WorldWideScience

Sample records for anticorrosion

  1. Synergism in anticorrosive paints

    Indian Academy of Sciences (India)

    G BLUSTEIN; C DEYÁ; R ROMAGNOLI

    2016-06-01

    The present work depicts synergism anticorrosive behaviour between zinc hypophosphite and zinc phosphate in a commercial pigment mixture. Also, the performance of anticorrosive paints was evaluated. Synergism anticorrosive behaviour was evaluated by corrosion potential and linear polarization measurements in pigment suspensions. The protective layer obtained with this pigment mixture was investigated by scanning electron microscopy (SEM). Then, the anticorrosive properties of the pigment were assessed by incorporating it into alkyd and epoxy paints which were evaluated by salt spray test and electrochemical noise technique. The morphology and the nature of the protective layer grown under the paint film were also studied by SEM. Experimental results showed that improved anticorrosion protection is achieved in paints with reduced zinc phosphate contents as a consequence of the synergistic interaction between zinc hypophosphite and the other components of the pigment mixture. The electrochemical noise technique proved to be adequate to monitor corrosion in painted panels and is able to detectcorrosion under the paint film from very early stages. This paper identified the need to study synergism between anticorrosive pigments to try to reduce the phosphate content in anticorrosive paints.

  2. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    The main objective of this review is to describe some of the important topics related to the use of marine and protective coatings for anticorrosive purposes. In this context, "protective" refers to coatings for containers, offshore constructions, wind turbines, storage tanks, bridges, rail cars......, and petrochemical plants while "marine" refers to coatings for ballast tanks, cargo holds and cargo tanks, decks, and engine rooms on ships. The review aims at providing a thorough picture of state-of-the-art in anticorrosive coatings systems. International and national legislation aiming at reducing the emission...... of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...

  3. Self-Healing anticorrosive coatings

    DEFF Research Database (Denmark)

    Nesterova, Tatyana

    Self-healing anticorrosive coatings are multi-component so-called smart materials, which have been proposed as a way to long-lasting corrosion protection of steel structures. The presently most promising technology route is based on microcapsules, filled with active healing agents, and has been...... the focus of this work. The microcapsules consist of a solid polymeric shell and a liquid core material. When a microcrack, originating from internal stress or a physical damage, propagates through the coating, the microcapsules rupture and release healing agents, which flow to the fracture plane due...... to capillary forces. The healing agents then start to react, form a polymer network, and =glue‘ the crack. The approach has been applied to development of an epoxy-based self-healing anticorrosive coating for above water heavy duty corrosion protection. Emphasis has been on investigation of practical issues...

  4. Organic/inorganic hybrid coatings for anticorrosion

    Science.gov (United States)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  5. Ion sequestration particles for naval anticorrosion coatings

    Science.gov (United States)

    Zguris, Zachary Z.

    Corrosion is the electrochemical process of a metal returning to its lower energy state, the metal oxide. The cost of corrosion is difficult to estimate. One area particularly susceptible to corrosion problems with high maintenance costs is that of the 20,000 tanks existent in the US Naval Fleet. The Navy is sponsoring the development of novel coatings and additives that can be used to decrease the rising corrosion related costs. This dissertation describes in detail the synthesis of Ion Sequestration Particles (ISP) that when added to the standard MIL-DTL-24441 or potentially another coating system act to enhance the anticorrosion properties of the coating. A solid ion sequestration core material (SISCM) is first produced. The core is then encapsulated in a second stage forming a shell that protects the SISCM sufficiently from the harmful interactions with uncured epoxy based coatings. ISPs were designed to sequester harmful ions while releasing passivating ions in their place. The passivating ions then migrate to defect sites at the coating interface where they act to inhibit corrosion. The anticorrosion performance of ISPs in epoxy coatings has been demonstrated by both 500 hrs of hot deionized water immersion and 1000 hrs of salt spray exposure (ASTM B117). The best improvements in coating performance are attained with ISP content ranging from 5-10 wt % loading in a coating. ISPs were designed to limit the transport of harmful ions through the coating. However this work has determined high diffusion coefficients for ions (CI- and PO42-) through the epoxy matrix. Without ISPs, the diffusion coefficient through the MIL-DTL-24441 coating was determined for phosphate to be 1.16x10-7 cm2/s and for chloride to be in the range of 2.7x10-9 to 5.6x10-10 cm2/s. The addition of 5 wt % ISPs to the coating had the effect of decreasing the diffusion coefficient by an average of 25.5%. These results yield the conclusion that the enhanced anticorrosion properties of coatings

  6. Fly ash based zeolitic pigments for application in anticorrosive paints

    Science.gov (United States)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  7. A New Type Anticorrosion Coating for Ocean Reinforced Concrete Structures

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi; GENG Guisheng; LUO Feng; WU Sanyu; ZHAO Dalin

    2000-01-01

    Corrosion of reinforced concrete structures is a serious problem in ocean engineering. As an orientation of study, anticorrosion coating technique is developed and widely applied, but many problems need to be solved. LSW-2 type anticorrosion coating for maritime reinforced concrete structures is charac lerized by sea water resistance, salt fog resistance, moisture and heat resistance as well as impermeability to chlorions. The new type coating can be applied to wet concrete surface by conventional construction lechnique. It is a breakthrough in solving the above-mentioned problem. The paper mainly introduces the test results, the property indices, coating procedure, construction technique and economic benefit of the coating.

  8. Exopolysaccharides (EPS) as anti-corrosive additives for coatings

    NARCIS (Netherlands)

    Scheerder, J.; Breur, R.; Slaghek, T.; Holtman, W.; Vennik, M.; Ferrari, G.

    2012-01-01

    Exopolysaccharides (EPS) are a class of renewable polymers that show interesting anti-corrosive properties and could potentially be used as an alternative for zinc phosphates. When combined with a waterborne styrene-acrylic polymer dispersion (SA-1), exopolysaccharides were shown to give an improvem

  9. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  10. Evaluation of Mercaptobenzothiazole Anticorrosive Layer on Cu Surface by Spectroscopic Ellipsometry

    Science.gov (United States)

    Nishizawa, Hideaki; Sugiura, Osamu; Matsumura, Yoshiyuki; Kinoshita, Masaharu

    2007-05-01

    Mercaptobenzothiazole (MBT) anticorrosive layer on copper surface prepared in MBT solutions was analyzed by spectroscopic ellipsometry (SE). The results showed that MBT anticorrosive layer was formed on Cu2O layer in the MBT solution at temperatures higher than 50 °C. Additionally, it was confirmed that MBT anticorrosive layer was formed in the MBT solution at room temperature by adding about 20 wt % acetone to the solution. From polishing experiments of MBT anticorrosive layer and benzotriazole (BTA) layer, it was revealed that MBT anticorrosive layer was physically stronger than BTA layer. It is considered that dishing amount in Cu chemical-mechanical polishing (CMP) can be reduced by using MBT. However, MBT anticorrosive layer was not formed in the MBT solution including Hydrogen peroxide (H2O2) suggesting that slurry should be composed without H2O2 in order to use MBT for Cu CMP.

  11. Anticorrosion Nanocrystalline Beta Zeolite Thin Film for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Maha Saud M. Al-subaie

    2015-01-01

    Full Text Available Steel alloys corrosion is ubiquitous and is conventionally protected by anticorrosion chromate coatings. However, the process suffers from the release of carcinogenic hexavalent chromium ions that needs to be replaced by an ecofriendly alternative. In this context, the need for the development of satisfactory ecofriendly chromium-free coating with superior corrosion performance is highly desirable. In the present study, we synthesized fully dispersible nanocrystalline Beta zeolite seeds and coated on steel alloys followed by steaming. The samples were characterized by XRD, FE-SEM, and DLS analyses. The anticorrosion behavior of the synthesized nanoparticle coatings on steel alloys was investigated by electrochemical measurements (DC polarization and electrochemical impedance spectroscopy (EIS in NaCl and acid and alkaline media under identical experimental conditions. The present study demonstrated that the nanozeolite coating can be a potential alternative for toxic and carcinogenic chromate coating.

  12. Smart Mesoporous Silica Nanocapsules as Environmentally Friendly Anticorrosive Pigments

    Directory of Open Access Journals (Sweden)

    C. Zea

    2015-01-01

    Full Text Available Nowadays there is a special interest to study and develop new smart anticorrosive pigments in order to increase the protection life time of organic coatings and, simultaneously, to find alternatives to conventional toxic and carcinogenic hexavalent chromium compounds. In this respect, the great development of nanotechnologies in recent years has opened up a range of possibilities in the field of anticorrosive paints through the integration of encapsulated nanoscale containers loaded with active components into coatings. By means of a suitable design of the capsule, the release of the encapsulated corrosion inhibitor can be triggered by different external or internal factors (pH change, mechanical damage, etc. thus preventing spontaneous leakage of the active component and achieving more efficient and economical use of the inhibitor, which is only released upon demand in the affected area. In the present work, the improved anticorrosive behaviour achieved by encapsulated mesoporous silica nanocontainers filled with an environmentally friendly corrosion inhibitor has been evaluated. It has been proven that a change in the pH allows the rupture of the capsules, the release of the inhibitor, and the successful protection of the carbon steel substrate.

  13. Ceramic nanotubes for polymer composites with stable anticorrosion properties

    Science.gov (United States)

    Fakhrullin, R. F.; Tursunbayeva, A.; Portnov, V. S.; L'vov, Yu. M.

    2014-12-01

    The use of natural halloysite clay tubes 50 nm in diameter as nanocontainers for loading, storing, and slowly releasing organic corrosion inhibitors is described. Loaded nanotubes can be mixed well with many polymers and dyes in amounts of 5-10 wt % to form a ceramic framework (which increases the strength of halloysite composites by 30-50%), increase the adhesion of these coatings to metals, and allow for the slow release of corrosion inhibitors in defects of coatings. A significant improvement of protective anticorrosion properties of polyacryl and polyurethane coatings containing ceramic nanotubes loaded with benzotriazole and hydroxyquinoline is demonstrated.

  14. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings

    Directory of Open Access Journals (Sweden)

    Jesus Marino Falcón

    2015-11-01

    Full Text Available Currently the most promising approach in the corrosion protection by smart coatings is the use of nanoreservoirs loaded with corrosion inhibitors. Nanocontainers are filled with anti-corrosive agents and embedded into a primer coating. Future prospective containers are halloysite nanotubes due to their low price, availability, durability, with high mechanical strength and biocompatibility. The aim of this work is to study the use of halloysite nanotubes as nanocontainers for encapsulated dodecylamine for active corrosion protection of carbon steel. Halloysite clay was characterized by XRD and TGA- thermogravimetric analysis techniques. Halloysite nanotubes were loaded with dodecylamine and embedded into an alkyd primer with a weight ratio of 10 wt.% . The anticorrosive performance of the alkyd primer doped with 10 wt.% of entrapped-dodecylamine halloysite was tested on coated carbon steel by direct exposure of the coated samples with a provoked defect into 0.01 mol/L NaCl corrosive media using electrochemical impedance spectroscopy (EIS and scanning vibrating electrode technique (SVET. EIS and SVET measurements showed the self-healing properties of the doped alkyd coating. Coated samples were also evaluated in a salt spray chamber and the self-healing effect was unequivocally noticed.

  15. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings

    Science.gov (United States)

    Falcón, Jesus; Sawczen, Tiago; Aoki, Idalina

    2015-11-01

    Currently the most promising approach in the corrosion protection by smart coatings is the use of nanoreservoirs loaded with corrosion inhibitors. Nanocontainers are filled with anti-corrosive agents and embedded into a primer coating. Future prospective containers are halloysite nanotubes due to their low price, availability, durability, with high mechanical strength and biocompatibility. The aim of this work is to study the use of halloysite nanotubes as nanocontainers for encapsulated dodecylamine for active corrosion protection of carbon steel. Halloysite clay was characterized by XRD and TGA- thermogravimetric analysis techniques. Halloysite nanotubes were loaded with dodecylamine and embedded into an alkyd primer with a weight ratio of 10 wt.% . The anticorrosive performance of the alkyd primer doped with 10 wt.% of entrapped-dodecylamine halloysite was tested on coated carbon steel by direct exposure of the coated samples with a provoked defect into 0.01 mol/L NaCl corrosive media using electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). EIS and SVET measurements showed the self-healing properties of the doped alkyd coating. Coated samples were also evaluated in a salt spray chamber and the self-healing effect was unequivocally noticed.

  16. Improving anti-corrosion property of thermal barrier coatings by intense pulsed ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S., E-mail: syan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Shang, Y.J., E-mail: shangyijun@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Xu, X.F., E-mail: reandy123@126.com [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Yi, X., E-mail: xyle@buaa.edu.com [Department of Applied Physics, School of Science, Beihang University, Beijing 100083 (China); Le, X.Y., E-mail: xyle@buaa.edu.cn [Department of Applied Physics, School of Science, Beihang University, Beijing 100083 (China)

    2012-02-01

    Anticorrosion behavior is an important factor for the reliability and durability of thermal barrier coatings (TBCs). Intense pulsed ion beam (ion species: 70% H{sup +} + 30% C{sup +}; current density: 150 A/cm{sup 2} and 250 A/cm{sup 2}; accelerate voltage: 300 kV; pulse duration: 65 ns) irradiation were used to improve the anticorrosion behavior of the Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} (YSZ) /NiCoCrAlY thermal barrier coating. The anticorrosion property of the TBCs was evaluated with polarization curves method. A quite good result was obtained. Further analysis show that IPIB irradiation can seal the pores in YSZ layer, and block the penetration channels of corrosive fluid, therefore, improves the anticorrosion behavior.

  17. Use of tannin anticorrosive reaction primer to improve traditional coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Matamala, G.; Droguett, G. (Universidad de Concepcion (Chile)); Smeltzer, W. (McMaster Univ., Hamilton, Ontario (Canada). Inst. for Materials Research)

    1994-04-01

    Different anticorrosive schemes applied over plain or previously shot-blasted surfaces of AISI 1010 (UNS G10100) steel plates were compared. Plates were painted with alkydic, vinylic, and epoxy anticorrosive schemes over metal treated previously with pine tannin reaction primer and over its own schemes without previous primer treatment. Anticorrosive tests were conducted in a salt fog chamber according to ASTM B 117-73. Rusting, blistering, and adhesion were assessed over time. The survey was complemented with potentiodynamic scanning tests in sodium chloride (NaCl) solution with a concentration equivalent to seawater. Corrosion currents were determined using Tafel and polarization resistance techniques. Results showed the reaction primer inhibited corrosion by improving adherence. Advantages over traditional conversion primers formulated in a base of zinc chromate in phosphoric medium were evident.

  18. Development of Exterior Anti-corrosion Coating Production Line for Large Diameter Hot Bent Pipes

    Institute of Scientific and Technical Information of China (English)

    JiaoRuyi; ZhangYing

    2004-01-01

    The epoxy powder exterior anti-corrosion coating production line for bent pipes with a single (double) course production is a technologically advanced bent pipe anti-corrosion method with cost efficiency, environment friendliness and stable coating quality. The quality of the coating on the bent pipe fully meets the requirements of the current national and industrial standards. The application of the technology has filled the gap in the bent pipe anti-corrosion coating area of China, and leads the world technologically. With this technology the coating quality of the bent pipe has greatly improved, resulting in significant social and economic benefits. With the use of the technology in various large scale pipeline projects such as the “West to East Gas Pipeline Project”, it will exhibite a greater potential in the future pipeline projects with a broad application prospect.

  19. Influence of Simulated Outside-Reactor Irradiation on Anticorrosion Property of Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influence of γ-ray irradiation on the properties of inside-reactor stainless steel structures was studied by simulating the working condition of pressurized water reactor (PWR) first circuit and the outside-reactor γ-ray irradiation. The result shows that the simulated outside-reactor irradiation (irradiation dose 4.4 × 104 Gy) has no influence on anticorrosion properties of solutionized SUS304 austenitic stainless steel, including intergranular corrosion (IC) and stress corrosion cracking (SCC). Anticorrosion properties (IC, SCC) of sensitized SUS304 austenitic stainless steel are reduced by simulated outside-reactor irradiation. The longer the sensitizedtime is, the more obvious the influence is.

  20. Unique characteristics of Pb in soil contaminated by red lead anti-corrosion paint

    NARCIS (Netherlands)

    Brokbartold, M.; Temminghoff, E.J.M.; Weng, L.; Marschner, B.

    2013-01-01

    Red lead (Pb3O4) has been extensively used in the past in anti-corrosion paints for the protection of steel constructions such as electricity pylons or bridges. Until recently, little has been known about the behavior of these Pb compounds in soils. Therefore, three pylon soils and six red lead anti

  1. A new smart additive of reinforced concrete based on modified hydrotalcites: Preparation, characterization and anticorrosion applications

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.

    2012-01-01

    A carbonate form of Mg-Al-hydrotalcite and its p-aminobenzoate (pAB) modified derivative (i.e.,Mg(2)Al-pAB) were synthesized and characterized by means of XRD and FT-IR. The anticorrosion behavior was evaluated based on open circuit potential (OCP) of carbon steel in simulated concrete pore solution

  2. ANTI-CORROSION PROPERTIES OF CARBOXYLIC ACID IN WATER-GLYCOL SOLUTIONS

    Directory of Open Access Journals (Sweden)

    BASHKIRCEVA N.Y.

    2012-01-01

    Full Text Available Sodium salts of carboxylic acids were investigated to evaluate the corrosion properties of the water-glycol solutions. Corrosion tests were performed by methods of gravimetry and galvanostatic dissolution with metals used in cooling systems. The compositions of anticorrosion systems and their concentration that provide the most effective inhibition of metals were determined.

  3. Research Adhesion and Physico-Mechanical Properties and Development of Anticorrosive Composite Polymeric Coverings

    Science.gov (United States)

    Negamatov, S. S.; Mamadalimov, R. M.; Latipov, I. X.; Babxanova, M. G.; Negmatova, K. S.; Salimsakov, Y. A.

    2008-08-01

    In work is shown, that introduction loading on the basis of industrial screenings such as phosphoslag, phosphogypsum and withdrawal Mardjanbulak gold-mining of factory the incorporating sets oxides of metals positively influence on anticorrosive, physical and strength of property of the investigated composite materials on basis epoxy of pitch [1-4].

  4. Influence on the anticorrosive properties of the use of erbium (III) trifluoromethanesulfonate as initiator in an epoxy powder clearcoat

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.J. [Centro de Biomateriales, Universitat Politecnica de Valencia, Camino de Vera s/n, E-46071 Valencia (Spain)]. E-mail: sangares@upvnet.upv.es; Suay, J. [Centro de Biomateriales, Universitat Politecnica de Valencia, Camino de Vera s/n, E-46071 Valencia (Spain)

    2007-08-15

    New low curing temperature epoxy powder coatings cured cationically by the use of erbium (III) trifluoromethanesulfonate as initiator have been formulated. Their curing kinetics and anticorrosive properties have been studied and compared with a system commonly used in industry (o-tolylbiguanide/epoxy resin). Three different tests of anticorrosive properties (EIS, AC/DC/AC, and salt fog spray) have been used together with an adherence test, in order to establish the optimal system. Results show that a system employing 1 phr of erbium triflate presents good anticorrosive properties. The technique AC/DC/AC has shown its ability to evaluate properly, much faster, and in accordance to anticorrosive properties results' of powder coatings obtained by other techniques.

  5. Anticorrosive coatings for storage tanks; Revestimentos anticorrosivos para tanques de armazenamento de petroquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jeferson de [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Lab. de Ensaios Nao Destrutivos, Corrosao e Soldagem; Silva, Cosmelina G. da; Mattos, Oscar R. [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Margarit-Mattos, Isabel C.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Inorganicos; Solymossy, Victor; Quintela, Joaquim P. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The anticorrosive performance of commercial coatings that can be employed inside petrochemical storing reservoirs was evaluated. The aim is to select products able to extend the time between maintenance. Some of the products tested are composites and formulas with novolac resins. The tests were: cathodic delamination and total immersion in distilled water at 40 deg C, formation water at 80 deg C, NaOH 20%, H{sub 2}SO{sub 4} 20%, MIBK, ethanol and naphtha. The performance evaluation took into account the presence of corrosion, blistering, adhesion loss and electrochemical properties. Based on the results, considerations are made about the adequacy of tests and procedures for the new generations of organic anticorrosive coatings. (author)

  6. Study of Polyaniline/Vermiculie/Tert-fluoro Emulsion Composites Anticorrosion Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Polyaniline (PANI) is one of the most promising materials for commercial applications.It can be applied to electronic devices and products such as light-emitting diodes,organic FETs,EMI shielding,secondary batteries,etc.Composites of polyaniline with other polymers or inorganic materials can provide new synergistic properties that cannot be attained from individual materials.Vermiculite (VMT) is a chain-layer magnesium-aluminum silicate mineral.We prepared composite anticorrosion coatings of p...

  7. Research on the Anticorrosion Coating Under the Paved Layer for Highway Steel Box Bridge Deck

    Institute of Scientific and Technical Information of China (English)

    SHEN Cheng-jin; MING Tu-zhang; HU Guang-wei; OU Xue-mei; GEN Ou

    2006-01-01

    The corrosion of the anticorrosion coating and the defects of the asphalt concrete paved layer have been investigated on long-span steel box bridge decks. The anticorrosion coating lies in the middle of two entirely different materials: a highway steel box bridge deck and a paved layer, which is used as anticorrosion and waterproof coating for the steel bridge deck. For our study, electrochemical corrosion and pull strength experiments have been selected for the investigation of the corrosion properties of inorganic zinc rich coating, epoxy zinc rich coating and arc sprayed zinc coating. The adhesive strength between the coatings and the panel, and the effect of the coating corrosion on the shear properties of the paved layers including cast asphalt, thermal asphalt mortar, epoxy asphalt and modified asphalt concrete have been investigated. The results show that the adhesive strength between the coatings and the bridge panel is controlled by the method of pre-processing rust removal. Coating by sandblasting has stronger adhesive strength than coating by shot peening. The results also reveal that shear strength of the paved layer is affected by the corrosion product of zinc coating. The arc sprayed zinc coating has stronger shear strength than zinc rich coatings.

  8. Graphene coating for anti-corrosion and the investigation of failure mechanism

    Science.gov (United States)

    Zhu, Y. X.; Duan, C. Y.; Liu, H. Y.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Graphene produced by chemical vapor deposition (CVD) methods has been considered as a promising corrosion prevention layer because of its exceptional structure and impermeability. However, the anti-corrosion performance and the failure mechanism are still controversial. In this study, graphene layers with different quality levels, crystallite sizes, and layer numbers were prepared on the surface of Cu by a CVD process. The effects of grain boundaries (GBs) on the failure of graphene layers to provide adequate protection were investigated in detail by combining graphene transfer techniques, computation, and anti-corrosion measurements. Our results reveal that corrosion rates decrease marginally upon the increase of graphene layer number, and this rather weak dependence on thickness likely arises from the aligned nature of the GBs in CVD-grown few-layer graphene. This problem can potentially be overcome by layer-by-layer graphene transfer technique, in which corrosion is found to be arrested locally when transferred graphene is present on top of the as-grown graphene. However, this advantage is not reflected in corrosion studies performed on large-scale samples, where cracks or imperfect interfaces could offset the advantages of GB misalignment. With improvements in technology, the layer-by-layer assembly technique could be used to develop an effective anti-corrosion barrier.

  9. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengjie [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Liu, Jiaqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Yi, Xiaofei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, JingWu [Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China)

    2016-02-15

    Graphical abstract: Zn coated NdFeB specimens pretreated with different technologies possess different adhesive strengths and anticorrosion properties. And the combined technology of sandblasting and pickling (5 s) achieves the best comprehensive performance. - Highlights: • Zn coated NdFeB specimens are achieved with different pretreating technologies. • Combined technology possesses the highest adhesive strength. • Combined technology possesses excellent anticorrosion property. - Abstract: Zinc coated NdFeB specimens were prepared with different pretreating technologies, such as polishing, pickling (50 s), sandblasting and combined technology of sandblasting and pickling (5 s). Morphologies of the NdFeB substrates pretreated with different technologies were observed with a scanning electron microscope equipped with an energy dispersive spectrometer and an atomic force microscope. The tensile test was performed to measure the adhesive strength between Zn coating and NdFeB substrate. The self-corrosion behavior of the NdFeB specimen was characterized by potentiodynamic polarization curve. The anticorrosion properties of Zn coated NdFeB specimens were characterized by neutral salt spray tests. The pretreating technologies possess obvious impact on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Combined pretreating technology of sandblasting and pickling (5 s) achieves the highest adhesive strength (25.56 MPa) and excellent anticorrosion property (average corrosion current density of 21 μA/cm{sup 2}) in the four pretreating technologies. The impacting mechanisms of the pretreating technology on the adhesive strength and anticorrosion properties are deeply discussed.

  10. Technology of Anticorrosive Protection of Steel Constructions by Coatings Based on Rapid-Hardening Bitumen-Latex Emulsion

    Directory of Open Access Journals (Sweden)

    Nykyforchyn, H.M.

    2016-01-01

    Full Text Available The recipes of rapid-hardening bitumen-latex emulsions and coatings on its base are created, in-laboratory tests of their physical, chemical and anticorrosive properties are carried out. The technology of anticorrosive protection and the installation technical documentation for making of aqueous bitumen-latex emulsion is developed, installation is mounted and a pilot lot of rapid-hardening emulsion is produced. Experimental-industrial approbation of the technology of coating formation on pipes in oil and gas industry is carried out.

  11. Effect of Nano Al Pigment on the Anticorrosive Performance of Waterborne Epoxy Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents the results regarding the effect of nano aluminum powder pigment concentration on the protective properties of waterborne epoxy films in 3.5 wt pct NaCl solution. The anticorrosive performance of the coatings with 0.5, 1, and 3 wt pct pigments and none pigment were investigated using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Raman spectroscopy techniques.The results show that adding appropriate amount of nano-aluminium powder pigment can enhance the barrier properties of the epoxy coating, which is attributed to the surface effect of nanoparticles and the compatibility of the pigment with the waterborne epoxy coatings.

  12. New Anti-Corrosive Coatings with Resin-Bonded Polyaniline and Related Electroactive Groups

    Science.gov (United States)

    Weil, Edward D.

    1997-01-01

    It is already known that polyaniline (an electroactive polymer) functions as a corrosion inhibitor for steel and in view of the fact that it is known to perform in the presence of hydrochloric acid, it has been considered likely that it may be useful to NASA for protecting launch structures at KSC which are exposed to not only continual ocean-side salt spray but also to hydrochloric acid at the times that solid-fuel boosters are fired. The currently used zinc-rich silicate-bonded coating is not wholly protective against the hydrochloric acid. Water pollution from zinc salts is another concern. Other earlier and concurrent NASA sponsored projects have been focussed on polyaniline specifically. Our project, administered for NASA by Dr. K. Thompson of KSC and these more-specifically polyaniline-related projects are included in a CRADA coordinated by Dr. F. Via of Akzo Nobel. A parallel project at Polytechnic under Prof K. Levon concentrated more specifically on polyaniline with various dopants. Our exploratory project reported herein was aimed at broadening the range of such corrosion inhibitors, to give protective paint compounders a wider latitude for adding corrosion inhibitors having polyaniline-like performance, and thus we diverged in several probing directions from polyaniline. Our working hypothesis was that physical variants of polyaniline, such as supported formulations on pigments or carriers, and chemical variants of polyaniline, including those having no electroconductive character, may have enhanced anticorrosion activity. We also hypothesized that small (non-polymeric) molecules having structures related to those occurring in polyaniline, may be active as corrosion inhibitors. We did preliminary testing, using an ASTM salt spray method at a nearby commercial paint testing laboratory. Our most interesting findings were that a non-electroconductive meta-isomer of polyaniline showed some corrosion activity, suggesting that the features of the polyaniline

  13. Bonding strength of graded anti-corrosive coatings of fluoroethylenepropylene (FEP)/polyphenylene sulfide (PPS)

    Institute of Scientific and Technical Information of China (English)

    Jie Bian; Weiqiang Wang; Congsheng Guan; Yonghui Zhao

    2005-01-01

    Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.

  14. Substantial enhancement in the anticorrosivity of AA6061 by Doxycycline hydrochloride drug

    Directory of Open Access Journals (Sweden)

    Mudigere Krishnegowda Pavithra

    2015-08-01

    Full Text Available The significant anticorrosive property of the antibiotic drug doxycycline hydrochloride (DCH was investigated by electrochemical techniques such as potentiodynamic polarization, electrochemical impedance and chronoamperometric techniques. DCH inhibited the pitting corrosion of aluminium alloy 6061 (AA6061 in 3.5% NaCl media with 90% efficiency. The adsorption of DCH on AA6061 conform Langmuir isotherm by means of physisorption.  Quantum chemical calculations were evaluated to ascertain the active sites of DCH molecule responsible for adsorption and to support the experimental findings.

  15. Lanthanum-exchanged zeolite and clay as anticorrosive pigments for galvanized steel

    Institute of Scientific and Technical Information of China (English)

    S. Roselli; N. Bellotti; C. Deyá; M. Revuelta; B. del Amo; R. Romagnoli

    2014-01-01

    A wide variety of inhibitive pigments is now being offered as possible alternatives to chromate and lead compounds for painted metals protection. Unfortunately, the most wide spread of these substitute pigments, zinc phosphate, has, at present, raised some environmental concern because phosphate causes the eutrophication of water courses and zinc itself is toxic. The aim of this re-search was to study the anticorrosive performance of a mixture consisting of zinc phosphate, modified zeolite and clay (bentonite) in order to diminish phosphate content in paints. The zeolite and the clay were exchanged with La(III) ions, as inorganic green inhibitor. In the first step, the anticorrosion protection by La(III) ions in solution was assessed by electrochemical tests. In the second step, an epoxy-polyamide paint formulated with the pigment mixture applied on galvanized panels was studied by salt spray test and electro-chemical noise measurements (ENM). The results showed that it was possible to replace part of the zinc phosphate content in the paint with the exchanged zeolite and the clay.

  16. Compatibility between pipeline anti-corrosion coating and thermal insulator in the presence of cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.; Doiron, A.

    2008-09-15

    Standard tests were conducted to evaluate and qualify materials used for the development of oil and gas pipeline insulators operating at elevated temperatures. The aim of the study was to demonstrate the efficacy of a modified cathodic disbondment methodology for evaluating the compatibility between anti-corrosion coatings and insulators in the presence of cathodic protection (CP). The surface of the coated panels were maintained at an external surface temperature of a pipeline operating at an internal temperature of 150 degrees C. The panels were also isolated from each other as well as from the heated pipes to ensure that the cathodic disbondment tests could be conducted simultaneously. Chemical and electrochemical changes were monitored using pH, electrochemical quartz crystal microbalance (EQCM) and electrochemical impedance spectroscopy (EIS). Samples with anti-corrosion coatings and insulators of varying thickness were tested with and without an outer polyethylene jacket. Results of the tests will be presented to industry stakeholders in order to obtain further feedback. 9 refs., 1 tab., 4 appendices.

  17. [Research on anti-corrosion of Thiobacillus for the geopolymer solidification MSWI fly ash].

    Science.gov (United States)

    Jin, Man-Tong; Sun, Xin; Dong, Hai-Li; Jin, Zan-Fang

    2012-09-01

    In order to discuss the anti-Thiobacillus corrosion performance of geopolymer solidification MSWI fly ash, the research simulated the Thiobacillus corrosion process by experiment, investigated the change of mass, compressive strength, leaching concentration. The results showed that geopolymer had a good anti-corrosion ability: weight loss within 1%, the compressive strength still reached 21.88 MPa after 28 days, the corrosion resistance coefficient was above 0.9. The maximum leaching concentration of Cr, Cu, Zn, Cd, Hg, Pb were 107.7 microg x L(-1), 22.71 microg x L(-1), 39.18 microg x L(-1), 0.56 microg x L(-1), 34.84 microg x L(-1) and 3.03 microg x L(-1), respectively. And the leaching concentration of geopolymer reduced with the immersion time, showed a good anti-Thiobacillus corrosion performance. Through the X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope spectra of geopolymer, we investigated the microstructure and mechanism of geopolymer anti-corrosion.

  18. Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys.

    Science.gov (United States)

    Fan, Fan; Zhou, Chunyu; Wang, Xu; Szpunar, Jerzy

    2015-12-16

    Fabrication of self-healing anticorrosion coatings has attracted attention as it has the ability to extend the service life and prevent the substrate from corrosive attack. However, a coating system with a rapid self-healing ability and an improved corrosion resistance is rarely reported. In this work, we developed a self-healing anticorrosion coating on a magnesium alloy (AZ31). The coating comprises a cerium-based conversion layer, a graphene oxide layer, and a branched poly(ethylene imine) (PEI)/poly(acrylic acid) (PAA) multilayer. We incorporated the graphene oxide as corrosion inhibitors and used the PEI/PAA multilayers to provide the self-healing ability to the coating systems. X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the composition of the multilayers, and scanning electron microscopy (SEM) was used to analyze the surface morphology. The electrochemical impedance spectroscopy (EIS) results illustrate the improved corrosion resistance of the coating. The proposed coating also has a rapid self-healing ability in the presence of water.

  19. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers

    Science.gov (United States)

    Chen, Tao; Fu, JiaJun

    2012-12-01

    The hollow mesoporous silica nanoparticles (HMSNs), which have been used as the nanocontainers for the corrosion inhibitor, benzotriazole, were fabricated using the hard-template method. Alkaline-responsive HMSNs based on cucurbit[6]uril (CB[6])/bisammonium supramolecular complex and acid-responsive HMSNs based on α-cyclodextrin (α-CD)/aniline supramolecular complex, which operate in water, have been achieved and characterized by solid-state NMR, thermogravimetry analysis, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption analysis. The two elaborately designed nanocontainers show the pH-controlled encapsulation/release behaviors for benzotriazole molecules. Equal amounts of the alkaline- and acid-responsive nanocontainers were uniformly distributed in the hybrid zirconia-silica sol-gel coating and thus formed the intelligent anticorrosion coating. The self-healing property of AA2024 alloy coated with the intelligent anticorrosion coating is evaluated by electrochemical impedance spectroscopy (EIS). The sol-gel coating doped with the pH-responsive nanocontainers clearly demonstrates long-term corrosion protection performances when compared to the undoped sol-gel coating, which is attributed to the release of corrosion inhibitor from the nanocontainers after feeling the changes of environmental pH values near the corroded areas.

  20. Development of Laser Surface Technologies for Anti-Corrosion on Magnesium Alloys: a Review

    Science.gov (United States)

    Sun, Rujian; Guan, Yingchun; Zhu, Ying

    2016-03-01

    Magnesium (Mg) alloys have been increasingly used in industries and biomaterial fields due to low density, high specific strength and biodegradability. However, poor surface-related properties are major factors that limit their practical applications. This paper mainly focuses on laser-based anti-corrosion technologies for Mg alloys, beginning with a brief review of conventional methods, and then demonstrates the feasibility of laser surface technologies including laser surface melting (LSM), laser surface alloying (LSA), laser surface cladding (LSC) and laser shock peening (LSP) in achieving enhancement of corrosion resistance. The mechanism and capability of each technique in corrosion resistance is carefully discussed. Finally, an outlook of the development of laser surface technology for Mg alloy is further concluded, aiming to serve as a guide for further research both in industry applications and biomedical devices.

  1. Anticorrosion performance of the coating/metal system by electrochemical impedance spectra

    Institute of Scientific and Technical Information of China (English)

    Yinghuai Zhang; Lining Xu; Minxu Lu; Pu Zhang

    2008-01-01

    In order to investigate the anticorrosion performance of the organic coating/metal system, electrochemical impedance spectra (EIS) were measured in the 3.5wt% NaC1 solution, the chemical component and the formation of corrosion products scale were analyzed by laser Raman microspectroscopy, and the pattern of the organic coating/metal system was observed by scanning electron microscopy (SEM). The characteristics and the delamination process of the organic coating/metal system were investigated systematically, and the emphases were on the transportation of the corrosive medium and the changes of the coating/metal interface. The results show that the impedance decreases at the initial immersion, then increases at the middle-immersion, and again decreases at last, which is related to the corrosion products scale. The concentration of Cl-in the coating, which destroys the corrosion products scale, increases with the immersion time.

  2. Anticorrosive Properties of Poly(o-phenylenediamine/ZnO Nanocomposites Coated Stainless Steel

    Directory of Open Access Journals (Sweden)

    Aisha Ganash

    2014-01-01

    Full Text Available Poly(o-phenylenediamine and poly(o-phenylenediamine/ZnO (PoPd/ZnO nanocomposites coating were prepared on type-304 austenitic stainless steel (SS using H2SO4 acid as electrolyte by potentiostatic methods. Fourier transforms infrared spectroscopy and scanning electron microscopy techniques were used to characterize the composition and structure of PoPd/ZnO nanocomposites. The corrosion protection of polymer coatings ability was studied by Eocp-time measurement, anodic and cathodic potentiodynamic polarization and impedance techniques in 3.5% NaCl as corrosive solution. It was found that ZnO nanoparticles improve the barrier and electrochemical anticorrosive properties of poly(o-phenylenediamine.

  3. Characterization and anticorrosion properties of carbon nanotubes directly synthesized on Ni foil using ethanol

    Science.gov (United States)

    Jeong, Namjo; Jwa, Eunjin; Kim, Chansoo; Hwang, Kyo Sik; Park, Soon-cheol; Jang, Moon Suk

    2016-07-01

    In this work, we describe the direct growth of carbon nanofilaments by the catalytic decomposition of ethanol on untreated polycrystalline Ni foil. Our work focuses on the effects of synthesis conditions on the growth of the carbon nanofilaments and their growth mechanism. Direct growth of carbon nanotubes (CNTs) is more favorable on lower-purity Ni foil. The highest yield was obtained at approximately 750 °C. The average diameter of the CNTs was approximately 20-30 nm. Raman spectra revealed that the increase of H2 concentration in the carrier gas and synthesis temperature induced the growth of better-graphitized CNTs. Additionally, we investigated the anticorrosion properties of as-prepared products under simulated seawater conditions. The corrosion rate of the CNT/Ni foil system was maximally 50-60 times slower than that of the as-received Ni foil, indicating that the CNT coating may be a good candidate for corrosion inhibition.

  4. ANTICORROSION POTENTIAL OF HYDRALAZINE FOR CORROSION OF MILD STEEL IN 1M HYDROCHLORIC ACID SOLUTION

    Directory of Open Access Journals (Sweden)

    B. M. Prasanna

    2015-05-01

    Full Text Available Anticorrosion potential of mild steel by Hydralazine as corrosion inhibitor for mild steel in 1M hydrochloric acid was investigated by chemical and electrochemical measurements at 303-333 K temperature. The maximum inhibition efficiency of inhibitor by Weight loss method is around 90%, Tafel polarization method is around 85%; electrochemical impedance spectroscopy measurement around 90% at 1250 ppm of Hydralazine in. The result shows that the inhibition efficiency increases with I 1M hydrochloric acid. Hydralazine acts as a mixed type inhibitor which inhibits the corrosion of mild steel due to the adsorption on metal surface. This adsorption system obeys the Langmuir adsorption isotherm.Activation parameters explains the effect of temperature with inhibition efficiency of inhibitor molecule.SEM images of inhibited mild steel strips shows a formation of passive protective film over the surface.

  5. Energy conservation research of dehumidification system for main cable anticorrosion of suspension bridge

    Institute of Scientific and Technical Information of China (English)

    Chen Ce; Fan Liangkai; Feng Zhaoxiang; Pen Guanzhong

    2011-01-01

    The necessity of the main cable anticorrosion for suspension bridge is described, and operating principles and composition of main cable dehumidification system are analyzed. An idea using the waste heat of high temperature outlet air of dehumidification system to heat up regeneration air of rotary-type dehumidifier is put forward in this paper. The concrete scheme is to install a heat exchanger on air-out pipeline of roots blower and air-in pipeline of regeneration electric heater of rotary dehumidifier. Air preheated by the heat exchanger enters regeneration electric heater of rotary-type dehumidifier. Energy conservation of main cable dehumidification system for the Yangtze River highway bridge is calculated, and the results show that energy conservation rate can reach 44 %.

  6. Reduction of cathodic delamination rates of anticorrosive coatings using free radical scavengers

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Weinell, C. E.; Dam-Johansen, Kim

    2010-01-01

    Cathodic delamination is one of the major modes of failure for anticorrosive coatings subjected to a physical damage and immersed in seawater. The cause of cathodic delamination has been reported to be the result of a chemical attack at the coating-steel interface by free radicals and peroxides...... formed as intermediates in the cathodic reaction during the corrosion process. In this study, antioxidants (i.e., free radical scavengers and peroxide decomposers) have been incorporated into various generic types of coatings to investigate the effect of antioxidants on the rate of cathodic delamination...... of epoxy coatings on cold rolled steel. The addition of cathodic delamination by up to 50% during seawater immersion, while peroxide decomposers had a limited effect. Testing using substrates prepared from stainless steel...

  7. Novel inorganic host layered double hydroxides intercalated with guest organic inhibitors for anticorrosion applications.

    Science.gov (United States)

    Poznyak, S K; Tedim, J; Rodrigues, L M; Salak, A N; Zheludkevich, M L; Dick, L F P; Ferreira, M G S

    2009-10-01

    Zn-Al and Mg-Al layered double hydroxides (LDHs) loaded with quinaldate and 2-mercaptobenzothiazolate anions were synthesized via anion-exchange reaction. The resulting compounds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. Spectrophotometric measurements demonstrated that the release of organic anions from these LDHs into the bulk solution is triggered by the presence of chloride anions, evidencing the anion-exchange nature of this process. The anticorrosion capabilities of LDHs loaded with organic inhibitors toward the AA2024 aluminum alloy were analyzed by electrochemical impedance spectroscopy. A significant reduction of the corrosion rate is observed when the LDH nanopigments are present in the corrosive media. The mechanism by which the inhibiting anions can be released from the LDHs underlines the versatility of these environmentally friendly structures and their potential application as nanocontainers in self-healing coatings.

  8. Evaluation of anti-corrosive lubricating behavior of dicationic ionic liquid coatings for biomedical alloys

    Science.gov (United States)

    Siddiqui, Danyal Alam

    Since their inception, orthopedic implants composed of biomedical alloys have been plagued with failures associated with corrosion and wear processes. Despite current surface treatments and techniques being employed to mitigate corrosion and wear, these failure mechanisms continue to occur as prevalent failure modes. Recently, a novel class of compounds known as ionic liquids has been proposed as a multi-functional coating to protect the surfaces of commercially pure titanium surfaces comprising dental implants. In this study, the goal was to evaluate select formulations of these ionic liquids to serve as anti-corrosive lubricants for titanium and cobalt chromium molybdenum alloys widely used in orthopedic implants. Electrochemical and tribological testing of dicationic imidazolium-based ionic liquids revealed these compounds to be superior candidates as corrosion inhibitors and lubricants of biomedical alloy surfaces.

  9. Anticorrosive Performance of Zinc Phosphate Coatings on Mild Steel Developed Using Galvanic Coupling

    Directory of Open Access Journals (Sweden)

    M. Arthanareeswari

    2013-01-01

    Full Text Available The anticorrosive performance of zinc phosphate coatings developed by galvanic coupling technique on mild steel substrates using the cathode materials such as titanium (Ti, copper (Cu, brass (BR, nickel (Ni, and stainless steel (SS is elucidated in this study. Thermal and chemical stability tests, immersion test in 3.5% NaCl, ARE salt droplet test, and salt spray test were carried out. The study reveals that the mild steel substrates phosphated under galvanically coupled condition showed better corrosion resistance than the one coated without coupling. The open circuit potential (OCP of phosphated mild steel panels in 3.5% NaCl was found to be a function of phosphate coating weight and porosity of the coating.

  10. UV-curable nanocasting technique to prepare bioinspired superhydrophobic organic-inorganic composite anticorrosion coatings

    Directory of Open Access Journals (Sweden)

    K. C. Chang

    2015-02-01

    Full Text Available A UV-curing technique was used to develop advanced anticorrosive coatings made of a poly(methyl methacrylate (PMMA/silica composite (PSC with bioinspired Xanthosoma sagittifolium leaf-like superhydrophobic surfaces. First of all, a transparent soft template with negative patterns of xanthosoma sagittifolium leaf can be fabricated by thermally curing the polydimethylsiloxane (PDMS pre-polymer in molds at 60°C for 4 h, followed by detaching PDMS template from the surface of natural leaf. PSC coatings with biomimetic structures can be prepared by performing the UV-radiation process upon casting UV-curable precursor with photo-initiator onto cold-rolled steel (CRS electrode under PDMS template. Subsequently, UV-radiation process was carried out by using light source with light intensity of 100 mW/cm2 with exposing wavelength of 365 nm. Surface morphologies of the as-synthesized hydrophobic PMMA (HP and superhydrophobic PSC (SPSC coatings showed a large number of micro-scaled mastoids, each decorated with many nano-scaled wrinkles that were systematically investigated by using scanning electron microscopy (SEM. The contact angles of water droplets on the sample surfaces can be increased from ~81 and 103° on PMMA and PSC surfaces to ~148 and 163° on HP and SPSC surfaces, respectively. The SPSC coating was found to provide an advanced corrosion protection effect on CRS electrodes compared to that of neat PMMA, PSC, and HP coatings based on a series of electrochemical corrosion measurements in 3.5 wt% NaCl electrolyte. Enhanced corrosion protection of SPSC coatings on CRS electrodes can be illustrated by that the silica nanoparticles on the small papillary hills of the bioinspired structure of the surface further increased the surface roughness, making the surface exhibit superior superhydrophobic, and thus leading to much better anticorrosion performance.

  11. Crash-Induced Vibration and Safety Assessment of Breakaway-Type Post Structures Made of High Anticorrosion Steels

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2016-01-01

    Full Text Available This study deals with car crash effects and passenger safety assessment of post structures with breakaway types using high performance steel materials. To disperse the impact force when a car crashes into a post, the post could be designed with a breakaway feature. In this study, we used a new high anticorrosion steel for the development of advanced breakaways. Based on the improved Cowper-Symonds model, specific physical properties to the high anticorrosion steel were determined. In particular, the complex mechanism of breakaways was studied using various parameters. The parametric studies are focused on the various effects of car crash on the structural performance and passenger safety of breakaway-type posts. The combined effects of using different steel materials on the dynamic behavers are also investigated.

  12. Aminobenzoate modified MgAl hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.R.; Cerezo, J.; Mol, J.M.C.; Polder, R.B.

    2013-01-01

    A carbonate form of MgAl hydrotalcite, Mg(2)Al-CO3 and its p-aminobenzoate (pAB) modified derivative, Mg(2)Al-pAB, were synthesized and characterized by means of XRD, FT-IR and TG/DSC. The anticorrosion behavior of Mg(2)Al-pAB was evaluated based on open circuit potential (OCP) of carbon steel in si

  13. Experimental Study on the Electrochemical Anti-Corrosion Properties of Steel Structures Applying the Arc Thermal Metal Spraying Method

    Directory of Open Access Journals (Sweden)

    Hong-Bok Choe

    2014-12-01

    Full Text Available The arc thermal metal spraying method (ATMSM provides proven long-term protective coating systems using zinc, aluminum and their alloys for steel work in a marine environment. This paper focuses on studying experimentally the anti-corrosion criteria of ATMSM on steel specimens. The effects of the types of spraying metal and the presence or absence of sealing treatment from the thermal spraying of film on the anti-corrosion performance of TMSM were quantitatively evaluated by electrochemical techniques. The results showed that ATMSM represented a sufficient corrosion resistance with the driving force based on the potential difference of more than approximately 0.60 V between the thermal spraying layer and the base substrate steel. Furthermore, it was found that the sealing treatment of specimens had suppressed the dissolution of metals, increased the corrosion potential, decreased the corrosion current density and increased the polarization resistance. Metal alloy Al–Mg (95%:5% by mass with epoxy sealing coating led to the most successful anti-corrosion performance in these electrochemical experiments.

  14. Long-Term Anti-Corrosion Performance of a Conducting Polymer-Based Coating System for Steels

    Science.gov (United States)

    Pan, Tongyan; Yu, Qifeng

    2016-06-01

    The long-term durability of a two-layer coating system was evaluated by two accelerated corrosion tests, i.e., the ASTM B117 Salt spray test and the ASTM D5894 Cyclic salt fog/UV exposure test, and a series of surface analyses. The coating system was developed for protecting structural steels from corrosion, including a functional primer made of intrinsically conducting polymer (ICP) and a protective topcoat. The standard pull-off test per ASTM D4541 was employed for characterizing the adhesion of the coating systems to substrate, aided by visual examination of the surface deterioration of the samples. The ICP-based systems demonstrated superior long-term anti-corrosion capacity when a polyurethane topcoat is used. The ICP-based primer made of a waterborne epoxy gave poorer anti-corrosion performance than the ICP-based primer made of regular non-waterborne epoxy, which can be attributed to the lower adhesion the waterborne epoxy demonstrated to the substrate surface. The zinc-rich control systems showed good anti-corrosion durability; however, they may produce excessive oxidative products of zinc to cause coating delamination. Based on the test results, the two-layer coating system consisting of an ICP-based primer and a polyurethane topcoat outperforms the conventional zinc-rich coating systems for corrosion protection of steels.

  15. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  16. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy

    Science.gov (United States)

    Jin, Tao; Kong, Fan-mei; Bai, Rui-qin; Zhang, Ru-liang

    2016-10-01

    In this study, anti-corrosion coatings were prepared and coated successfully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticles in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller ΔG and the more stable configuration.

  17. Monodisperse Ag@SiO2 core-shell nanoparticles as active inhibitors for marine anticorrosion applications.

    Science.gov (United States)

    Zhang, Xin-Sheng; Wang, Jie-Xin; Xu, Ke; Le, Yuan; Chen, Jian-Feng

    2011-04-01

    Monodisperse Ag@SiO2 core-shell structured nanoparticles were firstly utilized as a novel corrosion inhibitor for marine anticorrosion applications. The related marine anticorrosion properties were evaluated with an electrochemical noise (ECN) analysis during 2 weeks of accelerated immersion tests in natural seawater with the addition of various inorganic salts and nutriments. The experimental results indicate that the corrosion activity is markedly reduced by nearly 1-3 orders of magnitude owing to the introduction of Ag@SiO2 core-shell nanoparticles into coating. The inhibition efficiency of corrosion can reach as high as about 99%. More importantly, such a coating exhibits an excellent long-term sustained marine anticorrosion effect. So it could be reasonably inferred that silver cores as active inhibitors effectively prevent the corrosion damage from microorganisms, while silica shells act as a good protection for silver nanoparticles, delay the release of silver ions, and also function as the corrosion inhibiting action for inorganic salts. Therefore, this would make monodisperse Ag@SiO2 core-shell nanoparticles a potential and promising corrosion inhibitor for developing future advanced multifunctional coatings.

  18. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    Science.gov (United States)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer

  19. A superhydrophilic nitinol shape memory alloy with enhanced anti-biofouling and anti-corrosion properties.

    Science.gov (United States)

    Song, K; Min, T; Jung, J-Y; Shin, D; Nam, Y

    2016-01-01

    This work reports on a nitinol (NiTi) surface modification scheme based on a chemical oxidation method, and characterizes its effects on wetting, biofouling and corrosion. The scheme developed is also compared with selected previous oxidation methods. The proposed method turns NiTi into superhydrophilic in ~5 min, and the static contact angle and contact angle hysteresis were measured to be ~7° and ~12°, respectively. In the PRP (platelet rich plasma) test, platelet adhesion was reduced by ~89% and ~77% respectively, compared with the original NiTi and the NiTi treated with the previous chemical oxidation scheme. The method developed provides a high (~1.1 V) breakdown voltage, which surpasses the ASTM standard for intervascular medical devices. It also provides higher superhydrophilicity, hemo-compatibility and anti-corrosion resistance than previous oxidation schemes, with a significantly reduced process time (~5 min), and will help the development of high performance NiTi devices.

