Shengjun; Jin, Fengping; Roldan, Rafael;
2013-01-01
The excitation spectrum and the collective modes of graphene antidot lattices (GALs) are studied in the context of a π-band tight-binding model. The dynamical polarizability and dielectric function are calculated within the random-phase approximation. The effect of different kinds of disorder, su...
Clar sextets in square graphene antidot lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Altshuler-Aronov-Spivak Oscillation in Graphene Antidot lattice
Yagi, Ryuta; Sakakibara, Ryoji; Onishi, Junpei; Yagi Lab. Team
2015-03-01
We have observed the Altshuler-Aronov-Spivac (AAS) oscillation in triangular antidot lattice of single layer graphene. Low temperature magnetoresistance exhibited h / 2 e periodic oscillations near zero magnetic field, negative magnetoresistance, and h / e periodic (AB-type) oscillations at higher magnetic fields. Phase of the AAS oscillation was the same as those for conventional 2D electrons with negligible spin orbit interaction, showing that inter-valley scattering averaged the Berry phase effect which results in anti-localization.
Spatial confinement of ferromagnetic resonances in honeycomb antidot lattices
Energy Technology Data Exchange (ETDEWEB)
Krivoruchko, V.N., E-mail: krivoruc@gmail.com [Donetsk Physics and Technology Institute NAS of Ukraine, 72 R. Luxemburg Str., 83114 Donetsk (Ukraine); Marchenko, A.I., E-mail: marchalexx@gmail.com [Donetsk Physics and Technology Institute NAS of Ukraine, 72 R. Luxemburg Str., 83114 Donetsk (Ukraine)
2012-09-15
We report on a theoretical investigation of the magnetic static and dynamic properties of a thin ferromagnetic film with honeycomb lattice of circular antidots using micromagnetic simulations and analytical calculations. The theoretical model is based on the Landau-Lifshitz equations and directly accounts for the effects of the magnetic state nonuniformity. A direct calculation of local dynamic susceptibility tensor yields that the resonance spectra consist of four different quasi-uniform modes of the magnetization precession related to the confinement of magnetic domains by the hole mesh. Three of four resonant modes follow a two-fold variation with respect to the in-plane orientation of the applied magnetic field. The easy axes of these modes are mutually rotated by 60 Degree-Sign and combine to yield the apparent six-fold configurational anisotropy. Additionally, a mode with intrinsic six-fold symmetry behavior exists, as well. Micromagnetic calculations of the local dynamic susceptibility tensor allow identifying the magnetic unit cell areas/domains responsible for each resonance mode. - Highlights: Black-Right-Pointing-Pointer We study the magnetic static and dynamic properties of honeycomb antidot lattices. Black-Right-Pointing-Pointer Micromagnetic simulation and analytical calculation were used. Black-Right-Pointing-Pointer Four quasi-uniform precession modes exist in resonance spectra. Black-Right-Pointing-Pointer The antidot unit cell areas responsible for each resonance mode were identified.
Boron and nitrogen doping in graphene antidot lattices
Brun, Søren J.; Pereira, Vitor M.; Pedersen, Thomas G.
2016-06-01
Bottom-up fabrication of graphene antidot lattices (GALs) has previously yielded atomically precise structures with subnanometer periodicity. Focusing on this type of experimentally realized GAL, we perform density functional theory calculations on the pristine structure as well as GALs with edge carbon atoms substituted with boron or nitrogen. We show that p - and n -type doping levels emerge with activation energies that depend on the level of hydrogenation at the impurity. Furthermore, a tight-binding parametrization together with a Green's function method are used to describe more dilute doping. Finally, random configurations of impurities in moderately doped systems are considered to show that the doping properties are robust against disorder.
A study of periodic and aperiodic ferromagnetic antidot lattices
Bhat, Vinayak S.
This thesis reports our study of the effect of domain wall pinning by ferromagnetic (FM) metamaterials [1] in the form of periodic antidot lattices (ADL) on spin wave spectra in the reversible regime. This study was then extended to artificial quasicrystals in the form of Penrose P2 tilings (P2T). Our DC magnetization study of these metamaterials showed reproducible and temperature dependent knee anomalies in the hysteretic regime that are due to the isolated switching of the FM segments. Our dumbbell model analysis [2] of simulated magnetization maps indicates that FM switching in P2T is nonstochastic . We have also acquired the first direct, two-dimensional images of the magnetization of Permalloy films patterned into P2T using scanning electron microscopy with polarization analysis (SEMPA). Our SEMPA images demonstrate P2T behave as geometrically frustrated networks of narrow ferromagnetic film segments having near-uniform, bipolar (Ising-like) magnetization, similar to artificial spin ices (ASI). We find the unique aperiodic translational symmetry and diverse vertex coordination of multiply-connected P2T induce a more complex spin-ice behavior driven by exchange interactions in vertex domain walls, which differs markedly from the behavior of disconnected ASI governed only by dipolar interactions. Keywords: Ferromagnetic Antidot Lattices, Metamaterials, Ferromagnetic Resonance, Artificial Quasicrystal, Artificial Spin Ice. [1] VV Kruglyak et al. "Magnonic metamaterials". In: Metamaterial, edited by X.-Y. Jiang (InTech, 2012) (2012). [2] Claudio Castelnovo, Roderich Moessner, and Shivaji L Sondhi. "Magnetic monopoles in spin ice". In: Nature 451.7174 (2008), pp. 42--45.
Designed defects in 2D antidot lattices for quantum information processing
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger
2008-01-01
We propose a new physical implementation of spin qubits for quantum information processing, namely defect states in antidot lattices defined in the two-dimensional electron gas (2DEG) at a semiconductor heterostructure. Calculations of the band structure of a periodic antidot lattice are presented....... We find results reminiscent of double quantum dot structures, indicating that the suggested structure is a feasible physical implementation of spin qubits....
Gräfe, Joachim; Weigand, Markus; Träger, Nick; Schütz, Gisela; Goering, Eberhard J.; Skripnik, Maxim; Nowak, Ulrich; Haering, Felix; Ziemann, Paul; Wiedwald, Ulf
2016-03-01
While the magnetic properties of nanoscaled antidot lattices in in-plane magnetized materials have widely been investigated, much less is known about the microscopic effect of hexagonal antidot lattice patterning on materials with perpendicular magnetic anisotropy. By using a combination of first-order reversal curve measurements, magnetic x-ray microscopy, and micromagnetic simulations we elucidate the microscopic origins of the switching field distributions that arise from the introduction of antidot lattices into out-of-plane magnetized GdFe thin films. Depending on the geometric parameters of the antidot lattice we find two regimes with different magnetization reversal processes. For small antidots, the reversal process is dominated by the exchange interaction and domain wall pinning at the antidots drives up the coercivity of the system. On the other hand, for large antidots the dipolar interaction is dominating which leads to fragmentation of the system into very small domains that can be envisaged as a basis for a bit patterned media.
Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Pedersen, Thomas Garm
2013-01-01
We study graphene antidot lattices (GALs) in magnetic fields. Using a tight-binding model and a recursive Green's function technique that we extend to deal with periodic structures, we calculate Hofstadter butterflies of GALs. We compare the results to those obtained in a simpler gapped graphene...
Quantum computing via defect states in two-dimensional antidot lattices.
Flindt, Christian; Mortensen, Niels Asger; Jauho, Antti-Pekka
2005-12-01
We propose a new structure suitable for quantum computing in a solid-state environment: designed defect states in antidot lattices superimposed on a two-dimensional electron gas at a semiconductor heterostructure. State manipulation can be obtained with gate control. Model calculations indicate that it is feasible to fabricate structures whose energy level structure is robust against thermal dephasing.
Energy Technology Data Exchange (ETDEWEB)
Mandal, Ruma; Laha, Pinaki; Das, Kaustuv; Saha, Susmita; Barman, Saswati; Raychaudhuri, A. K.; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)
2013-12-23
We show that the optically induced spin wave spectra of nanoscale Ni{sub 80}Fe{sub 20} (permalloy) antidot lattices can be tuned by changing the antidot shape. The spin wave spectra also show an anisotropy with the variation of the in-plane bias field orientation. Analyses show this is due to various quantized and extended modes, whose nature changes with the antidot shape and bias field orientation as a result of the variation of the internal magnetic field profile. The observed variation and anisotropy in the spin waves with the internal and external parameters are important for their applications in magnonic devices.
Energy Technology Data Exchange (ETDEWEB)
Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-06-29
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.
Universal rule on chirality-dependent bandgaps in graphene antidot lattices.
Liu, Xiaofei; Zhang, Zhuhua; Guo, Wanlin
2013-04-22
Graphene with periodically patterned antidots has attracted intense research attention as it represents a facile route to open a bandgap for graphene electronics. However, not all graphene antidot lattices (GALs) can open a bandgap and a guiding rule is missing. Here, through systematic first-principles calculations, it is found that bandgaps in triangular GALs are surprisingly well defined by a chirality vector R = n a1 + ma2 connecting two neighboring antidots, where a1 and a2 are the basis vectors of graphene. The bandgap opens in the GALs with (n-m)mod3 = 0 but remains closed in those with (n-m)mod3 = ±1, reminiscent of the gap-chirality rule in carbon nanotubes. Remarkably, the gap value in GALs allows ample modulation by adjusting the length of chirality vectors, shape and size of the antidots. The gap-chirality relation in GALs stems from the chirality-dependent atomic structures of GALs as revealed by a super-atom model as well as Clar sextet analyses. This chirality-dependent bandgap is further shown to be a generic behavior in any parallelogram GAL and thus serves as an essential stepping stone for experimenters to realize graphene devices by antidot engineering.
Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices
Tahir, N.; Zelent, M.; Gieniusz, R.; Krawczyk, M.; Maziewski, A.; Wojciechowski, T.; Ding, J.; Adeyeye, A. O.
2017-01-01
The effects of shape and geometry of antidot (square, bi-component, and wave-like) lattices (ADLs) on the magnetization reversal processes and magnetic anisotropy has been systematically investigated by magneto-optical Kerr effect based microscopy. Our experimental results were reproduced by micromagnetic simulations, which highlight the qualitative agreement with the experimental results. We have demonstrated that a small antidot in the center of a unit cell in the square ADL is sufficient to induce additional easy axes with large coercive fields. In wave-like patterns, narrow channels connecting smaller and larger antidots (bi-component ADL) further drastically change the anisotropy map, creating the high coercive fields along a wide angular range (90°) of directions parallel to the channels. In simulated results, we have observed formation of periodic domain structures in all ADLs, however, in the case of a wave-like pattern it is most regular and moreover two different periodic patterns are stabilized at different applied magnetic field values. The formation of 360° domain walls were also observed in wave-like ADL where these domains are formed along the lines connecting adjacent larger and smaller antidots, perpendicular to the channels. These findings point out the possibility of exploiting ADLs with complex unit cells in magnonic or spintronic applications.
On the tunneling effect for magnetic Schrodinger operators in antidot lattices
Frank, R L
2004-01-01
We study the Schr\\"odinger operator $(h\\mathbf{D}-\\mathbf{A})^2$ with periodic magnetic field $B= \\text{curl}\\,\\mathbf{A}$ in an antidot lattice $\\Omega_\\infty=\\R^2\\setminus\\bigcup_{\\alpha\\in\\Gamma}(U+\\alpha)$. Neumann boundary conditions lead to spectrum below $h\\inf B$. Under suitable assumptions on a "one-well problem" we prove that this spectrum is localized inside an exponentially small interval in the semi-classical limit $h\\rightarrow 0$. For this purpose we construct a basis of the corresponding spectral subspace with natural localization and symmetry properties.
Energy Technology Data Exchange (ETDEWEB)
Bisotto, I., E-mail: isabelle.bisotto@lncmi.cnrs.fr [LNCMI, UPR 3228, CNRS–INSA–UJF–UPS, BP 166, 38042 Grenoble, Cedex 9 (France); Portal, J.-C. [LNCMI, UPR 3228, CNRS–INSA–UJF–UPS, BP 166, 38042 Grenoble, Cedex 9 (France); Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4 (France); Institut Universitaire de France, 75005 Paris (France); Brown, D. [Microelectronics Research Center Georgia Institute of Technology, 791 Atlantic Drive NW, Atlanta, GA 30332 (United States); Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2015-11-15
We present new photovoltage oscillation in a pure two dimensional electron gas (2DEG) and in the presence of circular or semicircular antidot lattices. Results were interpreted as EMPs-like photovoltage oscillations. We observed and explained the photovoltage oscillation amplitude enhancement in the presence of an antidot lattice with regard to the pure 2DEG. The microwave frequency excitation range is 139 – 350 GHz. The cyclotron and magnetoplasmon resonances take place in the magnetic field range 0.4 – 0.8 T. This original experimental condition allows edge magnetoplasmons EMPs interference like observation at low magnetic field, typically B < B{sub c} where B{sub c} is the magnetic field at which the cyclotron resonance takes place. The different oscillation periods observed and their microwave frequency dependence were discussed. For 139 and 158 GHz microwave excitation frequencies, a unique EMPs-like interference period was found in the presence of antidots whereas two periods were extracted for 295 or 350 GHz. An explanation of this effect is given taking account of strong electron interaction with antidot at low magnetic field. Indeed, electrons involved in EMPs like phenomenon interact strongly with antidots when electron cyclotron orbits are larger than or comparable to the antidot diameter.
Directory of Open Access Journals (Sweden)
I. Bisotto
2015-11-01
Full Text Available We present new photovoltage oscillation in a pure two dimensional electron gas (2DEG and in the presence of circular or semicircular antidot lattices. Results were interpreted as EMPs-like photovoltage oscillations. We observed and explained the photovoltage oscillation amplitude enhancement in the presence of an antidot lattice with regard to the pure 2DEG. The microwave frequency excitation range is 139 – 350 GHz. The cyclotron and magnetoplasmon resonances take place in the magnetic field range 0.4 – 0.8 T. This original experimental condition allows edge magnetoplasmons EMPs interference like observation at low magnetic field, typically B < Bc where Bc is the magnetic field at which the cyclotron resonance takes place. The different oscillation periods observed and their microwave frequency dependence were discussed. For 139 and 158 GHz microwave excitation frequencies, a unique EMPs-like interference period was found in the presence of antidots whereas two periods were extracted for 295 or 350 GHz. An explanation of this effect is given taking account of strong electron interaction with antidot at low magnetic field. Indeed, electrons involved in EMPs like phenomenon interact strongly with antidots when electron cyclotron orbits are larger than or comparable to the antidot diameter.
Yamane, Haruki; Kobayashi, Masanobu
2014-01-01
The influence of two-dimensional array structures (hexagonal anti-dot lattices) on magneto-optical (MO) properties was investigated in perpendicular antiferromagnetically coupled Co80Pt20 stacked films containing ZnO optical interference layers. Antiferromagnetic exchange coupling was generated in a [CoPt/Ru/CoPt] tri-layered structure, and anti-dot lattices were formed on both CoPt layers. The exchange coupling between the CoPt layers across a very thin 0.46-nm Ru interlayer was maintained even after nanofabrication. Characteristic MO hysteresis loops were measured by a 405-nm wavelength incident light on samples containing a 50-nm ZnO optical interference layer. The anti-dot lattice with a 200-nm diameter hole exhibited an increase in the residual Kerr rotation angle owing to the antiparallel magnetization alignment of the CoPt layers. Furthermore, compared with samples without the interference layer, the figure of merit for the anti-dot lattice with a 200-nm diameter hole was enhanced by inserting a 100-nm ZnO interference layer. These improvements are attributed to MO interference effects inside the stacked films.
Energy Technology Data Exchange (ETDEWEB)
Budantsev, M. V., E-mail: budants@isp.nsc.ru; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2011-02-15
Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0-0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called 'memory effects,' are discussed.
Theoretical study on electronic properties of MoS{sub 2} antidot lattices
Energy Technology Data Exchange (ETDEWEB)
Shao, Li; Chen, Guangde; Ye, Honggang, E-mail: hgye@mail.xjtu.edu.cn; Wu, Yelong; Niu, Haibo; Zhu, Youzhang [Department of Applied Physics and the MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2014-09-21
Motivated by the state of the art method for etching hexagonal array holes in molybdenum disulfide (MoS{sub 2}), the electronic properties of MoS{sub 2} antidot lattices (MoS{sub 2}ALs) with zigzag edge were studied with first-principles calculations. Monolayer MoS{sub 2}ALs are semiconducting and the band gaps converge to constant values as the supercell area increases, which can be attributed to the edge effect. Multilayer MoS{sub 2}ALs and chemical adsorbed MoS{sub 2}ALs by F atoms show metallic behavior, while the structure adsorbed with H atoms remains to be semiconducting with a tiny bandgap. Our results show that forming periodically repeating structures in MoS{sub 2} can develop a promising technique for engineering nano materials and offer new opportunities for designing MoS{sub 2}-based nanoscale electronic devices and chemical sensors.
Energy Technology Data Exchange (ETDEWEB)
Jungfleisch, Matthias B. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Zhang, Wei [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Ding, Junjia [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Jiang, Wanjun [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Sklenar, Joseph [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA; Pearson, John E. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2016-02-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Energy Technology Data Exchange (ETDEWEB)
Mandal, R.; Barman, S.; Saha, S.; Barman, A., E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Otani, Y. [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)
2015-08-07
Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni{sub 80}Fe{sub 20} antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.
Energy Technology Data Exchange (ETDEWEB)
Pal, S.; Das, K.; Barman, A., E-mail: abarman@ybose.res.in [Thematic Unit of Excellence on Nanodevice Technology and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Klos, J. W.; Gruszecki, P.; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznań (Poland); Hellwig, O. [San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States)
2014-10-20
We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.
Energy Technology Data Exchange (ETDEWEB)
Coïsson, Marco, E-mail: m.coisson@inrim.it [INRIM, Electromagnetics Division, Strada delle Cacce 91, 10135 Torino (Italy); Manzin, Alessandra [INRIM, Electromagnetics Division, Strada delle Cacce 91, 10135 Torino (Italy); Barrera, Gabriele [INRIM, Electromagnetics Division, Strada delle Cacce 91, 10135 Torino (Italy); Università degli Studi di Torino, Dipartimento di Chimica, via P. Giuria 7, 10125 Torino (Italy); Celegato, Federica; Enrico, Emanuele; Tiberto, Paola; Vinai, Franco [INRIM, Electromagnetics Division, Strada delle Cacce 91, 10135 Torino (Italy)
2014-10-15
Highlights: • Detailed study of the magnetisation processes in antidot lattices. • Combined magnetic (MFM), magneto-transport (AMR) and numerical investigations. • Accounting for the experimentally observed differences in AMR signal amplitude in longitudinal and transverse configurations through numerical simulations. - Abstract: Ni{sub 80}Fe{sub 20} antidot arrays having different lattice geometrical properties and irregularities were prepared via electron beam lithography and self-assembling of polystyrene nanospheres. All the samples were experimentally characterised by magnetic force microscopy and room-temperature magneto-resistance measurements in different configurations. The analysis, supported by micromagnetic simulations, has been focused on the effect of lattice geometry on the magneto-resistance behaviour of these systems. The detailed investigation through micromagnetic simulations of the magnetic domain configuration as a function of the applied field allows a complete understanding of the qualitative and quantitative difference of anisotropic magneto-resistance properties that have been measured in samples with different lattice geometries and in different measurement configurations.
Energy Technology Data Exchange (ETDEWEB)
Jungfleisch, Matthias B., E-mail: jungfleisch@anl.gov; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Sklenar, Joseph [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)
2016-02-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni{sub 80}Fe{sub 20}/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Hydrogen sulfide poisoning: an antidotal role for sodium nitrite?
Hall, A H; Rumack, B H
1997-06-01
In 2 separate incidents, 6 patients were poisoned with hydrogen sulfide (H2S) in sewer gas. In the first incident, mixing acid- and sodium hydroxide-based drain cleaners in a confined space resulted in 4 poisonings and 2 deaths. Three would-be rescuers were seriously poisoned and 1 died. Two survivors had neurological sequelae. Sodium nitrite appeared to have some clinical efficacy in 1 case. The second incident involved 2 patients working on a pump in a sewage pond. A patient lying on a raft close to the pond surface was seriously poisoned; sodium nitrite was clinically efficacious and this patient survived without developing neurological sequelae. Sodium nitrite deserves further clinical study as a potential H2S antidote.
Clar Sextet Analysis of Triangular, Rectangular, and Honeycomb Graphene Antidot Lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer. scale periodic array of holes In the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters Of the lattice. The,hole diameter, hole geometry, lattice geometry, a...
Kiyota, Kazuya
2016-02-01
In Japan, several products of the antidote for poisoning have been authorized in clinical use from some recent years. For example, Hydroxcobalamin for cyanide poisoning was introduced in 2008. In 2009, Ministry of Health, Labour and Welfare invited suggestions of demand of pharmaceutical products which is high in the need in the medical care but yet unauthorized. Japanese Society for Clinical Toxicology and Japan Poison Information Center applied some candidates including methyleneblue (MB) and fomepizole, both of them were authorized in clinical market in 2015. MB is the medicine for methemoglobinemia, caused by variety of chemical products such as nitrogen oxide. Fomepizole is the antidote for methanol and ethyleneglycol, blocking alcohol dehydrogenase.
The role of the hospital pharmacy in the storage and supply of antidotes
Directory of Open Access Journals (Sweden)
Luisa Lombardo
2013-12-01
Full Text Available Cases of poisoning have been analyzed with the aim of estimating both the incidence and the seriousness of such xenobiotic effects, the major determinant agents, and the related antidotes used in hospital departments. From 2009 to November 2012, a survey of the availability of antidotes in the emergency room services was carried out in all hospital pharmacies under the Palermo Health Authority: Policlinico Paolo Giaccone, ARNAS Civico di Cristina Benefratelli, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello. Figures show that the majority of poisoning events were caused by the use/abuse of drugs, especially psychopharmaceuticals, alcohol and narcotic substances. This overdose of medical drugs and its various causes is a cause for concern and highlights the fact that this tendency has not regressed over the years. Doctors and pharmacists should raise patients’ awareness about how to use drugs correctly, and make adequate information available to all patients in order to, first, reduce the risks, and second, reduce the cost of treatment for intoxication.
Hall, Alan H; Saiers, Jane; Baud, Frédéric
2009-01-01
Cyanide has several antidotes, with differing mechanisms of action and diverse toxicological, clinical, and risk-benefit profiles. The international medical community lacks consensus about the antidote or antidotes with the best risk-benefit ratio. Critical assessment of cyanide antidotes is needed to aid in therapeutic and administrative decisions that will improve care for victims of cyanide poisoning (particularly poisoning from enclosed-space fire-smoke inhalation), and enhance readiness for cyanide toxic terrorism and other mass-casualty incidents. This paper reviews preclinical and clinical data on available cyanide antidotes and considers the profiles of these antidotes relative to properties of a hypothetical ideal cyanide antidote. Each of the antidotes shows evidence of efficacy in animal studies and clinical experience. The data available to date do not suggest obvious differences in efficacy among antidotes, with the exception of a slower onset of action of sodium thiosulfate (administered alone) than of the other antidotes. The potential for serious toxicity limits or prevents the use of the Cyanide Antidote Kit, dicobalt edetate, and 4-dimethylaminophenol in prehospital empiric treatment of suspected cyanide poisoning. Hydroxocobalamin differs from these antidotes in that it has not been associated with clinically significant toxicity in antidotal doses. Hydroxocobalamin is an antidote that seems to have many of the characteristics of the ideal cyanide antidote: rapid onset of action, neutralizes cyanide without interfering with cellular oxygen use, tolerability and safety profiles conducive to prehospital use, safe for use with smoke-inhalation victims, not harmful when administered to non-poisoned patients, easy to administer.
Magnetic edge states and magnetotransport in graphene antidot barriers
DEFF Research Database (Denmark)
Thomsen, M. R.; Power, Stephen; Jauho, Antti-Pekka;
2016-01-01
Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These experiments have inspired the present theoretical study of GALs in a perpendicu......Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These experiments have inspired the present theoretical study of GALs...... in a perpendicular magnetic field. We calculate magnetotransport through graphene antidot barriers (GABs), which are finite rows of antidots arranged periodically in a pristine graphene sheet, using a tight-binding model and the Landauer-Buttiker formula. We show that GABs behave as ideal Dirac mass barriers...... for antidots smaller than the magnetic length and demonstrate the presence of magnetic edge states, which are localized states on the periphery of the antidots due to successive reflections on the antidot edge in the presence of a magnetic field. We show that these states are robust against variations...
Magnetic edge states and magnetotransport in graphene antidot barriers
Thomsen, M. R.; Power, S. R.; Jauho, A.-P.; Pedersen, T. G.
2016-07-01
Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These experiments have inspired the present theoretical study of GALs in a perpendicular magnetic field. We calculate magnetotransport through graphene antidot barriers (GABs), which are finite rows of antidots arranged periodically in a pristine graphene sheet, using a tight-binding model and the Landauer-Büttiker formula. We show that GABs behave as ideal Dirac mass barriers for antidots smaller than the magnetic length and demonstrate the presence of magnetic edge states, which are localized states on the periphery of the antidots due to successive reflections on the antidot edge in the presence of a magnetic field. We show that these states are robust against variations in lattice configuration and antidot edge chirality. Moreover, we calculate the transmittance of disordered GABs and find that magnetic edge states survive a moderate degree of disorder. Due to the long phase-coherence length in graphene and the robustness of these states, we expect magnetic edge states to be observable in experiments as well.
[Antidotes in clinical toxicology].
Hruby, K
2013-09-01
This overview describes antidotes, and their clinical pharmacology, that have an established significance in the currently practiced clinical toxicology because of their proven effectiveness in the treatment of serious poisonings. For the proper, efficient, and targeted use of an antidote, pharmacological knowledge is required, which is a central subject of this article. Current data from the literature are used as reference along with the accumulated experiences about possible adverse effects in order to include them in therapeutic considerations. The dosage of antidotes is the subject of several other review articles and is therefore not included in this synopsis.
[New antidotes in toxicology].
Bédry, Régis
2008-04-30
New antidotes appeared in the French pharmacopoeia (fomepizole, Viperfav), and old drugs, usually unused in toxicology, saw their indications enlarged in an antidotic activity (glucose and insulin, L-carnitine, octreotide). Fomepizole is an antidote for toxic alcohol and glycol intoxications, which is much easier to handle than ethylic alcohol and as efficient as the classical antidote of this kind of intoxication. Octreotide improves the result of hypertonic glucose infusion in sulfonylurea derivatives intoxications, by blocking insulin release. The glucose-insulin association allows the myocardium to use the main energy substrate necessary for its action in the setting of beta-blocking and calcium channel blocking agents intoxications when they are associated to a cardiogenic shock. Viperfav is a polyvalent antivenom used in European adders envenomations, which showed its effectiveness and safety. Levocarnitine allows to correct the wrong metabolic pathway induced by a deficit in carnitine in valproïc acid intoxications.
Modifying toxicokinetics with antidotes.
Baud, F J; Borron, S W; Bismuth, C
1995-12-01
Five approaches may be described through which antidotes can modify toxicokinetics: (1) Decreased bioavailability of the toxins; (2) Cellular redistribution of the toxin in the organism; (3) Promotion of elimination in an unchanged form; (4) Slowing of metabolic activation pathways; (5) Acceleration of metabolic deactivation pathways. However, the ability to modify toxicokinetics with a new treatment, while demonstrating an understanding of the mechanism of action, must never be construed to be, in and of itself, the goal of therapy. The ultimate evaluation of an antidote modifying toxicokinetics is strictly clinical.
Band Gap Tuning of Armchair Graphene Nanoribbons by Using Antidotes
Zoghi, Milad; Goharrizi, Arash Yazdanpanah; Saremi, Mehdi
2017-01-01
The electronic properties of armchair graphene nanoribbons (AGNRs) can be changed by creating antidotes within the pristine ribbons and producing antidote super lattice AGNRs (ASL-AGNRs). In the present work, band gap tuning of ASL-AGNRs is investigated by varying the width of ribbons ( d W) and the distance between antidotes ( d L) for five different antidote topologies. Numerical tight-binding model is applied to obtain the band structure of the ribbons. Based on our results, it is found that the band gap of ASL-AGNRs can be increased or decreased in different cases. Furthermore, changing the width of ribbons generally results in more predictable␣band gap profiles compared to the variation of distance between antidotes. Consequently, by opting appropriate antidote topologies and dimensional parameters ( d W and d L), it is possible to gain a desired band gap size. This can be considered as an alternative solution in design of electronic and optoelectronic devices where tunable band gap values are needed.
Jackson, Anthony
2016-01-01
For centuries, education has been seen as an antidote to intolerance and conflict. In a world rocked by violence, much of it across cultural borders, developing students' cultural understanding has become more important than ever. In this article, Asia Society vice president Anthony Jackson discusses how two high schools in the Society's…
Singh, Satinderpal; Prakash, Atish; Kaur, Shamsherjit; Ming, Long Chiau; Mani, Vasudevan; Majeed, Abu Bakar Abdul
2016-08-01
Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016.
Antidotes for acute cyanide poisoning.
Borron, Stephen W; Baud, Frederic J
2012-08-01
Cyanide poisoning can present in multiple ways, given its widespread industrial use, presence in combustion products, multiple physical forms, and chemical structures. The primary target of toxicity is mitochondrial cytochrome oxidase. The onset and severity of poisoning depend on the route, dose, physicochemical structure and other variables. Common poisoning features include dyspnea, altered respiratory patterns, abnormal vital signs, altered mental status, seizures, and lactic acidosis. Our present knowledge supports cyanide poisoning treatment based on excellent supportive care with adjunctive antidotal therapy. Multiple antidotes exist and vary in regional availability. All currently marketed antidotes appear to be effective. Antidotal mechanisms include chelation, formation of stable, less toxic complexes, methemoglobin induction, and sulfane sulfur supplementation for detoxification by endogenous rhodanese. Each antidote has advantages and disadvantages. For example, hydroxocobalamin is safer than the methemoglobin inducers in patients with smoke inhalation. Research for new, safer and more effective cyanide antidotes continues.
Resonant tunneling diode based on band gap engineered graphene antidot structures
Palla, Penchalaiah; Ethiraj, Anita S.; Raina, J. P.
2016-04-01
The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green's Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved the Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.
Optical properties of graphene antidot lattices
DEFF Research Database (Denmark)
Pedersen, Thomas Garm; Flindt, Christian; Pedersen, Jesper Goor
2008-01-01
demonstrate that this artificial nanomaterial is a dipole-allowed direct-gap semiconductor with a very pronounced optical-absorption edge. Hence, optical infrared spectroscopy should be an ideal probe of the electronic structure. To address realistic experimental situations, we include effects due to disorder...
Directory of Open Access Journals (Sweden)
Carlo Locatelli
2008-09-01
Full Text Available In the last ten years, increasing attention has been paid to the unavailability of antidotes in hospital pharmacies and emergency setting. Essential antidotes are not adequately stocked in many European and extra-European countries. The Pavia Poison Center (PPC was charged by the National Institute of Health to conduct a survey in order to define the antidotes availability in emergency setting and to identify areas of possible improvement. Insufficient antidote stocking was defined as lack of the antidote or an amount inadequate to treat 1 seriously poisoned 70-kg patient for 24 hours. A national database (BaNdA accessible through our PC website (www.cavpavia.it that includes information on antidotes stocks of all hospital departments was created. The database information is available for all registered users and regularly updated: a simple query allows to identify hospitals provided with the antidote looked for at local, regional or national level. This database permit to optimize the antidotes procurement by EDs, through agreements with other hospitals serving the same area, to allow a more appropriate utilization of resources and to ameliorate the clinical management of the poisoned patient.
Energy Technology Data Exchange (ETDEWEB)
Lee, W. S.; Johnston, S.; Moritz, B.; Lee, J.; Yi, M.; Zhou, K. J.; Schmitt, T.; Patthey, L.; Strocov, V.; Kudo, K.; Koike, Y.; van den Brink, J.; Devereaux, T. P.; Shen, Z. X.
2013-06-25
High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice coupling in a family of quasi-1D insulating cuprates, Ca_{2+5x}Y_{2-5x}Cu_{5}O_{10}. Site-dependent low-energy excitations arising from progressive emissions of a 70 meV lattice vibrational mode are resolved for the first time, providing a direct measurement of electron-lattice coupling strength. We show that such electron-lattice coupling causes doping-dependent distortions of the Cu-O-Cu bond angle, which sets the intrachain spin exchange interactions. Our results indicate that the lattice degrees of freedom are fully integrated into the electronic behavior in low-dimensional systems.
Transport and magnetic properties of CMR manganites with antidot arrays
Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian
2014-03-01
We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Antidotes. 154.1440 Section 154.1440 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... Equipment § 154.1440 Antidotes. Each vessel must have the antidotes prescribed in the IMO Medical First...
46 CFR 153.930 - Cargo antidotes.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo antidotes. 153.930 Section 153.930 Shipping COAST... Cargo antidotes. No person may operate a tankship that carries a cargo listed in Table 1 unless the tankship has on board the antidotes described for the cargo in the Medical First Aid Guide for Use...
Polymer antidotes for toxin sequestration.
Weisman, Adam; Chou, Beverly; O'Brien, Jeffrey; Shea, Kenneth J
2015-08-01
Toxins delivered by envenomation, secreted by microorganisms, or unintentionally ingested can pose an immediate threat to life. Rapid intervention coupled with the appropriate antidote is required to mitigate the threat. Many antidotes are biological products and their cost, methods of production, potential for eliciting immunogenic responses, the time needed to generate them, and stability issues contribute to their limited availability and effectiveness. These factors exacerbate a world-wide challenge for providing treatment. In this review we evaluate a number of polymer constructs that may serve as alternative antidotes. The range of toxins investigated includes those from sources such as plants, animals and bacteria. The development of polymeric heavy metal sequestrants for use as antidotes to heavy metal poisoning faces similar challenges, thus recent findings in this area have also been included. Two general strategies have emerged for the development of polymeric antidotes. In one, the polymer acts as a scaffold for the presentation of ligands with a known affinity for the toxin. A second strategy is to generate polymers with an intrinsic affinity, and in some cases selectivity, to a range of toxins. Importantly, in vivo efficacy has been demonstrated for each of these strategies, which suggests that these approaches hold promise as an alternative to biological or small molecule based treatments.
Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction
Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.
1991-01-01
provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.
Antidote Stocking at Hospitals in North Palestine
Directory of Open Access Journals (Sweden)
Ansam F. Sawalha
2007-03-01
Full Text Available Objective: The purpose of this study was to determine the availability and adequacy of antidote stocking at hospitals in north Palestine based on published guidelines for antidote stocking.Methodology: This study is a cross sectional survey of all hospitals at north Palestine (n=11 using a questionnaire which was completed by the director of the pharmacy department at each hospital. The questionnaire was divided into 2 parts. The first part contained a list of 25 antidotes while the second part contained a list of 12 antidotes. This classification is based on the guideline proposed by the British Association for Emergency Medicine (BAEM. The net antidote stock results were compared with the American guidelines as well.Result: The overall availability of each antidote in the first list varied widely from zero for glucagon to 100% for atropine. The number antidotes of the first list that were stocked in the 11 hospitals ranged from 5 to 12 antidotes but none of the hospitals stocked all the 25 antidotes. Additionally, availability of antidotes in the second list varied widely from zero for polyethylene glycol to 100% for dobutamine. The number of antidotes stocked ranged from 5 to 9 but none of the hospitals stocked all the 12 antidotes.Discussion and Conclusion: hospitals in north Palestine do not have adequate stock of antidotes. Raising awareness of the importance of antidotes by education, regular review of antidote storage, distribution plans, and appropriate legislation might provide solutions. Coordination between Palestinian hospitals and the PCDIC at An-Najah National University is also important.
Observing Altshuler--Aronov--Spivak Oscillation in a Hexagonal Antidot Array of Monolayer Graphene
Yagi, Ryuta; Shimomura, Midori; Tahara, Fumiya; Kobara, Hiroaki; Fukada, Seiya
2012-06-01
We show that hexagonal antidot lattices of monolayer graphene exhibited the Altshuler--Aronov--Spivak (AAS) effect in low field magnetoresistance. In higher magnetic fields, Aharonov--Bohm-type oscillations were visible. The phase of AAS oscillation indicated that the chirality effect of graphene is suppressed because of inter-valley scattering due to boundary scatterings.
The dilemma of approving antidotes.
Steffen, Christian
2007-04-20
Clinical trials with antidotes are difficult to perform for a variety of practical, ethical, and financial reasons. As acute poisoning is a rare event, the commercial interest in basic and clinical research is low. Poisoned patients are usually not available for normal clinical trial procedures and, if they are, they cannot give informed consent. This situation results in a dilemma: antidotes are essential drugs. A resolution of the Council of Europe requests to guarantee the optimal availability of antidotes and the improvement of their use. As comprehensive data on the efficacy of antidotes are often missing, a marketing authorisation under exceptional circumstances according to Article 14(8) of Regulation (EC) No. 276/2004, will often be the only way to get an approval, as: (1) the indications for which the product in question is intended are encountered so rarely that the applicant cannot reasonably be expected to provide comprehensive evidence ("orphan drug"), (2) in the present state of scientific knowledge, comprehensive information cannot be provided, or (3) it would be contrary to generally accepted principles of medical ethics to collect such data. Typically, data on antidotes are obtained from a patchwork of studies with animals, human tissue and a few observations from human poisoning corroborated with data from clinical observations and biochemistry. Generalisations from chemical and mechanistic similarities between groups of poisons are usual, but often lack scientific evidence. Current standards of good clinical practice can rarely be observed. Therefore, public funding and other financial support are necessary incentives to initiate trials in this important area.
Vesicant chemotherapy extravasation antidotes and treatments.