  20. Fabrication and Assessment of Crumb-Rubber-Modified Coatings with Anticorrosive Properties

    Directory of Open Access Journals (Sweden)

    Nasser Al-Aqeeli

    2015-01-01

    Full Text Available Scrap tires continue to be a major source of waste due to the lack of valuable and effective disposal routes. A viable solution to this problem is to recycle crumb rubber (CR—a granulated material derived from scrap tires—and use it to develop other valuable products. Herein we report the fabrication and characterization of CR-modified coatings with anticorrosive properties on metal substrates. By varying the particle size and concentration of CR, we have determined the coating composition that offers the highest level of erosion protection. Images from a scanning electron microscope (SEM reveal that CR is homogenously dispersed in the coating, especially when fine particles are used. As the concentration of CR increases, the hardness of the coating decreases as a result of the elastic properties of CR. More importantly, the erosion rate of the coating decreases due to increased ductility. Following Potentiodynamic tests, the utilization of these coatings proved to be beneficial as they showed good protection against aqueous corrosion when tested in 0.5 M NaCl solution. Our newly developed coatings offer an incentive to recycling CR and open up a safe and sustainable route to the disposal of scrap tires.

  1. Influence of Functionalization of Nanocontainers on Self-Healing Anticorrosive Coatings.

    Science.gov (United States)

    Zheng, Zhaoliang; Schenderlein, Matthias; Huang, Xing; Brownbill, Nick J; Blanc, Frédéric; Shchukin, Dmitry

    2015-10-21

    Feedback coating based on pH-induced release of inhibitor from organosilyl-functionalized containers is considered as a compelling candidate to achieve smart self-healing corrosion protection. Four key factors that determine the overall coating performance include (1) the uptake and release capacity of containers, (2) prevention of the premature leakage, (3) compatibility of containers in coating matrix, and (4) cost and procedure simplicity consideration. The critical influence introduced by organosilyl-functionalization of containers is systematically demonstrated by investigating MCM-41 silica nanoparticles modified with ethylenediamine (en), en-4-oxobutanoic acid salt (en-COO(-)), and en-triacetate (en-(COO(-))3) with higher and lower organic contents. The properties of the modified silica nanoparticles as containers were mainly characterized by solid-state (13)C nuclear magnetic resonance, scanning and transmission electron microscopy, N2 sorption, thermogravimetric analysis, small-angle X-ray scattering, dynamic light scattering, and UV-vis spectroscopy. Finally, the self-healing ability and anticorrosive performances of hybrid coatings were examined through scanning vibrating electrode technique (SVET) and electrochemical impedance spectroscopy (EIS). We found that en-(COO(-))3-type functionalization with content of only 0.23 mmol/g performed the best as a candidate for establishing pH-induced release system because the resulting capped and loaded (C-L) functionalized silica nanocontainers (FSNs) exhibit high loading (26 wt %) and release (80%) capacities for inhibitor, prevention of premature leakage (less than 2%), good dispersibility in coating matrix, and cost effectiveness.

  2. The Synthesis, Characterization and Comparative Anticorrosion Study of Some Organotin(IV 4-Chlorobenzoates

    Directory of Open Access Journals (Sweden)

    Hastin Kurniasih

    2015-12-01

    Full Text Available The synthesis of 3 compounds of a series of dibutyl(IV di-4-chlorobenzoate, diphenyl(IV di-4-chlorobenzoate and triphenyltin(IV 4-chlorobenzoate have successfully been performed by reacting the dibutyltin(IV dichloride, diphenyltin(IV dichloride and triphenyltin(IV chloride respectively via the dibutyltin(IV oxide, diphenyltin(IV dihydroxide and triphenyltin(IV hydroxide with 4-chlorobenzoic acid. All compounds synthesized were well characterized by 1H and 13C NMR, IR and UV-Vis spectroscopies as well as based on the microanalytical data. The anticorrosion activity of these compounds were tested on Hot Roller Plate (HRP mild steel in DMSO-HCl solution using potentiodynamic method. The results revealed that the triphenyltin(IV 4-chlorobenzoate clearly showed the strongest inhibitor activity compared to the other derivatives, while diphenyltin(IV compounds were better than that of dibutyltin(IV analogous. The results reported here indicated that the optimal activity were depended on the ligand attached to the metal centre and might also be related to the number of carbon atoms present in the organotin(IV used.

  3. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings

    Science.gov (United States)

    Conradi, M.; Kocijan, A.; Kek-Merl, D.; Zorko, M.; Verpoest, I.

    2014-02-01

    Homogeneous, 50-μm-thick, epoxy coatings and composite epoxy coatings containing 2 wt% of 130-nm silica particles were successfully synthetized on austenitic stainless steel of the type AISI 316L. The surface morphology and mechanical properties of these coatings were compared and characterized using a profilometer, defining the average surface roughness and the Vickers hardness, respectively. The effects of incorporating the silica particles on the surface characteristics and the corrosion resistance of the epoxy-coated steel were additionally investigated with contact-angle measurements as well as by potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5 wt% NaCl solution. The silica particles were found to significantly improve the microstructure of the coating matrix, which was reflected in an increased hardness, increased surface roughness and induced hydrophobicity. Finally, the silica/epoxy coating was proven to serve as a successful barrier in a chloride-ion-rich environment with an enhanced anticorrosive performance, which was confirmed by the reduced corrosion rate and the increased coating resistance due to zigzagging of the diffusion path available to the ionic species.

  4. Advanced Anticorrosion Coating Materials Derived from Sunflower Oil with Bifunctional Properties.

    Science.gov (United States)

    Balakrishnan, Thiruparasakthi; Sathiyanarayanan, Sadagopan; Mayavan, Sundar

    2015-09-09

    High-performance barrier films preventing permeation of moisture, aggressive chloride ions, and corrosive acids are important for many industries ranging from food to aviation. In the current study, pristine sunflower oil was used to form uniform adherent films on iron (Fe) via a simple single-step thermal treatment (without involving any initiator/mediator/catalyst). Oxidation of oil on heating results in a highly conjugated (oxidized) crystalline lamellar network with interlayer separation of 0.445 nm on Fe. The electrochemical corrosion tests proved that the coating exhibits superior anticorrosion performance with high coating resistance (>10(9) ohm cm2) and low capacitance values (<10(-10) F cm(-2)) as compared to bare Fe, graphene, and conducting polymer based coatings in 1 M hydrochloric acid solutions. The electrochemical analyses reveal that the oil coatings developed in this study provided a two-fold protection of passivation from the oxide layer and barrier from polymeric films. It is clearly observed that there is no change in structure, morphology, or electrochemical properties even after a prolonged exposure time of 80 days. This work indicates the prospect of developing highly inert, environmentally green, nontoxic, and micrometer level passivating barrier coatings from more sustainable and renewable sources, which can be of interest for numerous applications.

  5. Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testing

    DEFF Research Database (Denmark)

    Nesterova, Tatyana; Dam-Johansen, Kim; Pedersen, Lars Thorslund

    2012-01-01

    Self-healing coatings is a rapidly growing research area, where focus has mainly been on development of new approaches to the mechanism of self-healing. However, there is a growing need for investigation of practical issues related to formulation, application, and testing of true self-healing coa......Self-healing coatings is a rapidly growing research area, where focus has mainly been on development of new approaches to the mechanism of self-healing. However, there is a growing need for investigation of practical issues related to formulation, application, and testing of true self......-healing coatings. In this work, ways of reducing the size of poly(urea–formaldehyde) microcapsules, filled with linseed oil and intended for a microcapsule-based self-healing anticorrosive coating (above water exposure), are explored. The influence of microcapsules on epoxy coating performance is also studied...... a decrease in microcapsule size but were accompanied by excessive formation of nanoparticles. Thus, isolation of too large microcapsules has been performed by filtration utilizing a novel low-energy fluoropolymer-coated steel sieve. An estimation of the critical pigment (microcapsule) volume concentration...

  6. 《建筑钢结构防腐蚀技术规程》设计使用介绍%Introduction of design application of Technical specification for anticorrosion of building steel structure

    Institute of Scientific and Technical Information of China (English)

    胡伦基

    2012-01-01

    Major contents of relevant anticorrosion mechanism and anticorrosion design of Technical specification for anticorrosion of building steel structure were introduced.It included the judgement of corrosivity grade;corrosion allowance;anticorrosion structure measure;rust-clearing method and grade classification;design principle and thickness of anticorrosion covering layer;cooperation use of anticorrosive painting;applied environment,metal selection of metal thermal spraying and occlude treatment of heat spraying layer;anticorrosive and fireproofing of steel structure.Anticorrosion design examples of building steel structure were also given.%介绍了《建筑钢结构防腐蚀技术规程》(JGJ/T 251—2011)有关的防腐蚀机理和防腐蚀设计的主要内容。主要包括:腐蚀性等级的判定,腐蚀裕量,防腐蚀构造措施,除锈方法和等级划分,防腐蚀保护层的设计原则、厚度选定,防腐涂装的配套使用,金属热喷涂的使用环境、热喷金属选择、热喷涂层封闭处理,钢结构防腐与防火。并通过算例介绍建筑钢结构防腐蚀的设计。

  7. A Comparative Study on Graphene Oxide and Carbon Nanotube Reinforcement of PMMA-Siloxane-Silica Anticorrosive Coatings.

    Science.gov (United States)

    Harb, Samarah V; Pulcinelli, Sandra H; Santilli, Celso V; Knowles, Kevin M; Hammer, Peter

    2016-06-29

    Carbon nanotubes (CNTs) and graphene oxide (GO) have been used to reinforce PMMA-siloxane-silica nanocomposites considered to be promising candidates for environmentally compliant anticorrosive coatings. The organic-inorganic hybrids were prepared by benzoyl peroxide (BPO)-induced polymerization of methyl methacrylate (MMA) covalently bonded through 3-(trimethoxysilyl)propyl methacrylate (MPTS) to silica domains formed by hydrolytic condensation of tetraethoxysilane (TEOS). Single-walled carbon nanotubes and graphene oxide nanosheets were dispersed by surfactant addition and in a water/ethanol solution, respectively. These were added to PMMA-siloxane-silica hybrids at a carbon (CNT or GO) to silicon (TEOS and MPTS) molar ratio of 0.05% in two different matrices, both prepared at BPO/MMA molar ratios of 0.01 and 0.05. Atomic force microscopy and scanning electron microscopy showed very smooth, homogeneous, and defect-free surfaces of approximately 3-7 μm thick coatings deposited onto A1020 carbon steel by dip coating. Mechanical testing and thermogravimetric analysis confirmed that both additives CNT and GO improved the scratch resistance, adhesion, wear resistance, and thermal stability of PMMA-siloxane-silica coatings. Results of electrochemical impedance spectroscopy in 3.5% NaCl solution, discussed in terms of equivalent circuits, showed that the reinforced hybrid coatings act as a very efficient anticorrosive barrier with an impedance modulus up to 1 GΩ cm(2), approximately 5 orders of magnitude higher than that of bare carbon steel. In the case of GO addition, the high corrosion resistance was maintained for more than 6 months in saline medium. These results suggest that both carbon nanostructures can be used as structural reinforcement agents, improving the thermal and mechanical resistance of high performance anticorrosive PMMA-siloxane-silica coatings and thus extending their application range to abrasive environments.

  8. Anticorrosive field joint coating qualification, heat shrinkable sleeve; Qualificacao de revestimento anticorrosivo para juntas de campo, mantas termocontrateis

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Glaucia B.; Koebsch, Andre; Castinheiras Junior, Wilson [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The main objective of this job is to present the quality requirements fixed by PETROBRAS for anticorrosive field joint coating for buried pipelines, industrially coated with PE-3L. It describes the used system - polyethylene based heat shrinkable sleeve - comparing with the existent on the pipeline. So, it exposes the suppliers' qualification stages, which include test carried out for the materials, for the sleeve set and for the coating after its application on the joint field. Finally, it shows that the experience, which has been gotten in the qualification, consolidated the quality control systematic that have been carry out during the sleeves acquisition and application at the pipeline construction. (author)

  9. Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings

    Science.gov (United States)

    Schuöcker, Georg D.; Bielak, Robert

    2007-05-01

    During the last years surface preparation prior to coating operations became an important research and development task, since tightened environmental regulations have to be faced in view of the deliberation of hazardous compounds of coatings. Especially, ship-yards get more and more under pressure, because the environmental commitment of their Asian competitors is fairly limited. Therefore, in the US and in Europe several technology evaluation projects have been launched to face this challenge. The majority of coating service providers and ship yards use grit blasting; this process causes heavy emissions as of dust and enormous amounts of waste as polluted sand. Coating removal without any blasting material would reduce the environmental impact. Laser processing offers ecological advantages. Therefore thermal processes like laser ablation have been studied thoroughly in several published projects and also in this study. Many of these studies have been focused on the maintenance of airplanes, but not on de-coating of heavy protective coatings. In this case the required laser power is extra-high. This study is focused on the maintenance of heavy anti-corrosion coatings and compares the industrial requirements and the opportunities of the innovative laser processes. Based on the results of this analysis similar approaches as e.g. plasma jet coating ablation have been studied. It was concluded that none of these methods can compete economically with the conventional processes as grit blasting and water jetting since the required ablation rate is very high (>60m2/h). A new process is required that is not based on any blasting operation and which does not depend strongly on the coating's characteristic. The delamination of the coating where the coatings is not removed by evaporation, but in little pieces of the complete coating system meets these requirements. The delamination can be accomplished by the thermal destruction of the primer coating by an intense heat pulse

  10. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  11. Action mechanism of antioxidation and anticorrosion and molecular design for perfluoropolyether fluid additives (I) --Action mechanism of additive and property of donating-accepting electron

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The combination energy and chemical adsorption energy of N-substituted perfluoropoly- alkyletherphenylamide (PFPEA) additive to perfluoropolyalkylether oxygen radical (RfO.) and to Fe atom have been calculated by quantum chemical methods. Structural characteristics, action mechanism, property of donating-accepting electron and substituent effect for antioxidant and anticorrosive additive are investigated. It is found that HOMO of the additives is a p-molecular orbital with lone pair electron of heteroatom. The HOMO of PFPEA additive reacts with LUMO of Fe atom to result in chemical adsorption. The LUMO of additive can interact with the SOMO of RfO. and accept electron of RfO. to form stable addition product. The additives have the property of donating-accepting electron. The electron-releasing group, particularly, the phenyl group, introduced to N atom of phenylamide can increase the combination energy and chemical adsorption energy, and enhance the antioxidant and anticorrosive efficiency. The research achievements can provide useful information for the designing of new antioxidant and anticorrosive additive. Based on the calculated results, antioxidant and anticorrosive efficiency can be predicted roughly as the following order: compounds III>II>I>IV>V.

  12. Action mechanism of antioxidation and anticorrosion andmolecular design for perfiuoropolyether fluid additives (Ⅱ)Synthesis and measurement of N-substituted perfluoropolyalkylether phenyla-mide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three kinds of the antioxidation and anticorrosion additives from the N-substituted per-fluoropolyalkylether phenylamide (PFPEA) were selected and synthesized. UV and IR spectralanalyses were carried out, and strong absorption peaks of UV from benzene ring are about 240.7,215.4 and 230.1 nm, respectively. The characteristic peaks of IR from the C==O are about 1713.9,1712.2 and 1710.8 cm-1, respectively. The antioxidant and anticorrosive property was tested forthe three synthesized additives. The results show that the weight loss of lubrication oil can de-crease by 1/7, 1/9 and 1/25 respectively after adding synthesized additives. The thermal decom-position temperature(TD) in the presence of Al2O3 can increase by 19-22℃. From theoretic andexperimental study it indicates that the PFPEAs with nitrogen heteroatom not only accepts electronfrom perfluoropolyalkylether oxygen radical (RfO.) to form a stable adduct and to prevent RfO. de-composing further, but also donates electron to form chemical adsorption film and to protect metalfrom corrosion. These additives have shown the better property of the antioxidation and anticorro-sion. An electron-releasing group, or phenyl group, introduced to the N-atom of this kind of com-pound can improve the antioxidant and anticorrosive efficiency of the additives.

  13. Epoxy coatings for anticorrosion challenges: a link between chemistry and performance?

    Energy Technology Data Exchange (ETDEWEB)

    Sauvant-Moynot, Valerie; Schweitzer, Sylvie; Grenier, Jacky; Duval, Sebastien [Institut Francais du Petrole, 1 et 4 avenue Bois Preau, 92450 Rueil-Malmaison (France)

    2004-07-01

    Epoxy coatings have been used extensively for pipeline protection in the oil and gas industries over the past decades. Thank to their outstanding adhesive properties, epoxy resins are classically used for external coating of offshore pipelines although cathodic protection is applied. They provide corrosion protection while being used as neat coating or as primer layer in a three-layer coating. Protection of internal pipelines devoted to gas transport is another application of epoxy coatings. Whatever the case, the choice of the right epoxy formulation should be adapted to the service conditions, namely exposition medium and temperature, in order to provide efficient and sustainable corrosion protection. Epoxy resins constitute a wide family and classical formulations may not fulfill the requirements of today's challenges: as pipelines are require d to operate in more and more difficult conditions, coatings are expected to function in higher temperature conditions; additionally, practical conditions such as temporary injection of methanol make the environmental exposure of the epoxy coating harsher. Therefore, there is a need of a better knowledge of technical performance and limitations of high temperature epoxy resins. This paper examined the influence of the epoxy network architecture on their protection properties and durability while exposed to distilled / sea water at 110 deg. C and to methanol at room temperature. The objective was to investigate the link between resin chemistry and final performance with respect to anticorrosion applications. Five epoxy resin formulations mixed in stoichiometric proportions were cured and post-cured to infinite extent in order to achieve densely cross-linked networks exhibiting controlled and reproducible architectures. Gravimetric and pressurised differential scanning calorimetry (DSC) measurements were performed to evaluate the plasticization effect of both water and methanol on formulations under study. The related

  14. Modifying the TiAlZr biomaterial surface with coating, for a better anticorrosive and antibacterial performance

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, Daniela; Grecu, Mihaela; Ungureanu, Camelia [University ' Politehnica' of Bucharest, Faculty of Applied Chemistry and Materials Science 1-7, Polizu Str., 011061, Bucharest (Romania); Demetrescu, Ioana, E-mail: i_demetrescu@chim.upb.ro [University ' Politehnica' of Bucharest, Faculty of Applied Chemistry and Materials Science 1-7, Polizu Str., 011061, Bucharest (Romania)

    2011-08-15

    The paper investigates the increase of anticorrosive and antimicrobial properties of a composite elaborated by coating TiAlZr with Ag nanoparticles. Silver nanoparticles (AgNPs) were synthesized by reducing silver salts using NaBH{sub 4}, and were characterized using dynamic light scattering instrument to determine the size distribution. The morphological and elemental analysis of Ag nanoparticles on the TiAlZr surface were performed with scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS). Antibacterial activity was evaluated on the basis of the inhibition of the growth of Escherichia coli bacteria, and of the electrochemical parameters from dynamic polarization tests performed in Ringers bioliquid. An empirical model of antibacterial effect of silver nanoparticles at biointerface in the presence of TiAlZr implant was discussed.

  15. Modifying the TiAlZr biomaterial surface with coating, for a better anticorrosive and antibacterial performance

    Science.gov (United States)

    Ionita, Daniela; Grecu, Mihaela; Ungureanu, Camelia; Demetrescu, Ioana

    2011-08-01

    The paper investigates the increase of anticorrosive and antimicrobial properties of a composite elaborated by coating TiAlZr with Ag nanoparticles. Silver nanoparticles (AgNPs) were synthesized by reducing silver salts using NaBH 4, and were characterized using dynamic light scattering instrument to determine the size distribution. The morphological and elemental analysis of Ag nanoparticles on the TiAlZr surface were performed with scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS). Antibacterial activity was evaluated on the basis of the inhibition of the growth of Escherichia coli bacteria, and of the electrochemical parameters from dynamic polarization tests performed in Ringers bioliquid. An empirical model of antibacterial effect of silver nanoparticles at biointerface in the presence of TiAlZr implant was discussed.

  16. An electrochemical method for evaluating the resistance to cathodic disbondment of anti-corrosion coatings on buried pipelines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Methods for evaluating the resistance to cathodic disbondment (RCD) of anti-corrosion coatings on buried pipelines were reviewed. It is obvious that these traditional cathodic disbondment tests (CDT) have some disadvantages and the evaluated results are only simple figures and always rely on the subjective experience of the operator. A new electrochemical method for evaluating the RCD of coatings, that is, the potentiostatic evaluation method (PEM), was developed and studied. During potentiostatic anodic polarization testing, the changes of stable polarization current of specimens before and after cathodic disbonding (CD) were measured,and the degree of cathodic disbondment of the coating was quantitatively evaluated, among which the equivalent cathodic disbonded distance △D was suggested as a parameter for evaluating the RCD. A series of testing parameters of the PEM were determined in these experiments.

  17. Development of anti-corrosion coating on low activation materials against fluoridation and oxidation in Flibe blanket environment

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Takuya, E-mail: Nagasaka@nifs.ac.jp [National Institute for Fusion Science, Oroshi 322-6, Toki, Gifu 509-5292 (Japan); Kondo, Masatoshi; Muroga, Takeo; Sagara, Akio; Motojima, Osamu [National Institute for Fusion Science, Oroshi 322-6, Toki, Gifu 509-5292 (Japan); Tsutsumi, Tatsuya; Oishi, Tatsuya [Shinto Industrial Co., Ltd., Kururi 376-10, Tokitsu, Nagasaki 851-2107 (Japan)

    2010-12-15

    W coating by vacuum plasma spray process and Cr coating by chromizing process were performed on fusion low activation materials, JLF-1 ferritic steel and NIFS-HEAT-2 vanadium alloy. The present study discusses feasibility of the coatings as anti-corrosion coating against fluoridation in Flibe for fusion low activation materials. Coatings were characterized by microstructural analysis and examination on chemical stability by corrosion tests. The corrosion tests were conducted with H{sub 2}O-47% HF solution at RT and He-1% HF-0.06 H{sub 2}O gas mixture at 823 K to simulate fluoridation and oxidation in Flibe. The coatings presented suppression of fluoride formation compared with JLF-1 or NIFS-HEAT-2, however weight loss due to WF{sub 6} formation was induced, and much Cr{sub 2}O{sub 3} was formed.

  18. 钢结构及网架长效防腐%LONG-LASTING ANTICORROSION OF STEEL STRUCTURE AND LATTICED FRAME

    Institute of Scientific and Technical Information of China (English)

    张炼

    2001-01-01

    首都机场四机位库的钢结构及网架,锦西炼化总厂大型电缆桥架,厦门工程机械厂网架等均采用喷射除锈、环氧彩色漆、氯化橡胶漆,防腐效果好,寿命长久。%The spray derusting, color epoxy Paint and chlorinated rubberpaint were used for the steel structure and latticed frame of the four-bay hangar for Capital Airport, the large cable bridge of Jinxi Lianhua Main Workshop and the latticed frame for Xiamen Engineering Machinery Plant, by which a long-lasting anticorrosion effectiveness has been obtained.

  19. Anti-corrosion coating of wind power equipment%风力发电设备防腐涂装

    Institute of Scientific and Technical Information of China (English)

    李承宇; 王会阳; 晁兵; 李萍; 倪雅

    2011-01-01

    The running environment and corrosion status of wind power equipment was analyzed. The anti-corrosion design methods for towers, vanes and other parts were introduced. Some shortcomings existing in wind power coatings development and coating practice in China and corresponding suggestions were presented.%分析了风力发电设备的运行环境与腐蚀状况,介绍了风电塔架、叶片和其它部件的防腐设计方法,指出了我国风电涂料开发与涂装实践中存在的不足,并提出了相应的建议.

  20. Anticorrosion Performance of Carbon Steel in 55% LiBr Solution Containing PMA/SbBr3 Inhibitor

    Institute of Scientific and Technical Information of China (English)

    HU Xian-qi; LIANG Cheng-hao; HUANG Nai-bao

    2006-01-01

    The anticorrosion performance of carbon steel in 55% LiBr solution containing PMA/SbBr3 inhibitor was studied by weight-loss tests, electrochemical measurements and surface analysis. In 55%LiBr+PMA/SbBr3 solution, corrosion rates of carbon steel at 145 ℃, 175 ℃, 190 ℃ and 240 ℃ are 18.32 μm·a-1, 27.68 μm·a-1, 53.58 μm·a-1 and 73.78 μm·a-1, respectively. PMA/SbBr3 inhibitor may inhibit the corrosion of carbon steel in 55% LiBr solution effectively. Especially, it shows an excellent corrosion inhibition performance at high temperature. Both anodic and cathodic reactions of carbon steel may be inhibited by PMA/SbBr3 inhibitor, so it may be classified as mixed inhibitor. In 55%LiBr+PMA/SbBr3 solution, the apparent activation energy of the corrosion reaction of carbon steel is 29.61 kJ·mol-1. The corrosion inhibition mechanism of PMA/SbBr3 is suggested as follows: PMA has the effect of inhibiting hydrogen evolution and a strong oxidizing property; Sb3+ also exhibits oxidizing properties, and can exist stably with PMA in LiBr solutions; the passive film comprising Fe2O3 and antimony formed on carbon steel surface may prevent Br- from diffusing into the metal surface due to the synergistic effect of PMA and Sb3+; As a result, the anticorrosion performance of carbon steel may be improved by PMA/SbBr3 inhibitor in 55% LiBr solution.

  1. Selection of optimal conditions for anti-corrosive microbial biopolymer production by the Flavobacterium strain using response surface methodology (RSM

    Directory of Open Access Journals (Sweden)

    mojtaba khani

    2016-09-01

    Full Text Available Introduction: Various methods have been proposed to deal with corrosion. One of these methods is using of paints and coatings. In formulation of paints and coatings several anti-corrosion compounds are applied that slow down the corrosion process. In this respect, using microbial biopolymers can improve this problem in the industry with lower costs because of biopolymer production not required to factory and advanced industry. in this study, the effects of temperature, pH and agitation on the biopolymer production using response surface methodology (RSM were evaluated. Materials and methods: To produce biopolymer, the culture medium (300 ml were added in the 500 ml erlenmeyer flasks. Then, the bacterial preculture medium (6% V/V were inoculated in the flasks and incubated for 96hr in different conditions (agitation speed, tempreture and pH. Afterwards, the medium was centrifuged at 9000 rpm for 10 min and the supernatant was mixed with triple volume of chilled absolute ethanol and stored at 4°C for 24hr to precipitate. Results: Analysis of the results of design experiments indicate that the biopolymer production­ was strongly governed by the temperature, pH and agitation. The biopolymer production increased steadily up to pH 8 and decreased in the higher pH values. Also, for cell growth suitable temperature was 33°C and maximum concentration of the biopolymer production was agitation of 210 rpm. Finally, maximum concentration of the biopolymer production (14.3g/l was determined to be in pH of 8, temperature of 33°C and agitation of 210­rpm. Discussion and conclusion: Anti-corrosive biopolymer production by Flavobacterium sp. affected significantly by physical parameters. The results of the biopolymer production by investigating the conditions of temperature, pH and agitation after optimization, indicates the importance of this parameter for economic production of biopolymer.

  2. Research progress of anti-corrosion epoxy resin coating%防腐环氧树脂粘接涂层的研究进展

    Institute of Scientific and Technical Information of China (English)

    明杜; 舒武炳; 秦卫

    2011-01-01

    Several mechanisms were introduced for anti -corrosion coatings, then the research progresses of epoxy resin(EP) anti-corrosion coating at home and abroad were also introduced from development of some fields such as filler,corrosion inhibitor,EP matrix resin and EP conductive coating. Finally,the development direction of EP anti-corrosion coating based on environmental protection trend was expected.%简要介绍了粘接涂层防腐的几种机制.从填料的发展、缓蚀剂的发展、EP(环氧树脂)基体的发展和导电EP粘接涂层的发展等方面,介绍了国内外防腐EP粘接涂层的研究进展.最后基于环保性趋势对防腐EP粘接涂层的发展方向作了展望.

  3. 特种风力发电机组塔筒防腐方案研究%Study on anticorrosion scheme of special wind turbine tower

    Institute of Scientific and Technical Information of China (English)

    古雅琦; 王海龙; 杨怀宇

    2012-01-01

    高原和海洋的风能资源丰富,更能发挥大容量风力发电机组的优势,利用前景广阔.但高原和海上的自然环境恶劣,对风机承载部件——塔筒的防腐要求更为严格.针对在高原和海上运行的特种风机,分析了塔筒的腐蚀环境,研究了塔筒的防腐原理,提出了塔筒的具体防腐措施和防腐方案,为特种风机塔筒的防腐提供了参考.%Resourceful wind energy on the plateau and sea can give full play to the advantages of large wind turbine, but the environment on those places is harsh. Bearing the weight of wind turbine, the towers have more serious corrosion challenge. In view of the special wind turbines such as high altitude wind turbines and offshore wind turbines, the corrosion environment in which the wind turbines are working is analyzed, and the tower anticorrosion principle is studied. The specific anticorrosion measures and schemes of tower in the plateau and marine environment are developed, which provide reference to the anticorrosion of the special wind turbine tower.

  4. 遗体防腐处理方法%The Methods for Mortal Remains Anti-corrosion

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      为了促进医学教学与遗体器官捐献事业发展,我国已经在中国红十字会的引领下开展遗体捐献与接收工作。本文叙述遗体接收利用单位对遗体的防腐处理方法,在处理过程中可能遇到的问题与处理方式。期待更多医疗卫生相关单位掌握防腐处理技术,促进我国遗体捐献工作。%In order to promote the development of medical teach-ing and organ donation of the body, we have carried out under the lead of the Red Cross Society of China remains donation and re-ceipt of work. This article describes receiving unit for anticorro-sion treatment of the remains of the body, and may encounter problems during the process and approach. Looking forward to more access to preservative treatment technology of medical and health, promoting body donation in China.

  5. Scratch Cell Test: A Simple, Cost Effective Screening Tool to Evaluate Self-Healing in Anti-Corrosion Coatings

    Science.gov (United States)

    Rani, Amitha; Somaiah, Durga; Megha; Poddar, Mitalee

    2014-09-01

    A quick and simple scratch cell set up to evaluate the self-healing of an hybrid sol-gel (ormosil) coating was fabricated. This methacrylate-based anti-corrosion coating was applied on the aerospace aluminium alloy AA2024-T3, and cured at room temperature. This technique of evaluation requires minimum instrumentation. The inhibitors cerium nitrate, benzotriazole and 8-hydroxy quinoline (8-HQ) were used in the study. The self-healing ability of the inhibitors decreased in the following order: 8-HQ, BTZ and Ce. 8-HQ showed the highest self-healing ability and was comparable to the commercial hexavalent chromium conversion coating—Alodine. Spectroscopic analysis of the electrolyte and EDX of the coatings indicated the movement of the inhibitor from the coating to the site of damage, thereby effecting self-healing. It was observed that an increased inhibitor concentration in the coatings did not accelerate the healing process. Inhibitor release was slower in the coatings doped with inhibitor-loaded nano-containers, when compared to inhibitor-spiked coatings. This property of controlled release is desirable in self-healing coatings. Electro impedance studies further confirmed self-healing efficiency of the coatings. The scratch cell study reported here is the first of its kind with the ormosil under study on AA2024-T3 aluminium alloy. The results are encouraging and warranty a quick and simple qualitative screening of the self-healing potential of the inhibitors with minimum instrumentation.

  6. Effect of preparation method on the anti-corrosive properties of nanocrystalline Zn-CoO ceramic pigments

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, S. [Department of Nanotechnology, Institute for Color Science and Technology (ICST), 55 Vafamanesh Ave., HosseinAbad Square, Pasdaran St., 1668814811 Tehran (Iran, Islamic Republic of); Danaee, I. [Abadan Faculty of Petroleum, Petroleum University of Technology (PUT), Abadan (Iran, Islamic Republic of)

    2011-05-15

    Zn-CoO green ceramic pigments were synthesized by two different methods; high energy ball milling and solution combustion, with two different fuels; citric acid and glycine. Products were characterized by X-ray diffraction and scanning-transmission electron microscopy (TEM). The anti-corrosive properties of the obtained pigments were investigated by electrochemical impedance spectroscopy (EIS) techniques. Results have shown that either by solid state reaction or combustion by citric acid, a calcination step was needed to obtain the desired phase whereas by glycine fuel, pure ZnO phase was obtained directly. TEM showed particles with mean particle size of about 70, 150, and 180 nm for glycine, citric acid, and solid state reaction samples, respectively. The corrosion performance of the coating in 3% w/v NaCl solution was evaluated by EIS and polarization measurements. According to the measurements of EIS and electrochemical polarization, the coatings with glycine-based pigment showed the highest corrosion resistance among the prepared coatings. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. REACH exposure assessment of anticorrosive paint products--determination of exposure from application and service life to the aquatic environment.

    Science.gov (United States)

    Gade, Anne Lill; Heiaas, Harald; Thomas, Kevin; Hylland, Ketil

    2011-12-01

    The European Community Regulation on the registration, evaluation, authorisation and restriction of chemicals (REACH) introduced exposure scenarios describing safe use quantitatively, and enhancing the importance of scientific based exposure assessments. This paper presents methods to determine exposure from the airless spray application of anti-corrosive paint and leaching of painted articles submerged in seawater, to establish whether it is possible to test these exposures in a reproducible and feasible way. The paper also presents results from using the methods in order to assess how well the default values recommended under REACH coincide with the tested values and corresponding values available in literature. The methods used were feasible under laboratory conditions. The reproducibility of the application study was shown to be good and all analyses of the leaching showed concentrations below detection limit. More replicates will be required to validate the reproducibility of the growth inhibition tests. Measured values for the present overspray scenario were between, and the leaching values below, values from REACH guidelines and emission scenario documents. Further development of the methods is recommended.

  8. Development of Castor oil Modified Epoxy Polyurethane Anti-corrosion Coatings%蓖麻油改性环氧聚氨酯防腐蚀涂料的研制

    Institute of Scientific and Technical Information of China (English)

    李阳

    2012-01-01

    A kind of castor oil-modified epoxy polyurethane anti-corrosion coating was introduced. Castor oil modified isocyanate prepolymer and epoxy resin were used as basic materials,cheap talc, titanium dioxide, precipitated barium sulfate were used as pigment and filler , a kind of low cost and excellent performance anti-corrosion coating was developed. The performance of the coating developed under optimized conditions was detected. Castor oil modified epoxy polyurethane anti-corrosion coating and epoxy polyurethane anti-corrosion coating were compared. The results show that castor oil modified epoxy polyurethane anti-corrosion coating is better than epoxy polyurethane anti-corrosion coating in the aspects of acid - resistant, alkali - resistant and seawater - resistant.%介绍了一种蓖麻油改性的环氧聚氨酯防腐蚀涂料、以蓖麻油改性异氰酸酯预聚物和环氧树脂为基料,以价格较为低廉的滑石粉、钛白粉、沉淀硫酸钡为颜填料制备了成本较低,件能较为优异的防腐蚀涂料.检测了优化条件下制备的涂料的性能.以蓖麻油改性环氧聚氨酯防腐蚀涂料和未经蓖麻油改件的环氧聚氨酯防腐蚀涂料进行防腐蚀性能对比,蓖麻油改性环氧聚氨酯防腐蚀涂料的耐酸、碱、盐水等防腐蚀性能更好.

  9. Anticorrosive Design for Steel Structured Foundation for Offshore Wind Turbines%海上风机基础钢结构防腐蚀设计

    Institute of Scientific and Technical Information of China (English)

    乐治济; 林毅峰

    2013-01-01

    The paper summarizes the characteristics of corrosion of foundations for offshore wind turbines and the anticorro-sive measures in common use for offshore wind turbine foundations. The technology of anticorrosion coating in atmospheric zone where high weather sustainability is required and the technology of anticorrosion coating and wrapping in the splash and tidal zones where high corrosion resistance is required are analyzed and compared. It is then recommended that a corrosion protection design for an offshore wind turbine foundation should take into consideration the full life cycle of the foundation in its whole construction and operational duration,and relative design considerations are put forward for the reference for selec-tion of corrosion protection designs of offshore wind turbine fields.%总结了海上风机基础的腐蚀特点,以及适用于海上风机基础的常用防腐蚀方法。着重分析比较了耐候性要求高的大气区的涂层防腐技术、耐蚀性要求高的浪溅区、水位变动区的涂层防腐技术和包覆防腐技术。建议风机基础防腐蚀设计采用考虑整个建设和运行期的全寿命周期设计,并阐述了相关设计要点。可供海上风电场选择防腐蚀设计方案参考。

  10. 浅析化工设备防腐蚀涂装的质量控制%The Quality Control of Anticorrosion Coating of Chemical Equipment

    Institute of Scientific and Technical Information of China (English)

    何刚

    2016-01-01

    This paper analyzed the quality control of chemical equipment anticorrosion coating from the aspects of the surface treatment before painting, the quality control of painting process and coating defects treatment, etc.%本文从涂装前表面处理、涂装过程的质量控制、涂装缺陷的处理等方面入手,浅析了化工设备防腐蚀涂装的质量控制。

  11. Anti-corrosion Technology for Offshore Drilling Platform Fasteners%海洋平台紧固件防腐工艺探讨

    Institute of Scientific and Technical Information of China (English)

    黄建勋; 徐红九; 刘宏亮; 王明磊

    2013-01-01

    To achieve long and effective anti-corrosion of fasteners and standard parts of offshore drilling platforms and to solve the problem of corrosion caused by severe environment, the anti-corrosion technology of the KK1 # composite coating was proposed. The technology adopts the composite coating of " electrolytic zinc and Xylan paint" . It makes use of the self-lubricating property of the Xylan 1424 water paint dry film and the characteristic of frictional factor between 0. 05 and 0. 10. It has the advanced anti-salt spray corrosion performance and very strong anti-acid rain performance and anti-chemical corrosion performance. Compared with galvanized coating, KK1# composite coating improves anti-corrosion capacity remarkably. As for black oxide fasteners, the torsion has been reduced by 70% . It has anti-seizure and anti-deformation functions. The test findings of the anti-corrosion coating show that after 2 500 hours of salt spray resistance test, the component with KK1# composite coating has 33% of white rust area and less than 1 % of red rust area. The latter goes far beyond and thus desirably satisfies the requirement that red rust area should be less than 15% of the total.%为了实现海洋平台紧固件和标准件的长效防腐,解决恶劣环境带来的腐蚀问题,提出了KK1#复合涂层防腐工艺.该工艺采用“电镀锌+Xylan狮隆涂料”复合涂层,利用了Xylan 1424水性涂料的干膜自润滑性能和摩擦因数在0.05 ~0.10之间的特性,具有优越的防盐雾腐蚀性能,极强的抗酸雨性能以及防化学腐蚀性能.相比镀锌涂层,KK1#复合涂层能大幅提高防腐蚀能力,相对于发黑紧固件,减小扭矩高达70%,具有防咬死、防变形功能.防腐涂层测试结果表明,涂有KK1#复合涂层的构件耐盐雾试验2 500 h后,白锈面积33%,红锈面积小于1%,远超出红锈面积不大于15%的要求.

  12. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  13. Development of Castor Oil Based Poly(urethane-esteramide/TiO2 Nanocomposites as Anticorrosive and Antimicrobial Coatings

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2015-01-01

    Full Text Available Castor oil based polyesteramide (CPEA resin has been successfully synthesized by the condensation polymerization of N-N-bis (2-hydroxyethyl castor oil fatty amide (HECA with terephthalic acid and further modified with different percentages of 7, 9, 11, and 13 wt.% of toluene-2,4-diisocyanate (TDI to obtain poly(urethane-esteramide (UCPEA, via addition polymerization. TiO2 (0.1, 0.2, 0.3, 0.4, and 0.5 wt% nanoparticles were dispersed in UCPEA resin. The structural elucidation of HECA, CPEA, and UCPEA has been carried out using FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques while physicochemical and physicomechanical properties were investigated by standard methods. Thermal stability and molecular weight of UCPEA have been assessed by thermogravimetric analysis (TGA and gel permeation chromatography (GPC, respectively. Furthermore, the corrosion behavior of UCPEA coatings on mild steel has been investigated by potentiodynamic polarization measurements in different corrosive environments (3.5 wt% HCl, 5 wt% NaCl, 3.5 wt% NaOH, and tap water at room temperature and surface analysis by scanning electron microscope (SEM and energy dispersive X-ray (EDX. The antibacterial activities of the UCPEA were tested against bacteria and fungi by agar disc diffusion method. The results of this study have revealed that UCPEA nanocomposite coatings exhibit good physicomechanical, anticorrosion and antimicrobial properties, which can be safely used up to 200°C.

  14. Discussion on processing and anti-corrosion of high -acid crudes%高酸原油的加工及防腐工艺的探讨

    Institute of Scientific and Technical Information of China (English)

    梁金强; 王延臻; 贾远远; 徐学飞

    2011-01-01

    随着原油的深度开采,高酸值原油的产量逐年增加.高酸原油在加工过程中对炼油设备造成极其严重的腐蚀,影响了炼油装置的安全长周期运转,防腐就显得尤为重要了.综合叙述了原油中的腐蚀介质、腐蚀作用及影响腐蚀的因素,最后从工艺、材料和外加添加剂等方面提出了防护措施.%With the depth of oil exploration, the crude oil production of high acid value increases year by year. Very serious corrosion to the processing equipments are caused by high-acid crude oil during the course of processing, the anticorrosion becomes more and more important. Corrosive medium in crude oil, corrosive action and all kinds of corrosion factors are expounded comprehensively. Various anticorrosion measures are proposed from the process route, material, and additives.

  15. [Volume chemistry-ultraviolet spectrum differential method for determining the oxygen content in anti-corrosion copper powder with surface film consisting of benzotriazole].

    Science.gov (United States)

    Zhang, Tai-ming; Ding, Feng; Liang, Yi-zeng

    2006-11-01

    A method for determining the oxygen content in anti-corrosion copper powder with benzotriazole inhibitor surface film was established and the ultraviolet spectra of benzotriazole under various conditions were studied. The maximum absorption was at lamdamax=273 nm, and the temperature did not influence the absorption intensity at normal temperature. The linear range of concentration was 0-2.2 microg x mL(-1), the detection limit was 0.02 microg x mL(-1), and the apparent molar absorptivity of benzotriazole was epsilon = 5.41 x 10(4) L x mol(-1) x cm(-1) at 273 nm. Because the anti-corrosion copper powder consisted of copper metal, copper oxide and benzotriazole protecting film, the Cu and BTA contents of the powder were determined through EDTA titration and ultraviolet spectrophotometry, respectively, after the samples were decomposed with HCl and H2O2, and the oxygen content of the powder was calculated by differential method. The instruments are simple, the method is economical, and the manipulation is convenient. The standard deviation is 1.7%, and the differentiation coefficient is 7.6%. In conjunction with the application of the national standard method, the oxygen contents before and after the formation of the protecting film of the electrolyte copper powder were comparatively analyzed with satisfactory results.

  16. Estudio de las Propiedades Anticorrosivas del Benzoato de Hierro (III en Pinturas Base Solvente Study of Anticorrosive Properties of the Iron (III Benzoate in Solvent Based Paints

    Directory of Open Access Journals (Sweden)

    Guillermo Blustein

    2006-01-01

    Full Text Available La acción inhibidora del benzoato de hierro en electrodos de acero SAE 1010 en contacto con una suspensión acuosa fue estudiada mediante ensayos electroquímicos. Paralelamente, la eficiencia anticorrosiva de este producto incorporado a cubiertas orgánicas base solvente fue evaluada mediante ensayos de envejecimiento acelerado (cámara de niebla salina y de humedad. La evolución del comportamiento protector de la cubierta aplicada sobre paneles de acero pintados e inmersos en una solución 0.5M de NaClO4 fue periódicamente monitoreada por espectroscopía de impedancia electroquímica. Los resultados obtenidos indican que las pinturas formuladas con benzoato férrico presentan una capacidad anticorrosiva comparable a las formuladas con fosfato de cinc.This study investigated the inhibitory action of iron benzoate on SAE 1010 steel electrodes in aqueous suspensions using electrochemical assays. The anticorrosive efficiency of this product added to organic solvent-based coatings was also evaluated by means of accelerated weathering tests (salt spray cabinet and humidity chamber. The evolution of the protective behavior of the coating applied on steel panels and immersed in 0.5M NaClO4 solution was periodically checked by electrochemical impedance spectroscopy. The results obtained showed that paints formulated with ferric benzoate provide anticorrosive protection similar to those formulated with zinc phosphate.

  17. Adsorption of alginate and albumin on aluminum coatings inhibits adhesion of Escherichia coli and enhances the anti-corrosion performances of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaoyan; Liu, Yi; Huang, Jing; Chen, Xiuyong; Ren, Kun; Li, Hua, E-mail: lihua@nimte.ac.cn

    2015-03-30

    Graphical abstract: - Highlights: • Adsorption behaviors of alginate and albumin on Al coatings were investigated at molecular level. • The adsorption inhibits effectively the colonization of Escherichia coli bacteria. • The adsorption alters the wettability of the Al coatings. • The conditioning layer enhances anti-corrosion performances of the Al coatings. - Abstract: Thermal-sprayed aluminum coatings have been extensively used as protective layers against corrosion for steel structures in the marine environment. The corrosion usually deteriorates from marine biofouling, yet the mechanism of accelerated corrosion of the coatings remains elusive. As the first stage participating in biofouling process, adsorption of molecules plays critical roles in mediating formation of biofilm. Here, we report at molecular level the adsorption behaviors of albumin and marine polysaccharide on arc-sprayed aluminum coatings and their influence on adhesion of Escherichia coli. The adsorption of alginate and albumin was characterized by infrared spectra analyses and atomic force microscopic observation. The adsorption inhibits effectively adhesion of the bacteria. Further investigation indicates that alginate/albumin altered the hydrophilicity/hydrophobicity of the coatings instead of impacting the survival of the bacteria to decline their adhesion. The conditioning layer composed of the molecules enhances anti-corrosion performances of the coatings.

  18. Intelligent saline enabled self-healing of multilayer coatings and its optimization to achieve redox catalytically provoked anti-corrosion ability

    Science.gov (United States)

    Syed, Junaid Ali; Tang, Shaochun; Meng, Xiangkang

    2016-10-01

    To obtain a coating with both self-healing and redox catalytic ability to protect a metal substrate from corrosion under aggressive environment is strongly desired. Herein, we report the design and fabrication of intelligent polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) multilayer composite coatings by spin assembly. The main influencing factors, including solution concentration (c) and disk rotating speed (ω) were studied in order to gain excellent performance. The resulting multilayer coatings with thickness in a range from 0.47 to 2.94 μm can heal severe structural damages and sustain a superior anti-corrosive performance for 120 h in 3.5% NaCl. The PANI-PAA layer enhances the anti-corrosion property and PEI layer contributes to the self-healing ability as well as their multilayer combination strengthens them. The improved self-healing ability is attributed to the rearrangement and reversible non-covalent interactions of the PANI-PAA and PEI layers that facilitates electrostatic repairing.

  19. 油井杆、管、泵腐蚀原因分析与防腐措施综述%Analysis of Corrosion and Anticorrosion Measure of Rod, Pile and Pump in Oil Well

    Institute of Scientific and Technical Information of China (English)

    孙宾宾

    2015-01-01

    分析了采油井杆、管、泵腐蚀的原因,包括原电池型腐蚀、析氢型腐蚀、氧化型和二氧化碳型腐蚀、硫化裂纹型腐蚀、细菌型腐蚀等;综述了井下设备的防腐措施,包括注入缓蚀剂、涂镀层防腐、采用渗氮油管防腐、采用抗腐蚀管材、采用阴极保护等。采油井杆、管、泵腐蚀是一个多因素的问题,需要通过对腐蚀机理的深入研究,才能开发出防腐的更好方法。%The corrosion reasons of rod, pile and pump in oil well were analyzed, such as galvanic corrosion, hydrogen evolution corrosion, oxidized and carbon dioxide corrosion, crack sulfide corrosion, bacterial corrosion, and so on. The anti-corrosion measures of down-hole equipments were summarized, such as inhibitor injection, coating anti-corrosion, anti-corrosion using nitriding pipeline, anti-corrosion using resistant pipes, cathode protection, and so on. The corrosion of rod, pile and pump were multi-factorials problem, in order to develop a better way to anti-corrosive, the corrosion mechanism must be in-depth studied.

  20. Study on Corrosion of the Foam Glass Anti-corrosion Lining%泡沫玻璃砖防腐内衬腐蚀研究

    Institute of Scientific and Technical Information of China (English)

    黎优霞; 冀运东

    2015-01-01

    Etching solution leaked from the thermal power plant wet chimney, which adopted domestic foam glass anti-corrosion lining and worked for a period of time. The performance of the foam glass anti-corrosion lining of it was studied in this paper. The properties of the foam glasses and plaster picking from the chimney lining were characterized by EDS and FT-IR. The results showed that the alkali metals (including Fe, K, Al, Na, Mg and so on) in the domestic foam glasses reacted with the acid corrosive media of the wet gas, which gave rise to the destruction of the closed pore structure and crisp cracking of the bricks; meanwhile, pendant groups on the polysiloxane matrix shed and Si-O-Si rigid structure increased in the main chain, which result in the loss of elasticity and adhesion of the plaster, then the foam dlass anti-corrosion lining fell off.%采用国产泡沫玻璃砖防腐内衬的火电厂湿烟囱,运行一段时间后,出现严重的渗透腐蚀现象。本文以湿烟囱排烟筒上脱落的泡沫玻璃砖为实验对象,利用EDS和FT-IR分别研究了国产泡沫玻璃砖和有机硅防腐胶泥的腐蚀状况及原理。结果表明,国产泡沫玻璃砖中含有Fe、K、Al、Na、Mg等碱金属,遇酸反应,导致砖体密闭孔隙结构破坏,酥化开裂,失去防腐作用;聚硅氧烷基体的侧基脱落,主链中Si-O-Si刚性结构增多,胶泥失去弹性和粘接性,导致防腐内衬整体脱落。

  1. Present Status and Research Progress of Anti-corrosion Technology in Pipeline%管道内防腐技术现状与研究进展

    Institute of Scientific and Technical Information of China (English)

    赵帅; 兰伟

    2015-01-01

    介绍了石油管道内溶解氧、二氧化碳、硫化氢、以及二氧化碳和硫化氢协同腐蚀的机理. 综述了油气管道内防腐技术,现阶段主要的处理方式是选择耐蚀金属材料或非金属材料、添加缓蚀剂、涂层防腐和衬里防腐. 分析了各种内防腐技术的优缺点,认为管道内防腐在未来的发展方向是将基材选择、添加缓蚀剂、内涂镀层和内衬里技术进行综合,以减缓管道内的腐蚀. 低碳钢表面镀镍层自纳米合金化技术,即是集中内防腐技术的综合运用,得到了表面无缝冶金结合的高耐蚀性能管材,是未来发展趋势的代表.%The co-corrosion mechanism of oil and gases such as dissolved oxygen, carbon dioxide, hydrogen sulfide as well as carbon dioxide and hydrogen sulfide in the pipeline was described. The anti-corrosion technology of oil and gas in pipeline was re-viewed, including selection of corrosion resistant metallic materials or non-metallic materials, addition of corrosion inhibitor, coat-ing technology and lining technology. The paper analyzed advantages and disadvantages of various anti-corrosion technology and proposed that the future development trend of pipeline corrosion would be combination of substrate selection with addition of corro-sion inhibitors and internal lining technology for coating and lining to slow down the corrosion inside the pipe. Low carbon steel nickel-plated layer by nano alloying technology, which is the integrated utilization of concentrated anti-corrosion technology to ob-tain high metallurgical bonding surface seamless pipe with high corrosion resistance, is representative of future trends.

  2. Zn-Ni合金防腐涂层技术研究进展%The Development of Zn-Ni Alloy Anticorrosive Coating

    Institute of Scientific and Technical Information of China (English)

    乔小平; 李鹤林; 赵文轸

    2011-01-01

    The way of forming Zn-Ni alloy coating is a newly developed anticorrosive technology. The corrosion resistance of the Zn-Ni alloy coatings is better than that of unalloyed zinc, which shows a trend of substituting for zinc coatings and will be widely applied in the areas of steel protection. In this work, the recent development of the study on preparing Zn-Ni alloy coatings by electroplating, hot dipping, thermal spraying and diffusion are reviewed. The anti-corrosion mechanism of the Zn-Ni alloy coatings is discussed. The preparation of Zn-Ni basic alloy is the key work for the development of Zn-Ni alloy coating. The exploration of newly Zn-Ni composite coatings is the approach for the breakthrough of application; meanwhile, the research on the anti-corrosion mechanism of Zn-Ni alloy coatings should be further intensified to provide guidance for the research and application of the zinc-nickel alloy coatings.%Zn-Ni合金涂层技术是近年发展起来的防腐涂层新技术,与锌涂层相比,该涂层具有十分优异的腐蚀防护性能.随着工业的发展,Zn-Ni合金涂层将会成为锌的替代性涂层,在钢铁腐蚀防护领域得到广泛应用,极具发展前景.文中介绍了用电镀、热浸镀、热喷涂和渗镀的方法制备Zn-Ni合金涂层的主要进展情况,讨论了Zn-Ni合金涂层的腐蚀防护机理,指出了今后应把开发Zn- Ni合金基材作为Zn- Ni合金涂层技术获得突破的关键,把开发Zn-Ni复合涂层作为扩大Zn- Ni合金涂层应用的手段,同时应加强对Zn- Ni合金涂层耐腐蚀机理的研究,为Zn- Ni合金涂层技术的研究和应用提供理论指导.

  3. 湿法脱硫系统混凝土烟道内防腐蚀方案%Anticorrosion Scheme for Concrete Chimney in Flue Gas Desulphurization System

    Institute of Scientific and Technical Information of China (English)

    何思立; 李建三; 龙乃健; 曾松峰

    2014-01-01

    The corrosion behavior of bare common concrete,bare ceramsite concrete and test blocks with modified epoxy liner anticorrosion coating was studied in concrete chimney of flue gas desulphurization systems.Blister of the coating and other obvious changes did not appear on the epoxy liners after 6 months test.No any corrosion indication happened to the rebar in concrete block with epoxy liner anticorrosion coating,indicating a good protection to the rebar in concrete block.After 6 months test,the chlorine element in concrete block with epoxy liners was not found by the analysis result of energy dispersive spectrometer,and the content of sulfur did not increase compared with the untested concrete block.The results showed that the epoxy liner anticorrosion coating could prevent the permeation of harmful corrosives and provide the concrete block with very good protection.The results of engineering application experiment also proved the very good protection of epoxy liner anticorrosion scheme for concrete chimney in flue gas desulphurization systems.%采用改性环氧配套衬里的方案制备防腐蚀层。对普通混凝土试样与陶粒砼试样及防腐蚀层在脱硫系统烟道内的现场腐蚀行为进行试验研究。试验6个月后环氧配套衬里层没有鼓泡烧蚀,未观察到明显的变化。采用环氧配套衬里防腐蚀层的混凝土试块,在试验6个月后其内部的钢筋未发现腐蚀现象,表明环氧配套衬里对混凝土中的钢筋起到了较好的保护作用。试验6个月后环氧配套衬里混凝土样的能谱结果均未检测到氯元素,硫元素的含量同未试验的对比测试样相比也未增加,表明环氧配套衬里对混凝土起到了很好的保护作用。工程应用结果表明,改性环氧配套衬里的防腐蚀方案能够对湿法脱硫系统的混凝土烟道起到很好的防腐蚀保护作用。

  4. Anticorrosion property of polyaniline doped twice with functional acid%功能酸二次掺杂聚苯胺的防腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    杨显; 杨小刚; 马新起

    2014-01-01

    As polyaniline (PANI) has unique doping and dedoping characteristics, good morphology nanofibers can be synthesized under specific reaction conditions and new nanomaterials with special anticorrosion functional groups can be prepared via the dedoping and twice doping process. PANI nanofibers doped with sulfuric acid were dedoped by ammonia solution, and based on this dedoped PANI, twice doped PANI were prepared in phosphoric acid, p-toluene sulfonic acid and tartaric acid system respectively. The structure of doped and twice doped PANI was characterized by FT-IR spectrometer and UV-Vis absorption spectrometer. An electrochemical workstation was used to record the open circuit potential (OCP) and the electrochemical impedance spectroscopy (EIS) of polyaniline/epoxy composite coatings, and their anticorrosion mechanism were investigated theoretically. FT-IR spectra and UV-Vis spectra indicated that the state of PANI was doped PANI in its emeraldine salt form. The electrochemical testing results showed that every coating had certain anticorrosion performance and the impedance value suffered a significant decrease at the beginning of immersion because the coating was permeated by the corrosive medium. The impedance value of twice doped PANI and doped PANI tended to stabilize after immersion for 22 d and 60 d respectively, the protection effect could be explained by the assumption that metallic cations formed a passivating complex with the dopant anion released from PANI, which improved the barrier property of PANI coating and slowed down the further corrosion of the metal. PANI doped twice with functional acid had better anticorrosion performance than doped state and twice doped PANI had higher impedance. PANI doped twice with tartaric acid had the highest impedance, the impedance value was 3.48×107Ω·cm2 after immersion for 120 d, an order of magnitude higher than its doped state.%聚苯胺具有独特的掺杂脱掺杂特性,能在特定的反应条件下合

  5. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection.

    Science.gov (United States)

    Nguyen, Thi Anh Huong; Nguyen, Van Ri; Le, Duc Dung; Nguyen, Thi Thanh Binh; Cao, Van Hoang; Nguyen, Thi Kim Dung; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc

    2016-07-29

    The employment of an in-house-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for simultaneous determination of many rare earth elements (REEs) in ore samples from Vietnam, as well as in anti-corrosion coating samples is reported. 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were determined using an electrolyte composed of 20mM arginine and 10mM α-hydroxyisobutyric acid adjusted to pH 4.2 with acetic acid. The best detection limit achieved was 0.24mg/L using the developed CE-C(4)D method. Good agreement between results from CE-C(4)D and the confirmation method (ICP-MS) was achieved, with a coefficient of determination (r(2)) for the two pairs of data of 0.998.

  6. Highly flexible transparent self-healing composite based on electrospun core-shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation

    Science.gov (United States)

    An, Seongpil; Liou, Minho; Song, Kyo Yong; Jo, Hong Seok; Lee, Min Wook; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2015-10-01

    Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.

  7. The effect of varying carboxylic-group content in reduced graphene oxides on the anticorrosive properties of PMMA/reduced graphene oxide composites

    Directory of Open Access Journals (Sweden)

    K. C. Chang

    2014-12-01

    Full Text Available We present comparative studies on the effect of varying the carboxylic-group content of thermally reduced graphene oxides (TRGs on the anticorrosive properties of as-prepared poly(methyl methacrylate (PMMA/TRG composite (PTC coatings. TRGs were formed from graphene oxide (GO by thermal exfoliation. The as-prepared TRGs were then characterized using Fourier transform infrared (FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS. Subsequently, the PTC materials were prepared via a UV-curing process and then characterized using FTIR spectroscopy and transmission electron microscopy (TEM. PTC coatings containing TRGs with a higher carboxylic-group content exhibited better corrosion protection of a cold-rolled steel electrode that those with a lower carboxylic-group content. This is because the well-dispersed TRG with a higher carboxylic-group content embedded in the PMMA matrix effectively enhances the oxygen barrier properties of the PTC. This conclusion was supported by gas permeability analysis.

  8. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Suegama, P.H. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Sarmento, V.H.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Benedetti, A.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); de Melo, H.G.; Aoki, I.V. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Santilli, C.V., E-mail: santilli@iq.unesp.b [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2010-07-15

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  9. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  10. 两种可应用于恶劣环境的空调高防腐粉末%Two types of High-anticorrosive Powder Applied in Air-conditioner in Severe Environment

    Institute of Scientific and Technical Information of China (English)

    林路; 江秀华

    2014-01-01

    本文介绍两种空调用高防腐粉末的设计及在空调钢板上的应用,并通过盐雾实验来评定其防腐性能。结果表明,高防腐粉末可以有效提高空调的防腐性,扩大空调的使用环境。%This paper introduces the design of high-anticorrosive powder and the time the salt spray test in the steel plate of air-conditioner that can be attained. The practical conditions indicates that high-anticorrosive powder effec-tively improves the corrosion resistance of air-conditioner, and expands the operating environment of it.

  11. 高温防腐涂料与热障防腐涂层技术的研究进展%Progress in Study on Technology of High Temperature Resistant and Thermal Barrier Anti-corrosion Coatings

    Institute of Scientific and Technical Information of China (English)

    张春华; 李克军; 李安学; 李春启; 左玉帮

    2011-01-01

    综述了国内外耐高温防腐有机、无机和有机-无机复合涂料和热障防腐涂层技术的研究与应用的新进展,介绍了有机硅树脂、有机氟树脂、无机硅酸盐基涂料、无机磷酸盐基涂料、陶瓷涂层和搪瓷涂层的发展现状和前景.%The progresses in application and study on technology of high temperature resistant anti-corrosion organic, inorganic and organic-inorganic composite coatings and thermal barrier anti-corrosion coatings are summarized. The development status and prospects of organic silicon resin, organic fluororesin, inorganic silicate based coating, inorganic phosphate based coating, ceramic and enamel coatings are introduced.

  12. 埋地钢管外防腐系统腐蚀因素的检测评价与控制%Detection Assessment and Control of Corrosion Factors on External Anti-corrosion System of Buried Steel Pipelines

    Institute of Scientific and Technical Information of China (English)

    娄桂云

    2012-01-01

    Based on the external anti-corrosion detection of buried steel pipelines in North Shanghai Gas Business CO., Ltd, the artilce analyses the influences of the external anti-corrosion coating, the cathode protection effectiveness, the influences of the stray current, and puts forward the corrosion controlling method.%文章通过对上海燃气市北销售有限公司埋地钢管外防腐系统的检测,分析了外防腐层保护效果、阴极保护效果以及杂散电流对钢管腐蚀的影响,并提出了腐蚀控制措施。

  13. A New Anticorrosive Coating System For Navy Ship Hulls%新型舰船船体防腐蚀涂料配套体系的研究

    Institute of Scientific and Technical Information of China (English)

    金晓鸿; 洪栋煌

    2001-01-01

    The research of a new anticorrosive coating system fo r navy ship hulls is described. The coating system consists of the anticorrosive primer (fast drying water-based inorganic silicate zinc coating or organic zin c-rich coating ), the barrier type tie coating and the special optical finishing. The system is screened out by a series of tests including traditional performance test, acce lerated test, the system compatibility test, the simulated-panel test exposed to the sea and the ship application test. The results indicate that th e system is superior to that of the existing system in protective performances a nd is complied with the new navy requirements in optical properties.%介绍了一种新型舰船船体用防腐蚀涂料配套体系.这种涂料体系是由防锈底漆(水溶性快速固化无机硅酸锌底漆或有机富锌底漆)、具有屏蔽功能的中间层涂料和具有特种光学性能的面漆组成的.通过实验室的常规性能试验、加速暴露试验和配套性试验对研制的防锈底漆、中间层涂料和面漆配套体系进行了筛选,并对筛选出的体系进行了实海环境暴露试验、模拟体实海浸泡试验以及实艇涂装应用试验.试验结果表明,该防腐蚀涂料体系在防腐蚀性能方面明显优于目前使用的涂料体系,符合海军对舰艇艇体特种光学性能的最新要求.

  14. Development of PPESK High Temperature Resistant and Anticorrosive Coating%聚醚砜酮耐温防腐涂料的研制

    Institute of Scientific and Technical Information of China (English)

    靳钊; 左娟娟; 王志浩

    2013-01-01

    以聚醚砜酮(PPESK)为基料,分别以云母氧化铁、超磷锌白、磷铁粉为防腐填料,制备了耐高温防腐涂料.研究了填料类型对涂层耐高温防腐性能的影响.结果显示:以云母氧化铁为防腐填料制备的PPESK耐高温防腐涂料具有很好的耐氙灯老化及耐高温性能,耐氙灯老化时间大于42 d,可耐500℃高温,耐急冷急热性能优异;以磷铁粉为防腐填料制备的PPESK耐高温防腐涂料,耐盐雾、耐介质性能优异,耐盐雾时间大于42 d,对各种化学介质均有很好的耐性;而以超磷锌白制备的涂料,各项性能欠佳.%The title coating was prepared by use of poly (phthalazinone ether sulfone ketone) (PPESK) as binders and the iron phosphate,the micaceous iron oxide,the zinc phosphorus as fillers respectively.Three kinds of PPESK high temperature resistant and anticorrosive coating were prepared.The effect of anticorrosive fillers' type on the corrosion protective properties of the coatings were studied.The results indicated that the coating with micaceous iron oxide showed excellent xenon lamp aging resistance and high temperature resistance,the time of xenon lamp aging resistance was over 42 days and the temperature was 500 ℃ as well as good heat shock resistance.The coating with iron phosphate showed excellent salt fog resistance and chemical resistance over 42 days.But the coating with zinc phosphorus,didn't show good performance.

  15. Design of Bogie Anti-corrosive Thick Coating Intense Radiation Curing Technology and Equipment%浅析转向架防腐厚涂层强辐射固化工艺及设备设计

    Institute of Scientific and Technical Information of China (English)

    于喜年; 赵月红; 刘军

    2011-01-01

    In order to solve the problem on bogie anti-corrosive thick coating curing,then the thickness of anti-corrosion coating 250 μm or/about and the thickness of general dry film and 5~8 kg limited of scraping putty weight were required in accordance with relevant standards and specifications,as requlated with anti-corrosive thickness.Therefore,the still high quality on welding bogie was proposed and reguested.Analysis of bogie anti-corrosion thick coating paint,curing technology and optimal combination of special anti-corrosive coatings on the surface of high speed bogie was made,which is favourable for tech-equipment and process arrangement and coat infense radiation curing.Short-wave radiation heater is the key component of the coating to be cured.A special combination of structural design by elliptical surface and parabolic surface was adopted.It is more conducive to deep directional radiation which makes the solvent in the bottom of anti-corrosive coating evaporate quickly as a result of strong coating adhesion.Therefore short-wave radiation heater is more suitable for curing the thick coating of wheel axis.Intense radiation curing equipment,parametric design and its virtual assembly provide quick and easy reference in design of anti-corrosive coating curing equipment to produce other relevant products for different manufactures being concerned.%为解决转向架防腐厚涂层固化问题,依照相关标准和规范,对防腐涂层厚度作出规定,要求总干膜厚度为250μm左右,并对腻子的刮涂重量限制在5~8 kg以内,对转向架的焊接质量提出了更高的要求;分析了转向架防腐厚涂层涂覆、固化工艺以及高速动车转向架专用防腐涂料的最优组合,有利于涂层强辐射固化工艺设计和工艺过程安排;短波辐射加热器为涂层固化的关键部件,采用抛物面与椭圆面组合的特殊结构设计,更有利于深层定向辐射,使防腐涂层的底部溶剂迅速挥发,增强了涂层的附

  16. 除氧器安装与调试阶段的防腐保养%Deaerator Installation and Commissioning Stage of the Anti-corrosion Maintenance

    Institute of Scientific and Technical Information of China (English)

    孔全兴; 赵万祥; 常勤勤; 蒋林中; 龙磊军; 廖学波

    2014-01-01

    介绍国内某核电厂安装与调试阶段除氧器发生的腐蚀情况。通过对其腐蚀环境和机理进行分析,确认安装与调试阶段保养不当是产生腐蚀的原因。结合核电厂现场情况,提出了安装与调试阶段对除氧器进行防腐保养的方法。有效解决了除氧器在核电厂建设阶段的腐蚀问题,保证设备的使用寿命。%The article introduces a domestic nuclear power plant installation and commissioning stage of the corrosion situation of The deaerator. Through the analysis of its corrosion environment and mechanism, confirm maintain undeserved is the reasons for corrosion in installation and commissioning stage. Combined with field condition , Proposes the installation and commissioning stage of deaerator anti-corrosion maintenance method, effectively solve the deaerator stages of corrosion problems in nuclear power plant construction, ensure the service life of equipment.

  17. Evaluation of anticorrosive films on copper by a low-energy photoelectron emission measurement. Tei energy hikari denshi ni yoru do hyomen boshoku himaku no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Asabe, Y.; Wakasa, H.; Mori, S. (Iwate Univ., Iwate (Japan). Faculty of Engineering)

    1991-11-15

    As a result of investigation on the effect of inhibitor based on the emission initiating energy E{sub t} (threshold) of low energy photoelectron emitted from the surface of the BTA (benzotriazole) treated specimen, it is found that E{sub t} shifts to the high energy side if copper is treated with effective inhibitor BTA, but no shift is observed with iron even if it is treated with BTA. The shift of E{sub t} is eminent at BTA concentration of larger than 1{times} 10{sup {minus}4} mol/l, which agrees well with the tendency of corrosion inhibition obtained from the polarization curves. When copper specimens are coated with films of oxide and others, E{sub t} shifts to the high energy side. From this fact, the shift of E{sub t} to the high energy side when copper is treated with BTA can be considered to be corresponding to the thickness of anticorrosion film. The effect of inhibitor on copper surface can be evaluated easily by this method even in low BTA concentration region. 9 refs., 9 figs., 1 tab.

  18. Study on the Anti-corrosion Design and Coating of Truck Crane%汽车起重机防腐涂层设计及涂装

    Institute of Scientific and Technical Information of China (English)

    唐政; 刘江来; 冉隆强; 李阳; 顾广新

    2012-01-01

    The work environment of truck crane is generally quite atrocious and prone rusting. In order to improve the overall anti-corrosion performance of truck crane, some of attention points in design were proposed and the key factors in the coating process were pointed out to ensure the service life of truck crane according to the status of truck crane coating process.%汽车起重机的工作环境一般比较恶劣,容易出现局部生锈现象。为了提高汽车起重机的整体防腐性能,本文针对现有的汽车起重机涂装,讨论了防腐涂层设计中一些注意点和涂装过程中需要控制的关键因素,以确保汽车起重机在使用过程中的防腐寿命。

  19. 基于城市燃气管道防腐设计的研究%Research on the Anticorrosion Design of Urban Gas Pipeline

    Institute of Scientific and Technical Information of China (English)

    王有之

    2015-01-01

    作为城市发展的重要燃气资源,天然气的正常输送是保障社会效益和企业经济效益的关键。为保证燃气资源的输送质量,必须采取有效措施控制燃气管道的腐蚀,尽可能减少燃气输送安全事故,降低管道输送成本,提高燃气输送的安全性。主要深入探究了城市燃气管道防腐设计的相关内容。%As the important gas resource of urban development, the normal transportation of natural gas is the key to protect the social benefit and the economic benefit of the enterprise. In order to ensure the transportation quality of gas resources, we must take effective measures to corrosion control of gas pipeline, as far as possible to reduce safety accidents in gas transportation, reducing the transportation cost of a pipeline, to improve the safety of gas transmission. The contents of anticorrosion design for urban gas pipeline are mainly explored in the main.

  20. Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing.

    Science.gov (United States)

    Bhanvase, B A; Darda, N S; Veerkar, N C; Shende, A S; Satpute, S R; Sonawane, S H

    2015-05-01

    Ultrasound assisted in-situ semi-batch emulsion polymerization has been used for the preparation of polyaniline (PANI) and PANI/ZnMoO4 nanocomposite with different loading of ZnMoO4 (ZM) nanoparticles. ZM nanoparticles were functionalized using Myristic acid (MA) for better compatibility with PANI. The cavitational effects induced due to ultrasonic irradiations have been shown significant enhancement in the dispersion of functionalized ZM nanoparticles into the PANI during ultrasound assisted in-situ emulsion polymerization process. TEM images of PANI/ZM nanocomposite particles give the direct evidence of fine dispersion and encapsulation of MA treated ZM nanoparticles in PANI matrix. The presence of ZM nanoparticles in PANI/ZM nanocomposite shows significant improvement in the mechanical (cross-cut adhesion), thermal, anticorrosion and sensing properties of PANI/ZM nanocomposite/alkyd coatings over PANI/alkyd and neat alkyd resin coating. Fine and uniform dispersion of ZM nanoparticles in PANI matrix using this novel synthesis method (PANI (p-type)/ZM (n-type) hetero-junction) improves LPG sensing ability and minimizes response time to sense LPG significantly compared with neat PANI.

  1. Effect of electrolysis superheat degree on anticorrosion performance of 5Cu/(10NiO-NiFe2O4) cermet inert anode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AIF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and15.09% respectively under superheat degree of 95 and 195 ℃C. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.

  2. 多重防腐锚杆在海底隧道施工中的应用%Application of Multiple Anticorrosive Anchors in Subsea Tunnel Construction

    Institute of Scientific and Technical Information of China (English)

    吴小珍

    2012-01-01

    This paper introduces the application of multiple anticorrosive anchors in the primary-stage construction support for sea segment according to the construction practice of Qingdao channel tunnel construction. The applications are divided into the following parts; the working principle, parameter selection, construction technology, quality control and so on. Suggestions are put forward on problems and their solutions, which can be referenced for similar projects.%依据青岛海底隧道第三施工合同段的施工实践,介绍了多重防腐锚杆在海域段初期支护中的应用.从系统锚杆的工作原理、锚杆参数选择、施工工艺、质量控制等方面做了详细的介绍,对期间遇到的问题及解决方法也提出了建议和意见,可为类似工程提供借鉴.

  3. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cambon, Jean-Baptiste, E-mail: cambon@chimie.ups-tlse.fr [Institut Carnot CIRIMAT, Université de Toulouse, UMR CNRS 5085, 118 Route de Narbonne, 31062 Toulouse Cedex 9 (France); Esteban, Julien; Ansart, Florence; Bonino, Jean-Pierre; Turq, Viviane [Institut Carnot CIRIMAT, Université de Toulouse, UMR CNRS 5085, 118 Route de Narbonne, 31062 Toulouse Cedex 9 (France); Santagneli, S.H.; Santilli, C.V.; Pulcinelli, S.H. [Departamento Fısico-Química, Instituto de Química, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2012-11-15

    Highlights: ► New sol–gel routes to replace chromates for corrosion protection of aluminum. ► Effect of cerium concentration on the microstructure of xerogel. ► Electrochemical and mechanical performances of hybrid coating with different cerium contents. ► Good correlation between the different results with an optimal cerium content of 0.01 M. -- Abstract: An organic–inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyl-trimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al(O{sup s}Bu){sub 3}, with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol–gel coating.

  4. 金属用水性隔热防腐涂料的研制%Study on Waterborne Heat-Insulating and Anti-Corrosive Coatings for Metal

    Institute of Scientific and Technical Information of China (English)

    刘成楼; 唐国军

    2012-01-01

    以防锈专用苯丙乳液为基料,以钛白粉、热反射粉、磷酸铝锌、空心玻璃微珠为颜填料,以纳米SiO2为改性材料,制备了水性隔热防腐涂料,当PVC(颜料体积浓度)为25%时,涂料具有底面合一、太阳光反射隔热、防锈防腐、绿色环保、耐候耐久、装饰性好等特点。%A waterborne heat-insu acrylic emulsion as hinder, titanium lating dioxid as pigments and fillers, and nano-SiO2 reflective insulation, rust and corrosion etc. features when PVC was 25%. and anti-corrosive coatings was prepared by special antirust styrene- e, heat-reflective powder, aluminum zinc phosphate, hollow glass beads as modified material. The coatings can be used as one coat paint. It had resistance, environmental-friendly, weather resistance, good decorative

  5. IPcote9183金属陶瓷涂层制备及其性能%Performance of Metallic-Ceramic Anti-Corrosion Coating IPcote9183

    Institute of Scientific and Technical Information of China (English)

    王维

    2011-01-01

    An aluminium containing high-temperature anti-corrosion water-based paint was used to prepare metallic-ceramic coating, and performance of the coating was studied. The results showed that the coating was uniform and had good adhesion under the conditions of a certain spray pressure and nozzle/sample distance. The coating thickness was 0. 01 - 0. 02 mm for every IPcote9183 layer. The thickness could increase by repeating spray + dry. The coating with thickness of 0. 02 ~ 0. 03 mm was used to salt fog test and there was no red rust after 1000 h.%用一种进口水基含铝高温防腐蚀涂料制备了金属陶瓷涂层,介绍了制备的工艺,对该涂层的性能进行了研究.结果表明,按照一定的喷涂压力和喷涂距离进行喷涂,可获得表面均匀、结合良好的涂层.喷涂一层IPcote9183可以获得厚度为0.01 mm~0.02 mm的涂层;可进行多层喷涂.厚度为0.02~0.03mm的涂层,中性盐雾试验可达到1000 h不出现红锈.

  6. GO@CuSilicate nano-needle arrays hierarchical structure: a new route to prepare high optical transparent, excellent self-cleaning and anticorrosion superhydrophobic surface

    Science.gov (United States)

    Fan, Ping; Chen, Jingyi; Yang, Jintao; Chen, Feng; Zhong, Mingqiang

    2017-02-01

    Transparent superhydrophobic coatings, which are highly desired for the protection of material surfaces, have been limited to particular kinds of materials, e.g. silicon dioxide. In this work, a hybrid compound of graphene oxide and copper silicate with hierarchical structure was developed and was used to fabricate coatings. Due to the high transparency of graphene oxide and the nanoscopic roughness created by nanoneedles of CuSilicate, with very low compound loading (0.052 mg/cm2), the as-prepared coating was found not only showing superhydrophobic properties with a water contact angle (CA) of ˜152° and a near zero sliding angle (SA) of 0.5 but also showing high optical transparent (light transmittance is as high as 94.5 % at 500 nm). Furthermore, this surface also showed efficient anticorrosion properties and excellent self-cleaning ability. This study not only fabricated a new surface with transparency and surperhydrophobicity based on graphene materials, but also hopefully offers a method for the fabrication of multifunctional coatings.

  7. Anti-corrosion Performance of a New Corrosion Inhibitor for Rebar%一种新型钢筋阻锈剂的阻锈性能

    Institute of Scientific and Technical Information of China (English)

    阚欣荣; 封孝信; 王晓燕

    2011-01-01

    The anti-corrosion performance of a new rebar inhibitor containing amino group and carboxylic group was evaluated by means of hardened mortar test and half cell potential method. The adsorption of corrosion inhibitor on rebar in concrete was analyzed. The results show that the corrosion inhibitor could delay the corrosion and reduce the corrosion rate of the rebar.%采用硬化砂浆和半电池电位法评价了一种自制的含有氨基和羧基的新型钢筋阻锈剂IH2的阻锈性能,并采用标准工作曲线法分析了混凝土中钢筋对阻锈剂的吸附性能。结果表明,IH2钢筋阻锈剂可以延长钢筋发生锈蚀的时间,降低钢筋的腐蚀速率,具有良好的阻锈性能。

  8. 综合防腐技术在肉制品生产中的应用%Comprehensive Anti-corrosion Technology in Meat Production

    Institute of Scientific and Technical Information of China (English)

    韩磊

    2016-01-01

    With the development of economy, the quality of people's daily life is increasing continuously. Consumer demand for food is also gradually strict, especially for meat quality requirements have become strict. At present, the emergence of comprehensive anti corrosion technology to meat production technology has been improved, but also on the meat of the anti-corrosion ability has been greatly improved. On the perception and freshness of meat products have been largely improved.%随着经济的发展,人们的日常生活质量不断提高,消费者对食品的要求也逐渐严格,特别是对肉制品质量要求也变得严格起来。目前,综合防腐技术的出现对肉制品制作技术得到了提高,同时也对肉制品的防腐能力得到了很大的提高。对肉类产品的观感与新鲜度得到了很大程度上的改善。

  9. Mechanism of (NH{sub 4})S{sub 2}O{sub 8} to enhance the anti-corrosion performance of Mo-Ce inhibitor on X80 steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yanhua [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Zhuang, Jia, E-mail: zj-656@163.com [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Zeng, Xianguang [Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000 (China); Institute of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2014-09-15

    Highlights: • The 1000 mg/L Na{sub 2}MoO{sub 4} and 500 mg/L Ce(NO{sub 3}){sub 3} has best synergistic effect. • The (NH{sub 4}){sub 2}S{sub 2}O{sub 8} made the valence transformation of cerium (Ce{sup 3+} → Ce{sup 4+}) come true. • The anti-corrosion performance of Mo-Ce inhibitor was improved by (NH{sub 4}){sub 2}S{sub 2}O{sub 8}. • The coordination ability of inhibitor complexes was improved by (NH{sub 4}){sub 2}S{sub 2}O{sub 8}. • The bonding force and adsorption between inhibitor and steel surface was enhanced. - Abstract: Ce(NO{sub 3}){sub 3} and Na{sub 2}MoO{sub 4} are adopted to form (Mo-Ce) composite corrosion inhibitor in allusion to the corrosion problem of steel in acidic conditions. The experimental results showed that the anticorrosion effects were enhanced and the inhibition efficiencies were increased by (NH{sub 4}){sub 2}S{sub 2}O{sub 8}. The reason of enhancement is the increase of coordination bonds amount between Ce{sup 4+} and MoO{sub 4}{sup 2−}, the augment of combining sites of interface between anti-corrosion film and steel, and the reinforce of adsorption caused by the transformation of Ce{sup 3+} to Ce{sup 4+} by oxidants. The process and conditions for transformation of Ce{sup 3+} to Ce{sup 4+} and formation of complexes are discussed. The related thermodynamic and kinetic parameters are calculated and the possibility for (NH{sub 4}){sub 2}S{sub 2}O{sub 8} to improve the performance of Mo-Ce corrosion inhibitor is proved.

  10. 钢箱梁电弧喷铝防腐涂层无损检测图像分析%Image analysis of arc sprayed aluminum anticorrosive coating on steel box girder based on nondestructive test

    Institute of Scientific and Technical Information of China (English)

    刘丽娜; 刘涛

    2015-01-01

    为研究钢箱梁电弧喷铝防腐涂层防腐机理,预测其防腐寿命,加工制作钢板试样,表面电弧喷铝涂层,进行室内加速腐蚀试验。通过平板扫描仪采集对象图像,观测腐蚀发展过程。采用基于二值化图像的图像处理技术提取腐蚀形貌图像特征参数,并结合规范评定涂层腐蚀损伤级别。研究结果表明:基于二值化图像的图像处理技术可以有效区分涂层腐蚀与未腐蚀区域,实现涂层腐蚀面积定量化分析,为防腐涂层腐蚀等级评定提供新的思路,并估算200μm喷铝涂层实际海洋大气环境下的寿命为63.6年。%To study the anticorrosion mechanism of arc-sprayed aluminum anticorrosive coating on steel box girder and to predict the anticorrosive life of the coating,steel plates were manufactured and painted with aluminum on the surfaces to carry out indoor accelerated corrosion test. Corrosion image of the organic protection coating was collected by a flat scanner to observe its corrosion process. The blistering area was extracted through image processing technology to evaluate the corrosion grade. The results demonstrate that the image processing technology based on binary image can distinguish the corrosion areas from the non-corrosion areas so as to realize quantitative analysis for coating corrosion area. With the help of this technology,a new way has been presented for assessing the corrosion grade of anticorrosive coatings and the service life of 200μm aluminum coating has been estimated to be 63.6 years in the actual marine atmospheric environment.

  11. Development of reinforced in-situ anti-corrosion and wear Zn-TiO2/ZnTiB2 coatings on mild steel

    Science.gov (United States)

    Fayomi, O. S. I.; Popoola, A. P. I.; Kanyane, L. R.; Monyai, T.

    The development of reinforced composite coating has resulted into advanced engineering application because of the exceptional properties and increase service life. In this study, we investigated the effect of Solanum tuberosum (ST) as additive to Zn-TiO2/Zn-TiB2 sulphate bath coating by co-deposition route on mild steel. The structural characteristics and surface profile of the produced coating were examined using scanning electron microscope coupled with energy dispersive spectroscopy (SEM/EDS) and PosiTector (SPG) respectively. The anti-corrosion resistance activities of the deposited coatings were evaluated on a 101 AUTOLAB potentiostat/galvanostat device in a 3.65 wt% NaCl. The wear characteristics of the Zn-TiO2/TiB2 composite coatings were examined on a dry abrasive MTR-300 test rig. The thermal stability of the produced coatings was studied in an isothermal furnace at 600 °C and further characterized using a high tech optical microscope. From the results, it was found that Zn-TiO2/Zn-TiB2 were compassed with needle like pattern and perhaps a compact and distinctive structure was found with Zn-TiO2/Zn-TiB2/ST coatings. The microhardness deposited coatings increased with TiO2 and TiB2 interference in the plating bath, more significant improvement was noticed in the presence of natural bath-additive and the addition of ST lead to changes in the morphologies of the composite coatings. A massive decrease in corrosion and wear rate in all coatings produced as against the control sample was noticed. This was attributed to the dispersive strengthening activities of the embedded TiO2/TiB2/ST additive on the bath formed.

  12. 四种颜料在有机涂层中的防腐性能对比%Anticorrosion performance comparison of four kinds of organic coatings

    Institute of Scientific and Technical Information of China (English)

    于湘; 史博; 俞志东

    2012-01-01

    Anticorrosion performance of four kinds of coatings: the epoxy resin coatings filled with SrCrO4, nano-ZnO, inhibitor intercalated hydrotalcite nano-compounds and ZnO/hydrotalcite nanocomposite as pigments immersing in the 3.5% NaCl solution, was comparatively investigated by means of electrochemical impedance spectroscopy (EIS) measurement. The results showed that the inhibitor intercalated hydrotalcite nano-compounds coating owning self-sealing function showed better corrosion resistance than the SrCrO4 and nano-ZnO coatings. However,the ZnO/hydrotalcite nanocomposite coatings showed the best corrosion resistance, which may be owed to the beneficial effect induced by the treatment with in situ created ZnO.%利用电化学阻抗谱(EIS)技术,研究了浸泡在3.5% NaCl溶液中的SrCrO4环氧涂层、纳米ZnO环氧涂层、纳米缓蚀剂插层水滑石环氧涂层和ZnO/纳米水滑石复合环氧涂层的防腐性能.结果表明,纳米缓蚀剂插层水滑石涂层对Mg-Li合金的防腐效果明显高于SrCrO4环氧涂层和纳米ZnO环氧涂层,具有活性-自修复的防腐作用;而经过改性的原位生成ZnO纳米水滑石复合涂层的防腐性能更好.

  13. Technical research on anticorrosion of Puguang gathering transferring pipeline%普光气田集输管线防腐蚀技术研究

    Institute of Scientific and Technical Information of China (English)

    董利刚; 王利波; 胡良培; 吴钰

    2016-01-01

    普光气田地处山区,地势险峻、地质条件极其复杂,且为高含硫化氢气田,其集输埋地管线已受到了严重的内外壁腐蚀。针对由于土壤的侵蚀带来的外壁腐蚀,研究了防腐涂层和阴极保护方法;针对主要是H2S/CO2腐蚀的内壁腐蚀,首先从抗硫管材上进行了选择,其次对缓蚀剂加注量进行了优化,同时采用腐蚀监测数据对比分析法,使管壁的腐蚀得到了防护和监控。%Puguang gas field is located in a mountainous area,has a rugged hypsography and extremely complicated geological condition,mostly are hydrogen sulfide gas field,its buried gathering pipelines have got severe inner and outer wall corrosion. In view of the outer wall corrosion brought by erosion of soil,this paper researched the anticorrosion coat and cathodic protection method. In view of inner wall mainly H2S/CO2 corroded,firstly the selection was made from anti-sulfur pipeline material,secondly the optimization was made to the injection amount of the corrosion inhibitor,and the comparative analysis method of corrosion monitoring data was used.

  14. Study on the Anticorrosion Coating Used in the Middle of the Ship Construction Process%船舶中间施工过程用防腐涂料的研制

    Institute of Scientific and Technical Information of China (English)

    高原; 方斌; 刘华荣; 海洁; 张能; 袁阳; 陈淼

    2011-01-01

    实验以3-氨丙基甲基二乙氧基硅烷、苯甲酰氯与三甲基氯硅烷为原料制备了异氰酸烷基硅烷,并将其与液体有机硅橡胶共混后,制备了船舶中间施工过程用防腐涂料.该涂料固化后,涂层具有良好的柔韧性、耐水性、耐盐雾性、电绝缘性和耐高低温性,且防腐、防尘.%The alkyl-silane isocyanate was prepared with using 3-aminopropyl methyldiethoxy silane, benzoyl chloride and trimethylchlorosilane as raw materials. Then the anticorrosion coating used in the middle of the ship construction process was synthesized by mixing the alkylsilane isocyanate and liquid organic silicon rubber. The coating had better flexibility, water resistant, salt fog resistant, anticorrosion, electric insulation and high-low temperatures resistance and it was dustprcof.

  15. Anti-corrosion Lining of Wet Stack in the FGD System of Coal-ifred Power Plant%燃煤火力电厂烟气脱硫系统湿烟囱防腐内衬概述

    Institute of Scientific and Technical Information of China (English)

    欧阳明辉; 刘焕安; 叶际宣

    2014-01-01

    The corrosion in wet stack was analyzed and discussed. The corrosion in wet stack is a muti-phase(gas, liquid and solid etc) effected corrosion. The common used anti-corrosion linings such as glass flake, FRP, borosilicate foamed glass block and metals were characterized and analyzed. From the LCC index point of view, metals are the long life and cost-effective anti-corrosion lining of wet stack.%本文分析和讨论了湿烟囱的腐蚀特性,指出湿烟囱的腐蚀是气体、液体、固体等多相作用下的腐蚀。介绍和分析了常用的湿烟囱防腐内衬玻璃鳞片、玻璃钢、泡沫玻璃砖以及金属材料,从LCC的指标来说,金属材料是长效且经济的湿烟囱防腐内衬。

  16. Study of a new possibility to predict the behavior of high - performance anticorrosive protections applied on steel after their exposure in natural aggressive environments, respectively in laboratory accelerated conditions

    Directory of Open Access Journals (Sweden)

    Irina POPA

    2014-12-01

    Full Text Available As a result of the global warming, notable changes in the climatic regime of Romania were observed in the last 40-50 years by increasing of the maximum temperatures and decreasing of the minimum temperatures characteristic for each season. This paper makes reference to an experimental research regarding the actual severity of the Romanian climate and its effects toward some performant anticorrosive coatings applied on steel. Such performant anticorrosive protection systems were exposed in situ – marine and alpine environment - and in parallel, aiming to simulate the severe climatic actions through laboratory accelerated environments - neutral salt fog, condensation and temperature variations. The graphical representation and the interpretation of the adhesion to the steel surface by means of the variation of the class into which the paint was framed after performing the cross-cut test during the exposure provided information concerning a new possibility to predict the evolution of the degradation of the paint, by means of this characteristic experimentally determined.

  17. 沿海地区输电铁塔防腐蚀方法对比分析%Comparison and Analysis on Anticorrosion Methods of Transmission Tower in Coastal Area

    Institute of Scientific and Technical Information of China (English)

    马承志; 杨宏仓; 余启育; 梁位正; 林岳凌

    2014-01-01

    提出了四个输电铁塔防腐蚀方案,考虑沿海地区的环境特征分别对其进行了盐雾加速试验。实验结果表明,带锈涂料防腐方法和金属涂层+有机封闭涂层防腐方法相对于常规的热镀锌方法均能有效缓解输电铁塔用钢铁材料在盐雾加速实验中的腐蚀作用。同时实验结果也表明,带锈涂料防腐方法的防腐蚀效果略优于金属涂层+有机封闭涂层防腐方法。%With considering environmental characteristics of coastal areas, four anticorrosion schemes were proposed for transmission tower in this paper. These schemes were tested by using salt spray corrosion chamber respectively. Experimental results showed that both of on rust paint scheme and metal + organic coating scheme can reduce the corrosion of steel material more effectively than that of the conventional scheme of hot galvanized. Also,the experimental results showed that on rust paint scheme has better anticorrosion effect than that of metal+organic coating scheme.

  18. 粘弹体防腐材料研制及其应用%Development and application of viscoelastic anti-corrosion materials

    Institute of Scientific and Technical Information of China (English)

    袁春; 李建忠; 王颖; 连艺秀; 刘艳利; 孙晶; 黄琳

    2012-01-01

    介绍了中国石油天然气管道科学研究院自主研制的粘弹体防腐材料的生产设备、技术参数以及工艺流程,并根据GB/T 4472-84、DIN 30670-91、SY/T 0414-2007、ISO21809-2008和GB/T23257-2009相关标准,对该材料70℃阴极剥离、120 d热水浸泡、23℃剥离强度、剪切强度、绝缘电阻率、密度、冲击强度、吸水率等性能进行了跟踪测试,结果表明:各项性能指标均符合相关标准要求.该材料在西气东输二线补口、阀室、站场等已广泛应用,具有良好的防腐性能,基本确保了西气东输二线管道的安全运行.%Production equipment, technical parameters and process of viscoelastic anti-corrosion materials developed independently by the Pipeline Research Institute of CNPC are described, and a tracking test is conducted for cathode disbonding at 70 °C, 120 d hot water soaking, peel strength at 23 °C, shear strength, insulation resistivity, density, impact strength, water absorption and other properties of the material in accordance with relevant standards such as GB/T4472-84, DIN30670-91, SY/T0414-2007, ISO21809-2008 and GB/T23257-2009. The results show that all performance indexes are in line with the relevant standards. The material with good corrosion resistance has been widely used in the field coating for welded joint, valve chambers and stations in the 2nd West-to-East Gas Pipeline, which basically ensure the safe operation of the Pipeline.

  19. Heavy-duty automotive aluminum tank anti-corrosion film%重型汽车铝水箱的防腐蚀成膜研究

    Institute of Scientific and Technical Information of China (English)

    王庆国; 白培谦

    2012-01-01

    This paper investigates and analyzes the Shaanxi Auto heavy truck aluminum tank corrosion leakage, through the experimental analysis of aluminum alloy corrosion inhibitor in different, to promote the film-forming agent, pH, and other conditions, as well as a variety of membranes in the salt spray, salt watercorrosion test under the soaking conditions. The results showed that: in acidic solution, molybdate is satisfied that good inhibition of aluminum corrosion inhibition mechanism of the radical ion adsorbed on the surface of the aluminum to prevent the dissolution of the aluminum, play a protective role. In addition, molybdate weak oxidants, aluminum reduction in acid solution, to generate dark blue molybdenum blue, molybdenum blue also adsorbed onto the aluminum surface, thus inhibiting the anodic reaction [1]; its anti-corrosion effect, the aluminum tank leaking prevention and treatment provides a viable solution.%本文调查分析了陕汽重卡铝水箱腐蚀渗漏情况,通过实验分析了铝合金在不同缓蚀剂、促进剂、pH值等条件下的成膜情况,以及各种膜在盐雾、盐水浸泡等条件下的腐蚀实验。结果表明:在酸性溶液中,钼酸纳对铝有着良好的缓蚀作用,其缓蚀机理主要是酸根离子会吸附在铝的表面,阻止了铝的溶解,起到保护的作用。另外钼酸盐是弱氧化剂,在酸溶液中被铝还原,生成深蓝色的钼蓝,钼蓝也会吸附到铝的表面,从而抑制阳极反应[1];其防腐效果明显,给铝水箱漏水防治提供了可行方案。

  20. Synthesis and anticorrosive properties of waterborne isocyanate functionalized graphene/polyurethane nanocomposite emulsion%水性异氰酸酯改性石墨烯/聚氨酯复合乳液防腐性能研究∗

    Institute of Scientific and Technical Information of China (English)

    朱科; 李小瑞; 李菁熠; 费贵强; 王佼

    2016-01-01

    通过逐步聚合反应将异氰酸酯功能化石墨烯(IGN)接枝到水性聚氨酯(WPU)链段中,制备得到水性异氰酸酯改性石墨烯/聚氨酯纳米复合乳液(IGN/WPU).通过傅里叶变换红外的光谱(红外光谱)、原子力显微镜(AFM)、扫描电镜(SEM)对氧化石墨烯(GO)、IGN、WPU 及 IGN/WPU 复合材料的结构进行表征,并研究了IGN含量对复合乳液作为金属防腐涂层性能的影响.结果表明,随IGN含量增加,涂层硬度提高,水蒸气透过率下降,防腐效率增大.当m(IGN)=1%(质量分数)时,涂层硬度达到了2H,水蒸气透过率降低到51.98 g/m2. h,与空白样相比防腐效率提高了94.70%.%Waterborne isocyanate functionalized graphene/polyurethane nanocomposite emulsion has been pre-pared through step by step polymerization reaction,which isocyanate functionalization of graphene is grafted to the water-borne polyurethane chain section.Fourier transform infared spectrometer (FT-IR),atomic force mi-croscope (AFM)and scanning electron microscope (SEM)were used to characterize the structures of GO,IGN, WPU and IGN/WPU;the effect of IGN content on the properties of composite emulsion as metal anti-corrosion coating was systematically studied.The results show that hardness,barrier property to vapor and anticorrosive efficiency of the composite coating increases as IGN content is increasing.When m(IGN)=1wt%,the coating hardness up to 2 h,water vapor transmittance decreased to 51.98 g/(m2 .h),anticorrosive efficiency increased by 94.70% compared with blank sample.

  1. Durability Study of Pure Polyurea Heavy Anti-corrosion Coating in Marine Atmosphere Environment%海洋大气环境下纯聚脲重防腐涂层耐久性研究

    Institute of Scientific and Technical Information of China (English)

    黄微波; 谢远伟; 胡晓; 伯忠维

    2013-01-01

    The change of mechanical properties, glossiness and molecular structure of pure polyurea heavy anti-corrosion coating(Qtech-412 coating) in marine atmosphere environment outdoor natural exposure aging and ultraviolet artificial accelerated aging were studied through FTIR,DSC and so oa The results show that the gloss of Qtech-412 coating decreased by 94. 53%, the mechanical properties remain basically unchanged after outdoor natural exposure aging for 600 d; the surface of coating lost light, organic dyes become black and mechanical properties changed little after ultraviolet artificial accelerated aging for 15000 h. FTIR and DSC test show that only the dye molecular bond of coating are fractured on the surface by the two aging ways, it appears fade or black phenomenon, but pure polyurea molecular structure is very stable; painted different anti-corrosion coatings on the steel plates, and exposed in synthetic seawater pool six months, the anticorrosive effect of pure polyurea is better than any other heavy-duty coatings. Now Qtech-412 coating has been applied to the protection engineering of Qingdao Bay Bridge pile cap structure successfully.%通过FTIR、DSC等方法,研究了在海洋大气环境户外自然曝晒老化和紫外线人工加速老化条件下,纯聚脲重防腐涂层(Qtech-412涂层)的力学性能、光泽度和分子结构变化.结果表明:Qtech-412涂层经过600 d户外自然曝晒老化后,光泽度下降94.53%,力学性能基本不变;经过15000 h紫外线人工加速老化后,涂层表面失光,有机染料变黑,力学性能变化较小;FTIR和DSC试验表明上述两种老化方式都仅仅使涂层表面染料分子的化学键断裂,出现褪色或变黑现象,内部分子结构非常稳定;在人造海水的露天水池中曝晒6个月后的划叉破坏试验表明,Qtech-412涂层实际防腐效果优于其它重防腐涂层.目前Qtech-412涂层已成功应用于青岛海湾大桥承台结构防护工程.

  2. KY-2缓蚀剂的研制及在中原油田的应用%The Study of KY-2 Anti-corrosive Agent and Application in Zhongyuan Oil Field

    Institute of Scientific and Technical Information of China (English)

    刘生福; 丁其杰

    2013-01-01

    It is about water’s corrosion from Zhongyuan production system. According to the situation that anti-corrosive is good at oil-soluble but bad at inhibition of corrosion. We composed five kinds of water-soluble and oil-microsoluble anti-corrosive agent in lab. In this paper, The corrosion inhibitor KY-2 ware synthesied with oleic acids, diethylenetriamine and other materials and It shows good corrosion protection property to sour sewage in oil fields. The chemical structural formula of corrosion inhibitor KY-2 ware studied by infrared spectrogram. The corrosion inhibition performance were investigated by weight-loss measurement and electrochemical polarization curves. When the cocentration of corrosion inhibitor is 100 mg/L, the corrosion protection rate is about 90%, and the corrosion rate is less than 0.076 mm/a, the iron ion in the production water and times for corrosive well repair was reduced. After KY-2 used a significant economic effect and anti-corrosion effect is good, and application prospect is good.%  要:通过中原油田生产系统产出液的腐蚀性调查,以油酸、二乙烯三胺和二甲苯为原料,通过合成、复配与评价试验,室内合成了适用于中原油田油井产出液的缓蚀剂KY-2.应用静态、动态挂片,电化学极化曲线评价其缓蚀性能及缓蚀机理.自2009年中原油田六个采油厂的现场应用表明,KY-2缓蚀剂的加入量在100mg/L时,腐蚀速率明显降低,其缓蚀效果可达90%左右,平均静态腐蚀速率小于0.076mm/a,并且总铁降低,趟井次数降低,经济效果显著,防腐效果良好,具有较好的推广应用前景.

  3. 天然海水中聚吡咯膜的防微生物附着及防腐蚀性能%Antimicrobial Adhesion and Anticorrosion Properties of Polypyrrole Film in Natural Seawater†

    Institute of Scientific and Technical Information of China (English)

    马晓丹; 张志明; 于良民

    2016-01-01

    采用恒电流法在316 L 不锈钢电极表面合成聚吡咯(PPy),通过开路电位、生物显微镜(BM)、 Tafel极化曲线及电化学交流阻抗(EIS)研究了聚吡咯防止微生物附着及防腐蚀特性.研究表明,沉积聚吡咯的316 L 不锈钢电极浸泡在天然海水中(0~20 d),开路电位基本保持不变,表明电化学合成的聚吡咯膜有良好的防止微生物附着能力,并通过生物显微镜进行了验证,且在浸泡的过程中其腐蚀电流密度维持在10-7 mA/ cm2,表现出良好的防腐蚀特性;浸泡50 d 后,其防腐蚀效率仍高达97.45%.因此,电化学合成的聚吡咯具有优异的防止微生物附着和防腐蚀特性.%Polypyrrole was deposited on the surface of the 316L stainless steel electrode through galvanostatic method, and the antifouling property of the polypyrrole film in natural seawater was analyzed via open circuit potential, biological microscope, Tafel polarization curve and electrochemical impedance spectroscopy. It was found that the open circuit potential of the stainless steel electrode coated with polypyrrole was stable after 20 d of the immersion in the natural seawater, which indicates that the polypyrrole had a good ability to prevent the microorganism from attaching. This can be confirmed by the biological microscope. And the corrosion current density maintained at 10-7 mA/ cm2 and showed good anticorrosion performance. The anticorrosion efficiency can still reach up 97. 45% even the electrode is immersed in natural seawater for 50 d. Therefore, it could be concluded that the polypyrrole synthesized by electrochemical method exhibited good properties in the prevention of microbial attachment and good anticorrosion performance.

  4. Application of Bridge Comprehensive Anti-corrosion Technology in Coastal Saline Areas%桥梁综合防腐技术在滨海盐碱地区的应用

    Institute of Scientific and Technical Information of China (English)

    李贤松

    2012-01-01

    滨海盐碱地区混凝土结构的腐蚀破坏严重影响桥梁的使用寿命和运营安全,通过对混凝土腐蚀机理进行分析,并结合工程实例,对桥梁综合防腐技术进行介绍和探讨。%The corrosion damage of concrete structures in coastal saline areas seriously affect the service life and operational safety of the bridge. After an analysis of the mechanism of concrete corrosion, this paper presnets and discusses the bridge comprehensive anti-corrosion technology in connection with real engineering cases.