Schulmeister, Lisa
2009-08-01
Oncology nurses and pharmacists often are given the responsibility of developing or updating institutional policies to manage vesicant chemotherapy extravasations. Antidote and treatment recommendations of vesicant chemotherapy manufacturers, antidotes and treatments approved by the U.S. Food and Drug Administration (FDA), and guidelines and recommendations made by professional oncology organizations are useful resources in this process. This article describes manufacturers' recommendations, lists antidotes and treatments approved by the FDA, and reviews published guidelines and recommendations. Available antidote and treatment formulations and their preparation and administration also are discussed.
Novel, orally effective cyanide antidotes.
Nagasawa, Herbert T; Goon, David J W; Crankshaw, Daune L; Vince, Robert; Patterson, Steven E
2007-12-27
A series of prodrugs of 3-mercaptopyruvate (3-MP), the substrate for the enzyme 3-mercaptopyruvate/cyanide sulfurtransferase (3-MPST) that converts cyanide to the nontoxic thiocyanate, which are highly effective cyanide antidotes, have been developed. These prodrugs of 3-MP are unique in being not only orally bioavailable, but may be administered up to an hour prior to cyanide as a prophylactic agent and are both rapid- or slow-acting when given parenterally.
The Role of Lattice Misfit on Heterogeneous Nucleation of Pure Aluminum
Wang, L.; Yang, L.; Zhang, D.; Xia, M.; Wang, Y.; Li, J. G.
2016-10-01
α-Alumina (Al2O3) single crystals with different termination planes were used as heterogeneous nucleation substrates for liquid aluminum to varying lattice misfits at the interface between substrate and newly nucleated aluminum grain. Undercooling during the nucleation process was measured for interface configurations with varied lattice misfit, while the solidified Al/Al2O3 interfaces were directly observed by high-resolution transmission electron microscopy (HRTEM). Based on experimental results, the effect of lattice misfit on nucleation behavior was systematically investigated following previous misfit-interfacial energy models, with clarification being made by the undercooling measurement and HRTEM observations of the interfaces in the Al/Al2O3 system. When the misfit is smaller than 13 pct, both experimental results and theoretical analysis show that the currently existing models through modification and incorporating energy calculation can be used to fit the detected undercooling of investigated system. Beyond 13 pct, a new hypothesis was developed to accommodate lattice misfit with stacking faults such as microtwins according to the HRTEM analysis. The interfacial energy is then replaced by the stacking fault energy accumulated in the strained area. It is shown that the lattice misfit plays an important role in determining the heterogeneous nucleation of liquid aluminum. The nucleation undercooling is then able to be predicted by the theoretically calculated interfacial energy using the integrated models developed in the work. The prediction results were also verified by the HRTEM analysis on the nucleation interface of the Al/Al2O3 systems and detected undercooling on corresponding systems.
Who gets antidotes? choosing the chosen few.
Buckley, Nicholas A; Dawson, Andrew H; Juurlink, David N; Isbister, Geoffrey K
2016-03-01
An understanding of mechanisms, potential benefits and risks of antidotes is essential for clinicians who manage poisoned patients. Of the dozens of antidotes currently available, only a few are regularly used. These include activated charcoal, acetylcysteine, naloxone, sodium bicarbonate, atropine, flumazenil, therapeutic antibodies and various vitamins. Even then, most are used in a minority of poisonings. There is little randomized trial evidence to support the use of most antidotes. Consequently, decisions about when to use them are often based on a mechanistic understanding of the poisoning and the expected influence of the antidote on the patient's clinical course. For some antidotes, such as atropine and insulin, the doses employed can be orders of magnitude higher than standard dosing. Importantly, most poisoned patients who reach hospital can recover with supportive care alone. In low risk patients, the routine use of even low risk antidotes such as activated charcoal is unwarranted. In more serious poisonings, decisions regarding antidote use are generally guided by a risk/benefit assessment based on low quality evidence.
Mishra, M. K.; Sharma, R. K.; Tyagi, R.; Manchanda, R.; Pandey, A. K.; Thakur, O. P.; Muralidharan, R.
2016-04-01
Large low temperature negative magnetoresistance (NMR) experimentally observed in AlGaN/GaN high electron mobility transistors (HEMT) structures grown by metalorganic chemical vapour deposition on sapphire substrate has been reported. A linear B -1 ln B dependence of magnetoresistance observed in our samples indicates the presence of random antidot array together with smooth disorder. It is proposed that the antidots are linked with high bandgap AlN rich regions formed due to possible Al-Ga segregation at the interface during growth and the smooth random disorder is due to interface roughness. The antidot density is estimated to be of ˜7 to 8 × 1010 cm-2 in our samples. The magnitude of NMR is also correlated with the extent of interface roughness indicated by x-ray reflectivity. It is also proposed that the formation of antidots is related with the lattice mismatch between substrate and epitaxial heterostructures. The NMR in AlGaN/GaN HEMT structures grown on SiC substrates having relatively lower lattice mismatch has been shown to have a usual B 2 and ln T dependences indicating only electron-electron interaction and absence of antidot-like scatterers.
THE HERBICIDES ANTIDOTES OF AGRICULTURAL CROPS (OVERVIEW
Directory of Open Access Journals (Sweden)
Yablonskaya Y. K.
2013-12-01
Full Text Available The extensive overview of the currently used herbicides antidotes of agricultural crops is reviewed in this article. The most important results are discussed and the technology of combined application is described
Antidote to Controversy? Responses to Carolyn Henly.
Randall, Mary Ella; And Others
1993-01-01
Provides four practicing teachers' written responses to Carolyn Henly's article entitled "Reader Response Theory as Antidote to Controversy: Teaching "The Bluest Eye," which appears in the same issue. (HB)
Rising Price of Opioid OD Antidote Could Cost Lives: Study
... fullstory_162410.html Rising Price of Opioid OD Antidote Could Cost Lives: Study Investigators identify strategies for ... called attention to skyrocketing prices for the lifesaving antidote, noting: Hospira (a Pfizer Inc. company) charges $142 ...
Antidotes for alcohol and glycol toxicity: translating mechanisms into treatments.
McMartin, K E
2010-09-01
Translational toxicology can be defined as the movement of potential antidotes for the treatment of poisonings from basic mechanistic research to the marketplace. Because poisonings are infrequent, the clinical development of antidotes is fraught with trials and tribulations. Academic scientists often conduct basic mechanistic work with antidotes but are infrequently involved in further drug development. This article presents the development of 4-methylpyrazole (4MP) (fomepizole) as an antidote against toxic alcohol poisonings, particularly by methanol and ethylene glycol (EG).
Development of antidotes for sodium monofluoroacetate (1080).
Cook, C J; Eason, C T; Wickstrom, M; Devine, C D
2001-01-01
Baits containing sodium monofluoroacetate (1080) are commonly used in New Zealand during feral pest control operations. However, each year, a number of domestic dogs are unintentionally killed during these control operations, and a suitable antidote to 1080 intoxication is required. The primary toxic mechanism of 1080 is well known. However, as with other pathologies where energy deprivation is the main effect of intoxication, the cascade of effects that arises from this primary mechanism is complex. At present, putative antidotes for 1080 are generally unable to address the primary mechanism of intoxication but such agents may be able to control the cascade of secondary effects, which can result during intoxication. Part of the reason for this is that targeting the cascade can provide a longer window of time for antidote success. We have undertaken studies that identified some of the central nervous system (CNS) and systemic pathophysiological cascades caused by 1080 intoxication. Using this information we designed antidotes, on the basis of preventing different steps in this cascade. In the chicken model targeting systemic changes, in particular reducing effects of nitric oxide derivatives generated in cardiac muscle, proved successful in reducing fatality associated with 1080. In rats and sheep, targeting the CNS with a number of compounds including: glutamate; calcium and dopamine antagonists; gamma amino butyric acid agonists, and astressin-like compounds reduced fatalaties. However, to be successful in the rat and sheep model a given antidote needed to move quickly from systemic circulation across the blood brain barrier and into the CNS. The work also suggests ways in which specific biomarkers of 1080 exposure may be developed with respect to different species.
The role of strange sea quarks in chiral extrapolations on the lattice
Descotes-Genon, S
2004-01-01
Since the strange quark has a light mass of order Lambda_QCD, fluctuations of sea s-s bar pairs may play a special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry breaking in the chiral limits N_f=2 (m_u=m_d=0, m_s physical) and N_f=3 (m_u=m_d=m_s=0). This effect of vacuum fluctuations of s-s bar pairs is related to the violation of the Zweig rule in the scalar sector, described through the two O(p^4) low-energy constants L_4 and L_6 of the three-flavour strong chiral lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit a numerical competition between leading- and next-to-leading-order terms according to the chiral counting, and chiral extrapolations should be handled with a special care. We investigate the impact of the fluctuations of s-s bar pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the isospin limit. Information on the size of the vacuum fluct...
[Antidotes--often expensive and not always available].
Hoppu, Kalle; Pajarre-Sorsa, Suvi
2012-01-01
While there is seldom need for most anti-poisoning agents and antidotes, they should be quickly available, when needed. Local worst-case scenarios, regional staggering of the treatment, and distances must be taken into account at the health care unit level. Hospitals are fairly well equipped with the recommended antidotes. Replenishment of the stocks is complicated by continual disruptions in supply of antidotes. New antidotes in the updated recommendation include calcium folinate (leucovorin) for methanol poisoning and octreotide for the treatment of hypoglycemia caused by intoxications resulting from antidiabetics of the sulfonyl urea group.
[Antidotes to novel direct oral anticoagulants].
Khorev, N G; Momot, A P; Kon'kova, V O
During the last 10 years, several novel direct oral anticoagulants (NOACs) have entered the clinical arena and were registered in the Russian Federation for use in patients presenting with atrial fibrillation, venous thrombosis, and pulmonary artery thromboembolism. NOACs are classified into two groups: direct thrombin inhibitor (notably dabigatran) and factor Xa inhibitors (including rivaroxaban, apixaban, and edoxaban). Their disadvantage is lack of specific antidotes in case of an emergency situation (injury, infarction, stroke requiring thrombolysis, urgent operation). The review contains the data on the existing therapeutic regimens of treating haemorrhage on the background of taking these coagulants. This is followed by analysing the present-day results of clinical trials aimed at working out pharmaceutical agents (andexanet alpha, idarucizumab, aripazine) being antidotes to direct thrombin inhibitor and the factor Xa inhibitors. Administration of these agents makes it possible to reverse coagulation and minimize the aftermaths of haemorrhage in patients taking these drugs, in emergency situations.
Unilateral Antidotes to DNS Cache Poisoning
Herzberg, Amir; Shulman, Haya
2012-01-01
We investigate defenses against DNS cache poisoning focusing on mechanisms that can be readily deployed unilaterally by the resolving organisation, preferably in a single gateway or a proxy. DNS poisoning is (still) a major threat to Internet security; determined spoofing attackers are often able to circumvent currently deployed antidotes such as port randomisation. The adoption of DNSSEC, which would foil DNS poisoning, remains a long-term challenge. We discuss limitations of the prominent r...
Newer clinically available antithrombotics and their antidotes.
Lévy, Samuel
2014-09-01
New oral anticoagulants (NOACs) have emerged as an alternative therapy to warfarin in the treatment of arterial and venous thromboembolism and in stroke prevention in patients with non-valvular atrial fibrillation (AF). Three of them, i.e., dabigatran, rivaroxaban, and apixaban, have been approved for clinical use in North America and in a number of European countries. In non-valvular AF, their approval was based on large randomized trials showing that they are non-inferior or even, in some instances, superior to warfarin. Dabigatran is a direct thrombin (factor IIa) inhibitor; rivaroxaban and apixaban are direct factor Xa inhibitors. Before using NOACs, it is recommended to become familiar with their pharmacological characteristics and their metabolism. The absence of specific antidotes is often cited as part of the possible weaknesses of NOACs. Antidotes are perceived to be useful in emergency situations such as life-threatening bleeding or non-elective major surgery. NOACs do not require blood monitoring, and therefore, patient compliance to the treatment is essential. For the present time, there are no specific antidotes available for the three NOACs approved for clinical use. However, phase I or phase II research studies in this area are ongoing. For dabigatran, a specific antidote has been tested in a rat model of anticoagulation, and a study in healthy male volunteers has been recently reported. For rivaroxaban, prothrombin complex concentrates (PCCs) have been found to completely reverse the prolongation of the prothrombin time induced by this NOAC. For apixaban, recombinant factor VII was found in an experimental study using human blood to be superior to activated PCC (aPCC) and PCC. More specific antidotes for rivaroxaban and apixaban are in phases I and II evaluation. The management of patients suffering from a major bleeding or requiring a non-elective major surgery includes non-specific reversal agents and is discussed in the light of a recent position
That's a Phat Antidote: Intravenous Fat Emulsions and Toxicological Emergencies.
Schultz, Amy E; Lewis, Temeka; Reed, Brittany S; Weant, Kyle A; Justice, Stephanie Baker
2015-01-01
Health care providers in the emergency department (ED) frequently find themselves caring for patients who may have overdosed on a medication(s) or other toxic substance. These patients can prove to be a challenge, as providers must try to determine the substance(s) involved so that the appropriate treatment can be initiated. For those patients who are hemodynamically unstable upon presentation, it is important to note that supportive care is of the utmost importance, as there are few substances that have antidotes available. In these situations, lipid emulsion can be considered. This is especially true in the setting of the following toxicities: local anesthetics, β-blockers, calcium channel blockers, and the tricyclic antidepressants. Even though lipid emulsion may not be used that frequently in the ED, it is important to be aware of its role in the setting of toxicological emergencies, how it should be dosed and administered, and the necessary safety precautions.
Common reversal agents/antidotes in small animal poisoning.
Khan, Safdar A
2012-03-01
Different antidotes counteract the effect of a toxicant in several different ways. Antidotes can reverse, decrease, or prevent action of a toxicant. They can also help in achieving stabilization of vital signs, directly or indirectly, and promote excretion of a toxicant. However, overreliance on an antidote can be unrealistic and dangerous. While expectations of rapid recovery from antidotes are usually high, in a real life situation, there are many impediments in achieving this goal. The timing of its use, availability, cost, and sometimes adverse effects from the antidote itself can influence the results and outcome of a case. The majority of toxicants do not have a specific antidote therapy indicated and patients in these cases equally benefit from supportive care. In this chapter, commonly used antidotes and reversal agents in small animals are listed in a table form. The table lists generic name along with brand name of an antidote/reversal agent whenever available, main indications for their use, and provides comments or cautions in their use as needed. After stabilizing the patient and establishing the etiology, the clinicians must review more detailed management of that particular toxicant discussed here or in other references.
[Bezoars in history--not only a perfect antidote].
Ryś, Anna; Siek, Bartłomiej; Sein Anand, Jacek
2012-01-01
Bezoar is a concretion found in gastrointestinal tract. The word "bezoar" is derived from the Arabic 'padzahr', and means antidote. Animal bezoars were widely used in medicine until the 18th century. Article presents European medieval and modern tradition about bezoar as an antidote. Ancient literary sources are compared with the medieval and modern medical and magical texts.
Anisotropy engineering using exchange bias on antidot templates
Directory of Open Access Journals (Sweden)
F. J. T. Goncalves
2015-06-01
Full Text Available We explore an emerging device concept based on exchange bias used in conjunction with an antidot geometry to fine tune ferromagnetic resonances. Planar cavity ferromagnetic resonance is used to study the microwave response of NiO/NiFe bilayers with antidot structuring. A large frequency asymmetry with respect to an applied magnetic field is found across a broad field range whose underlying cause is linked to the distribution of magnetic poles at the antidot surfaces. This distribution is found to be particularly sensitive to the effects of exchange bias, and robust in regards to the quality of the antidot geometry. The template based antidot geometry we study offers advantages for practical device construction, and we show that it is suitable for broadband absorption and filtering applications, allowing tunable anisotropies via interface engineering.
Nano-antidotes for drug overdose and poisoning.
Forster, Vincent; Leroux, Jean-Christophe
2015-06-03
The number of intoxications from xenobiotics--natural or synthetic foreign chemicals, or substances given in higher doses than typically present in humans--has risen tremendously in the last decade, placing poisoning as the leading external cause of death in the United States. This epidemic has fostered the development of antidotal nanomedicines, which we call "nano-antidotes," capable of efficiently neutralizing offending compounds in situ. Although prototype nano-antidotes have shown efficacy in proof-of-concept studies, the gap to clinical translation can only be filled if issues such as the clinical relevance of intoxication models and the safety profile of nano-antidotes are properly addressed. As the unmet medical needs in resuscitative care call for better treatments, this Perspective critically reviews the recent progress in antidotal medicine and emerging nanotechnologies.
Development of universal antidotes to control aptamer activity.
Oney, Sabah; Lam, Ruby T S; Bompiani, Kristin M; Blake, Charlene M; Quick, George; Heidel, Jeremy D; Liu, Joanna Yi-Ching; Mack, Brendan C; Davis, Mark E; Leong, Kam W; Sullenger, Bruce A
2009-10-01
With an ever increasing number of people taking numerous medications, the need to safely administer drugs and limit unintended side effects has never been greater. Antidote control remains the most direct means to counteract acute side effects of drugs, but, unfortunately, it has been challenging and cost prohibitive to generate antidotes for most therapeutic agents. Here we describe the development of a set of antidote molecules that are capable of counteracting the effects of an entire class of therapeutic agents based upon aptamers. These universal antidotes exploit the fact that, when systemically administered, aptamers are the only free extracellular oligonucleotides found in circulation. We show that protein- and polymer-based molecules that capture oligonucleotides can reverse the activity of several aptamers in vitro and counteract aptamer activity in vivo. The availability of universal antidotes to control the activity of any aptamer suggests that aptamers may be a particularly safe class of therapeutics.
Ellery, Adam J.; Baker, Ruth E.; Simpson, Matthew J.
2016-10-01
Migration of cells and molecules in vivo is affected by interactions with obstacles. These interactions can include crowding effects, as well as adhesion/repulsion between the motile cell/molecule and the obstacles. Here we present an analytical framework that can be used to separately quantify the roles of crowding and adhesion/repulsion using a lattice-based random walk model. Our method leads to an exact calculation of the long time Fickian diffusivity, and avoids the need for computationally expensive stochastic simulations.
Energy Technology Data Exchange (ETDEWEB)
Palmer, B.M.; Sadayappan, S.; Wang, Y.; Weith, A.E.; Previs, M.J.; Bekyarova, T.; Irving, T.C.; Robbins, J.; Maughan, D.W. (Vermont)
2011-10-06
We investigated the influence of cardiac myosin binding protein-C (cMyBP-C) and its constitutively unphosphorylated status on the radial and longitudinal stiffnesses of the myofilament lattice in chemically skinned myocardial strips of the following mouse models: nontransgenic (NTG), effective null for cMyBP-C (t/t), wild-type cMyBP-C expressed into t/t (WT{sub t/t}), and constitutively unphosphorylated cMyBP-C (AllP{sub -t/t}). We found that the absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} resulted in a compressible cardiac myofilament lattice induced by rigor not observed in the NTG and WT{sub t/t}. These results suggest that the presence and phosphorylation of the N-terminus of cMyBP-C provides structural support and radial rigidity to the myofilament lattice. Examination of myofilament longitudinal stiffness under rigor conditions demonstrated a significant reduction in cross-bridge-dependent stiffness in the t/t compared with NTG controls, but not in the AllP{sub -t/t} compared with WT{sub t/t} controls. The absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} both resulted in a shorter myosin cross-bridge lifetime when myosin isoform was controlled. These data collectively suggest that cMyBP-C provides radial rigidity to the myofilament lattice through the N-terminus, and that disruption of the phosphorylation of cMyBP-C is sufficient to abolish this structural role of the N-terminus and shorten cross-bridge lifetime. Although the presence of cMyBP-C also provides longitudinal rigidity, phosphorylation of the N-terminus is not necessary to maintain longitudinal rigidity of the lattice, in contrast to radial rigidity.
Role of dissolved salts in thermophoresis of DNA: lattice-Boltzmann-based simulations.
Hammack, Audrey; Chen, Yeng-Long; Pearce, Jennifer Kreft
2011-03-01
We use a lattice Boltzmann based Brownian dynamics simulation to investigate the dependence of DNA thermophoresis on its interaction with dissolved salts. We find the thermal diffusion coefficient D{T} depends on the molecule size, in contrast with previous simulations without electrostatics. The measured S{T} also depends on the Debye length. This suggests thermophoresis of DNA is influenced by the electrostatic interactions between the polymer beads and the salt ions. However, when electrostatic forces are weak, DNA thermophoresis is not found, suggesting that other repulsive forces such as the excluded volume force prevent thermal migration.
Antidot effects on micromagnetic behavior of Py ferromagnetic samples
Energy Technology Data Exchange (ETDEWEB)
Yetis, Hakan, E-mail: yetis_h@ibu.edu.tr; Denizli, Haluk
2016-09-01
The coercivity and magnetic hysteresis behavior of permalloy (Py) samples have been studied in the presence of square arrays of the circular antidots. The open source OOMMF micromagnetic software is used to numerically solve the Landau–Lifshitz–Gilbert (LLG) equation. In calculations, Py samples are designed in such a way that they include a different number of antidot in an array which possess the same total surface area. In this way, the total Py region stayed unchanged despite the growing number of antidots in a fixed sample size. We found significant increase in the coercive field for the sample with the smallest antidot spacing. The results are discussed within the framework of superdomain (SD) and superdomain wall (SDW) formation. - Highlights: • The choice of antidot parameters in a finite sized Py film affects the magnetic reversal process. • The antidot pattern causes the formation of SDs and LE-SDWs at nano-meter scales. • A significant increase in the coercivity is found for the sample with the largest number of antidots.
Duangjit, Sureewan; Mehr, Leilah Maria; Kumpugdee-Vollrath, Mont; Ngawhirunpat, Tanasait
2014-01-01
Microemulsions (ME) have gained attention as an alternative pharmaceutical formulation for transdermal delivery systems. However, the complicated relationships between various ME compositions (causal factors) and their characteristics (response variable) have not been fully comprehended. To overcome this problem, the design and development of ME for transdermal delivery was performed in our study using Design Expert(®) Software. The model formulations of ME were prepared according to the ME region obtained from pseudo-ternary phase diagrams using the simplex lattice design as an optimization technique. In this study, ketoprofen-loaded ME composed of oleic acid, Cremophor(®) RH40, ethanol and water were prepared, and their characteristics (e.g., size, charge, conductivity, pH, viscosity, drug content, loading capacity and skin permeation flux) were evaluated. The ME having an appropriate skin permeation flux was used as the basis for optimization. The skin permeation flux of the experimental ME was very close to the flux predicted by Design Expert(®) Software and was significantly greater than that for the commercial product. Possible mechanisms for the enhancement of the skin permeation of the ME were also investigated using Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). This finding provided an understanding of the relationship between the causal factors and response variables, as shown in the response surfaces. Moreover, these results indicated that the simple lattice design was beneficial for the pharmaceutical development of ME for transdermal delivery.
Low-Temperature Magnetic Properties of Co Antidot Array
Institute of Scientific and Technical Information of China (English)
LIU Qing-Fang; JIANG Chang-Jun; FAN Xiao-Long; WANG Jian-Bo; XUE De-Sheng
2006-01-01
Cobalt antidot arrays with different thicknesses are fabricated by rf magnetron sputtering onto porous alumina substrates. Scanning electron microscopy and grazing incidence x-ray diffraction are employed to characterize the morphology and crystal structure of the antidot array, respectively. The temperature dependence of magnetic properties shows that in the temperature range 5K-300K, coercivity and squareness increase firstly, reach their maximum values, then decrease. The anomalous temperature dependences of coercivity and squareness are discussed by considering the pinning effect of the antidot and the magnetocrystalline anisotropy.
Toxicology: pearls and pitfalls in the use of antidotes.
Smollin, Craig G
2010-02-01
Although most poisonings require only supportive care, the emergency physician must recognize when the use of an antidote is required, and understand the risks and benefits of the treatment rendered. Although the more commonly instituted specific therapy in acute poisoning is the administration of intravenous fluids followed by the administration of oxygen, in certain circumstances prompt administration of a specific antidote may be required, and failure to identify these circumstances may lead to significant morbidity or mortality. This article describes select antidotes, and discusses their indications and potential pitfalls.
Interaction of nerve agent antidotes with cholinergic systems.
Soukup, O; Tobin, G; Kumar, U K; Binder, J; Proska, J; Jun, D; Fusek, J; Kuca, K
2010-01-01
The poisoning with organophosphorus compounds represents a life threatening danger especially in the time of terroristic menace. No universal antidote has been developed yet and other therapeutic approaches not related to reactivation of acetylcholinesterase are being investigated. This review describes the main features of the cholinergic system, cholinergic receptors, cholinesterases and their inhibitors. It also focuses on the organophosphorus nerve agents, their properties, effects and a large part describes various possibilities in treatments, mainly traditional oxime therapies based on reactivation of AChE. Furthermore, non-cholinesterase coupled antidotal effects of the oximes are thoroughly discussed. These antidotal effects principally include oxime interactions with muscarinic and nicotinic receptors.
Antidot effects on micromagnetic behavior of Py ferromagnetic samples
Yetis, Hakan; Denizli, Haluk
2016-09-01
The coercivity and magnetic hysteresis behavior of permalloy (Py) samples have been studied in the presence of square arrays of the circular antidots. The open source OOMMF micromagnetic software is used to numerically solve the Landau-Lifshitz-Gilbert (LLG) equation. In calculations, Py samples are designed in such a way that they include a different number of antidot in an array which possess the same total surface area. In this way, the total Py region stayed unchanged despite the growing number of antidots in a fixed sample size. We found significant increase in the coercive field for the sample with the smallest antidot spacing. The results are discussed within the framework of superdomain (SD) and superdomain wall (SDW) formation.
A specific antidote for dabigatran: functional and structural characterization.
Schiele, Felix; van Ryn, Joanne; Canada, Keith; Newsome, Corey; Sepulveda, Eliud; Park, John; Nar, Herbert; Litzenburger, Tobias
2013-05-02
Dabigatran etexilate is a direct thrombin inhibitor and used widely as an anticoagulant for the prevention of stroke in patients with atrial fibrillation. However, anticoagulation therapy can be associated with an increased risk of bleeding. Here, we present data on the identification, humanization, and in vitro pharmacology of an antidote for dabigatran (aDabi-Fab). The X-ray crystal structure of dabigatran in complex with the antidote reveals many structural similarities of dabigatran recognition compared with thrombin. By a tighter network of interactions, the antidote achieves an affinity for dabigatran that is ~350 times stronger than its affinity for thrombin. Despite the structural similarities in the mode of dabigatran binding, the antidote does not bind known thrombin substrates and has no activity in coagulation tests or platelet aggregation. In addition we demonstrate that the antidote rapidly reversed the anticoagulant activity of dabigatran in vivo in a rat model of anticoagulation. This is the first report of a specific antidote for a next-generation anticoagulant that may become a valuable tool in patients who require emergency procedures.
48 CFR 225.7005 - Restriction on certain chemical weapons antidote.
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on certain chemical weapons antidote. 225.7005 Section 225.7005 Federal Acquisition Regulations System DEFENSE... on certain chemical weapons antidote....
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.
2010-01-01
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...
SYNTHESIS OF SUBSTITUTED ISOXAZOLO[5,4-b]PYRIDINE AND THEIR ANTIDOTE ACTIVITY
Directory of Open Access Journals (Sweden)
Dyadyuchenko L. V.
2016-10-01
Full Text Available To develop the novel herbicide antidotes for the sunflower vegetative plants, the group of chemical compounds, belonging to the derivatives of isoxalopyrazolopyridines was synthesized and their antidote activity both in the laboratory and field experiments was studied. The compounds with a high antidote effect were found
Dynamics of Vortices in Nano-Structured Superconductors with Periodic Arrays of Various Antidots
Fujibayashi, David E.; Kato, Masaru
2012-12-01
Stable vortex configurations and its dynamics in superconductors with various types of antidotes are examined, using the molecular dynamics simulation. A pinning potential function, which parameterizes spatial shapes and pinning potential structure of the antidot, is introduced. Dependence of saturation number, which is a maximum number of vortices pinned in a single antidot, on these spatial shape and potential structure are investigated.
The Copernican Revolution as Story: an Antidote for Scientific Illiteracy
Wallace, P. M.
2005-08-01
``When a white-robed scientist, momentarily looking away from his microscope or cyclotron [or telescope], makes some pronouncement for the general public, he may not be understood but at least he is certain to be believed.'' The truth of this opening sentence of Anthony Standen's 1950 book Science is a Sacred Cow, as clear today as it was then, is the motivation for a new astronomy course at Berry College near Atlanta, GA, USA. To non-scientists, science is known by its products, not by what it is: a human progress. For this illiteracy an antidote is offered: the history of astronomy. In this course the story of the Copernican Revolution is told, for within this story the true nature of science can be found in its fullness. For example, Aristotle's uniform circular motion is used to emphasize the role of assumptions, and the occasional value of wrong ideas is evident in Tycho's theory and in Kepler's universe of perfect solids. Tycho's observations of Mars and Kepler's analysis illustrate the interplay of observation, theory, and technology. As a final example, the indirectness and often-unintentional nature of scientific advance can be seen in the work of Copernicus. The roles of personality and the intersections of science and society are themes throughout the course, as are the merging of disparate fields and the power of strong theories. There are other themes (e.g., coherence, the role of mathematics), but the emphasis is on the science and much of the work is quantitative. There is a laboratory component that features observations and experiments, and in order to bring the narrative to life the class spends two weeks in Poland, the Czech Republic, and Italy, touring sites that are relevant to the story of the Copernican Revolution.
Locatelli, Carlo; Petrolini, Valeria; Lonati, Davide; Butera, Raffaella; Bove, Angelo; Mela, Lidia; Manzo, Luigi
2006-01-01
The availability of antidotes in Italian hospitals has been evaluated through the answers to a specific questionnaire sent to all Italian Emergency Departments, Intensive Care Units, 118 emergency response system, and Poison Centres. Five Poison Centres and, approximately, the 30% of the Emergency Departments and Intensive Care Units of all Italian emergency hospitals answered to the questionnaire. The results point out an insufficient availability of antidotes in the Italian emergency hospitals, with an almost total absence of those necessary for the treatment of less frequent and less known poisonings (e.g. digoxin, industrial agents), also when the antidote is a lifesaving drug. To improve the antidotes availability for the toxicological emergencies and to facilitate its supplying, a "national antidotes data-base" (BaNdA) has been realized, freely available to the hospital services which register themselves and make their antidotes stockpile available.
Antidot shape dependence of switching mechanism in permalloy samples
Yetiş, Hakan; Denizli, Haluk
2017-01-01
We study antidot shape dependence of the switching magnetization for various permalloy samples with square and triangular arrays of nanometer scale antidots. The remnant magnetization, squareness ratio, and coercive fields of the samples are extracted from the hysteresis loops which are obtained by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. We find several different magnetic spin configurations which reveal the existence of superdomain wall structures. Our results are discussed in terms of the local shape anisotropy, array geometry, and symmetry properties in order to explain the formation of inhomogeneous domain structures.
Energy Technology Data Exchange (ETDEWEB)
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Perez, H.; Zheltikov, A. M.
2017-01-01
We examine the influence of the structural self-similarity of the kagome lattice on the defect modes and waveguiding properties of hollow-core kagome-cladding fibers. We show that the guidance of such fibers is influenced by photonic band gaps (PBGs) which appear for a subset of the kagome lattice. Using these insights, we provide design considerations to further decrease loss in kagome-clad fibers.
Multifunctional drugs as novel antidotes for organophosphates' poisoning.
Weissman, Ben Avi; Raveh, Lily
2011-12-18
Some organophosphorus compounds (OPs) are nerve agents that continue to concern military personnel and civilians as potential battlefield and terrorist threats. Additionally, OPs are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants induce an array of deleterious effects including respiratory distress, convulsions and ultimately death. A mechanism involving a rapid and potent inhibition of peripheral and central cholinesterases leading to a massive buildup of acetylcholine in synaptic clefts was suggested as the underlying trigger of the toxic events. Indeed, therapy comprised of an acetylcholinesterase reactivator (i.e., oxime) and a cholinergic antagonist (e.g., atropine) is the accepted major paradigm for protection. This approach yields a remarkable survival rate but fails to prevent neurological and behavioral deficits. Extensive research revealed a complex picture consisting of an early activation of several neurotransmitter systems, in which the glutamatergic plays a pivotal role., Data accumulated in recent years support the concept that multi-targeting of pathways including glutamatergic and cholinergic circuits is required for an effective treatment. Drugs that demonstrate the ability to interact with several systems (e.g., caramiphen) were found to afford a superior protection against OPs as compared to specific antimuscarinic ligands (e.g., scopolamine). Compounds that potently block muscarinic receptors, interact with the NMDA ion channel and in addition are able to modulate σ(1) sites and/or GABAergic transmission seem to represent the emerging backbone for novel antidotes against OP poisoning. Several multifunctional drugs are already used for complex diseases e.g., cancer and depression.
Creativity: Performativity's Poison or Its Antidote?
Munday, Ian
2014-01-01
A common move in the study of creativity and performativity is to present the former as an antidote to the latter. Might we, therefore, see work on creativity in education as heralding an era of post-performativity? In this paper I argue that the portrayal of performativity in the literature on creativity presents an overly simplistic (vulgar?)…
Structural and functional characterization of a specific antidote for ticagrelor.
Buchanan, Andrew; Newton, Philip; Pehrsson, Susanne; Inghardt, Tord; Antonsson, Thomas; Svensson, Peder; Sjögren, Tove; Öster, Linda; Janefeldt, Annika; Sandinge, Ann-Sofie; Keyes, Feenagh; Austin, Mark; Spooner, Jennifer; Gennemark, Peter; Penney, Mark; Howells, Garnet; Vaughan, Tristan; Nylander, Sven
2015-05-28
Ticagrelor is a direct-acting reversibly binding P2Y12 antagonist and is widely used as an antiplatelet therapy for the prevention of cardiovascular events in acute coronary syndrome patients. However, antiplatelet therapy can be associated with an increased risk of bleeding. Here, we present data on the identification and the in vitro and in vivo pharmacology of an antigen-binding fragment (Fab) antidote for ticagrelor. The Fab has a 20 pM affinity for ticagrelor, which is 100 times stronger than ticagrelor's affinity for its target, P2Y12. Despite ticagrelor's structural similarities to adenosine, the Fab is highly specific and does not bind to adenosine, adenosine triphosphate, adenosine 5'-diphosphate, or structurally related drugs. The antidote concentration-dependently neutralized the free fraction of ticagrelor and reversed its antiplatelet activity both in vitro in human platelet-rich plasma and in vivo in mice. Lastly, the antidote proved effective in normalizing ticagrelor-dependent bleeding in a mouse model of acute surgery. This specific antidote for ticagrelor may prove valuable as an agent for patients who require emergency procedures.
Sodium dimercaptopropane sulfonate as antidote against non-metallic pesticides
Institute of Scientific and Technical Information of China (English)
Zhi-kang CHEN; Zhong-qiu LU
2004-01-01
@@ INTRODUCTION With the advent of World War II, dimercaptol was first developed in England as an effective antidote against arsenical agents. In 1950' s, scientists from the Soviet Union developed a water-soluble compound, sodium dimercaptopropane sulfonate (Na-DMPS) named as Unithiol (or Unitiol), which was able to chelate heavy metals and metalloids.
Drugs and pharmaceuticals: management of intoxication and antidotes.
Smith, Silas W
2010-01-01
The treatment of patients poisoned with drugs and pharmaceuticals can be quite challenging. Diverse exposure circumstances, varied clinical presentations, unique patient-specific factors, and inconsistent diagnostic and therapeutic infrastructure support, coupled with relatively few definitive antidotes, may complicate evaluation and management. The historical approach to poisoned patients (patient arousal, toxin elimination, and toxin identification) has given way to rigorous attention to the fundamental aspects of basic life support--airway management, oxygenation and ventilation, circulatory competence, thermoregulation, and substrate availability. Selected patients may benefit from methods to alter toxin pharmacokinetics to minimize systemic, target organ, or tissue compartment exposure (either by decreasing absorption or increasing elimination). These may include syrup of ipecac, orogastric lavage, activated single- or multi-dose charcoal, whole bowel irrigation, endoscopy and surgery, urinary alkalinization, saline diuresis, or extracorporeal methods (hemodialysis, charcoal hemoperfusion, continuous venovenous hemofiltration, and exchange transfusion). Pharmaceutical adjuncts and antidotes may be useful in toxicant-induced hyperthermias. In the context of analgesic, anti-inflammatory, anticholinergic, anticonvulsant, antihyperglycemic, antimicrobial, antineoplastic, cardiovascular, opioid, or sedative-hypnotic agents overdose, N-acetylcysteine, physostigmine, L-carnitine, dextrose, octreotide, pyridoxine, dexrazoxane, leucovorin, glucarpidase, atropine, calcium, digoxin-specific antibody fragments, glucagon, high-dose insulin euglycemia therapy, lipid emulsion, magnesium, sodium bicarbonate, naloxone, and flumazenil are specifically reviewed. In summary, patients generally benefit from aggressive support of vital functions, careful history and physical examination, specific laboratory analyses, a thoughtful consideration of the risks and benefits of
Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O
2014-01-01
We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.
Kenneth Wilson and lattice QCD
Ukawa, Akira
2015-01-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...