  5. 曼尼希碱的结构与其缓蚀性能的关系%The relationship between the structures of Mannich bases and the anti-corrosion performances

    Institute of Scientific and Technical Information of China (English)

    战风涛; 丁鹏鹏; 吕志凤; 高统海; 周昕媛

    2016-01-01

    利用曼尼希反应制得了曼尼希碱1-苯基-3-二乙氨基-1-丙酮( DPO),再利用DPO和伯胺(苄胺、对甲基苯胺、苯胺)进行胺交换反应,制得了结构不同的曼尼希碱:1-苯基-3-苄氨基-1-丙酮( BPO )、1-苯基-3-对甲苯氨基-1-丙酮( TPO)和1-苯基-3-苯氨基-1-丙酮( PPO)。静态失重法和极化曲线法研究结果表明,其在15%盐酸中90℃时对N80钢的缓蚀性能大小顺序为:DPO<BPO<TPO<PPO。四种曼尼希碱缓蚀剂在N80钢表面上的吸附遵循Langmuir吸附模型,吸附能力大小顺序为:DPO<BPO<TPO<PPO,这说明当曼尼希碱分子中氨基与苯环形成富电子共轭体系时,其吸附能力较强,可表现出较强的缓蚀性能。%Mannich bases,3-diethylamino-1-phenylpropan-1-one (DPO),was prepared by Mannich reac-tion.Mannich bases , 3-benzylamino-1-phenylpropan-1-one ( BPO ) , 3-p-toluidino-1-phenylpropan-1-one (TPO) and 3-phenylamino-1-phenylpropan-1-one (PPO),were prepared by amine exchange reactions between DPO and primary amines ( benzylamine , p-toluidine and aniline ) .The anti-corrosion perform-ances of the four Mannich bases as inhibitors in 15%hydrochloric acid at 90℃were investigated by stat-ic gravimetric measurement and the polarization curves method .The four Mannich bases can be arranged ( in order of increasing anti-corrosion performance ):DPOanti-corrosion performance .These results showed that the Mannich bases could present preferable anti-corrosion performance when the conjugated system with rich electrons was formed between amino and phenyl in the Mannich bases .

  6. DR/2010型分光光度计在防腐分析技术上的应用%The Type of DR/2010 Spectrophotometer Using in Anticorrosion Analysis

    Institute of Scientific and Technical Information of China (English)

    黄彩容

    2012-01-01

    Detailed introduction Production Device Monitor Center of the new development three anticorrosive analysis of project: iron ion,chloride ion,sulfur ion new method for the determination of and the type of 2010 spectrophotometer performance.The facts proved that the three new methods were most suitable analysis methods for analysis sulfur wate water.%详细介绍了茂名石化生产设备监测中心新开发的3个防腐分析项目:铁离子、氯离子、硫离子测定的新方法以及DR/2010型分光光度计的性能。事实证明,这3个新方法是目前众多分析方法中最适合分析含硫污水的分析方法。

  7. Study On Epoxy Glass Flake Heavy Duty Anticorrosive Coatings Used in Ship%一种新型玻璃鳞片涂料的研制

    Institute of Scientific and Technical Information of China (English)

    康新征; 张寒露

    2013-01-01

    Currently, the main wall of the cabin to use distilled water ship epoxy polyamide paint as a protective coating to prevent the bulkhead corrosion protection period is generally five years or so. Such protective coatings not only short-term effect, but in the course of the film is easy to produce blister and fall off and so on. To silicone-coated paper sheet glass flake off as the main anti-rust paint, low viscosity e-poxy resin-based material, preparation of a new high-solids epoxy glass flake coating. After testing, the coating resistance to neutral salt spray test up to 3000 hours; room temperature, in distilled water environment, the effective protection coating period of up to 15 years, and after long-term soaking in distilled water, erosion, film there will be no dissolution of soluble material, will not affect the storage of distilled water, ideal for long-term storage of high purity distilled water tanks, water tanks and other equipment of the wall protection needed, can effectively meet the submarines, power plants and other departments of the distilled water storage facilities, anti-corrosion requirements.%舰艇蒸馏水舱内壁主要使用环氧聚酰胺类涂料作为防护涂料,防止舱壁腐蚀,防护期限一般为5年左右。这类涂料不仅防护期效短,而且在使用过程中涂膜易产生起泡、脱落等现象。本文中以硅氧烷包覆过的片状玻璃鳞片为主要防锈颜料,以低粘度环氧树脂为基料,制备了一种新型高固体份环氧玻璃鳞片涂料。实验表明,该涂料耐中性盐雾试验可达3000小时以上;常温条件下,在蒸馏水浸泡环境中,涂膜的有效防护期可达15年以上,并且经长期的蒸馏水浸泡,侵蚀,漆膜不会有可溶物质溶出,不会影响存储的蒸馏水水质,非常适合于长时间存储高纯度蒸馏水的水柜、水罐等设备的内壁防护需要,可有效满足舰艇、电厂等部门对蒸馏水存储设施的防腐要求。

  8. Analysis and Study on the Heavy-duty Anticorrosion of Crude Oil Tanks%原油储罐高防腐体系的分析及研究

    Institute of Scientific and Technical Information of China (English)

    潘奇; 程丽华; 赵德智; 施雯

    2012-01-01

    根据对本地区原油储罐腐蚀性环境的研究,归纳出储罐内部和外部腐蚀因素。介绍了储罐防腐蚀设计中涂层保护和阴极保护并用所存在的问题,提出利用长链多能团硅烷偶联剂表面处理技术结合重防腐涂料(无溶剂纳米环氧树脂涂料、负离子吸收型导电涂料等)的解决方案。拟定建立原油储罐全面防腐蚀体系,为沿海储罐防腐蚀工作提供可括性依据和理论参考。%On the basis of the research on the corrosion environment of crude oil tanks in the area, the corrosion factors of the interior and exterior of the tankswere summarized, and the questions about the interaction of coating protection and cathodic protection in the anticorrosion design for crude oil tanks were introduced in the paper. It proposed a new solution which combined surface treatment technology, which used long-chain and multifunctional silane coupling agent, with heavy corrosion protection coatings such as solvent-free nano-modified epoxy resin coating, anion absorbed conductive coating and so on. This corrosion protection system of crude oil tanks provided feasibility foundation and theory reference for the anticorrosion of crude oil tanks in coastal areas.

  9. The Research of Drag Reduction Anti-corrosion Coating Technology for Marine Natural Gas Condensed Liquid Pipeline%海洋天然气凝析液管道内壁减阻防腐涂层技术研究

    Institute of Scientific and Technical Information of China (English)

    杜宝银; 李京; 陆卫中; 张晓灵; 郭旭; 高英; 张立新; 吴文通; 杨加栋; 史杰智

    2013-01-01

    According to the service characteristics of marine condensate gas pipeline, determine the development of new two types solvent-free coatings of drag reduction, including technological performance index, test method and test standard of coatings. Through the formula optimization design and pilot-plant test, finally the two types of solvent-free epoxy modified coating are suitable for anti-drag natural gas pipeline at room temperature and for anticorrosion gas liquids pipeline at medium temperature. Coatings were tested by the third party inspection agency, its performance indicators meet the design requirements. And through the field production line applied, the anti-drag and anti-corrosion coatings quality and application had met the needs of the mass production.%根据输送海洋天然气管道凝析液的服役特点,确定了研制新型的无溶剂内减阻防腐涂料的涂层类型、性能指标、检验方法和测试标准。通过配方优化设计和工艺试验,最终研制出了适用于非腐蚀性气体管道输送的常温无溶剂改性环氧涂料以及适用于天然气凝析液管道输送的中温无溶剂改性环氧涂料内减阻涂料。涂料经第三方检测机构检测,其性能及指标符合设计的要求。并通过生产线涂覆工艺的现场实施,内减阻防腐涂层质量和施工工艺满足规模化生产的需要。

  10. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir; Vakili, H.; Amini, R.

    2015-02-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  11. SCR脱硝空预器防腐及柔性接触密封改造%Anticorrosion and Flexible Contact Seal Transformation of the SCR Denitration Air Heater

    Institute of Scientific and Technical Information of China (English)

    欧阳葵

    2014-01-01

    After using SCR denitration in thermal power enterprises, low temperature corrosion will also occur on rotary air heater. In this paper the rotary air heater corrosion protection technology reform measures are studied, the principle and characteristics of flexible contact seal technology are analyzed, the modification of air heater anticor-rosion and the air leakage reduction is completed, and the seal transformation efficiency analysis is conducted. The running results show that prevent anticorrosion and flexible contact seal modification can prevent the corrosion at low temperature, reduce the air leakage in air heater, and obtain remarkable economic and social benefits.%火力发电企业在采用SCR脱硝后,回转式空预器也会发生低温腐蚀。研究了回转式空预器防腐改造技术措施,分析了柔性接触式密封技术的原理及特点,进行了空预器防腐及减小漏风改造,并进行了密封改造的效益分析。运行结果表明,经过防腐及柔性接触式密封改造后,可防止低温腐蚀,且大幅度降低空气预热器漏风,获得较显著的经济效益和社会效益。

  12. 纳米二氧化硅改性有机硅-环氧防腐涂料的合成与性能研究%Preparation and characterization of organic silicon-epoxy anti-corrosive coating modified by nanosilica

    Institute of Scientific and Technical Information of China (English)

    李慧博; 张秀玲

    2011-01-01

    本文利用带羟基的有机硅预聚体与双酚A型环氧树脂反应,制备有机硅-环氧树脂及涂层,并采用纳米SiO2改性有机硅-环氧.采用扫描电镜、硬度、冲击强度、附着力、柔韧性、电化学防腐特性等分析手段,考察了有机硅用量变化、纳米SiO2等对涂膜性能的影响,发现当环氧树脂有机硅用量比为2:1时,有机硅改性环氧涂层综合了有机硅树脂和环氧树脂的优异性能,既有好的附着力,又有好的耐老化性能和防腐特性.在有机硅改性环氧涂层中加入纳米SiO2溶液,原位聚合获得纳米SiO2改性有机硅-环氧涂层.与有机硅改性环氧涂层相比,纳米改性有机硅-环氧涂层具有优异的紫外屏蔽特性和耐老化性能.%The organic silicon- epoxy anti-corrosive coating was prepared by organic silicon performed polymer with hydroxyl and bisphenol A type epoxy resin. The nanosilica was adopted to modify organic silicon-epoxy. The effect of amount of organic silicon and nanosilica to performance of coating was investigated by SEM, hardness, impact strength, adhesion, flexibility and electrochemical anticorrosion. It was found that when the ratio of epoxy resin and organic silicon was 2:1, the organic silicon-epoxy anti-corrosive coating has good adhesion, resistance to aging and anticorrosive. The organic silicon-epoxy anti-corrosive coating modified by nanosilica was synthesized by adding nanosilica solution to organic silicon modified epoxy coating. Compared to organic silicon modified epoxy coating, the organic silicon -epoxy anti -corrosive coating modified by nanosilica has good uvioresistant and resistance to aging.

  13. Anticorrosion properties of water-based polyaniline/fluorocarbon composite emulsion coatings%水性聚苯胺/氟碳复合乳液涂层的防腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    李玉峰; 曾照坡; 王迪

    2012-01-01

    Water-based polyaniline ( PANI ) emulsions were synthesized use dodecylbenzene sulfonic acid ( DBSA ) as emulsifier and doping agent, X-ray diffraction (XRD) showed DBSA doped PANI molecular chain had good stretch. Particle size test showed PANI latex particles had uniform distribution and the average particle size was about 250nm. Then make the water-based composited emulsion coatings with PANI emulsion and fluorocarbon emulsion (FC), the anticorrosion property to Q235 mild steel were discussed by electrochemical impedance spectroscopy( EIS ), Tafel polt( Tafel ) and open circuit potential( OCP ). The results showed the PANI/FC composite emulsion coatings had higher impedance and corrosion potential ( -0.4V ) , the corrosion current density was lower ( 10-6A/cm2 ). The composite coatings had better anticorrosion properties to Q235 mild steel while m( PANI ) : m( FC ) =1:1.%以十二烷基苯磺酸(DBSA)为乳化剂和掺杂剂,制备了水性聚苯胺(PANI)乳液,X射线衍射分析(XRD)结果表明,DBSA掺杂的PANI分子链伸展性较好;粒径测试结果表明聚苯胺乳胶粒子分布均匀,平均粒径约为250nm。冉以水性氟碳(FC)乳液为成膜物制备了水性PANUFC复合乳液涂层材料,利用电化学交流阻抗谱(EIS)、Tafel曲线(Tafel)、平衡开路电位(OCP)考察了其对Q235低碳钢的防腐蚀性能。结果表明,PANI/FC复合乳液涂层具有较高的阻抗.显著地提高了金属的腐蚀电位(-0.4V),降低了金属的腐蚀电流密度(10-6A/cm2)。当m(PANI):m(FC)=1:1时,复合涂层对Q235碳钢的防腐蚀性能最好。

  14. Causticity and Anti-corrosion Measures for Soil in Northwest Gobi Region%西北戈壁地区岩土腐蚀性与防腐措施分析

    Institute of Scientific and Technical Information of China (English)

    任治军; 任亚群; 宋志远

    2013-01-01

      本文针对±800kV哈密南-郑州特高压直流输电线路工程的岩土工程勘测实践,对西北戈壁地区特高压送电线路工程的场地土腐蚀性评价工作方法进行了论述,主要包括样本采取原则、取样点布置、试验结果分析等。在分析试验成果的基础上,根据规范对线路地基土的腐蚀性进行了综合评价,并提出了相应的防腐处理建议。%This thesis focuses on the geotechnical engineering practice of the 800kV direct-current (DC) transmission line project from south of Hami to Zhengzhou. Corrosive evaluation methods for site soil of the ultra-high voltage transmission line engineering in Northwest Gobi region are discussed, mainly including sampling principle, sampling point layout and test result analysis, etc. Based on the analysis of test results, comprehensive foundation soil corrosive evaluation is conducted and corresponding suggestions on anti-corrosive treatment are put forward according to relevant codes.

  15. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Science.gov (United States)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-02-01

    Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  16. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    Science.gov (United States)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-07-01

    This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe2O4-SiO2) on the corrosion protection properties of steel substrate. NiFe2O4 and NiFe2O4-SiO2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe2O4-SiO2) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe2O4-SiO2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  17. Analysis on Application of Zinc Spraying Anti-corrosion Technology in Hydraulic Metal Structure%浅析喷锌防腐技术在水工金属结构上的应用

    Institute of Scientific and Technical Information of China (English)

    张玉安

    2013-01-01

      Zinc spraying anti-corrosion technology is an anti -corrosion method similar to hot dip galvanized anti -corrosion effect.Specific requirements are as follows : sand spraying anti-rust work should be done well on the surface of hydraulic metal, thereby metallic luster can be exposed from the metal surface , and the surface is roughened.Then, the lead wires are melted and blown to the surface of hydraulic metal through compressed air method , thereby forming a zinc coating layer . Pores are filled on this basis; finally a composite layer can be formed to prevent further erosion .%  喷锌防腐技术是一种类似于热浸锌防腐蚀效果的防腐蚀方法。具体要求在水工金属的表面做好喷砂除锈工作,使金属表面露出金属光泽并打毛,然后将铅丝融化,最后通过压缩空气的方法将其吹附到水工金属的表面,形成一个锌涂层,在此基础上填充完毛细孔,最后形成复合层来防止进一步的侵蚀。

  18. Study on anti-corrosion of penstock of Kozjak Hydropower Station in Macedonia%马其顿科佳水电站压力钢管防腐问题研究

    Institute of Scientific and Technical Information of China (English)

    张军; 赵春; 刘景运

    2012-01-01

    During the construction of Kozjak Hydropower Station in Macedonia contracted by a Chinese company, a largeramount of air bubble occurs on the surface of the anti-corrosion layer of the penstock of the underground headrace tunnel, and then not only the construction quality is seriously impacted, but the construction progress is also restricted. Through the analysis on the causation of the problem, a scheme of project alternation is put forward herein, and it is successfully implemented on the basis of the relevant site test and adoption of the mature technologies concerned The result shows that a better effect is obtained with this construction scheme and the hydropower station is ensured to be put into operation in time.%中国公司承接的马其顿科佳水电站工程在施工过程中,地下隧洞的钢管防腐层出现了大量表面气泡,严重影响工程质量和制约工程进度.通过对问题发生原因进行分析,基于现场试验并采用成熟技术,提出了工程变更方案并成功进行了实施.结果表明,本文提出的施工方案取得了良好的效果,保障了该水电站的如期发电.

  19. 无溶剂环氧重防腐隔热导静电涂料的研制%Preparation of Solventless Epoxy Heavy Anti-corrosion Insulation Conducting Electrostatic Coating

    Institute of Scientific and Technical Information of China (English)

    刘成楼; 隗功祥

    2012-01-01

    以丙烯酸改性环氧树脂为基料,以反应型和非反应型稀释剂为溶剂、以液态聚硫橡胶为增韧剂,在功能颜填料和助剂的配合下制备成甲组分;以腰果壳液合成的改性胺为固化剂,在促进剂和亲水剂配合下组成乙组分。固化后的涂层柔韧、致密,具有重防腐、隔热隔音、导静电性能。%Component I was prepared by using acrylic modified epoxy resin used as binder and reactive and nonreactive diluents as solvent, liquid polysulfide rubber as toughening agents, functional pigments and extender and additives; component Ⅱ was prepared by using modified amine synthesized by cashew nut shell liquid as curing agent, assorted with promoting agents and hydrophilic agent. After curing, the film flexible and compact, with heavy anti-corrosion, heat insulation, sound insulation, conducting electrostatic properties.

  20. Study and Practice of Anti-corrosion Painting Systems for Exposed Steel Structures at the Top of the Shanghai Tower%上海中心大厦塔冠外露钢结构防腐涂装体系的研究与实践

    Institute of Scientific and Technical Information of China (English)

    宋伟宁

    2014-01-01

    The top of the Shanghai Tower is the first tower structure ever reached 600 meters high in domestic architecture history.Routine techniques in anti-corrosion of steel structure are not proper in this case due to the structure complexity,numerous related equipment,harsh environment and difficult construction proce-dures.After analysing the nature as well as construction conditions of the top of the tower and repeating steps of denying,adjusting and re-denying,a new anti-corrosion system aimed to achieve long effective corrosion prevention was proposed.Furthermore,the effectiveness of this system was verified by experiments.Combi-ning with strict quality control,this anti-corrosion system was finally applied in the corrosion prevention for ex-posed steel structures at the top of the Shanghai Tower.%上海中心大厦塔冠是国内房屋建筑史上第一次达到600 m 以上高度的塔顶建筑,由于其结构复杂、关联设备众多、环境条件严酷、施工难度大,常规的钢结构防腐经验难以适用。通过对塔冠自然条件和施工条件的深入分析,陈述了原方案的否定、调整和再否定,并在大量工程调研的基础上,提出了新的长效防腐体系。通过试验检验,结合严格的工艺质量控制,使这一新的组合配套防腐体系在大厦塔冠钢结构防腐实践中得到落实应用。

  1. The implementation and application of chemical cleaning and anti-corrosive coating of the condenser%凝汽器化学清洗及防腐镀膜的实施及应用

    Institute of Scientific and Technical Information of China (English)

    田红艳

    2011-01-01

    影响发电机组安全运行的因素有很多,凝汽器铜管的腐蚀就是其中之一。凝汽器铜管一旦发生腐蚀泄漏,冷却水便会漏入凝结水中,从而导致锅炉、汽轮机等设备的腐蚀与结垢。对凝汽器铜管进行化学清洗及防腐镀膜,可以有效阻止或缓解各类腐蚀,延长凝汽器使用寿命,减少因铜管泄漏造成的紧急停机、凝结水浪费、锅炉结垢,避免设备提前更换、甚至安全事故等风险。大大延长铜管的使用寿命,有利于凝汽器安全经济运行。%There are many factors in influencing the safe operation of the generator, and corrosion of the condenser copper pipe is one of them. Once the corrosion and leakage of the condenser copper pipe happened, it will lead to cooling water leak into the condensed water, and the corrosion and fouling of boiler and turbine was thereby produced. If the condenser copper pipe were dealt with the chemical cleaning and anti-corrosive coating, some risks will be reduced. Then kinds of corrosion can be effectively prevented or alleviated, service life of the condenser can be prolonged, emergency stop, condensed water waste and boiler scale caused by copper tube leakage will be reduced, replacement of the equipments in early, even accidents will avoid. Greatly extend the service life of the copper pipe will benefit to the safe and economical operation of the condenser.

  2. Research and Performance Evaluation on the Waterborne Anticorrosive Coatings for Bridge Bump Wall%桥梁防撞墙抗腐蚀用水性防腐涂料的研制及性能评价

    Institute of Scientific and Technical Information of China (English)

    张帅; 杜素军

    2015-01-01

    In recent years, the issue of corrosion of curbs and bridge bump wall on both sides of highway by snow melting agent has gotten more and more serious, and it has gradually become a major dififculty in highway maintenance that the concrete is corroded and damaged resulting from clearance of accumulated snow with snow melting agent. A kind of waterborne concrete anticorrosion coatings based on the polyurethane modiifed epoxy resin, such performances of the coatings as water resistance, corrosion resistance, weather fastness and adhesiveness, etc. are researched, and the paint is applied. Thus, the purpose of limiting the highway concrete corrosion by snow melting agent is achieved.%近年来,高速公路两侧路缘石及桥梁防撞墙受融雪剂腐蚀的问题越来越严重,融雪剂清理积雪造成的混凝土腐蚀破坏逐渐成为高速公路养护的重大难点。以聚氨酯改性环氧树脂为基料开发了一种水性混凝土防腐涂料,研究了涂料的耐水性、耐腐蚀性、耐候性、附着力等性能,并对涂料进行施工应用,达到限制融雪剂对高速公路混凝土腐蚀的目的。

  3. 变电站接地装置的腐蚀机理及防腐措施研究%Research on Corrosion Mechanism and Anti-corrosion Measure for Grounding Deviee at Substations

    Institute of Scientific and Technical Information of China (English)

    欧洲华

    2009-01-01

    本文针对变电站接地装置的腐蚀问题,简单介绍了接地装置易发生腐蚀的部位和原因,分析了在土壤中发生化学腐蚀,电化学腐蚀、微生物腐蚀和杂散电流腐蚀的腐蚀机理,并对影响腐蚀速率的主要因素及相互关系作了说明.在此基础上,提出了如下防腐技术措施:采用耐蚀材料和金属镀层;使用导电防腐涂料;实施阴极保护;采用高效膨润土降阻防腐剂,以适应多种土壤腐蚀环境.%Aiming at the corrosion issues of grounding device used in substation,its corrosion position occurred frequently and corrosion reason are introduced briefly.Several types of corrosion mechanism are also analyzed,such as chemical corrosion,electrochemical corrosion,microbiological corrosion and stray current corrosion,when grounding device lie in soil and corrosion occurs.Furthermore,some main factors,which can influence on rate of corrosion,and their correlation are illustrated.On the basis of these analysis,several technology measures are put forward to avoid grounding device corrosion to fit many kinds of soil corrosion environment.They are:selecting corrosion resistant material and metal coating,employing anti-corrosive paint,carrying out cathodic protection and adopting high efficient bentonite resistance.

  4. Research and Application of Two Different Anti-corrosion coating Systems on Tidal current Generator%两种防腐蚀涂层体系在潮流发电机组上的应用研究

    Institute of Scientific and Technical Information of China (English)

    李景; 贾朋刚; 过洁; 王辉亭

    2013-01-01

    Marine current is an important offshore source of renewable energy. Marine current turbine generator is one kind of facility which converts marine current energy into electric energy. Generally, marine current turbine generator works in offshore field with high speed of marine current, which always encounters challenges of serious corrosion and biofouling in marine environment. In this paper, two different kinds of coating systems have been tested and utilized to paint the main parts of tidal current generator. The results tested in laboratory and in sea indicate that these two coating systems show good anti-corrosive property.%  潮流能是一种重要的海洋可再生能源。潮流能发电机组是一种将潮流能转化为电能的装置。潮流能发电机组一般运行在海流流速较大的近海海域,面临着海水腐蚀,微生物附着等因素的严重影响。本文分析了两种防腐蚀涂层体系的各项性能参数,在潮流能发电机的各主要部件外表面进行了涂装,并且进行了海试。实验室检验结果和海试结果表明,两种涂层均表现出良好的耐腐蚀效果。

  5. Anti-corrosion properties of Ni-P alloy coated on engine cylinder prepared from jet electrodeposion%发动机气缸电喷镀镍磷合金镀层及耐腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    王颖; 康敏; 傅秀清; 王兴盛

    2014-01-01

    Cylinder is the important part of tractor engine, which service life and the production cost are directly affected by anti-corrosion of the component. With the excellent wear resistance, corrosion resistance and higher hardness, Ni-P alloy deposited layer plays an important role for enhance the service life and reliability of cylinder, and the capability and quality of the tractor engine can be improved. Because of severe working environment of cylinder and piston such as high temperature, high load, high-velocity motion, poor lubrication, difficult cooling, especially weak acid for work environment, it is advisable to study the anti-corrosion properties of Ni-P alloy coated on engine cylinder. However, with the advancement of social economy, the conventional method for electrodeposited Ni-P alloy fails to meet the requirements of the development due to lower depositing rate and lower production efficiency. The jet electrodeposition is developed in recent years, which can significant increase the production efficiency because jet electrolyte can accelerate transfer process of the electrodeposition material and augment limiting current density. So the jet electrodeposition is a kind of high-velocity, selective electrodeposition technique with high deposition current density. In this paper, the engine cylinder coated with Ni-P alloy with jet electrodeposition was taken as research object. The surface appearance of deposited layer was observed by 6XB-PC reflective optical microscope. The corrosion behavior of Ni-P alloy coated on cylinder in 50 g/L NaCl solutions at different moment was studied by electrochemical impedance spectroscopy and potentiodynamic polarization method. The results show that the coating surface appearance is dense and smooth. Electrochemical impedance spectroscopy is composed of high and low frequency arcs when the layer immersed in 50 g/L NaCl solutions with 0.5, 1, 6, 12 and 24 h. The high frequency arcs have relation with original oxidation

  6. Utmost Protective Life of Arc Spray Al Coating and Large Area Long Term Anti-corrosion for Steel Box Girder Bridge%电弧喷铝涂层的保护极限及钢箱梁桥大面积长效防腐

    Institute of Scientific and Technical Information of China (English)

    陈建阳; 肖跃文; 李雄晖; 沈承金

    2001-01-01

    结合武汉军山长江公路大桥钢箱梁防腐,分析大气腐蚀环境和影响因素,研究电弧喷铝涂层腐蚀失效机理和耐腐蚀性,确定电弧喷铝涂层有效保护的极限涂层厚度和极限涂层破损率,并针对钢箱粱桥特点,设计制作机械化电弧喷涂设备,进行大面积长效防腐施工。%In terms of the protective for steel box girder of Wuhan Junshan Changjiang Bridge, atmospheric corrosion environment and influencing factors are analyzed, invalidation mechanism of are spray Al coating due to corrosion and ability for anti-corrosion are studied, utrnost thickness of arc spray Al coating for effective protection and utmost breakage rate of coating are determined. Automatic arc spray equipments are designed and made for large area long term anti-corrosion.

  7. Application of Pipeline Current Mapping Technology in Anti-corrosion Coating Detection of Underground Gas Pipeline%管道电流测绘技术在地下燃气管道防腐层检测中的应用

    Institute of Scientific and Technical Information of China (English)

    黄奕昶; 杨博; 李炜; 黄琴

    2016-01-01

    城镇地下燃气管道的运行状况直接关乎城镇的安全。管道电流测绘技术可以在非开挖条件下对埋地管道的阴极保护有效性做出评价,有效地检测出埋地钢质管道外防腐层缺陷。在工程应用中,采用这种新颖的检测技术可以快速检测和定位某处地下燃气管道的外防腐层缺陷。%The running state of theurban underground gas pipeline is crucial to the city safety. The pipeline current mapping technology is able to evaluate the effectiveness of the cathodic protection of the underground pipeline without excavation and effectively detect the defects of the anti-corrosion coating of the underground steel pipeline. In engineering application, the defects of the anti-corrosion coating of the underground gas pipeline can be detected and located rapidly by using this new detection technology.

  8. Analysis and Experiment Research on Dehumidification and Anti-corrosion System of Main Cable of Suspension Bridge Based on Waste Heat Recovery%基于余热回收的悬索桥主缆除湿防腐系统节能分析与实验研究

    Institute of Scientific and Technical Information of China (English)

    彭关中; 缪小平; 范良凯; 贾代勇; 刘文杰; 马喜斌

    2011-01-01

    Main cable is one of the most important bearing components of suspension bridge, and also the irreplaceable component, known as the “lifeline” of the suspension bridge. The main cable is exposed to the atmosphere for a long time, and withstands the erosion of various adverse environments, which results in the rust and corrosion of steel wire of main cable. The dehumidification and anti-corrosion system will send dry air into the main cable,reduce the air relative humidity,so as to avoid rust and corrosion of steel wire, and improve the service life. In this paper, the principle and composition of the dehumidification and anticorrosion system of main cable were described, and a dehumidification and anti-corrosion system of main cable of suspension bridge based on the waste heat recovery was proposed. The test rig for testing the performance of heat exchanger was built up, and the experiment results indicated that when the regenerated air flowrate of the rotary dehumidifier was 1/3 of the rotary dehumidification air flowrate,with the increase of the rotary dehumidification air flowrate, the heat exchange efficiency of the heat exchanger would be improved,the temperature of the regenerated air would rise through the heat exchanger, which would reduce the heating capacity of regeneration electric heater, and save the energy consumption of the dehumidification and anti-corrosion system of main cable.Therefore, the waste beat recovery technology was favorable for the energy conservation of the dehumidification and anti-corrosion system of main cable.%主缆是悬索桥最重要的受力构件之一,且是不可更换构件,被称为悬索桥的"生命线".主缆长期暴露在大气环境中,经受着各种不利环境的侵蚀,导致主缆钢丝易产生锈蚀.主缆除湿防腐系统将干燥空气送入主缆,降低主缆内的空气湿度,从而避免主缆钢丝锈蚀.提高了主缆钢丝的使用寿命.本文阐述了主缆除湿防腐系统的原理及组

  9. 油田集输用塑料合金复合管管体爆裂分析%Failure Analysis of Anticorrosion Plastic Alloy Composite Pipe for Oil Gathering and Transportation

    Institute of Scientific and Technical Information of China (English)

    李循迹; 李厚补; 常泽亮; 戚东涛; 毛学强; 魏斌

    2014-01-01

    An anticorrosion plastic alloy composite pipe for oil gathering and transportation failed during service. Investigations were performed to identify the possible failure causes of the pipe. Composition and thermal analysis of inner plastic alloy and outer GRP resin were systematically studied by using FTIR, TG-DSC, VST, etc. Results reveal that additives in failed plastic alloy may have not been stirred enough before extrusion or the content of additives may exceed their normal range. The glass transition temperature of GRP resin was much lower than that stated in standard. Hence, the lower state of cure for resin as well as the higher resin content of GRP layer makes the outer GRP structural layer have a relatively lower mechanical property, giving rise to the final failure of the composite pipe after serving for a long time under the co-effect of the aging and corrosion.%集油管线用塑料合金复合管在使用过程中发生了管体爆裂失效事故。为了探讨复合管的失效原因,采用红外光谱分析、差热-热重分析、VST等分析手段,研究了复合管用内衬塑料层和外结构层玻璃钢树脂基体的结构成分、热性能等。结果表明:复合管内衬材料添加剂含量较多或分散不均,而复合管玻璃钢基体树脂的玻璃化转变温度远低于标准要求。较低的固化度和偏高的树脂含量导致玻璃钢结构层力学性能下降,在长期服役过程中的老化及介质腐蚀共同作用下,复合管最终爆裂失效。

  10. Anti-corrosion performance of dodecylbenzenesulfonate acid redoping polyaniline/epoxy-silicone composite coatings%十二烷基苯磺酸二次掺杂聚苯胺/环氧有机硅复合涂层的防腐性能∗

    Institute of Scientific and Technical Information of China (English)

    贾艺凡; 刘朝辉; 廖梓珺; 叶圣天; 王飞

    2016-01-01

    以自制的十二烷基苯磺酸二次掺杂聚苯胺为防腐颜料,制备质量分数为0.5%,1.0%及1.5%的十二烷基苯磺酸二次掺杂聚苯胺/环氧有机硅复合涂层,利用扫描电子显微镜观察不同掺量十二烷基苯磺酸二次掺杂聚苯胺在环氧有机硅涂层中的分散状态,并通过开路电位、电化学阻抗谱及Tafel曲线对比分析涂层的耐腐蚀性能.结果表明,十二烷基苯磺酸二次掺杂聚苯胺添加量为1.0%时,其在环氧有机硅涂层的分散均匀且致密,并在3.5%(质量分数)NaCl溶液中浸泡后对 Q235低碳钢表现出良好的防腐效果.%The epoxy-silicone composite coatings was prepared by the anti-corrosion pigment of dodecylbenzene sulfonate acid redoping polyaniline,mass fraction of it was 0.5%,1.0%,1.5%.SEM tests were carried out to observe dispersed state of different quantity of dodecylbenzene sulfonate acid redoping polyaniline in the epoxy-silicone composite coatings,and their anti-corrosion properties were studied by means of open circuit potential, electrochemical impedance spectroscopy and Tafel curves.The results indicated that the coatings with 1 .0% do-decylbenzene sulfonate acid redoping polyaniline were uniformly dispersed and density,which had the best anti-corrosion performance on Q235 mild steel in NaCl (3.5wt%)solution.

  11. 抗氯盐高性能混凝土中阻锈剂长期阻锈效果研究%Research on the long-term anticorrosion effectiveness of the corrosion inhibitors in anti-chlorine high performance concrete

    Institute of Scientific and Technical Information of China (English)

    杨医博; 王恒昌; 杨磊; 郭文瑛; 陈峭卉; 梁松

    2014-01-01

    采用14种阻锈剂,用半电池电位法和劈裂观察法研究了抗氯盐高性能混凝土中阻锈剂的长期阻锈效果,研究确定适宜的阻锈剂长期阻锈效果评价方法;并通过与盐水浸渍试验和钢筋锈蚀快速试验(硬化砂浆法)结果对比,探讨快速阻锈性能试验方法的可靠性。结果表明:半电池电位法和劈裂观察法两种方法均有较好的判别阻锈剂长期阻锈效果的能力,可以共同使用判断阻锈剂的阻锈效果;快速阻锈试验结果与长期试验结果存在较大差异,快速试验结果仅能用作阻锈剂初步选择,不能用作阻锈剂在抗氯盐高性能混凝土中具有长期阻锈效果的判据。%Researches the long-term anticorrosion effectiveness of the 14 kinds of corrosion inhibitors in anti-chlorine high performance concrete through the half cell potential method and Splitting observation test,finds the appropriate long-term evaluation method,and ex-plores the reliability of the rapid evaluation method through comparing the results which from the saline solution soak method and harden mortar method. It is indicated that:(1)Both the half cell potential method and splitting observation test have ability to evaluate the long-term anticorrosion effectiveness;(2)There is a big difference between the result of the long-term test and rapid evaluation method;(3)The result of the rapid evaluation test is only used for the primarily select ,and which can't be used as the criteria for the long-term anti-corrosion effectiveness of the corrosion inhibitors.

  12. 质量控制点在金塘大桥钢箱梁防腐涂装工程中的应用%The Application of Quality Control Point in Jintang Bridge Steel Box Beam of Anti-corrosion Engineering

    Institute of Scientific and Technical Information of China (English)

    李勇

    2012-01-01

    介绍了质量控制点设置的原则,在进行工序分析的基础上,成功运用质量控制点对金塘大桥钢箱梁电弧喷涂长效防腐项目进行质量控制,并取得显著成效.为防腐涂装施工企业有效运用质量控制点提高工程质量,提供了一定的借鉴.%The establishment principle of the quality control point was introduced, Base on the a-nalysis of working procedure,the quality control points were successfully applied on Jintang bridge steel box beam arc spray long-term anticorrosion project for quality control, and made significantly effectiveness. A reference was procided for coating of construction enterprises application quality control point to improve the project quality.

  13. 用于蒸馏水舱防护的新型玻璃鳞片涂料研制%Study on epoxy glass flake heavy-duty anticorrosive coatings used in distilled water carbin

    Institute of Scientific and Technical Information of China (English)

    康新征; 张赞; 周陈亮

    2011-01-01

    Currently,the internal wall of distilled water cabin was protectived by using epoxy polyamide paint as a protective coating to prevent the bulkhead corrosion,but then protection period is only five years or so.Such protective coating is not only short-term effect,but only film is easy to produce blister and fall off.A new high-solids epoxy glass flake coating was manufactured using silicone-coated sheet glass flake as the main anti -rust paint,low viscosity epoxy resin-based material as basic resin.The test indicated that the coating resistance to neutral salt spray test was up to 3000 hours,and at room temperature,in distilled water environment,the effective protection period was up to 15 years,and after long-term soaking in distilled water,erosion,there will be no dissolution of soluble material in the filim.that will not affect the storage of distilled water,the water tanks and other equipment of the wall protection using the coating will be suitable for long-term storage of high purity distilled water,that can effectively meet anti-corrosion requirements of the submarines,power plants and other departments of the distilled water storage facilities.%舰艇蒸馏水舱内壁主要使用环氧聚酰胺类涂料作为防护涂层,防止舱壁腐蚀,防护期限一般为5年左右。但这类涂料不仅防护期效短,而且在使用过程中涂膜易产生起泡、脱落。以硅氧烷包覆过的片状玻璃鳞片为主要防锈涂料,以低黏度环氧树脂为基料,制备了一种新型高固体份环氧玻璃鳞片涂料。实验表明,该涂料耐中性盐雾试验可达3000h以上;常温条件下,在蒸馏水浸泡环境中,涂膜的有效防护期可达15年以上;并且经长期的蒸馏水浸泡、侵蚀,漆膜不会有可溶物质溶出,不会影响存储的蒸馏水水质,非常适合于长时间存储高纯度蒸馏水的水柜、水罐等设备的内壁防护需要,可有效满足舰艇、电厂等对蒸馏水存储设施的防腐要求。

  14. Thermodestruction of components of anticorrosion polymer cover

    OpenAIRE

    Тихомирова, Татьяна Сергеевна

    2012-01-01

    This article concerns the processes of thermodestruction of multilayer polymer cover, which is widely used to protect the external surface of steel pipelines. The main purpose of the work is to prove the possibility of combination of various polymer components in one cover preserving the thermostability of the cover. The behavior of the separate modified components of the cover at high temperatures was analyzed using the differential-thermal analysis and the derivative thermogravimetry...

  15. 离子交换型缓蚀填料在防腐蚀涂层中的应用Ⅰ阳离子交换型填料%Application of Ion-exchange Compounds as Corrosion Inhibiting Pigments to Organic Anticorrosion Coatings Ⅰ Cation-exchange Pigments

    Institute of Scientific and Technical Information of China (English)

    吴俊升; 肖葵; 李欣荣; 董超芳; 李晓刚

    2011-01-01

    铬酸盐等重金属类缓蚀性颜填料会对环境造成严重的污染,未来该类有害物质在防腐蚀涂层中的应用将被禁止。新型的离子交换型填料因其具有可同时释放缓蚀性离子和吸附固定侵蚀性离子(H+、Cl-、SO24-等)的双重功效,被认为是替代传统重金属类颜填料的理想材料。本文对Zn2+、Ce3+、Ca2+等缓蚀性阳离子改性膨润土、氧化硅、分子筛等新型离子交换型缓蚀填料在有机防腐蚀涂层中的应用进行了综述。%It is well documented that chromate pigments and other heavy metal compounds must be eliminated from organic anticorrosion coatings due to their toxic nature and carcinogenic effects in the future. The novel ion-exchange pigments can play a double role of absorbing the harmful ions such as H+ ,C1- ,SO24- and releasing the inhibiting ions on contact with aggressive electrolyte invading the coating. The released inhibitors can provide active corrosion protection to the defects in the coating and substrate, on the other hand, the uptake of harmful ions decreases the aggressiveness of the corrosive medium, and thereby reduces the rate of ecorrosion processes. Therefore, such new inhibiting compounds have been developed as the potential alternate materials of the traditional toxic pigments, and have attracted a lot of attention. In this paper, the application of ion-exchange pigments, such as Ce3+ , Znz+ cation-exchanged bentonite, Ca2+ cation-exchanged silica and MoO22+ cation-exchanged zeolite, to organic anticorrosion coatings is reviewed.

  16. 离子交换型缓蚀填料在防腐蚀涂层中的应用Ⅱ阴离子交换型填料%Application of Ion-exchange Compounds as Corrosion Inhibiting Pigments to Organic Anticorrosion Coatings Ⅱ Anion-exchange Pigments

    Institute of Scientific and Technical Information of China (English)

    吴俊升; 肖葵; 李欣荣; 董超芳; 李晓刚

    2011-01-01

    铬酸盐等重金属类缓蚀性颜填料会对环境造成严重的污染,未来该类有害物质在防腐蚀涂层中的应用将被禁止.新型的离子交换型填料因其具有可同时释放缓蚀性离子和吸附固定侵蚀性离子(H+、Cl-、SO2-4等)的双重功效,被认为是替代传统重金属类颜填料的理想材料.本文对[V10O28]6-、MoO2-4等缓蚀性阴离子改性水滑石类层状新型离子交换型缓蚀填料在有机防腐蚀涂层中的应用进行综述.%It is well documented that chromate pigments and other heavy metal compounds must be eliminated from organic anticorrosion coatings due to their toxic nature and carcinogenic effects in the future. The novel ion-exchange pigments can play a double role of absorbing the harmful ions such as H+ , Cl- , SO2-4 and releasing the inhibiting ions on contact with aggressive electrolyte invading the coating. The released inhibitors can provide active corrosion protection to the defects in the coating and substrate. On the other hand, the uptake of harmful ions decreases the aggressiveness of the corrosive medium, and thereby reduces the rate of corrosion processes. Therefore, such new inhibiting compounds have been developed as the potential alternate materials of the traditional toxic pigments, and have attracted a lot of attention. In this paper, the application of anion-exchange pigments, such as [V10O28]6- , MoO2-4 exchanged hydrotalcite, in organic anticorrosion coatings is reviewed.

  17. Sericite modified by Cr2O3 / KH-550 and its effection on the anticorrosion properties of epoxy resin coating%Cr2O3/KH-550改性绢云母及其对环氧涂料防腐性能的影响

    Institute of Scientific and Technical Information of China (English)

    高延敏; 袁浩; 王晓艳

    2012-01-01

    采用有机-无机复合改性方法对片状绢云母表面进行了改性,考察了改性绢云母对环氧涂料防腐性能的影响.采用扫描电镜(SEM)、X-射线衍射(XRD),电化学工作站等对改性绢云母表面的物理化学性能进行了表征.结果表明:绢云母表面的防腐性能得到了改善,绢云母表面引入一层Cr2O3,当Cr2O3的用量为绢云母的60%时改性效果最佳,用KH - 550 进一步改性后的绢云母疏水亲油性比单独用Cr2O3改性的绢云母有了提高,而且腐蚀电位明显提高,自腐蚀电流大大减小,说明该涂层可使腐蚀速度减小,有较好的保护作用.%Sericite has some shortcomings including hydrophilic dredging oil, easy reunion and difficult wetting and distracting in organic coating. By using ganic-inorganic compound, sericite is modified, and its influence on anticorrosion properties of epoxy paint is further investigated. Moreover, the physical and chemical characteristics of surface-modified sericite are analyzed by scanning electron microscope (SEM)、X-ray diffraction (XRD) and electrochemical analysis. The results show that the anticorrosion performance of sericite surface is improved, and it is equably covered with a layer of Cr2O3. When the dosage of chromic nitrate accounts for 60% of sericite, the wrapping effect is good. The hydrophilic oleophobic characteristics of sericite that is coated with KH -550 again after being modified with Cr2O3 is enhanced largely. Also, corrosion potential is improved obviously, and corrosion current is decreased greatly. This means that the coating reduces the corrosion speed and has a good protection.

  18. Effect of Reaction Temperature and pH Value on Performances of Polyaniline/Epoxy Resin Composite Anti-corrosion Coatings%反应温度及pH值对聚苯胺/环氧树脂涂料防腐性能的影响

    Institute of Scientific and Technical Information of China (English)

    郝少娜; 甘孟瑜; 冯利军; 杨桔; 李志春; 贾春悦; 刘兴敏

    2011-01-01

    采用原位乳液聚合法,合成了聚苯胺/环氧树脂(PAn/EP)复合涂料,研究了聚合反应温度及体系pH值对其防腐性能的影响,并探讨了其防腐机理.结果表明,当反应温度为25℃、体系中PH=1时合成的PAn/EP复合涂料的防腐效果较好,并明显优于商品PAn/EP混合涂料.%The effects of reaction temperature and pH value on the corrosion resistance of polyaniline/epoxy resin (PAn/EP) composite coatings, which were prepared by chemical in-situ polymerization, were investigated by Tafel measurement. And the anti-corrosion mechanism of polyaniline/epoxy resin composite coatings was also discussed. The experimental results show that when the reaction temperature is 25 ℃ and the pH value is 1, the corrosion resistance of the composite coating is satisfactory, and it is better than PAn/EP mixed coatings.

  19. Investigation of anti-corrosive properties of poly(aniline-co-2-pyridylamine-co-2,3-xylidine) and its nanocomposite poly(aniline-co-2-pyridylamine-co-2,3-xylidine)/ZnO on mild steel in 0.1 M HCl

    Science.gov (United States)

    Alam, Ruman; Mobin, Mohammad; Aslam, Jeenat

    2016-04-01

    A soluble terpolymer of aniline (AN), 2-pyridylamine (PA) and 2,3-xylidine (XY), poly(AN-co-PA-co-XY) and its nanocomposite with ZnO nanoparticles namely, poly(AN-co-PA-co-XY)/ZnO were synthesized by chemical oxidative polymerization employing ammonium persulfate as an oxidant. Nanocomposites of homopolymers, polyaniline/ZnO, poly(XY)/ZnO and poly(PA)/ZnO were also synthesized by following similar synthesis route. FTIR, XRD and SEM techniques were used to characterize the synthesized compounds. The synthesized compounds were chemically deposited on mild steel specimens by solvent evaporation method using N-methyl-2-pyrrolidone (NMP) as solvent and 10% epoxy resin (by weight) as binder. Anticorrosive properties of homopolymer nanocomposites, terpolymer and its nanocomposite coatings were studied in 0.1 M HCl by subjecting them to various corrosion tests which includes: free corrosion potential measurement (OCP), weight loss measurements, potentiodynamic polarization, and AC impedance technique. The surface morphology of the corroded and uncorroded coated steel specimens was evaluated using SEM. The corrosion protection performance of terpolymer nanocomposite coating was compared to the terpolymer and individual homopolymers nanocomposites coatings after 30 days immersion in corrosive medium.

  20. Research progress of electroless plating applied on heat exchange surface to enhance dropwise condensation,anti-fouling and anti-corrosion properties%化学镀在换热表面强化滴状凝结、阻垢、耐蚀研究进展

    Institute of Scientific and Technical Information of China (English)

    胡丞; 高景山; 张英

    2015-01-01

    Based on the practical problems of condenser,this article reviews the research progress of electroless plating applied to enhance dropwise condensation,anti-fouling and anti-corrosion properties.It is discussed the influence of surface energy,amorphous content,temperature, pressure,and PTFE content on the dropwise condensation.The growth of deposition on the electroless plating surface is introduced,and it is discussed the effect of amorphous content, experiment conditions,multi-layer plating and wolfram,boron nitride,stannum and cooper content on the surface anti-fouling property.This article discusses the influence of phosphorus content,multi-layer plating,surfactant,pH,temperature and Cu and PTFE content on the surface anti-corrosion property.Considering practical problems of condenser, put forward to future research which is creating a muli-property electroless plating.Meanwhile,in order to promote the development of electroless plating technology industrialization,longevity problem of electroless plating should also be solved.%从换热器实际问题出发,分别回顾了化学镀层强化凝结换热、阻垢、耐蚀3个方面的研究进展。在强化凝结换热方面,阐述了以 Ni-P化学镀为基础的界面表面能、镀层非晶含量、温度、压力以及添加 PTFE等物质对在换热界面形成滴状凝结的影响。在化学镀阻垢方面,介绍了污垢的生长过程,讨论了镀层非晶含量、实验条件、梯度镀层以及添加W、BN、Sn、Cu等元素对镀层阻垢性能的影响。在化学镀耐腐蚀研究方面,阐述了镀层磷含量、梯度镀层、表面活性剂、镀液 pH 值、温度以及添加Cu、PTFE等元素对镀层抗腐蚀性能的影响。并根据实际生产情况,提出对镀层强化凝结换热、阻垢和耐腐蚀3个方面特性相互间的影响关系进行研究。同时提出,为了推进镀层技术工业化发展,还应解决镀层长效性的问题。

  1. 氟硅丙烯酸酯/钠基蒙脱土复合乳胶涂层的制备及防腐蚀性能%Preparation and anticorrosion performance of fluorine-silicon-acrylate/sodium montmorillonite composite emulsion coating

    Institute of Scientific and Technical Information of China (English)

    高晓辉; 李玉峰; 祝晶晶; 张毅志

    2015-01-01

    以甲基丙烯酸十二氟庚酯和乙烯基三甲氧基硅烷为功能单体,采用种子乳液聚合法合成氟硅丙烯酸酯乳液(氟硅),然后将钠基蒙脱土(钠土)分散于其中,制成复合乳胶涂层并涂覆在Q235钢上。研究了乳液种类和钠土用量对涂层防腐性的影响。采用红外光谱(FT-IR)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征了氟硅丙烯酸酯乳液和涂层。通过极化曲线、交流阻抗测量和中性盐雾试验探讨了复合涂层的耐腐蚀性。结果表明,乳胶粒子呈核壳结构,涂层连续、致密,钠土在涂层中分散均匀。当钠土用量为4%时,复合涂层的耐蚀性最好,水接触角达到102.4°,附着力为0级,电化学阻抗达到104.4Ω,腐蚀速率仅为4.3×10−5 mm/a,盐雾试验240 h后膜下金属未发生腐蚀扩散。%A fluorine-silicon-acrylate emulsion was synthesized by seed emulsion polymerization using dodecafluoroheptyl methacrylate and vinyltrimethoxysilane as monomers. Sodium montmorillonite (Na-MMT) was dispersed in the fluorine-silicon-acrylate emulsion for preparing a composite emulsion coating for Q235 steel. The influences of emulsion type and Na-MMT content on anticorrosion properties of the coating were studied. The fluorine-silicon-acrylate emulsion and coating were characterized by Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The corrosion resistance of the composite coating was examined by polarization curve measurement, electrochemical impedance spectroscopy, and neutral salt spray test. The results showed that the emulsion particles possess obvious core-shell structure and the composite coating is continuous and compact with well-dispersed Na-MMT. The composite emulsion coating obtained with 4%Na-MMT has optimal anticorrosion performance with a water contact angle of 102.4°, adhesion strength of 0 grade

  2. Preparation of Organic Phosphate Modified Styrene-Acrylate Grafted Epoxy Resins Latex and Its Anti-Corrosion Property%磷酸酯改性苯丙接枝环氧树脂胶乳的制备及其防腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    毛正和; 钟涛; 朱爱萍; 夏中高; 杨芳芳

    2012-01-01

    采用乳液聚合方法制备了一种用于水性金属防腐蚀涂料的磷酸酯改性苯丙接枝环氧树脂胶乳,其中环氧树脂占胶乳固体含量30%,磷酸酯占胶乳固体含量1.2%.制备的胶乳可室温交联固化.采用透射电镜表征了胶乳的形貌,红外光谱表征胶乳的结构,偏光显微镜研究金属的闪锈行为,拉开法测定附着力.结果表明:胶乳粒子呈现规则的球型形貌,粒径为130 ~ 150 nm,粒径分布均匀;磷酸酯以共价键的方式连接在苯丙接枝环氧树脂胶乳中;胶乳具有优异的防闪锈性,干/湿附着力优异,同时乳胶膜具有优异的机械力学性能、耐盐水性能以及防腐蚀性能.%Emulsion polymerization was used to prepare the organic phosphate modified styrene — acrylate grafted epoxy resins latex for preparation of the waterborne metal anticorrosive coatings, in which epoxy resin content was 30% and organic phosphate content was 1.2%. The resulting latex could be crosslinked at room temperature. The latex morphology was characterized with TEM; the structure was measured with FT - IR; the flash rust behaviors on metals were studied with the polarizing microscope; and the adhesion was measured with the pull - off method. The results indicated that the latex particles showed regular spheroidal morphology, with 130-150 nm in diameter and uniform particle size distribution; the organic phosphate linked with styrene - acrylate grafted epoxy resins latex by covalent bond; the latex was excellent in flash rust resistance and drying/wet adhesion. And the latex film could provide good mechanical properties, salt water resistance and anti - corrosion property.

  3. 不锈钢表面有机-无机复合膜的制备及其抗海水腐蚀性能%Fabrication of organic-inorganic hybrid membrane on 304 stainless steel surface and its anti-corrosion properties

    Institute of Scientific and Technical Information of China (English)

    薛瑞婷; 宋现旺; 尹衍升; 陈守刚

    2011-01-01

    以多巴胺修饰304不锈钢为基体,采用溶胶凝胶法和自组装成膜法制备了SiO2基、TiO2基和SiO2-TiO2混合基有机-无机杂化涂层.探讨了钛酸四丁酯、正硅酸乙酯和11-巯基十一烷酸(MUA)在不锈钢基体上的成膜性和成膜后的抗腐蚀性能.借助金相显微镜观察了不锈钢基体上的杂化膜的显微形貌,塔菲尔曲线和电化学阻抗谱对比分析了杂化膜的抗腐蚀性能.结果表明,MUA和TiO2、SiO2能复合成膜,膜的致密性好,具有可重复性,且引入TiO2和SiO2后,其抗腐蚀性能有较大幅度提高.%In this paper, dopamine is used to modify the surface of 304 stainless steels. TiO2 , SiO2 and TiO2/SiO2 based hybrid membranes are prepared by sol-gel process and self-assambly method. The film forming properties of tetrabutyl titanate,tetraethoxysilane and 11-mercaptoundecanoic acid ( MUA) and anti-corrosion property of the hybrid membranes are investigated. The formation and surface structure of hybrid membranes are characterized by metallurgical microscopy. The results show that hybrid membranes can be successfully fabricated on 304 stainless steel substrates and the compactneas of hybrid membranes is better than the simple organic film. The corrosion behavior of hybrid films are evaluated by potentiodynamic polarization and the electrochemical impedance spectroscopy ( EIS) . The results indicate that hybrid membranes based on the adhesive of poly( dopamine) indeed reduce the corrosion of 304 stainless steels.

  4. Research on Anti-Corrosion of Thiobacillus for the Geopolymer Solidification MSWI Fly Ash%地聚物固化生活垃圾焚烧飞灰固化体抗氧化硫杆菌腐蚀性能的研究

    Institute of Scientific and Technical Information of China (English)

    金漫彤; 孙鑫; 董海丽; 金赞芳

    2012-01-01

    In order to discuss the anti-Thiobacillus corrosion performance of geopolymer solidification MSWI fly ash,the research simulated the Thiobacillus corrosion process by experiment,investigated the change of mass,compressive strength,leaching concentration.The results showed that geopolymer had a good anti-corrosion ability: weight loss within 1%,the compressive strength still reached 21.88 MPa after 28 days,the corrosion resistance coefficient was above 0.9.The maximum leaching concentration of Cr,Cu,Zn,Cd,Hg,Pb were 107.7 μg·L^-1,22.71 μg·L^-1,39.18 μg·L^-1,0.56 μg·L^-1,34.84 μg·L^-1and 3.03 μg·L^-1,respectively.And the leaching concentration of geopolymer reduced with the immersion time,showed a good anti-Thiobacillus corrosion performance.Through the X-ray diffraction,Fourier transform infrared spectroscopy,scanning electron microscope spectra of geopolymer,we investigated the microstructure and mechanism of geopolymer anti-corrosion.%为了探讨地聚合物固化生活垃圾焚烧飞灰后形成的固化体抗强酸性微生物的侵蚀性能,模拟氧化硫杆菌的腐蚀过程,考察经氧化硫杆菌浸泡前后地聚物固化体质量、抗压强度、浸出浓度的变化.结果表明,地聚物固化体具有良好的抗氧化硫杆菌侵蚀能力:浸泡28 d后,质量损失〈1%;抗压强度仍达到了21.88MPa,抗蚀系数在0.9以上;重金属Cr、Cu、Zn、Cd、Hg、Pb的最大浸出浓度仅为:107.7、22.71、39.18、0.56、34.84和3.03μg.L^-1.并且重金属的浸出浓度随浸泡时间而降低,表明了地聚物具有良好的抗氧化硫杆菌腐蚀的性能.实验通过X-ray衍射(XRD)、傅立叶红外光谱(FTIR)、扫描电镜(SEM)的分析对地聚物固化体的微观结构进行了表征,并探讨了地聚物固化体抗酸腐蚀性能的机制.

  5. Fabrication and Anti-Corrosion Property of In situ Self-Assembled Super-Hydrophobic Films on Aluminum Alloys%铝合金表面原位自组装超疏水膜层的制备及耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    李松梅; 周思卓; 刘建华

    2009-01-01

    In situ rough structures on an aluminum alloy were formed by anodic oxidation method. After siloxane serf-assembly on the rough structures, super-hydrophobic and serf-cleaning films were fabricated. The static contact angle of the super-hydrophobic surface with a water drop was 157.5°±2.0° at its maximum and the contact angle hysteresis was less than 3°. The influence of anodic oxidation current density, the water content of the siloxane solution,and self-assembly time on film formation were studied by Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and contact angle measurements. Optimum parameters to fabricate the super-hydrophobic surface were obtained. FE SEM and AFM results indicated that microstructures were obtained by anodic oxidation and nanostructures were obtained by the disorder of serf-assembly film. Stable super-hydrophobic surfaces were produced by the cooperation of micro/nano-stmctures and the low surface free energy of the siloxane films. The electrochemical measurement (potentiodynamic polarization) indicated that the anti-corrosion property of the aluminum alloy was greatly improved by the in situ super-hydrophobic film.%采用阳极氧化法在铝合金表面原位构造粗糙结构,经表面自组装硅氧烷后得到超疏水自清洁表面,与水滴的接触角最大可达157.5°±2.0°,接触角滞后小于3°.通过傅立叶变换红外(FT-IR)光谱分析仪、场发射扫描电子显微镜(FE-SEM)、能谱仪(EDS)、原子力显微镜(AFM)和接触角测试对阳极氧化电流密度、硅氧烷溶液中水的含量和自组装时间等参数进行了分析,并得到制备超疏水自清洁表面的最优工艺参数.FE-SEM及AFM的测试结果表明,由自组装硅氧烷膜层的无序性形成的纳米结构和阳极氧化构造的微米级粗糙结构与硅氧烷膜层的低表面能的协同作用构成了稳

  6. Effects of different simulated fluids on anticorrosion biometallic materials

    Institute of Scientific and Technical Information of China (English)

    梁成浩; 牟战旗

    2001-01-01

    The corrosion behaviors of SUS316L stainless steel, Co-Cr alloy and Ti-6Al-4V alloy in Ringer's, PBS(-) and Hank's solutions have been investigated. The results indicate that the corrosion of Ringer's solution is the strongest, then followed by PBS(-) and Hank's solution. The presence of HPO2-4, H2PO-4, SO2-4 and glucose in the PBS(-)and Hank's solution probably reduces the corrosion inhibitor and corrosion current. The decrease of the solution's pH significantly increases the corrosion rate and susceptibility to localized corrosion of SUS316L SS and Co-Cr alloy. However, Ti-6Al-4V alloy exhibits an exceptional stability and has only a slight increase of corrosion rate with decreasing pH.

  7. Environmentally Friendly Anticorrosion Coating for High Strength Fasteners

    Science.gov (United States)

    2011-01-01

    submersing it into a vat of paint. The basket is then raised above the paint surface and spun to remove the excess liquid by centrifugal action. The...PPG Industries, Inc. Cadmium Plating - Per QQ-P-416 Type II, Class 2 (Cd/Cr) Cadmium yellow with Chromium +6 rinse Embrittlement relief bake

  8. Influence of substrate topography on cathodic delamination of anticorrosive coatings

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    The cathodic delamination of a commercial magnesium silicate and titanium dioxide pigmented epoxy coating on abrasive cleaned cold rolled steel has been investigated. The rate of delamination was found to depend on interfacial transport from the artificial defect to the delamination front...... and thereby the substrate topography, whereas the coating thickness had little influence. The presence of a significant potential gradient between the anode and the cathode and the dependency of the delamination rate on the tortuosity of the steel surface suggests that cathodic delamination is controlled...... by migration of cations from the defect to the delamination front. This means that abrasive blasting, to some extent, can be applied to control and minimize the observed rate of cathodic delamination. The lifetime of the species causing disbondment suggested that sodium hydroxide or potassium hydroxide...

  9. Sealing and anti-corrosive action of tannin rust converters

    Energy Technology Data Exchange (ETDEWEB)

    Gust, J.; Bobrowicz, J. (Building Research Inst., Warsaw (Poland))

    1993-01-01

    A possibility of the application of mercury porosimetry in the investigation on porosity in corrosion products of the carbon steel along with the degree of sealing by the use of tannin rust converters is presented. The effect of the atmospheric humidity on the rust conversion including the time of that conversion on the degree of rust sealing is discussed. The results of the corrosion investigation of carbon steel covered with a layer of the rust converted with tannin-containing agents are presented.

  10. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    Science.gov (United States)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  11. Experimental Research on the Anti-corrosion Design out of the Tube and Casing Material Selection Chart in the Offshore Oilfields%超出海上油套管选材图版的防腐设计实验研究

    Institute of Scientific and Technical Information of China (English)

    张海山

    2016-01-01

    目的:东海A气田开发储层流体中CO2分压约1.85 MPa,温度在150℃左右。井下腐蚀环境已超出中海油选材图版的应用范围,因此应进行防腐模拟实验研究,为优选油套管材质提供依据。方法应用失重法在高温高压动态反应釜中进行高温高压动态腐蚀模拟测试,选择油气田开发中高防腐油套管常用的普通13Cr、超级13Cr、22-25Cr双相不锈钢3种材质试样,测试不同材质油套管井下的腐蚀速率。结果 CO2分压2.0 MPa下,130℃时3种材质均未发现局部点蚀,温度升至150℃时,超级13Cr和22-25Cr双相不锈钢表现为均匀腐蚀,普通13Cr材质出现了点蚀,点蚀速率为0.6413 mm/a,明显超过了腐蚀控制线;150℃下,随着CO2分压的增加,腐蚀速率增加,但分压达到约2.0 MPa后,腐蚀速率增加减缓,并且出现下降趋势。结论从井底开发储层到地面,温度逐步降低,根据实验结果,东海 A 气田开发设计组合油套管的方式防腐,深部温度高于130℃位置的油套管应用超级13Cr材质,上部温度低于130℃位置的油套管应用普通13Cr材质,以降低成本。%ABSTRACT:Objective The content of CO2 partial pressure of the development reservoir fluid on the Gas Field A in the East China Sea is about 1.85 MPa, and the temperature is about 150℃. The parameters of downhole corrosion environment are out of the application scope of CNOOC tube and casing material selection chart, therefore, corrosive simulation experimental research should be carried out, which provides the foundation for optimization of tube and casing material.Methods In the ex-periment, weight loss method was used to dynamically test the corrosion rates of different tube and casingmaterials under the downhole condition by HTHP Auto Clave. The material samples were ordinary 13Cr, super 13Cr and 22-25Cr duplex stainless steel, high anticorrosive tubing and casing, which are commonly

  12. Thermally Sprayable Anti-corrosion Marine Coatings Based on MAH-g-LDPE/UHMWPE Nanocomposites

    Science.gov (United States)

    Jeeva Jothi, K.; Santhoskumar, A. U.; Amanulla, Syed; Palanivelu, K.

    2014-12-01

    Polymer composite coatings based on low-density polyethylene (LDPE) and ultra-high-molecular-weight polyethylene (UHMWPE) blends were prepared for marine coatings. The incorporation of carboxyl moiety in the polymer blends of LDPE/UHMWPE was carried out by grafting with maleic anhydride (MAH) at varying concentrations of 1-8 wt.% using reactive extrusion process. An optimum percentage of grafting of 2.1% was achieved with 5 wt.% of maleic anhydride. Further, the nanocomposites of MAH-grafted-LDPE/UHMWPE blends were prepared by incorporating cloisite 15A nanoclay at varying concentrations of 1-4 wt.%. The polymer nanocomposites were converted into fine powders suitable for thermal spray having ≤200 μ particle size using cryogenic grinding. The effect of the intact coatings applied on grit-blasted mild steel by thermal spray technique was evaluated for abrasion resistance, adhesion strength, and corrosion resistance. The corrosion resistance of the polymer nanocomposites was studied by salt spray technique and Electrochemical Impedance Spectroscopy The abrasion resistance of coatings increases with increasing UHMWPE content in the blends. However, blends with higher concentration of UHMWPE resulted in coarse coatings with poor adhesion. The coatings with 90:10 MAH-grafted-LDPE/UHMWPE having 3 wt.% of nanoclay showed good abrasion resistance, adhesion strength, and better corrosion resistance.

  13. Anti-corrosive properties of Argan oil on C38 steel in molar HCl solution

    Directory of Open Access Journals (Sweden)

    L. Afia

    2014-01-01

    Full Text Available Corrosion inhibition effect of Argan oil (AO on corrosion of C38 steel in 1 M HCl solution was investigated using weight loss measurements, electrochemical polarization and EIS methods. Results obtained reveal that Argan oil acts as a mixed inhibitor without modifying the hydrogen reduction mechanism. The inhibition efficiency increases with increased Argan oil concentration to attain a maximum value of 81% at 3 g/L. The inhibition efficiency of Argan oil decreases with the rise of temperature. Argan oil is adsorbed on the steel surface according to Langmuir isotherm model. The parameters (Ea∗,ΔHa∗,ΔG∗ andΔSa∗ were estimated and discussed. The fundamental thermodynamic functions were used to glean important information about Argan oil’s inhibitory behavior.

  14. 大型天线防腐技术%Anticorrosion technology for large antenna

    Institute of Scientific and Technical Information of China (English)

    董长胜; 张伟明; 王建宅; 银秋华; 黄晓群; 任兵锐; 张亚林; 曹江涛

    2014-01-01

    Large Antennas have been widely used in the aerospace ,deep‐space exploration and broadcast ,w hich are essential in the communication .T hey are fabricated by metal ,w hich can be easily corroded .Corrosion will deteriorate the appearance and performance ,even cause the security problem .By analyzing the necessary ,theory and influence factors of antenna corro‐sion ,many methods are proposed ,w hich contains optimizing materials ,structures ,designs , coatings ,and transportation .%大型天线广泛地应用在航空航天、深空探测、广播通信等领域,成为信息传递必不可少的设备。其多采用金属材料制造,因此在长期的室外工作环境下,极易发生腐蚀。金属材料的腐蚀将严重影响天线的性能和外观,甚至会产生人员与设备的安全问题。本文结合实际情况通过分析天线腐蚀的必要性、腐蚀机理和影响因素,结合实际情况为天线的防腐提供了优化材料、结构、加工工艺设计、喷镀金属涂层防护、涂料涂装防护、运输安装过程的防护、已损坏防护层的修复等方法,实现天线的长效防腐。

  15. Aminobenzoate modified hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.R.; Polder, R.B.

    2012-01-01

    A carbonate form of Mg-Al-hydrotalcite with Mg/Al = 2 and its p-aminobenzoate (pAB) modified derivative have been synthesized and characterized by means of XRD, IR and TG/DSC. Mg(2) Al-CO 3 was prepared by a coprecipitation method and was subsequently modified by pAB through the calcination-rehydrat

  16. A feasibility study of anticorrosion applications of modified hydrotalcites in reinforced concrete

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2012-01-01

    A carbonate form of Mg-Al-hydrotalcite with Mg/Al =2 and its p-aminobenzoate (pAB) modified derivative were synthesized and characterized by means of XRD, IR and TG/DSC. Mg(2)Al-CO3 was prepared by a coprecipitation method and was subsequently modified by pAB through the calcination-rehydration tech

  17. USE OF EXPERIMENTAL PLAN TO DEVELOPMENT OF PAINTS AND STICKERS ANTICORROSIVES

    Directory of Open Access Journals (Sweden)

    Danielly Vieira de Lucena

    2013-03-01

    Full Text Available The aim of this work is to study the influence of clay content and the number of layers “active” in the musical parameters and the degree of rust bubbles, using a experimental plan 22 type with three experiments in the central point. For this, polymer-clay nanocomposites obtained using montmorillonite (MMT, as the inorganic phase, and poly(methyl methacrylate (PMMA, as organic phase, for use as adhesives and coatings (paints and varnishes with high resistance to corrosion, to be applied on metal structures used in the petroleum industry. Measures of thickness and adhesion of films to demonstrate the effectiveness of the coating produced were also conducted. From the analysis of response surfaces show that the best corrosion characteristics are observed for acrylic coatings fortified with 5% organoclay layers and three “active”. This behavior is expected on account of the further enhancement provided by the high concentration of the components forming coating.

  18. Action mechanism of antioxidation and anticorrosion andmolecular design for perfiuoropolyether fluid additives (

    Institute of Scientific and Technical Information of China (English)

    WANG; Daxi

    2001-01-01

    [1]Onganer, Y., Saglam, M., Turut, A. et al., High barrier metallic polymer p-type silicon Schottky diodes, Solid State Electron, 1996, 39: 677.[2]Lonergan, M. C., A tunable diode based on an inorganic semiconductor vertical bar conjugated polymer interface, Science,1997, 278: 2103.[3]Wolkow, R. A., Moffatt, D. J., The frustrated motion of benzene on the surface of Si(l11), J. Chem. Phys., 1995,103: 10696.[4]MacPherson, C. D., Leung, K. T., Electron-induced chemistry of pyridine on Si(l 11)7x7 An LEED and TDS study,Surf. Sci., 1995, 324: 202.[5]MacPherson, C. D., Hu, D. Q., Leung, K. T., Room-temperature adsorption of thiophene and related 5-membered cyclicolefins on Si( 111)7x7 by thermal-desorption spectrometry, Surf. Sci., 1992, 276:156.[6]Cao, Y.. Wang, Z., Deng, J. F. et al., Evidence for dangling bond mediated dimerization of furan on the silicon (111 )-(7x7) surface, Angew Chem. Int. Ed., 2000, 39: 2740-2743.[7]Cao, Y., Yong, K. S., Wang, Z. Q. et al., Dry thienylation of the silicon (111)-(7x7) surface, J. Am. Chem. Soc., 2000, 112:1812.[8]Taguchi, Y., Fujisawa, M., Takaoka, T. et al., Adsorbed state of benzene on the Si(100) surface-thermal-desorption and electron-energy loss spectroscopy studies, J. Chem. Phys., 1991,95: 6870.[9]Lopinski, G. P., Fortier, T M., Moffatt, D. J. et al., Multiple bonding geometries and binding state conversion of benzene/Si(100), J. Vac. Sci. Technol., 1998, Al6: 1037.[10]Ellison, M. D., Hamers, R. J., Reactions of substituted aromatic hydrocarbons with the Si(001) surface, J. Vac. Sci.Technol., 2000, Al8: 1965.[11]Qiao, M. H., Cao, Y., Deng, J. F. et al, Formation of covalent Si-N linkages on pyrrole functionalized Si(100)-(2×l),Chem. Phys. Lett., 2000, 325: 508.[12]Konecny, R., Doren, D. J., Cycloaddition reactions of unsaturated hydrocarbons on the Si(100)-(2×1) surface: theoretical predictions, Surf. Sci., 1998, 417: 169.[13]Birkenheuer, U., Gutdeutsch, U., Rosch, N., Geometrical structure of benzene absorbed on Si(001), Surf. Sci., 1998, 409:213.[14]Wolkow, R. A., Lopinski, G. P., Moffatt, D. J., Resolving organic molecule silicon scanning tunneling microscopy features with molecular orbital methods, Surf. Sci., 1998, 416:L1107.[15]Silvestrelli. P. L., Ancilotto, E, Toigo, F., Adsorption of benzene on Si(100) from first principles, Phys. Rev. B, 2000, 62:1596.[16]Dewar, M. J. S., Holder, A. J., Aromatic energies of some heteroaromatic molecules, Heterocycles, 1989, 28:1135.[17]Becke, A. D., Density-functional thermochemistry, 3. The role of exact exchange, J. Chem. Phys., 1993, 98: 5648.[18]Lee, C., Yang, W., Parr, R. G., Development of the colle-salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B, 1988, 37: 785.[19]Frisch. M. J., Trucks, G. W., Schlegel, H. B. et al, Gaussian 98, Pittsburgh PA: Gaussian, Inc., 1995.

  19. Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater.

    Science.gov (United States)

    Forlani, Giuseppe; Prearo, Valentina; Wieczorek, Dorota; Kafarski, Paweł; Lipok, Jacek

    2011-03-07

    The ability of Spirulina spp. to metabolize the recalcitrant xenobiotic Dequest 2054(®) [hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic acid)], a CaSO(4) inhibitor used for boiler treatment and reverse osmosis desalination, was investigated. The compound served as sole source of phosphorus, but not of nitrogen, for cyanobacterial growth. In vivo utilization was followed by (31)P NMR analysis. The disappearance of the polyphosphonate proceeded only with actively dividing cells, and no release of inorganic phosphate was evident. However, no difference was found between P-starved and P-fed cultures. Maximal utilization reached 1.0 ± 0.2 mmoll(-1), corresponding to 0.56 ± 0.11 mmol g(-1) dry biomass, thus residual amounts were still present in the exhausted medium when the compound was supplied at higher initial concentrations. At low substrate levels metabolism rates were lower, suggesting that a concentration-driven uptake may represent a limiting step during the biodegradation process. The compound was not retained by biocolumns made with immobilized cyanobacterial cells, either alive or dead. A lab-scale pilot plant, consisting of a series of sequentially connected vessels containing an actively proliferating algal culture, was built and tested for wastewater treatment. Results showed 50% removal of the polyphosphonate added to an initial concentration of 2.5mM. Although further optimization will be required, data strengthen the possibility of using cyanobacterial strains for bioremediation purposes.

  20. Anti-corrosive properties of Argan oil on C38 steel in molar HCl solution

    OpenAIRE

    L. Afia; R. Salghi; L. Bammou; El. Bazzi; B. Hammouti; Bazzi, L.; A. Bouyanzer

    2014-01-01

    Corrosion inhibition effect of Argan oil (AO) on corrosion of C38 steel in 1 M HCl solution was investigated using weight loss measurements, electrochemical polarization and EIS methods. Results obtained reveal that Argan oil acts as a mixed inhibitor without modifying the hydrogen reduction mechanism. The inhibition efficiency increases with increased Argan oil concentration to attain a maximum value of 81% at 3 g/L. The inhibition efficiency of Argan oil decreases with the rise of temperatu...

  1. A novel method to prepare superhydrophobic, UV resistance and anti-corrosion steel surface

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    Both TiO 2 and SiO 2 coated steel surfaces containing micro- and nanoscale binary structures with different surface roughness were successfully fabricated by means of a facile layer by layer deposition process followed by heat treatment. The resulting surfaces were modified by the low free energy chemical PTES (1H,1H,2H,2H-Perfluorodecyltriethoxysilane). The experimental results of wettability exhibit that such modified surfaces have a strong repulsive force to water droplets, their static contact angles exceed 165°, receding angle>160°, advanced angles>170° and slide angle<1°. The resulting surfaces not only exhibit superhydrophobic properties but also show strong UV resistance (after coating SiO 2 on top of TiO 2) and strong stability to various solvents including 0.01% HCl solution. © 2012 Elsevier B.V.

  2. ANTICORROSIVE ZINC COVERINGS ON STEEL ARTICLES: PROSPECTS OF THERMAL DIFFUSION COVERINGS

    Directory of Open Access Journals (Sweden)

    V. M. Konstantinov

    2013-01-01

    Full Text Available The analysis of existing zinc coatings on steel details is carried out. The reached results on development of energyresourcesaving technologies of thermal-diffusion galvanization are reported.

  3. Characterization of steam generated anti-corrosive oxide films on Aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    alloy surfaces were exposed to high pressure steam produced by an autoclave at a temperature of 107 – 121 °C and pressure of 15 -17 psi for 10 minutes to produce a thin coating of aluminium oxide. The aim of this study is to understand the effect of high pressure steam with and without different...

  4. Anti-corrosive Conversion Coating on Aluminium Alloys Using High Temperature Steam

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    chemistries based on pH and oxidizing capabilities. Treatment is carried out in an autoclave at a temperature of 110 – 112 °C and pressure of 5 Psi for varying times. The growth and composition of the oxide layer was investigated in detail as a function of microstructure using GD-OES, FEG-SEM, EDX, FIB...

  5. Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methods

    DEFF Research Database (Denmark)

    Nesterova, Tatyana; Dam-Johansen, Kim; Kiil, Søren

    2011-01-01

    core materials were not suitable for encapsulation of other compounds without modifications. This is a severe limitation as not many of the encapsulation procedures have been developed for industrially relevant core materials such as epoxy resin. Results of experiments, aiming at finding optimal......Self-healing materials have the ability to ‘repair’ themselves upon exposure to an external stimulus. In the field of coatings, extensive laboratory research has been conducted on these so-called smart materials in the last decade. In the present work, a self-healing concept for epoxy...

  6. Research on anti-corrosion property of rare earth inhibitor for X70 steel

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanhua; ZHUANG Jia; YU Yongsheng; ZENG Xianguang

    2013-01-01

    Three kinds of rare earth nitrates were adopted to sodium molybdate to get three kinds of LnN-M compounded inhibitors (La(NO3)3+Na2MoO4(LaN-M),Ce(NO3)3+Na2MoO4(CeN-M),Pr(NO3)3+Na2MoO4(PrN-M)).The combination of weight-loss method and the electrochemical test,was used to evaluate and analyze the corrosion inhibition efficiency of these LnN-M inhibitors to make the research on their corrosion inhibition performance,and the sequential order of their performance was found as follows:CeN-M> LaN-M>PrN-M,among which,the inhibition efficiency of CeN-M for the X70 steel could reach 98.21%.The synergism parameters were calculated by weight-loss method,these computational data indicated that the synergistic effect between rare earth nitrates and sodium molybdate was obvious and significant.Surface morphology,chemical composition and phase components of the precipitation films were tested for discussing the mechanism of LnN-M inhibitors.The outer electronic configuration of the lanthanide was found to have an important influence on the inhibition efficiency.The CeN-M inhibitor was discovered to have the best inhibition effect with the amorphous cerium oxides.The results of this research revealed that the precipitation films formed on the surface of the steel samples had a crucial influence on the inhibition efficiencies after adding LnN-M inhibitors.

  7. Cathodic delamination of seawater-immersed anticorrosive coatings: Mapping of parameters affecting the rate

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Dam-Johansen, Kim; Weinell, C. E.

    2010-01-01

    Abstract: Cathodic delamination is one of the major modes of failure for organic coatings immersed in seawater and refers to the weakening or loss of adhesion between the coating and the substrate. The diminished adhesion is the result of electrochemical reactions occurring at the coating......-steel interface, where solid iron is oxidized to ferrous ions and oxygen is reduced to hydroxyl ions. In this work, the effects of various parameters on cathodic delamination have been investigated. The parameters are: permeability of the coating, concentration of dissolved oxygen and cations, polarization...... potential, type of binder, degree of curing, and pigment loading, shape and type. The results show that cathodic delamination increases with increasing concentration of cations up to the point where the concentration of dissolved oxygen becomes insufficient to maintain the corrosion rate. The rate...

  8. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie; Zhang, Yifan; Liu, Run; Wang, Bin; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-08-30

    Highlights: • PEC/N can be applied to low melting point metal. • The spectroscopic characterization of plasma discharge is investigated. • Electron concentration and electron temperature are evaluated for PEC/N. • Phase composition of the carbonitrided layer is determined. • PEC/N improves the corrosion resistance of aluminum greatly. - Abstract: In this paper, plasma electrolytic carbonitriding (PEC/N) method was applied to pure aluminum for the first time. The spectroscopic characterization of plasma discharge during PEC/N process was analyzed and the electron temperature was calculated in terms of optical emission spectroscopy. The results showed the discharge plasma was in local thermal equilibrium (LTE) state. Electron concentration and electron temperature were about 6 × 10{sup 21} m{sup −3} and 4000 K, respectively. The carbonitrided layer contained Al{sub 4}C{sub 3}, AlN and Al{sub 7}C{sub 3}N{sub 3} phases. After PEC/N treatment, the corrosion resistance of pure aluminum was significantly improved, which was related to the formation of nitride phases. This work expands the application of plasma electrolysis technology on the surface modification of low melting point metal.

  9. Effect of alloy elements on the anti-corrosion properties of low alloy steel

    Indian Academy of Sciences (India)

    Baorong Hou; Yantao Li; Yanxu Li; Jinglei Zhang

    2000-06-01

    Effect of alloy elements on corrosion of low alloy steel was studied under simulated offshore conditions. The results showed that the elements Cu, P, Mo, W, V had evident effect on corrosion resistance in the atmosphere zone; Cu, P, V, Mo in the splash zone and Cr, Al, Mo in the submerged zone.

  10. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings.

    Science.gov (United States)

    Chang, Kung-Chin; Lu, Hsin-I; Peng, Chih-Wei; Lai, Mei-Chun; Hsu, Sheng-Chieh; Hsu, Min-Hsiang; Tsai, Yuan-Kai; Chang, Chi-Hao; Hung, Wei-I; Wei, Yen; Yeh, Jui-Ming

    2013-02-01

    Nanocasting technique was used to obtain a biomimetic superhydrophobic electroactive polyimide (SEPI) surface structure from a natural Xanthosoma sagittifolium leaf. An electroactive polyimide (EPI) was first synthesized through thermal imidization. An impression of the superhydrophobic Xanthosoma sagittifolium leaf was then nanocasted onto the surface of the EPI so that the resulting EPI was superhydrophobic and would prevent corrosion. Polydimethylsiloxane (PDMS) was then used as a negative template to transfer the impression of the superhydrophobic surface of the biomimetic EPI onto a cold-rolled steel (CRS) electrode. The superhydrophobic electroactive material could be used as advanced coatings that protect metals against corrosion. The morphology of the surface of the as-synthesized SEPI coating was investigated using scanning electron microscopy (SEM). The surface showed numerous micromastoids, each decorated with many nanowrinkles. The water contact angle (CA) for the SEPI coating was 155°, which was significantly larger than that for the EPI coating (i.e., CA = 87°). The significant increase in the contact angle indicated that the biomimetic morphology effectively repelled water. Potentiodynamic and electrochemical impedance spectroscopic measurements indicated that the SEPI coating offered better protection against corrosion than the EPI coating did.

  11. Anti-corrosion paint and varnish coatings employing wastes from coke and coal chemicals production

    Energy Technology Data Exchange (ETDEWEB)

    L.B. Pavlovich; N.M. Alekseeva; V.P. Dolgopolov; A.A. Popov [West Siberian Metallurgical Combine, Siberia (Russian Federation)

    2004-06-01

    The various shops of the West Siberian Metallurgical Combine operate 392 gas-cleaning units, and the combine annually spends 1.5 million rubles a year on major repairs to this equipment. The need to increase the service life of the air ducts is obvious. At the same time, the production of phthalic anhydride (PA) from commercial grades of naphthalene made at coke and coal chemicals plants also yields large quantities of waste products formed in oxidation reactions - still residues from the distillation of PA. These residues are currently used in coking charges. It is important that a way be found to recycle wastes from the production of phthalic anhydride, which is the main raw material used to make corrosion-resistant paints and lacquers. The goal of the research was to use PA production wastes to help develop promising new environmentally clean materials to protect metal from corrosion. The Combine has developed and mastered the production of two types of powdered polymer-based paint: quick-drying epoxide paint PEFAN-501; decorative epoxide-polyester paint NOVOLAN-1605. A section to make these paints has been set up and equipped with three units that apply the paints in an electrostatic field. The Combine has also developed a technology for using PA still residues to obtain an alkyl-epoxide primer for protecting gas pipes from corrosion. Experimental batches of the primer have been successfully tested on a section of gas pipe connected to the car dumper in the crushing-sorting plant operated by the sinter-lime department.

  12. Study on Anticorrosive Cerium Conversion Coating of Cf/6061Al Composite Surface

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The optimum chemical passivation process of the rare earth metal (REM) conversion coating on the Cf/6061Al composite surface was introduced in this paper and its polarization curves properties were investigated. Ridge-like coatings were found by scanning electro microscope (SEM) observations, and the Al matrix and carbon fibre reinforcement were both coated with Ce conversion coatings, with some minor cracks. The energy dispersive spectroscopy (EDS) plane scan analysis indicates that the major elements in the coating are Ce, O, Si, Al and the Ce content reaches 47.48%(mass fraction). The Ce conversion coatings increase the corrosion resisting properties of Cf/6061Al composite, with a higher free corrosion potential (Ecorr) and a lower free corrosion current density (icorr) for the coated composite than those of the bare composite. And the Boehmite-treatment would enhance the corrosion resistance of the REM conversion coating. The cathodic polarization and anodic polarization were retarded by REM conversion coating, resulting in an improved corrosion resistance.

  13. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning

    Science.gov (United States)

    Yang, Zhengqing; Wang, Lida; Sun, Wen; Li, Sijia; Zhu, Tianzhen; Liu, Wei; Liu, Guichang

    2017-04-01

    A facile method for the fabrication of organic coating with superhydrophobic surface on copper substrate is presented in this paper. Liquid-phase exfoliated fluorographene (FG) nanosheets, a low-surface-energy material with different sizes and shapes, are spatially stuck on the surface of epoxy resin coating to build rough surface with random micro/nano structure. The built coating system displays superior protection performances due to its self-cleaning function, mechanical abrasion resistance and chemical stability both in acidic and alkaline aqueous solutions. It not only provides a facile process for superhydrophobic modification of organic coating, but also introduces a new and effective strategy to protect materials by synergistically coupling the protection function of both superhydrophobic surface and organic coating, which can be used for large-scale manufacturing of superhydrophobic organic coating in industrial applications.

  14. Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles.

    Science.gov (United States)

    Hefni, Hassan H H; Azzam, Eid M; Badr, Emad A; Hussein, M; Tawfik, Salah M

    2016-02-01

    Chitosan (Ch) grafted with poly(ethylene glycol) (Ch-g-mPEG) were synthesized using mPEG with molecular weights 2000 g/mol. The synthesized Ch-g-mPEG was characterized using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD) techniques. Ch-g-mPEG silver nanoparticles has been synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). The synthesized Ch-g-mPEG and its nanostructure were examined as corrosion inhibitors for carbon steel in 1M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results revealed that the inhibition efficiency obtained by Ch-g-mPEG self-assembled on silver nanoparticles is greater than that obtained by Ch-g-mPEG only. Potentiodynamic polarization results reveal that the synthesized compound could be classified as mixed-type corrosion inhibitors with predominant control of the cathodic reaction. The results of EIS indicate that the both charge transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration.

  15. Anticorrosive Activity of Kigelia pinnata Leaves Extract on Mild Steel in Acidic Media

    Science.gov (United States)

    Muthukrishnan, P.; Saravana Kumar, K.; Jeyaprabha, B.; Prakash, P.

    2014-09-01

    The corrosion inhibition of mild steel in 1 M H2SO4 and 1 M HCl solution with different concentrations of Kigelia pinnata leaves extract (KPLE) was investigated using mass loss, Tafel polarization, and electrochemical impedance spectroscopy. Inhibition efficiency of KPLE is found to increase with increasing concentration but to decrease with temperature. Polarization measurements reveal that KPLE acts as a mixed type inhibitor in both acids. Impedance curves show that increasing KPLE concentration increases charge transfer resistance and decreases double layer capacitance. The adsorption of KPLE on the mild steel surface obeys the Langmuir adsorption isotherm. The experimental results reveal that KPLE inhibits the corrosion reaction in both acid environments, and inhibition efficiency follows the order H2SO4 > HCl. The kinetic and adsorption parameters for mild steel in acid in the presence and absence of KPLE were evaluated and discussed. The negative value of the standard free energy of adsorption in the presence of inhibitor suggests spontaneous adsorption of inhibitor on the mild steel surface. Protective film formation against corrosion was confirmed by ultraviolet-visible (UV-visible), X-ray diffraction, scanning electron microscopy, and Fourier transform-infrared spectroscopy techniques.

  16. Anti-Corrosive Effect of Tridax Procumbens – Zn2+ System Controlling the Corrosion of Carbon Steel

    OpenAIRE

    Kumar, C.; Mohan, R

    2014-01-01

    The corrosion inhibition efficiency (IE) of an aqueous extract Tridax Procumbens(TP) in controlling the corrosion of carbon steel aqueous medium containing 60 ppm of chloride ions in absence and presence of Zn2+ has been studied by weight loss method. The formulation consisting of 1 ml of Tridax Procumbens extract and 150 ppm of Zn2+ offers 96% inhibition efficiency. The synergistic effect exists between Tridax Procumbens and Zn2+ system. Polarization study shows that the Trida...

  17. Anti-Corrosive Effect of Tridax Procumbens – Zn2+ System Controlling the Corrosion of Carbon Steel

    Directory of Open Access Journals (Sweden)

    C. Kumar

    2014-03-01

    Full Text Available The corrosion inhibition efficiency (IE of an aqueous extract Tridax Procumbens(TP in controlling the corrosion of carbon steel aqueous medium containing 60 ppm of chloride ions in absence and presence of Zn2+ has been studied by weight loss method. The formulation consisting of 1 ml of Tridax Procumbens extract and 150 ppm of Zn2+ offers 96% inhibition efficiency. The synergistic effect exists between Tridax Procumbens and Zn2+ system. Polarization study shows that the Tridax Procumbens – Zn2+ system function as a cathodic inhibitor. AC impedance spectra reveal that a protective film formed on the surface. The Adsorption equilibrium exhibited better fit to Langmuir isotherm than Freundlich isotherm. FTIR spectra reveal that the protective film consists of Fe2+ -Tridax Procumbens and Zn(OH2.

  18. Multifunctional Zinc Borate-Based Anticorrosive Pigment%多功能硼酸锌防腐蚀颜料

    Institute of Scientific and Technical Information of China (English)

    David M.Schubert

    2004-01-01

    近年来,由于对铬酸盐安全性和其它防腐颜料潜在危害性的关注,推动了对用于涂料中安全、经济防腐颜料的研究。磷酸盐、亚磷酸盐、钼酸盐、硅酸盐和硼酸盐作为腐蚀的缓蚀剂不同程度地成功地应用在不同的领域中。硼酸锌是这些产品中的一个新成员,在防腐领域具有独特防腐性能和强有力的性价比。

  19. Anticorrosion Performance of Epoxy Coatings Containing Small Amount of Inherently Conducting PEDOT/PSS on Hull Steel in Seawater

    Institute of Scientific and Technical Information of China (English)

    Jian Hou; Guang Zhu; Jingkun Xu; Huajian Liu

    2013-01-01

    Corrosion protection of the hull steel by the conventional epoxy paint containing a small amount of commercial poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS),which is one of the most popular and successful inherently conducting polymers as the corrosion inhibitor was studied.The corrosion behavior of the samples was investigated in seawater by electrochemical impedance spectroscopy and open circuit potential.Scanning electron microscopy was used to observe the surface morphology of the samples after corrosion.It was found that adding a small amount of PEDOT/PSS to the epoxy resin can significantly improve its corrosion protection.

  20. Microstructure and Anticorrosion Property of AT13 Coatings Made by Combination of Nanoparticles Doping and Plasma Spraying Technique

    Institute of Scientific and Technical Information of China (English)

    LI Chun-fu; DAI Jia-lin; WANG Bin; ZHANG Ying; HE Tao-e; LUO Ping-ya

    2004-01-01

    Al2O3+13wt%TiO2 (AT13) particles were doped with 5%~30% nanoparticles and prefabricating powders were prepared by renewed granulation. AT13 coatings were prepared on the surface of steel 45# by air plasma spraying technique with the prefabricating powders. The microstructures of the AT13 prefabricating powders and the resulting coatings were investigated by SEM and EDS and XRD. The samples were undergone corrosion in the medium of 10% H2SO4 aqueous solution at temperature 80℃. The results indicate that the blistering time of coatings in the corrosive medium was increased with the increase of doped nanoparticle concentration while the time from blistering to spalling is independent of nanoparticle concentration. The results revealed that the structure of prefabricating powders was a twisted micrometer grade particle with dimension of 40-60μm, encapsulated by nanoparticles. The homogeneity of element distribution in coatings was improved and porosity was reduced. The phases of (Al2O3) 5.333 and orthorhombic Al2TiO5 were identified . The fracture analysis confirmed that there is a large amount of vermiculate whiskers with diameter of 10nm and length of 100~200 nm in coatings and the fracture type of coatings was the ductile trans-granular fracture.

  1. Microstructure and Anticorrosion Property of AT13 Coatings Made by Combination of Nanoparticles Doping and Plasma Spraying Technique

    Institute of Scientific and Technical Information of China (English)

    LIChun-fu; DAIJia-lin; WANGBin; ZHANGYing; HETao-e; LUOPing-ya

    2004-01-01

    Al2O3+ 13wt%TiO2 (AT13) particles were doped with 5%-30% nanoparticles and prefabricating powders were prepared by renewed granulation. AT13 coatings were prepared on the surface of steel 45# by air plasma spraying technique with the prefabricating powders. The microstructures of the AT13 prefabricating powders and the resulting coatings were investigated by SEM and EDS and XRD. The samples were undergone corrosion in the medium of 10% H2SO4 aqueous solution at temperature 80℃. The results indicate that the blistering time of coatings in the corrosive medium was increased with the increase of doped nanoparticle concentration while the time from blistering to spalling is independent of nanoparticle concentration.The results revealed that the structure of prefabricating powders was a twisted micrometer grade particle with dimension of 40-60μm, encapsulated by nanoparticles. The homogeneity of element distribution in coatings was improved and porosity was reduced. The phases of (Al2O3)5.333 and orthorhombic Al2TiO5 were identified. The fracture analysis confirmed that there is a large amount of vermiculate whiskers with diameter of 10nm and length of 100-200 nm in coatings and the fracture type of coatings was the ductile trans-granular fracture.

  2. Optimal conditions for the deposition of novel anticorrosive coatings by RF magnetron sputtering for aluminum alloy AA6082

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti-Sibaja, S.B. [Instituto Politécnico Nacional, Postgraduate Student of CICATA-Unidad Altamira (Mexico); Instituto Tecnológico de Cd. Madero, Cd. Madero, Tamaulipas (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [CICATA-Altamira, Instituto Politécnico Nacional, IPN Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamaulipas (Mexico); Rodil, S.E. [Universidad Nacional Autónoma de México, IIM, D.F. (Mexico); Torres-Huerta, A.M. [CICATA-Altamira, Instituto Politécnico Nacional, IPN Km 14.5 Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamaulipas (Mexico)

    2014-12-05

    Highlights: • Non-conventional technique for improving the corrosion resistance of aluminum alloys. • Effect of the deposition parameters: power, substrate temperature and deposition time. • Changes in the crystallinity of the coatings are observed with the temperature. • The structure of these coatings is found to be dependent on the nature of the substrate. • La coatings can provide a better physical barrier to inhibit the corrosion attack. - Abstract: Cerium and lanthanum coatings were deposited on glass, silicon (1 0 0), and aluminum alloy by RF magnetron sputtering in which several experimental conditions such as power, substrate temperature, and deposition time were varied, using pure CeO{sub 2} and La{sub 2}O{sub 3} targets. The effect of deposition parameters on the bonding structure, surface morphology and properties against corrosion of rare earth (RE) coatings formed on metallic substrate was reported. The microstructure and chemistry of the thin film were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and X-ray photoelectron spectroscopy (XPS); whereas their use as corrosion resistant coatings was studied in aqueous NaCl solution (3.0 wt%) by using polarization curves. Variations in these properties were observed by increasing the substrate temperature which modifies the crystallinity of the rare earth coatings. XRD and XPS findings indicate that the cerium coatings are composed by CeO{sub 2} and a significant quantity of Ce{sub 2}O{sub 3} due to oxygen deficiency in the sputtering chamber, whereas La{sub 2}O{sub 3}/La(OH){sub 3} and some La intermetallic compounds are detected in the lanthanum films. Variations in the E{sub corr} and I{sub corr} were found as a function of the thickness, texture, and morphology of the as-prepared coatings.

  3. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method.

    Science.gov (United States)

    Zhang, Zhiyi; Zhang, Wenhui; Li, Diansen; Sun, Youyi; Wang, Zhuo; Hou, Chunling; Chen, Lu; Cao, Yang; Liu, Yaqing

    2015-01-20

    The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt %) was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO) on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C) in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year) of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year). Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments.

  4. Excellent anti-corrosive pretreatment layer on iron substrate based on three-dimensional porous phytic acid/silane hybrid

    Science.gov (United States)

    Gao, Xiang; Lu, Ke; Xu, Lei; Xu, Hua; Lu, Haifeng; Gao, Feng; Hou, Shifeng; Ma, Houyi

    2016-01-01

    A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely NaBrO3-free and NaBrO3-doped PAS layers, were fabricated on iron substrates using the dip-coating method. SEM and AFM observations showed that the as-fabricated PAS-based layers possessed a 3D porous microstructure at the nanoscale and a rough surface morphology. X-ray photoelectron spectroscopic (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopic characterization demonstrated that the above PAS layers bound to the iron surface via the -P-O- bond. Moreover, analyses of steady-state polarization curves and electrochemical impedance spectroscopic (EIS) data indicated that the corrosion rates of the iron substrates decreased considerably in the presence of the two PAS-based pretreatment layers. In particular, the NaBrO3-dosed PAS layer displayed the better corrosion resistance ability as well as maintaining the original microstructure and surface morphology. The PAS-based pretreatment layers are expected to act as substitutes for chromate and phosphate conversion layers and will find widespread application in the surface pretreatment of iron and steel materials due to the advantages of being environmentally friendly, the rapid film-forming process, and, especially, the nanoporous microstructure and rough surface morphology.A novel, highly effective and environmentally friendly film-forming material, phytic acid (PA)/silane (denoted as PAS) hybrid with a three-dimensional (3D) network structure, was prepared through a condensation reaction of PA with methyltrihydroxysilane generated from the hydrolysis of methyltriethoxysilane (MTES). Two kinds of PAS-based pretreatment layers, namely NaBrO3-free and NaBrO3-doped PAS layers, were fabricated on iron substrates using the dip-coating method. SEM and AFM observations showed that the as-fabricated PAS-based layers possessed a 3D porous microstructure at the nanoscale and a rough surface morphology. X-ray photoelectron spectroscopic (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopic characterization demonstrated that the above PAS layers bound to the iron surface via the -P-O- bond. Moreover, analyses of steady-state polarization curves and electrochemical impedance spectroscopic (EIS) data indicated that the corrosion rates of the iron substrates decreased considerably in the presence of the two PAS-based pretreatment layers. In particular, the NaBrO3-dosed PAS layer displayed the better corrosion resistance ability as well as maintaining the original microstructure and surface morphology. The PAS-based pretreatment layers are expected to act as substitutes for chromate and phosphate conversion layers and will find widespread application in the surface pretreatment of iron and steel materials due to the advantages of being environmentally friendly, the rapid film-forming process, and, especially, the nanoporous microstructure and rough surface morphology. Electronic supplementary information (ESI) available: Additional experimental data. See DOI: 10.1039/c5nr07366a

  5. Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization Analysis on Anticorrosive Activity of Thiophene-2-Carbaldehyde Derivative in Acid Medium

    Directory of Open Access Journals (Sweden)

    Nimmy Kuriakose

    2014-01-01

    Full Text Available The corrosion inhibition efficiency of thiophene-2-carbaldehyde tryptophan (T2CTRY on mild steel (MS in 1 M HCl solution has been investigated and compared using weight loss measurements, electrochemical impedance spectroscopy, and potentiodynamic polarization analysis. The Schiff base exhibited very good corrosion inhibition on mild steel in HCl medium and the inhibition efficiency increased with the increase in concentration of the inhibitor. The adsorption of the inhibitor on the surface of the corroding metal obeys Freundlich isotherm. Thermodynamic parameters (Kads, ΔG ads0 were calculated using adsorption isotherm. Polarization studies revealed that T2CTRY acts as a mixed type inhibitor. A maximum of 96.2% inhibition efficiency was achieved by EIS studies at a concentration of 1 mM.

  6. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings

    OpenAIRE

    T. Balakrishnan; Alagar, M.; Denchev, Z.; Kumar, S. Ananda

    2006-01-01

    Epoxy resin is chosen for our present study owing to its exceptional combination of properties such as easy processing, high safety, excellent solvent and chemical resistance, toughness, low shrinkage on cure, good electrical, mechanical and corrosion resistance with excellent adhesion to many substrates. This versatility in formulation made epoxy resins widely applied for surface coatings, adhesives, laminates, composites, potting, painting materials, encapsulant for semiconductor and insula...

  7. Modified hydrotalcites as a new emerging class of smart additive of reinforced concrete for anticorrosion applications: a literature review

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.R.; Polder, R.B.

    2013-01-01

    Modified hydrotalcites (MTHs) represent a group of technologically promising materials for addition to concrete to improve its durability in aggressive environment, owing to their low cost, relative simplicity of preparation, and plenty of unique composition variables that may be adopted. Up to date

  8. The Role of SiO2 Gas in the Operation of Anti-Corrosion Coating Produced by PVD

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2015-09-01

    Full Text Available This study examined theSiO2 gas present in the coatings used in corrosion industry.These layers have been created by physical vapor deposition (PVD, with an appropriate performance. Sublimation of SiO2is used to protect PVD aluminum flakes from water corrosionand to generate highly porous SiO2 flakes with holes in the nanometer range. SiOx/Al/SiOx sandwiches were made as well as Ag loaded porous SiO2 as antimicrobial filler.

  9. Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method

    Directory of Open Access Journals (Sweden)

    Zhiyi Zhang

    2015-01-01

    Full Text Available The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt % was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year. Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments.

  10. 仿生自修复防腐涂层的研究进展%Recent Progress in Self- healing Anticorrosion Coatings

    Institute of Scientific and Technical Information of China (English)

    曲爱兰

    2012-01-01

    Self - healing is receiving an increasing amount of worldwide interest as a method to address the bionic healing for damages in materials. The technical methods to realize the self - healing function were introduced in this paper. Based on the analysis of effects on self - healing, some principles to choose the system of microencapsulation and repairing - agents were discussed. Recent developments in the fabrication of nanocontainers and encapsulation of different active components that were used in protective coatings were reviewed. And the advantages and disadvantages of several approaches were discussed. Finally, the challenges and future possible scenarios are highlighted.%介绍了实现材料仿生自修复功能的技术方法,在分析影响材料自修复效率因素的基础上,总结了选择微胶囊和修复剂体系应遵循的原则,综述了自修复防腐涂层中的最新研究成果,并指出自修复涂层目前存在的问题及今后研究的方向.

  11. Anti-corrosion Design and Control of Aircraft Radar Cover%飞机雷达罩防腐蚀设计和控制

    Institute of Scientific and Technical Information of China (English)

    徐京祥; 吉选

    2015-01-01

    Aircraft radar cover as part of the aircraft structure, it should meet outside the erosion of a variety of environments, and its structure should not appear corrosion phenomena to ensure flight safety. The paper analyzes the material of aircraft radar cover and the common types of corrosion of structure according to the specific structure form and composition of aircraft radar cover, explores the corrosion mechanism of various types, and proposes the corrosion control design method of aircraft radar cover by combining with the protection and control measures of different materials and typical structure, to provide certain reference value for the structure design of aircraft radar cover.%飞机雷达罩作为飞机结构的一部分,应该满足外界各种环境侵蚀,结构上不应该出现腐蚀现象,以确保飞行安全,本文主要根据雷达罩具体结构形式和结构组成,分析了飞机雷达罩材料和结构上常见的腐蚀类型,通过对各种类型的腐蚀机理进行分析,结合不同材料和典型结构的防护和控制措施,提出飞机雷达罩腐蚀控制设计方法,对飞机雷达罩的结构设计提供一定的参考意义。

  12. 再生聚乙烯制备3PE防腐聚乙烯专用料%3PE Anticorrosive Polyethylene Special Material Prepared by Recycled Polyethylene

    Institute of Scientific and Technical Information of China (English)

    仪海霞; 李春松; 张跃华; 常燕

    2014-01-01

    以再生聚乙烯为主要原材料制备了管道防腐聚乙烯.通过优化基体树脂及其配比,添加少量乙烯-辛烯共聚物后,制备出力学性能合乎要求的管道防腐聚乙烯专用料.通过力学性能测试,发现聚乙烯及聚乙烯专用料的拉伸断裂均发生在应力应变上升阶段.