Energy Technology Data Exchange (ETDEWEB)
Bothner, D.; Kemmler, M.; Cozma, R.; Kleiner, R.; Koelle, D. [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Misko, V.; Peeters, F. [Departement Fysica, Universiteit Antwerpen (Belgium); Nori, F. [Advanced Science Institute, RIKEN (Japan)
2011-07-01
The magnetic field dependent critical current I{sub c}(H) of superconducting thin films with artificial defects strongly depends on the symmetry of the defect arrangement. Likewise the critical temperature T{sub c}(H) of superconducting wire networks is heavily influenced by the symmetry of the system. Here we present experimental data on the I{sub c}(H)-T{sub c}(H) phase boundary of Nb thin films with artificial defect lattices of different symmetries. For this purpose we fabricated 60 nm thick Nb films with antidots in periodic (triangular) and five different quasiperiodic arrangements. The parameters of the antidot arrays were varied to investigate the influence of antidot diameter and array density. Experiments were performed with high temperature stability ({delta}T<1 mK) at 0.5{<=}T/T{sub c}{<=}1. From the I-V-characteristics at variable H and T we extract I{sub c}(H) and T{sub c}(H) for different voltage and resistance criteria. The experimental data for the critical current density are compared with results from numerical molecular dynamics simulations.
Simonenko, V E; Sarmanaev, S Kh; Kovalev, E V; Sarmanaeva, R R; Kukhanov, A V
2014-11-01
This article analyses the approaches to the formation of specific treatment of acute poisoning in the various countries. The authors present a systematic review of scientific publications about the formation of reserves of antidote agents at medical institutions of the Russian Federation, the US, Canada, France, Spain, Greece, Norway, Czech Republic, Taiwan and Poland. A search for a variety of databases, as well as by reviewing reference lists of publications on the subject of "stockpiling antidote means". It is concluded that the antidote provision at health care institutions in different countries is insufficient. State of affairs with the formation of antidote stocks is better at hospitals of Czech Republic, France and Spain. To determine the range and volume of the stock of fixed assets necessary antidote coordination and approval of the list and the number of mandatory for every medical institution antidotes.
Effect of Anti-dots on the Magnetic Susceptibility in a Superconducting Long Prism
Aguirre, C. A.; Joya, Miryam R.; Barba-Ortega, J.
2017-02-01
The magnetic susceptibility of a long mesoscopic superconducting square prism containing one/two (dot) anti-dots is calculated in the framework of the Ginzburg-Landau theoretical model. This magnetic susceptibility shows jumps at each of the vortex transition fields. We studied the influence of the number, size and geometry of the anti-dots on the magnetic susceptibility in a superconducting sample. We found interesting physical behavior when several kinds of materials filled into the anti-dot are considered.
Acceleration of Advanced CN Antidote Agents for Mass Exposure Treatments: DMTS
2014-12-01
AD_________________ Award Number: W81XWH-12-2-0098 TITLE: Acceleration of Advanced CN Antidote Agents for Mass Exposure Treatments: DMTS...26 Sept 2012 – 25 Sept 2014 4. TITLE AND SUBTITLE Acceleration of Advanced CN Antidote Agents for Mass Exposure Treatments: DMTS 5a. CONTRACT...gas values and blood pressure during CN treatment and reversal. In the first year of this work, stability and IM antidote administration studies were
Lu, Genmin; DeGuzman, Francis R; Hollenbach, Stanley J; Karbarz, Mark J; Abe, Keith; Lee, Gail; Luan, Peng; Hutchaleelaha, Athiwat; Inagaki, Mayuko; Conley, Pamela B; Phillips, David R; Sinha, Uma
2013-04-01
Inhibitors of coagulation factor Xa (fXa) have emerged as a new class of antithrombotics but lack effective antidotes for patients experiencing serious bleeding. We designed and expressed a modified form of fXa as an antidote for fXa inhibitors. This recombinant protein (r-Antidote, PRT064445) is catalytically inactive and lacks the membrane-binding γ-carboxyglutamic acid domain of native fXa but retains the ability of native fXa to bind direct fXa inhibitors as well as low molecular weight heparin-activated antithrombin III (ATIII). r-Antidote dose-dependently reversed the inhibition of fXa by direct fXa inhibitors and corrected the prolongation of ex vivo clotting times by such inhibitors. In rabbits treated with the direct fXa inhibitor rivaroxaban, r-Antidote restored hemostasis in a liver laceration model. The effect of r-Antidote was mediated by reducing plasma anti-fXa activity and the non-protein bound fraction of the fXa inhibitor in plasma. In rats, r-Antidote administration dose-dependently and completely corrected increases in blood loss resulting from ATIII-dependent anticoagulation by enoxaparin or fondaparinux. r-Antidote has the potential to be used as a universal antidote for a broad range of fXa inhibitors.
Li, Shuai; Qiu, Wen-Xuan; Gao, Jin-Hua
2016-07-07
Recently, a new kind of artificial two dimensional (2D) electron lattice on the nanoscale, i.e. molecular graphene, has drawn a lot of interest, where the metal surface electrons are transformed into a honeycomb lattice via absorbing a molecular lattice on the metal surface [Gomes et al., Nature, 2012, 438, 306; Wang et al., Phys. Rev. Lett., 2014, 113, 196803]. In this work, we theoretically demonstrate that this technique can be readily used to build other complex 2D electron lattices on a metal surface, which are of high interest in the field of condensed matter physics. The main challenge to build a complex 2D electron lattice is that this is a quantum antidot system, where the absorbed molecule normally exerts a repulsive potential on the surface electrons. Thus, there is no straightforward corresponding relation between the molecular lattice pattern and the desired 2D lattice of surface electrons. Here, we give an interesting example about the Kagome lattice, which has exotic correlated electronic states. We design a special molecular pattern and show that this molecular lattice can transform the surface electrons into a Kagome-like lattice. The numerical simulation is conducted using a Cu(111) surface and CO molecules. We first estimate the effective parameters of the Cu/CO system by fitting experimental data of the molecular graphene. Then, we calculate the corresponding energy bands and LDOS of the surface electrons in the presence of the proposed molecular lattice. Finally, we interpret the numerical results by the tight binding model of the Kagome lattice. We hope that our work can stimulate further theoretical and experimental interest in this novel artificial 2D electron lattice system.
Strengthening positive interpersonal relationships at work: An antidote for burnout
Directory of Open Access Journals (Sweden)
CORALIA SULEA
2014-05-01
Full Text Available Burnout is an important phenomenon for organizations and employees associated with negative outcomes. Key organizational areas, like fairness and workplace community, are responsible for employee burnout. This editorial argues for the importance of workplace community and presents the mechanisms through which dysfunctional relationships at work may contribute to burnout, as well as the processes that explain how healthy interpersonal relationships can be an antidote for burnout.
Energy Technology Data Exchange (ETDEWEB)
Fang, H.; Akinoglu, E. M.; Fumagalli, P., E-mail: paul.fumagalli@fu-berlin.de [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Caballero, B.; García-Martín, A. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid (Spain); Papaioannou, E. Th. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Cuevas, J. C. [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Giersig, M. [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Helmholtz Zentrum Berlin, Institute of Nanoarchitectures for Energy Conversion, 14195 Berlin (Germany)
2015-04-13
A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.
Photostability of antidotal oxime HI-6, impact on drug development.
Bogan, Reinhard; Worek, Franz; Koller, Marianne; Klaubert, Bernd
2012-01-01
HI-6 exhibits superior efficacy in the therapy of intoxication by different highly toxic organophosphorus nerve agents. Therefore HI-6 is a promising candidate for the development of new antidotes against nerve agents. For ethical and safety reasons antidotes containing HI-6 should get marketing authorization. Active pharmaceutical ingredients of medicinal products have to fulfil regulatory conditions in terms of purity and stability. Photostability is an essential parameter in this testing strategy. HI-6 was tested under conditions of ICH Q1B 'Photostability testing of new drug substances and products'. The data showed a marked degradation of HI-6 after exposure to daylight. The mechanism of degradation could be detected as photoisomerism. The light burden dependent rate of photoisomerism was followed quantitatively. Based on these quantitative results on the amount of light induced isomeric product a pharmacological qualification was made. A standardized in vitro test showed a decreased ability of light exposed HI-6 to reactivate sarin- and paraoxon-inhibited human acetylcholinesterase. These results have an impact on the further development of antidotes containing HI-6, as light protection will probably be necessary during handling, packaging, storage and application.
Selection of an aptamer antidote to the anticoagulant drug bivalirudin.
Martin, Jennifer A; Parekh, Parag; Kim, Youngmi; Morey, Timothy E; Sefah, Kwame; Gravenstein, Nikolaus; Dennis, Donn M; Tan, Weihong
2013-01-01
Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT). Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug), and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction) and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.
Selection of an aptamer antidote to the anticoagulant drug bivalirudin.
Directory of Open Access Journals (Sweden)
Jennifer A Martin
Full Text Available Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT. Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug, and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.
Energy Technology Data Exchange (ETDEWEB)
Guo, Y. J. [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Gao, Y. J.; Ge, C. N [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Guo, Y. Y. [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Yan, Z. B.; Liu, J.-M., E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)
2015-05-07
In this work, the dynamics of a diatomic chain is investigated with ↑↑↓↓ spin order in which the dispersion relation characterizes the effect of magnetic interactions on the lattice dynamics. The optical or acoustic mode softening in the center or boundary of the Brillouin zone can be observed, indicating the transitions of ferroelectric state, antiferromagnetic state, or ferroelastic state. The coexistence of the multiferroic orders related to the ↑↑↓↓ spin order represents a type of intrinsic multiferroic with strong ferroelectric order and different microscopic mechanisms.
Patterson, Steven E; Monteil, Alexandre R; Cohen, Jonathan F; Crankshaw, Daune L; Vince, Robert; Nagasawa, Herbert T
2013-02-14
Current cyanide antidotes are administered by IV infusion, which is suboptimal for mass casualties. Therefore, in a cyanide disaster, intramuscular (IM) injectable antidotes would be more appropriate. We report the discovery of the highly water-soluble sulfanegen triethanolamine as a promising lead for development as an IM injectable cyanide antidote.
Temperature dependent nonlinear Hall effect in macroscopic Si-MOS antidot array
Kuntsevich, A. Yu.; Shupltetsov, A. V.; Nunuparov, M. S.
2015-01-01
By measuring magnetoresistance and Hall effect in classically moderate perpendicular magnetic field in Si-MOSFET-type macroscopic antidot array we found a novel effect: nonlinear with field, temperature- and density-dependent Hall resistivity. We discuss qualitative explanation of the phenomenon and suggest that it might originate from strong temperature dependence of the resistivity and mobility in the shells of the antidots.
Meso- and racemic-DMSA as Antidotes in Heavy Metal Poisoning
2001-09-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013383 TITLE: Meso- and racemic-DMSA as Antidotes in Heavy Metal Poisoning...comprise the compilation report: ADP013371 thru ADP013468 UNCLASSIFIED 13. Meso- AND racemic-DMSA AS ANTIDOTES IN HEAVY METAL POISONING 1Maja Blanu~a
Antidotes and treatments for chemical warfare/terrorism agents: an evidence-based review.
Rodgers, G C; Condurache, C T
2010-09-01
This article reviews the evidence supporting the efficacy of antidotes used or recommended for the potential chemical warfare agents of most concern. Chemical warfare agents considered include cyanide, vesicants, pulmonary irritants such as chlorine and phosgene, and nerve agents. The strength of evidence for most antidotes is weak, highlighting the need for additional research in this area.
Monitoring the Effects and Antidotes of the Non-vitamin K Oral Anticoagulants
DEFF Research Database (Denmark)
Rahmat, Nur A; Lip, Gregory Y H
2015-01-01
major challenges: the need for reliable laboratory assays to assess their anticoagulation effect, and the lack of approved antidotes to reverse their action. This article provides an overview of monitoring the anticoagulant effect of NOACs and their potential specific antidotes in development....
[Antidotes and medicines used to treat poisoning in Brazil: needs, availability and opportunities].
Galvão, Tais F; Bucaretchi, Fabio; De Capitani, Eduardo M; Pereira, Maurício G; Silva, Marcus T
2013-11-01
Antidotes and certain other drugs are essential for treating some types of poisoning. Failures in their supply can jeopardize the population's health and safety. The current study aimed to assess the availability of antidotes and other drugs used in the treatment of poisonings in Brazil. International guidelines were used as the basis for selecting 41 antidotes for analysis, none of which currently protected by patents. Of these, 27 are registered in Brazil, but 11 of these are available in inadequate forms for treating poisoning, leaving 16 commercially available antidotes. Only one-third of the drugs needed for treating poisoning are included in the country's list of essential drugs. The article also presents a proposal for supplying the demand for one of the antidotes, anti-digoxin antibody, considering Brazil's domestic capacity for manufacturing immunobiologicals. The study's results show the limitations to adequate treatment for poison victims in Brazil and reinforce the urgent need to strengthen public policies in this area.
Antidote control of aptamer therapeutics: the road to a safer class of drug agents.
Bompiani, K M; Woodruff, R S; Becker, R C; Nimjee, S M; Sullenger, B A
2012-08-01
Aptamers, or nucleic acid ligands, have gained clinical interest over the past 20 years due to their unique characteristics, which are a combination of the best facets of small molecules and antibodies. The high binding affinity and specificity of aptamers allows for isolation of an artificial ligand for theoretically any therapeutic target of interest. Chemical manipulations of aptamers also allow for fine-tuning of their bioavailability, and antidote control greatly expands their clinical use. Here we review the various methods of antidote control of aptamer therapeutics--matched oligonucleotide antidotes and universal antidotes. We also describe the development, recent progress, and potential future therapeutic applications of these types of aptamer-antidote pairs.
Lee, Wei-Li; Ho, Chi-Chih; Hsieh, Yung-Wu; Juan, Wen-Tau; Lin, Keng-Hui
2010-03-01
We have developed a new method to prepare monolayer of close- packed nanospheres (NSs) over large area onto a substrate of any kind utilizing polymer bridging effect. The NSs packing domain can be as large as 1 cmx1 cm which is demonstrated from its diffraction pattern. It was then used as a template to fabricate series of cobalt antidot thin films with different antidot diameter ranging from 100nm to 180nm. Because of the good periodicity and less defects in our nanostructured samples, we would be able to not only qualitatively study their magnetic properties but also quantitatively. As the antidot diameter increases, the surface to bulk volume fraction increases and the surface magnetism becomes more prominent. We found a systematic increase in magnetic coercivity with the antidote diameter, while the saturation magnetization drops at large antidote diameter. Detailed analysis and their implication will be discussed.
Coffee as an Antidote to Knowledge Stickiness
Blackman, Deborah; Phillips, Diane
2011-01-01
This paper considers the concept of space and its role in both knowledge creation and overcoming knowledge stickiness. Aristotelian concepts of "freedom to" and "freedom from" are used to reconceptualise space. Informal and formal spaces, concepts and places are discussed as both specific locations and as gaps providing space for knowledge…
Zhao, Zongyan; Cao, Yuechan; Yi, Juan; He, Xijia; Ma, Chenshuo; Qiu, Jianbei
2012-04-23
As a promising solar-energy material, the electronic structure and optical properties of Beta phase indium sulfide (β-In(2)S(3)) are still not thoroughly understood. This paper devotes to solve these issues using density functional theory calculations. β-In(2)S(3) is found to be an indirect band gap semiconductor. The roles of its atoms at different lattice positions are not exactly identical because of the unique crystal structure. Additonally, a significant phenomenon of optical anisotropy was observed near the absorption edge. Owing to the low coordination numbers of the In3 and S2 atoms, the corresponding In3-5s states and S2-3p states are crucial for the composition of the band-edge electronic structure, leading to special optical properties and excellent optoelectronic performances.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Krejcová, G; Kassa, J
2003-03-14
To study the influence of pharmacological pretreatment (PANPAL) and antidotal treatment (obidoxime plus atropine) on tabun-induced neurotoxicity, male albino rats were poisoned with a lethal dose of tabun (280 microg/kg i.m.; 100% of LD(50) value) and observed at 24 h and 7 days following tabun challenge. The neurotoxicity of tabun was evaluated using a functional observational battery (FOB) and an automatic measurement of motor activity. Pharmacological pretreatment as well as antidotal treatment were able to eliminate most of tabun-induced neurotoxic effects observed at 24 h following tabun poisoning. However, there was not significant difference between the efficacy of PANPAL and antidotal treatment to eliminate tabun-induced neurotoxicity in rats. The combination of PANPAL pretreatment and antidotal treatment seems to be slightly more effective in the elimination of tabun-induced neurotoxicity in rats at 24 h following tabun challenge in comparison with the administration of PANPAL pretreatment or antidotal treatment alone. At 7 days following tabun poisoning, very few neurotoxic signs in tabun-poisoned rats were observed regardless of administration of pharmacological pretreatment or antidotal treatment. Thus, our findings confirm that the combination of pharmacological pretreatment and antidotal treatment is not only able to protect the experimental animals from the lethal effects of tabun but also to eliminate most of tabun-induced signs of neurotoxicity in tabun-poisoned rats.
[Decontamination and antidotes in acute cases of poisoning].
Kupferschmidt, Hugo; Züst, Ariane; Rauber-Lüthy, Christine
2009-05-01
In acute poisoning the maintenance or reconstitution of vital functions is the first and most critical action. All subsequent therapies and the prognosis depend on the identification of the causative agent and on information about substance-specific toxicity. Despite incomplete evidence the concept of harm reduction by decreased absorption of the toxicants and by shortening the course of illness is consistent with toxicokinetic-dynamic principles and is therefore still used by clinical toxicologists. All these treatment options have to be seen within the context of the prognosis and the time course of an individual case of poisoning. Treatment options of gastrointestinal decontamination are (in decreasing order of importance) single-dose activated charcoal, whole bowel irritation, and gastric lavage. Induced emesis by ipecac syrup is not practiced anymore. Enhanced elimination techniques are multiple-dose activated charcoal, urine alkalinization, and extracorporeal techniques such as hemodialysis and hemoperfusion. Enhanced elimination is only beneficial in toxicants with long half-life. Antidotes are directed against specific agents and therefore may be used only in a limited number of cases. The procurement of specific antidotes, often hardly available and not approved, is facilitated if the supply is organized in a transparent and standardized manner.
Drugs of abuse: management of intoxication and antidotes.
Montoya, Ivan D; McCann, David J
2010-01-01
Illicit drug intoxications are an increasing public health problem for which, in most cases, no antidotes are clinically available. The diagnosis and treatment of these intoxications requires a trained clinician with experience in recognizing the specific signs and symptoms of intoxications to individual drugs as well as polydrug intoxications, which are more the rule than the exception. To make the diagnosis, the clinical observation and a urine toxicology test are often enough. Evaluating the blood levels of drugs is frequently not practical because the tests can be expensive and results may be delayed and unavailable to guide the establishment of a treatment plan. Other laboratory tests may be useful depending on the drug or drugs ingested and the presence of other medical complications. The treatment should be provided in a quiet, safe and reassuring environment. Vital signs should be closely monitored. Changes in blood pressure, respiratory frequency and temperature should be promptly treated, particularly respiratory depression (in cases of opiate intoxication) or hyperthermia (in cases of cocaine or amphetamine intoxication). Intravenous fluids should be administered as soon as possible. Other psychiatric and medical complication should receive appropriate symptomatic treatment. Research on immunotherapies, including vaccines, monoclonal and catalytic antibodies, seems to be a promising approach that may yield specific antidotes for drugs of abuse, helping to ameliorate the morbidity and mortality associated with illicit drug intoxications.
Enhanced Spin Hall Effect by Single Antidot Potential
Eto, Mikio; Yokoyama, Tomohiro
2009-03-01
We theoretically investigate an extrinsic spin Hall effect in semiconductor heterostructures due to the scattering by an artificial potential created by a single antidot, STM tip, etc. The strength of the potential is electrically tunable. First, we formulate the spin Hall effect in terms of phase shifts in the partial wave expansion for two-dimensional electron gas. For scattered electrons in θ direction, we obtain a spin polarization P(θ) perpendicular to the two-dimensional plane [P(-θ)=-P (θ)]. The spin polarization P(θ) is significantly enhanced by an attractive potential when the resonant condition of a partial wave is satisfied by tuning the potential strength. Second, we study the spin Hall effect in a three-terminal device with an antidot at the junction. The conductance and spin polarization are evaluated numerically.ootnotetextM. Yamamoto and B. Kramer, J. Appl. Phys. 103, 123703 (2008), for repulsive potential. We obtain a spin polarization of more than 50% due to the resonant scattering when the attractive potential is properly tuned.
Evaluation of oxime k203 as antidote in tabun poisoning.
Kovarik, Zrinka; Vrdoljak, Ana Lucić; Berend, Suzana; Katalinić, Maja; Kuc, Kamil; Musilek, Kamil; Radić, Bozica
2009-03-01
We studied bispyridinium oxime K203 [(E)-1-(4-carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide] with tabun-inhibited human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and its antidotal effect on tabun-poisoned mice and rats in vivo. We compared it with oximes K048 and TMB-4, which have proven the most efficient oxime antidotes in tabun poisoning by now. Tabun-inhibited AChE was completely reactivated by K203, with the overall reactivation rate constant of 1806 L mol(-1) min(-1). This means that K203 is a very potent reactivator of tabun-inhibited AChE. In addition, K203 reversibly inhibited AChE (Ki = 0.090 mmol L(-1)) and BChE (K(i) = 0.91 mmol L(-1)), and exhibited its protective effect against phosphorylation of AChE by tabun in vitro. In vivo, a quarter of the LD50 K203 dose insured survival of all mice after the application of as many as 8 LD50 doses of tabun, which is the highest dosage obtained compared to K048 and TMB-4. Moreover, K203 showed high therapeutic potency in tabun-poisoned rats, preserving cholinesterase activity in rat plasma up to 60 min after poisoning. This therapeutic improvement obtained by K203 in tabun-poisoning places this oxime in the spotlight for further development.
A novel paradigm for assessing efficacies of potential antidotes against neurotoxins in mice.
Crankshaw, Daune L; Goon, David J W; Briggs, Jacquie E; DeLong, David; Kuskowski, Michael; Patterson, Steven E; Nagasawa, Herbert T
2007-12-10
Historically, antidotal potencies of cyanide antagonists were measured as increases in the experimental LD(50) for cyanide elicited by the antidotes. This required the use of high doses of cyanide following pre-treatment with the putative antidote. Since IACUC guidelines at our institutions strongly discourage LD(50) determinations: we developed a new test paradigm that allowed for maximal survival of cyanide-treated animals with greatly reduced numbers of animals. Symptoms of cyanide toxicity include disruption of neuromuscular coordination, i.e., the righting reflex. Therefore, to establish a dose-response curve, the times required for recovery of this righting reflex with increasing doses of cyanide were measured. A cyanide dose that disrupted this righting reflex for approximately 1h with minimal deaths was then selected. Using this paradigm, the current cyanide antidotes, viz., nitrite plus thiosulfate and hydroxocobalamin, as well as some potential cyanide antidotes that we developed, were evaluated pre- and post-cyanide. This allowed, for the first time, the assessment of the post-cyanide effectiveness of the current antidotes against cyanide poisoning in a live animal. In addition, some prototype compounds were found to exhibit antidotal efficacy not only when injected i.p. following cyanide, but also when administered orally 30 min before cyanide. Pre-cyanide oral efficacy suggests that such compounds have the potential of being administered prophylactically before exposure to cyanide. This new test paradigm was found to be a powerful tool for assessing the efficacies of some novel antidotes against cyanide and should be equally applicable for evaluating putative antidotes for other neurotoxins.
Zyoud, Sa'ed H; Waring, W Stephen; Al-Jabi, Samah W; Sweileh, Waleed M; Rahhal, Belal; Awang, Rahmat
2016-11-01
In recent years, there has been increasing interest in the role of intravenous lipid formulations as potential antidotes in patients with severe cardiotoxicity caused by drug toxicity. The aim of this study was to conduct a comprehensive bibliometric analysis of all human and animal studies featuring lipid emulsion as an antidote for the treatment of acute poisoning. The Scopus database search was performed on 5 February 2016 to analyse the research output related to intravenous lipid emulsion as an antidote for the treatment of acute poisoning. Research indicators used for analysis included total number of articles, date (year) of publication, total citations, value of the h-index, document types, countries of publication, journal names, collaboration patterns and institutions. A total of 594 articles were retrieved from Scopus database for the period of 1955-2015. The percentage share of global intravenous lipid emulsion research output showed that research output was 85.86% in 2006-2015 with yearly average growth in this field of 51 articles per year. The USA, United Kingdom (UK), France, Canada, New Zealand, Germany, Australia, China, Turkey and Japan accounted for 449 (75.6%) of all the publications. The total number of citations for all documents was 9,333, with an average of 15.7 citations per document. The h-index of the retrieved documents for lipid emulsion research as antidote for the treatment of acute poisoning was 49. The USA and the UK achieved the highest h-indices, 34 and 14, respectively. New Zealand produced the greatest number of documents with international collaboration (51.9%) followed by Australia (50%) and Canada (41.4%) out of the total number of publications for each country. In summary, we found an increase in the number of publications in the field of lipid emulsion after 2006. The results of this study demonstrate that the majority of publications in the field of lipid emulsion were published by high-income countries. Researchers from
Characterization and Magnetic Properties of Iron-Based Alloy Antidot Arrays
Institute of Scientific and Technical Information of China (English)
LIU Qing-Fang; JIANG Chang-Jun; WANG Jian-Bo; FAN Xiao-Long; XUE De-Sheng
2007-01-01
Fe29Co71 and Fe19Ni8 antidot arrays, with different dimensions, are prepared with the rf magnetron sputtering method onto the porous alumina substrate. The size and shape of antidot arrays are characterized by scanning electron microscopy. The glancing angle x-ray diffraction patterns of Fe29Co71 and Fe1gNis1 antidot arrays indicate the bcc and fcc structures, respectively. The coercivities of both the alloys show abnormal thickness dependence, which are discussed qualitatively by considering the pinning and the thickness effect to the films.
Dispersions of the resonance frequencies in an antidot system in a magnetic field
Lee, Y S
2000-01-01
An analytical and quantum-mechanical method is developed to study the collective excitation spectrum of an antidot system in a normal magnetic field. The problem is solved within the single-particle picture within the framework of an anisotropic quantum wire or dot, taking into account the classical phenomenon of edge magneto-plasmons (EMP's) through the renormalization of the effective strength of the antidot potential at a hole. The resulting dispersions with magnetic fields explain quantitatively the main spectrum of the antidot system observed in recent experiments.
Vortices trapped in the damaged surroundings of antidots in Nb films - Depinning transition
Energy Technology Data Exchange (ETDEWEB)
Nunes-Kapp, J.S. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Faculdade de Tecnologia SENAI ' Antonio Adolpho Lobbe' , Sao Carlos, SP (Brazil); Zadorosny, R.; Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Vaz, A.R.; Moshkalev, S.A. [Centro de Componentes Semicondutores, UNICAMP, Campinas, SP (Brazil); Lepienski, M. [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil); Ortiz, W.A., E-mail: wortiz@df.ufscar.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)
2010-10-01
The depinning transition of Vortex Matter in the presence of antidots in superconducting Nb films has been investigated. The antidots were fabricated using two different techniques, resulting in samples with arrays of diverse pinning efficiency. At low temperatures and fields, the spatial arrangement of Vortex Matter is governed by the presence of the antidots. Keeping the temperature fixed, an increase of the field induces a depinning transition. As the temperature approaches T{sub c}, the depinning frontier exhibits a characteristic kink at the temperature T{sub k}, above which the phase boundary exhibits a different regime. The lower-temperature regime is adequately described by a power-law expression, whose exponent n was observed to be inversely proportional to the pinning capability of the antidot, a feature that qualifies this parameter as a figure of merit to quantify the pinning strength of the defect.
A micromagnetic study of the hysteretic behavior of antidot Fe films
Energy Technology Data Exchange (ETDEWEB)
Torres Bruna, J.M. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Bartolome, J. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Garcia Vinuesa, L.M. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Garcia Sanchez, F. [Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, Sor Juana Ines de la Cruz s/n, 28049 Madrid P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Chubykalo-Fesenko, O.A. [Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid (Spain)]. E-mail: oksana@icmm.csic.es
2005-04-15
We report on the results of a micromagnetic study of the magnetization reversal process taking place in square arrays of antidots lithographed in Fe thin films. Our study focuses on the influence on the reversal process of the antidot diameter and the distance between adjacent antidots. It is shown that the minimization of the dipolar energy term of the total system energy originates inhomogeneous moment distributions at the antidot surfaces, and that these structures and their coupling rule the reversal process. We also show that the variation of the interantidot distance in the range of a few units of the exchange length allows varying the coercive force value by a factor of four approximately.
Schilling, Osvaldo F
2008-01-01
There has been an increasing technological interest on magnetic thin films containing antidot arrays of hexagonal or square symmetry. Part of this interest is related to the possibility of domain formation and pinning at the antidots boundaries. In this paper, we develop a method for the calculation of the magnetic moment distribution for such arrays which concentrates on the immediate vicinity of each antidot. For each antidot distribution (square or hexagonal) a suitable system of coordinates is defined to exploit the shape of the unit-cells of the overall nanostructure. The Landau-Lifshitz-Gilbert-Brown equations that govern the distribution of moments are rewritten in terms of these coordinates. The equilibrium moments orientation is calculated for each position in a Cartesian grid defined for these new coordinate systems, and then a conformal transformation is applied to insert the moment vectors into the actual unit-cell. The resulting vector maps display quite clearly regions of different moment orient...
Anticholinergic drugs--functional antidotes for the treatment of tabun intoxication.
Krejcová, Gabriela; Kassa, Jirí
2004-01-01
1. To study the influence of antidotes on tabun-induced neurotoxicity, the rats were injected intramuscularly with organophosphate tabun (LD50). The efficacy of choice antidotal treatment consisting of acetylcholinesterase reactivator obidoxime and one of four anticholinergic drugs (atropine, benactyzine, biperiden, scopolamine) was compared. 2. Testing of tabun-induced neurotoxicity progress was carried out using the method Functional observational battery. The experimental animals as well as controls were observed at 24 hours and 7 days following tabun or saline administration. 3. The results were compared to the condition of animals without anticholinergic drug (oxime alone) and control rats that received physiological solution instead of tabun and treatment. Antidotal treatment involving centrally acting anticholinergic drugs (benactyzine, biperiden, scopolamine) showed significantly higher neuroprotective efficacy compared to antidotal treatment containing atropine.
Reprint of : Thermodynamic properties of a quantum Hall anti-dot interferometer
Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.
2016-08-01
We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattice Quantum Chromodynamics
Sachrajda, C. T.
2016-10-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattice topology dictates photon statistics
Kondakci, H Esat; Saleh, Bahaa E A
2016-01-01
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice satisfies chiral symmetry. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity -- whether the number of sites is even or odd, while the same quantities are insensitive to the parity of a linear lattice. Adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a chiral-symmetric lattice, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice th...
Preparation of Oxime HI-6 (Dichloride and DimethanesulphonateŒAntidote against Nerve Agents
Directory of Open Access Journals (Sweden)
Kamil Kuca
2008-05-01
Full Text Available Because of the threat of misuse of nerve agents as terroristic weapons by the terrorists, animmediate need is felt for the preparation of antidotes on large-scale basis. HI-6 (dichloride anddimethanesulphonate salt are the most promising acetylcholinesterase reactivators used ascausal antidotes in nerve agents intoxication. In this study, rapid and large-scale preparationof oxime HI-6, the most promising reactivator has been described.
Specific antidotes in development for reversal of novel anticoagulants: a review.
Gomez-Outes, Antonio; Suarez-Gea, M L; Lecumberri, Ramon; Terleira-Fernandez, Ana I; Vargas-Castrillon, Emilio
2014-01-01
In the last decade, several direct oral anticoagulants (DOAC; dabigatran, rivaroxaban, apixaban, edoxaban) have been marketed for prophylaxis and/or treatment of thromboembolism without having specific antidotes available for their reversal. Current management of bleeding associated to DOAC includes the removal of all antithrombotic medications and supportive care. Non-specific procoagulant agents (prothrombin complex concentrates and activated factor VIIa) have been used in case of serious bleeding. Currently, some specific antidotes for the DOAC are under development. Idarucizumab (BI 655075; Boehringer Ingelheim) is a fragment of an antibody (Fab), which is a specific antidote to the oral direct thrombin inhibitor dabigatran. Andexanet alfa (r-Antidote, PRT064445; Portola Pharmaceuticals) is a truncated form of enzymatically inactive factor Xa, which binds and reverses the anticoagulant action of the factor Xa inhibitors (e.g.: rivaroxaban, apixaban and edoxaban). Aripazine (PER-977, ciraparantag; Perosphere Inc.) is a synthetic small molecule (~500 Da) that reverses oral dabigatran, apixaban, rivaroxaban, as well as subcutaneous fondaparinux and LMWH in vivo. These antidotes could provide an alternative for management of life-threatening bleeding events occurring with the above-mentioned anticoagulants. In addition, the specific antidote anivamersen (RB007; Regado Biosciences Inc.) is an RNA aptamer in clinical development to reverse the anticoagulant effect of the parenteral factor IXa inhibitor pegnivacogin, which is also in development. This anticoagulant-antidote pair may provide an alternative in situations in which a fast onset and offset of anticoagulation is needed, like in patients undergoing cardiac surgery with extracorporeal circulation, as an alternative to the heparin/protamine pair. This patent review includes a description of the pharmacological characteristics of the novel specific antidotes, the available results from completed non
Idarucizumab as Antidote to Intracerebral Hemorrhage under Treatment with Dabigatran
Held, Valentin; Eisele, Philipp; Eschenfelder, Christoph C.; Szabo, Kristina
2016-01-01
Background and Purpose Non-vitamin K anticoagulants (NOAC) such as dabigatran have become important therapeutic options for the prevention of stroke. Until recently, there were only nonspecific agents to reverse their anticoagulant effects in a case of emergency. Idarucizumab, an antibody fragment targeting dabigatran, is the first specific antidote for a NOAC to be approved, but real-world experience is limited. Methods We report two cases of patients on dabigatran with acute intracerebral hemorrhage who received idarucizumab. Results In both cases, idarucizumab promptly reversed the anticoagulant effect of dabigatran and there was no hematoma expansion in follow-up imaging. Conclusions In addition to clinical and preclinical studies, our cases add to the experience regarding the safety and efficacy of idarucizumab. They show that idarucizumab may be an important safety option for patients on dabigatran in emergency situations. PMID:27920714
Intralipid emulsion treatment as an antidote in lipophilic drug intoxications.
Eren Cevik, Sebnem; Tasyurek, Tanju; Guneysel, Ozlem
2014-09-01
Intravenous lipid emulsion (ILE) is a lifesaving treatment of lipophilic drug intoxications. Not only does ILE have demonstrable efficacy as an antidote to local anesthetic toxicity, it is also effective in lipophilic drug intoxications. Our case series involved 10 patients with ingestion of different types of lipophilic drugs. Intravenous lipid emulsion treatment improved Glasgow Coma Scale or blood pressure and pulse rate or both according to the drug type. Complications were observed in 2 patients (minimal change pancreatitis and probable ILE treatment-related fat infiltration in lungs). In our case series, ILE was used for different lipophilic drug intoxications to improve cardiovascular and neurologic symptoms. According to the results, it was found that ILE treatment is a lifesaving agent in lipophilic drug intoxications and it can be used in unconscious patients who have cardiac and/or neurologic symptoms but no history of a specific drug ingestion.
Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition.
Kamada, Katsuhiko; Hanaoka, Fumio; Burley, Stephen K
2003-04-01
A structure of the Escherichia coli chromosomal MazE/MazF addiction module has been determined at 1.7 A resolution. Addiction modules consist of stable toxin and unstable antidote proteins that govern bacterial cell death. MazE (antidote) and MazF (toxin) form a linear heterohexamer composed of alternating toxin and antidote homodimers (MazF(2)-MazE(2)-MazF(2)). The MazE homodimer contains a beta barrel from which two extended C termini project, making interactions with flanking MazF homodimers that resemble the plasmid-encoded toxins CcdB and Kid. The MazE/MazF heterohexamer structure documents that the mechanism of antidote-toxin recognition is common to both chromosomal and plasmid-borne addiction modules, and provides general molecular insights into toxin function, antidote degradation in the absence of toxin, and promoter DNA binding by antidote/toxin complexes.
Sohn, Chang Hwan; Ryoo, Seung Mok; Lim, Kyoung Soo; Kim, Won; Lim, Hoon; Oh, Bum Jin
2014-11-01
Antidotes for toxicological emergencies can be life-saving. However, there is no nationwide estimation of the antidotes stocking amount in Korea. This study tried to estimate the quantities of stocking antidotes at emergency department (ED). An expert panel of clinical toxicologists made a list of 18 emergency antidotes. The quantity was estimated by comparing the antidote utilization frequency in a multicenter epidemiological study and the nation-wide EDs' data of National Emergency Department Information System (NEDIS). In an epidemiological study of 11 nationwide EDs from January 2009 to December 2010, only 92 (1.9%) patients had been administered emergency antidotes except activated charcoal among 4,870 cases of acute adult poisoning patients. Comparing with NEDIS data, about 1,400,000 patients visited the 124 EDs nationwide due to acute poisoning and about 103,348 adult doses of the 18 emergency antidotes may be required considering poisoning severity score. Of these, 13,224 (1.9%) adult doses of emergency antidotes (575 of atropine, 144 of calcium gluconate or other calcium salts, 2,587 of flumazenil, 3,450 of N-acetylcysteine, 5,893 of pralidoxime, 287 of hydroxocobalamin, 144 of sodium nitrite, and 144 of sodium thiosulfate) would be needed for maintaining the present level of initial treatment with emergency antidotes at EDs in Korea.
Role of the lattice dynamics in La2-xBaxCuO4 superconductor based on DFT method
Directory of Open Access Journals (Sweden)
A Tavana
2010-09-01
Full Text Available Electron-phonon coupling parameters are calculated for La2-x BaxCuO4 cuprate superconductor in a wide range of dopings, from undoped to overdoped compounds. In this study we aim to study the quality of such calculations based on DFT method so, the results of σ GGA+U electronic structure calculations are also investigated. The obtained value for electron-phonon coupling is in the same order of previous calculations but, the value obtained for the Hubbard U parameter shows that, such methods are poor in the estimation of electronic correlations to decide about the role of phonons in these compounds based on their results. Moreover, existence of several structural phase transitions with temperature and doping, lead to larger error in these calculations. Based on the calculated phonon dispersions, structural phase transitions can be resulted which shows the ability of DFT in the study of structural properties and the weakness of the strongly correlations in this properties.