  13. The history and future of thermal sprayed galvanically active metallic anticorrosion coatings used on pipelines and steel structures in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Rodijnen, Fred van [Sulzer Metco, Duisburg (Germany)

    2008-07-01

    Since its invention by M. U. Schoop in the beginning of the 20th century, thermal spray has been used for corrosion protection applications in naval, on-shore, submerged and atmospheric environments. Thermally sprayed coatings of zinc, zinc alloys, aluminum and aluminum alloys are currently the most popular materials used for active corrosion protection of steel and concrete, which can be applied using either of the widely known thermal spray processes of combustion wire or electric arc wire. In the oil and gas exploration and production industry, corrosion protection applications using these technologies have evolved since the early sixties. Thermal spray technology has successfully been used to protect steel-based materials from corrosion in many different fields of application like platforms and pipelines. The most used material in the oil and gas industry is TSA (Thermally Sprayed Aluminum) coating. TSA coatings, with a lifetime of 25 to 30 years, require no maintenance except for cosmetic reasons when painted. The surface temperature of a TSA can go as high as 480 deg C. Although TS (Thermal Spray) is an older process, the number of applications and the number of m{sup 2} it is applied to is still increasing resulting from its maintenance-free and reliable active corrosion-protection features. (author)

  14. 尿素造粒塔喷头房墙体防腐处理%Anticorrosive handling for wall of spray nozzle room of urea granulated tower

    Institute of Scientific and Technical Information of China (English)

    曹天昭; 王海英

    2004-01-01

    造粒塔是尿素生产中重要的钢筋混凝土建筑装置,浙江巨化股份有限公司合成氨厂的造粒塔始建于1978年,总高72m,直径达13m,造粒喷头房在造粒塔塔体内60~64.2m高处,两侧挡墙基建时系砖砌体填充,后在使用过程中涂刷环氧树脂涂料加以保护。由于长期使用,尿液渗

  15. Anti-corrosion Painting of Corroded Transmission Towers%锈蚀输电铁塔涂装体系耐蚀性

    Institute of Scientific and Technical Information of China (English)

    陈颖敏; 俞立; 侯玉婧

    2012-01-01

    The performance of phosphating solution used as pretreatment agent of corroded transmission towers was studied and the matchable coating system was developed.The results of treatment of corroded transmission towers by phosphating solution showed that in forming the process of a dense protection film of phosphate on the surface of corroded steel,the phosphating liquid cleaning,rust conversion,zinc phosphating and surface conditioning were finished at the same time.The results also showed that using organic coatings as primer,the coating system had a good performance in mechanical properties and corrosion resistance with the matchable phosphating solution.%采用磷化技术处理锈蚀输电铁塔,并在此基础上设计出与磷化液配套的防腐蚀涂装体系。试验结果表明,使用磷化技术处理锈蚀铁塔时,磷化液在锈蚀金属表面形成致密磷酸盐膜,清洗、锈层转化、锌层磷化以及表面调整可以一步完成;配制的涂装体系中,以有机涂料为底漆的涂装体系与磷化液配套使用机械性能与耐蚀性能良好。

  16. Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode

    Science.gov (United States)

    Dai, Libin; Li, Wenfang; Zhang, Guoge; Fu, Nianqing; Duan, Qi

    2017-01-01

    In this study, a uniform and less defective ceramic coating was prepared on high Si content aluminium alloys by a sectionalized plasma electrolytic oxidation (PEO) mode. The PEO process of Al-9 wt. % Si binary alloy was performed under constant current mode followed by constant voltage mode. The surface micrographs and chemical compositions of different samples were analysed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Micro-hardness and reciprocal-sliding testers were used to measure the coatings hardness and tribological performance. It was found that the sectionalized PEO mode could produce hard and anti-friction passive oxide layers with smaller holes and fewer cracks on the Al-Si alloy, comparing with the single constant current mode. In addition, the results of polarization curves and electrochemical impedance spectroscopy (EIS) tests conducted in 3.5 wt. % NaCl solution revealed that the coatings obtained by sectionalized PEO mode had a higher corrosion resistance and provided better corrosion protection for Al-Si alloy.

  17. Advanced anticorrosive coatings prepared from electroactive polyimide/graphene nanocomposites with synergistic effects of redox catalytic capability and gas barrier properties

    Directory of Open Access Journals (Sweden)

    J. M. Yeh

    2014-04-01

    Full Text Available In this study, electroactive polyimide (EPI/graphene nanocomposite (EPGN coatings were prepared by thermal imidization and then characterized by Fourier transformation infrared (FTIR and transmission electron microscope (TEM. The redox behavior of the as-prepared EPGN materials was identified by in situ monitoring for cyclic voltammetry (CV studies. Demonstrating that EPGN coatings provided advanced corrosion protection of cold-rolled steel (CRS electrodes as compared to that of neat EPI coating. The superior corrosion protection of EPGN coatings over EPI coatings on CRS electrodes could be explained by the following two reasons. First, the redox catalytic capabilities of amino-capped aniline trimer (ACAT units existing in the EPGN may induce the formation of passive metal oxide layers on the CRS electrode, as indicated by scanning electron microscope (SEM and electron spectroscopy for chemical analysis (ESCA studies. Moreover, the well-dispersed carboxyl-graphene nanosheets embedded in the EPGN matrix hinder gas migration exponentially. This would explain enhanced oxygen barrier properties of EPGN, as indicated by gas permeability analysis (GPA studies.

  18. Study on effect of different anticorrosion agent to carnation cuttage%不同防腐剂对香石竹扦插生根防腐初探

    Institute of Scientific and Technical Information of China (English)

    林卫东; 蔡金红; 白春荣; 黄云秀

    2001-01-01

    This article discussed preventing carnation rottenness, enhancing survival of carnation cutrage and cutting cost of carnation production. We carried out contrastive experiments with carnation cuttage which applied five bactericides added rootone ABT(artificial synthesis auxin) and studied on effect of bactericide to antisepsis of cuttage rootage. Our results showed it's very effective to antisepsis and rootage which added 600-fold chlorthalonil 75 % wettable powder to rootone, and it can also enhance survival of carnation cuttage. This study provided indispensable biological evidence for carnation production which is the main breed of Yunnan province.%文章对防止香石竹在扦插过程中根茎部位的腐烂,提高香石竹扦插成活率,降低香石竹切花的生产成本,采用常见五种杀菌剂分别加入生根粉ABT(人工合成生长素)中进行香石竹扦插生根防腐的对比试验,研究杀菌剂对扦插生根的防腐作用。结果显示,600倍百菌清75%可湿性粉剂加入生根粉中,防腐和生根效果明显,具有提高香石竹扦插成活的作用。此研究为云南省花卉主栽品种香石竹的生产提供了必要的生物学依据。

  19. 抗硫球阀密封结构选材研究%Selection Research for Seat Sealing of Anti-Corrosion Ball Valve

    Institute of Scientific and Technical Information of China (English)

    张潇; 邓雄; 梁政; 王飞

    2012-01-01

    近年来,随着我国天然气工业的迅猛发展,涌现了一大批亟待开发的高含H2S气田.开展高含硫气田开发中的抗硫球阀密封结构的研究,解决目前抗硫球阀应用中,经常出现密封面腐蚀、泄露等问题,对确保高含硫气田开发地面系统的安全和平稳供气具有重要意义.以阀座密封面为研究对象,运用Pro/E对阀门密封件建模,并无缝连接到ANSYS中进行接触分析,分析不同阀座结构及材料的密封性能.研究结果显示:在材料屈服极限内,普通夹层阀座具有最大的连续接触压力,设计比压误差最小,为最优选型.%In recent years, with rapid development of China's natural gas industry,a large number of untapped high H2S gas field has sprung up.A nd it has great significance for ground system safety and stable supply and solving the problems of sealing surface corrosion, leaks and other issues of the ball valve in hydrogen sulfide environments.The research takes contact surface of valve seat as the research object, and analyzes the sealing performance among structures and mate rials.Using Pro/E to model the valve seal and seamlessly connect to ANSYS^br contacting analysis.Within the material yield limit,the results of the study show that the ordinary sandwich valve seat with the maximum continuous contact pressure and the minimum error under the designed specific pressure is the optimization model.

  20. Research Progress of Waterborne Epoxy Resin Anticorrosion Coatings%水性环氧防腐涂料的研究进展

    Institute of Scientific and Technical Information of China (English)

    胡永玲

    2013-01-01

    The paper briefly introduced the preparation method of waterborne epoxy resin, from mechanical processres, reversal of phase, Chemical modification method. Their merits and faults, developing trends and synthetise is reviewed. I type and II type Waterborne epoxy resin curing agent is introduced with their Merits and faults, developing trends and preparation method. The development and future application. is forecasted.%  从机械法、相反转法、化学改性法三方面介绍了水性环氧树脂的制备方法,指出了水性环氧树脂的制备方法、优缺点和研究进展。介绍了 I 型水性环氧固化剂和Ⅱ型水性环氧固化剂的制备方法,优缺点和发展趋势。并对水性环氧防腐涂料的发展趋势和应用前景进行了展望。

  1. Cleaning technology of oil tanks before anti-corrosion engineering%油罐内壁防腐前的清理技术

    Institute of Scientific and Technical Information of China (English)

    余存烨

    2004-01-01

    油罐是石油与石化工业的重要设备,必须进行防腐,而防腐前必先进行表面清理.重点介绍了现行新油罐内壁防腐前喷砂及磷化等表面清理技术,还简述了旧油罐内壁维修防腐前的表面清理.同时对油罐内壁清理技术进行展望,建议应以机械化,自动化与环保化作业来取代手工作业.

  2. 基于防腐考虑的TPO防水施工技术%TPO Waterproof Construction Technology Based on the Anti-corrosion

    Institute of Scientific and Technical Information of China (English)

    颜斌; 江涛; 汪绍元; 吴卓; 张爽

    2015-01-01

    在地下防水施工过程中,由于土壤被污染,普通防水材料容易被有机物腐蚀溶解,无法满足直接接触二氯乙烷等环境的防水要求。结合北京某住宅项目工程实例,探索TPO防水材料在特殊环境中的应用,并总结出了其技术特点及应用要点,介绍了TPO防水卷材具体施工工艺流程及关键节点做法,取得良好的经济和环保效益。%During the construction of the underground waterproof engineering, it is found that ordinary building waterproof materials can be corroded easily, the construction can’ t meet the requirements for the direct contact with the dichloromethane( CH2 Cl2 ) because of the soil contamination. Combining with the engineering example of some residential buildings in Beijing, this paper explores the TPO system application in the particular environment, and summarizes the characteristics for the technical and the application of the TPO system. Moreover, it introduces the construction process and key joints structure of TPO system, then good economic and environmental benefits are achieved.

  3. Anti-corrosion film formed on HAl77-2 copper alloy surface by aliphatic polyamine in 3 wt.% NaCl solution

    Science.gov (United States)

    Yu, Yinzhe; Yang, Dong; Zhang, Daquan; Wang, Yizhen; Gao, Lixin

    2017-01-01

    The corrosion inhibition of a polyamine compound, N-(4-amino-2, 3-dimethylbutyl)-2, 3-dimethylbutane-1, 4-diamine (ADDD), was investigated for HAl77-2 copper alloy in 3 wt.% NaCl solution. Electrochemical measurements, scanning electron microscopy (SEM), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FT-IR) techniques were employed for this research. The results show that ADDD strongly suppresses the corrosion of HAl77-2 alloy. The inhibition efficiency of ADDD is 98.6% at 0.5 mM, which is better than benzotriazole (BTAH) at the same concentration. Polarization curves indicate that ADDD is an anodic type inhibitor. Surface analysis suggests that a protective film is formed via the interaction of ADDD and copper. FT-IR reveals that the inhibition mechanism of ADDD is dominated by chemisorption onto the copper alloy surface to form an inhibition film. Furthermore, quantum chemical calculation and molecular dynamics (MD) simulations methods show that ADDD adsorbs on HAl77-2 surface via amino group in its molecule.

  4. Corrosion Analysis and Material Selection for Anti-corrosion in Hydrotreating Units%加氢装置的腐蚀分析和选材防腐

    Institute of Scientific and Technical Information of China (English)

    李黎

    2016-01-01

    The rapid development of hydrotreating technology and the inferior feed oil make corrosion problems of equipments and pipelines increasingly prominent in the hydrotreating plant. Leak accidents happen from time to time, affecting the running safety of the device. New requirements to the material selection of the hydrotreating unit were put forward. Common corrosion types in hydrotreating unit were analyzed, and then preventive measures were given.%加氢技术的飞速发展和加氢原料的劣质化使得加氢装置的设备及管道腐蚀问题愈显突出,泄露等事故时有发生,合理的选材设计对加氢装置的安全长周期运行至关重要。首先分析了加氢装置里典型的腐蚀类型,然后从选材角度给出了防护措施。

  5. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection.

    Science.gov (United States)

    Zhang, Qiao-Xin; Chen, Yu-Xue; Guo, Zheng; Liu, Hong-Lin; Wang, Da-Peng; Huang, Xing-Jiu

    2013-11-13

    Heterohierarchical micro/nanostructure tetragonal array consisted of engineering materials of microprotrusion-like Cu and secondary nanostructured dendrite Ag have been fabricated via a primary cell-induced deposition and a facile galvanic displacement reaction combined with photolithography technique on Cu foil. Confined by the circle microwell tetragonal array of the photoresist template, regular microprotrusion-like Cu with the tunable size of diameter can be easily deposited on the surface of Cu foil. Then, the secondary dendritic Ag nanostructures in situ grow on the surface of microprotrusion via a galvanic displacement reaction, leading to the formation of heterohierarchical micro/nanostructure tetragonal array, which is similar to the surface microstructure of the lotus leaf. Inspired by this novel surface structure of imitating lotus leaf, its wettability has been systematically investigated. The results indicate that the fabricated heterohierarchical micro/nanostructure regular array after the surface fluoration presents a remarkable superhydrophobic performance. Initiated from its superhydrophobicity, an excellent self-cleaning property has also been demonstrated. In addition, the durability of the superhydrophobic surfaces is examined in the wide pH range of corrosive liquids. Notably, the fabricated superhydrophobic surface can be potentially used as concentrators, which presents a great perspective in the field of analysis through employing the SERS detection as an example.

  6. Application of MFE vinylester resin on anti-corrosion field%MFE乙烯基酯树脂在防腐蚀领域的应用

    Institute of Scientific and Technical Information of China (English)

    周润培; 侯锐钢; 王晓东; 雷浩; 刘坐镇

    2004-01-01

    本文主要介绍了MFE乙烯基酯树脂在化工、电子、钢铁、有色金属及轻工造纸等行业防腐方面的应用,并列举了许多华东理工大学华昌聚合物有限公司生产的MFE乙烯基酯树脂的应用实例.

  7. Action mechanism of antioxidation and anticorrosion and molecular design for perfluoropolyether fluid additives (I) --Action mechanism of additive and property of donating-accepting electron

    Institute of Scientific and Technical Information of China (English)

    WANG; Daxi

    2001-01-01

    Chitosans with various degrees of deacetylation (D.D.), which were used as standard sample for FTIR determination, were prepared from completely deacetylated chitosan by homogeneous N-acetylation reaction. By combining four probable probe bands, i.e. 1655, 1560, 1380 and 1320 cm-1, eight probable reference bands, i.e. 3430, 2920, 2880, 1425, 1155, 1070, 1030 and 895 cm-1 and two baseline methods, the most suitable ratios Aprobe band/Areference band from IR spectra to determine the degree of acetylation of chitosan were evaluated from 48 combinations to be A1560/A2880, A1560/A2920 and A1655/A3430(A1560/A2880 is mostly recommended). The second baseline method, i.e. linking between adjacent two valleys, was better for measuring the absorbances of 1560 and 1655 cm-1 bands. The determination range of the D.D. (1%-100%) covered almost the whole range. The standard curves with A1560/A2880 and A1655/A3430 were also suitable for the determination of degree of substitution of other N-acylated chitosan, such as N-propionyl chitosan, N-butyryl chitosan and N-hexanoyl chitosan.

  8. Sustainability of renewable fuel infrastructure: a screening LCA case study of anticorrosive graphene oxide epoxy liners in steel tanks for the storage of biodiesel and its blends.

    Science.gov (United States)

    Chilkoor, Govinda; Upadhyayula, Venkata K K; Gadhamshetty, Venkataramana; Koratkar, Nikhil; Tysklind, Mats

    2017-02-22

    Biodiesel is a widely used fuel that meets the renewable fuel standards developed under the Energy Policy Act of 2005. However, biodiesel is known to pose a series of abiotic and biotic corrosion risks to storage tanks. A typical practice (incumbent system) used to protect the tanks from these risks include (i) coating the interior surface of the tank with a solvent-free epoxy (SFE) liner, and (ii) adding a biocide to the tank. Herein, we present a screening-level life-cycle assessment study to compare the environmental performance of a graphene oxide (GO)-epoxy (GOE) liner with the incumbent system. TRACI was used as an impact assessment tool to model the midpoint environmental impacts in ten categories: global warming potential (GWP, kg CO2 eq.); acidification potential (AP, kg SO2 eq.); potential human health damage impacts due to carcinogens (HH-CP, CTUh) and non-carcinogens (HH-NCP, CTUh); potential respiratory effects (REP, kg PM2.5 eq.); eutrophication potential (EP, kg N eq.); ozone depletion potential (ODP kg CFC-11 eq.); ecotoxicity potential (ETXP, CTUe); smog formation potential (SFP kg O3 eq.) and fossil fuel depletion potential (FFDP MJ surplus). The equivalent functional unit of the LCA study was designed to protect 30 m(2) of the interior surface (unalloyed steel sheet) of a 10 000 liter biodiesel tank against abiotic and biotic corrosion during its service life of 20 years. Overall, this LCA study highlights the improved environmental performance for the GOE liner compared to the incumbent system, whereby the GOE liner showed 91% lower impacts in ODP impact category, 59% smaller in REP, 62% smaller in AP, 67-69% smaller in GWP and HH-CP, 72-76% smaller in EP, SFP, and FFDP, and 81-83% smaller ETXP and HH-NCP category results. The scenario analysis study revealed that these potential impacts change by less than 15% when the GOE liners are functionalized with silanized-GO nanosheets or GO-reinforced polyvinyl carbazole to improve the antimicrobial properties. The results from an uncertainty analysis indicated that the impacts for the incumbent system were more sensitive to changes in the key modeling parameters compared to that for the GOE liner system.

  9. Synthesis of water-soluble acryl terpolymers and their anticorrosion properties on mild steel in 1 mol·L-1 HCl

    Institute of Scientific and Technical Information of China (English)

    R. Geethanjali; S. Subhashini

    2016-01-01

    Two water soluble acryl terpolymers containing polyvinyl alcohol, acrylamide/acrylic acid and vinyl sulphonic acid (VSA) were synthesized by free radical polymerization in aqueous medium. The morphological structure of the polymers were analysed using FTIR and 1H NMR, while the thermal properties were analysed by TGA and DSC. The inhibitive action of the terpolymers on corrosion of mid-steel in 1 mol·L−1 HCl was studied using gravimetric, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) at 303 K. Both the polymers provided inhibition efficiency around 90%which clearly demonstrate that the grafted poly-mers have effective corrosion inhibiting ability on MS corrosion.

  10. 几种原油生产防腐缓蚀剂的应用%Application of several common corrosion inhibitor used in crude oil production for anti-corrosion

    Institute of Scientific and Technical Information of China (English)

    马倩; 史勉

    2015-01-01

    金属腐蚀问题在石油生产过程中已日益严重,严重制约着经济发展.利用缓蚀剂技术来解决原油开采过程中的腐蚀问题已迫在眉睫.本文主要总结了缓蚀剂的作用机理及影响因素,介绍了几种原油生产过程中常见的缓蚀剂及缓蚀剂的测评方法,并对未来缓蚀剂的发展趋势做了展望.

  11. Effect of benzotriazole content on anti-corrosion propertise of protective coatings over bronze culture heritage%苯并三唑的用量对青铜文物封护剂耐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    于淼; 许淳淳

    2004-01-01

    采用缓蚀剂苯并三唑(BTA)等对丙烯酸酯聚合物乳液进行改性,研制成青铜文物防蚀封护剂.采用浸泡试验,盐雾试验,原子吸收分光光度法等试验方法,研究BTA用量对封护剂耐蚀性能的影响.结果表明,BTA对防蚀封护剂的耐酸性、耐碱性、耐盐水性、耐水性、耐盐雾性等性能均有很大影响.

  12. Application of FRP Wrapped Tanks to Anti-corrosion of Nonferrous Metallurgy in Jinchuan%玻璃钢缠绕贮罐在金川有色冶金生产中的应用

    Institute of Scientific and Technical Information of China (English)

    吴培德

    2011-01-01

    The fundamental using condition, manufacturing process, structure and properties of glass fiber reinforced plastics(FRP) wrapped tanks are introduced, and the application of 100 m3, 200 m3, 270 m3 and 400 m3 FRP wrapped tanks to non-ferrous metallurgical industry in Jinchuan is introduced. This kind of tanks provides a new way to store up acid corrosion medium in non-ferrous metallurgical industry.%介绍了玻璃钢缠绕贮罐的使用条件、制造工艺、结构和性能等,以及100m3、200m3、270m3、400m3玻璃钢缠绕贮罐在金川有色冶金生产中的应用情况,该罐适合于有色湿法冶金工业酸性溶液腐蚀性介质的贮存。

  13. 钢基体表面可溶盐对氯化橡胶涂层耐蚀性的影响%EFFECT OF SOLUBLE SALTS OF STEEL SURFACE ON ANTI-CORROSIVE PROPERTIES OF CHLORINATED RUBBER COATING

    Institute of Scientific and Technical Information of China (English)

    贺囿策; 俞宏英; 金莹; 孙冬柏

    2012-01-01

    The experiment invested the effect of soluble salts content of substrate surface on the anti- corrosive properties of the coating by GB/T 10834-2008 and ASTM D870-02 standards, and corrosion results were evaluated according to the GB/T 1766-2008 specification. Besides, the morphologies of the coating after immerged were observed by SEM. The result shows that the time order of visible damage of the coating is blistering, flaking and rusting respectively. It is more permeative of the deionized water used by ASTM standard than the salt water used by GB due to the existence of soluble salt on the matrix, which has great attack on the coating. The range of soluble salt changes from 28.02 mg/m^2 to 43.92 mg/m^2, which makes the coating damage dramatically, so we think the threshold value is about 43.92 mg/m^2.%用GB/T10834—2008和ASTMD870—02标准,考察了基体表面不同可溶性盐含量对氯化橡胶涂层耐蚀性能的影响,根据GB/T1766—2008对浸泡后涂层进行腐蚀等级评定,并用SEM观察涂层腐蚀形貌。结果表明:试样涂层明显可见的破坏方式的时间顺序依次是起泡、剥落和锈蚀;由于基体表面存在可溶性盐,使得ASTM标准中使用的去离子水比GB标准中使用的盐水对涂层的破坏更严重,去离子水的渗透性更强;可溶性盐含量在28.02—43.92mg/m^2之间时是涂层破坏转变区间,可以认为43.92mg/m^2是临界值。

  14. 水性聚氨酯丙烯酸酯/氧化石墨烯防腐涂层的制备与性能%Preparation and Properties of Waterborne Polyurethane Acrylate/Graphene Oxide Anti-Corrosion Coating

    Institute of Scientific and Technical Information of China (English)

    费贵强; 王佼; 王海花; 朱科; 王东

    2016-01-01

    为进一步改善水性聚氨酯丙烯酸酯涂层的防腐性能,采用原位聚合法制备了系列水性聚氨酯丙烯酸酯/氧化石墨烯(WPUA/GO)复合乳液.利用X射线衍射、拉曼光谱、红外光谱表征了自制GO的结构与形貌;运用透射电镜、扫描电子显微镜分析了复合乳液的微观形貌;并通过耐盐雾试验及电化学工作站测试了涂层的防腐性能.结果表明,通过改进的Hummers法制备出氧化程度高、分散性较好的GO;WPUA/GO乳液粒径随着GO含量的增加呈现先增大后减小的趋势;当GO的质量分数为0.5%时,涂层的热稳定性提高了140℃,耐盐雾时间比纯WPUA延长了10 d,腐蚀电流密度减小了1个数量级.

  15. Study on Air-drying Water-borne Epoxy Ester Dispersion Anti-corrosive Primer%自干型环氧酯水分散体防锈底漆的研制

    Institute of Scientific and Technical Information of China (English)

    赵其中; 董玉婷; 孙凌

    2007-01-01

    采用自制的具有核-壳结构的自干型环氧酯水分散体乳液为基料,配以无毒高效的防锈颜料,制备出防锈性能优良的水性防锈底漆,对影响底漆性能的多种因素进行了探讨.

  16. Study on the Anti-corrosion Effect of Medicinal Plant Compound in Sweet Pepper Storage%药用植物复配液在甜椒贮藏保鲜中的防腐效果

    Institute of Scientific and Technical Information of China (English)

    柴梦颖; 焦镭

    2012-01-01

    选择3组药用植物复配液(丁香、厚朴、苦参复配液,紫丹参、厚朴、苦参复配液和厚朴、苦参、迷迭香复配液)对甜椒进行涂被保鲜试验.结果表明:3组药用植物复配液对甜椒的贮藏保鲜均具有良好效果.其中厚朴、苦参、迷迭香复配液在甜椒贮藏中防腐保鲜效果为最佳.

  17. 奥氏体不锈钢低温气体渗碳的组织性能%Structure and Properties of Anti-corrosion Carburized Layers in Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    李朋; 潘邻; 张良界; 杨闽红; 朱云峰; 马飞

    2013-01-01

    Low temperature carburizing process, such as salt bath carburizing and plasma carburizing can improve the surface strength of the austenite stainless steel, but reduce the corrosion resistant performance. A gas carburizing technology at low temperature was developed, which can both improve the surface strength and corrosion resistant performance. 304 and 316 austenitic stainless steel were carburized by low temperature carburizing process, and the hardness and performance was analized. The results show that the surface strength enhances, however, the corrosion resistance reduces with the temperature increase. The austenitic stainless steel shows good strength and corrosion resistance under the condition of 470 ℃.%低温盐浴渗碳、等离子渗碳等低温渗碳工艺在提高奥氏体不锈钢表面强度的同时,会降低其耐蚀性能.为克服上述缺陷,开发了一种高效兼顾表面强度与耐蚀性能的表面强化工艺的低温气体渗碳技术.采用该工艺对304、316奥氏体不锈钢进行渗碳处理,并对得到的奥氏体不锈钢低温渗碳组织性能进行分析.结果表明,随着温度升高,试样表面强度提高,而腐蚀性能下降.470℃是兼顾强化与耐蚀性能的低温气体渗碳工艺参数.

  18. Mechanical properties of bridge concrete on the anti-corrosion of acid rain%桥梁混凝土耐酸雨侵蚀力学性能试验研究

    Institute of Scientific and Technical Information of China (English)

    李志武; 李彪; 李世秋

    2009-01-01

    按C50预制混凝土桥梁的现场配合比设计要求,通过实验室模拟酸雨条件下桥梁混凝土的耐酸雨侵蚀性能,根据模拟酸雨中5种混凝土的抗折、抗压强度的变化与模拟结束时对比样品的试验结果分析可知:掺加矿渣、SBR聚合物和粉煤灰对混凝土后期力学性能有一定改善作用,或降低酸雨对混凝土侵蚀程度和速率.%According to the design requirements of the local C50 pie-cast bridge concrete, through the experiment investigation on corrosion of simulated acid rain to bridge concrete,the influence of simulated acid rain on the properties of concrete is studied by measuring the index of the flexural strength and compressive strength.Based on the research,the concrete resisting acid rain was applied in civil engineering,adding slag, SBR polymer concrete and fly ash on concrete improved the mechanical properties of the latter situation, the extent and rate of corrosion of acid rain to bridge concrete were reduced.

  19. Optimum Seeking and Application of the Anti-corrosion Protection Coatings of Water-wall Tubes in Boilers of Electric Station%电站锅炉水冷壁腐蚀防护涂层优选和应用

    Institute of Scientific and Technical Information of China (English)

    刘谦; 马世宁; 李长青

    2003-01-01

    采用高速电弧喷涂技术制备了FeCrNi、Fe-Cr-Al、Cr-Ni、45CT涂层,并进行了抗氧化和热腐蚀试验,发现Cr-Ni涂层具有优良的防腐蚀效果.通过在天津大港电厂和邯郸电厂等锅炉水冷壁的实际应用,发现高速电弧喷涂Cr-Ni涂层加高温封孔剂涂层体系的防腐蚀效果明显,在治理热电厂锅炉水冷壁热腐蚀方面具有良好的应用前景.

  20. In-situ formation characteristic, tribological characterization and anti-corrosion properties of quaternary composites films%四元复合薄膜的形成特征、摩擦特性和耐腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    Ojo Sunday Isaac FAYOMI

    2014-01-01

    在工程应用中增强材料的腐蚀磨损性能是至关重要的。采用电沉积技术,研究从氯化物槽池中得到的Zn-Al-SnO2-TiO2(Zn-Al-Sn-Ti)复合薄膜的结构、电氧化性能。采用扫描电子显微镜联合能谱仪、光学显微镜和 X 射线衍射,研究薄膜的微观结构。采用动电位极化技术,研究在3.65%NaCl 溶液中薄膜的电化学氧化和腐蚀行为,并采用原子力显微镜对其进行表征。采用高钻石硬扫描显微硬度测试仪和C E RT往复滑动仪,研究电沉积薄膜的硬度和磨损行为。结构发现,成功获得了共沉积的复合材料和粒子,并得到了均匀、精细的嵌入颗粒结构以及改善的微观力学性能。所制备的四元薄膜的耐腐蚀性、硬度和稳定的耐磨性得到显著提高。%Improvements of wear and corrosion properties are essential characteristic in engineering application. A study was made on the structure, electro-oxidation and properties of fabricated Zn-Al-SnO2-TiO2 (Zn-Al-Sn-Ti) thin films using electrodeposition technique from chloride bath. The microstructural studies were performed by scanning electron microscopy with attached energy dispersive spectrometer (SEM-EDS), optical microscopy (OPM) and X-ray diffractogram (XRD). The electrochemical oxidation and erosion behavior in 3.65% NaCl medium were studied by potentiodynamic polarization technique and characterized by atomic force microscopy (AFM). The hardness and wear behavior of the electrodeposited film were performed by high diamond dura scan microhardness tester and CERT UMT-2 reciprocating sliding machine. It was found that a successful co-deposition of composite and particle were attained. Homogeneous imbedded grain structure distribution and fine refinement of crystal with improved micromechanical behavior was achieved. The corrosion resistance, hardness and wear stability resistance of the fabricated quaternary films improved significantly in all varied process parameter.

  1. Study on anticorrosive property and synthesis of AA/MA/AMPS copolymer scale inhibitor%AA/MA/AMPS共聚物阻垢剂的合成及缓蚀性研究

    Institute of Scientific and Technical Information of China (English)

    袁鹰; 刘明源

    2013-01-01

    Using water as solvent, sodium hypophosphite and peroxide as initiator, iron salts as catalyst, maleic anhydride ( MA ) , acrylic acid ( AA) and 2-acryloyl amino-2 -methyl propane sulfonic acid (AMPS) as monomers, through aqueous solution polymerization method, the synthesis of AA-MA-AMPS three copolymer resistance scale dispersant, and its performance were studied. Results showed that with concentration of 2.5~20 mg/L AA/MA/AMPS copolymer scale inhibitor and HEDP,HPMA agent on the deposition of CaCO3 maximal inhibition ability is respectively 96% ,77. 8% and 88. 4% , AA/MA/ AMPS copolymer scale inhibitor has good scale inhibition performance.%以水为溶剂,次亚磷酸钠-过氧化物(过氧化氢、过硫酸钠、过硫酸铵)为引发剂,铁盐为催化剂,马来酸酐(MA)、丙烯酸(AA)和2-丙烯酰氨基-2-甲基丙磺酸(AMPS)为单体,通过水溶液聚合方法,合成AA-MA-AMPS三元共聚物阻垢分散剂,并对其缓蚀性进行研究.结果表明,在质量浓度为2.5~ 20 mg/L的AA/MA/AMPS共聚物阻垢剂、HEDP、HPMA时,对CaCO3沉积的最大抑制能力分别为96%,77.8%,88.4%,AA/MA/AMPS共聚物阻垢剂具有良好的阻垢性能.

  2. 表面活性剂预处理铝粉包覆聚合物后的分散和耐蚀性能%Dispersion and Anticorrosion Behavior of Flaky Aluminum Powders Pretreated with Surfactants and Encapsulated with Polymer

    Institute of Scientific and Technical Information of China (English)

    陈玉琼; 叶红齐; 刘辉

    2010-01-01

    为了提高片状铝粉的耐腐蚀性能和分散性能,采用3类表面活性剂对片状铝粉进行表面预处理,运用原位溶液聚合法使丙烯酸(AA)、丙烯酸丁酯(BA)在铝粉表面聚合,获得了聚(丙烯酸-丙烯酸丁酯)/铝粉[P(AA-BA)/Al]复合粒子.通过析氢试验、透光率对包覆铝粉进行了检测,研究了不同表面活性剂预处理对P(AA-BA)/Al复合粒子耐腐蚀性能、分散性能的影响,同时,还采用FTIR和激光粒度分析对经十二烷基苯磺钠(SDBS)预处理后包覆得到的复合粒子进行了表征.结果表明:采用十二烷基硫酸钠(SDS)预处理并用从,BA和偶氮二异丁腈(AIBN)包覆后的铝粉具有良好的分散性能,用聚乙二醇(PEG)预处理、包覆后的铝粉耐腐蚀性能优良,而经SDBS预处理、包覆后铝粉耐腐蚀性能及分散性能都得到了明显的改善.

  3. 闭孔珍珠岩在热反射隔热重防腐涂料中的应用%Application of Closed Cell Perlite in Reflective Thermo-Insulation Heavy-Duty Anticorrosive Coatings

    Institute of Scientific and Technical Information of China (English)

    施铭德; 刘思平; 梁基码

    2013-01-01

    根据热反射隔热原理,本配套体系采用底漆防锈防腐,中间漆隔热与热储存,面漆具有较高的反射率和持久装饰的特性,通过与膨胀珍珠岩、玻化微珠的隔热性能比较,结果表明:采用闭孔珍珠岩制得的隔热中间漆,由于其具有较低的导热系数和优异的综合性能,隔热性能和屏蔽效果较好,在石油石化防腐领域具有广泛的应用前景.

  4. DM在航油管道外防腐层检测中的应用%The Application of DM at the External Anticorrosion Coating Detection of a Fuel Pipeline

    Institute of Scientific and Technical Information of China (English)

    陈智君; 李勇樊; 顾平

    2016-01-01

    本文通过研究各种管道检测技术的基本原理,对比了它们的优缺点,强调了综合检测技术的重要性。在此基础上介绍了DM(Defect Mapper)管道防腐层检测仪的基本原理和使用方法,并在某航油管道外防腐层检测中得到应用,获得良好的检测效果。%This paper introduced the basic principle of different pipeline detection technology and compared their advantages and disadvantages and emphasized the importance of comprehensive testing technology. We also introduced the basic principles and methods of DM pipeline coating detector. And get good results through its practical application in some jet fuel pipeline.

  5. FABRICATION OF SUPERHYDROPHOBIC Ti SURFACE BY THERMAL OXIDATION AND ITS ANTICORROSION PROPERTY%热氧化法制备超疏水Ti表面及其耐腐蚀性

    Institute of Scientific and Technical Information of China (English)

    康志新; 郭明杰

    2013-01-01

    Ti and its alloys,due to their good stability and high strength-to-density ratio,have been widely used in many industry fields,such as aviation,navigation,biomedical devices,etc.It is quite necessary to improve their performance against corrosion of water pollution or other corrosive mediums in these fields.The process of thermal oxidation is an effective way to enhance their corrosion resistance while high-temperature oxidation is usually thought to have detrimental effects.However,the porous structure caused by high-temperature oxidation is found to be beneficial for preparation of superhydrophobic surface,which has gotten extensive application in improvement of metals' antcorrosion ability.In this study,a rough surface with hierarchical micro-and nano-structures was formed on Ti by a heat treatment process in atmospheric environment at 1000 ℃ for 1 h.The following air-cooling process separated the flaky yellow oxide layer formed on Ti plate during the oxidation from the substrate and a grey porous substrate (TO) was obtained.Furthermore,TO was modified with n-octadecyltrichlorosilane (OTS),leading to the formation of superhydrophobic Ti surface (TO-OTS).The TO-OTS film exhibited a static contact angle of 166.0° and a rolling angle of 2.0° for 5 μL water droplets.The as-prepared film was characterized by XRD,FE-SEM,XPS and contact angle measurements.The results indicated that dual-scale roughness leaved by thermal oxidation endowed TO-OTS with excellent non-sticking superhydrophobicity and durability,even for some corrosive liquids including salt solution and acidic and alkali solutions at different pH values.By means of immersion test,TO-OTS displayed great non corrodibility against HF solution,with a protective mirror-like air film formed above it.Moreover,based on potentiodynamic polarization measurement in 3.5%NaCl solution,the corrosion resistance of TO-OTS was proved to have a significant enhancement with a protection efficiency of 99.1%.This is a facile method for preparation of large-scale or complex shaped superhydrophobic surfaces without requirement of expensive instrument,which may provide an effective protection for Ti under harsh environment.%利用简单的热氧化法制备了具有微/纳双尺度粗糙结构的多孔Ti表面,经自组装分子膜修饰后使纯Ti表面实现了超疏水特性.利用XRD,FE-SEM,XPS,光学视频接触角仪、腐蚀溶液浸泡及动电位极化法对TO-OTS超疏水膜进行表征及分析.结果表明:热氧化后的微/纳双尺度粗糙结构赋予TO-OTS优越的低黏附超疏水性能,其静态接触角达166.0°,滚动角低至2.0°,对强酸强碱溶液和某些盐溶液都具有超疏性,更可抵抗氢氟酸溶液对Ti基底的腐蚀.动电位极化分析结果显示,TO-OTS超疏水膜显著提高了Ti在3.5%NaCl溶液中的耐腐蚀性能,保护效率达到99.1%.

  6. Recovery of the external anticorrosion protection systems of onshore pipelines - evaluation methods and practical results; Recuperacao de sistemas de protecao anticorrosiva externa de dutos terrestres - metodos de avaliacao e resultados praticos

    Energy Technology Data Exchange (ETDEWEB)

    Castinheiras, Wilson; Koebsch, Andre; Silva, Flavio A. da [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The rehabilitation of an old pipeline means to increase its lifetime, making it safety to operate in the necessaries conditions to transport the product. The pipe steel wall evaluation, related to it thickness reduction, due to, basically, internal and external corrosion, is fundamental to guide its rehabilitation. The techniques used to this evaluation are 'pig' and specials field survey. These last surveys are realized over the soil surface (digs is not necessary to access the pipeline or the pipeline operation is not necessary to stop) and objective to verify the pipeline coating and Cathodic Protection System conditions. Due to the actual authors experience, this paper will only treat of the Rehabilitation of the External Anti corrosive Protection System (coating and cathodic protection) of onshore pipelines. This paper present the techniques current attenuation, ON-OFF pipe-to-soil potential close interval survey and DCVG and same practical results obtained with the application of these techniques on the Sergipe/Bahia gas pipeline. (author)

  7. Optimization of the deposition process of corrosion resistant Stellite 6 coatings produced by laser cladding; Optimizacion del proceso de aporte de recubrimientos anticorrosion de Stellite 6 producidos mediante plaqueado laser

    Energy Technology Data Exchange (ETDEWEB)

    Vicario, I.; Soriano, C.; Sanz, C.; Bayon, R.; Leunda, J.

    2009-07-01

    Laser cladding is one of the most efficient surface treatment technologies in the industry. It uses a laser heat source to deposit a thin layer of a desired material on a moving substrate, whose properties have to be improved, achieving a metallurgical bonding between them with low heat affected zone and low dilution, compared to other conventional technologies such as PTA, TIG welding or thermal Spraying. In this sense, it is remarkable that there are 3 main application fields for laser cladding technology: restoration of refurbishment of damaged parts, surface coating against corrosion or wear, and rapid proto typing. the present work described a study of the optimization of the laser cladding of Co based coatings (Diamalloy 4060NS) on medium carbon steel C45 (AISI 1945). After laser treatment, the surface of the substrate materials is improved in terms of resistance against corrosion; this confirmed in the analysis performed afterwards. it is also shown that the corrosion barrier properties have direct correlation with the laser cladding variables. (Author) 10 refs.

  8. Impact of heat treatment on surface chemistry of Al-coated Eurofer for application as anti-corrosion and T-permeation barriers in a flowing Pb-15.7Li environment

    Energy Technology Data Exchange (ETDEWEB)

    Konys, J., E-mail: juergen.konys@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen (Germany); Krauss, W.; Holstein, N.; Lorenz, J.; Wulf, S. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen (Germany); Bhanumurthy, K. [Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Electro-chemical Al deposition is industrially relevant for barrier formation. Black-Right-Pointing-Pointer Al scales have to be converted into protective layers by heat treatments. Black-Right-Pointing-Pointer Morphology of scales depend on deposition parameters. Black-Right-Pointing-Pointer Solid state diffusion step at 640 Degree-Sign C avoids critical Al melting and activates steel surface. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} protective scales detected. - Abstract: The compatibility testing of Eurofer steel in flowing Pb-15.7Li has shown that corrosion attack is a serious concern at least under view of precipitate formation from dissolved steel components in cooler system sections, leading to a high risk of tube blockages. Additionally, the T-permeation from the liquid breeder through the steel structure into the He-cooling system is an important safety issue. Both topics may be reduced by the application of barriers. Hot dip aluminization (HDA) showed that Al scales exhibit such ability but claimed also the development of improved coating technologies. Thus, two electro-chemically-based deposition processes, which exhibit industrial relevance and adjustable layer thickness of deposited Al, were developed, tested and characterized. Both are working with water-free electrolytes of toluene or ionic liquid (IL) base near room temperature (RT). The successfully deposited homogeneous layers need a heat treatment to establish the required protective/functional properties. During this stage, the Al reacts with the steel and forms an Al-enriched zone with a thin protective Al{sub 2}O{sub 3} surface scale. However, the topology is rough and pores are visible. Thus, for optimization of surface structure and scale quality, investigations concerning the required heat treatment were performed including effects coming from the applied coating technology.

  9. Synthesis of Molybdate Inhibitor Based on Intercalated Layered Double Hydroxide(LDH) and Its Anticorrosive Properties%LDH型MoO42-缓蚀剂的合成及防腐性能

    Institute of Scientific and Technical Information of China (English)

    于湘; 俞志东; 程丽华; 潘奇

    2013-01-01

    采用共沉淀法制备了镁铝氢氧化物为层板、MoO42-柱撑的LDH型MoO42-缓蚀剂(记为MoO42-LDH),利用XRD和Raman光谱对样品进行表征.通过缓释实验,讨论了LDH型缓蚀剂的释放能力以及缓蚀剂的缓蚀机理.SEM-EDS、ICP、N2吸附脱附和极化曲线测试结果表明,合成的LDH型MoO42-缓蚀剂具有很好的离子交换和吸附Cl-的性能,释放出MoO42-缓蚀剂进入电解液,24 h内对镁合金的腐蚀电流保持在9.129 μA/cm2,减缓了镁合金腐蚀.添加质量分数20% MoO42-LDH颜料的环氧涂层在质量分数3.5% NaCl溶液中的EIS测试体现出较好的耐蚀作用,耐盐雾腐蚀187 h以上.%Mg-Al layered double hydroxide ( LDH) loaded with molybdate anions were synthesized via coprecipitation method. The resulting compounds were characterized respectively by means of X-ray diffraction (XRD) and Raman spectra. The properties of the release of inhibitor and the inhibition mechanism were observed and analyzed by slow-release experiment. The SEM - EDS, ICP and N2 adsorption-desorption measurements demonstrated the excellent anion-exchange and adsorption capabilities for chloride ion. Polarization curves measurements showed that the filtrate as electrolyte exhibited a lower corrosion current density value due to the presence of MoO2-4 . The results indicate that the released inhibitor can provide adequate corrosion protection, maintaining a corrosion current density at approximately 9. 129 μA/cm2 for magnesium alloy within 24 h. The coatings containing 20% MoO2-4-LDH pigment keep excellent corrosion resistance by electrochemical impedance spectroscopy (EIS) during immersion in 3.5% NaCl solution with more than 187 hours of exposure to salt spray test.

  10. Influences of New Compound Corrosion Inhibitor on Anticorrosion Performance of Waterborne Epoxy Coatings%新型缓蚀剂对水性环氧涂料防腐性能的影响

    Institute of Scientific and Technical Information of China (English)

    王晓艳; 高延敏; 孟祥玲; 缪文桦

    2009-01-01

    新型无机缓蚀剂已成为目前研究的热点.国内外对磷酸盐系缓蚀剂的缓蚀机理和缓蚀效果的研究已很充分[1-2].但该类缓蚀剂也存在一定的缺点,如颗粒较粗大,在涂料中分散性能较差等[3].为解决这一问题,现在的主要发展方向是开发出高效、低价、高性能化、高同体化、水性化、微细粉末产品[4].复合磷钛粉就是基于这一要求发展起来的一类新型缓蚀剂.本文利用极化曲线对复合磷钛粉的缓蚀机理进行了初步的探索,并通过电化学阻抗技术研究了复合磷钛粉用量对涂层耐蚀件的影响.

  11. 铝合金表面聚多巴胺膜的制备及耐腐蚀性能的研究%Preparation and Anti-corrosion Property of Polydopamine Thin Film on Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    冯绪志; 谢赟; 王必鹏; 王艳玲; 张扬; 张学军

    2016-01-01

    多巴胺(dopamine)是一种生物神经传递物质,在弱碱性水溶液条件下,能在溶解氧的作用下发氧化-交联反应,形成附着于固体材料表面的聚多巴胺复合层.基于这种特性,本文在铝合金表面制备一层聚多巴胺薄膜,使用扫描电镜和红外光谱对膜进行表征.在1 mol/L氯化钠溶液中使用极化曲线和交流阻抗谱(EIS)对其耐腐蚀性能进行分析.结果表明:在40℃,pH=8.5下反应24 h,铝合金表面形成一层聚多巴胺膜,电化学测试结果表明该膜对铝合金的耐腐蚀性能有一定的提高.

  12. Surface Treatment for New Engineered Aerospace Systems

    OpenAIRE

    2012-01-01

    During this EngD project, two pigmented, anti-corrosion polymer/sol-gel hybrid coatings were developed with the aim of producing an eco-friendly alternative to conventional, toxic hexavalent chromate conversion and anodized anti-corrosion alloy treatments for the aircraft manufacturer; Airbus S.A.S. The polymer/sol-gel hybrid coatings were then tested and validated as anti-corrosion coatings on the AA2024-T3 aluminium aerospace alloy and in certain cases, their performance was compared agains...

  13. DARPA Perspectives on Multifunctional Materials/Power and Energy

    Science.gov (United States)

    2012-08-09

    application Optoelectronics InGaN LEDs Energy ZnSnN2 Photovoltaics Optoelectronics Indium Tin Oxide/ Polycarbonate Anti-corrosion Paint/Steel... InGaN LEDs Energy ZnSnN2 Photovoltaics Optoelectronics Indium Tin Oxide/ Polycarbonate Anti-corrosion Paint/Steel Tribology TiN/High speed... White Papers • Proposal Review • Select Performers Step III • Program Reviews • “Decision Point” Evaluations • DoD transition partners Idea

  14. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the elect...

  15. Analysis of Anticorrosion Technology of Bridge and Culvert Structures Concrete of Qinghai Chage Expressway Project in Saline Soil Area%青海察格高速公路项目工程桥涵构造物砼盐渍土地区防腐技术的分析借鉴

    Institute of Scientific and Technical Information of China (English)

    祁学英

    2012-01-01

    The northwest region of China is more extensive areas of saline land distribution, which is characterized by particularly severe of saline soil corrosion. The persecution role of the high concentrations intergranular brine or saline soil on pouring concrete highway is very strong. The sulfuric acid, salt and chloride in saline soil area has chemical action with cement, but also can bring damage caused by the physical role. Because the salt crystals is expanded in the wet and dry parts of structure and results in the crack in road concrete, it reduces the service life of the road to a large extent. So, except the relevant rules and norms of road construction in saline soil area, the corrosion resistance of concrete also should be paid great attention to and the special corresponding measures should be taken when conditions permit to mitigate and even eradicate the destructive effects of corrosion on highway structures.%我国的西北部是盐碱地分布比较广泛的地区,其特点就是盐渍土的腐蚀尤其严重.高浓度晶间卤水或者盐渍土壤对由混凝土浇筑的高速公路的的迫害作用相当强.这样的盐渍土地区环境中的硫酸、盐和氯盐和水泥石极易发生化学作用,而且还有物理作用造成的破坏,因为盐类结晶在结构的干湿变化部位基因膨胀,造成公路混凝土开裂,很大程度的减少了公路的使用寿命.所以说,对于盐渍土地区的公路建设各有关规定和规范之外,还须对混凝土地防腐性能给予高度关注,在条件许可时采取特殊对应措施,减轻乃至根除腐蚀对公路构筑物的破坏作用.

  16. Effects of Pyrimidine Derivative Corrosion Inhibitors on the Anti-corrosion Quantitative Structure-activity Relationship of Austenitic Stainless Steel in Acidic Media%嘧啶类缓蚀剂对酸性介质中奥氏体不锈钢的缓蚀量化构效影响研究

    Institute of Scientific and Technical Information of China (English)

    鞠虹; 李焰; 崔海捷

    2015-01-01

    目的:使用基于密度泛函( DFT)的量子化学法,研究嘧啶类缓蚀剂的分子结构和在酸性介质中对碳钢的缓蚀效率之间的关系。方法通过计算前线轨道能量(最高占据轨道和最低空轨道)、电荷分布、绝对电负性(χ)、偶极矩(μ)和转移电子数(△N)等量化参数,确定与缓蚀效率之间的关系。结果DHPMs缓蚀剂的缓蚀效率随着EHOMO值的增大而提高,随着ELUMO值的减小而提高,随着前线轨道能级差值( ELUMO-EHOMO )的减小而提高,随着转移电子数△N增大而提高。含有N原子的区域最有可能失电子并吸附在金属铁表面活性位置。结论由于DHPMⅠ的嘧啶环供电子能力较强,致使DHPMⅠ比DHPMⅡ的缓蚀效率高。%ABSTRACT:Objective Quantum chemical calculations based on DFT method was used to study the relationship between the mo-lecular structure and inhibition efficiency of pyrimidine derivatives ( DHPMs) used as corrosion inhibitors for carbon steel in acidic media. Methods The quantitative parameters, such as the frontier molecular orbital energy HOMO ( highest occupied molecular or-bital) and LUMO ( lowest unoccupied molecular orbital) , the charge distribution of the studied inhibitors, the absolute electroneg-ativity (χ) values, dipole moment(μ) and the fraction of electrons (△N) transferred from inhibitors to carbon steel were calculated and correlated with inhibition efficiencies. Results The results showed that the inhibition efficiency of DHPMs increased with the increase in EHOMO , the decrease in ELUMO , the decrease in ELUMO-EHOMO , and the increase in the number of the fraction of electrons (△N) transferred from inhibitors to carbon steel. The areas containing N atoms were the most possible sites for bonding the active sites on the metal iron surface by donating electrons to the metal. Conclusion Compound DHPMⅠhad higher inhibition efficiency than DHPM II, because the pyrimidine ring of DHPMⅠ had stronger electron donating capacity.