DEFF Research Database (Denmark)
Santocanale, Luigi
2002-01-01
A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...
Magdalan, Jan; Ostrowska, Alina; Piotrowska, Aleksandra; Gomułkiewicz, Agnieszka; Podhorska-Okołów, Marzena; Patrzałek, Dariusz; Szelag, Adam; Dziegiel, Piotr
2010-07-01
Fatalities due to mushroom poisonings are increasing worldwide, with high mortality rate resulting from ingestion of amanitin-producing species. Intoxications caused by amanitin-containing mushrooms represent an unresolved problem in clinical toxicology since no specific and fully efficient antidote is available. The objective of this study was a comparative evaluation of benzylpenicillin (BPCN), acetylcysteine (ACC) and silibinin (SIL) as an antidotes in human hepatocytes intoxicated with alpha-amanitin (alpha-AMA). All experiments were performed on cultured human hepatocytes. Cytotoxicity evaluation of cultured cells using MTT assay and measurement of lactate dehydrogenase (LDH) activity was performed at 12, 24 and 48h of exposure to alpha-AMA and/or antidotes. The significant decline of cell viability and significant increase of LDH activity were observed in all experimental hepatocyte cultures after 12, 24 and 36h exposure to alpha-AMA at concentration 2microM. Exposure of the cells to alpha-AMA resulted also in significant reduction of cell spreading and attachment. However, addition of tested antidotes to experimental cultures significantly stimulated cell proliferation and attachment. In cell cultures exposed simultaneously to alpha-AMA and tested antidotes cytotoxic parameters (MTT and LDH) were not significantly different from control incidences. The cytoprotective effect of all antidotes was not dose-related, which reflects a high efficacy of all these substances. Administration of studied antidotes was not associated with any adverse effects in hepatocytes. The administration of ACC, BPCN or SIL to human hepatocyte cultures showed a similar strong protective effect against cell damage in alpha-AMA toxicity.
Fresh frozen plasma as a successful antidotal supplement in acute organophosphate poisoning.
Vučinić, Slavica; Zlatković, Milica; Antonijević, Biljana; Ćurčić, Marijana; Bošković, Bogdan
2013-06-01
Despite improvements to intensive care management and specific pharmacological treatments (atropine, oxime, diazepam), the mortality associated with organophosphate (OP) poisoning has not substantially decreased. The objective of this examination was to describe the role of fresh frozen plasma (FFP) in acute OP poisoning. After a deliberate ingestion of malathion, a 55-year-old male suffering from miosis, somnolence, bradycardia, muscular fasciculations, rales on auscultation, respiratory insufficiency, as well as from an inhibition of red blood cell acetylcholinesterase (AChE) and plasma butyrylcholinesterase (BuChE), was admitted to hospital. Malathion was confirmed in a concentration of 18.01 mg L(-1). Apart from supportive measures (including mechanical ventilation for four days), antidotal treatment with atropine, oxime-pralidoxime methylsulphate (Contrathion(R)), and diazepam was administered, along with FFP. The potentially beneficial effects of FFP therapy included a prompt increase of BuChE activity (from 926 IU L(-1) to 3277 IU L(-1); reference range from 7000 IU L(-1) to 19000 IU L(-1)) and a reduction in the malathion concentration, followed by clinical recovery. Due to BuChE replacement, albumin content, and volume restitution, FFP treatment may be used as an alternative approach in patients with acute OP poisoning, especially when oximes are not available.
dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots.
Tsindlekht, M I; Genkin, V M; Felner, I; Zeides, F; Katz, N; Gazi, Š; Chromik, Š; Dobrovolskiy, O V; Sachser, R; Huth, M
2016-06-01
dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above [Formula: see text] and [Formula: see text] the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode.
Recent advances in the development of specific antidotes for target-specific oral anticoagulants.
Mo, Yoonsun; Yam, Felix K
2015-02-01
Warfarin, a vitamin K antagonist, has been the only orally available anticoagulant for > 60 years. During the past decade, the U.S. Food and Drug Administration has approved several target-specific oral anticoagulants (TSOACs) for the prophylaxis and treatment of arterial and venous thromboembolism and stroke prevention in patients with nonvalvular atrial fibrillation. These new agents have several advantages over warfarin including more predictable pharmacokinetics and pharmacodynamics, fewer food and drug interactions, and lack of need for routine coagulation monitoring. However, unlike warfarin, currently no antidotes are available to reverse the anticoagulant effect of TSOACs. Specific antidotes for TSOACs may not be needed in most situations due to their short half-life, yet the absence of antidotes for these agents is a concern, especially in emergent situations such as life-threatening major bleeding or nonelective major surgery. Several specific antidotes for TSOACs including idarucizumab, andexanet alfa, and aripazine have been developed and have shown promise in early clinical trials evaluating their efficacy and safety. In this narrative review, the progress made in developing specific antidotes for TSOACs is summarized based on the latest available preclinical and clinical data.
An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action.
Jin, Shan; Sarkar, Kumar S; Jin, Youngnam N; Liu, Yan; Kokel, David; Van Ham, Tjakko J; Roberts, Lee D; Gerszten, Robert E; Macrae, Calum A; Peterson, Randall T
2013-01-01
Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry-based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Peiheng, E-mail: phzhou@uestc.edu.cn; Zhang, Nan; Liu, Tao; Xie, Jianliang; Deng, Longjiang
2014-08-01
Magnetic domain structure of FeCoBSi antidot array thin films of varying thickness were characterized using surface magneto-optic Kerr effect. Vibrating sample magnetometry and microstrip transmission line measurements helped to associate the microwave magnetic analysis of the antidot arrays with hysteresis studies. The domain structure evolution from quasi-continuous domains to strip domains induced by the competing exchange and dipolar interaction resulted in the change of ferromagnetic resonance from multi-band to single-band. Hence, the mechanisms of multi-resonance are proposed to be related to domain wall motion, natural resonance and spin wave modes. This phenomenon can be used to control the magnetization dynamics in spin wave devices. - Highlights: • A multiresonance mechanism for ferromagnetic antidot array is proposed. • The mechanism relies on the domain structure evolution of antidote arrays. • Domain structure of antidot arrays changes from quasi-continuous patterns to strip domains. • Resonance of domain wall motion is discriminated from the natural resonance and spin wave modes.
Ethylene glycol or methanol intoxication: which antidote should be used, fomepizole or ethanol?
Rietjens, S J; de Lange, D W; Meulenbelt, J
2014-02-01
Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol poisoning) and death. Therapy consists of general supportive care (e.g. intravenous fluids, correction of electrolytes and acidaemia), the use of antidotes and haemodialysis. Haemodialysis is considered a key element in the treatment of severe EG and methanol intoxication and is aimed at removing both the parent compound and its toxic metabolites, reducing the duration of antidotal treatment and shortening the hospital observation period. Currently, there are two antidotes used to block ADH-mediated metabolism of EG and methanol: ethanol and fomepizole. In this review, the advantages and disadvantages of both antidotes in terms of efficacy, safety and costs are discussed in order to help the physician to decide which antidote is appropriate in a specific clinical setting.
Antidotes for poisoning by alcohols that form toxic metabolites.
McMartin, Kenneth; Jacobsen, Dag; Hovda, Knut Erik
2016-03-01
The alcohols, methanol, ethylene glycol and diethylene glycol, have many features in common, the most important of which is the fact that the compounds themselves are relatively non-toxic but are metabolized, initially by alcohol dehydrogenase, to various toxic intermediates. These compounds are readily available worldwide in commercial products as well as in homemade alcoholic beverages, both of which lead to most of the poisoning cases, from either unintentional or intentional ingestion. Although relatively infrequent in overall occurrence, poisonings by metabolically-toxic alcohols do unfortunately occur in outbreaks and can result in severe morbidity and mortality. These poisonings have traditionally been treated with ethanol since it competes for the active site of alcohol dehydrogenase and decreases the formation of toxic metabolites. Although ethanol can be effective in these poisonings, there are substantial practical problems with its use and so fomepizole, a potent competitive inhibitor of alcohol dehydrogenase, was developed for a hopefully better treatment for metabolically-toxic alcohol poisonings. Fomepizole has few side effects and is easy to use in practice and it may obviate the need for haemodialysis in some, but not all, patients. Hence, fomepizole has largely replaced ethanol as the toxic alcohol antidote in many countries. Nevertheless, ethanol remains an important alternative because access to fomepizole can be limited, the cost may appear excessive, or the physician may prefer ethanol due to experience.
Antidotal Efficacy of Antioxidants against Cyanide Poisoning in vitro.
Directory of Open Access Journals (Sweden)
R. Bhattacharya
1999-01-01
Full Text Available Cyanide is a potent homicidal, genocidal and chemical warfare agent. Besides, its known inhibitory effects on various enzyme Systems, its other pronounced toxic effects include lipid peroxidation (LPx, particularly in the central nervous system or neuronal cells in vitro. The present study assessed the cytotoxicity of potassium cyanide (KCN in two non-neuronal mammalian cell cultures, viz., human embryonic lung epithelium (L-132 and baby hamster kidney (BHK-21 cells. In addition, the cytoprotective potential of two antioxidant agents, namely, curcumin (CMN and N-acetylcysteine (NAC against KCN (2 and 4 mM in vitro was evaluated. In both the cell lines, KCN reduced cell viability as indicated by trypan blue dye exclusion, leakage of cytosolic lactate dehydrogenase and neutral red uptake. Protein content was unaffected in L-132 cells while cellular respiration determined by MTT assay was impaired in both the cells. A dose-dependent glutathione mediated LPx was observed in BHK-21 cells alone. The above cytotoxic changes produced by KCN were more effectively minimised by NAC as compared to CMN. Efficacy of CMN and NAC have therapeutic implications as adjuncts to existing cyanide antidotes.
Properties of two-dimensional electron gas containing self-organized quantum antidots
Vasilyev, Yu.; Suchalkin, S.; Zundel, M.; Heisenberg, D.; Eberl, K.; von Klitzing, K.
1999-11-01
A nonuniform two-dimensional electron gas in a heterojunction with inserted self-organized electrically inactive dots (acting as antidots) has been fabricated by molecular-beam epitaxy of AlGaAs/AlInAs/GaAs layer sequences. Transport measurements give the ratio of the transport mobility to the quantum mobility less than four, which suggests that the dominant scattering at low magnetic fields is the short-range scattering from the lateral potential of the antidots. Far-infrared cyclotron resonance (CR) spectra show an absorption mode as narrow as 0.5 cm-1 at high magnetic fields associated with the high-mobility electron gas formed between the antidot islands and confined in the lateral directions. The confinement energy of 14 cm-1 is derived from the CR spectra.
Detoxification of mercury species - an in vitro study with antidotes in human whole blood
Energy Technology Data Exchange (ETDEWEB)
Truempler, Stefan; Nowak, Sascha; Meermann, Bjoern; Buscher, Wolfgang; Karst, Uwe [University of Muenster, Institute of Inorganic and Analytical Chemistry, Muenster (Germany); Wiesmueller, Gerhard A. [University Hospital Muenster, Environmental Specimen Bank for Human Tissues, Muenster (Germany); Sperling, Michael [University of Muenster, Institute of Inorganic and Analytical Chemistry, Muenster (Germany); European Virtual Institute for Speciation Analysis, Muenster (Germany)
2009-11-15
To investigate the effects of mercury species intoxication and to test the efficiency of different commonly applied antidotes, human whole blood and plasma surrogate samples were spiked with inorganic mercury (Hg{sup 2+}) and methylmercury (MeHg{sup +}, CH{sub 3}Hg{sup +}) prior to treatment with the antidotes 2,3-dimercaptopropan-1-ol (British Anti Lewisite), 2,3-dimercaptosuccinic acid (DMSA), and N-acetylcysteine (NAC). For mercury speciation analysis in these samples, liquid chromatography was coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). Adduct formation between mercury species and physiological thiols (cysteine and glutathione) was observed as well as the release of glutathione under treatment with the antidotes DMSA and NAC. (orig.)
Detoxification of mercury species--an in vitro study with antidotes in human whole blood.
Trümpler, Stefan; Nowak, Sascha; Meermann, Björn; Wiesmüller, Gerhard A; Buscher, Wolfgang; Sperling, Michael; Karst, Uwe
2009-11-01
To investigate the effects of mercury species intoxication and to test the efficiency of different commonly applied antidotes, human whole blood and plasma surrogate samples were spiked with inorganic mercury (Hg2+) and methylmercury (MeHg+, CH3Hg+) prior to treatment with the antidotes 2,3-dimercaptopropan-1-ol (British Anti Lewisite), 2,3-dimercaptosuccinic acid (DMSA), and N-acetylcysteine (NAC). For mercury speciation analysis in these samples, liquid chromatography was coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). Adduct formation between mercury species and physiological thiols (cysteine and glutathione) was observed as well as the release of glutathione under treatment with the antidotes DMSA and NAC.
Energy Technology Data Exchange (ETDEWEB)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadovnikov, A. V.; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Grishin, S. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2015-10-19
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.
Homer's moly identified as Galanthus nivalis L.: physiologic antidote to stramonium poisoning.
Plaitakis, A; Duvoisin, R C
1983-03-01
The antidotal properties of certain naturally occurring medicinal plants against central nervous system intoxication appear to have been empirically established in ancient times. Homer, in his epic poem, the Odyssey, described a plant, "moly," used by Odysseus as an antidote against Circe's poisonous drugs. Centrally acting anticholinergic agents are thought to have been used by Circe to induce amnesia and a delusional state in Odysseus' crew. We present evidence to support the hypothesis that "moly" might have been the snowdrop, Galanthus nivalis, which contains galanthamine, a centrally acting anticholinesterase. Thus the description of "moly" as an antidote in Homer's Odyssey may represent the oldest recorded use of an anticholinesterase to reverse central anticholinergic intoxication.
Flavor Physics and Lattice QCD
Bouchard, C M
2013-01-01
Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision of such calculations, and therefore our ability to leverage experiment, is typically limited by hadronic uncertainties. The only first-principles method for calculating the nonperturbative, hadronic contributions is lattice QCD. Modern lattice calculations have controlled errors, are systematically improvable, and in some cases, are pushing the sub-percent level of precision. I outline the role played by, highlight state of the art efforts in, and discuss possible future directions of lattice calculations in flavor physics.
Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system.
Schmidt, Hayden R; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A
2015-04-15
The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The ki values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, kr, in both zebrafish and human AChE. However, differences between the Kox and k2 constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, Ki and αKi, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure.
Neuroprotective effects of currently used antidotes in tabun-poisoned rats.
Kassa, Jirí; Krejèová, Gabriela
2003-06-01
The neuroprotective effects of antidotes (atropine, pralidoxime/atropine, obidoxime/atropine and HI-6/atropine mixtures) on rats poisoned with tabun at a lethal dose (220 microg/kg intramuscularly; 100% of LD50 value) were studied. The tabun-induced neurotoxicity was monitored using a functional observational battery and an automatic measurement of motor activity. The neurotoxicity of tabun was monitored at 24 hr and 7 days after tabun challenge. The results indicate that atropine alone is not able to protect the rats from the lethal effects of tabun. Three non-treated tabun-poisoned rats and one tabun-poisoned rat treated with atropine alone died within 24 hr. On the other hand, atropine combined with all tested oximes allows all tabun-poisoned rats to survive at least 7 days following tabun challenge. Obidoxime combined with atropine seems to be the most effective antidotal treatment for the elimination of tabun-induced neurotoxicity in the case of lethal poisoning among tested antidotal mixtures. The antidotal mixture consisting of atropine and HI-6 is significantly less effective than the combination of atropine with obidoxime in the elimination of tabun-induced neurotoxicity in rats at 24 hr following tabun challenge. Pralidoxime in combination with atropine appears to be practically ineffective to decrease tabun-induced neurotoxicity at 24 hours as well as 7 days following tabun poisoning. Due to its neuroprotective effects, obidoxime seems to be the most effective and most suitable oxime for the antidotal treatment of acute tabun exposure among currently used oximes. Thus, the replacement of obidoxime by a more effective acetylcholinesterase reactivator for soman poisoning, the oxime HI-6, can to a small extent diminish the neuroprotective efficacy of antidotal treatment in the case of acute tabun poisonings.
New integrable lattice hierarchies
Energy Technology Data Exchange (ETDEWEB)
Pickering, Andrew [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); Zhu Zuonong [Departamento de Matematicas, Universidad de Salamanca, Plaza de la Merced 1, 37008 Salamanca (Spain) and Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: znzhu2@yahoo.com.cn
2006-01-23
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula.
Campos, R G; Campos, Rafael G.; Tututi, Eduardo S.
2002-01-01
It is shown that the nonlocal Dirac operator yielded by a lattice model that preserves chiral symmetry and uniqueness of fields, approaches to an ultralocal and invariant under translations operator when the size of the lattice tends to zero.
Enhanced spin Hall effect by tuning antidot potential: Proposal for a spin filter
Yokoyama, Tomohiro; Eto, Mikio
2009-09-01
We propose an efficient spin filter including an antidot fabricated on semiconductor heterostructures with strong spin-orbit interaction. The antidot creates a tunable potential on two-dimensional electron gas in the heterostructures, which may be attractive as well as repulsive. Our idea is based on the enhancement of extrinsic spin Hall effect by resonant scattering when the attractive potential is properly tuned. Numerical studies for three- and four-terminal devices indicate that the efficiency of the spin filter can be more than 50% by tuning the potential to the resonant condition.
Sober Topological Molecular Lattices
Institute of Scientific and Technical Information of China (English)
张德学; 李永明
2003-01-01
A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.
N-acetylcysteine amide, a promising antidote for acetaminophen toxicity.
Khayyat, Ahdab; Tobwala, Shakila; Hart, Marcia; Ercal, Nuran
2016-01-22
Acetaminophen (N-acetyl-p-aminophenol, APAP) is one of the most widely used over the counter antipyretic and analgesic medications. It is safe at therapeutic doses, but its overdose can result in severe hepatotoxicity, a leading cause of drug-induced acute liver failure in the USA. Depletion of glutathione (GSH) is one of the initiating steps in APAP-induced hepatotoxicity; therefore, one strategy for restricting organ damage is to restore GSH levels by using GSH prodrugs. N-acetylcysteine (NAC), a GSH precursor, is the only currently approved antidote for an acetaminophen overdose. Unfortunately, fairly high doses and longer treatment times are required due to its poor bioavailability. In addition, oral and I.V. administration of NAC in a hospital setting are laborious and costly. Therefore, we studied the protective effects of N-acetylcysteine amide (NACA), a novel antioxidant with higher bioavailability, and compared it with NAC in APAP-induced hepatotoxicity in C57BL/6 mice. Our results showed that NACA is better than NAC at a low dose (106mg/kg) in preventing oxidative stress and protecting against APAP-induced damage. NACA significantly increased GSH levels and the GSH/GSSG ratio in the liver to 66.5% and 60.5% of the control, respectively; and it reduced the level of ALT by 30%. However, at the dose used, NAC was not effective in combating the oxidative stress induced by APAP. Thus, NACA appears to be better than NAC in reducing the oxidative stress induced by APAP. It would be of great value in the health care field to develop drugs like NACA as more effective and safer options for the prevention and therapeutic intervention in APAP-induced toxicity.
Lattice Regularization and Symmetries
Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc
2006-01-01
Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.
Ekström, F J; Astot, C; Pang, Y-P
2007-09-01
Organophosphorus compound-based nerve agents inhibit the essential enzyme acetylcholinesterase (AChE) causing acute toxicity and death. Clinical treatment of nerve-agent poisoning is to use oxime-based antidotes to reactivate the inhibited AChE. However, the nerve agent tabun is resistant to oximes. To design improved oximes, crystal structures of a tabun-conjugated AChE in complex with different oximes are needed to guide the structural modifications of known antidotes. However, this type of structure is extremely challenging to obtain because both deamidation of the tabun conjugate and reactivation of AChE occur during crystallographic experiments. Here we report, for the first time, the crystal structures of Ortho-7 and HLö-7 in complex with AChE that is conjugated to an intact tabun. These structures were determined by our new strategy of combining crystallographic and mass spectrometric analyses of AChE crystals. The results explain the relative reactivation potencies of the two oximes and offer insights into improving known medical antidotes.
Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View
Meurice, Yannick
2011-01-01
Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.
Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure.
Nath, Anjali K; Roberts, Lee D; Liu, Yan; Mahon, Sari B; Kim, Sonia; Ryu, Justine H; Werdich, Andreas; Januzzi, James L; Boss, Gerry R; Rockwood, Gary A; MacRae, Calum A; Brenner, Matthew; Gerszten, Robert E; Peterson, Randall T
2013-05-01
Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.
Insufficient stocking of cyanide antidotes in US hospitals that provide emergency care
Directory of Open Access Journals (Sweden)
Lucas Gasco
2013-01-01
Full Text Available Objective: To identify the influence of catchment area, trauma center designation, hospital size, subspecialist employment, funding source, and other hospital characteristics on cyanide antidote stocking choice in US hospitals that provides emergency care. Materials and Methods: A web-based survey was sent out to pharmacy managers through two listservs; the American Society of Health-Systems Pharmacists and the American College of Clinical Pharmacy. A medical marketing company also broadcasted the survey to 2,659 individuals. We collected data on hospital characteristics (size, state, serving population, etc., to determine what influenced the hospital′s stocking choice. Results: The survey response rate was approximately 10% ( n = 286. Thirty-eight hospitals (16% stocked at least 4 antidote kits. Safety profile, recommendations from a poison control center, and ease of use had the strongest influence on stocking decisions. Conclusions: Survey of 286 US hospital pharmacy managers, 38/234 (16% hospitals had sufficient stocking of cyanide antidotes. Antidote preference was based on safety, ease of use, and recommendations by the local poison center, over cost.
Bianchini, Elsa P; Fazavana, Judicael; Picard, Veronique; Borgel, Delphine
2011-02-10
Heparin derivative-based therapy has evolved from unfractionated heparin (UFH) to low-molecular-weight heparins (LMWHs) and now fondaparinux, a synthetic pentasaccharide. Contrary to UFH or LMWHs, fondaparinux is not neutralized by protamine sulfate, and no antidote is available to counteract bleeding disorders associated with overdosing. To make the use of fondaparinux safer, we developed an antithrombin (AT) variant as a potent antidote to heparin derivatives. This variant (AT-N135Q-Pro394) combines 2 mutations: substitution of Asn135 by a Gln to remove a glycosylation site and increase affinity for heparins, and the insertion of a Pro between Arg393 and Ser394 to abolish its anticoagulant activity. As expected, AT-N135Q-Pro394 anticoagulant activity was almost abolished, and it exhibited a 3-fold increase in fondaparinux affinity. AT-N135Q-Pro394 was shown to reverse fondaparinux overdosing in vitro in a dose-dependent manner through a competitive process with plasma AT for fondaparinux binding. This antidote effect was also observed in vivo: administration of AT-N135Q-Pro394 in 2.5-fold molar excess versus plasma AT neutralized 86% of the anti-Xa activity within 5 minutes in mice treated with fondaparinux. These results clearly demonstrate that AT-N135Q-Pro394 can reverse the anticoagulant activity of fondaparinux and thus could be used as an antidote for this drug.
Marcus, P. S.; Jiang, C.; Pei, S.; Hassanzadeh, P.
2012-12-01
-uniform shear and vertical stratification. However, they do not form in numerical calculations with insufficient spatial resolution or large grid dissipation. For flows with uniform or nearly-uniform horizontal shear and for some profiles of Brunt-Vaisala frequency, the process of excitation, critical layer growth, roll-up and vortex creation can self-similarly self-replicate so that the entire 3D computational domain fills with a spatially periodic lattice of large-amplitude vortices. This self-replication occurs in flows that are linearly stable, and in particular, in near-Keplerian protoplanetary disks that are convectively and centrifugally linearly stable. Thus, a small, but finite-amplitude perturbation in the form of a wave or vortex fills the entire dead zone of the protoplanetary disk with large-amplitude coherent structures. This phenomenon was serendipitously discovered in calculations of protoplanetary disks and independently in calculations of planetary vortices in zonal flows, but the spontaneous formation of a vortex lattice also occurs in large Reynolds number laboratory flows such as circular and plane Couette flows.
Thermodynamic modeling using BINGO-ANTIDOTE: A new strategy to investigate metamorphic rocks
Lanari, Pierre; Duesterhoeft, Erik
2016-04-01
BINGO-ANTIDOTE is a new program, combing the achievements of the two petrological software packages XMAPTOOLS[1] and THERIAK-DOMINO[2]. XMAPTOOLS affords information about compositional zoning in mineral and local bulk composition of domains at the thin sections scale. THERIAK-DOMINO calculates equilibrium phase assemblages from given bulk rock composition, temperature T and pressure P. Primarily BINGO-ANTIDOTE can be described as an inverse THERIAK-DOMINO, because it uses the information provided by XMAPTOOLS to calculate the probable P-T equilibrium conditions of metamorphic rocks. Consequently, the introduced program combines the strengths of forward Gibbs free energy minimization models with the intuitive output of inverse thermobarometry models. In order to get "best" P-T equilibrium conditions of a metamorphic rock sample and thus estimating the degree of agreement between the observed and calculated mineral assemblage, it is critical to define a reliable scoring strategy. BINGO uses the THERIAKD ADD-ON[3] (Duesterhoeft and de Capitani, 2013) and is a flexible model scorer with 3+1 evaluation criteria. These criteria are the statistical agreement between the observed and calculated mineral-assemblage, -proportions (vol%) and -composition (mol). Additionally, a total likelihood, consisting of the first three criteria, allows the user an evaluation of the most probable equilibrium P-T condition. ANTIDOTE is an interactive user interface, displaying the 3+1 evaluation criteria as probability P-T-maps. It can be used with and without XMAPTOOLS. As a stand-alone program, the user is able to give the program macroscopic observations (i.e., mineral names and proportions), which ANTIDOTE converts to a readable BINGO input. In this manner, the use of BINGO-ANTIDOTE opens up thermodynamics to students and people with only a basic knowledge of phase diagrams and thermodynamic modeling techniques. This presentation introduces BINGO-ANTIDOTE and includes typical examples
Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Hayden R. [Department of Biology, Whittier College, Whittier, CA 90608 (United States); Radić, Zoran; Taylor, Palmer [Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650 (United States); Fradinger, Erica A., E-mail: efrading@whittier.edu [Department of Biology, Whittier College, Whittier, CA 90608 (United States)
2015-04-15
The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not
Poisson distributions for sharp-time fields antidote for triviality
Klauder, J R
1995-01-01
Standard lattice-space formulations of quartic self-coupled Euclidean scalar quantum fields become trivial in the continuum limit for sufficiently high space-time dimensions, and in particular the moment generating functional for space-time smeared fields becomes a Gaussian appropriate to that of a (possibly generalized) free field. For sharp-time fields this fact implies that the ground-state expectation functional also becomes Gaussian in the continuum limit. To overcome these consequences of the central limit theorem, an auxiliary, nonclassical potential is appended to the original lattice form of the model and parameters are tuned so that a generalized Poisson field distribution emerges in the continuum limit for the ground-state probability distribution. As a consequence, the sharp-time expectation functional is infinitely divisible, but the Hamiltonian operator is such, in the general case, that the generating functional for the space-time smeared field is not infinitely divisible in Minkowski space. Th...
Organophosphate antidote auto-injectors vs. traditional administration: a time motion study.
Rebmann, Terri; Clements, Bruce W; Bailey, Jeffrey A; Evans, R Gregory
2009-08-01
Organophosphates may be used as weapons in chemical attacks on civilian or military populations. Antidotes are available to counter the effects of organophosphates, but they must be administered shortly after exposure. Timing required to administer organophosphate antidotes using traditional equipment vs. auto-injectors has not been studied. This study is intended to quantify and compare the time required to administer organophosphate antidotes using traditional equipment vs. auto-injectors in different treatment conditions. The study was a randomized, un-blinded design. There were 62 participants assigned to one of three groups: Mark I, ATNAA (antidote treatment nerve agent auto-injector), and traditional needle/syringe; however, the results from only 56 participants could be analyzed. Injection trials were videotaped. Subjects also completed a 14-item survey containing demographic questions, perceived ease of injection, receipt of prior training, and preferred training format for organophosphate treatment. Injection time differentials were compared using one-way analysis of variance; post hoc evaluation was performed using the Scheffe test with Bonferroni correction. Fifty-six subjects completed this study. The ATNAA required less time to administer than the Mark I or traditional needle/syringe devices (p antidote treatment. An ATNAA auto-injector can be administered in less than half the time it takes to administer a single injection using a needle and syringe or two injections using a Mark I. Mark I can be administered in approximately the same amount of time it takes to administer a single injection using a needle and syringe. The difference between injection time for the ATNAA and needle and syringe would have been even larger if two injections were given with the needle and syringe. The wearing or absence of personal protective equipment does not affect injection time.
Li, Lingxiangyu; Hu, Ligang; Zhou, Qunfang; Huang, Chunhua; Wang, Yawei; Sun, Cheng; Jiang, Guibin
2015-02-17
Sulfidation is considered as a natural antidote to toxicity of metallic nanoparticles (NPs). The detoxification contribution from sulfidation, however, may vary depending on sulfidation mechanisms. Here we present the dissolution-precipitation instead of direct solid-state-shell mechanism to illustrate the process of CuO-NPs conversion to CuS-NPs in aqueous solutions. Accordingly, the CuS-NPs at environmentally relevant concentrations showed much stronger interference on Japanese medaka (Oryzias latipes) embryo hatching than CuO-NPs, which was probably due to elevated free copper ions released from CuS-NPs, leading to significant increase in oxidative stress and causing toxicity in embryos. The larval length was significantly reduced by CuS-NPs, however, no other obviously abnormal morphological features were identified in the hatched larvae. Co-introduction of a metal ion chelator [ethylene diamine tetraacetic acid (EDTA)] could abolish the hatching inhibition induced by CuS-NPs, indicating free copper ions released from CuS-NPs play an important role in hatching interference. This work documents for the first time that sulfidation as a natural antidote to metallic NPs is being overestimated, which has far reaching implications for risk assessment of metallic NPs in aquatic environment.
Jammed lattice sphere packings
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-01-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Directory of Open Access Journals (Sweden)
V.V. Kulish
2015-06-01
Full Text Available The paper investigates the antiferromagnetic vector distribution in an antiferromagnetic film with a system of antidots. A static distribution of the antiferromagnetic vector is written and a method – based on the minimization of the antiferromagnet energy – that allows reducing the number of boundary conditions required for finding the constants of this distribution is proposed. Equations for the distribution constants are obtained for the both cases of minimizing the antiferromagnet energy by one and by two distribution constants that enter the expression for the antiferromagnet energy. The method is illustrated on a system of one isolated antidot. For such system, one additional condition – for the case when two boundary conditions on the surface of the antidot are given – and two additional conditions – for the case when one boundary condition on the surface of the antidot is given – on the distribution constants are written.
Energy Technology Data Exchange (ETDEWEB)
Gong, W. J.; Liu, W., E-mail: wliu@imr.ac.cn; Feng, J. N.; Zhang, Z. D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Kim, D. S.; Choi, C. J. [Functional Materials Division, Korea Institute of Materials Science, 531 Changwon- daero, Changwon 631-831 (Korea, Republic of)
2014-04-07
The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.
Magnetic properties of Fe{sub 20} Ni{sub 80} antidots: Pore size and array disorder
Energy Technology Data Exchange (ETDEWEB)
Palma, J.L., E-mail: juan.palma.s@usach.cl [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Gallardo, C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Spinu, L.; Vargas, J.M. [Advanced Material Research Institute (AMRI) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Dorneles, L.S. [Departamento de Fisica, Universidade Federal de Santa Maria UFSM, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900 (Brazil); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)
2013-10-15
Magnetic properties of nanoscale Fe{sub 20}Ni{sub 80} antidot arrays with different hole sizes prepared on top of nanoporous alumina membranes have been studied by means of magnetometry and micromagnetic simulations. The results show a significant increase of the coercivity as well as a reduction of the remanence of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Fe{sub 20}Ni{sub 80} thin film. When the external field is applied parallel to the antidots, the reversal of magnetization is achieved by free-core vortex propagation, whereas when the external field is applied perpendicular to the antidots, the reversal occurs through a process other than the coherent rotation (a maze-like pattern). Besides, in-plane hysteresis loops varying the angle show that the degree of disorder in the sample breaks the expected hexagonal symmetry. - Highlights: • Magnetic properties are strongly influenced by the pore diameter of the samples. • Coercive fields for antidots are higher than the values for the continuous film. • Disorder breaks the hexagonal symmetry of the sample. • Each hole acts as a vortex nucleation point. • Antidots have unique properties that allow them to be used in applications.
Patterns of cyanide antidote use since regulatory approval of hydroxocobalamin in the United States.
Streitz, Matthew J; Bebarta, Vikhyat S; Borys, Douglas J; Morgan, David L
2014-01-01
Sodium nitrite and sodium thiosulfate are common cyanide antidotes. Hydroxocobalamin was approved for use in the United States in 2006. Our objective was to determine the frequency of antidote use as reported to the US poison centers from 2005 to 2009 and describe which antidotes were used in critically ill cyanide toxic patients. We performed a retrospective review over 5 years (2005-2009) from 61 US poison centers. We identified all cyanide-exposed cases that received a cyanide antidote. Variables collected included demographics, gastric decontamination, antidote used, predefined serious clinical effects (hypotension, cardiac arrest, respiratory arrest, and coma), and predefined serious therapies (cardiopulmonary resuscitation, vasopressors, atropine, anticonvulsant, antidysrhythmic, and intubation/ventilation). One trained abstractor abstracted each chart to a standardized electronic form. Another investigator audited 20% of the charts. Kappa values were calculated. One hundred sixty-five exposures were identified. Mean age was 42 years (range, 3-93 years). Seventy-one percent were male. Exposures were 27% ingestion and 53% inhalation. Thirty-two percent of the ingestions were suicide attempts. Twenty percent (32 of 157) of all cases died. Over all years reported, hydroxocobalamin was administered to 29% (45 of 157) of patients, sodium nitrite to 25%, and sodium thiosulfate to 46%. Hydroxocobalamin use increased from 24% to 54% from 2007 to 2009, respectively (P = 0.024). Sodium thiosulfate use decreased from 73% to 31% (P = 0.002) and sodium nitrite use decreased from 26% to 14% (P = 0.39). The proportion of cases with serious clinical effects that received hydroxocobalamin increased each year, and the proportion that received other antidotes decreased. Hydroxocobalamin was also administered more often in cases that required serious therapies and increased each year. Hydroxocobalamin use for cyanide toxicity increased each year as reported to the US poison
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
Pati, Swapan K; Rao, C N R
2005-12-15
In view of the variety of low-temperature magnetic properties reported recently for kagome lattices with transition-metal ions in different oxidation states, we have investigated the low-energy spectrum and low-temperature thermodynamic properties of antiferromagnetic kagome lattices with varying magnitudes of site spins, employing quantum many-body Heisenberg models. The ground state and the low-lying excitation spectrum are found to depend strongly on the nature of the spin magnitude of the magnetic ions. The system remains highly frustrated if spins are half-odd-integer in magnitude, while the frustration is very weak or almost absent for integer spins or mixed-spin systems. In fact, for a mixed-spin kagome system with a certain magnitude, the whole system behaves as a classical magnet with a ferrimagnetic ground state without any frustration. These theoretical findings are consistent with a few experimental observations recently reported in the literature and would be of value in designing new kagome systems with unusual and interesting low-temperature magnetic properties.
Spin Waves in a Ferromagnetic Film with a Periodic System of Antidots
Directory of Open Access Journals (Sweden)
V.V. Kulish
2015-03-01
Full Text Available In the paper, spin waves in a thin film (composed of a uniaxial ferromagnet with a two-dimensional periodical system of antidots are studied. The film ferromagnet is considered to have the “easy axis” type. To describe such waves, the magnetostatic approximation with account for the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects is used. For such waves, an equation for the magnetic potential is derived; for the case of remote antidots, the dispersion relation and the transverse wavenumber spectrum are found. For the case of a film thin compared to the exchange length and for the case of a film bounded by a high-conductivity metal, the longitudinal wavenumber spectrum and the frequency spectrum of such spin waves are also obtained.
DEFF Research Database (Denmark)
Dalhoff, K; Hansen, P B; Ott, P;
1991-01-01
1. The combined antidote effect of N-acetylcysteine and ethanol on the toxicity of acetaminophen was investigated. 2. Fed male mice were given acetaminophen i.p. (600 mg kg-1) and after 5 min in addition ethanol i.p. (0.2 ml, 19% v/v), N-acetylcysteine i.p. (1.2 g kg-1, 0.2 ml), N-acetylcysteine ......1. The combined antidote effect of N-acetylcysteine and ethanol on the toxicity of acetaminophen was investigated. 2. Fed male mice were given acetaminophen i.p. (600 mg kg-1) and after 5 min in addition ethanol i.p. (0.2 ml, 19% v/v), N-acetylcysteine i.p. (1.2 g kg-1, 0.2 ml), N...
Oral anticoagulants and status of antidotes for the reversal of bleeding risk.
Ebright, Joseph; Mousa, Shaker A
2015-03-01
Anticoagulants have been used in clinical practice for more than 50 years. Their indications expand, as more people are diagnosed each year with atrial fibrillation and venous thromboembolism. Vitamin K antagonists have been the most popular choice due to their effectiveness and their ability to reverse bleeding using a known antidote; oral and intravenous vitamin K have long been known to reverse the effects of warfarin. With new classes of anticoagulants making their way onto the market, such as factor Xa inhibitors (rivaroxaban, apixaban) and direct thrombin inhibitors (dabigatran), the need for new reversal agents is paramount. Patients tend to be more receptive to these medications because they do not require routine blood monitoring, can be used at fixed doses, and do not have major drug or food interactions. Antidotes for these medications have shown promise in animal models and are currently in clinical trials.