  17. Study on Salt-Fog Resistance of Zinc-Rich Anti-Corrosive Epoxy Coating for Bridge Support of Railway%铁路桥梁支座用环氧富锌防腐涂料耐盐雾性能研究

    Institute of Scientific and Technical Information of China (English)

    曾凡辉; 姜其斌; 包胜军; 陈宪宏

    2008-01-01

    通过对铁路桥梁支座用环氧富锌防腐涂料耐盐雾性能的研究,制得了具有优异防腐功能的新型环氧富锌涂料.研究了涂膜的PVC、硅烷偶联剂和环氧固化剂对环氧富锌防腐涂料耐盐雾性能的影响.结果表明当涂膜的PVC为42%、干漆膜中锌粉含量为82%,且配方中选用某环氧基硅烷偶联剂和某腰果油改性环氧固化剂时,环氧富锌防腐涂料的耐盐雾腐蚀可达1 518 h.

  18. Density Functional Theory Study on Action Mechanism of Anti-Oxidant and Anti-Corrosive for Alkylated Arylamine Additive%烷基化芳胺润滑添加剂抗氧抗腐蚀机理的密度泛函理论研究

    Institute of Scientific and Technical Information of China (English)

    李新芳; 王学业; 刘万强; 文小红; 龙清平; 谭援强

    2005-01-01

    采用量子化学的密度泛函理论计算了8种烷基化芳胺抗氧抗腐蚀添加剂与烷氧自由基(C6H13O·)的结合能以及与铁原子簇的化学吸附作用能,探讨了化合物的结构特征、作用机理、授受电子的性质和取代基效应.结果表明:这些添加剂的HOMO均为带有杂原子的孤对电子的π-分子轨道,HOMO可以与金属原子的LUMO发生相互作用,HOMO的电子转移到金属原子的LUMO上形成配位键和稳定的吸附态;添加剂的LUMO均为苯环的π-共轭体系组成,可与RO·的SOMO相互作用,LUMO接受RO·的电子生成稳定的加成产物,添加剂具有授受电子性质;烷基化芳胺添加剂抗氧抗腐蚀性能与取代基的供电子效应或共轭效应有关,当供电子效应强时可以增加添加剂与RO·的结合能以及与铁原子簇的化学吸附作用能.依据计算结果可以推测8种化合物的抗氧抗腐性能由高到低顺序为:化合物Ⅰ>Ⅵ>Ⅷ>Ⅶ>Ⅲ>Ⅴ>Ⅳ>Ⅱ,计算结果与实验结果一致.

  19. 气井防腐措施中H2S和CO2浓度的现场可靠性测量%Reliable On-Site H2S and CO2 Concentrations for Anticorrosion Measures in Gas Wells

    Institute of Scientific and Technical Information of China (English)

    王泓; 马颖洁

    2005-01-01

    在现场正确测定气井内H2S和CO2浓度对腐蚀处理具有重要意义,同时对于管材的合理选择也格外重要.在气体样本储存期间的H2S损耗问题给现场测定提供了必要性.对在井场测定和确认H2S和CO2值的若干种方法进行了研究.

  20. Preparation of Polythiophene/Polypyrrole/TiO2 Composite Conductive Polymers by Solid-state Method and Its Anti-corrosion Properties for Stainless Steel%固相法制备聚噻吩/聚吡咯/二氧化钛膜及电化学腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    薛守庆; 刘庆华

    2016-01-01

    在水蒸气气氛下,制备出表面富含羟基的纳米TiO2颗粒,然后在室温和氧化剂三氯化铁存在下,通过化学固相氧化法,在不锈钢表面制备出聚噻吩/聚吡咯/TiO2(PTH/PPy/TiO2)薄膜.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、热重分析(TG)、电化学阻抗(EIS)等技术手段对产物的微观形貌、热稳定性和耐腐蚀性能进行了研究,并讨论了不同纳米TiO2含量对复合材料的结构和性能的影响.结果表明,在其使用温度(20 ~ 300℃)下,PTH/PPy/6% TiO2(质量分数)膜热分解温度为450℃,能够满足其使用要求.用PTH/PPy/TiO2膜保护的不锈钢比裸露的不锈钢的自腐蚀电位高出0.8V以上,而腐蚀电流密度降低了2个数量级.TiO2的添加明显的提高了PTH/PPy材料的抑制腐蚀的能力,并且由于TiO2的加入能够使聚合物与无机纳米粒子之间能够紧密地结合在一起,减少膜的缺陷,增大复合材料与金属基体的力学性能,使得膜结构更加的致密,从而减缓不锈钢的腐蚀.

  1. Active Additives to Improve the Performance of Anti-Corrosion of Carbon Dioxide of Set Cement in Oil Well%活性外掺料提高油井水泥石抗二氧化碳腐蚀能力研究

    Institute of Scientific and Technical Information of China (English)

    诸华军; 姚晓; 王道正; 张祖华; 华苏东; 何玉鑫

    2011-01-01

    为提高固井水泥环的抗CO2腐蚀能力,开发了富硅铝质活性外掺料(HA).通过比较不同碳化龄期水泥石的抗压强度、分析孔结构、测定渗透率、分析碳化层的成分和显微形貌等方法,对水泥石的抗碳化性能进行了研究.结果表明,加HA水泥石抗CO2腐蚀能力明显优于净浆水泥石和掺硅灰水泥石:加HA水泥石在CO2压力2 MPa、95℃腐蚀介质中养护28和90 d后,试样的抗压强度为35.4和33.7 MPa,较同龄期盐水养护试样分别降低了3.01%和13.14%(净浆水泥石分别降低了7.750%和31.15%),试样总孔隙率分别为19.87%和21.45%(净浆水泥石分别为28.81%和31.850%),且有害孔(直径>100 nm)所占比例小;在7 MPa驱替压力下,两个腐蚀龄期的加HA水泥石均未发生渗滤(净浆水泥石的渗透率分别为1.21×10-3 μm2和1.68×10-3 μm2);碳化90 d后的加HA水泥石外层试样中CaCO3的衍射峰强度明显低于净浆水泥石,且碳化试样的产物呈连续致密,与净浆水泥石腐蚀后形成颗粒的结构明显不同.%Rich silicon-aluminum active admixture (HA) has been developed with the aim at improving the performance of anti-carbonation of oil well cement sheath. The compressive strength of set cement, its pore structure, permeability, component and micro-morphology of carbonated specimens at different ages were analyzed. The performance of anti-carbonization was investigated. The results showed that the anti-carbonation property of set cement with HA agent was higher than that of the pure cement and those containing silica fume. Under CO2 pressure of 2 Mpa and temperature of 95 ℃ ,the compressive strength of set cement with HA agent was 35. 4 Mpa and 33. 7 Mpa respectively with aging for 28 and 90 days, which decreased by 3. 01% and 13. 14% respectively compared with those samples after salt water curing (the compressive strength of pure cement was reduced by 7. 75% and 31. 15% respectively). The total porosity was 19. 87% and 21. 45% (the porosity of pure set cement was 28. 81% and 31. 85%) ,and the volume ratio of harmful pores (with diameter >100 μm) was small. These two corroded set cement with HA agent percolation did not occur at the driving pressure of 7 Mpa (the pure set cement had permeability of 1. 21 × 10-3 μm2 and 1. 68 × 10-3 μm2). The X-ray diffraction intensity of CaCO3 in set cement with HA a-gent was lower than that of pure set cement after carbonization for 90 days, the carbonized samples are compact continuously,different from the particle structure of pure set cement evidently.

  2. Preparation of Epoxy/Montmorillonite Nanocomposite Coating and Investigation on Heat Resistance and Anticorrosion Properties in Oil- Gas Environment with H2S/CO2%环氧/蒙脱土复合涂层的制备及在H2S/CO2环境中的耐热防腐性能研究

    Institute of Scientific and Technical Information of China (English)

    胡银春; 马丽琴; 董玉华; 王献昉; 周琼

    2011-01-01

    The title anti -corrosive and heat resistant coating, which coud be used in oil -gas environment with H2S/CO2, has been developed by optimizing the curing process, clay content and resin component to improve heat - resistance and corrosion resistance of epoxy coating. The heat - resistant and anti - corrosive properties of the coating in oil - gas environment with H2S/CO2 was investigated with autoclave test.The results showed that heat pre treatment could significantly increase the Tg of the binder, and epoxy resin could be intercalated into the organic montmorillonite layers with mechanical stirring at 80 ℃. OMMT could be well dispersed in the binder when its content was 3% (m/m), and the nanocomposite showed an intercalation/stripping hybrid characteristic, which could ensure both the thermo -mechanical and barrier properties. When the Tg of the varnish coating was 153.7 ℃, its anti - corrosive property was good in oil - gas environment with H2S/CO2 at 150. 0 ℃, which meant the Tg could be used as the upper marging temperature for anti -corrosive coating.%通过优化固化工艺、有机蒙脱土含量及树脂组分改善环氧涂层的耐热性,制备应用于高温H2S/CO2腐蚀环境中的环氧耐热防腐涂层,采用高温高压釜试验测试了涂层的耐热防腐效果.结果表明:适当的高温处理能显著提高基体树脂的玻璃化转变温度;环氧树脂在80℃机械搅拌条件下插入有机蒙脱土的层间,质量分数为3%的有机蒙脱土在基体中分散均一,为插层/剥离混合型复合结构,兼顾材料的热机械性能和阻隔性能;清漆涂层的玻璃化转变温度为153.7℃,其防腐涂层在150℃以下含H2S/CO2的油气环境中的防腐效果良好,说明玻璃化转变温度作为防腐涂层的使用上限温度是可行的.

  3. Construction Work Method and Quality Control of Anti-corrosion Concrete Package Body Piles in Soft Saline Soil Foundation%软弱盐渍土地基防腐蚀混凝土裹体桩施工方法与质量控制

    Institute of Scientific and Technical Information of China (English)

    郭亮; 黄明

    2013-01-01

    该文简要描述软弱盐渍土的一般工程特性,重点介绍了软弱盐渍土地基中使用防腐蚀混凝土裹体桩的施工方法和施工质量监控措施,为同类地基条件使用防腐蚀混凝土裹体桩提供了有效施工方法和质量控制的经验.

  4. Coating of long span bridges; Chotaikyo no toso

    Energy Technology Data Exchange (ETDEWEB)

    Kawanishi, H. [Nippon Paint Co. Ltd., Osaka (Japan)

    1998-11-15

    A composite anti-corrosion coating method (zinc rich primer + epoxy resin primer + polyurethane resin primer) was used for the Seto Ohashi Bridge. The anti-corrosion coating system in the Akashi Ohashi Bridge is the same as described above. This paper mainly describes the coating in a Honshu-Shikoku linking bridge. In the coating system, product blasting is used as rough coating. In the whole process, coating is basically performed at the factory. The anti-corrosion against a friction junction plane and splice plate is also carried out. For example, a rustproof bolt is used in the easy-to-corrode part. Coating is performed to obtain a thick film of more than 200 {mu}m. The edge of a member is rounded. The zinc dust in a zinc rich primer performs sacrifice anti-corrosion. The outside-air isolation film uses an epoxy resin primer that is excellent in water resistance and chemical resistance. This film improves the anti-corrosion effect by isolating the moisture or corrosive substance that permeates through the coated film from the outside air. If the weather resistance of the fluoroethylene resin primer used instead of a polyurethane resin primer has final coating quality as expected, the maintenance cycle in an offshore bridge can be more extended than the current cycle of about 10 to 15 years. 1 ref., 1 fig., 5 tabs.

  5. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.

    Science.gov (United States)

    Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying

    2016-12-15

    Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications.

  6. Aluminum pigment encapsulated by in situ copolymerization of styrene and maleic acid

    Science.gov (United States)

    Liu, Hui; Ye, Hongqi; Tang, Xinde

    2007-11-01

    To improve its anticorrosion property, aluminum pigment was encapsulated by in situ copolymerization of styrene (St) and maleic acid (MA). It was found that the conversion of monomers (C), the percentage of grafting (PG) and the grafting efficiency (GE) could attain 92%, 12%, 25%, respectively, when m(BPO)/ m(St + MA) = 10% and m(St + MA)/ m(Al) = 10%. The optimum condition for protection factor was studied according to an orthogonal testing. When m(St + MA)/ m(Al) was 20%, the encapsulated aluminum pigment simultaneously showed good anticorrosion property and luster. FTIR, SEM and particle size analysis indicated that aluminum pigment had been successfully encapsulated with styrene-maleic acid copolymer by in situ copolymerization, which remarkably improved its anticorrosion property and the chelate complex formed between SMA and Al(III) was possibly the actual corrosion inhibitor.

  7. 海洋平台立管防腐维修技术及实践%Offshore Platform Riser Coating Repair Technical and Practice

    Institute of Scientific and Technical Information of China (English)

    叶永彪; 高磊; 马国强; 汪智峰

    2014-01-01

    The paper descript a kind of methods for repairing subsea riser anti-corrosion material, this method is raised from a project of repairing the subsea riser anti-corrosion material of an offshore platform, it give an option for repairing subsea anti-corrosion material after this project is executed successfully.%本文通过介绍一个海洋平台立管水下防腐损伤修复的成功实施,总结了一种新的水下防腐修复方法,为今后海洋石油水下防腐修复案例提供了借鉴方法。

  8. Inhibitive effect of Xylopia ferruginea extract on the corrosion of mild steel in 1M HCl medium

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah

    2011-08-01

    The alkaloid content of the leaves and stem bark of Xylopia ferruginea plant was isolated and tested for its anticorrosion potential on mild steel corrosion in a hydrochloric acid medium by using electrochemical impedance spectroscopy, potentiodynamic polarization measurement, scanning electron microscopy (SEM), and Fourier transform infra red (FTIR) analysis. The experimental results reveal the effective anticorrosion potential of the plant extract. The mixed mode of action exhibited by the plant extract is evidenced from the polarization study. SEM images proof the formation of a protective layer over the mild steel surface, and this is supported by the FTIR study. The possible mode of the corrosion inhibition mechanism has also been discussed.

  9. Critical Factors for the Transition from Chromate to Chromate-Free Corrosion Protection

    Science.gov (United States)

    2005-06-15

    compounds were used to seal thickened oxide layers on 6061 -T6-alumina composites by direct application of a vanadate solution [11]. These vanadate...Riley, Anticorrosion Treatment of Metal Coated Steel Having Coatings of Aluminium , Zinc or Alloys Thereof, U.S.Patent no. 5,985,047, 1999. 13. H.E...5,743,971, 1998. 15. P.J. Riley, Anti-Corrosion Treatment of Aluminium or Aluminium Alloy Surfaces, U.S. Patent no. 5,520,750, 1996. 16. J. Livage

  10. Oxidation and annealing of thin FeTi layers covered with Pd

    NARCIS (Netherlands)

    Heller, E.M.B.; Suyver, J.F.; Vredenberg, A.M.; Boerma, D.O

    1999-01-01

    The hydrogen storage material FeTi has the disadvantage to lose its sorption capacity in contact with impurities such as O-2 and H2O. A possibility to overcome this problem is to coat it with an anti-corrosive layer which is permeable for hydrogen. In this study we prepared FeTi layers covered with

  11. Potentiality Studies of Stainless Steel 304 Material for Production of Medical Equipment using Micro Electrical Discharge Machining (micro-EDM) Analysis and Modeling

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    Stainless steel 304 (SS304) is a material widely used for production of medical equipment mainly because of its anti-corrosive properties. It has excellent mechanical properties, strength and reliability because of which it is one of the best materials for fabrication of medical devices. This paper...

  12. Thallium Toxicity: The Problem; An Analytical Approach; An Antidotal Study

    Science.gov (United States)

    1993-05-15

    Possible toxic mechanisms of T1 include ligand formation with protein sulfhydryl groups, inhibition of cellular respiration, interaction with riboflavin ...and riboflavin -based cofactors, and disruption of calcium homeostasis. The principal clinical features of thallotoxicosis are gastroenteritis...anticorrosive), optical lenses (increases refractive index), low-temperature thermometers, dye and pigments (artist paints), semiconduc- tors, superconducting

  13. Economic Efficiency of Innovative Materials for Sectors of Economy

    Directory of Open Access Journals (Sweden)

    Miroshnikova Tatyana

    2016-01-01

    Full Text Available The paper proposes an approach to the assessment of the economic efficiency of innovative anti-corrosion coatings for sectors of the national economy of the Russia on the basis of a synthesis of strategic sectoral and cost analysis. According to the authors, a comparative analysis of composite polymeric anticorrosion protecting coatings with similar products, estimating of direct and indirect economic effect and prognosis of implementation, forms a deeper understanding of the role of innovative technologies in the Russian state development of import substitution, the investment attractiveness of Russian industries in the new part technologies, applied research activities of private companies. Metal consumption sectors of the economy were chosen as an object of research, as they are characterized by the use of the following products: industrial construction and reconstruction, nuclear and thermal power, chemical, oil and gas, utilities, food processing, automotive, shipbuilding, aviation and rocket science, other industry. Basic modeling of implementation of anticorrosion protecting coatings in industrial enterprises was carried out on the basis of generating energy enterprises as one of the main end-users of anti-corrosive materials that also issue accurate statements.

  14. Multifunctional substrate of Al alloy based on general hierarchical micro/nanostructures: superamphiphobicity and enhanced corrosion resistance

    Science.gov (United States)

    Li, Xuewu; Shi, Tian; Liu, Cong; Zhang, Qiaoxin; Huang, Xingjiu

    2016-01-01

    Aluminum alloys are vulnerable to penetrating and peeling failures in seawater and preparing a barrier coating to isolate the substrate from corrosive medium is an effective anticorrosion method. Inspired by the lotus leaves effect, a wetting alloy surface with enhanced anticorrosion behavior has been prepared via etch, deposition, and low-surface-energy modification. Results indicate that excellent superamphiphobicity has been achieved after the modification of the constructed hierarchical labyrinth-like microstructures and dendritic nanostructures. The as-prepared surface is also found with good chemical stability and mechanical durability. Furthermore, superior anticorrosion behaviors of the resultant samples in seawater are investigated by electrochemical measurements. Due to trapped air in micro/nanostructures, the newly presented solid-air-liquid contacting interface can help to resist the seawater penetration by greatly reducing the interface interaction between corrosive ions and the superamphiphobic surface. Finally, an optimized two-layer perceptron artificial neural network is set up to model and predict the cause-and-effect relationship between preparation conditions and the anticorrosion parameters. This work provides a great potential to extend the applications of aluminum alloys especially in marine engineering fields. PMID:27775053

  15. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...

  16. Biobased polymers for corrosion protection of metals

    Science.gov (United States)

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  17. Synthesis of N-Alkylperfluorooctanesulfonamides and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    LI Yan; CHEN Zhi-Qi; ZHOU Ye-Bing; CHEN Zu-Xing; LIU Zhao-Jie

    2003-01-01

    @@ N-Alkylperfluorooctanesulfonamide compounds are special fine chemicals, and have been applied in many fields, such as vulcanizing agents for fluoro rubbers, smooth and friction reducing for coatings, fire extinguisher, anticorrosive agents for metals, water- and oil-repellents for leather, textiles and paper, photographic emulsion.[1

  18. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    Of all the various anti-corrosion systems usEd. by offshore structures and ship-building industry to reduce the ravages of sea-water corrosion, cathodic protection is one of the most important. Impressed current cathodic protection (ICCP...

  19. Corrosion Inhibition on SAE 1010 Steel by Nanoscale Exopolysaccharides Coatings Determined by Electrochemical and Surface Characterization

    Science.gov (United States)

    Plating, painting and the application of enamel are the most common anti-corrosion treatments. They are effective by providing a barrier of corrosion resistant material between the damaging environment and the structural material. Coatings start failing rapidly if scratched or damaged because a co...

  20. ELECTROPOLYMERIZATION OF ANILINE ON ZINC-ELECTROPLATED STEEL FROM NEUTRAL AQUEOUS MEDIUM BY SINGLE-STEP PROCESS

    Institute of Scientific and Technical Information of China (English)

    Y.P. Zhao; R.H. Yin; W.M. Cao; A.B. Yuan

    2004-01-01

    Polyaniline films were successfully synthesized on zinc-electroplated steel sheets in sodium has been studied in this paper using different electrochemical techniques. And scanning electron microscopy (SEM) showed that the polymer coatings rapidly formed by either galvanostatic or potentiostatic mode performed compact and uniform in morphology.Potentiodynamic polarization was used to test the anticorrosion properties of this polymer.

  1. Polysaccharide Thin Films – Buildup and Hydration

    Science.gov (United States)

    Plating, painting and the application of enamel are common anti-corrosion treatments by providing a barrier of resistant material between the damaging environment and the structural material. Coatings start failing rapidly if scratched or damaged because “pitting” occurs at high rates in cracks or p...

  2. THE SYNTHESIS OF URUSHIOL TITANIUM CHELATE POLYMERS AND THEIR STRUCTURAL CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    HU Binghuan; CHEN Wending; LIN Jinhuo

    1993-01-01

    The synthetic method and structural characteristics of urushiol-titanium chelates (UT) and urushiol-titanium chelate polymer for anticorrosive coatings have been studied.Two kinds of coating films made from UT polymer show excellent physico-mechanical properties and possess good chemical resistance to strong acids and alkalis, many kinds of salt solutions and organic solvents,stable at high temperature.

  3. Superb nanocrystalline alloys for plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With high rigidity and antiwear performance,nanocrystalline metals and their alloys can find wide applications in surface protection.However, the existence of grain boundaries often leads to erosive micro-batteries which accelerate the process of corrosion.Therefore, it has already become a key issue for surface engineering researchers to find nano materials with higher lubricating, anticorrosion and antiwear capacities.

  4. The Application of Antifouling Coatings Used on Urban Concrete Bridge%抗污涂料在城市混凝土桥梁上的应用

    Institute of Scientific and Technical Information of China (English)

    晏立宇; 王宁

    2012-01-01

    介绍了西安城市混凝土立交桥涂装配套设计方案,对提高混凝土防腐涂层抗污性的措施和防腐抗污涂层的技术要求进行了论述,并对混凝土桥梁涂装的施工工艺进行了介绍。%The coating design scheme of concrete overpass in Xian city were introduced, measurements for improve the concrete anti-corrosion coating anti-fouling properties and the technical requirements of anti-corrosive anti-fouling coating were discussed, and the construction technology of the concrete bridge coating were introduced.

  5. Effects of Nano Pigments on the Corrosion Resistance of Alkyd Coating

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alkyd coatings embedded with nano-TiO2 and nano-ZnO pigments were prepared. The effects of nano pigments on anticorrosion performance of alkyd coatings were investigated using electrochemical impedance spectrum (EIS). For the sake of comparison, the corrosion protection of alkyd coatings with conventional TiO2 and ZnO was also studied. It was found that nano-TiO2 pigment improved the corrosion resistance as well as the hardness of alkyd coatings. The optimal amount of nano-TiO2 in a colored coating for corrosion resistance was 1%. The viscosities of alkyd coatings with nanometer TiO2 and ZnO and conventional TiO2 and ZnO pigments were measured and the relation between viscosity and anticorrosion performance was discussed.

  6. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  7. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability.

  8. Electrochemical performance of electroactive poly(amic acid)-Cu2+ composites

    Science.gov (United States)

    Yan, Ying; Li, Fangfei; Hanlon, Ashley M.; Berda, Erik B.; Liu, Xincai; Wang, Ce; Chao, Danming

    2017-01-01

    Electroactive poly(amic acid)-Cu2+ (EPAA-Cu) composites on substrates were successfully prepared via nucleophilic polycondensation followed by the use of an immersing method. Analysis of the structure properties of EPAA-Cu composites was performed using scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS) and Fourier-transform infrared spectra (FTIR). A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was found as evident from cyclic voltammetry (CV) measurements. In addition, Cu2+ ions were incorporated into the composites and had a positive effect on their electrochromic behaviors decreasing their switching times. The anticorrosive performance of EPAA-Cu composites coatings on the carbon steel in 3.5 wt% NaCl solution were also investigated in detail using tafel plots analysis and electrochemical impedance spectroscopy. The anticorrosive ability of these coatings significantly enhanced through the incorporation of Cu2+ ions.

  9. Development of Water Based Graphene Anti-rust Primer%水性石墨烯防锈底漆的研制

    Institute of Scientific and Technical Information of China (English)

    王军委; 贺少鹏; 张玲; 张茜; 娄西中

    2016-01-01

    研制了一种环境友好型水性石墨烯防锈底漆。讨论了防锈乳液成膜物、防锈颜料、颜料体积浓度(PVC)和助剂对底漆性能的影响。确定了水性石墨烯底漆的配方和生产工艺。%A kind of environmentally-friendly water based graphene anti-rust primer was prepared. The influences of anticorrosive emulsion film former,anticorrosive pigment,pigment volume concentration(PVC)and additives on the performances of primer were discussed. The formula and production technology of the primer were confirmed.

  10. The correlation between materials, processes and final properties in the pipeline coating system with polyethylene in triple layer; A correlacao entre materiais, processos e propriedades finais no sistema de revestimento de tubos com polietileno em tripla camada

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.; Campos, Paulo H. [Confab Industrial S.A., Pindamonhangaba, SP (Brazil); Silva, Christian E.; Santos, Paulo T. [Soco-Ril do Brasil S.A., Pindamonhangaba, SP (Brazil)

    2003-07-01

    The use of anticorrosion coating is a common practice in industrial pipeline applications. Among the several coatings types to buried and submerged pipelines, over all, the Fusion Bonded Epoxy and Three Layer Polyethylene coating systems have been large employed. They have showed an excellent performance protecting the pipe metal from external corrosive environment, considerably decreasing the designed cathodic protection requirements, basically in the first years of pipeline operation. Coating system success depends on not only of a suitable design or of the materials technology, but also depends on the process parameters and the raw material characteristics exhibited during the application. In this paper will be presented in a theoretical approach how the process parameters and the raw materials characteristics may affect the three layer polyethylene anticorrosion coating final properties. (author)

  11. Facile fabrication of large-scale stable superhydrophobic surfaces with carbon sphere films by burning rapeseed oil

    Science.gov (United States)

    Qu, Mengnan; He, Jinmei; Cao, Biyun

    2010-10-01

    Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.

  12. Deposition of SiOx on Metal Surface with a DBD Plasma Gun at Atmospheric Pressure for Corrosion Prevention

    Institute of Scientific and Technical Information of China (English)

    HAN Erli; CHEN Qiang; ZHANG Yuefei; CHEN Fei; GE Yuanjing

    2007-01-01

    In this study,SiOx films were deposited by a dielectric barrier discharge(DBD)plasma gun at an atmospheric pressure.The relationship of the film structures with plasma powers Was investigated by Fourier transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM).It was shown that an uniform and cross-linking structure film was formed by the DBD gun.As an application,the SiOx films were deposited on a carbon steel surface for the anti-corrosion purpose.The experiment was carried out in a 0.1 M NaC1 solution.It Was found that a very good anti-corrosive property was obtained,i.e.,the corrosion rate Was decreased c.a.15 times in 5% NaC1 solution compared to the non-SiOx coated steel,as detected by the potentiodynamic polarization measurement.

  13. SYNTHESIS AND CHARACTERIZATION OF THE LAMELLAR MICROCRYSTALLINE ZINC PHOSPHATE α-Zn3 (PO4)2·4H2O

    Institute of Scientific and Technical Information of China (English)

    Yuan Aiqun; Bai Lijuan; Ma Shaomei; Tong Zhangfa

    2006-01-01

    Objective To study the structural and anticorrosive property of microcrystalline α-Zn3 (PO4)2 ·4H2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution.Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area,particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized (A), c0 =5. 0304(A), V=975.86 (A)3. Its specific area is 0. 701 m2/g, density 3. 1612 g/m3 , and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized iamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.

  14. Low-cost Evaporator Protection Method against Corrosion in a Pulverized Coal Fired Boiler

    Directory of Open Access Journals (Sweden)

    Arkadiusz Krzysztof Dyjakon

    2010-07-01

    Full Text Available Corrosion processes appearing on the watertubes in a combustion chamber of pulverized coal-fired boilers require permanent control and service. Subject to the power plant strategy, different anti-corrosion protection methods can be applied. Technical-economical analysis has been performed to evaluate and support the decisions on maintenance and operation services. The paper presents and discusses results of the application of an air protection system in boiler OP-230 in view of anti-corrosion measures. It is indicated that a low-cost protection method of watertubes (evaporator against corrosion can be efficient and lead to financial savings in comparison to the standard procedure of replacement of watertube panels.

  15. Corrosion protection of AZ31 magnesium alloy treated with La3+ modified 3-methacryloxypropyltrimethoxysilane conversion film

    Institute of Scientific and Technical Information of China (English)

    乔英杰; 李文鹏; 王桂香; 张晓红

    2015-01-01

    This study demonstrated the influence of addition concentration of La3+ on the anti-corrosion behavior of a 3-methacry-loxypropyltrimethoxysilane (MPS) film formed on AZ31 magnesium alloy. The morphology and surface chemistry of the samples were evaluated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The corrosion resistance of the pre-treated AZ31 magnesium alloy was studied during immersion in 0.1 mol/L NaCl solution, using poten-tiodynamic polarization curves and electrochemical impedance spectra (EIS). In comparison to MPS film, the low concentration of La3+ ion modified silane layer exhibited a better anti-corrosion performance, nevertheless, the high concentration of La3+ ion modified was worse. Results showed that the preferable addition concentration of La3+ ion in the silane film was 5×10–4 mol/L in this experi-ment.

  16. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  17. 水基防锈剂MET-486在全合成切削液中的应用研究%Application of Aqueous Rust Preventive MET-486 in Synthetic Metal Working Fluid

    Institute of Scientific and Technical Information of China (English)

    宋扬扬

    2013-01-01

      选择MET-486作为全合成水基切削液中的防锈添加剂,并通过对铸铁试片、碳钢试片的腐蚀性试验及灰口铸铁片的防锈性试验,确定其最少添加量。实验结果表明,添加量为0.1%就可对黑色金属表现优异的防锈性能。%  MET-486 was used as anti-corrosion composite additives in synthetic metal working fluid. Effects of the additive contents in composites on anti-corrosion and anti-rust were investigated in detail by testing cast iron and carbon steel chips. The working fluid with 0.1%MET-486 showed the best corrosion protection for ferrous metals.

  18. The influence of crystal faces on corrosion behavior of copper surface: First-principle and experiment study

    Science.gov (United States)

    Zhang, Zhengwei; Wang, Qiang; Wang, Xu; Gao, Lin

    2017-02-01

    When the MBT-:Cl- ratio is 50-10:1 in a solution containing of NaCl and Na-MBT (sodium salt of 2-mercaptobenzothiazole), the copper sample-1 (S1) was passivated; when the ration is 10-5:1, it was corroded. The copper sample-2 (S2) had no anti-corrosive ability in all solutions with MBT-:Cl- = 50-5:1. First-principle calculation revealed that the Cu atoms of (220) face, the main face of S1, have more unsaturated and energetic electrons than that of (200) and (111) faces, the main faces of S2. The highest chemical activation of the (220) face leads the S1 surface to show a better anti-corrosive ability.

  19. Super-hydrophobic film prepared on zinc as corrosion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wang Peng [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Zhang Dun, E-mail: Zhangdun@qdio.ac.c [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Qiu Ri [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Graduate School of the Chinese Academy of Sciences, 19 (Jia) Yuquan Road, Beijing 100039 (China); Hou Baorong [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China)

    2011-06-15

    Research highlights: {yields} Super-hydrophobic film was prepared on zinc surface. {yields} The air trapped in film can dramatically improve the anti-corrosion property. {yields} The air trapped behaves as dielectric for a pure parallel plate capacitor. {yields} The air enhances the contribution of film to the anti-corrosion property. {yields} Without the help of air, the film itself can only present feeble inhibition effect. - Abstract: Potentiostatic electrolysis was carried out to prepare super-hydrophobic film on the surface of metallic zinc. The resultant film was examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, electrochemical measurements, and contact angle test. The super-hydrophobic property of the film results from the air trapped among the sheets of zinc tetradecanoate. This air behaves as a dielectric for a pure parallel plate capacitor, thereby inhibiting electron transfer between the electrolyte and the substrate. The air can also enhance the contribution of the film itself to protection performance.

  20. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  1. Ultra-thin a-SiNx protective overcoats for hard disks and read/write heads

    Institute of Scientific and Technical Information of China (English)

    Ding Wan-Yu; Xu Jun; Lu Wen-Qi; Deng Xin-Lu; Dong Chuang

    2009-01-01

    This paper reports that amorphous silicon nitride(a-SiNx)overcoats were deposited at room temperature by microwave ECR plasma enhanced unbalanced magnetron sputtering.The 2 nm a-SiNx overcoat has better anti-corrosion properties than that of reference a-CNx overcoats(2-4.5 nm).The superior anti-corrosion performance is attributed to its stoichiomctric bond structure,where 94.8% Si atoms form Si-N asymmetric stretching vibration bonds.The N/Si ratio is 1.33 as in the stoichiometry of Si3N4 and corresponds to the highest hardness of 25.0 GPa.The surface is atomically smooth with RMS<0.2 nm.The ultra-thin a-SiNx overcoats are promising for hard disks and read/write heads protective coatings.

  2. Estimating hull coating thickness distributions using the EM Algorithm

    OpenAIRE

    Corriere, Michael A.

    2000-01-01

    The underwater hull coating system on surface ships is comprised anti-corrosive (AC) and anti-fouling (AF) paint The AF layers are designed to wear away, continuously leaching cuprous oxide to inhibit marine growth. The thickness of the AF paint layers determines the expected service life of a coating system. Thus, it is important to assess the thickness of the AF layers to determine if the current hull coating system is sufficient. The Naval Ship Technical Manual (NSTM) provides specific gui...

  3. Influencia de la concentración de pigmento en volumen (CPV en las propiedades de una imprimación epoxi

    Directory of Open Access Journals (Sweden)

    Rodríguez, M. T.

    2005-12-01

    Full Text Available By means of stress-strain tests, electrochemical techniques (EIS and AC/DC/AC and salt spray accelerated tests, the influence of the A=PVC/CPVC parameter (being CPVC the critical pigment volume concentration on mechanical and anticorrosive properties of an anticorrosive epoxy organic primer has been studied. Primers were formulated at different A values (0.73, 0.80, 0.88, 0.93, 0.98, 1.08, 1.15 and 1.24. It was concluded that mechanical and anticorrosive properties of an epoxy coating are greatly affected by the A parameter. The corrosion resistance increases when the PVC decreases. Anticorrosive properties characterized with the different techniques used were very similar, although AC/DC/AC offered the results in a very short time (24 h.

    Mediante ensayos de tracción (tensión-deformación, ensayos electroquímicos (EIS y AC/DC/AC y ensayos acelerados de niebla salina, se ha estudiado el efecto del parámetro A=CPV/CCPV (siendo CCPV la concentración de pigmento en volumen crítica en las propiedades mecánicas y anticorrosivas de una imprimación epoxi. Se formularon imprimaciones con diferentes valores de A (0,73, 0,80, 0,88, 0,93, 0,98, 1,08, 1,15 y 1,24. Se ha observado que las propiedades mecánicas y anticorrosivas de una imprimación epoxi se ven altamente afectadas por el parámetro A, aumentando la resistencia a corrosión al disminuir la CPV. Las conclusiones halladas mediante las diferentes técnicas fueron muy similares, destacando los ensayos AC/DC/AC por su rapidez en la obtención de resultados (24 h.

  4. Investigation of the bio-resistance of insulating protective coatings modified by polymeric petroleum resins

    OpenAIRE

    Nykulyshyn, Irena; Pikh, Zorian; Gnatush, Svitlana; Gnativ, Zoriana; Chajkivska, Ruslana

    2016-01-01

    Basic patterns of modification of bitumen composites by polymeric petroleum resins (PPR) are processed. Creation of new highly effective metal protecting compositions and study of their action patterns is an important scientific problem. It is found that introduction of PPR to the insulating petroleum bitumen improves the anticorrosive properties of protective coatings for underground pipelines. The adhesive strength of petroleum bitumen coatings is investigated. The mechanism of influence of...

  5. Titanium surface modification by using microwave-induced argon plasma in various conditions to enhance osteoblast biocompatibility

    OpenAIRE

    Seon, Gyeung Mi; Seo, Hyok Jin; Kwon, Soon Young; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Min Sung; Koo, Min-Ah; Park, Bong Joo; Park,Jong-Chul

    2015-01-01

    Background Titanium is a well proven implantable material especially for osseointegratable implants by its biocompatibility and anti-corrosive surface properties. Surface characteristics of the implant play an important role for the evolution of bone tissue of the recipient site. Among the various surface modification methods, plasma treatment is one of the promising methods for enhance biocompatibility. We made microwave-induced argon plasma at atmospheric pressure to improve in titanium sur...

  6. 客车车下部件腐蚀影响因素及改进措施%The Influence Factors to Corrosive of Parts Under Passenger Car and Improvement Measurement

    Institute of Scientific and Technical Information of China (English)

    眭军燕; 何伯庆; 屠文霞

    2011-01-01

    The influence factors to parts under the passenger car were analyzed and the measurements to improve the anticorrosion from metals material selection,structure design,painting protection were proposed.%分析了客车车下部件腐蚀的影响因素,从金属材料的选择、结构设计、涂装保护等方面提出了改进措施。

  7. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    OpenAIRE

    Xuming Zhang; Guosong Wu; Xiang Peng; Limin Li; Hongqing Feng; Biao Gao; Kaifu Huo; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface c...

  8. Impact of surface chemistry

    OpenAIRE

    2010-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized.

  9. Hot-Dip Galvanized Sheet Production and Application

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Hot-dip galvanized sheet is wildly used in construction, household appliances, ship, vehicle and vessel building and machinery, etc. In last ten years, with the development of automobile industry, the anti-corrosion requirements for car body are increasingly strict, by which the rapid development in technology has been promoted. The application of hot-dip galvanized sheet, technological progress in production and some Chinese large units were introduced.

  10. Protection against corrosion of magnesium alloys with both conversion layer and sol–gel coating

    OpenAIRE

    2013-01-01

    International audience; The anticorrosion performances of a system consisting of a phosphate based conversion layer and a hybrid sol–gel coating have been evaluated for the magnesium alloy Elektron21. The lone sol–gel coating affords a significant protection of the magnesium substrate. However, the presence of an intermediate conversion layer is presumed to improve the corrosion resistance of the system. The surface morphology of the protection coatings was characterized by optical microscopy...

  11. Plasma-aided manufacturing

    Science.gov (United States)

    Shohet, J. L.

    1993-12-01

    Plasma-aided manufacturing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. Plasma-aided manufacturing has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both the high-technology and the more traditional industries in the United States.

  12. Multilayer ceramic coating for impeding corrosion of sintered NdFeB magnets

    Institute of Scientific and Technical Information of China (English)

    A.Ali; A.Ahmad; K.M.Deen

    2009-01-01

    Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic coating applied through cathodic arc physical vapour deposition(CAPVD) for protection of sintered NdFeB permanent magnets.The performance of ceramic coating was compared to the electrodeposited nickel coating having a copper interlayer.Electrochemical impedance spectroscopy(EIS) and cyclic polar...

  13. Mechanism for Corrosion Prevention by a Mechanical Plating of Uniform Zinc-Iron Alloy

    Science.gov (United States)

    Kasai, Naoya; Kaku, Yoshihiko; Okazaki, Shinji; Hirai, Kuninori

    2016-09-01

    In situ electrochemical monitoring with a three-electrode cell was applied to investigate the anti-corrosion properties of a mechanical zinc-iron alloy plating. Several electron probe microanalyses were also conducted to identify the chemical elements in the plating. The results indicated the formation of a Zn-Fe intermetallic compound, which allowed a mechanism for corrosion prevention to be proposed. In the proposed mechanism, Zn(OH)2 plays a significant role in the corrosion prevention of steel alloys.

  14. http://www.orientjchem.org/vol31no4/features-of-obtaining-silver-nanoparticles-in-non-aqueos-media-by-reduction-of-silver-trifluoroacetate/

    Directory of Open Access Journals (Sweden)

    K. Syrmanova

    2016-03-01

    Full Text Available This article is devoted for the study of polyurethane modified by epoxylitane coatings solidification processes. The limited ratio of the components in corrosive coating was defined that provides a combination of epoxylitaneresin and thermoplastic polyurethane in presence of polyethylenpolyamine- PEPA. Kinetics of solidification of modified and unmodified epoxylitanecoatings was researched. For the reducinga cost and regulation of coating performance properties was investigated modification of epoxylitane resins with thermoplastic polyurethanes that can be applied for anticorrosion protection of pipelines.

  15. Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped...

  16. Caracterización superficial de nuevos pre-tratamientos a base de silanos aplicados sobre aluminio

    OpenAIRE

    2005-01-01

    Silane- based pre-treatments are an alternative process for the chrome-based corrosionpreventive commercial pre-treatments, without salubrity problems and that in initial exploratory studies have yielded promising results regarding corrosion protection and adhesion promotion. In the framework of the research about the anticorrosive capacity of these compounds that it's being undertaken for different silane and substrates, some preliminary results are presented in this paper. Specifically, the...

  17. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  18. 某型舰主机海水管路的模拟冲刷腐蚀研究%On simulation of erosion-corrosion of main engine seawater pipelines on a warship

    Institute of Scientific and Technical Information of China (English)

    周晓光; 董彩常; 宋伟伟; 丁继峰

    2013-01-01

    Seawater cooling system is crucial in the Naval ships. There are higher requirements for the reliability of the seawater pipeline system on warships by the modern Navy ,and hence the requirements for its anticorrosion performance also become higher. According to the design proposal of the anticorrosion performance of the seawater cooling pipelines of the main engines on warships ,this paper conducts the corrosion tests of seawater pipelines , and studies resistance to seawater erosion-corrosion under the normal/accelerated flow rate. The results can provide reference for anticorrosion design of seawater pipelines on warships.%海水冷却系统是舰船的重要系统,现代海军对舰船海水管路系统使用可靠性要求更高,对海水管系的防腐能力提出了更高要求。文中针对某型舰主机海水冷却管路的防腐设计方案,建立海水管路系统的腐蚀试验平台,研究了常规/加速流速下管路系统的耐海水冲刷腐蚀性能。此次试验的研究结果对舰船海水管路防腐蚀设计具有较好的参考价值。

  19. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg-Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijun [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Yuan, Yi, E-mail: yi.yuan@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The PEO coatings exhibit tunable characteristics by controlling the current density. Black-Right-Pointing-Pointer The coating formed at 5 A/dm{sup 2} exhibits the highest corrosion resistance. Black-Right-Pointing-Pointer Anti-corrosion properties of PEO coatings are related to coating surface composition. - Abstract: The effect of current density on the oxidation process, morphology, composition and anti-corrosion properties of coatings are elucidated. X-ray photoelectron spectroscopy and X-ray diffraction analysis of coatings show that coatings prepared at different current densities are composed of MgO and {gamma}-Mg{sub 2}SiO{sub 4} and {alpha}-Mg{sub 2}SiO{sub 4} phase. The chemical composition of PEO coatings varies from surface to the interior of the oxide coating. The PEO coatings exhibit tunable thickness, composition ratio, and porosity by controlling the current density, which ultimately affects film morphology and anti-corrosion properties. The superior corrosion resistance of coating obtained at 5 A/dm{sup 2} is attributed to the compactness of the barrier layer and the highest MgO/Mg{sub 2}SiO{sub 4} ratio.

  20. Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharifalhoseini, Zahra [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Entezari, Mohammad H., E-mail: entezari@um.ac.ir [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: Enhancement of the corrosion protection of electroless Ni–P layer by ZnO nanoparticles deposition and the comparison with the classical and sonochemical Ni–P coatings. - Highlights: • Unique effects of ultrasound were investigated on the anticorrosive performance of electroless Ni–P coating. • Sonoynthesis of ZnO NPs and its deposition were performed on the surface of Ni–P coating. • ZnO as an anticorrosive has a critical role in the multifunctional surfaces. • Electrochemical properties of all fabricated samples were compared with each other. - Abstract: Ni–P coatings were deposited through electroless nickel plating in the presence and absence of ultrasound. The simultaneous synthesis of ZnO nanoparticle and its deposition under ultrasound were also carried out on the surface of Ni–P layer prepared by the classical method. The morphology of the surfaces and the chemical composition were determined by scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS), respectively. Electrochemical techniques were applied for the corrosion behavior studies. The Ni–P layer deposited by ultrasound showed a higher anticorrosive property than the layer deposited by the classical method. The ZnO nanoparticles deposited on the surface of Ni–P layer significantly improved the corrosion resistance.

  1. Halloysite clay nanotubes for controlled release of protective agents.

    Science.gov (United States)

    Lvov, Yuri M; Shchukin, Dmitry G; Möhwald, Helmuth; Price, Ronald R

    2008-05-01

    Halloysite aluminosilicate nanotubes with a 15 nm lumen, 50 nm external diameter, and length of 800 +/- 300 nm have been developed as an entrapment system for loading, storage, and controlled release of anticorrosion agents and biocides. Fundamental research to enable the control of release rates from hours to months is being undertaken. By variation of internal fluidic properties, the formation of nanoshells over the nanotubes and by creation of smart caps at the tube ends it is possible to develop further means of controlling the rate of release. Anticorrosive halloysite coatings are in development and a self-healing approach has been developed for repair mechanisms through response activation to external impacts. In this Perspective, applications of halloysite as nanometer-scale containers are discussed, including the use of halloysite tubes as drug releasing agents, as biomimetic reaction vessels, and as additives in biocide and protective coatings. Halloysite nanotubes are available in thousands of tons, and remain sophisticated and novel natural nanomaterials which can be used for the loading of agents for metal and plastic anticorrosion and biocide protection.

  2. Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aldrighi Luiz M.; Costa, Josiane D.; Sousa, Mikarla B. de; Alves, José Jailson N. [Department of Chemical Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882, 58429-970 Campina Grande (Brazil); Campos, Ana Regina N.; Santana, Renato Alexandre C. [Department of Education, Federal University of Campina Grande, R. Olho da Água da Bica, S. N., 58175-000 Cuité-Pb (Brazil); Prasad, Shiva, E-mail: prasad@deq.ufcg.edu.br [Department of Education, Federal University of Campina Grande, R. Olho da Água da Bica, S. N., 58175-000 Cuité-Pb (Brazil)

    2015-01-15

    Highlights: • Ni–W–Fe alloy resistant to corrosion has been obtained by electrodeposition. • Optimal temperature and current density for Ni–W–Fe alloy electrodeposition has been found. • Experimental design has been used as optimization tool. • Amorphous Ni–W–Fe alloy has been obtained. - Abstract: Corrosion has been responsible for industrial maintenance cost as well as for industrial accidents. A key to prevent corrosion is to develop advanced materials with highly anti-corrosive properties. The electrodeposition has been one of the most important techniques for obtaining these materials. The objective of this work is to develop and optimize the parameters to obtain a new Ni–W–Fe alloy with high resistance to corrosion. A factorial design 2{sup 2} with 2 center points was used to find the optimal current density and bath temperature for Ni–W–Fe electrodeposition. The influence of such variables on the cathodic current efficiency and polarization resistance were obtained. The alloys obtained with the highest current density (125 mA/cm{sup 2}) and the highest bath temperature (70 °C) had the best anticorrosive properties, which are superior to anticorrosive properties of Ni–W–Fe available in the literature. The obtained alloys had the highest tungsten content compared with other alloys studied of about 46 wt.%. The highest cathodic current efficiency was 34% for the alloy with a chemical composition of 3 wt.% Fe, 29 wt.% W and 68 wt.% Ni.

  3. EVALUATION OF STABILITY OF EMULSION OIL / WATER FRONT OF THE USE OF DIFFERENT SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Fernanda Cristina Wiedusch Sindelar

    2013-05-01

    Full Text Available The reuse of waste generated by various industrial sectors is a practice that has been increasingly used due to impairment of industries with their social responsibility (environmental protection or the requirements of the protection of the environment, since many residues do not have proper disposal. In the processing industry in the reuse of stones is no different. This study aims to evaluate the reuse of the oil used as a lubricant in the stone processing industry, along with water, surfactants and corrosion. To prepare the emulsions samples were used of diesel oil as a lubricant used in the cutting industry this type of industry, plus the following surfactants: Tween 20, Tween 80, sodium lauryl ether sulphate and Cetiol HE. After completing the pH, viscosity, density and phase separation in these emulsions, the conclusion was reached that the surfactant Sodium Lauryl Ether Sulfate provided the best formulation. Using this result, new emulsions prepared with the surfactant Sodium Lauryl Ether Sulfate and an anticorrosive, in this case, sodium molybdate. In such solutions containing sodium molybdate were analyzed power anticorrosive this substance, using the SAE 1020 steel plates. After these analyzes, it was found that the addition of an anticorrosive may reduce or inhibit oxidation, but in other cases, as in this study, can promote oxidation even greater.

  4. Preparation and Application of Crosslinked Poly(sodium acrylate-Coated Magnetite Nanoparticles as Corrosion Inhibitors for Carbon Steel Alloy

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2015-01-01

    Full Text Available This work presents a new method to prepare poly(sodium acrylate magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate as shell. Fourier transform infrared spectroscopy (FTIR was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM was used to examine the morphology of the modified poly(sodium acrylate magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS. Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  5. Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

    Science.gov (United States)

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; El-Saeed, Ashraf M

    2015-01-14

    This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  6. Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors.

    Science.gov (United States)

    Snihirova, D; Lamaka, S V; Taryba, M; Salak, A N; Kallip, S; Zheludkevich, M L; Ferreira, M G S; Montemor, M F

    2010-11-01

    This work contributes to the development of new feedback-active anticorrosion systems. Inhibitor-doped hydroxyapatite microparticles (HAP) are used as reservoirs, storing corrosion inhibitor to be released on demand. Release of the entrapped inhibitor is triggered by redox reactions associated with the corrosion process. HAP were used as reservoirs for several inhibiting species: cerium(III), lanthanum(III), salicylaldoxime, and 8-hydroxyquinoline. These species are effective corrosion inhibitors for a 2024 aluminum alloy (AA2024), used here as a model metallic substrate. Dissolution of the microparticles and release of the inhibitor are triggered by local acidification resulting from the anodic half-reaction during corrosion of AA2024. Calculated values and experimentally measured local acidification over the aluminum anode (down to pH = 3.65) are presented. The anticorrosion properties of inhibitor-doped HAP were assessed using electrochemical impedance spectroscopy. The microparticles impregnated with the corrosion inhibitors were introduced into a hybrid silica-zirconia sol-gel film, acting as a thin protective coating for AA2024, an alloy used for aeronautical applications. The protective properties of the sol-gel films were improved by the addition of HAP, proving their applicability as submicrometer-sized reservoirs of corrosion inhibitors for active anticorrosion coatings.

  7. Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors.

    Science.gov (United States)

    Joshi, Anupam; Abdullayev, Elshad; Vasiliev, Alexandre; Volkova, Olga; Lvov, Yuri

    2013-06-18

    Long-lasting anticorrosive coatings for steel have been developed on the basis of halloysite nanotubes loaded with three corrosion inhibitors: benzotriazole, mercaptobenzothiazole, and mercaptobenzimidazole. The inhibitors' loaded tubes were admixed at 5-10 wt % to oil-based alkyd paint providing sustained agent release and corrosion healing in the coating defects. The slow 20-30 h release of the inhibitors at defect points caused a remarkable improvement in the anticorrosion efficiency of the coatings. Further time expansion of anticorrosion agent release has been achieved by the formation of release stoppers at nanotube ends with urea-formaldehyde copolymer and copper-inhibitor complexation. The corrosion protection efficiency was tested on ASTM A366 steel plates in a 0.5 M NaCl solution with the microscanning of corrosion current development by microscopy inspection and studying paint adhesion. The best protection was found using halloysite/mercaptobenzimidazole and benzotriazole inhibitors. Stopper formation with urea-formaldehyde copolymer provided an additional increase in corrosion efficiency as a result of the longer release of inhibitors.

  8. Preparation and Performance of Rare Earths Chemical Conversion Film on Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.