Bateman, D Nicholas; Page, Colin B
2016-03-01
Some toxins cause their effects by affecting physiological processes that are fundamental to cell function or cause systemic effects as a result of cellular interaction. This review focuses on four examples, coumarin anticoagulants, isoniazid, methotrexate and thyroxine from the context of management of overdose as seen in acute general hospitals. The current basic clinical pharmacology of the toxin, the clinical features in overdose and evidence base for specific antidotes are discussed. The treatment for this group is based on an understanding of the toxic mechanism, but studies to determine the optimum dose of antidote are still required in all these toxins except thyroxine, where treatment dose is based on symptoms resulting from the overdose.
Nitrocobinamide, a new cyanide antidote that can be administered by intramuscular injection.
Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T; Shelton, G Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J; Patel, Hemal H; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Mahon, Sari B; Brenner, Matthew; Pilz, Renate B; Boss, Gerry R
2015-02-26
Currently available cyanide antidotes must be given by intravenous injection over 5-10 min, making them ill-suited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intramuscular injection. Here we show that adding sodium nitrite to cobinamide yields a stable derivative (referred to as nitrocobinamide) that rescues cyanide-poisoned mice and rabbits when given by intramuscular injection. We also show that the efficacy of nitrocobinamide is markedly enhanced by coadministering sodium thiosulfate (reducing the total injected volume), and we calculate that ∼1.4 mL each of nitrocobinamide and sodium thiosulfate should rescue a human from a lethal cyanide exposure.
Brunel, C; Widmer, C; Augsburger, M; Dussy, F; Fracasso, T
2012-11-30
Here we report the case of a 70-year-old woman who committed suicide by cyanide poisoning. During resuscitation cares, she underwent an antidote treatment by hydroxocobalamin. Postmortem investigations showed marked bright pink discolouration of organs and fluids, and a lethal cyanide blood concentration of 43 mg/L was detected by toxicological investigation. Discolouration of hypostasis and organs has widely been studied in forensic literature. In our case, we interpreted the unusual pink coloration as the result of the presence of hydroxocobalamin. This substance is a known antidote against cyanide poisoning, indicated because of its efficiency and poor adverse effects. However, its main drawback is to interfere with measurements of many routine biochemical parameters. We have tested the potential influence of this molecule in some routine postmortem investigations. The results are discussed.
The bezoar stone: a princely antidote, the Távora Sequeira Pinto Collection-Oporto.
Do Sameiro Barroso, Maria
2014-01-01
Bezoar stones, once used as universal antidotes and panaceas, but currently regarded as costly and useless medicines of the past, are a major milestone in the history of toxicology. Arabic physicians had been using bezoars in medicine from the 8th century onwards. In the 16th century, the Portuguese controlled bezoar trade from India, and the Portuguese doctors Garcia de Orta, Amatus Lusitanus, and Cristobal Acosta introduced the medicinal use of Oriental bezoars to European medical literature. Some criticism aside, leading European doctors prescribed bezoars mainly as powerful antidotes. Five bezoars that now adorn the Távora Sequeira Pinto Collection in Oporto testify to the allure and glory of bezoars at the height of their golden age, when they equalled the splendour of gems and noble minerals that dominated the Eastern and Western lithotherapy.The end of the 18th century marked the end of ancient panaceas. This article focuses on the therapeutic and apotropaic use of bezoars.
Edge structures and properties of triangular antidots in single-layer MoS2
Gan, Li Yong
2016-08-30
Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.
Molecular Modeling in Drug Design for the Development of Organophosphorous Antidotes/Prophylactics
1986-05-01
5012 61102A 1102BS11 EB 025 11. TITLE (Include Security Classification) Molecular Modeling in Drug Design for the Development of Organophosphorous...t ....................................., ’ i.° AD MOLECULAR MODELING IN DRUG DESIGN FOR THE DEVELOPMENT OF ORGANOPHOSPHOROUS ANTIDOTES...Reed, W.J. Murray, E.B. Roche and L.N. Donelsmith, Gen. Pharmac., 12, 177-185 (1981). 5. L.B.Kier, "Molecular Orbital Theory in Drug Design ", Academic
Zira, Athina; Mikros, Emmanuel; Giannioti, Konstantina; Galanopoulou, Panagiota; Papalois, Apostolos; Liapi, Charis; Theocharis, Stamatios
2009-07-01
The metabonomic approach has been widely used in toxicology to investigate mechanisms of toxicity. In the present study alterations in the metabolic profiles, monitored by (1)H-NMR spectroscopy, on serum samples in acetaminophen (APAP)-induced liver injury in rabbits were examined. Furthermore, the effect of the established antidote N-acetylcysteine (NAC) and the proposed antidotes silybinin (SIL), cimetidine (CIM) and SIL/CIM was also investigated. A single dose of APAP (2 g kg(-1) b.w., i.g.) was administered to rabbits and APAP combined with the antidotes SIL, CIM and NAC. Animals were sacrificed at 24 h post-APAP treatment. Healthy untreated animals served as controls. (1)H-NMR spectra of serum samples were acquired and underwent principal component analysis (PCA). Acute liver injury was verified by histopathological examination and the alterations of serum biochemical enzymes AST and ALT. (1)H-NMR spectroscopy revealed variations in the serum metabolic profile of APAP-intoxicated rabbits compared with controls. Co-administration of APAP with NAC, CIM and SIL + CIM seems to ameliorate the metabolic profile of animals compared with simply APAP-treated ones. In this study, the model of APAPinduced liver injury was successfully described using the (1)H-NMR based metabonomic approach in serum. Furthermore, the use of antidotes that reduced the toxic insult was also recorded using this technique. The combination of NMR spectroscopy and PCA is a rapid methodology, capable of detecting alterations in the metabolic profile, and produces adequate models that could be used for the characterization of unknown samples, both experimental and clinical, reinforcing its future use in clinical settings.
Consolidarea relațiilor interpersonale pozitive la locul de muncă: antidot pentru burnout
Directory of Open Access Journals (Sweden)
CORALIA SULEA
2014-05-01
Full Text Available Burnout is an important phenomenon for organizations and employees associated with negative outcomes. Key organizational areas, like fairness and workplace community, are responsible for employee burnout. This editorial argues for the importance of workplace community and presents the mechanisms through which dysfunctional relationships at work may contribute to burnout, as well as the processes that explain how healthy interpersonal relationships can be an antidote for burnout.
Massa, Néstor E.; García-Flores, Ali F.; De Sousa Meneses, Domingos; del Campo, Leire; Echegut, Patrick; Fabbris, Gilberto F. L.; Jesús Martínez-Lope, María; Alonso, José Antonio
2012-05-01
We report on electronic collective excitations in RMn2O5 (R =Pr, Sm, Gd, Tb) showing condensation starting at and below ˜ TN ˜ TC ˜ 40-50 K. Their origin is understood as partial delocalized eg electron orbitals in the Jahn-Teller distortion of the pyramid dimer with strong hybridized Mn3+-O bonds. Our local probes, Raman, infrared, and x-ray absorption, back the conclusion that there is no structural phase transition at TN ˜ TC. Ferroelectricity is magnetically assisted by electron localization triggering lattice polarizability by unscreening. We have also found phonon hardening as the rare earth is sequentially replaced. This is understood as a consequence of lanthanide contraction. It is suggested that partially f-electron screened rare earth nuclei might be introducing a perturbation to eg electrons prone to delocalize as the superexchange interaction takes place.
Directory of Open Access Journals (Sweden)
Bartlomiej Kalaska
Full Text Available Protamine, the only registered antidote of unfractionated heparin (UFH, may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3 is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine.
Kalaska, Bartlomiej; Kaminski, Kamil; Sokolowska, Emilia; Czaplicki, Dominik; Kujdowicz, Monika; Stalinska, Krystyna; Bereta, Joanna; Szczubialka, Krzysztof; Pawlak, Dariusz; Nowakowska, Maria; Mogielnicki, Andrzej
2015-01-01
Protamine, the only registered antidote of unfractionated heparin (UFH), may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3) is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine.
Antidotes, antibody-mediated immunity and the future of pharmaceutical product development.
Caoili, Salvador Eugenio C
2013-02-01
If new scientific knowledge is to be more efficiently generated and applied toward the advancement of health, human safety must be more effectively addressed in the conduct of research. Given the present difficulties of accurately predicting biological outcomes of novel interventions in vivo, the imperative of human safety suggests the development of novel pharmaceutical products in tandem with their prospective antidotes in anticipation of possible adverse events, to render the risks of initial clinical trials more acceptable from a regulatory standpoint. Antibody-mediated immunity provides a generally applicable mechanistic basis for developing antidotes to both biologicals and small-molecule drugs (such that antibodies may serve as antidotes to pharmaceutical agents as a class including other antibodies) and also for the control and prevention of both infectious and noninfectious diseases via passive or active immunization. Accordingly, the development of prophylactic or therapeutic passive-immunization strategies using antipeptide antibodies is a plausible prelude to the development of corresponding active-immunization strategies using peptide-based vaccines. In line with this scheme, global proliferation of antibody- and vaccine-production technologies, especially those that obviate dependence on the cold chain for storage and transport of finished products, could provide geographically distributed breakout capability against emerging and future health challenges.
Identification, solubility enhancement and in vivo testing of a cyanide antidote candidate.
Kovacs, Kristof; Ancha, Madhuri; Jane, Mario; Lee, Stephen; Angalakurthi, Siva; Negrito, Maelani; Rasheed, Senan; Nwaneri, Assumpta; Petrikovics, Ilona
2013-06-14
Present studies focused on the in vitro testing, the solubility enhancement and the in vivo testing of methyl propyl trisulfide (MPTS), a newly identified sulfur donor to treat cyanide (CN) intoxication. To enhance the solubility of the lipophilic MPTS, various FDA approved co-solvents, surfactants and their combinations were applied. The order of MPTS solubility in the given co-solvents was found to be the following: ethanol > PEG 200 ≈ PEG400 ≈ PEG300 > PG. The maximum solubility of MPTS was found at 90% ethanol of 177.11 ± 12.17 mg/ml. The order of MPTS solubility in different surfactants is Cremophor EL>Cremophor RH40>polysorbate 80>sodium deoxycholate>sodium cholate. The maximum solubility of 40.99 mg/ml was achieved with 20% Cremophor EL. A synergistic solubilizing effect encountered with the combination of 20% Cremophor EL+75% ethanol lead to a 2900-fold increase (compared to water solubility) in solubility. The in vivo efficacy using intramuscular administration was determined on a therapeutic mice model and expressed as a ratio of CN LD50 with and without the test antidote(s) (APR). Intramuscular administration was shown to be effective and the therapeutic antidotal protection by MPTS alone and MPTS+thiosulfate (TS) was significantly higher than the present therapy of TS.
An effective method to probe local magnetostatic properties in a nanometric FePd antidot array
Energy Technology Data Exchange (ETDEWEB)
Beron, F; Pirota, K R; Knobel, M [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Rua Sergio Buarque de Holanda, 777, Cidade Universitaria ' Zeferino Vaz' , Campinas 13083-859, SP (Brazil); Vega, V; Prida, V M; Fernandez, A; Hernando, B, E-mail: fberon@ifi.unicamp.br [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)
2011-01-15
A simple method to quantitatively characterize the local magnetic behaviour of a patterned nanostructure, like a ferromagnetic thin film of antidot arrays, is proposed. The first-order reversal curve (FORC) analysis, coupled with simulations using physically meaningful hysterons, allows us to obtain a quantitative and physically related description of the interaction field and each magnetization reversal process. The hysterons system is built from previously known hypotheses on the magnetic behaviour of the sample. This method was successfully applied to a highly hexagonal ordered FePd antidot array with nanometric dimensions. We achieved a complete characterization of the two different magnetization reversal mechanisms in function of the in-plane applied field angle. For a narrow range of high fields, the magnetization initiates rotating reversibly around the pores, while at lower fields, domain walls are nucleated and propagated. This in-plane magnetization reversal mechanism, partly reversible and partly irreversible, is the only angularly dependent one. While going away from the easy axis, its reversible proportion increases, as well as its switching field distribution. Finally, the results indicate that the high surface roughness between adjacent holes of the antidot thin film induces a parallel interaction field. The proposed method demonstrates its ability also to be applied to characterizing patterned nanostructures with rather complex magnetization reversal processes.
Jammed lattice sphere packings.
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Dumestre, Danielle; Nickerson, Duncan
2014-01-01
This study aimed to assess the use of cyanide antidotes and the determine the opinion on empiric administration of hydroxocobalamin in North American burn patients with suspected smoke inhalation injuries. An online cross-sectional survey was sent to directors of 90 major burn centers in North America, which were listed on the American Burn Association Web site. A multiple-choice format was used to determine the percentage of patients tested for cyanide poisoning on admission, the current administration of a cyanide antidote based solely on clinical suspicion of poisoning, and the antidote used. To ascertain views on immediate administration of hydroxocobalamin before confirmation of cyanide poisoning an option was included to expand the response in written format. Twenty-nine of 90 burn directors (32%) completed the survey. For the population of interest, the majority of burn centers (59%) do not test for cyanide poisoning on admission and do not administer an antidote based solely on clinical suspicion of cyanide poisoning (58%). The most commonly available antidote is hydroxocobalamin (50%), followed by the cyanide antidote kit (29%). The opinion regarding instant administration of hydroxocobalamin when inhalation injury is suspected is mixed: 31% support its empiric use, 17% do not, and the remaining 52% have varying degrees of confidence in its utility. In North America, most patients burnt in closed-space fires with inhalation injuries are neither tested for cyanide poisoning in a timely manner nor empirically treated with a cyanide antidote. Although studies have shown the safety and efficacy of empiric and immediate administration of hydroxocobalamin, most centers are not willing to do so.
Lipstein, Arthur E
2014-01-01
We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.
Root lattices and quasicrystals
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Superalloy Lattice Block Structures
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Pica, C; Lucini, B; Patella, A; Rago, A
2009-01-01
Technicolor theories provide an elegant mechanism for dynamical electroweak symmetry breaking. We will discuss the use of lattice simulations to study the strongly-interacting dynamics of some of the candidate theories, with matter fields in representations other than the fundamental. To be viable candidates for phenomenology, such theories need to be different from a scaled-up version of QCD, which were ruled out by LEP precision measurements, and represent a challenge for modern lattice computations.
Vector Lattice Vortex Solitons
Institute of Scientific and Technical Information of China (English)
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
Automated Lattice Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Role of initial nucleation in molecular-beam epitaxy of GaN on lattice-matched ZrB{sub 2} substrates
Energy Technology Data Exchange (ETDEWEB)
Armitage, R.; Suda, J.; Kimoto, T. [Department of Electronics Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)
2005-05-01
Nitrogen-polar GaN was grown on lattice-matched ZrB{sub 2} substrates by a two-step rf-MBE process with conventional low-temperature GaN (LT-GaN) used as the nucleation layer. For nucleation in slightly Ga-rich conditions, a streaky RHEED pattern was maintained from the very beginning and persisted throughout subsequent high-temperature growth. However, despite the streaky RHEED pattern the initial nucleation was evidently not 2D as inferred from AFM and x-ray results. For nucleation in slightly N-rich conditions, spots appeared in the RHEED in the early stages of growth but a streak pattern was restored with high-temperature GaN growth. Tradeoffs were identified in optimizing the LT-GaN nucleation process. Slightly Ga-rich nucleation conditions offered the best x-ray characteristics with {omega}-scan FWHM values of 400-500 and 720-800 arcsec for the (0002) and (1 anti 104) reflections, respectively. Short-length atomic steps (up to {proportional_to}200 nm) were present on the surfaces of such layers, but the morphology showed a sub-grain structure. Slightly N-rich nucleation conditions yielded remarkably smooth films surfaces (rms 0.5 nm over 10 {mu}m{sup 2}) with uninterrupted atomic steps up to several {mu}m long, but inferior x-ray {omega}-scans ({proportional_to}50% larger FWHM values). (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
A Bijection between Lattice-Valued Filters and Lattice-Valued Congruences in Residuated Lattices
Directory of Open Access Journals (Sweden)
Wei Wei
2013-01-01
Full Text Available The aim of this paper is to study relations between lattice-valued filters and lattice-valued congruences in residuated lattices. We introduce a new definition of congruences which just depends on the meet ∧ and the residuum →. Then it is shown that each of these congruences is automatically a universal-algebra-congruence. Also, lattice-valued filters and lattice-valued congruences are studied, and it is shown that there is a one-to-one correspondence between the set of all (lattice-valued filters and the set of all (lattice-valued congruences.
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Krupinski, M.; Mitin, D.; Zarzycki, A.; Szkudlarek, A.; Giersig, M.; Albrecht, M.; Marszałek, M.
2017-02-01
We have studied the transition between two different magnetization reversal mechanisms for thin Co/Pd multilayers with perpendicular magnetic anisotropy, appearing in magnetic dot and antidot arrays, which were prepared by nanosphere lithography. Various ordered arrays of nanostuctures, both magnetic dots and antidots, were created by varying size and distance between the nanospheres employing RF-plasma etching. We have shown that the coercivity values reach a maximum for the array of antidots with a separation length close to the domain wall width. In this case, each area between three adjacent holes corresponds to a single domain configuration, which can be switched individually. On the contrary, small hole sizes and large volume of material between them results in domain wall propagation throughout the system accompanied by strong domain wall pinning at the holes. We have also shown the impact of edge effects on the magnetic anisotropy energy.
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Improved Lattice Radial Quantization
Brower, Richard C; Fleming, George T
2014-01-01
Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nature Photonics 5, 158 (2011).
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Grabisch, Michel
2008-01-01
We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer.
STABILITY ANALYSIS OF A COMPUTER VIRUS PROPAGATION MODEL WITH ANTIDOTE IN VULNERABLE SYSTEM
Institute of Scientific and Technical Information of China (English)
Nguyen Huu KHANH; Nguyen Bich HUY
2016-01-01
We study a proposed model describing the propagation of computer virus in the network with antidote in vulnerable system. Mathematical analysis shows that dynamics of the spread of computer viruses is determined by the threshold R0. If R0 ≤ 1, the virus-free equilibrium is globally asymptotically stable, and if R0 >1, the endemic equilibrium is globally asymptotically stable. Lyapunov functional method as well as geometric approach are used for proving the global stability of equilibria. A numerical investigation is carried out to confirm the analytical results. Through parameter analysis, some effective strategies for eliminating viruses are suggested.
Abnormal magnetoresistance behavior in Nb thin films with rectangular arrays of antidots
Institute of Scientific and Technical Information of China (English)
Zhang Wei-Jun; Zhao Shi-Ping; Qiu Xiang-Gang; He Shi-Kun; Li Bo-Hong; Cheng Fei; Xu Bing; Wen Zhen-Chao; Cao Wen-Hui; Xiao Hong; Han Xiu-Feng
2012-01-01
Magnetoresistance in superconducting Nb films perforated with rectangular arrays of antidots (holes) is investigated at various temperatures and currents.Normally,the magnetoresistance increases with the increasing magnetic field.In this paper,we report a reverse behavior in a certain range of high fields after vortex reconfiguration transition,where the resistances at non-matching fields are smaller than those in the low field regime.This phenomenon is due to a strong caging effect,in which the interstitial vortices are trapped among the pinned multiquanta vortices.This effect is temperature and current dependent.
Cyclotron resonance in two-dimensional electron system with self-organized antidots
Suchalkin, S D; Zundel, M; Nachtwei, G; Klitzing, K V; Eberl, K
2001-01-01
The data on the experimental study on the cyclotron resonance in the two-dimensional electron system with the random scattering potential, conditioned by the massif of the AlInAs self-organized quantum islands, formed in the AlGaAs/GaAs heterotransition plane, are presented. The sharp narrowing of the cyclotron resonance with increase in the magnetic field, explained by the charge scattering peculiarities in the given potential is established. The obtained results suggest the strongly correlated electron state in the strong magnetic fields by the carriers concentrations lesser than the antidots concentrations
Inhibition by ice cream of the antidotal efficacy of activated charcoal.
Levy, G; Soda, D M; Lampman, T A
1975-03-01
A study was conducted to determine if ice cream and sherbet interfered with the adsorption of aspirin onto activated charcoal both in vivo and in vitro. An aqueous suspension of 20 g activated charcoal decreased the absorption of 1 g aspirin by 65%; the same dose of activated charcoal with 50 g of ice cream reduced aspirin absorption by only 42% under otherwise identical conditions. In vitro tests showed that different ice creams and sherbet decrease the adsoprtion of aspirin onto activated charcoal. Thus, although ice cream is useful for preparing palatable suspensions of activated charcoal, it decreases appreciably the antidotal efficacy of the adsorbent.
2015-12-01
liquid feed system. It can deliver flow rates of up to 0.2 ml/min, allowing a cyanide antidote to be given in about five minutes. We have shown...state of mitochondrial cytochrome c from the neocortex of the mammalian brain,” Biomed. Opt. Express 3(8), 1933–1946 (2012). 20. B. Chance and W. Bank ...growth rate of the MHz Faraday waves excited on a medicinal liquid layer together facilitate ejection of monodisperse droplets of desirable size range
An Algorithm on Generating Lattice Based on Layered Concept Lattice
Directory of Open Access Journals (Sweden)
Zhang Chang-sheng
2013-08-01
Full Text Available Concept lattice is an effective tool for data analysis and rule extraction, a bottleneck factor on impacting the applications of concept lattice is how to generate lattice efficiently. In this paper, an algorithm LCLG on generating lattice in batch processing based on layered concept lattice is developed, this algorithm is based on layered concept lattice, the lattice is generated downward layer by layer through concept nodes and provisional nodes in current layer; the concept nodes are found parent-child relationships upward layer by layer, then the Hasse diagram of inter-layer connection is generated; in the generated process of the lattice nodes in each layer, we do the pruning operations dynamically according to relevant properties, and delete some unnecessary nodes, such that the generating speed is improved greatly; the experimental results demonstrate that the proposed algorithm has good performance.
Multisite Interactions in Lattice-Gas Models
Einstein, T. L.; Sathiyanarayanan, R.
For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.
de Raedt, Hans; von der Linden, W.; Binder, K
1995-01-01
In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and gi
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
Knuth, Kevin H
2009-01-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well in...
Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro
2002-12-01
The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.
Phenomenology from lattice QCD
Lellouch, L P
2003-01-01
After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.
Noetherian and Artinian Lattices
Directory of Open Access Journals (Sweden)
Derya Keskin Tütüncü
2012-01-01
Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.
Global Financial Regulations:An Antidote to Economic Predicament
Institute of Scientific and Technical Information of China (English)
BIN; ZHANG
2014-01-01
Due to the lack of public order in the international financial arena, asset bubbles and resource misallocations persisted over a long period of time and resulted in global financial crisis in 2008. Global financial rules, which can take on a role like that of WTO in the international trade, are urgently needed for global economic recovery. They will balance the pressure of economic restructuring between large and small countries, and push forward some countries’ domestic reforms which may hardly be implemented due to domestic politics.
Selenium as an antidote in the treatment of mercury intoxication.
Bjørklund, Geir
2015-08-01
Selenium (Se) is an essential trace element for humans. It is found in the enzyme glutathione peroxidase. This enzyme protects the organism against certain types of damage. Some data suggest that Se plays a role in the body's metabolism of mercury (Hg). Selenium has in some studies been found to reduce the toxicity of Hg salts. Selenium and Hg bind in the body to each other. It is not totally clear what impact the amount of Se has in the human body on the metabolism and toxicity of prolonged Hg exposure.
The Syntax of Lattice-Valued Propositional Logic System lp(X)
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Lattice-valued logic plays an important role in multi-valued logic systems. A lattice valued logic system lp(X) is constructed. The syntax of lp(X) is discussed. It may be more convenient in application and study especially in the case that the valuation domain is finite lattice implication algebra.
Bajgar, Jirí
2010-01-01
The studies dealing with mechanism of organophosphates (OP)/nerve agent action, prophylaxis and treatment of intoxications is a very hot topic at present. Though the research is very intensive, unfortunately, up to now, there is not universal or significantly better reactivator sufficiently effective against all nerve agents/OP when compared with presently available oximes (pralidoxime, methoxime, obidoxime, trimedoxime, HI-6). The use of the most effective reactivator (HI-6) using simple type of autoinjector (e.g. ComboPen) is strictly limited because of decomposition of HI-6 in solution. Thanks to better solubility it is clear that another salt of HI-6 (dimethanesulfonate, HI-6 DMS) is more convenient for the use as antidote against nerve agents in the autoinjector than HI-6 chloride (Cl). It was clearly demonstrated that reactivation potency of HI-6 DMS in comparison with HI-6 Cl in vivo was the same and bioavailability of HI-6 DMS is better than that of HI-6 Cl. Three chambered autoinjector allows administration of all three antidotes (atropine, reactivator, diazepam) simultaneously. Moreover, the content of chambers can be changed according to proposed requirements. Possible way to solve the problem of universal reactivator could be the use of two reactivators. Three chambered autoinjector is an ideal device for this purpose.
Saffron as an antidote or a protective agent against natural or chemical toxicities.
Razavi, Bibi Marjan; Hosseinzadeh, Hossein
2015-05-01
Saffron (Crocus sativus) is an extensively used food additive for its color and taste. Since ancient times this plant has been introduced as a marvelous medicine throughout the world. The wide spectrum of saffron pharmacological activities is related to its major constituents including crocin, crocetin and safranal. Based on several studies, saffron and its active ingredients have been used as an antioxidant, antiinflammatory and antinociceptive, antidepressant, antitussive, anticonvulsant, memory enhancer, hypotensive and anticancer. According to the literatures, saffron has remarkable therapeutic effects. The protective effects of saffron and its main constituents in different tissues including brain, heart, liver, kidney and lung have been reported against some toxic materials either natural or chemical toxins in animal studies.In this review article, we have summarized different in vitro and animal studies in scientific databases which investigate the antidotal and protective effects of saffron and its major components against natural toxins and chemical-induced toxicities. Due to the lake of human studies, further investigations are required to ascertain the efficacy of saffron as an antidote or a protective agent in human intoxication.
Energy Technology Data Exchange (ETDEWEB)
Kuca, Kamil; Jun, Daniel; Jung, Young Sik [Faculty of Military Health Sciences, Trebesska (Cyprus); Kim, Tae Hyuk; Cabal, Jiri [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)
2006-03-15
Nerve agents (sarin, tabun, soman and VX) are class of military important substances able to cause many severe intoxications during few minutes. Currently, the threat of misuse of these agents is daily discussed. Unfortunately, there is no single antidote able to treat intoxication caused by all of these agents. Owing to this fact, new generation of antidotes, especially acetylcholinesterase (AChE: EC 3.1.1.7) reactivators, is still developed. In this study, we have tested four newly developed AChE reactivators: 1-(4-hydroxyiminomethylpyridinium)- 5-(4-carbamoylpyridinium)-3-oxa-pentane dibromide (1), 1-(3-hydroxyiminomethylpyridinium)- 5-(4-carbamoylpyridinium)-3-oxa-pentane dibromide (2), 1,5-bis(2-hydroxyiminomethylpyridinium)- 3-oxa-pentane dichloride (3) and 1,5-bis(4-hydroxyiminomethylpyridinium)-3-oxa-pentane dibromide (4) for their potency to reactivate in vitro tabun and cyclosarin-inhibited AChE. Their reactivation efficacy was compared with currently the most promising oxime HI-6 (1-(2-hydroxyiminomethylpyridinium)-3-(4- carbamoylpyridinium)-2-oxa-propane dichloride). According to obtained results, two AChE reactivators 1 and 4 were able to reactivate tabun-inhibited AChE. On the contrary, there was no better AChE reactivator than HI- 6 able to reactivate cyclosarin-inhibited AChE.
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be interpre
Clair, P; Wiberg, K; Granelli, I; Carlsson Bratt, I; Blanchet, G
2000-01-01
The main purpose of this study was to investigate the chemical stability of a new antidote combination for the treatment of organophosphate poisoning. The antidote combination was packed (enclosed) in two plastic compartments separated by a barrier film. One of them contained a powder oxime cholinesterase reactivator (HI-6-monohydrate 1-[[[4-(aminocarbonyl)pyridinio]methoxy]methyl]-2-[(hydro xyimino)meth yl]-pyridinium dichloride). The other contained an anticholinergic (Atropine) and an anticonvulsant (Prodiazepam or Avizafone (L-lysyl-N-(2-benzoyl-4-chlorophenyl)-N-methyl-glycinamide dihydrochloride) drug in a liquid mixture. The plastic compartments were mounted in an autoinjector device to study the dissolution of HI-6 by ejection of the solution. Drug analysis was performed by high-performance liquid chromatography. The results obtained after 6 months show that this new antidote combination is stable. The amount of each antidote is unchanged during the study. Some known degradation products can be detected in small amounts. The autoinjector mechanism used, gives a complete dissolution of HI-6 powder in the liquid mixture throughout the study.
Li, Changzhao; Srivastava, Ritesh K; Weng, Zhiping; Croutch, Claire R; Agarwal, Anupam; Elmets, Craig A; Afaq, Farrukh; Athar, Mohammad
2016-10-01
Lewisite is a potent arsenic-based chemical warfare agent known to induce painful cutaneous inflammation and blistering. Only a few modestly effective antidotes have so far been described in the literature. However, the discovery of effective antidotes for lewisite was hampered by the paucity of the exact molecular mechanism underlying its cutaneous pathogenesis. We investigated the molecular mechanism underlying lewisite-induced cutaneous blistering and inflammation and describe its novel antidotes. On the basis of our initial screening, we used a highly sensitive murine model that recapitulates the known human pathogenesis of arsenicals-induced cutaneous inflammation and blistering. Topically administered lewisite induced potent acute inflammation and microvesication in the skin of Ptch1(+/-)/SKH-1 mice. Even at a very low dose, lewisite up-regulates unfolded protein response signaling, inflammatory response, and apoptosis. These cutaneous lesions were associated with production of reactive oxygen species and extensive apoptosis of the epidermal keratinocytes. We confirmed that activation of reactive oxygen species-dependent unfolded protein response signaling is the underlying molecular mechanism of skin damage. Similar alterations were noticed in lewisite-treated cultured human skin keratinocytes. We discovered that chemical chaperone 4-phenyl butyric acid and antioxidant N-acetylcysteine, which significantly attenuate lewisite-mediated skin injury, can serve as potent antidotes. These data reveal a novel molecular mechanism underlying the cutaneous pathogenesis of lewisite-induced lesions. We also identified novel potential therapeutic targets for lewisite-mediated cutaneous injury.
The antidotal efficacy of the bispyridinium oximes K027 and TMB-4 against tabun poisoning in mice.
Berend, Suzana; Radić, Bozica; Kuca, Kamil; Lucić Vrdoljak, Ana
2010-09-06
A toxic effect of highly toxic nervous agents is irreversible inhibition of vitally important enzyme acethylcholinesterase (AChE). Inhibition of AChE results in accumulation of acetylcholine (ACh) at the synaptic cleft of the cholinergic neurons, leading to overstimulation of cholinergic receptors. The highly toxic nature of tabun has been known for many years, but there are still serious limitations to the antidotal therapy. In this paper a bispyridinium compound K027 [1-(4-hydroxyiminomethylpyridinium)-3-(-4-carbamoylpyridinium) propane dibromide] was tested as potential antidote in tabun poisoned mice. Oxime TMB-4 was included for comparison. The therapeutic efficacy of applied antidotal regimens was tested as pretreatment given 15 min before tabun poisoning and/or as therapy given 1 min after tabun poisoning. Using oxime K027 (25% of its LD(50)) plus atropine as both, pretreatment and therapy, we showed that this combination can protect mice 8 times better than the therapy alone. Under these experimental conditions we confirmed good antidotal efficacy of K027. Moreover, its low acute toxicity is as much as beneficial effect in contrast to high toxicity of currently used TMB-4.
Jipsen, Peter
1992-01-01
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Weakly deformed soliton lattices
Energy Technology Data Exchange (ETDEWEB)
Dubrovin, B. (Moskovskij Gosudarstvennyj Univ., Moscow (USSR). Dept. of Mechanics and Mathematics)
1990-12-01
In this lecture the author discusses periodic and quasiperiodic solutions of nonlinear evolution equations of phi{sub t}=K (phi, phi{sub x},..., phi{sup (n)}), the so-called soliton lattices. After introducing the theory of integrable systems of hydrodynamic type he discusses their Hamiltonian formalism, i.e. the theory of Poisson brackets of hydrodynamic type. Then he describes the application of algebraic geometry to the effective integration of such equations. (HSI).
International Lattice Data Grid
Davies, C T H; Kenway, R D; Maynard, C M
2002-01-01
We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
A Mechanical Lattice Aid for Crystallography Teaching.
Amezcua-Lopez, J.; Cordero-Borboa, A. E.
1988-01-01
Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)
Coulomb Artifacts and Bottomonium Hyperfine Splitting in Lattice NRQCD
Liu, Tao; Rayyan, Ahmed
2016-01-01
We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a "na\\"ive" perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD [1, 2]. We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives $M_{\\Upsilon(1S)}-M_{\\eta_b(1S)}=52.9\\pm 5.5~{\\rm MeV}$ [1].
The CKM matrix and flavor physics from lattice QCD
Van de Water, Ruth S
2009-01-01
I discuss the role of lattice QCD in testing the Standard Model and searching for physics beyond the Standard Model in the quark flavor sector. I first review the Standard Model CKM framework. I then present the current status of the CKM matrix, focusing on determinations of CKM matrix elements and constraints on the CKM unitarity triangle that rely on lattice QCD calculations of weak matrix elements. I also show the potential impact of improved lattice QCD calculations on the global CKM unitarity triangle fit. I then describe several hints of new physics in the quark flavor sector that rely on lattice QCD calculations of weak matrix elements, such as evidence of a ~2-3 sigma tension in the CKM unitarity triangle and the "f_{D_s} puzzle". I finish with a discussion of lattice QCD calculations of rare B- and K-decays needed to probe physics beyond the Standard Model at future experiments.
Online Determination of Graphene Lattice Orientation Through Lateral Forces
Zhang, Yu; Yu, Fanhua; Li, Guangyong; Liu, Lianqing; Liu, Guangjie; Zhang, Zhiyong; Wang, Yuechao; Wejinya, Uchechukwu C.; Xi, Ning
2016-08-01
Rapid progress in graphene engineering has called for a simple and effective method to determine the lattice orientation on graphene before tailoring graphene to the desired edge structures and shapes. In this work, a wavelet transform-based frequency identification method is developed to distinguish the lattice orientation of graphene. The lattice orientation is determined through the different distribution of the frequency power spectrum just from a single scan line. This method is proven both theoretically and experimentally to be useful and controllable. The results at the atomic scale show that the frequencies vary with the lattice orientation of graphene. Thus, an adjusted angle to the desired lattice orientation (zigzag or armchair) can easily be calculated based on the frequency obtained from the single scan line. Ultimately, these results will play a critical role in wafer-size graphene engineering and in the manufacturing of graphene-based nanodevices.
Managing Workplace Incivility: The Role of Conflict Management Styles--Antecedent or Antidote?
Trudel, Jeannie; Reio, Thomas G., Jr.
2011-01-01
The workforce of the 21st century is dealing with rapid changes and increased competition across industries. Such changes place stress on management and workers alike, increasing the potential for workplace conflict and deviant workplace behaviors, including incivility. The importance of effective conflict management in the workplace has been…
Two new species of Curcuma (Zingiberaceae) used as cobra-bite antidotes
Institute of Scientific and Technical Information of China (English)
Arunrat CHAVEERACH; Runglawan SUDMOON; Tawatchai TANEE; Piya MOKKAMUL; Nison SATTAYASAI; Jintana SATTAYASAI
2008-01-01
Two new species of Curcuma, C. sattayasaii A. Chaveerach & R. Sudmoon and C. zedoaroides A. Chaveerach & T. Tanee with rhizomes traditionally used for many decades as cobra-bite antidotes are described and illustrated. Curcuma sattayasaii is similar to C. longa L., but differs in rhizome horizontally branching on ground;coma bracts pinkish-white or pinkish-pale green;corolla pale yellow with orange tip;labellum pale orange with an orange central band;anther crest very short, broadly ovate, wider than long. Curcuma zedoaroides is similar to C. zedoaria (Christm.) Roscoe, but differs in rhizome branching pattern;the protruding secondary rhizomes curved down;blades oblong to oblong-lanceolate;peduncle glabrous;fertile and coma bracts glabrous;corolla lobes pale yellow to white, lateral lobe ovate, dorsal lobe broadly ovate. The new taxa have been found in a village of Khon Kaen Province, Northeastern Thailand.
Liu, Yang; Du, Juanjuan; Yan, Ming; Lau, Mo Yin; Hu, Jay; Han, Hui; Yang, Otto O.; Liang, Sheng; Wei, Wei; Wang, Hui; Li, Jianmin; Zhu, Xinyuan; Shi, Linqi; Chen, Wei; Ji, Cheng; Lu, Yunfeng
2013-03-01
Organisms have sophisticated subcellular compartments containing enzymes that function in tandem. These confined compartments ensure effective chemical transformation and transport of molecules, and the elimination of toxic metabolic wastes. Creating functional enzyme complexes that are confined in a similar way remains challenging. Here we show that two or more enzymes with complementary functions can be assembled and encapsulated within a thin polymer shell to form enzyme nanocomplexes. These nanocomplexes exhibit improved catalytic efficiency and enhanced stability when compared with free enzymes. Furthermore, the co-localized enzymes display complementary functions, whereby toxic intermediates generated by one enzyme can be promptly eliminated by another enzyme. We show that nanocomplexes containing alcohol oxidase and catalase could reduce blood alcohol levels in intoxicated mice, offering an alternative antidote and prophylactic for alcohol intoxication.
Isoniazid overdose : a case series, literature review and survey of antidote availability.
Maw, Graeme; Aitken, Peter
2003-01-01
Tuberculosis has re-emerged as a significant public health threat over the last decade both globally and within Australia. This is thought to be largely due to the HIV epidemic, a growing itinerant population, and immigration. The antibiotic isoniazid remains an integral part of drug therapy. With the numbers of patients receiving isoniazid remaining high, the number of cases of acute poisoning is expected to be significant. This paper presents a series of two cases of isoniazid poisoning presenting to a tertiary referral centre in North Queensland. Isoniazid toxicity produces a triad of coma, metabolic acidosis and seizures. The seizures are often refractory to traditional antiepileptics. A specific antidote is available (pyridoxine [vitamin B6]) and both patients were administered this as part of their treatment. We also surveyed all hospitals in Australia with an accredited adult Emergency Department to assess the availability of pyridoxine.
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... by consideration of electrostatic forces or by further anisotropy in the dispersion forces not described in the atom‐atom model. Anharmonic effects are shown to be large, but the dominant features in the temperature variation of frequencies are describable by a quasiharmonic model....
A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B.
Garcia, Juliana; Costa, Vera Marisa; Carvalho, Alexandra T P; Silvestre, Ricardo; Duarte, José Alberto; Dourado, Daniel F A R; Arbo, Marcelo D; Baltazar, Teresa; Dinis-Oliveira, Ricardo Jorge; Baptista, Paula; de Lourdes Bastos, Maria; Carvalho, Félix
2015-12-01
Amanita phalloides is responsible for more than 90 % of mushroom-related fatalities, and no effective antidote is available. α-Amanitin, the main toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and kidney failure. In silico studies included docking and molecular dynamics simulation coupled to molecular mechanics with generalized Born and surface area method energy decomposition on RNAP II. They were performed with a clinical drug that shares chemical similarities to α-amanitin, polymyxin B. The results show that polymyxin B potentially binds to RNAP II in the same interface of α-amanitin, preventing the toxin from binding to RNAP II. In vivo, the inhibition of the mRNA transcripts elicited by α-amanitin was efficiently reverted by polymyxin B in the kidneys. Moreover, polymyxin B significantly decreased the hepatic and renal α-amanitin-induced injury as seen by the histology and hepatic aminotransferases plasma data. In the survival assay, all animals exposed to α-amanitin died within 5 days, whereas 50 % survived up to 30 days when polymyxin B was administered 4, 8, and 12 h post-α-amanitin. Moreover, a single dose of polymyxin B administered concomitantly with α-amanitin was able to guarantee 100 % survival. Polymyxin B protects RNAP II from inactivation leading to an effective prevention of organ damage and increasing survival in α-amanitin-treated animals. The present use of clinically relevant concentrations of an already human-use-approved drug prompts the use of polymyxin B as an antidote for A. phalloides poisoning in humans.
Voicu, Victor A; Thiermann, Horst; Rădulescu, Flavian Stefan; Mircioiu, Constantin; Miron, Dalia Simona
2010-02-01
This paper presents basic data on organophosphonate (OP) mechanisms of action, especially by toxicokinetic/toxicodynamic (TK/TD) process correlations. It is generally accepted that at least during onset of OP biological systems interaction, blood and tissue cholinesterase's inhibition represents OP exposure marker and initiating mechanisms for toxicodynamic effects, characteristic for cholinergic crisis. OP penetrability of various biological barriers conditioning TK characteristics are determined by a series of physico-chemical properties. Non-cholinergic effects, direct interactions with cellular structures and subsequent effects (excitotoxicity) triggered by cholinergic crisis are also briefly presented. Opposed to these OP TK/TD characteristics, the authors analysed the pharmacokinetic/pharmacodynamic (PK/PD) characteristics and their correlations for oximes, as basic OP antidotes, besides atropine and anticonvulsants. Phosphorilated cholinesterasis reactivators are mono or bispyridinium derivatives with quaternary ammonium atoms, high water solubility, ionized at physiological pH, distribution in extra-cellular space, very low digestive absorption and blood-brain barrier (BBB) penetrability. OP nerve gas acute toxicity is correlated with anti-acetylcholinesterase (AChE) activity and partition coefficient. The toxicity rank seems to be determined by lipophilicity, besides their specific AChE inhibitory property. It has the effect that acute toxicity is the resultant of a TD process closely linked and dependent in vivo upon molecular descriptors determinant for the TK process. For cholinesterasis reactivators, molecular and PK characteristics limit their effects, especially to the peripheral level. The absent or much reduced BBB penetrability allowed some researchers to suggest that reactivators' penetration and presence at central level are not necessary. The study of PK/PD correlations, molecular descriptors and biological membrane permeability of oximes can
Intervals of balanced binary trees in the Tamari lattice
Giraudo, Samuele
2011-01-01
We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals [T, T'] where T and T' are balanced binary trees are isomorphic as posets to a hypercube. We introduce synchronous grammars that allow to generate tree-like structures and obtain fixed-point functional equations to enumerate these. We also introduce imbalance tree patterns and show that they can be used to describe some sets of balanced binary trees that play a particular role in the Tamari lattice. Finally, we investigate other families of binary trees that are also closed by interval in the Tamari lattice.
Arslan, Naheed; Khiljee, Sonia; Bakhsh, Allah; Ashraf, Muhammad; Maqsood, Iram
2016-03-01
This study was conducted to evaluate the availability of antidotes/key emergency drugs in tertiary care hospitals of the Punjab province, and to assess the knowledge of health care professionals in the stocking and administration of antidotes in the proper management of poisoning cases. Seventeen (n=17) tertiary care hospitals of Punjab Pakistan were selected. Two performas (A and B) were designed for 26 antidotes/key emergency drugs and given to the hospital pharmacists and physicians respectively. It was observed that Activated Charcoal, being the universal antidote was found only in 6 hospitals (41%). Digoxin Immune Fab, Edentate Calcium disodium and Glucagon were not available in emergency department of any hospital and even not included in the formulary of any hospital. About 80% pharmacists were aware of the method of preparation of Activated Charcoal and 85% physicians were familiar with its route of administration. Data showed that tertiary care hospitals of Punjab do not stock antidotes according to national drug policy. Moreover the study strongly suggests the development of health care centers and professional by organizing antidote awareness programs, continuous education and record keeping of poisonous cases and availability of emergency drugs around the clock.
Lattice harmonics expansion revisited
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Physics of higher orbital bands in optical lattices: a review
Li, Xiaopeng; Liu, W. Vincent
2015-01-01
Orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensation and topological semimetals emerge. A brief introduction of orbital degree of freedom in optical lattices is given ...
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Lattice Boltzmann Model for Compressible Fluid on a Square Lattice
Institute of Scientific and Technical Information of China (English)
SUN Cheng-Hai
2000-01-01
A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated
Entangling gates in even Euclidean lattices such as Leech lattice
Planat, Michel
2010-01-01
We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].
Fast simulation of lattice systems
DEFF Research Database (Denmark)
Bohr, H.; Kaznelson, E.; Hansen, Frank;
1983-01-01
A new computer system with an entirely new processor design is described and demonstrated on a very small trial lattice. The new computer simulates systems of differential equations of the order of 104 times faster than present day computers and we describe how the machine can be applied to lattice...
Lewis, Randy
2014-01-01
Several collaborations have recently performed lattice calculations aimed specifically at dark matter, including work with SU(2), SU(3), SU(4) and SO(4) gauge theories to represent the dark sector. Highlights of these studies are presented here, after a reminder of how lattice calculations in QCD itself are helping with the hunt for dark matter.
Introduction to lattice gauge theory
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Branes and integrable lattice models
Yagi, Junya
2016-01-01
This is a brief review of my work on the correspondence between four-dimensional $\\mathcal{N} = 1$ supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.
Charmed baryons on the lattice
Padmanath, M
2015-01-01
We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.
Lattice Location of Transition Metals in Semiconductors
2002-01-01
%IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...
Neutrinoless double beta decay from lattice QCD
Nicholson, Amy; Chang, Chia Cheng; Clark, M A; Joo, Balint; Kurth, Thorsten; Rinaldi, Enrico; Tiburzi, Brian; Vranas, Pavlos; Walker-Loud, Andre
2016-01-01
While the discovery of non-zero neutrino masses is one of the most important accomplishments by physicists in the past century, it is still unknown how and in what form these masses arise. Lepton number-violating neutrinoless double beta decay is a natural consequence of Majorana neutrinos and many BSM theories, and many experimental efforts are involved in the search for these processes. Understanding how neutrinoless double beta decay would manifest in nuclear environments is key for understanding any observed signals. In these proceedings we present an overview of a set of one- and two-body matrix elements relevant for experimental searches for neutrinoless double beta decay, describe the role of lattice QCD calculations, and present preliminary lattice QCD results.
Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Linusson, Anna; Ekström, Fredrik J
2016-05-17
Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.
Kassa, Jiri; Pohanka, Miroslav; Timperley, Christopher M; Bird, Mike; Green, A Christopher; Tattersall, John E H
2016-06-01
The potency of the bispyridinium non-oxime compound MB327 [1,1'-(propane-1,3-diyl)bis(4-tert-butylpyridinium) diiodide] to increase the therapeutic efficacy of the standard antidotal treatment (atropine in combination with an oxime) of acute poisoning with organophosphorus nerve agents was studied in vivo. The therapeutic efficacy of atropine alone - or atropine in combination with an oxime, MB327, or both an oxime and MB237 - was evaluated by the determination of LD50 values of several nerve agents (tabun, sarin and soman) in mice with and without treatment. The addition of MB327 increased the therapeutic efficacy of atropine alone, and atropine in combination with an oxime, against all three nerve agents, although differences in the LD50 values only reached statistical significance for sarin. In conclusion, the addition of the compound MB327 to the standard antidotal treatment of acute poisonings with nerve agents was beneficial regardless of the chemical structure of the nerve agent, although at the dose employed, MB327 in combination with atropine, or atropine and an oxime, provided only a modest increase in protection ratio. These results from mice, and previous ones from guinea-pigs, provide consistent evidence for additional, albeit modest, efficacy resulting from the inclusion of the antinicotinic compound MB327 in standard antidotal therapy. Given the typically steep probit slope for the dose-lethality relationship for nerve agents, such modest increases in protection ratio could provide significant survival benefit.
Lattice quantum chromodynamics practical essentials
Knechtli, Francesco; Peardon, Michael
2017-01-01
This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.
Lattice models of ionic systems
Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.
2002-05-01
A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.
Lattice Induced Transparency in Metasurfaces
Manjappa, Manukumara; Singh, Ranjan
2016-01-01
Lattice modes are intrinsic to the periodic structures and their occurrence can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report the first experimental observation of a lattice induced transparency (LIT) by coupling the first order lattice mode (FOLM) to the structural resonance of a metamaterial resonator at terahertz frequencies. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM mediated dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes large change in its bandwidth and resonance position. Besides controlling the transparency behaviour, LIT also shows a huge enhancement in the Q-factor and record high group delay of 28 ps, which could be pivotal in ultrasensitive sensing and slow light device applications.
Directory of Open Access Journals (Sweden)
Kazuhiko Kuroki
2008-01-01
Full Text Available We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr. Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.
Kuroki, Kazuhiko
2008-12-01
We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr). Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.
Non-renormalization theorem and cyclic Leibniz rule in lattice supersymmetry
Kato, Mitsuhiro; So, Hiroto
2014-01-01
We propose a lattice model of supersymmetric complex quantum mechanics which realizes the non-renormalization theorem on a lattice. In our lattice model, the Leibniz rule in the continuum, which cannot hold on a lattice due to a no-go theorem, is replaced by the cyclic Leibniz rule (CLR) for difference operators. It is shown that CLR allows two of four supercharges of the continuum theory to preserve while a naive lattice model can realize one supercharge at the most. A striking feature of our lattice model is that there are no quantum corrections to potential terms in any finite order of perturbation theory. This is one of characteristic properties of supersymmetric theories in the continuum. It turns out that CLR plays a crucial role in the proof of the non-renormalization theorem. This result suggests that CLR grasps an essence of supersymmetry on a lattice.
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Lattice Boltzmann model for nanofluids
Energy Technology Data Exchange (ETDEWEB)
Xuan Yimin; Yao Zhengping [Nanjing University of Science and Technology, School of Power Engineering, Nanjing (China)
2005-01-01
A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles. (orig.)
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Directory of Open Access Journals (Sweden)
Brian Jefferies
2014-01-01
Full Text Available A bounded linear operator T on a Hilbert space ℋ is trace class if its singular values are summable. The trace class operators on ℋ form an operator ideal and in the case that ℋ is finite-dimensional, the trace tr(T of T is given by ∑jajj for any matrix representation {aij} of T. In applications of trace class operators to scattering theory and representation theory, the subject is complicated by the fact that if k is an integral kernel of the operator T on the Hilbert space L2(μ with μ a σ-finite measure, then k(x,x may not be defined, because the diagonal {(x,x} may be a set of (μ⊗μ-measure zero. The present note describes a class of linear operators acting on a Banach function space X which forms a lattice ideal of operators on X, rather than an operator ideal, but coincides with the collection of hermitian positive trace class operators in the case of X=L2(μ.
Kassa, Jiri; Karasova, Jana Zdarova; Pavlikova, Ruzena; Misik, Jan; Caisberger, Filip; Bajgar, Jiri
2010-03-01
The influence of the combination of oximes on the reactivating and therapeutic efficacy of antidotal treament of acute tabun poisoning was evaluated. The ability of two combinations of oximes (HI-6 + obidoxime and HI-6 + K203) to reactivate tabun-inhibited acetylcholinesterase and reduce acute toxicity of tabun was compared with the reactivating and therapeutic efficacy of antidotal treatment involving single oxime (HI-6, obidoxime, K203) using in vivo methods. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of both combinations of oximes is higher than the reactivating efficacy of the most effective individual oxime in blood and diaphragm and comparable with the reactivating effects of the most effective individual oxime in brain. Moreover, both combinations of oximes were found to be slightly more efficacious in the reduction of acute lethal toxic effects in tabun-poisoned mice than the antidotal treatment involving individual oxime. A comparison of reactivating and therapeutic efficacy of individual oximes showed that the newly developed oxime K203 is slightly more effective than commonly used obidoxime and both of them are markedly more effective than the oxime HI-6. Based on the obtained data, we can conclude that the antidotal treatment involving chosen combinations of oximes brings beneficial effects for the potency of antidotal treatment to reactivate tabun-inhibited acetylcholinesterase in rats and to reduce acute toxicity of tabun in mice.
Proposing an Antidote for Poisonous Phosphine in View of Mitochondrial Eectrochemistry Facts
Directory of Open Access Journals (Sweden)
Mohammad Abdollahi
2012-01-01
Full Text Available Metal phosphides in general are potent pesticides that are a common cause of human poisoning. Various salts of phosphides produce highly toxic phosphine in exposure to gastric acid that results in multi-organ damage and death. There is no antidote for phosphine poisoning and most of human poisoned cases do not survive. All we know so far is that phosphine is a mitochondrial toxin that inhibits cellular respiration and induces oxidative stress. Mechanistically, phosphine as a reducing agent interacts with metal ion cofactors at the active site of enzymes and inhibits key enzymes such as cytochrome C oxidase that lead to inhibition of mitochondrial respiration. Phosphine (E0 = −1.18 V as a reducing agent gives electrons to cytochrome C oxidase (E0 = +0.29 V. Metal phosphides with lower reduction potential are stronger electron donors and thus stronger poisons. Our hypothesis is that if an electron receiver stronger than cytochrome C oxidase is used then it would compete with cytochrome C oxidase in interaction with phosphine. This competition might prevent or reduce the inhibition of cellular respiration. This idea can be tested in an animal model of phosphine toxicity by monitoring cardiovascular state and measuring the cardiac mitochondrial function.
Hydroxypyri(mi)dine-based chelators as antidotes of toxicity due to aluminum and actinides.
Santos, M A; Esteves, M A; Chaves, S
2012-01-01
This review is focused on recent developments on hydroxypyri(mi)dines, as aluminum and actinide chelating agents to combat the toxicity due to accumulations of these metal ions in human body resulting from excessive metal exposure. After a brief update revision of the most common processes of aluminum (Al) exposure, as well as the associated toxicities and pathologies, we will focus on the current available Al chelators and future perspective as potential antidotes of Al toxicity. Due to the similarity between Al and Fe, a major emphasis is given to the hydroxypyridinone and hydroxypyrimidinone chelators, since they are analogues of the current iron chelators in clinical use (DFP and DFO). This review includes issues such as molecular design strategies and corresponding effects on the associated physico-chemical properties, lipo-hydrophilic balance, toxicity, in vivo bioassays and current clinical applications. The hydroxypyri(mi)dine chelators are also suitable for other hard metal ions, such as the radiotoxic actinides, and so a brief review is included on the applications of these chelators in actinides scavenging.
An antidote approach to reduce risk and broaden utility of antibody based therapeutics.
Portnoff, Alyse D; Gao, Cuihua; Borrok, M Jack; Gao, Xizhe; Gao, Changshou; Rainey, G Jonah
2017-03-03
Antibody therapeutics offer safe and effective treatment options for a broad range of diseases. One of the greatest benefits of antibody therapeutics is their extraordinarily long serum half-life, allowing infrequent dosing with long-lasting effects. One characteristic of antibodies that drives long half-life is the ability to interact with the recycling receptor, FcRn, in a pH-dependent manner. The benefit of long half-life, however, carries with it liabilities. While the positive effects of antibody therapeutics are long-lasting, any acute adverse events or chronic negative impacts, such as immunosuppression in the face of an infection, are also long-lasting. Therefore, we sought to develop antibodies with a chemical handle that alone would enjoy the long half-life of normal antibodies, but upon addition of a small-molecule antidote, would interact with the chemical handle and inhibit the antibody recycling mechanism thus leading to rapid degradation and shortened half-life in vivo. Here we present a proof of concept study where we identify sites to incorporate a nnAA that can be chemically modified to modulate FcRn interaction in vitro and antibody half-life in vivo. This is an important first step in developing safer therapeutics, and the next step will be development of technology that can perform the modifying chemistry in vivo.
Kovarik, Zrinka; Calić, Maja; Sinko, Goran; Bosak, Anita; Berend, Suzana; Vrdoljak, Ana Lucić; Radić, Bozica
2008-09-25
One of the therapeutic approaches to organophosphate poisoning is to reactivate AChE with site-directed nucleophiles such as oximes. However, pyridinium oximes 2-PAM, HI-6, TMB-4 and obidoxime, found as the most effective reactivators, have limiting reactivating potency in tabun poisoning. We tested oximes varying in the type of ring (pyridinium and/or imidazolium), the length and type of the linker between rings, and in the position of the oxime group on the ring to find more effective oximes to reactivate tabun-inhibited human erythrocyte AChE. Three of our tested pyridinium oximes K027, K048, K074, along with TMB-4, were the most promising for AChE reactivation. Promising oximes were further tested in vivo on tabun poisoned mice not only as antidotes in combination with atropine but also as pretreatment drug. Herein, we showed that a promising treatment in tabun poisoning by selected oximes and atropine could be improved if oximes are also used in pretreatment. Since the reactivating efficacy of the oximes in vitro corresponded to their therapeutic efficacy in vivo, it seems that pharmacological effect of these oximes is indeed primarily related to the reactivation of tabun-phosphorylated AChE.
Vortex lattice theory: A linear algebra approach
Chamoun, George C.
Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.
Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions
Institute of Scientific and Technical Information of China (English)
Zhong Yi; Zhang Yong; Wang Jiao; Zhao Hong
2013-01-01
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions.Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough.Because only the harmonic interactions are involved,the result confirms,without ambiguity,that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices.Both equilibrium and nonequilibrium simulations are performed to support the conclusion.
De Soto, F; Carbonell, J; Leroy, J P; Pène, O; Roiesnel, C; Boucaud, Ph.
2007-01-01
We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.
Wilby, Brian
1974-01-01
As an alternative to the usual method of counting squares to find the area of a plane shape, a method of counting lattice points (determined by vertices of a unit square) is proposed. Activities using this method are suggested. (DT)
Lattice Studies of Hyperon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Yamamoto, Arata
2016-01-01
We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Multifractal behaviour of -simplex lattic
Indian Academy of Sciences (India)
Sanjay Kumar; Debaprasad Giri; Sujata Krishna
2000-06-01
We study the asymptotic behaviour of resistance scaling and ﬂuctuation of resistance that give rise to ﬂicker noise in an -simplex lattice. We propose a simple method to calculate the resistance scaling and give a closed-form formula to calculate the exponent, , associated with resistance scaling, for any . Using current cumulant method we calculate the exact noise exponent for -simplex lattices.
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Transport in Sawtooth photonic lattices
Weimann, Steffen; Real, Bastián; Cantillano, Camilo; Szameit, Alexander; Vicencio, Rodrigo A
2016-01-01
We investigate, theoretically and experimentally, a photonic realization of a Sawtooth lattice. This special lattice exhibits two spectral bands, with one of them experiencing a complete collapse to a highly degenerate flat band for a special set of inter-site coupling constants. We report the ob- servation of different transport regimes, including strong transport inhibition due to the appearance of the non-diffractive flat band. Moreover, we excite localized Shockley surfaces states, residing in the gap between the two linear bands.
Lattice QCD: A Brief Introduction
Meyer, H. B.
A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.
Advances in Lattice Quantum Chromodynamics
McGlynn, Greg
In this thesis we make four contributions to the state of the art in numerical lattice simulations of quantum chromodynamics (QCD). First, we present the most detailed investigation yet of the autocorrelations of topological observations in hybrid Monte Carlo simulations of QCD and of the effects of the boundary conditions on these autocorrelations. This results in a numerical criterion for deciding when open boundary conditions are useful for reducing these autocorrelations, which are a major barrier to reliable calculations at fine lattice spacings. Second, we develop a dislocation-enhancing determinant, and demonstrate that it reduces the autocorrelation time of the topological charge. This alleviates problems with slow topological tunneling at fine lattice spacings, enabling simulations on fine lattices to be completed with much less computational effort. Third, we show how to apply the recently developed zMobius technique to hybrid Monte Carlo evolutions with domain wall fermions, achieving nearly a factor of two speedup in the light quark determinant, the single most expensive part of the calculation. The dislocation-enhancing determinant and the zMobius technique have enabled us to begin simulations of fine ensembles with four flavors of dynamical domain wall quarks. Finally, we show how to include the previously-neglected G1 operator in nonperturbative renormalization of the DeltaS = 1 effective weak Hamiltonian on the lattice. This removes an important systematic error in lattice calculations of weak matrix elements, in particular the important K → pipi decay.
Optimal lattice-structured materials
Messner, Mark C.
2016-11-01
This work describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Kassa, Jirí
2005-01-01
(1) The influence of the time of administration of antidotal treatment consisting of anticholinergic drug (atropine) and newly developed oxime (K027 or K048) on its effectiveness to eliminate tabun-induced lethal toxic effects was studied in mice. (2) The therapeutic efficacy of antidotal treatment of tabun-induced acute poisoning depends on the time of its administration regardless of the choice of the oxime. (3) Our results show that both oximes studied (K027, K048) are able to sufficiently eliminate lethal effects of tabun. Nevertheless, their efficacy significantly decreases when they were administered 5 min after tabun poisoning. (4) The findings support the hypothesis that both newly developed oximes appear to be suitable oximes to counteract acute toxicity of tabun although their ability to eliminate lethal toxic effects of tabun significantly decreases with prolonged time interval between tabun challenge and antidotal treatment administration.
A lexicographic shellability characterization of geometric lattices
Davidson, Ruth
2011-01-01
Geometric lattices are characterized as those finite, atomic lattices such that every atom ordering induces a lexicographic shelling given by an edge labeling known as a minimal labeling. This new characterization fits into a similar paradigm as McNamara's characterization of supersolvable lattices as those lattices admitting a different type of lexicographic shelling, namely one in which each maximal chain is labeled with a permutation of {1,...,n}. Geometric lattices arise as the intersection lattices of central hyperplane arrangements and more generally as the lattices of flats for matroids.
DEFF Research Database (Denmark)
Zhu, Xiaolong; Wang, Weihua; Yan, Wei
2014-01-01
Nanostructured graphene on SiO2 substrates paves the way for enhanced light–matter interactions and explorations of strong plasmon–phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography......, with structural control down to the sub-100 nm regime. The interaction between graphene plasmon modes and the substrate phonons is experimentally demonstrated, and structural control is used to map out the hybridization of plasmons and phonons, showing coupling energies of the order 20 meV. Our findings...
Lattice dislocation in Si nanowires
Energy Technology Data Exchange (ETDEWEB)
Omar, M.S., E-mail: dr_m_s_omar@yahoo.co [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Taha, H.T. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)
2009-12-15
Modified formulas were used to calculate lattice thermal expansion, specific heat and Bulk modulus for Si nanowires with diameters of 115, 56, 37 and 22 nm. From these values and Gruneisen parameter taken from reference, mean lattice volumes were found to be as 20.03 A{sup 3} for the bulk and 23.63, 29.91, 34.69 and 40.46 A{sup 3} for Si nanowire diameters mentioned above, respectively. Their mean bonding length was calculated to be as 0.235 nm for the bulk and 0.248, 0.269, 0.282 and 0.297 nm for the nanowires diameter mentioned above, respectively. By dividing the nanowires diameter on the mean bonding length, number of layers per each nanowire size was found to be as 230, 104, 65 and 37 for the diameters mentioned above, respectively. Lattice dislocations in 22 nm diameter wire were found to be from 0.00324 nm for the 1st central lattice to 0.2579 nm for the last surface lattice. Such dislocation was smaller for larger wire diameters. Dislocation concentration found to change in Si nanowires according to the proportionalities of surface thickness to nanowire radius ratios.
An effective antidote for paraquat poisonings: the treatment with lysine acetylsalicylate.
Dinis-Oliveira, R J; Pontes, H; Bastos, M L; Remião, F; Duarte, J A; Carvalho, F
2009-01-31
Sodium salicylate (NaSAL) has been shown to have a multifactorial protection mechanism against paraquat (PQ)-induced toxicity, due to its ability to modulate inflammatory signalling systems, to prevent oxidative stress and to its capacity to chelate PQ. Considering that currently there is no pharmaceutical formulation available for parenteral administration of NaSAL, the aim of the present study was to evaluate the antidotal feasibility of a salicylate prodrug, lysine acetylsalicylate (LAS), accessible for parenteral administrations. PQ was administered to Wistar rats by gavage (125mg/kg of PQ ion) and the treatment was performed intraperitoneally with different doses (100, 200 and 400mg/kg of body weight) of LAS. Survival rate was followed during 30 days and living animals at this endpoint were sacrificed for lung, kidney, liver, jejune and heart histological analysis. It was shown, that the salicylate prodrug, LAS, available in a large number of hospitals, is also effective in the treatment of PQ intoxications. From all tested LAS doses, 200mg/kg assured animal's full survival. Comparatively to 60% of mortality observed in PQ only exposed animals, the lethality was higher (80%) in the group that received 400mg/kg of LAS 2h after PQ administration. The dose of 100mg/kg of LAS showed only a modest protection (60% of survival). Collagen deposition was observed by histological analysis in survived animals of all experimental groups, being less pronounced in animals receiving 200mg/kg of LAS, reinforcing the importance of this dose against tissue damage induced by PQ. The results allow us to suggest that LAS should be considered in the hospital treatment of PQ poisonings.
Good manufacturing practice: manufacturing of a nerve agent antidote nanoparticle suspension.
Clark, Andrew P-Z; Dixon, Hong; Cantu, Norma L; Cabell, Larry A; McDonough, Joe A
2013-01-01
We have established a current good manufacturing practice (GMP) manufacturing process to produce a nanoparticle suspension of 1,1'-methylenebis-4-[(hydroxyimino)methyl]pyridinium dimethanesulfonate (MMB4 DMS) in cottonseed oil (CSO) as a nerve agent antidote for a Phase 1 clinical trial. Bis-pyridinium oximes such as MMB4 were previously developed for emergency treatment of organophosphate nerve agent intoxication. Many of these compounds offer efficacy superior to monopyridinium oximes, but they have poor thermal stability due to hydrolytic cleavage in aqueous solution. We previously developed a nonaqueous nanoparticle suspension to improve the hydrothermal stability, termed Enhanced Formulation (EF). An example of this formulation technology is a suspension of MMB4 DMS nanoparticles in CSO. Due to the profound effect of particle size distribution on product quality and performance, particle size must be controlled during the manufacturing process. Therefore, a particle size analysis method for MMB4 DMS in CSO was developed and validated to use in support of good laboratory practice/GMP development and production activities. Manufacturing of EF was accomplished by milling MMB4 DMS with CSO and zirconia beads in an agitator bead mill. The resulting bulk material was filled into 5-mL glass vials at a sterile fill facility and terminally sterilized by gamma irradiation. The clinical lot was tested and released, a Certificate of Analysis was issued, and a 3-year International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) stability study started. The drug product was placed in storage for Phase 1 clinical trial distribution. A dose delivery uniformity study was undertaken to ensure that the correct doses were delivered to the patients in the clinic.
John, Harald; Blum, Marc-Michael
2012-01-01
Pralidoxime (2-PAM) belongs to the class of monopyridinium oximes with reactivating potency on cholinesterases inhibited by phosphylating organophosphorus compounds (OPC), for example, pesticides and nerve agents. 2-PAM represents an established antidote for the therapy of anticholinesterase poisoning since the late 1950s. Quite high therapeutic concentrations in human plasma (about 13 µg/ml) lead to concentrations in urine being about 100 times higher allowing the use of less sensitive analytical techniques that were used especially in the early years after 2-PAM was introduced. In this time (mid-1950s until the end of the 1970s) 2-PAM was most often analyzed by either paper chromatography or simple UV spectroscopic techniques omitting any sample separation step. These methods were displaced completely after the establishment of column liquid chromatography in the early 1980s. Since then, diverse techniques including cation exchange, size-exclusion, reversed-phase, and ligand-exchange chromatography have been introduced. Today, the most popular method for 2-PAM quantification is ion pair chromatography often combined with UV detection representing more than 50% of all column chromatographic procedures published. Furthermore, electrophoretic approaches by paper and capillary zone electrophoresis have been successfully used but are seldom applied. This review provides a commentary and exhaustive summary of analytical techniques applied to detect 2-PAM in pharmaceutical formulations and biological samples to characterize stability and pharmacokinetics as well as decomposition and biotransformation products. Separation techniques as well as diverse detectors are discussed in appropriate detail allowing comparison of individual preferences and limitations. In addition, novel data on mass spectrometric fragmentation of 2-PAM are provided.
Hadron Structure on the Lattice
Can, K. U.; Kusno, A.; Mastropas, E. V.; Zanotti, J. M.
The aim of these lectures will be to provide an introduction to some of the concepts needed to study the structure of hadrons on the lattice. Topics covered include the electromagnetic form factors of the nucleon and pion, the nucleon's axial charge and moments of parton and generalised parton distribution functions. These are placed in a phenomenological context by describing how they can lead to insights into the distribution of charge, spin and momentum amongst a hadron's partonic constituents. We discuss the techniques required for extracting the relevant matrix elements from lattice simulations and draw attention to potential sources of systematic error. Examples of recent lattice results are presented and are compared with results from both experiment and theoretical models.
Nuclear Reactions from Lattice QCD
Briceño, Raúl A; Luu, Thomas C
2014-01-01
One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path ...
Quantum Gravity on the Lattice
Hamber, Herbert W
2009-01-01
I review the lattice approach to quantum gravity, and how it relates to the non-trivial ultraviolet fixed point scenario of the continuum theory. After a brief introduction covering the general problem of ultraviolet divergences in gravity and other non-renormalizable theories, I cover the general methods and goals of the lattice approach. An underlying theme is an attempt at establishing connections between the continuum renormalization group results, which are mainly based on diagrammatic perturbation theory, and the recent lattice results, which should apply to the strong gravity regime and are inherently non-perturbative. A second theme in this review is the ever-present natural correspondence between infrared methods of strongly coupled non-abelian gauge theories on the one hand, and the low energy approach to quantum gravity based on the renormalization group and universality of critical behavior on the other. Towards the end of the review I discuss possible observational consequences of path integral q...
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Algebraic Lattices in QFT Renormalization
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Aspects of baryon structure in lattice QCD
Babich, Ronald
Despite the long success of Quantum Chromodynamics (QCD) as the theory of the strong interactions, there remains much to be understood about the structure of hadrons and the consequences of QCD in the nonperturbative regime. Lattice gauge theory, a framework nearly as old as QCD itself, makes calculations in this regime possible, starting from first principles. With advances in theoretical understanding, methods, and computer technology, the lattice has found application to an ever-widening range of problems. In this dissertation, I consider two such problems having to do with the structure of baryons. The first concerns the contribution of sea quarks, and the strange quark in particular, to form factors of the nucleon. This has been a long-standing challenge for the lattice, because such contributions involve the insertion of a current on a quark loop, demanding the full inversion of the discretized Dirac operator, conceptually a large sparse matrix. I discuss methods for addressing this challenge and present a calculation of the strange scalar form factor and the related parameter fTs. The latter is of great theoretical interest, since it enters into the cross section for the scattering of dark matter off nuclei in supersymmetric extensions of the standard model. As such, it represents a major uncertainty in the interpretation of direct detection experiments. I also present results for the strange quark contribution to the nucleon's axial and electromagnetic form factors, which are themselves the subject of active experimental programs. These calculations were performed using the Wilson fermion formulation on a 243 x 64 anisotropic lattice. In the second part of the dissertation, I turn to the valence sector and address the role of diquark correlations in the observed spectrum of hadrons and their properties. A diquark is a correlated pair of quarks, thought to play an important role in certain phenomenological models of hadrons. I present results for baryon wave
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Lattices, graphs, and Conway mutation
Greene, Joshua Evan
2011-01-01
The d-invariant of an integral, positive definite lattice L records the minimal norm of a characteristic covector in each equivalence class mod 2L. We prove that the 2-isomorphism type of a connected graph is determined by the d-invariant of its lattice of integral cuts (or flows). As an application, we prove that a reduced, alternating link diagram is determined up to mutation by the Heegaard Floer homology of the link's branched double-cover. Thus, alternating links with homeomorphic branched double-covers are mutants.
Chiral Fermions on the Lattice
Bietenholz, Wolfgang
2010-01-01
In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
Inelastic neutron scattering and lattice dynamics of minerals
Indian Academy of Sciences (India)
Narayani Choudhury; S L Chaplot
2008-10-01
We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in various thermodynamic properties. The role of theoretical lattice dynamics calculations in the planning, interpretation and analysis of neutron experiments are discussed. These studies provide important insights in understanding various anomalous behaviour including pressure-induced amorphization, phonon and elastic instabilities, prediction of novel high pressure phase transitions, high pressure{temperature melting, etc.
Physics of higher orbital bands in optical lattices: a review
Li, Xiaopeng; Liu, W. Vincent
2016-11-01
The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.
Directory of Open Access Journals (Sweden)
Motahareh Soltani
2016-08-01
Full Text Available Objectives: Aluminium phosphide (AlP is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3, a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01. Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01. A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.
Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.
2016-01-01
Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109
Energy Technology Data Exchange (ETDEWEB)
Doebler, J.A.; Dant, B.C.; Chang, F.C.T.
1997-05-01
Studies were conducted to investigate the utility of a novel in vitro system to monitor the efficacy of potential antidotes against sodium channel neurotoxins. Intracellular free calcium levels were measured in PC-12 (rat adrenal pheochromocytoma) cells utilizing a calcium imaging system with Fura-2 as the ratiometric calcium-sensitive indicator. Elevations in Ca(++) induced by high extracellular potassium (K(+)) and 4-aminopyridine (4-AP) were demonstrated, thus confirming the responsiveness of the system. Saxitoxin (STX), however, did not produce any alteration in Ca(++), perhaps due to a relatively low level of neuronal activity, i.e., impulse generation, in the in vitro state. Therefore, we attempted to activate PC-12 cells using the sodium channel agonist veratridine (VER) to determine whether STX could reduce enhanced Ca(++) levels. Although VER generally increased Ca(++), this response was somewhat variable and thus could not be used to demonstrate STX-induced toxic effects. Such variability may be inherent to cell lines; thus, the use of primary cultures is recommended to develop an in vitro system using Ca(++) levels as an endpoint to evaluate the efficacy of antidotes against sodium channel toxins.
Kassa, Jirí
2004-01-01
1. The influence of the time of administration of antidotal treatment consisting of anticholinergic drug (atropine) and oxime (pralidoxime, obidoxime, HI-6 or trimedoxime) on its effectiveness to eliminate tabun-induced lethal effects was studied in mice. 2. The therapeutic efficacy of antidotal treatment of tabun-induced acute poisoning depends on the time of its administration when obidoxime or the oxime HI-6 was used as an acetylcholinesterase reactivator. 3. Pralidoxime is practically ineffective to eliminate acute toxic effects of tabun regardless of the time of its administration. 4. Our results show that trimedoxime seems to be the most effective to eliminate lethal effects of tabun. In addition, its efficacy does not decrease when it is administered 5 min after tabun poisoning. 5. The findings support the hypothesis that trimedoxime appears to be the most suitable oxime to counteract acute toxicity of tabun because of its ability to eliminate lethal effects of tabun when it is injected 5 min after tabun challenge on the contrary to other oximes tested.
Kassa, J; Kunesova, G
2006-01-01
In this study, the influence of antidotal treatment of tabun poisoning on cognitive function, in the case of low-level tabun exposure, was studied. The impairment of cognitive function was evaluated by the measurement of spatial learning and memory in rats poisoned with a sublethal dose of tabun and treated with atropine alone or in combination with newly developed oximes {K027 [1-(4-hydroxyiminomethyl- pyridinium)-3-(4-carbamoylpyridinium) propane dibromide] and K048 [1-(4-hydroxyimino- methylpyridinium)-3-(4-carbamoylpyridinium) butane dibromide]} or currently available oxime (trimedoxime), using the Morris water maze. While atropine alone caused an impairment of studied cognitive functions, the addition of an oxime to atropine contributes to the improvement of cognitive performance of treated tabun-poisoned rats regardless of the type of oxime. The differences in the ameliorative effects of oximes on atropine-induced mnemonic deficits were not significant. Therefore, each low-level nerve agent exposure should be treated by complex antidotal treatment consisting of anticholinergic drug and oxime.
Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
Directory of Open Access Journals (Sweden)
Bruce L. Davis
2011-12-01
Full Text Available The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell and the phononic crystal lattice (defined by a supercell contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant, dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.
Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
Davis, Bruce L.; Hussein, Mahmoud I.
2011-12-01
The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell) and the phononic crystal lattice (defined by a supercell) contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant), dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.
Inelastic neutron scattering and lattice dynamics studies in complex solids
Indian Academy of Sciences (India)
Mala N Rao; R Mittal; Narayani Choudhury; S L Chaplot
2004-07-01
At Trombay, lattice dynamics studies employing coherent inelastic neutron scattering (INS) experiments have been carried out at the two research reactors, CIRUS and Dhruva. While the early work at CIRUS involved many elemental solids and ionic molecular solids, recent experiments at Dhruva have focussed on certain superconductors (cuprates and intermetallics), geophysically important minerals (Al2SiO5, ZrSiO4, MnCO3) and layered halides (BaFCl, ZnCl2). In most of the studies, theoretical modelling of lattice dynamics has played a significant role in the interpretation and analysis of the results from experiments. This talk summarises the developments and current activities in the field of inelastic neutron scattering and lattice dynamics at Trombay.
Nucleon structure using lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Constantinou, M.; Hatziyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Drach, V. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Jansen, K. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Koutsou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Leontiou, T. [Frederick Univ, Nicosia (Cyprus). General Dept.
2013-03-15
A review of recent nucleon structure calculations within lattice QCD is presented. The nucleon excited states, the axial charge, the isovector momentum fraction and helicity distribution are discussed, assessing the methods applied for their study, including approaches to evaluate the disconnected contributions. Results on the spin carried by the quarks in the nucleon are also presented.
Triangles in a Lattice Parabola.
Sastry, K. R. S.
1991-01-01
Discussed are properties possessed by polygons inscribed in the lattice parabola y=x, including the area of a triangle, triangles of minimum area, conditions for right triangles, triangles whose area is the cube of an integer, and implications of Pick's Theorem. Further directions to pursue are suggested. (MDH)
Hamiltonian monodromy as lattice defect
Zhilinskii, B.
2003-01-01
The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.
Chiral fermions on the lattice
Jahn, O; Jahn, Oliver; Pawlowski, Jan M.
2002-01-01
We discuss topological obstructions to putting chiral fermions on an even dimensional lattice. The setting includes Ginsparg-Wilson fermions, but is more general. We prove a theorem which relates the total chirality to the difference of generalised winding numbers of chiral projection operators. For an odd number of Weyl fermions this implies that particles and anti-particles live in topologically different spaces.
Hybrid Charmonium from Lattice QCD
Luo, X Q
2006-01-01
We review our recent results on the JPC = 0¡¡ exotic hybrid charmonium mass and JPC = 0¡+, 1¡¡ and 1++ nonexotic hybrid charmonium spectrum from anisotropic improved lattice QCD and discuss the relevance to the recent discovery of the Y(4260) state and future experimental search for other states.
Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints
Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue
2017-02-01
The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.
Orbital optical lattices with bosons
Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.
2016-02-01
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.
Hadron Structure and Spectrum from the Lattice
Lang, C B
2015-01-01
Lattice calculations for hadrons are now entering the domain of resonances and scattering, necessitating a better understanding of the observed discrete energy spectrum. This is a reviewing survey about recent lattice QCD results, with some emphasis on spectrum and scattering.
Turbo Lattices: Construction and Performance Analysis
Sakzad, Amin; Panario, Daniel
2011-01-01
In this paper a new class of lattices called turbo lattices is introduced and established. We use the lattice Construction $D$ to produce turbo lattices. This method needs a set of nested linear codes as its underlying structure. We benefit from turbo codes as our basis codes. Therefore, a set of nested turbo codes based on nested interleavers and nested convolutional codes is built. To this end, we employ both tail-biting and zero-tail convolutional codes. Using these codes, along with construction $D$, turbo lattices are created. Several properties of Construction $D$ lattices and fundamental characteristics of turbo lattices including the minimum distance, coding gain, kissing number and an upper bound on the probability of error under a maximum likelihood decoder over AWGN channel are investigated. Furthermore, a multi-stage turbo lattice decoding algorithm based on iterative turbo decoding algorithm is given. Finally, simulation experiments provide strong agreement with our theoretical results. More prec...
In vitro and in vivo comparison of sulfur donors as antidotes to acute cyanide intoxication.
Baskin, S I; Porter, D W; Rockwood, G A; Romano, J A; Patel, H C; Kiser, R C; Cook, C M; Ternay, A L
1999-01-01
Antidotes for cyanide (CN) intoxication include the use of sulfane sulfur donors (SSDs), such as thiosulfate, which increase the conversion of CN to thiocyanate by the enzyme rhodanese. To develop pretreatments that might be useful against CN, SSDs with greater lipophilicity than thiosulfate were synthesized and assessed. The ability of SSDs to protect mice against 2LD50 of sodium cyanide (NaCN) administered either 15 or 60 min following administration of an SSD was assessed. To study the mechanism of action of the SSD, the candidate compounds were examined in vitro for their effect on rhodanese and 3-mercaptopyruvate sulfurtransferase (MST) activity under increasing SSD concentrations. Tests were conducted on nine candidate SSDs: ICD1021 (3-hydroxypyridin-2-yl N-[(N-methyl-3-aminopropyl)]-2-aminoethyl disulfide dihydrochloride), ICD1022, (3-hydroxypyridin-2-yl N-[(N-methyl-3-aminopropyl)]-2-aminoethyl disulfide trihydrochloride), ICD1584 (diethyl tetrasulfide), ICD1585 (diallyl tetrasulfide), ICD1587 (diisopropyl tetrasulfide); ICD1738 (N-(3-aminopropyl)-2-aminoethyl 2-oxopropyl disulfide dihydrochloride), ICD1816 (3,3'-tetrathiobis-N-acctyl-L-alanine), ICD2214 (2-aminoethyl 4-methoxyphenyl disulfide hydrochloride) and ICD2467 (bis(4-methoxyphenyl) disulfide). These tests demonstrated that altering the chemical substituent of the longer chain sulfide modified the ability of the candidate SSD to protect against CN toxicity. At least two of the SSDs at selected doses provided 100% protection against 2LD50 of NaCN, normally an LD99. All compounds were evaluated using locomotor activity as a measure of potential adverse behavioral effects. Positive hypoactivity relationships were found with several disulfides but none was found with ICD1584, a tetrasulfide. Separate studies suggest that the chemical reaction of potassium cyanide (KCN) and cystine forms the toxic metabolite 2-iminothiazolidine-4-carboxylic acid. An alternative detoxification pathway, one not primarily
Meretoja's Syndrome: Lattice Corneal Dystrophy, Gelsolin Type
Abreu, C.; Neves, M.; Oliveira, L.; Beirão, M.
2017-01-01
Lattice corneal dystrophy gelsolin type was first described in 1969 by Jouko Meretoja, a Finnish ophthalmologist. It is caused by an autosomal dominant mutation in gelsolin gene resulting in unstable protein fragments and amyloid deposition in various organs. The age of onset is usually after the third decade of life and typical diagnostic triad includes progressive bilateral facial paralysis, loose skin, and lattice corneal dystrophy. We report a case of a 53-year-old female patient referred to our Department of Ophthalmology by severe dry eye and incomplete eyelid closure. She had severe bilateral facial paresis, significant orbicularis, and perioral sagging as well as hypoesthesia of extremities and was diagnosed with Meretoja's syndrome at the age of 50, confirmed by the presence of gelsolin mutation. At our observation she had bilateral diminished tear film break-up time and Schirmer test, diffuse keratitis, corneal opacification, and neovascularization in the left eye. She was treated with preservative-free lubricants and topical cyclosporine, associated with nocturnal complete occlusion of both eyes, and underwent placement of lacrimal punctal plugs. Ocular symptoms are the first to appear and our role as ophthalmologists is essential for the diagnosis, treatment, and monitoring of ocular alterations in these patients. PMID:28250773
Rough Class on a Completely Distributive Lattice
Institute of Scientific and Technical Information of China (English)
陈德刚; 张文修; 宋士吉
2003-01-01
This paper generalizes the Pawlak rough set method to a completely distributive lattice. Theconcept of a rough set has many applications in data mining. The approximation operators on a completelydistributive lattice are studied, the rough class on a completely distributive lattice is defined and theexpressional theorems of the rough class are proven. These expressional theorems are used to prove that thecollection of all rough classes is an atomic completely distributive lattice.
Distributive lattice orderings and Priestley duality
Krebs, Michel
2007-01-01
The ordering relation of a bounded distributive lattice L is a (distributive) (0, 1)-sublattice of L \\times L. This construction gives rise to a functor \\Phi from the category of bounded distributive lattices to itself. We examine the interaction of \\Phi with Priestley duality and characterise those bounded distributive lattices L such that there is a bounded distributive lattice K such that \\Phi(K) is (isomorphic to) L.
Modified $U(1)$ lattice gauge theory towards realistic lattice QED
Bornyakov, V G; Müller-Preussker, M
1992-01-01
We study properties of the compact $~4D~$ $U(1)$ lattice gauge theory with monopoles {\\it removed}. Employing Monte Carlo simulations we calculate correlators of scalar, vector and tensor operators at zero and nonzero momenta $~\\vec{p}~$. We confirm that the theory without monopoles has no phase transition, at least, in the interval $~0 < \\beta \\leq 2~$. There the photon becomes massless and fits the lattice free field theory dispersion relation very well. The energies of the $~0^{++}~$, $~1^{+-}~$ and $~2^{++}~$ states show a rather weak dependence on the coupling in the interval of $~\\beta~$ investigated, and their ratios are practically constant. We show also a further modification of the theory suppressing the negative plaquettes to improve drastically the overlap with the lowest states (at least, for $~J=1$).
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
The set of d-structures on a topological space form a lattice and in fact a locale. There is a Galois connection between the lattice of subsets of the space and the lattice of d-structures. Variation of the d-structures induces change in the spaces of directed paths. Hence variation of d...
Modal analysis of kagome-lattice structures
Perez, H.; Blakley, S.; Zheltikov, A. M.
2015-05-01
The first few lowest order circularly symmetric electromagnetic eigenmodes of a full kagome lattice are compared to those of a kagome lattice with a hexagonal defect. This analysis offers important insights into the physics behind the waveguiding properties of hollow-core fibers with a kagome-lattice cladding.
SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS
Institute of Scientific and Technical Information of China (English)
Yan Guangwu; Hu Shouxin
2000-01-01
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed.Using the Chapman-Enskog expansion and multi-scale technique,we obtain the higher-order moments of equilibrium distribution function.A simple traffic light problem is simulated by using the present lattice Boltzmann model,and the result agrees well with analytical solution.
Lattice QCD and the CKM matrix
De Grand, T
2001-01-01
These lectures (given at TASI 2000) provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1 (Ch. 2) is a very vanilla introduction to lattice QCD. Lecture 2 (Ch. 3) describes examples of recent lattice calculations relevant to fixing the parameters of the CKM matrix.
Lattice Boltzmann solver of Rossler equation
Institute of Scientific and Technical Information of China (English)
GuangwuYAN; LiRUAN
2000-01-01
We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.
Perfect and Quasi-Perfect Lattice Actions
Bietenholz, W
1998-01-01
Perfect lattice actions are exiting with several respects: they provide new insight into conceptual questions of the lattice regularization, and quasi-perfect actions could enable a great leap forward in the non-perturbative solution of QCD. We try to transmit a flavor of them, also beyond the lattice community.
The Developement of A Lattice Structured Database
DEFF Research Database (Denmark)
Bruun, Hans
to a given set of inserted terms, that is the smallest lattice where the inserted terms preserve their value compared to the value in the initial algebra/lattice. The database is the dual representation of this most disjoint lattice. We develop algorithms to construct and make queries to the database....
Exact Chiral Symmetry on the Lattice
Neuberger, H
2001-01-01
Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.
Mayet-Godowski Hilbert Lattice Equations
Megill, Norman D.; Pavicic, Mladen
2006-01-01
Several new results in the field of Hilbert lattice equations based on states defined on the lattice as well as novel techniques used to arrive at these results are presented. An open problem of Mayet concerning Hilbert lattice equations based on Hilbert-space-valued states is answered.
Lattice gaugefixing and other optics in lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Yee, Ken
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Nuclear Forces from Lattice Quantum Chromodynamics
Savage, Martin J
2013-01-01
A century of coherent experimental and theoretical investigations have uncovered the laws of nature that underly nuclear physics. The standard model of strong and electroweak interactions, with its modest number of input parameters, dictates the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exa-scale during the next decade will provide the ability to numerically compute a range of important strong interaction processes directly from QCD with quantifiable uncertainties using the technique of Lattice QCD. These calculations will refine the chiral nuclear forces that are used as input into nuclear many-body calculations, including the three- and four-nucleon ...
Nuclear Physics from Lattice Quantum Chromodynamics
Savage, Martin J
2015-01-01
Quantum Chromodynamics and Quantum Electrodynamics, both renormalizable quantum field theories with a small number of precisely constrained input parameters, dominate the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exascale during the next decade will provide the ability to determine a range of important strong interaction processes directly from QCD using the numerical technique of Lattice QCD. This will complement the nuclear physics experimental program, and in partnership with new thrusts in nuclear many-body theory, will enable unprecedented understanding and refinement of nuclear forces and, more generally, the visible matter in our universe. In th...
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
Lattice splitting under intermittent flows
Schläpfer, Markus
2010-01-01
We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.
Breathers in strongly anharmonic lattices.
Rosenau, Philip; Pikovsky, Arkady
2014-02-01
We present and study a family of finite amplitude breathers on a genuinely anharmonic Klein-Gordon lattice embedded in a nonlinear site potential. The direct numerical simulations are supported by a quasilinear Schrodinger equation (QLS) derived by averaging out the fast oscillations assuming small, albeit finite, amplitude vibrations. The genuinely anharmonic interlattice forces induce breathers which are strongly localized with tails evanescing at a doubly exponential rate and are either close to a continuum, with discrete effects being suppressed, or close to an anticontinuum state, with discrete effects being enhanced. Whereas the D-QLS breathers appear to be always stable, in general there is a stability threshold which improves with spareness of the lattice.
Lattice dynamics of strontium tungstate
Indian Academy of Sciences (India)
Prabhatasree Goel; R Mittal; S L Chaplot; A K Tyagi
2008-11-01
We report here measurements of the phonon density of states and the lattice dynamics calculations of strontium tungstate (SrWO4). At ambient conditions this compound crystallizes to a body-centred tetragonal unit cell (space group I41/a) called scheelite structure. We have developed transferable interatomic potentials to study the lattice dynamics of this class of compounds. The model parameters have been fitted with respect to the experimentally available Raman and infra-red frequencies and the equilibrium unit cell parameters. Inelastic neutron scattering measurements have been carried out in the triple-axis spectrometer at Dhruva reactor. The measured phonon density of states is in good agreement with the theoretical calculations, thus validating the inter-atomic potential developed.
Entanglement scaling in lattice systems
Energy Technology Data Exchange (ETDEWEB)
Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)
2007-05-15
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
Fractional random walk lattice dynamics
Michelitsch, Thomas; Riascos, Alejandro Perez; Nowakowski, Andrzeij; Nicolleau, Franck
2016-01-01
We analyze time-discrete and continuous `fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in $n=1,2,3,..$ dimensions.The fractional random walk dynamics is governed by a master equation involving {\\it fractional powers of Laplacian matrices $L^{\\frac{\\alpha}{2}}$}where $\\alpha=2$ recovers the normal walk.First we demonstrate thatthe interval $0\\textless{}\\alpha\\leq 2$ is admissible for the fractional random walk. We derive analytical expressions for fractional transition matrix and closely related the average return probabilities. We further obtain thefundamental matrix $Z^{(\\alpha)}$, and the mean relaxation time (Kemeny constant) for the fractional random walk.The representation for the fundamental matrix $Z^{(\\alpha)}$ relates fractional random walks with normal random walks.We show that the fractional transition matrix elements exihibit for large cubic $n$-dimensional lattices a power law decay of an $n$-dimensional infinite spaceRiesz fractional deriva...
Innovations in Lattice QCD Algorithms
Energy Technology Data Exchange (ETDEWEB)
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Fungal keratitis in Lattice dystrophy
Directory of Open Access Journals (Sweden)
Chatterjee Samrat
2010-01-01
Full Text Available We report a case of fungal keratitis occurring in a patient with lattice dystrophy. A 57-year-old farmer presented with a corneal ulcer following probable entry of paddy husk in the right eye, of one month duration. Corneal scraping revealed pigmented fungal filaments while culture grew Alternaria alternata. Treatment with 5% natamycin eye drops and 1% atropine healed the infection in four weeks. We would like to draw attention to the fact that the cornea in lattice dystrophy is prone to frequent erosions and is a compromised epithelial barrier to invasion by microorganisms. Patients must be made aware of this fact and should seek attention at the earliest following any trivial trauma. Management of minor corneal abrasions in them should be directed at healing the epithelium with adequate lubricants and preventing infection with topical antibiotic prophylaxis.
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Prabhatasree Goel; N Choudhury; S L Chaplot
2004-08-01
Li2O finds several important technological applications, as it is used in solid-state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures around 1200 K. We have carried out lattice-dynamical calculations of Li2O using a shell model in the quasi-harmonic approximation. The calculated phonon frequencies are in excellent agreement with the reported inelastic neutron scattering data. Thermal expansion, specific heat, elastic constants and equation of state have also been calculated which are in good agreement with the available experimental data.
Lattice Embedding of Heronian Simplices
Lunnon, W Fred
2012-01-01
A rational triangle has rational edge-lengths and area; a rational tetrahedron has rational faces and volume; either is Heronian when its edge-lengths are integer, and proper when its content is nonzero. A variant proof is given, via complex number GCD, of the previously known result that any Heronian triangle may be embedded in the Cartesian lattice Z^2; it is then shown that, for a proper triangle, such an embedding is unique modulo lattice isometry; finally the method is extended via quaternion GCD to tetrahedra in Z^3, where uniqueness no longer obtains, and embeddings also exist which are unobtainable by this construction. The requisite complex and quaternionic number theoretic background is summarised beforehand. Subsequent sections engage with subsidiary implementation issues: initial rational embedding, canonical reduction, exhaustive search for embeddings additional to those yielded via GCD; and illustrative numerical examples are provided. A counter-example shows that this approach must fail in high...
The Fermilab Lattice Information Repository
Ostiguy, Jean-Francois; McCusker-Whiting, Michele; Michelotti, Leo
2005-01-01
Fermilab is a large accelerator complex with six rings and sixteen transfer beamlines operating in various modes and configurations, subject to modifications, improvements and occasional major redesign. Over the years, it became increasingly obvious that a centralized lattice repository with the ability to track revisions would be of great value. To that end, we evaluated potentially suitable revision systems, either freely available or commercial, and decided that expecting infrequent users to become fully conversant with complex revision system software was neither realistic nor practical. In this paper, we discuss technical aspects of the recently introduced FNAL Accelerator Division's Lattice Repository, whose fully web-based interface hides the complexity of Subversion, a comprehensive open source revision system. In particular we emphasize how the architecture of Subversion was a key ingredient in the technical success of the repository's implementation.
A Lattice-Gas Model of Microemulsions
Boghosian, B M; Emerton, A N; Boghosian, Bruce M.; Coveney, Peter V.; Emerton, Andrew N.
1995-01-01
We develop a lattice gas model for the nonequilibrium dynamics of microemulsions. Our model is based on the immiscible lattice gas of Rothman and Keller, which we reformulate using a microscopic, particulate description so as to permit generalisation to more complicated interactions, and on the prescription of Chan and Liang for introducing such interparticle interactions into lattice gas dynamics. We present the results of simulations to demonstrate that our model exhibits the correct phenomenology, and we contrast it with both equilibrium lattice models of microemulsions, and to other lattice gas models.
Stable kagome lattices from group IV elements
Leenaerts, O.; Schoeters, B.; Partoens, B.
2015-03-01
A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.
Thermal Hydraulic Performance of Tight Lattice Bundle
Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki
Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Integrated optical fiber lattice accumulators
Atherton, Adam F
1997-01-01
Approved for public release; distribution is unlimited. Sigma-delta modulators track a signal by accumulating the error between an input signal and a feedback signal. The accumulated energy is amplitude analyzed by a comparator. The comparator output signal is fed back and subtracted from the input signal. This thesis is primarily concerned with designing accumulators for inclusion in an optical sigma-delta modulator. Fiber lattice structures with optical amplifiers are used to perform the...
Harmonic Lattice Dynamics of Germanium
Energy Technology Data Exchange (ETDEWEB)
Nelin, G.
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Hadron Physics from Lattice QCD
2016-01-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
Lattice engineering technology and applications
Wang, Shumin
2012-01-01
This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bonding and heterostructure nanowires etc. Basic knowledge on dislocations in semiconductors and innovative methods to eliminate threading dislocations are provided, and successful device applications are reviewed. It covers a variety of important semicon
Symplectic maps for accelerator lattices
Energy Technology Data Exchange (ETDEWEB)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs.
Manipulation and control of a bichromatic lattice
Thomas, Claire; Barter, Thomas; Daiss, Severin; Leung, Zephy; Stamper-Kurn, Dan
2015-05-01
Recent experiments with ultracold atoms in optical lattices have had great success emulating the simple models of condensed matter systems. These experiments are typically performed with a single site per unit cell. We realize a lattice with up to four sites per unit cell by overlaying an attractive triangular lattice with a repulsive one at twice the wavelength. The relative displacement of the two lattices determines the particular structure. One available configuration is the kagome lattice, which has a flat energy band. In the flat band all kinetic energy states are degenerate, so we have the opportunity to explore a regime where interactions dominate. This bichromatic lattice requires careful stabilization, but offers an opportunity to manipulate the unit cell and band structure by perturbing the lattices relative to one another. I will discuss recent progress.
The Algebraic Properties of Concept Lattice
Institute of Scientific and Technical Information of China (English)
KaisheQu; JiyeLiang; JunhongWang; ZhongzhiShi
2004-01-01
Concept lattice is a powerful tool for data analysis. It has been applied widely to machine learning, knowledge discovery and software engineering and so on. Some aspects of concept lattice have been studied widely such as building lattice and rules extraction, as for its algebraic properties, there has not been discussed systematically. The paper suggests a binary operation between the elements for the set of all concepts in formal context. This turns the concept lattice in general significance into those with operators. We also proved that the concept lattice is a lattice in algebraic significance and studied its algebraic properties.These results provided theoretical foundation and a new method for further study of concept lattice.
Deterministic aperiodic composite lattice-structured silicon thin films for photon management
Xavier, Jolly; Becker, Christiane
2016-01-01
Exotic manipulation of the flow of photons in nanoengineered semiconductor materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced and industrially viable broadband photonic technologies. Through a generic deterministic nanotechnological route, in addition to periodic, transversely quasicrystallographic or disordered random photonic lattices, here we show scalable nanostructured semiconductor thin films on large area nanoimprinted substrates up to 4cm^2 with advanced functional features of aperiodic composite nanophotonic lattices having tailorable supercell tiles. The richer Fourier spectra of the presented artificially nanostructured materials with well-defined lattice point morphologies are designed functionally akin to two-dimensional incommensurate intergrowth aperiodic lattices-comprising periodic photonic crystals and in-plane quasicrystals as subgroups. The composite photonic lattice-structured crystalline silicon thin films with tapered nanoholes or nanocone...
Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-02-26
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Direct calculation of the lattice Green function with arbitrary interactions for general crystals.
Yasi, Joseph A; Trinkle, Dallas R
2012-06-01
Efficient computation of lattice defect geometries such as point defects, dislocations, disconnections, grain boundaries, interfaces, and free surfaces requires accurate coupling of displacements near the defect to the long-range elastic strain. Flexible boundary condition methods embed a defect in infinite harmonic bulk through the lattice Green function. We demonstrate an efficient and accurate calculation of the lattice Green function from the force-constant matrix for general crystals with an arbitrary basis by extending a method for Bravais lattices. New terms appear due to the presence of optical modes and the possible loss of inversion symmetry. By separately treating poles and discontinuities in reciprocal space, numerical accuracy is controlled at all distances. We compute the lattice Green function for a two-dimensional model with broken symmetry to elucidate the role of different coupling terms. The algorithm is generally applicable in two and three dimensions to crystals with arbitrary number of atoms in the unit cell, symmetry, and interactions.
Goswami, Soumik; Haldar, Chandana
2015-12-01
The sun rays brings along the ultraviolet radiations (UVRs) which prove deleterious for living organisms. The UVR is a known mutagen and is the prime cause of skin carcinomas. UVR causes acute oxidative stress and this in turn deteriorates other physiological functions. Inflammatory conditions and elevation of pro-inflammatory molecules are also associated with UVR mediated cellular damages. The inflammatory conditions can secondarily trigger the generation of free radicals and this act cumulatively in further deterioration of tissue homeostasis. Photoimmunologists have also related UVR to the suppression of not only cutaneous but also systemic immunity by different mechanisms. Some researchers have proposed the use of various plant products as antioxidants against UVR induced oxidative imbalances but Melatonin is gaining rapid interest as a product that can be utilized to delineate the pathological effects of UVR since it is an established antioxidant. Besides the antioxidative nature, the capacity of melatonin to attenuate apoptosis and more importantly the efficacy of its metabolites to further aid in the detoxification of free radicals have made it a key player to be utilized against UVR mediated aggravated conditions. However, there is need for further extensive investigation to speculate melatonin as an antidote to UVR. Although too early to prescribe melatonin as a clinical remedy, the hormone can be integrated into dermal formulations or oral supplements to prevent the ever increasing incidences of skin cancers due to the prevalence of the UVR on the surface of the earth. The present review focuses and substantiates the work by different photo-biologists demonstrating the protective effects of melatonin and its metabolites against solar UVR - Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: an overview. J Photochem Photobiol B.
Institute of Scientific and Technical Information of China (English)
孙树森; 司延斌; 赵志刚
2014-01-01
Antidotes are a critical component in the care of poisoned patients. Insufficient stocking of a diverse group of antidotes has been documented repeatedly in many countries, including the United States and Canada. Expert consensus guidelines for stocking of antidotes in hospitals that provide emergency care have been published in 2009 in the United States. This article briefly introduced expert consensus guideline and the concept of antidote hazard vulnerability assessment that could be utilized to guide hospitals in developing antidote stock list. The above description about the utility and management of the guideline for appropriate antidote stocking can provide reference for China.%解毒剂是治疗和挽救中毒患者的关键措施，但包括美国和加拿大等诸多国家的报道一再证明临床普遍存在解毒剂存储品种及数量不足的情况。2009年美国发布了提供急诊服务的医院解毒剂存储专家建议。本文简介了用于指导医院合理存储解毒剂的美国专家建议和“解毒剂灾害脆弱性评估”概念，以期对中国解毒剂使用管理提供借鉴。
Costanza, E. F.; Costanza, G.
2016-10-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a rectangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Tiling Lattices with Sublattices, II
Feldman, David; Robins, Sinai
2010-01-01
Our earlier article proved that if $n > 1$ translates of sublattices of $Z^d$ tile $Z^d$, and all the sublattices are Cartesian products of arithmetic progressions, then two of the tiles must be translates of each other. We re-prove this Theorem, this time using generating functions. We also show that for $d > 1$, not every finite tiling of $Z^d$ by lattices can be obtained from the trivial tiling by the process of repeatedly subdividing a tile into sub-tiles that are translates of one another.
Lattice Stern-Gerlach experiment
Luschevskaya, E V; Teryaev, O V
2016-01-01
We investigate the dependence of ground state energies of charged vector $\\rho$ and $K^{*}$ mesons on the value of magnetic field in the $SU(3)$ lattice gauge theory. It has been shown that the energy of a vector particle strongly depends on its spin projection on the field axis, and the magnetic dypole polarizability and hyperpolarizabilities give a large contribution to the meson energy at large fields. We calculate the g-factor of $\\rho^{\\pm}$ and $K^{*\\pm}$ mesons. Tensor of the dypole magnetic polarizability of the charged $\\rho$ meson at rest has been found.
Fractal lattice of gelatin nanoglobules
Novikov, D. V.; Krasovskii, A. N.
2012-11-01
The globular structure of polymer coatings on a glass, which were obtained from micellar solutions of gelatin in the isooctane-water-sodium (bis-2-ethylhexyl) sulfosuccinate system, has been studied using electron microscopy. It has been shown that an increase in the average globule size is accompanied by the formation of a fractal lattice of nanoglobules and a periodic physical network of macromolecules in the coating. The stability of such system of the "liquid-in-a-solid" type is limited by the destruction of globules and the formation of a homogeneous network structure of the coating.
Hadron structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany)
2016-01-22
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.
Hadron Structure from Lattice QCD
Green, Jeremy
2014-01-01
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Triangle Lattice Green Functions for Vector Fields
Moritz, Brian; Schwalm, William
2000-03-01
The triangle lattice is convenient for modeling fields and fluid flows in two dimensions. Discrete vector field equations are defined through the analogy between differential forms and simplicial homology theory. The basic vector difference operators on the lattice correspond to the graph adjacency matricies of the triangle, honeycomb, and Kagomé lattices. The scalar Green functions for nearest neighbor interactions on the triangle lattice are known in closed form in terms of the complete elliptic integrals. Green functions for vector field operators are obtained explicitly in terms of the known scalar Green functions. The scalar Green functions for the Kagomé lattice are thus written in terms of the Green functions for the triangle lattice and ultimately in closed form. Thus, Green functions for a wide range of vector difference models are reduced to closed form in terms of the complete elliptic integrals.
Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers
Directory of Open Access Journals (Sweden)
J. Y. Xie
2013-01-01
Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.
Optical Lattice Simulations of Correlated Fermions
2013-10-04
simple-cubic optical lattice, , (06 2009): 0. doi: 09/20/2013 51.00 Tin-Lun Ho, Qi Zhou. Squeezing out the entropy of fermions in optical lattices...Convention and Exhibition Center, Hong Kong, May 12, 2009 "Reducing Entropy in Quantum Gases in optical lattices", Jason Ho, Aspen workshop on quantum...Sciences Randall Hulet: chosen as a 2010 Outstanding Referee of the Physical Review and Physical Review Letters Journals Randall Hulet: Willis E. Lamb
Improved Lattice Actions with Chemical Potential
Bietenholz, W
1998-01-01
We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.
2013-02-12
treatment of acute, severe cyanide induced cardiotoxicity of severe hypotension and of cardiac arrest in a swine (Sus Scrofa ) model Intravenous...cobinamide, a novel cyanide antidote, versus hydroxocobalamin in the treatment of acute cyanide toxicity and apnea in a swine (Sus Scrofa ) model...hydroxocobalamin in the treatment of acute cyanide toxicity and apnea in a swine (Sus Scrofa ) model Background: Hydroxocobalamin (HOC) is an FDA approved
Energy Technology Data Exchange (ETDEWEB)
Biagini, M.E.; Raimondi, P.; /Frascati; Piminov, P.; Sinyatkin, S.; /Novosibirsk, IYF; Nosochkov, Y.; Wittmer, W.; /SLAC
2010-08-25
The SuperB asymmetric e{sup +}e{sup -} collider is designed for 10{sup 36} cm{sup -2} s{sup -1} luminosity and beam energies of 6.7 and 4.18 GeV for e{sup +} and e{sup -} respectively. The High and Low Energy Rings (HER and LER) have one Interaction Point (IP) with 66 mrad crossing angle. The 1258 m rings fit to the INFN-LNF site at Frascati. The ring emittance is minimized for the high luminosity. The Final Focus (FF) chromaticity correction is optimized for maximum transverse acceptance and energy bandwidth. Included Crab Waist sextupoles suppress betatron resonances induced in the collisions with a large Piwinski angle. The LER Spin Rotator sections provide longitudinally polarized electron beam at the IP. The lattice is flexible for tuning the machine parameters and compatible with reusing the PEP-II magnets, RF cavities and other components. Details of the lattice design are presented.
Introduction to Vortex Lattice Theory
Directory of Open Access Journals (Sweden)
Santiago Pinzón
2015-10-01
Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization. Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.
QCD thermodynamics on a lattice
Levkova, Ludmila A.
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.
Lattice theory special topics and applications
Wehrung, Friedrich
2014-01-01
George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich W...
Cooperative Ordering in Lattices of Interacting Dipoles
Bettles, Robert J; Adams, Charles S
2014-01-01
Using classical electrodynamics simulations we investigate the cooperative behavior of regular monolayers of induced two-level dipoles, including their cooperative decays and shifts. For the particular case of the kagome lattice we observe behavior akin to EIT for lattice spacings less than the probe wavelength. Within this region the dipoles exhibit ferroelectric and anti-ferroelectric ordering. We also model how the cooperative response is manifested in the optical transmission through the kagome lattice, with sharp changes in transmission from 10% to 80% for small changes in lattice spacing.
A Lattice Study of the Glueball Spectrum
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2001-01-01
The glueball spectrum is studied using an improved gluonic action on asymmetric lattices in the pure SU(3) lattice gauge theory. The smallest spatial lattice spacing is about 0.08 fm which makes the extrapolation to the ontinuum limit more reliable. Converting our lattice results to physical units using the scale set by the static quark potential, we obtain the following results for the glueball masses: MG(0++) -＝ 1730(90) MeV for the scalarglueball and MG(2++) ＝ 2400(95) MeV for the tensor glueball.
On the lattice rotations accompanying slip
DEFF Research Database (Denmark)
Wronski, M.; Wierzbanowski, K.; Leffers, Torben
2013-01-01
of the crystal lattices, and this texture may have a strong effect on the properties of the materials. The texture is introduced by lattice rotations in the individual grains during processing. The present critical assessment deals with the lattice rotations during rolling of face centred cubic (fcc) metals...... and alloys. Sixteen years ago, a modification of the traditional procedure for the calculation of these lattice rotations was suggested, a modification that would permit a realistic modelling of the development of the brass type texture, one of the two types of texture developed during rolling of fcc...
Holographic Lattices Give the Graviton a Mass
Blake, Mike; Vegh, David
2014-01-01
We discuss the DC conductivity of holographic theories with translational invariance broken by a background lattice. We show that the presence of the lattice induces an effective mass for the graviton via a gravitational version of the Higgs mechanism. This allows us to obtain, at leading order in the lattice strength, an analytic expression for the DC conductivity in terms of the size of the lattice at the horizon. In locally critical theories this leads to a power law resistivity that is in agreement with an earlier field theory analysis of Hartnoll and Hofman.
Costanza, E. F.; Costanza, G.
2016-12-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Light propagation in optically induced Fibonacci lattices
Boguslawski, Martin; Timotijevic, Dejan V; Denz, Cornelia; Savic, Dragana M Jovic
2015-01-01
We report on the optical induction of Fibonacci lattices in photorefractive strontium barium niobate by use of Bessel beam waveguide-wise writing techniques. Fibonacci elements A and B are used as lattice periods. We further use the induced structures to execute probing experiments with variously focused Gaussian beams in order to observe light confinement owing to the quasiperiodic character of Fibonacci word sequences. Essentially, we show that Gaussian beam expansion is just slowed down in Fibonacci lattices, as compared with appropriate periodic lattices.
Costanza, E. F.; Costanza, G.
2017-02-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.
Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel
Energy Technology Data Exchange (ETDEWEB)
Morris, V N [Analog Devices, Raheen Business Park, Raheen, Limerick (Ireland); Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Farrell, R A [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Sexton, A M [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Morris, M A [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Centre for Research into Advanced Nanostructures and Nanodevices (CRANN), Trinity College, Dublin (Ireland)
2006-02-22
High surface area ceria nanoparticles have been prepared using a citrate solgel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures, and X-ray methods used to determine their lattice parameters. The particle sizes have been assessed using transmission electron microscopy (TEM) and the lattice parameter found to fall with decreasing particle size. The results are discussed in the light of the role played by surface tension effects.
Langevin Simulation of Scalar Fields: Additive and Multiplicative Noises and Lattice Renormalization
Cassol-Seewald, N C; Fraga, E S; Krein, G; Ramos, R O
2007-01-01
We consider the nonequilibrium dynamics of the formation of a condensate in a spontaneously broken lambda phi4 scalar field theory, incorporating additive and multiplicative noise terms to study the role of fluctuation and dissipation. The corresponding stochastic Ginzburg-Landau-Langevin (GLL) equation is derived from the effective action, and solved on a (3+1)-dimensional lattice. Particular attention is devoted to the renormalization of the stochastic GLL equation in order to obtain lattice-independent equilibrium results.
Fuzzy Ideals and Fuzzy Distributive Lattices%Fuzzy Ideals and Fuzzy Distributive Lattices*
Institute of Scientific and Technical Information of China (English)
S.H.Dhanani; Y. S. Pawar
2011-01-01
Our main objective is to study properties of a fuzzy ideals (fuzzy dual ideals). A study of special types of fuzzy ideals (fuzzy dual ideals) is also furnished. Some properties of a fuzzy ideals (fuzzy dual ideals) are furnished. Properties of a fuzzy lattice homomorphism are discussed. Fuzzy ideal lattice of a fuzzy lattice is defined and discussed. Some results in fuzzy distributive lattice are proved.
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Bimaterial lattices as thermal adapters and actuators
Toropova, Marina M.; Steeves, Craig A.
2016-11-01
The goal of this paper is to demonstrate how anisotropic biomaterial lattices can be used in thermal actuation. Compared to other lattices with tailored thermal expansion, the anisotropy of these bimaterial lattices makes them uniquely suitable for use as thermal actuators. Each individual cell, and hence lattices consisting of such cells, can be designed with widely different predetermined coefficients of thermal expansion (CTE) in different directions, enabling complex shape changes appropriate for actuation with either passive or active control. The lattices are composed of planar non-identical cells that each consist of a skewed hexagon surrounding an irregular triangle. The cells and all members of any cell are connected to each other by pins so that they have no rotational constraints and are able to expand or contract freely. In this case, the skew angles of the hexagon and the ratio of the CTEs of the two component materials determine the overall performance of the lattice. At its boundaries, the lattice is connected to substrates by pins and configured such that the CTE between two neighboring lattice vertices coincides with the CTE of the adjacent substrate. Provided the boundary behavior of the lattice is matched to the thermal properties of the substrates, temperature changes in the structure produce thermal strains without producing any corresponding stresses. Such lattices can be used in three different ways: as adaptive elements for stress-free connection of components with different CTEs; for fine tuning of structures; and as thermally driven actuators. In this paper, we demonstrate some concepts for lattice configurations that produce thermally-driven displacements that enable several actuators: a switch, a valve and tweezers.
Cold atoms in a rotating optical lattice
Foot, Christopher J.
2009-05-01
We have demonstrated a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz. Our arrangement also allows the periodicity of the optical lattice to be varied dynamically, producing a 2D ``accordion lattice'' [1]. The angles of the laser beams are controlled by acousto-optic deflectors and this allows smooth changes with little heating of the trapped cold (rubidium) atoms. We have loaded a BEC into lattices with periodicities ranging from 1.8μm to 18μm, observing the collapse and revival of the diffraction orders of the condensate over a large range of lattice parameters as recently reported by a group in NIST [2]. We have also imaged atoms in situ in a 2D lattice over a range of lattice periodicities. Ultracold atoms in a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, i.e. the Hamiltonian of the atoms in the rotating frame resembles that of a charged particle in a strong magnetic field. In the future, we plan to use this to investigate a range of phenomena such as the analogue of the fractional quantum Hall effect. [4pt] [1] R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, ``Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms,'' Opt. Express 16, 16977-16983 (2008) [0pt] [2] J. H. Huckans, I. B. Spielman, B. Laburthe Tolra, W. D. Phillips, and J. V. Porto, Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice, arXiv:0901.1386v1
Miller, Kathleen
2011-04-01
During the Great Plague of London (1665), William Winstanley veered from his better known roles as arbiter of success and failure in his works of biography or as a comic author under the pseudonym Poor Robin, and instead engaged with his reading audience as a plague writer in the rare book The Christians Refuge: Or Heavenly Antidotes Against the Plague in this Time of Generall Contagion to Which is Added the Charitable Physician (1665). From its extensive paratexts, including a table of mortality statistics and woodcut of king death, to its temporal and providential interpretation of the disease between the covers of a single text, The Christians Refuge is a compendium of contemporary understanding of plague. This article addresses The Christians Refuge as an expression of London's print marketplace in a moment of transformation precipitated by the epidemic. The author considers the paratextual elements in The Christians Refuge that engage with the presiding norms in plague writing and publishing in 1665 and also explores how Winstanley's authorship is expressed in the work. Winstanley has long been seen as a biographer or as a humour writer; attributing The Christians Refuge extends and challenges previous perceptions of his work.
MILLER, KATHLEEN
2011-01-01
During the Great Plague of London (1665), William Winstanley veered from his better known roles as arbiter of success and failure in his works of biography or as a comic author under the pseudonym Poor Robin, and instead engaged with his reading audience as a plague writer in the rare book The Christians Refuge: Or Heavenly Antidotes Against the Plague in this Time of Generall Contagion to Which is Added the Charitable Physician (1665). From its extensive paratexts, including a table of mortality statistics and woodcut of king death, to its temporal and providential interpretation of the disease between the covers of a single text, The Christians Refuge is a compendium of contemporary understanding of plague. This article addresses The Christians Refuge as an expression of London’s print marketplace in a moment of transformation precipitated by the epidemic. The author considers the paratextual elements in The Christians Refuge that engage with the presiding norms in plague writing and publishing in 1665 and also explores how Winstanley’s authorship is expressed in the work. Winstanley has long been seen as a biographer or as a humour writer; attributing The Christians Refuge extends and challenges previous perceptions of his work. PMID:21461312
GENERALIZATIONS AND CARTESIAN CLOSED SUBCATEGORIES OF SEMICONTINUOUS LATTICES
Institute of Scientific and Technical Information of China (English)
Li Qingguo; Wu Xiuhua
2009-01-01
In this article, the authors mainly study how to obtain new semicontinuous lattices from the given semicontinuous lattices and discuss the conditions under which the image of a semicontinuous projection operator is also semicontinuons. Moreover, the authors investigate the relation between semicontinuous lattices and completely distributive lattices. Finally, it is proved that the strongly sernicontinuons lattice category is a Cartesian closed category.
Kinetic Monte Carlo simulations of void lattice formation during irradiation
Heinisch, H. L.; Singh, B. N.
2003-11-01
Over the last decade, molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed production bias model (PBM) of microstructure evolution under irradiation has been structured specifically to take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role that crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and self-interstitial atom (SIA) clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.
Sera, A.; Kousaka, Y.; Akimitsu, J.; Sera, M.; Kawamata, T.; Koike, Y.; Inoue, K.
2016-12-01
We have performed the detailed investigations of the magnetization of the S =1/2 triangular-lattice antiferromagnets Ba3CoSb2O9 and CsCuCl3 with a 120∘ spin structure in the a b plane. In Ba3CoSb2O9 , the magnetic susceptibility (χ ) exhibits a broad maximum above the Néel temperature (TN) as is expected in the low-dimensional antiferromagnet (AFM). In CsCuCl3, χ exhibits a continuous increase down to TN as if it is the three-dimensional AFM. This is induced by the strong ferromagnetic (FM) interaction along the c axis. The magnetic phase diagrams are also very different. Although the transition field from the umbrella to the 2-1-coplanar phase (Hu -c) for H ∥c is almost independent of temperature in Ba3CoSb2O9 , it shows a considerable decrease with increasing temperature in CsCuCl3. The temperature independent Hu -c in Ba3CoSb2O9 originates from the magnetic anisotropy from the van Vleck contribution, which does not depend so much on the temperature. The temperature dependent Hu -c in CsCuCl3 originates from the magnetic anisotropy from the Dzyaloshinskii-Moriya (DM) interaction, which decreases with increasing temperature. For H ∥a b , the clear transition from the Y-coplanar to the up-up-down (u u d ) phase was observed in Ba3CoSb2O9 but not in CsCuCl3. While the reentrant behavior of TN originating from the thermal and quantum spin fluctuations is observed in both compounds, it is pronounced in Ba3CoSb2O9 but small in CsCuCl3. These differences originate from the existence or nonexistence of the DM interaction. The DM interaction in CsCuCl3 suppresses those fluctuations in the a b plane, leading to the less pronounced reentrant behavior of TN and the broad crossover in place of the phase transition. We analyzed the anisotropic magnetization of Ba3CoSb2O9 in the paramagnetic region by the mean field calculation. The spin-orbit (SO) coupling, the uniaxial crystalline electric field, and the isotropic exchange interaction were taken into account. We
Surface solitons in trilete lattices
Stojanovic, M; Hadzievski, Lj; Malomed, B A
2011-01-01
Fundamental solitons pinned to the interface between three semi-infinite one-dimensional nonlinear dynamical chains, coupled at a single site, are investigated. The light propagation in the respective system with the self-attractive on-site cubic nonlinearity, which can be implemented as an array of nonlinear optical waveguides, is modeled by the system of three discrete nonlinear Schr\\"{o}dinger equations. The formation, stability and dynamics of symmetric and asymmetric fundamental solitons centered at the interface are investigated analytically by means of the variational approximation (VA) and in a numerical form. The VA predicts that two asymmetric and two antisymmetric branches exist in the entire parameter space, while four asymmetric modes and the symmetric one can be found below some critical value of the inter-lattice coupling parameter -- actually, past the symmetry-breaking bifurcation. At this bifurcation point, the symmetric branch is destabilized and two new asymmetric soliton branches appear, ...
FFAG lattice without opposite bends
Trbojevic, Dejan; Courant, Ernest D.; Garren, Al
2000-08-01
A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
FFAG lattice without opposite bends
Trbojevic, D; Garren, A
2000-01-01
A future 'neutrino factory' or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
Bruckmann, Falk; Giordano, Matteo; Katz, Sandor D; Kovacs, Tamas G; Pittler, Ferenc; Wellnhofer, Jacob
2016-01-01
The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly structure will be smeared out, but the lowest Landau level (LLL) will still be separated by a gap from the rest of the spectrum. In this talk we discuss how one can define the LLL in QCD and check how well certain physical quantities are approximated by taking into account only the LLL.
Thermal cascaded lattice Boltzmann method
Fei, Linlin
2016-01-01
In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...
Gluonic Transversity from Lattice QCD
Detmold, W
2016-01-01
We present an exploratory study of the gluonic structure of the $\\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.
Approximate common divisors via lattices
Cohn, Henry
2011-01-01
We analyze the multivariate generalization of Howgrave-Graham's algorithm for the approximate common divisor problem. In the m-variable case with modulus N and approximate common divisor of size N^beta, this improves the size of the error tolerated from N^(beta^2) to N^(beta^((m+1)/m)), under a commonly used heuristic assumption. This gives a more detailed analysis of the hardness assumption underlying the recent fully homomorphic cryptosystem of van Dijk, Gentry, Halevi, and Vaikuntanathan. While these results do not challenge the suggested parameters, a 2^sqrt(n) approximation algorithm for lattice basis reduction in n dimensions could be used to break these parameters. We have implemented our algorithm, and it performs better in practice than the theoretical analysis suggests. Our results fit into a broader context of analogies between cryptanalysis and coding theory. The multivariate approximate common divisor problem is the number-theoretic analogue of noisy multivariate polynomial interpolation, and we ...
Optical Lattices with Micromechanical Mirrors
Hammerer, K; Genes, C; Zoller, P; Treutlein, P; Camerer, S; Hunger, D; Haensch, T W
2010-01-01
We investigate a setup where a cloud of atoms is trapped in an optical lattice potential of a standing wave laser field which is created by retro-reflection on a micro-membrane. The membrane vibrations itself realize a quantum mechanical degree of freedom. We show that the center of mass mode of atoms can be coupled to the vibrational mode of the membrane in free space, and predict a significant sympathetic cooling effect of the membrane when atoms are laser cooled. The controllability of the dissipation rate of the atomic motion gives a considerable advantage over typical optomechanical systems enclosed in optical cavities, in that it allows a segregation between the cooling and coherent dynamics regimes. The membrane can thereby be kept in a cryogenic environment, and the atoms at a distance in a vacuum chamber.
Technicolor and Lattice Gauge Theory
Chivukula, R Sekhar
2010-01-01
Technicolor and other theories of dynamical electroweak symmetry breaking invoke chiral symmetry breaking triggered by strong gauge-dynamics, analogous to that found in QCD, to explain the observed W, Z, and fermion masses. In this talk we describe why a realistic theory of dynamical electroweak symmetry breaking must, relative to QCD, produce an enhanced fermion condensate. We quantify the degree to which the technicolor condensate must be enhanced in order to yield the observed quark masses, and still be consistent with phenomenological constraints on flavor-changing neutral-currents. Lattice studies of technicolor and related theories provide the only way to demonstrate that such enhancements are possible and, hopefully, to discover viable candidate models. We comment briefly on the current status of non-perturbative investigations of dynamical electroweak symmetry breaking, and provide a "wish-list" of phenomenologically-relevant properties that are important to calculate in these theories
Lattice Models of Quantum Gravity
Bittner, E R; Holm, C; Janke, W; Markum, H; Riedler, J
1998-01-01
Standard Regge Calculus provides an interesting method to explore quantum gravity in a non-perturbative fashion but turns out to be a CPU-time demanding enterprise. One therefore seeks for suitable approximations which retain most of its universal features. The $Z_2$-Regge model could be such a desired simplification. Here the quadratic edge lengths $q$ of the simplicial complexes are restricted to only two possible values $q=1+\\epsilon\\sigma$, with Ising model. To test whether this simpler model still contains the essential qualities of the standard Regge Calculus, we study both models in two dimensions and determine several observables on the same lattice size. In order to compare expectation values, e.g. of the average curvature or the Liouville field susceptibility, we employ in both models the same functional integration measure. The phase structure is under current investigation using mean field theory and numerical simulation.
Lattice mechanics of origami tessellations.
Evans, Arthur A; Silverberg, Jesse L; Santangelo, Christian D
2015-07-01
Origami-based design holds promise for developing materials whose mechanical properties are tuned by crease patterns introduced to thin sheets. Although there have been heuristic developments in constructing patterns with desirable qualities, the bridge between origami and physics has yet to be fully developed. To truly consider origami structures as a class of materials, methods akin to solid mechanics need to be developed to understand their long-wavelength behavior. We introduce here a lattice theory for examining the mechanics of origami tessellations in terms of the topology of their crease pattern and the relationship between the folds at each vertex. This formulation provides a general method for associating mechanical properties with periodic folded structures and allows for a concrete connection between more conventional materials and the mechanical metamaterials constructed using origami-based design.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
p-systems in local Noether lattices
Directory of Open Access Journals (Sweden)
E. W. Johnson
1994-01-01
Full Text Available In this paper we introduce the concept of a p-system in a local Noether lattice and obtain several characterizations of these elements. We first obtain a topological characterization and then a characterization in terms of the existence of a certain type of decreasing sequence of elements. In addition, p-systems are characterized in quotient lattices and completions.
Lattice QCD simulations beyond the quenched approximation
Energy Technology Data Exchange (ETDEWEB)
Ukawa, A. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.)
1989-07-01
Present status of lattice QCD simulations incorporating the effects of dynamical quarks is presented. After a brief review of the formalism of lattice QCD, the dynamical fermion algorithms in use today are described. Recent attempts at the hadron mass calculation are discussed in relation to the quenched results, and current understanding on the finite temperature behavior of QCD is summarized. (orig.).
Lattice Platonic Solids and their Ehrhart polynomial
Ionascu, Eugen J
2011-01-01
First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedrons and those for regular lattice octahedrons. These relations allow one to reduce the calculation of these polynomials to only one coefficient.
Disorder solutions of lattice spin models
Batchelor, M. T.; van Leeuwen, J. M. J.
1989-01-01
It is shown that disorder solutions, which have been obtained by different methods, follow from a simple decimation method. The method is put in general form and new disorder solutions are constructed for the Blume-Emery-Griffiths model on a triangular lattice and for Potts and Ising models on square and fcc lattices.
Lattice studies of hadrons with heavy flavors
Energy Technology Data Exchange (ETDEWEB)
Christopher Aubin
2009-07-01
I will discuss recent developments in lattice studies of hadrons composed of heavy quarks. I will mostly cover topics which are at a state of direct comparison with experiment, but will also discuss new ideas and promising techniques to aid future studies of lattice heavy quark physics.
An Application of Linear Algebra over Lattices
Directory of Open Access Journals (Sweden)
M. Hosseinyazdi
2008-03-01
Full Text Available In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given
Lattice dynamics of ferromagnetic superconductor UGe2
Indian Academy of Sciences (India)
Satyam Shinde; Prafulla K Jha
2008-11-01
This paper reports the lattice dynamical study of the UGe2 using a lattice dynamical model theory based on pairwise interactions under the framework of the shell model. The calculated phonon dispersion curves and phonon density of states are in good agreement with the measured data.
Lattice Studies for hadron spectroscopy and interactions
Aoki, Sinya
2014-01-01
Recent progresses of lattice QCD studies for hadron spectroscopy and interactions are briefly reviewed. Some emphasis are given on a new proposal for a method, which enable us to calculate potentials between hadrons. As an example of the method, the extraction of nuclear potential in lattice QCD is discussed in detail.
Dark Solitons in FPU Lattice Chain
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton.Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.
Resummation of Cactus Diagrams in Lattice QCD
Panagopoulos, H
1998-01-01
We show how to perform a resummation, to all orders in perturbation theory, of a certain class of gauge invariant diagrams in Lattice QCD. These diagrams are often largely responsible for lattice artifacts. Our resummation leads to an improved perturbative expansion. Applied to a number of cases of interest, this expansion yields results remarkably close to corresponding nonperturbative estimates.
A (reactive) lattice-gas approach to economic cycles
Ausloos, Marcel; Clippe, Paulette; Miśkiewicz, Janusz; Peķalski, Andrzej
2004-12-01
A microscopic approach to macroeconomic features is intended. A model for macroeconomic behavior under heterogeneous spatial economic conditions is reviewed. A birth-death lattice gas model taking into account the influence of an economic environment on the fitness and concentration evolution of economic entities is numerically and analytically examined. The reaction-diffusion model can also be mapped onto a high-order logistic map. The role of the selection pressure along various dynamics with entity diffusion on a square symmetry lattice has been studied by Monte-Carlo simulation. The model leads to a sort of phase transition for the fitness gap as a function of the selection pressure and to cycles. The control parameter is a (scalar) “business plan”. The business plan(s) allows for spin-offs or merging and enterprise survival evolution law(s), whence bifurcations, cycles and chaotic behavior.
Strongly interacting particles on an anisotropic kagome lattice
Energy Technology Data Exchange (ETDEWEB)
Hotta, Chisa; Pollmann, Frank, E-mail: chisa@cc.kyoto-su.ac.j [Kyoto Sangyo University, Department of Physics, Faculty of Science, Kyoto 603-8555, Japan Department of Physics, University of California, Berkeley, CA94720 (United States)
2009-01-01
We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.
Strongly interacting particles on an anisotropic kagome lattice
Hotta, Chisa; Pollmann, Frank
2009-01-01
We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.
A Lattice Model of the Development of Reading Comprehension.
Connor, Carol McDonald
2016-12-01
In this article, I present a developmental model of how children learn to comprehend what they read, which builds on current models of reading comprehension and integrates findings from instructional research and evidence-based models of development in early and middle childhood. The lattice model holds that children's developing reading comprehension is a function of the interacting, reciprocal, and bootstrapping effects of developing text-specific, linguistic, and social-cognitive processes, which interact with instruction as child-characteristic-by-instruction (CXI) interaction effects. The processes develop over time and in the context of classroom, home, peer, community, and other influences to affect children's development of proficient reading comprehension. I first describe models of reading comprehension. I then review the basic processes in the model, the role of instruction, and CXI interactions in the context of the lattice model. I then discuss implications for instruction and research.
Lattice models of traffic flow considering drivers' delay in response
Institute of Scientific and Technical Information of China (English)
Zhu Hui-Bing
2009-01-01
This paper proposes two lattice traffic models by taking into account the drivers'delay in response.The lattice versions of the hydrodynamic model are described by the differential-difference equation and difference-difference equation.respectively.The stability conditions for the two models are obtained by using the linear stability theory.The modified KdV equation near the critical point is derived to describe the traffic jam by using the reductive perturbation method,and the kink-antikink soliton solutions related to the traffic density waves are obtained.The results show that the drivers'delay in sensing headway plays an important role in jamming transition.
A classification of 2-dim Lattice Theory
Kieburg, Mario; Zafeiropoulos, Savvas
2013-01-01
A unified classification and analysis is presented of two dimensional Dirac operators of QCD-like theories in the continuum as well as in a naive lattice discretization. Thereby we consider the quenched theory in the strong coupling limit. We do not only consider the case of a lattice which has an even number of lattice sites in both directions and is thus equivalent to the case of staggered fermions. We also study lattices with one or both directions with an odd parity to understand the general mechanism of changing the universality class via a discretization. Furthermore we identify the corresponding random matrix ensembles sharing the global symmetries of these QCD-like theories. Despite the Mermin-Wagner-Coleman theorem we find good agreement of lattice data with our random matrix predictions.
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
Energy Technology Data Exchange (ETDEWEB)
Marin, E.; Tomas, R.; /CERN; Bambade, P.; /Orsay, LAL; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba; Seryi, A.; /Oxford U., JAI; White, G.; Woodley, M.; /SLAC
2011-12-09
The current status for the ATF2 Nominal and Ultra-low {beta}* lattices are presented in this paper. New lattice designs have been obtained in order to minimise the impact of the last interpretation of multipole measurements that have been included into the model. However, the new ATF2 Ultra-low design is not able to recover the expected vertical beam size at the IP with the current magnet distribution. Therefore, different quadrupole sorting have been studied. A significant gain is evident for the ATF2 Ultra-low lattice when sorting the magnets according to the skew-sextupolar components. The ATF2 Nominal lattice is also expected to benefit from the new sorting. Tuning results of the new ATF2 Ultra-low lattice under realistic imperfections are also reported.
Crystalline Scaling Geometries from Vortex Lattices
Bao, Ning
2013-01-01
We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e. grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR.
Effective Field Theories and Lattice QCD
Bernard, C
2015-01-01
I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.
Supersymmetry on a space-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kaestner, Tobias
2008-10-28
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Residuation Properties and Weakly Primary Elements in Lattice Modules
Directory of Open Access Journals (Sweden)
C. S. Manjarekar
2014-01-01
Full Text Available We obtain some elementary residuation properties in lattice modules and obtain a relation between a weakly primary element in a lattice module M and weakly prime element of a multiplicative lattice L.
On the Product and Factorization of Lattice Implication Algebras
Institute of Scientific and Technical Information of China (English)
秦克云; 宋振明; 等
1993-01-01
In this paper,the concepts of product and factorization of lattice implication algebra are proposed,the relation between lattice implication product algebra and its factors and some properties of lattice implication product algebras are discussed.
Takahashi, Y; Funakoshi, T; Shimada, H; Kojima, S
1995-03-31
The effects of 2,3-dimercaptopropane sulphonate (DMPS) and N-(2-mercapto-2-methylpropanoyl)-L-cysteine (bucillamine) against the renal damage induced by gold sodium thiomalate (AuTM) in adjuvant-arthritic rats were studied. Arthritic rats induced by adjuvant using Mycobacterium butyricum were injected intraperitoneally with a chelating agent (0.6 mmol/kg) immediately after intramuscular injection of AuTM (0.066 mmol/kg) every other day for 21 days. Treatment with DMPS and bucillamine prevented increases in the urinary excretion of protein, aspartate aminotransferase, and glucose and blood urea nitrogen level after AuTM injection. AuTM prevented the increase in both adjuvant-injected and uninjected hind-feet volumes. The prevention of these inflamed lesions by AuTM was not affected by DMPS and bucillamine. These chelating agents decreased the gold concentration in the kidney and liver after AuTM administration, but did not affect the hepatic and renal concentrations of copper, zinc, iron, and calcium except the renal copper level after AuTM. These findings suggest that DMPS and bucillamine are very useful antidotes for gold toxicity.
Magdalan, Jan; Piotrowska, Aleksandra; Gomułkiewicz, Agnieszka; Sozański, Tomasz; Szeląg, Adam; Dziegięl, Piotr
2011-01-01
α-Amanitin (α-AMA) is the main toxin of Amanita phalloides and its subspecies (A. virosa and A. verna). The primary mechanism of α-AMA toxicity is associated with protein synthesis blocking in hepatocytes. Additionally, α-AMA exhibits prooxidant properties that may contribute to its severe hepatotoxicity. The aim of the present study was to assess the effect of α-AMA on lipid peroxidation and the activities of superoxide dismutase (SOD) and catalase (CAT) in human hepatocyte culture. The effects of benzylpenicillin (BPCN), N-acetyl-L-cysteine (ACC), and silibinin (SIL) on SOD and CAT activities and on lipid peroxidation in human hepatocyte culture intoxicated with α-AMA were also examined. In human hepatocyte culture, 48-hour exposure to α-AMA at a 2-μM concentration caused an increase in SOD activity, a reduction of CAT activity, and a significant increase in lipid peroxidation. Changes in SOD and CAT activity caused by α-AMA could probably enhance lipid peroxidation by increased generation of hydrogen peroxide combined with reduced detoxification of that oxygen radical. The addition of antidotes (ACC or SIL) to the culture medium provided more effective protection against lipid peroxidation in human hepatocytes intoxicated with α-AMA than the addition of BPCN, possessing no antioxidant properties.
Soule, Erin E; Bompiani, Kristin M; Woodruff, Rebecca S; Sullenger, Bruce A
2016-02-01
Potent and rapid-onset anticoagulation is required for several clinical settings, including cardiopulmonary bypass surgery. In addition, because anticoagulation is associated with increased bleeding following surgery, the ability to rapidly reverse such robust anticoagulation is also important. Previously, we observed that no single aptamer was as potent as heparin for anticoagulating blood. However, we discovered that combinations of two aptamers were as potent as heparin. Herein, we sought to combine two individual anticoagulant aptamers into a single bivalent RNA molecule in an effort to generate a single molecule that retained the potent anticoagulant activity of the combination of individual aptamers. We created four bivalent aptamers that can inhibit Factor X/Xa and prothrombin/thrombin and anticoagulate plasma, as well as the combination of individual aptamers. Detailed characterization of the shortest bivalent aptamer indicates that each aptamer retains full binding and functional activity when presented in the bivalent context. Finally, reversal of this bivalent aptamer with a single antidote was explored, and anticoagulant activity could be rapidly turned off in a dose-dependent manner. These studies demonstrate that bivalent anticoagulant aptamers represent a novel and potent approach to actively and reversibly control coagulation.
Wyer, Peter C; Alves Silva, Suzana; Post, Stephen G; Quinlan, Patricia
2014-12-01
Contemporary health care is increasing in complexity and lacks a unifying understanding of epistemology, methodology and goals. Lack of conceptual consistency in concepts such as 'patient-centred care' (PCC) typifies system-wide discordance. We contrast the fragmented descriptions of PCC and related tools to its own origins in the writings of Balint and to a subsequent construct, relationship-centred care (RCC). We identify the explicit and elaborated connection between RCC and a defined epistemological foundation as a distinguishing feature of the construct and we demonstrate that this makes possible the recognition of alignments between RCC and independently developed constructs. Among these, we emphasize Schon's reflective practice, Nonaka's theory of organizational knowledge creation and the research methodology of realist synthesis. We highlight the relational principles common to these domains and to their common epistemologies and illustrate unsatisfying consequences of adherence to less adequate epistemological frameworks such as positivism. We offer RCC not as an 'antidote' to the dilemmas identified at the outset but as an example that illuminates the value and importance of explicit identification of the premises and assumptions underlying approaches to improvement of the health care system. We stress the potential value of identifying epistemological affinities across otherwise disparate fields and disciplines.
Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order
Borasoy, B; Krebs, H; Lee, D; Meißner, Ulf G; Borasoy, Bugra; Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Mei{\\ss}ner, Ulf-G.
2006-01-01
We discuss lattice simulations of light nuclei at leading order in chiral effective field theory. Using lattice pion fields and auxiliary fields, we include the physics of instantaneous one-pion exchange and the leading-order S-wave contact interactions. We also consider higher-derivative contact interactions which adjust the S-wave scattering amplitude at higher momenta. By construction our lattice path integral is positive definite in the limit of exact Wigner SU(4) symmetry for any even number of nucleons. This SU(4) positivity and the approximate SU(4) symmetry of the low-energy interactions play an important role in suppressing sign and phase oscillations in Monte Carlo simulations. We assess the computational scaling of the lattice algorithm for light nuclei with up to eight nucleons and analyze in detail calculations of the deuteron, triton, and helium-4.
J.J. Sakurai Prize for Theoretical Particle Physics: 40 Years of Lattice QCD
Lepage, Peter
2016-03-01
Lattice QCD was invented in 1973-74 by Ken Wilson, who passed away in 2013. This talk will describe the evolution of lattice QCD through the past 40 years with particular emphasis on its first years, and on the past decade, when lattice QCD simulations finally came of age. Thanks to theoretical breakthroughs in the late 1990s and early 2000s, lattice QCD simulations now produce the most accurate theoretical calculations in the history of strong-interaction physics. They play an essential role in high-precision experimental studies of physics within and beyond the Standard Model of Particle Physics. The talk will include a non-technical review of the conceptual ideas behind this revolutionary development in (highly) nonlinear quantum physics, together with a survey of its current impact on theoretical and experimental particle physics, and prospects for the future. Work supported by the National Science Foundation.
On Decompositions of Matrices over Distributive Lattices
Directory of Open Access Journals (Sweden)
Yizhi Chen
2014-01-01
Full Text Available Let L be a distributive lattice and Mn,q (L(Mn(L, resp. the semigroup (semiring, resp. of n × q (n × n, resp. matrices over L. In this paper, we show that if there is a subdirect embedding from distributive lattice L to the direct product ∏i=1mLi of distributive lattices L1,L2, …,Lm, then there will be a corresponding subdirect embedding from the matrix semigroup Mn,q(L (semiring Mn(L, resp. to semigroup ∏i=1mMn,q(Li (semiring ∏i=1mMn(Li, resp.. Further, it is proved that a matrix over a distributive lattice can be decomposed into the sum of matrices over some of its special subchains. This generalizes and extends the decomposition theorems of matrices over finite distributive lattices, chain semirings, fuzzy semirings, and so forth. Finally, as some applications, we present a method to calculate the indices and periods of the matrices over a distributive lattice and characterize the structures of idempotent and nilpotent matrices over it. We translate the characterizations of idempotent and nilpotent matrices over a distributive lattice into the corresponding ones of the binary Boolean cases, which also generalize the corresponding structures of idempotent and nilpotent matrices over general Boolean algebras, chain semirings, fuzzy semirings, and so forth.
Measurement Based Quantum Computation on Fractal Lattices
Directory of Open Access Journals (Sweden)
Michal Hajdušek
2010-06-01
Full Text Available In this article we extend on work which establishes an analology between one-way quantum computation and thermodynamics to see how the former can be performed on fractal lattices. We find fractals lattices of arbitrary dimension greater than one which do all act as good resources for one-way quantum computation, and sets of fractal lattices with dimension greater than one all of which do not. The difference is put down to other topological factors such as ramification and connectivity. This work adds confidence to the analogy and highlights new features to what we require for universal resources for one-way quantum computation.
A Lattice Study of the Glueball Spectrum
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2001-01-01
Glueball spectrum is studied using an improved gluonic action on asymmetric lattices in the pure SU(3)gauge theory. The smallest spatial lattice spacing is about 0.08 fm which makes the extrapolation to the continuum limit more reliable. In particular, attention is paid to the scalar glueball mass which is known to have problems in the extrapolation. Converting our lattice results to physical units using the scale set by the static quark potential,we obtain the following results for the glueball masses: MG(0++) = 1730(90) MeV for the scalar glueball mass and MG(2++) = 2400(95) MeV for the tensor glueball.
Construction of Capacity Achieving Lattice Gaussian Codes
Alghamdi, Wael
2016-04-01
We propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3].
AN EQUIVALENT CONTINUUM METHOD OF LATTICE STRUCTURES
Institute of Scientific and Technical Information of China (English)
Fan Hualin; Yang Wei
2006-01-01
An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.
Investigating jet quenching on the lattice
Panero, Marco; Schäfer, Andreas
2014-01-01
Due to the dynamical, real-time, nature of the phenomenon, the study of jet quenching via lattice QCD simulations is not straightforward. In this contribution, however, we show how one can extract information about the momentum broadening of a hard parton moving in the quark-gluon plasma, from lattice calculations. After discussing the basic idea (originally proposed by Caron-Huot), we present a recent study, in which we estimated the jet quenching parameter non-perturbatively, from the lattice evaluation of a particular set of gauge-invariant operators.
Lattice gauge theories and Monte Carlo simulations
Rebbi, Claudio
1983-01-01
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Lattice distortion in disordered antiferromagnetic XY models
Institute of Scientific and Technical Information of China (English)
Li Peng-Fei; Cao Hai-Jing
2012-01-01
The behavior of lattice distortion in spin 1/2 antiferromagnetic XY models with random magnetic modulation is investigated with the consideration of spin-phonon coupling in the adiabatic limit.It is found that lattice distortion relies on the strength of the random modulation.For strong or weak enough spin-phonon couplings,the average lattice distortion may decrease or increase as the random modulation is strengthened.This may be the result of competition between the random magnetic modulation and the spin-phonon coupling.
Lattice surgery translation for quantum computation
Herr, Daniel; Nori, Franco; Devitt, Simon J.
2017-01-01
In this paper we outline a method for a compiler to translate any non fault tolerant quantum circuit to the geometric representation of the lattice surgery error-correcting code using inherent merge and split operations. Since the efficiency of state distillation procedures has not yet been investigated in the lattice surgery model, their translation is given as an example using the proposed method. The resource requirements seem comparable or better to the defect-based state distillation process, but modularity and eventual implementability allow the lattice surgery model to be an interesting alternative to braiding.
QCD Thermodynamics with an Improved Lattice Action
Bernard, C W; DeGrand, T A; Wingate, M; DeTar, C E; Gottlieb, S; Heller, U M; Rummukainen, K; Toussaint, D; Sugar, R L; Bernard, Claude; Hetrick, James E.; Grand, Thomas De; Wingate, Matthew; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Rummukainen, Kari; Toussaint, Doug; Sugar, Robert L.
1997-01-01
We have investigated QCD with two flavors of degenerate fermions using a Symanzik-improved lattice action for both the gauge and fermion actions. Our study focuses on the deconfinement transition on an $N_t=4$ lattice. Having located the thermal transition, we performed zero temperature simulations nearby in order to compute hadronic masses and the static quark potential. We find that the present action reduces lattice artifacts present in thermodynamics with the standard Wilson (gauge and fermion) actions. However, it does not bring studies with Wilson-type quarks to the same level as those using the Kogut--Susskind formulation.
New Lattice Results for Parton Distributions
Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2016-01-01
We provide a high statistics analysis of the $x$-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The $x$-dependence of the calculated PDFs resembles those of the phenomenological parameterizations, a feature that makes this approach promising despite the lack of a full renormalization program for them. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum.
Multiphase lattice Boltzmann methods theory and application
Huang, Haibo; Lu, Xiyun
2015-01-01
Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the
Rare Kaon Decays on the Lattice
Isidori, Gino; Turchetti, P; Isidori, Gino; Martinelli, Guido; Turchetti, Paolo
2006-01-01
We show that long distance contributions to the rare decays K -> pi nu nu-bar and K -> pi l+ l- can be computed using lattice QCD. The proposed approach requires well established methods, successfully applied in the calculations of electromagnetic and semileptonic form factors. The extra power divergences, related to the use of weak four-fermion operators, can be eliminated using only the symmetries of the lattice action without ambiguities or complicated non-perturbative subtractions. We demonstrate that this is true even when a lattice action with explicit chiral symmetry breaking is employed. Our study opens the possibility of reducing the present uncertainty in the theoretical predictions for these decays.
Measures on coallocation and normal lattices
Directory of Open Access Journals (Sweden)
Jack-Kang Chan
1992-01-01
Full Text Available Let ℒ1 and ℒ2 be lattices of subsets of a nonempty set X. Suppose ℒ2 coallocates ℒ1 and ℒ1 is a subset of ℒ2. We show that any ℒ1-regular finitely additive measure on the algebra generated by ℒ1 can be uniquely extended to an ℒ2-regular measure on the algebra generated by ℒ2. The case when ℒ1 is not necessary contained in ℒ2, as well as the measure enlargement problem are considered. Furthermore, some discussions on normal lattices and separation of lattices are also given.
How to Share a Lattice Trapdoor
DEFF Research Database (Denmark)
Bendlin, Rikke; Peikert, Chris; Krehbiel, Sara
2013-01-01
delegation, which is used in lattice-based hierarchical IBE schemes. Our work therefore directly transfers all these systems to the threshold setting. Our protocols provide information-theoretic (i.e., statistical) security against adaptive corruptions in the UC framework, and they are robust against up to ℓ......We develop secure threshold protocols for two important operations in lattice cryptography, namely, generating a hard lattice Λ together with a "strong" trapdoor, and sampling from a discrete Gaussian distribution over a desired coset of Λ using the trapdoor. These are the central operations...
A Solvable Decorated Ising Lattice Model
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A decoratedlattice is suggested and the Ising model on it with three kinds of interactions K1, K2, and K3 is studied. Using an equivalent transformation, the square decorated Ising lattice is transformed into a regular square Ising lattice with nearest-neighbor, next-nearest-neighbor, and four-spin interactions, and the critical fixed point is found atK1 = 0.5769, K2 = -0.0671, and K3 = 0.3428, which determines the critical temperature of the system. It is also found that this system and the regular square Ising lattice, and the eight-vertex model belong to the same universality class.
Shock wave structure in a lattice gas
Broadwell, James E.; Han, Donghee
2007-05-01
The motion and structure of shock and expansion waves in a simple particle system, a lattice gas and cellular automaton, are determined in an exact computation. Shock wave solutions, also exact, of a continuum description, a model Boltzmann equation, are compared with the lattice results. The comparison demonstrates that, as proved by Caprino et al. ["A derivation of the Broadwell equation," Commun. Math. Phys. 135, 443 (1991)] only when the lattice processes are stochastic is the model Boltzmann description accurate. In the strongest shock wave, the velocity distribution function is the bimodal function proposed by Mott-Smith.
Spontaneous supersymmetry breaking on the lattice
Energy Technology Data Exchange (ETDEWEB)
Wenger, Urs [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2013-07-01
We discuss various strategies for regularising supersymmetric quantum field theories on a space-time lattice. In general, simulations of lattice models with spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We discuss a novel approach which evades this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. Then we present exact results on the spectrum and the Witten index for N=2 supersymmetric quantum mechanics and results from simulations of the spontaneously broken N=1 Wess-Zumino model.