  9. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: n.carmona@fis.ucm.es [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)

    2012-06-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  10. Progress of corrosion and fouling prevention in utilization of geothermal energy%地热能利用中的防腐防垢研究进展

    Institute of Scientific and Technical Information of China (English)

    刘明言; 朱家玲

    2011-01-01

    Equipment corrosion and fouling problems are analyzed in the utilization of geothermal energy and new technologies to inhibit geothermal corrosion and fouling are reviewed. Anti-corrosion methods include coating an anti-corrosion layer, selecting anti-corrosion materials for the equipment and pipes, increasing the corrosion allowance in the design of pipelines and other structures, injecting nitrogen or sealing off oxygen, adding sulfur (corrosion inhibitors ) into the system etc. Fouling prevention techniques include adding chemical inhibitors, cleaning scale by installing fouling trapping tank or groove before geothermal utilization, imposing electric, magnetic, sound or other physical fields, coating an antiscaling layer, etc. The research directions of the corrosion and fouling prevention technologies are proposed.%分析了地热能利用过程中存在的设备腐蚀和结垢问题,重点综述了目前为解决腐蚀和结垢问题而开发的地热防腐防垢技术.防腐技术包括:防腐涂料层、设备及管道选材上考虑采用防腐材质、设计时加大管道和其它结构件的腐蚀裕量、充氮(隔氧密封)注硫(添加防腐抑制剂,即化学药剂)技术等.防垢技术包括:添加化学阻垢剂法、诱垢载体除垢或回灌滞留槽除垢、电磁声等物理场处理法、涂层防垢等.最后指出了未来的技术研究趋势.

  11. Qualification of the system for thermal coating rehabilitation in situ of oil pipeline in operation; Qualificacao de sistema de reabilitacao in situ de revestimento termico para oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Koebsch, Andre; Correa, Anyr Rosa; Cabral, Glaucia Brazuna; Castanheiras Junior, Wilson Gil [PETROBRAS, Rio de Janeiro, RJ (Brazil); Oliver, Joao Hipolito de Lima; Pinto, Mucio Eduardo Amarante Costa [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The transfer of some derived products of petroleum with high viscosity is accomplished with the same ones heated up. These buried pipelines are provided of Thermal Isolation System (TIS). Those TIS are composed with a polyurethane foam layer (PU) that is externally protected by polyethylene layer (PE). The acids production was generated by the deterioration of TIS. This associated with an absence of anticorrosive coating on the pipeline cause the corrosion with its thickness loss and consequently it's endangered. The rehabilitation of the existent TIS was done necessary to control this corrosive process, by reason of the Cathodic Protection System usually used in complement to the anticorrosive coating does not work on this TIS. A TIS rehabilitation process with the pipeline in operation was specified by PETROBRAS - ENGINEER and TRANSPETRO. It's qualified and was composed by two stages: Pre-qualification: tests in factory using pipes with original TIS and operating with hot water to 85 deg C. This stage was composed by the removal of original TIS, pipe surface preparation, application and tests on the anticorrosive coating, application and tests of the PU foam and application and tests of the PE casing. Qualification: stage composed by the application in field of the new TIS in a thousand meters of the pipeline OBATI-SP, operated by TRANSPETRO, and tests of the pipe assembly. This work presents the results of the Qualification for the rehabilitation of the thermal coating. It achieves the quality level demanded by PETROBRAS - Engineer and TRANSPETRO. (author)

  12. Turbine oil

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, E.A.; Bogdanov, Sh.K.; Dovgopolyi, E.E.; Gryaznov, B.V.; Ivanov, V.S.; Ivanova, Z.M.; Kozlova, E.K.; Nikolaeva, N.M.; Rozhdestvenskaya, A.A.

    1981-03-10

    In the known turbine oil (TO), for the purpose of improving the anticorrosion and demulsifying properties, a polyoxypropylene glycol ether, ethylenediamine or propylene glycol or an alkylphenol are additionally introduced, where the C/sub 8/-C/sub 12/ alkyl has a molecular weight of 2000-10,000. The proportions of the components are: 2, 6-di-tert-butyl-4-methylphenol 0.2-1.0%, quinizarin 0.01-0.05%, an acid ester of an alkenylsuccinic acid 0.02-0.1%, a polyoxypropylene glycol ether 0.02-0.2%, polymethylsiloxane 0.003-0.005%, and petroleum oil the remainder. The TO is prepared by mixing the petroleum oil with the additives in any sequence at a temperature of 60-80/sup 0/ by mechanical stirring. On the five TO samples the antioxidative, demulsifying, and anticorrosion properties by comparison with the prototype were investigated. It was shown that the obtained TO possesses improved anticorrosion properties (time until the appearance of Kr (staining.), up to 60 h as against 35 on the prototype) and demulsifying properties (quantity of water separating on breaking the emulsion 10 mg/L as against 65 mg/L on the prototype) for an antioxidative stability equal to that of the analog. The TO is designated for use in various turbo-units, in the first place in marine steam turbine units, where there is the probability of contact of the TO with seawater. Use of the TO makes it possible to increase the service life of the mechanisms, to reduce the amount of oil mixable in the form of an emulsion (by a factor of 1.5 to 2), and to lower the operating expenses.

  13. Corrosion and optimum corrosion protection potential offriction stir welded 5083-O Al alloy for leisure ship

    Institute of Scientific and Technical Information of China (English)

    Sung-Hyeon PARK; Jong-Shin KIM; Min-Su HAN; Seong-Jong KIM

    2009-01-01

    Electrochemical tests were undertaken to determine the optimum conditions in seawater for corrosion protection of friction stir-welded 5083-O Al alloy. Polarization trend observations show that the limiting potential that avoids the effects of hydrogen embrittlement is -1.6 V, corresponding to the crossover point between concentration polarization and activation polarization. However, the optimum protection potential is between -1.5 and -0.7 V since the current density at these values is low in the potentiostatic tests. When a galvanic cell is formed in the seawater, the welds exhibit electrochemically stable trends. Welded parts in galvanic tests with various area ratios are stable and have excellent anticorrosion characteristics.

  14. Coatings against corrosion and microbial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Superhydrophobic Materials Technology-PVC Bonding Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  16. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  17. Recubrimientos de Pd (Ag)-ZrO2 obtenidos por CVD para electrodos utilizados en la purificación electroquímica de aguas de desecho

    OpenAIRE

    Ferrétiz Anguiano, Jorge Luis

    2013-01-01

    In this research Pd – ZrO2 composite thin films were synthetized by Metalorganic Chemical Vapor Deposition (MOCVD) in order to obtain anticorrosive coatings for electrodes used in the technique of water treatment called Electrodyalisis. Coatings were deposited on AISI 304L stainless steel substrates in ratios of 10 – 90, 20 – 80 and 30 – 70 wt % Pd and Zr precursors (acetylacetonates) respectively, and temperatures of 450, 500 and 550 °C. Gas flows were adjusted at 130 cm3min-1 at ratio of 20...

  18. Rare earth and silane as chromate replacers for corrosion protection on galvanized steel

    Institute of Scientific and Technical Information of China (English)

    PENG Tianlan; MAN Ruilin

    2009-01-01

    The present work aimed at using rare earth lanthanum salt and trimethoxy(viny)silance as chromate substitutes for galvanized steel passivation, in contrast to zinc coating samples treated with chromate. The corrosion resistance was assessed by electrochemical impedance spectroscopy (EIS) and neutral salt spray tests (NSS). Scanning electron microscopy (SEM) was used to characterize the sample surfaces. The organic coating adhesion on the panel was also investigated via varnishes-cross cut tests. The results indicated that rare earth and silane two-step treatment gave more effective anticorrosion performance than Cr, which also provided good paint adhesion. The coating formation mechanism was also discussed.

  19. Corrosion Behaviour of a Silane Protective Coating for NdFeB Magnets in Dentistry

    Directory of Open Access Journals (Sweden)

    Luigi Calabrese

    2015-01-01

    Full Text Available The corrosion behavior of coated and uncoated Ni/Cu/Ni rare earth magnets was assessed at increasing steps with a multilayering silanization procedure. Magnets’ durability was analyzed in Fusayama synthetic saliva solution in order to evaluate their application in dental field. Corrosion performance was evaluated by using polarization and electrochemical impedance spectroscopy in synthetic saliva solution up to 72 hours of continuous immersion. The results show that the addition of silane layers significantly improved anticorrosion properties. The coating and aging effects, in synthetic saliva solution, on magnetic field were evaluated by means of cyclic force-displacement curves.

  20. Program for fundamental and applied research of fuel cells in VNIIEF

    Energy Technology Data Exchange (ETDEWEB)

    Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.; Potyomckin, G.A.

    1996-04-01

    According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.

  1. Experimental Study of Surface Detection of Gas Pipeline Buried in Soil

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Pipeline is a key segment in the transportation of city gas and its safety affects the safety of industrial and domestic application. The characteristics of Shi Dongkou east gas steel pipeline buried in soil were discussed and its parameters related to safety were measured, including the state of anticorrosive layer, the soil resistivity,the natural potential and the protective potential of gas pipeline. The experimental results were confirmed by excavating, which are of value to the knowledge of the gas pipeline buried in soil in Shanghai. The experimental data were analyzed which provide the scientific basis for the assurance of the gas pipeline safety and the reparation of anticorrosivelayer.

  2. Advances in the research of nitrogen containing stainless steels

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of nitrogen containing cast stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD) refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low- carbon and high cleanliness.

  3. Corrosion Analysis of Quench Tower for Radioactive Incinerator%放射性废物焚烧装置急冷塔腐蚀影响分析

    Institute of Scientific and Technical Information of China (English)

    杨丽莉; 李晓海; 郑博文

    2014-01-01

    分析了放射性废物焚烧装置急冷塔腐蚀的影响因素,从材料选择、环境介质条件以及管理三个方面提出防腐措施。%The reason why a quench tower for radioactive waste incinerator was eroded seriously during the long term operation was analyzed ,aiming at presenting anti-corrosion measures in aspects of material selection , medium condition and management ,which is useful for us to improve the corrosion of equipment .

  4. Assessment of the WWER-1000 reactor condition

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, B.T. [CRISM ' Prometey' , 49 Shpalernaya street, 191015 St Petersburg (Russian Federation)]. E-mail: prometey@pop3.rcom.ru; Karzov, G.P. [CRISM ' Prometey' , 49 Shpalernaya street, 191015 St Petersburg (Russian Federation)

    2006-06-15

    The current state of the materials (steel, welds, anticorrosive cladding metal) of WWER-1000 RPVs has been examined, taking into consideration special features of their manufacture and operation for 30 years. The possibility of operating these reactors after their design service life has been estimated, allowing for the degradation of properties due to thermal and radiation influence, as well as damage from cyclic loads. Life extension has been shown to be possible but will require future analysis of the state of the material at the end of the design life.

  5. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere

    Science.gov (United States)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.

    2017-01-01

    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  6. Effect of PEO-modes on the electrochemical and mechanical properties of coatings on MA8 magnesium alloy

    Science.gov (United States)

    Sidorova, M. V.; Sinebrukhov, S. L.; Khrisanfova, O. A.; Gnedenkov, S. V.

    Protective surface layers with a high corrosion stability and significant microhardness as compared to the substrate material were obtained on MA8 magnesium alloy by Plasma Electrolytic Oxidation (PEO) in a silicate-fluoride electrolyte. The phase and elemental composition of the coatings were investigated. It was found that the application of the bipolar PEO-modes enables one to synthesize on the alloy's surface a high-temperature phase of magnesium silicate, forsterite (Mg2SiO4) having a good anticorrosion and mechanical properties.

  7. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    Science.gov (United States)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  8. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    Science.gov (United States)

    Jaén, J. A.; González, L.; Vargas, A.; Olave, G.

    2003-06-01

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Mössbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  9. Technical proposal analysis of sea water butterfly valve used for nuclear power plant%核电站用海水蝶阀失效分析和处理

    Institute of Scientific and Technical Information of China (English)

    黄高杨; 沈捷美; 陆平

    2012-01-01

    分析了核电站用海水蝶阀在不同工况中失效的原因。介绍了阀门零部件材料性能的试验过程和试验结果并给出了材料选用和防腐的原则和方法。%Analyzes the common invalidation reasons at the different functioning conditions of sea water butterfly valve used for nuclear power plant, introduces the performance testing process and testing re- suits of the material for valves and parts, and gives the principle and methods of material selection and anticorrosion.

  10. FRP衬里树脂重防腐之缺陷及解决办法%Defects&Solutions of FRP Lining Resin Heavy-duty

    Institute of Scientific and Technical Information of China (English)

    欧阳自强

    2012-01-01

      This paper systematically summarizes problems and fabrication quality defects of the thermosetting resin, particularly unsaturated polyester resins and vinyl ester resin in anti-corrosion FRP Lining engineer, then analyzes their reasons and put forward solutions.%  本文系统总结了热固性树脂,尤其是不饱和聚酯树脂和乙烯基酯树脂在制作重防腐玻璃钢衬里时遇到的问题及施工质量缺陷,分析其原因,提出解决对策。

  11. Inhibition of Brass Corrosion by 2-Mercapto-1-methylimidazole in Weakly Alkaline Solution

    Science.gov (United States)

    Radovanovic, Milan B.; Antonijevic, Milan M.

    2016-03-01

    The electrochemical behavior of brass and anticorrosion effect of 2-mercapto-1-methylimidazole (2-MMI) in weakly alkaline solution with and without presence of chloride ions was investigated using electrochemical techniques in addition to SEM-EDS analysis. Results show that inhibition efficiency depended on inhibitor concentration and immersion time of brass electrode in inhibitor solution. Inhibition mechanism of 2-mercapto-1-methylimidazole includes adsorption of inhibitor on active sites on electrode surface which was confirmed by SEM-EDS analysis of the brass. Adsorption of the 2-MMI in sodium tetraborate solution obeys Flory-Huggins adsorption isotherm, while in the presence of chloride, ions adsorption of inhibitor obeys Langmuir adsorption isotherm.

  12. A new type counter electrode for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    JI WeiWei; CAI Ning; ZHAO Ying; ZHANG XiaoDan; SUN Jian; WEI ChangChun; YUAN CunDa; LI Yuan; SU Yan; XIONG ShaoZhen

    2009-01-01

    A new type counter electrode for dye-sensitized solar cells (DSCs) was proposed which consists of aubstrate, aluminum film and platinum film. The new type counter electrode can obviously improve the photoelectric conversion efficiency of DSCs from 3.46% to 7.07% under the standard AM1.5 irradiation condition. Advantages and shortcomings of this new type counter electrode in terms of electrical properties, optical properties and anti-corrosive properties were analyzed. As a result, some improvements were proposed.

  13. 用PTA废料和重芳烃合成防腐抗静电油罐涂料%ANTI-CORROSION AND ANTI-STATIC PAINT FOR OIL TANK SYNTHESIZED BY PTA WASTE AND HEAVY AROMATIC COMPOUNDS

    Institute of Scientific and Technical Information of China (English)

    展江宏

    2001-01-01

    介绍了用PTA(对苯二甲酸)废料合成聚酯树脂、重芳烃为溶剂、聚氨酯为固化剂的防腐抗静电涂料的工艺和涂料的性能,以及该涂料的应用前景。%Process,performance and application prospect of anti-corrosion and anti-static paint including polyester resin from PTA,heavy aromatic solvent and polyurethane solidifier are described。

  14. Low temperature growth of graphene on Cu-Ni alloy nanofibers for stable, flexible electrodes

    Science.gov (United States)

    Liu, Zheng-Dong; Yin, Zong-You; Du, Ze-Hui; Yang, Yang; Zhu, Min-Min; Xie, Ling-Hai; Huang, Wei

    2014-04-01

    Here, we report a facile approach to grow graphene on Cu-Ni alloy NFs at a temperature as low as 450-500 °C, in which solid polystyrene (PS) carbon source and two-temperature-zone furnace were used to prepare graphene. The graphene coated Cu-Ni (designated as G-coated Cu-Ni) NFs were fully characterized by Raman spectra, XPS, FESEM and TEM. The G-coated Cu-Ni NFs exhibited excellent anti-oxidation, anti-corrosion and flexibility properties. The anti-corrosion of G-coated Cu-Ni NFs was examined through cyclic voltammetry measurements by using sea water as the electrolyte solution. Finally, using crossed arrays of G-coated Cu-Ni NF composite electrode thin films (sheet resistance is ~10 Ω sq-1) as the flexible electrode, an alternating current (AC) electroluminescent (EL) device with a configuration of G-coated Cu-Ni/active layer (ZnS : Cu phosphor)/dielectric layer (BaTiO3)/front electrode (CNT) has been fabricated. Under an AC voltage of 200 V and frequency of 1300 Hz, the ACEL device emitted blue light at 496 nm with a brightness of 103 cd m-2.Here, we report a facile approach to grow graphene on Cu-Ni alloy NFs at a temperature as low as 450-500 °C, in which solid polystyrene (PS) carbon source and two-temperature-zone furnace were used to prepare graphene. The graphene coated Cu-Ni (designated as G-coated Cu-Ni) NFs were fully characterized by Raman spectra, XPS, FESEM and TEM. The G-coated Cu-Ni NFs exhibited excellent anti-oxidation, anti-corrosion and flexibility properties. The anti-corrosion of G-coated Cu-Ni NFs was examined through cyclic voltammetry measurements by using sea water as the electrolyte solution. Finally, using crossed arrays of G-coated Cu-Ni NF composite electrode thin films (sheet resistance is ~10 Ω sq-1) as the flexible electrode, an alternating current (AC) electroluminescent (EL) device with a configuration of G-coated Cu-Ni/active layer (ZnS : Cu phosphor)/dielectric layer (BaTiO3)/front electrode (CNT) has been fabricated. Under

  15. Mechanical characteristics of fused cast basalt tube encased in steel pipe for protecting steel surface

    Institute of Scientific and Technical Information of China (English)

    Jee-Seok WANG; Jong-Do KIM; Hee-Jong YOON

    2009-01-01

    Because of the various excellent characteristics of cast basalt materials, such as, anti-corrosion, anti-wearing, good hardness, high chemical stability, of which steel may not possess, the steel-basalt composite pipes are used in severe environments for compensating the defects of steel. The limit of bending moment with which steel-basalt composite pipe may safely endure was calculated and the limit curvature of the composite pipe in the safe range was presented. The application temperature of steel-basalt pipe was examined due to a different coefficient among basalt, mortar and mild steel.

  16. Self-healing epoxy coating containing linseed oil loaded micro capsules for steel

    Directory of Open Access Journals (Sweden)

    M. Mahmoudian

    2016-12-01

    Full Text Available Effectiveness of epoxy coatings filled with linseed oil loaded micro capsules was investigated for healing the cracks generated on steel. Micro capsules were synthesized by in-situ polymerization method. Characteristics of these micro capsules were studied by Fourier-transform infrared spectroscopy (FTIR, Thermal gravimetric analysis, Scanning electron microscopy (SEM for chemical investigation, thermal stability and surface morphology respectively. Anti-corrosion effect of prepared coating was investigated by electrochemical impedance spectroscopy (EIS. Cracks in a paint film were successfully healed when linseed oil was released from microcapsules ruptured under simulated mechanical action.Linseed oil healed area was found to prevent corrosion of the substrate.

  17. A new high strength stainless maraging spring steel with isotropic shaping capability

    Energy Technology Data Exchange (ETDEWEB)

    Weber, H.R. [VACUUMSCHMELZE GmbH+Co. KG, Hanau (Germany)

    2001-09-01

    The production of complex shapes coupled with the demand for maximum final strength is called for by many design engineers in the fields of components, springs or elements for control technology, pneumatics, and hydraulics in order to meet the increasing trend to miniaturization and reducing the number of parts. A new FeNiCoMo-based maraging steel succeeds in combining the maximum strengths and isotropic shaping capability of non-stainless maraging steels with the anti-corrosive properties of austenitic CrNi steels. (orig.)

  18. Biossurfactantes: propriedades anticorrosivas, antibiofilmes e antimicrobianas

    Directory of Open Access Journals (Sweden)

    Lívia Vieira de Araujo

    2013-01-01

    Full Text Available Due to the importance of biofilms in the food industry, new products are being developed to enhance the efficiency of cleaning food-contact surfaces. Biosurfactants could be an alternative to synthetic products. The major advantages of biosurfactants over synthetic detergents are their low toxicity and highly biodegradable nature. Biosurfactants may also exhibit antimicrobial, anti-adhesive and anticorrosive activity concomitantly. In this review, we emphasize the potential application of biosurfactants as surface coating agents to prevent corrosion and decrease planktonic and sessile microbial growth.

  19. Science and Technology of China Onshore Petroleum Industry Towards 21st Century (Part 4)

    Institute of Scientific and Technical Information of China (English)

    Fu Chengde; Liu Bingyi; Gao Chao

    1996-01-01

    @@ V. Oil/Gas Field Construction and Oil/Gas Storage and Transportation Techniques The surface engineering construction of oil and gas fields in China has made great progress in various respects of technology, such as oil and gas gathering and transferring,water injection, treating technology and equipment for oil,gas and water, automation of oil/gas field, techniques of surface engineering for special oil and gas reservoirs,sulfur-resistant and anti-corrosion techniques for recovery and gathering of sour gas field.

  20. Effect of lanthanum addition on microstructure and corrosion behavior of AI-Sn-Bi anodes

    Institute of Scientific and Technical Information of China (English)

    HOU Delong; LI Defu; HAN Li; JI Lianqin

    2011-01-01

    Novel Al-Sn-Bi anodes with and without lanthanum (La) were prepared. To evaluate the corrosion properties of the anodes, constant current and dynamic loop tests were carried out to determine its efficiency and corrosion rote. Optical microscopy (OM), transmission electron microscopy (TEM) and energy spectrum analysis techniques were used to examine and analyze microstructure and corrosion behavior of the specimens. The result showed that the Al-Sn-Bi anodes with La additions revealed higher current efficiency and anticorrosion in artificial environment. Segregation phase of anodes with La additions got more homogenous than that without La additions. Its grains were fined and the amount of segregation Fe-phase was reduced.

  1. Development of Novel Corrosion Techniques for a Green Environment

    Directory of Open Access Journals (Sweden)

    Zaki Ahmad

    2012-01-01

    Full Text Available The synergistic effect of air pollution, brown clouds and greenhouse gasses is deleterious to human health and industrial products. The use of toxic inhibitors, chemicals in water treatment plants, and anti-fouling agents in desalination plants has contributed to the greenhouse effect. Conventional anti-corrosion techniques such as paints, coatings, inhibitor treatments, and cathodic protection paid no regard to greenhouse effect. Work on eco-friendly anti-corrosion techniques is scanty and largely proprietary. The use of nano-TiO2 particles introduced in alkyds and polyurethane-based coatings showed a higher corrosion resistance compared to conventional TiO2 coatings with significant photocatalytic activity to kill bacteria. The use of UV radiations for photo-inhibition of stainless steel in chloride solution can replace toxic inhibitors. Corrosion inhibition has also been achieved by using natural materials such as polymers instead of toxic chemical inhibitors, without adverse environmental impact. TiO2 films exposed to UV radiation have shown the capability to protect the steel without sacrificing the film. Self-healing materials with encapsulated nanoparticles in paints and coatings have shown to heal the defects caused by corrosion. These innovative techniques provide a direction to the corrosion scientists, engineers, and environmentalists who are concerned about the increasing contamination of the planet and maintaining a green environment.

  2. Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution

    Energy Technology Data Exchange (ETDEWEB)

    Manhabosco, T.M., E-mail: tmanhabosco@yahoo.com.b [Physics Departament, Federal University of Ouro Preto, Campus Universitario Morro do Cruzeiro/ICEBS/DEFIS/35400-000, Ouro Preto, Minas Gerais (Brazil); Tamborim, S.M. [Metallurgy Department, Laboratory of Corrosion Research, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500/75/232, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Santos, C.B. dos [Fraunhofer-Institut/IPA Institut fuer Produktionstechnik und Automatisierung, Nobelstrasse 12, Sttutgart 70569 (Germany); Mueller, I.L., E-mail: ilmuller@ufrgs.b [Metallurgy Department, Laboratory of Corrosion Research, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500/75/232, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil)

    2011-05-15

    Research highlights: {yields} Tribocorrosion of bare and nitrided Ti6Al4V in simulated body fluid is studied. {yields} The alloy presents great tendency to repassivate when its oxide is damaged by wear. {yields} Nitriding increases Ti6Al4V resistance to wear-corrosion at open circuit potential. {yields} EIS results confirm the improved anticorrosion properties of the nitride layer. {yields} Anodic potentials (+0.4V{sub SCE}) impair tribocorrosion resistance of the alloy. - Abstract: Tribological, electrochemical and tribo-electrochemical behaviour of bare and nitrided Ti6Al4V alloy was studied. Scanning Electron Microscopy (SEM), X-ray diffraction and microhardness profile were used to characterize the nitrided Ti6Al4V. The anticorrosive properties of nitrided Ti6Al4V in phosphate buffer saline solution (PBS), simulating the body environment, were evaluated by Electrochemical Impedance Spectroscopy (EIS). Nitriding increased the alloy resistance to corrosion and to dry wear. Resistance to tribocorrosion in PBS at the open circuit potential (OCP) for the nitrided alloy was also significantly increased compared to the bare alloy; nevertheless at an anodic potential this influence became less important.

  3. Characterization of bis-[triethoxysilylpropyl] tetrasulfide layers on aluminum based on water-based silanization solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Minghao [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); He Deliang, E-mail: delianghe@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Xie Hui; Fu Liqun; Yu Yan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang Quan [College of Civil Engineering, Hunan University, Changsha, 410082 (China)

    2012-06-30

    In this work, a water-based silanization solution was prepared using a biphasic hydrolysis system composed of 85% (V/V) water and 15% (V/V) bis-[triethoxysilylpropyl] tetrasulfide (BTESPT)/n-heptane/ethanol mixture for efficiently coating aluminum with silane layer against corrosion. The BTESPT-based coatings on several pretreated aluminum samples were characterized by scanning electron microscopy and X-ray energy dispersive spectroscopy, and their electrochemical behaviors were assessed in 0.1 M NaCl neutral solution by means of electrochemical impedance spectroscopy and Tafel polarization. The BTESPT-based coating of about 180 nm thick was found to be uniform and compact, and the maximum corrosion resistance of 10{sup 6} Ohm-Sign of the BTESPT-treated aluminum samples was observed, which is larger than that of bare aluminum by two orders of magnitude. Durability tests in NaCl solution demonstrated that the BTESPT coating can provide superior protection of alumina substrate from corrosion for 10-day immersion in the corrosive media. - Highlights: Black-Right-Pointing-Pointer Water-based silanization solution prepared using a biphasic hydrolysis system. Black-Right-Pointing-Pointer Silane layers with thickness of about 180 nm were uniform and compact. Black-Right-Pointing-Pointer Water-based silane layers as alternative to anticorrosion chromate coatings for Al. Black-Right-Pointing-Pointer Excellent anticorrosion protection observed after 10-day immersion in corrosive medium.

  4. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    Li Jinbo; Zhai Wen; Zheng Maosheng; Zhu Jiewu

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve's change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.

  5. 喀土穆炼油厂焦化装置防腐蚀研究及对策%CORROSION AND MEASURES OF CORROSION PREVENTION FOR COKING UNIT IN KHARTOUM REFINERY COMPANY(KRC)

    Institute of Scientific and Technical Information of China (English)

    王健生

    2009-01-01

    针对苏丹喀土穆炼油厂焦化装置的腐蚀现状,通过测厚、腐蚀挂片、腐蚀监测和腐蚀产物的分析化验等手段对设备的腐蚀原因及其腐蚀机理进行了分析,提出了防腐工艺、材料升级、腐蚀监测和防腐管理等防腐蚀措施.%The present corrosion situations of eoking units in KRC were introduced, and the corrosion case history was analyzed by measuring residual wall thickness of the relevant units, metal loss rate of corrosion coupons and examination of corrosion products. The corrosion mechanism is discussed. The anti-corrosion measures are proposed, including anti-corrosion measures related with the processing design and engineer-ing, material upgrading, corrosion monitoring etc.

  6. Fabrication of a nanocrystalline Ni-Co/CoO functionally graded layer with excellent electrochemical corrosion and tribological performance.

    Science.gov (United States)

    Wang, Liping; Zhang, Junyan; Zeng, Zhixiang; Lin, Yiming; Hu, Litian; Xue, Qunji

    2006-09-28

    Nanocrystalline (NC) Ni-Co/CoO functionally graded materials with excellent lubricating, high anti-corrosion and anti-wear performance were fabricated by electrodeposition and subsequent cyclic thermal oxidation and quenching. Transmission electron microscopy and energy dispersive x-ray spectroscopy investigations show that bulk Ni-Co gradient deposits with an average grain size in the range of 13-40 nm demonstrated a graded structure transition from face-centred cubic to hexagonal close packed and graded composition changes from Ni-rich to Co-rich regions with the increase in deposit thickness. X-ray diffraction and x-ray photoelectron spectroscopy analysis indicated the surface layer of NC Ni-Co graded materials to be mainly composed of dense and ultrafine CoO with a (111) preferred orientation. The NC Ni-Co/CoO functionally graded materials exhibited significantly enhanced corrosion resistance in both NaOH and NaCl solutions and remarkably improved wear resistance and dry self-lubricating performance when compared with the NC Ni and Ni-Co graded deposits under dry sliding wear conditions. The higher corrosion and tribological performance of NC Ni-Co/CoO graded materials can be attributed to the graded microstructure within the deposits, the anti-corrosion barrier of a dense oxide layer and the solid lubrication effect of CoO-rich tribo-surface films.

  7. POLYETHERSULFONE COATING FOR MITIGATING CORROSION OF STEEL IN GEOTHERMAL ENVIRONMENT.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.

    2005-06-01

    Emphasis was directed toward evaluating the usefulness of a polyethersulfone (PES)-dissolved N-methyl pyrrolidone (NMP) solvent precursor as a low-temperature film-forming anti-corrosion coating for carbon steel in simulated geothermal environments at brine temperatures up to 300 C. A {approx} 75 {micro}m thick PES coating performed well in protecting the steel against corrosion in brine at 200 C. However, at {>=} 250 C, the PES underwent severe hydrothermal oxidation that caused the cleavage of sulfone- and ether-linkages, and the opening of phenyl rings. These, in turn, led to sulfone {yields} benzosulfonic acid and ether {yields} benzophenol-type oxidation derivative transformations, and the formation of carbonyl-attached open rings, thereby resulting in the incorporation of the functional groups, hydroxyl and carbonyl, into the coating. The presence of these functional groups raised concerns about the diminutions in water-shedding and water-repellent properties that are important properties of the anti-corrosion coatings; such changes were reflected in an enhancement of the magnitude of susceptibility of the coatings surfaces to moisture. Consequently, the disintegration of the PES structure by hydrothermal oxidation was detrimental to the maximum efficacy of the coating in protecting the steel against corrosion, allowing the corrosive electrolytes to infiltrate easily through it.

  8. Preparation of CoP films by ultrasonic electroless deposition at low initial temperature

    Institute of Scientific and Technical Information of China (English)

    Yundan Yu; Zhenlun Song; Hongliang Ge; Guoying Wei

    2014-01-01

    Electroless deposition technology has been considered as a kind of common ways to obtain cobalt alloy films. However, in order to get cobalt alloy films, high temperature (353 K) is necessary during the electroless deposition process which will increase costs and energy consumption. Ultrasonic was introduced during electroless plating process to obtain cobalt alloy films at lower initial temperature. It was found that the cobalt thin films could be prepared at lower initial temperature (323 K) with the introduction of ultrasonic. Therefore, different powers of ultrasonic were applied during the electroless deposition process to prepare CoP thin films on copper substrates from an alkaline bath in this investigation. The effects of different powers of ultrasonic on deposition rate, surface morphology, anticorrosion performance and magnetic property of films were studied. It was found that the deposition rate increased gradually with the rise in ultrasonic powers due to cavitation phenomenon. All the CoP films presented the typical spherical nodular structures with the impact of ultrasonic. Smaller and regular shaped structures could be observed when the films were deposited with higher power of ultrasonic which contributed directly to enhancement of anticorrosion performance. Saturation magnetization and coercivity of thin films increased gradually with the rise in ultrasonic powers during the electroless deposition process due to the higher amounts of cobalt.

  9. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  10. Structural characterization and corrosive property of Ni-P/CeO2composite coating

    Institute of Scientific and Technical Information of China (English)

    JIN Huiming; JIANG Shihang; ZHANG Linnan

    2009-01-01

    Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), X-ray diffraction spectrometer (XRD), and differential scanning calorimeter (DSC) were used to examine surface morphology and microstructure of the coating. Corrosive investigation was carried out in 3%NaCl+5%H2SO4 solution. The results showed that Ni-P coating had partial amorphous structure mixed with nanocrystals, whereas the Ni-P/CeO2 coating had perfect amorphous structure. In high temperature condition, Ni3P precipitation and Ni crystallization occurred in both coatings but at different temperatures, whereas the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels. The anticorrosion property and passivity were improved in the CeO2-containing coating due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart. During the co-deposition process, some Cen+ (n=3, 4) ions may be adsorbed to the metal/solution interface, hinder nickel's crystal-typed deposition and promote phosphorous deposition. The nano-CeO2 doping finally resulted in the coating' perfect amorphous structure and good anti-corrosive property.

  11. Pipeline External Corrosion Direct Assessment (ECDA) Close Interval Potential Survey (CIPS) Application of Detection Method%钢质管道外腐蚀直接评价(ECDA)过程中密间隔电位(CIPS)检测方法的应用

    Institute of Scientific and Technical Information of China (English)

    袁昕; 朱小铁

    2015-01-01

    This paper introduces the basic principle of CIPS close interval potential measurements and 5 kinds of detection model and its application, and through a successful implementation of CIPS close interval measuring, derive the analytical detection data on / off potential, horizontal / vertical potential gradient in the pipeline anticorrosion layer damage of different data distribution points, by the law the method can be implemented close interval potential using CIPS measurements, breakage point location of the potential and the pipeline anticorrosion layer pipeline cathodic protection.%本文介绍了CIPS密间隔电位测量的基本原理和5种检测模式及其应用情况,并通过一次成功的实施CIPS密间隔电位测量,解析检测数据的得出通/断电电位、横/纵向电位梯度在管道防腐层破损点处的不同数据分布规律,通过该规律可以实现使用CIPS密间隔电位测量的方法,对管道阴极保护电位和管道防腐层破损点的定位。

  12. New pattern Zn-Al-Mg-RE coating technics for steel structure sustainable design

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; XU Bin-shi; ZHU Zi-xin; LI Zhuo-xin; MA Jie

    2005-01-01

    Based on the advanced integrated technology of materials preparation and formation, a new pattern ZnAl-Mg-RE anti-corrosion coating for steel structure sustainable design was manufactured by cored wires and high velocity arc spraying (HVAS) technologies. The developments of thermally sprayed coatings for steel structure protection were described. Based on Al, Zn, Zn-Al and Zn-Al-Mg coatings, the anti-corrosion properties of new-pattern Zn-Al-Mg-RE coating were evaluated through electrochemical methods including electrochemical polarization and electrochemical impedance spectroscopy (EIS) coupled with SEM and XRD. The models of Zn-Al-Mg-RE coating undergoing corrosion with the initial pinhole defect and the latter with accelerated products were also discussed. The results show that Zn-Al-Mg-RE coating exhibites excellent corrosion resistance for long-term immersion, which is helpful for the sustainable design of steel structure in aggressive corrosion conditions. And the corrosion products seem to possess certain self-sealing function.

  13. Preparation Technology and Performances of Zn-Cr Coating on Sintered NdFeB Permanent Magnet

    Institute of Scientific and Technical Information of China (English)

    Yu Shengxue; Chen Ling

    2006-01-01

    Zn-Cr coating was prepared on the surface of sintered NdFeB permanent magnet samples and preparation parameters were established.The anticorrosive property of Zn-Cr coating on NdFeB was studied by whole-immersion test in NaCl solution and compared with that of zinc plating and nickel plating on NdFeB.Open-circuit potential and self-corrosion current of NdFeB samples with and without Zn-Cr coating were measured.The micro-morphology and composition of Zn-Cr coating were analyzed through SEM, XPS, EDS and XRD.The effect of Zn-Cr coating on magnetic property of NdFeB magnet was also investigated.It is exposed that Zn-Cr coating is anodic type coating for NdFeB magnet, and provided substrate electrochemical protection, barrier protection and passivation protection.The anticorrosion property of NdFeB magnet is obviously enhanced by Zn-Cr coating while the magnet property of NdFeB magnet changed little.

  14. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2015-06-01

    Full Text Available Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, graphene nanoflakes were incorporated into a water-based epoxy resin, and then the hybrid coating was applied to Al 2024-T3 samples. The addition of graphene considerably improved some physical properties of the hybrid coating as demonstrated by Electrochemical Impedance Spectroscopy (EIS analysis, ameliorating anti-corrosion performances of raw material. DSC measurements and Cross-cut Test showed that graphene did not affect the curing process or the adhesion properties. Moreover, an increment of water contact angle was displayed.

  15. Zn(Ta1-xNbx2O6 nanomaterials: Synthesis, characterization and corrosion behaviour

    Directory of Open Access Journals (Sweden)

    Birdeanu Mihaela

    2016-01-01

    Full Text Available Zn(Ta1-xNbx2O6 pseudo-binary oxide nanocrystalline materials (where x = 1; 0.5; 0.1; 0.05 and 0 were obtained through the solid-state method and characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Ultraviolet-visible spectroscopy. In addition, their morphology and topography have been determined by field emission-scanning electron microscopy (SEM and atomic force microscopy (AFM. There is a significant dependence between the rugosity and the uniformity of crystals. The evenly crystals organized in multilayers have the lowest value of rugosity and the non uniform fractal type architectures have the highest value of rugosity. The compounds’ anti-corrosion features were evaluated after deposition on carbon steel (OL in 0.1 M Na2SO4 media by open circuit potential measurement and potentiodynamic polarization technique with Tafel representation. The inhibition efficiency of pseudo-binary oxides deposited on carbon steel electrode was in the range 42.3-52.7 % promising for their further multiple layer deposition with porphyrins in order to improve anticorrosion properties. Due to the high band gap (3.80 - 4.30 eV provided by increasing the tantalum content, four of these pseudo-binary oxides might find applications in photovoltaic cells.

  16. Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Mousavifard, S.M. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, A. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dadgar, M. [Textile Engineering Department, Neyshabur University, Neyshabur (Iran, Islamic Republic of)

    2015-08-05

    Highlights: • Film formation of Zr-based conversion coating under different conditions was investigated. • We study the effect of some parameters on anticorrosion performance of conversion coating. • Optimization of processing conditions for surface treatment of galvanized steel was obtained. • Modeling and predicting corrosion current density of treated surfaces was performed using ANN and ANFIS. - Abstract: A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8–4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s.

  17. Studies on rheological property of coating for handling container bottom%集装箱箱底涂料流变性能的研究

    Institute of Scientific and Technical Information of China (English)

    陈东初; 刘娅莉

    2001-01-01

    The purpose of this study was to improve the rheological propertyof thick anticorrosive coatings. Varied thixotropic agents with different weight percent were added in anticorrosive coating. It proved that thixotropic agent consists of 2 weight percent modified polyamide and 1 weight percent bentonite has the best result. Viscosities of the coating at different rate of shear were tested, and Casson equation between coating viscosity and rate of shear was derived. The results show that the addition of thixotropic agent improves the rheological property of coating for handling container bottom obviously.%为提高厚防腐涂层的流变性能,在涂料中加入不同种类及含量的触变剂,优选出最佳触变剂,即2%改性聚酰胺和1%膨润土。通过不同剪切速率下的涂料粘度的测量,推导出Casson公式。结果表明,触变剂的加入能满足集装箱底涂料对流变性的要求。

  18. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research

    Science.gov (United States)

    Ma, Yu; Di, Haihui; Yu, Zongxue; Liang, Ling; Lv, Liang; Pan, Yang; Zhang, Yangyong; Yin, Di

    2016-01-01

    With the purpose of preparing anticorrosive coatings, solvent-based epoxy resins often serve as raw material. Unfortunately, plentiful micro-pores are fabricated via solvent evaporation in the resin' curing process, which is an intrinsic shortcoming and it is thus necessary to obstacle their micro-pore for enhancing antiseptic property. To reduce the intrinsic defect and increase the corrosion resistance of coating, we synthesize a series of SiO2-GO hybrids through anchoring silica (SiO2) on graphene oxide (GO) sheets with the help of 3-aminopropyltriethoxysilane and 3-glycidoxypropyltrimethoxysilane, and disperse the hybrids into epoxy resin at a low weight fraction of 2%. Furthermore, we investigate the appropriate preparation proportion of SiO2-GO hybrids (namely: SiO2-GO (1:5)). The electrochemical impedance spectroscopy (EIS) test and coatings' morphology monitoring in corrosion process reveal that the anticorrosive performance of epoxy coatings is significantly enhanced by incorporation of SiO2-GO (1:5) hybrids to epoxy compared with neat epoxy and other nanofillers including SiO2 or GO at the same contents. The superiority of the SiO2-GO (1:5) hybrids is related to their excellent dispersion in resin and sheet-like structure.

  19. 海底管道牺牲阳极更换及腐蚀因子分析%The Replacement Technique of the Subsea Pipeline Sacrificial Anode and the Analysis of the Corrosion Factor

    Institute of Scientific and Technical Information of China (English)

    肖治国; 张敬安; 郑辉; 李成钢

    2012-01-01

      Subsea pipeline was the lifeline of the offshore oil&gas transportation system. Anticorrosion was critical for the subsea pipeline. Sacrificial anode protection was one of the most effective anticorrosion technologies for the subsea pipeline electrochemical corrosion. It should be replaced when it reached to the design life. The anode replacement technique of the subsea pipeline and the change in anode corrosion with corrosion factor in the sea-mud was discussed in this paper. It offered us a reference for replacement and design of the subsea pipeline sacrificial anode system.%  海底管道作为海上的油气运输的生命线,必须对其做好腐蚀保护。牺牲阳极阴极保护是一种控制海底管道电化学腐蚀的有效保护方法,当其达到设计寿命后,必须对其进行更换。本文介绍了海底管道阳极更换技术,并分析了不同腐蚀因子也会对阳极的腐蚀产生影响。以期为海底管道的牺牲阳极腐蚀保护设计和更换提供参考。

  20. 海管修复隔离套袖防腐设计%Corrosion Control Design for Isolation Sleeve of Repair Subsea Pipeline

    Institute of Scientific and Technical Information of China (English)

    阳利军; 张国庆; 李妍

    2016-01-01

    Aiming at Panyu platform to zhuhai onshore terminal gas subsea pipeline leak permanent repair isolation sleeve, corrosion control design is introduced in this article. Including the anticorrosion coating design and cathodic protection design. About anticorrosion coating, introduced the selection process, reference standards and application requirements. About cathodic protection, introduced the selection of cathodic protection parameters, the calculation process and reference standards.%本文针对番禺平台至珠海陆地终端的天然气输送海管泄漏点永久修复隔离套袖的防腐设计进行了介绍,包括防腐涂层设计和阴极保护设计。对于防腐涂层介绍了选择过程、标准依据及施工要求等,对于阴极保护介绍了参数的选取、计算过程和相关标准依据。

  1. Electrochemical and Photoelectrochemical Study of Self-assembled Monolayer of Phytic Acid on Brass

    Institute of Scientific and Technical Information of China (English)

    XU Qun-Jie; WAN Zong-Yue; ZHOU Guo-Ding; YIN Ren-He; CAO Wei-Min; LIN Chang-Jian

    2008-01-01

    Phytic acid is an environment-friendly reagent for processing metals.The anticorrosion and inhibiting mechanism for phytic acid monolayers self-assembled on a brass (HSn70-1) electrode has been investigated by using electrochemical and photocurrent response methods.The electrochemical measurements indicate that phytic acid is liable to form surface complexes on the brass electrode,and the self-assembled monolayers (SAM) change the structure of the electric double-layer and shift the potential of zero charge positively.The photochemical measurement indicates that the brass electrode shows a p-type photoresponse owing to the formation of a Cu2O layer on its surface,and the presence of SAM weakens significantly the photoresponse,suggesting an excellent effect on anticorrosion,which is consistent with the EIS and polarization curve measurements.Adsorption of phytic acid was found to be typical of chemisorption,which can be reasonably described on the basis of the Langmuir isotherm.

  2. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan

    2017-04-01

    A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field.

  3. Surface nanostructures orienting self-protection of an orthodontic nickel-titanium shape memory alloys wire

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Shape memory alloys (SMA) have been applied to a wide variety of applications in a number of different fields such as aeronautical applications, sensors/actuators, medical sciences as well as orthodontics. It is a hot topic to enhance the anti-corrosion ability of orthodontic wires for clinical applications. In this letter, a very nice fractal structure, micro-domains with identical nanometer sized grooves, was obtained on the surfaces of the orthodontic wires with an oxygen plasma and acid corrosion. The concave parts of the grooves were dominated by titanium and convex parts were the same as the bulk wires. The micro-nano fractal structure generated a hydrophobic surface with the largest contact angle to water being about 157°. The titanium dominated nanolayer and the hydrophobicity of the surface resulted in jointly the great improvement of the anti-corrosion ability of the orthodontic wires. Because the fractal structures of the wires were formed automatically when they immersed in acidic environment, hence, the self-protection of the oxygen plasma-treated orthodontic wires in acidic environment indicates their potential applications in orthodontics, and should be also inspirable for other applications of SMA materials.

  4. Study on Corrosion of Zinc-aluminum Alloys Prepared by Thermal Spray with X-ray Photoelectron Spectroscopy%X射线光电子能谱检测热喷涂锌铝合金防腐性能的研究

    Institute of Scientific and Technical Information of China (English)

    严彪; 张晴; 严鹏飞; 赵冠楠

    2014-01-01

    锌铝合金可用作为风力发电装置的防腐材料。采用X射线光电子能谱(XPS )研究了由热喷涂方法制备的不同含量铝锌合金制得的 TJPTZA1#、TJPTZA2#、TJPTZA3#和TJPTZA4#合金的防腐蚀性能,探究了合金与基体界面处的物质成分。使用能谱检测手段探索了界面处的元素成分及其含量,从而为以上合金的防腐性能研究提供依据。%Zinc-aluminum alloy can be used as the anticorrosive material in the wind power equipment.The microstructure and properties of the zinc-aluminum alloys (TJPTZA1#, TJPTZA2#,TJPTZA3#and TJPTZA4#)obtained by thermal spray were analyzed and the material composition at the interface between the alloy and base body was explored.The composition and its content at the interface were inspected using spectroscopy,which provides evidence for the anticorrosive study of the alloys.

  5. Electrochemical and morphological characterisation of polyphenazine films on copper

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia-Caridade, Carla; Romeiro, Andreia; Brett, Christopher M.A., E-mail: cbrett@ci.uc.pt

    2013-11-15

    The morphology of films of the phenazine polymers poly(neutral red) (PNR), poly(brilliant cresyl blue) (PBCB), poly(Nile blue A) (PNB) and poly(safranine T) (PST), formed by potential cycling electropolymerisation on copper electrodes, in order to reduce the corrosion rate of copper, has been examined by scanning electron microscopy (SEM). The copper surface was initially partially passivated in sodium oxalate, hydrogen carbonate or salicylate solution, in order to inhibit copper dissolution at potentials where phenazine monomer oxidation occurs, and to induce better polymer film adhesion. SEM images were also taken of partially passivated copper in order to throw light on the different morphology and anti-corrosive behaviour of the polyphenazine films. Analysis of the morphology of the polymer-coated copper with best anti-corrosive behaviour after 72 h immersion in 0.1 M KCl, Cu/hydrogen carbonate/PNB, showed that the surface is completely covered by closely packed crystals. By contrast, images of PST films on copper partially passivated in oxalate solution, that had the least protective behaviour, showed large amounts of insoluble corrosion products after only 4 h immersion in 0.1 M KCl.

  6. Microstructural Modeling of Pitting Corrosion in Steels Using an Arbitrary Lagrangian-Eulerian Method

    Science.gov (United States)

    Yu, Qifeng; Pan, Tongyan

    2017-03-01

    Abstracts Two microscale numerical models are developed in this work using a moving-mesh approach to investigate the growth process of pitting in different iron phases and the corrosion prevention capability of polyaniline (PANi) on steels. The distributions of corrosion potential and current in the electrolyte-coating-steel system are computed to evaluate the anti-corrosion ability of PANi. The arbitrary Lagrangian-Eulerian approach was used to accomplish the continuous remesh process as was needed to simulate the dynamic growing forefront of the modeled pitting domain. Experimental validation of the numerical models was conducted using the technique of scanning kelvin probe force microscopy (SKPFM). The SKPFM-scanned surface topography and Volta potential difference exhibit comparable results to and thereby prove the numerical results. The potential distribution in the electrolyte phase of the validated models shows that the corrosion pit grows faster in the epoxy-only-coated steel than that in the PANi-primer-coated steel over the simulation time; also, the corrosion pit grows faster in the ferrite phase than in the cementite phase. The simulation results indicate that the epoxy-only coating lost its anti-corrosion capability as the coating was penetrated by electrolyte, while the PANi-based coating can still protect the steel from corrosion after the electrolyte penetration. The models developed in this work can be used to study the mechanisms of pitting corrosion as well as develop more effective corrosion prevention strategies for general metallic materials.

  7. Testing and analysis of a modernized freight wagon's elements flammability

    Science.gov (United States)

    Płaczek, M.; Wróbel, A.; Baier, A.

    2016-08-01

    Paper concerns an issue of freight wagon modernization using composite materials. The goal of the project is to elongate the period between repairs (by better corrosion protection) and improve conditions of exploitation of modernized freight wagons (for example easier unloading during winter conditions - no freezes of the charge to the freight wagon body shell). Application of the composite panels to the freight wagon's body shell was proposed as the solution that can solve mentioned problems. The composite panels composed of fiberglass and epoxy resin were proposed. They will be mounted on the body shell using rivet nuts. What is more the body shell of the modernized freight wagon will be painted using an anti-corrosion agent. In this paper the analysis of a flammability of the proposed composition (the composite plate made of fiberglass and epoxy resin mounted to the steel sheet with additional anticorrosion agent) is presented. In the paper results of laboratory tests conducted according to international standards are presented. A series of samples of elements of modernized freight wagons was tested using the created laboratory stand. Obtained results were averaged and the proposed material was assigned to the one of the class of materials for their combustibility.

  8. Lubricant-coolant fluid for machining metals

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, A.A.; Epshtein, V.R.; Pastunov, V.A.; Sherle, A.I.; Shpin' kov, V.A.; Sladkova, T.A.

    1981-03-10

    For improving the antiwear and anticorrosion properties, the lubricant-coolant fluid (LCF) based on water, triethanolamine, and NaNO/sub 2/ contains additionally the sodium salt of an acid ester of maleic acid and substituted oligooxyethylenes (NMO) with the following proportions of the components: triethanolamine 0.3-0.5%, NaNO/sub 2/ 0.3-0.5%, NMO 0.5-2.0%, and water the remainder. In the case of using the proposed LCF on high-speed machine tools, it can contain additionally a foam suppressor in an amount of 0.005-0.1%. For preventing microbiological contamination of the LCF, bactericides of the type furacillin, formalin, vazin (transliteration), and others in an amount of 0.005-0.1% can be added to its composition. Introduction of the NMO additive ensures high wetting and lubricating characteristics in the LCF, which is characterized by stability during storage and service and good anticorrosion properties. Use of the proposed LCF makes it possible to increase the life of the cutting tool by a factor of 2.2 in machining Steel 40Kh and by a factor of 1.3 in machining corroding steel by comparison with the prototype; at the same time the service life of the LCF is increased twofold. The LCF can be used in machining parts of alloyed construction and corrosionresistant steels with cutting-edge and abrasive tools.

  9. Hybrid organic-inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr [IAMPPNM, NCSR ' DEMOKRITOS' , Sol-Gel Laboratory (Greece); Koumoulos, E. P.; Charitidis, C. A., E-mail: charitidis@chemeng.ntua.gr [School of Chemical Engineering NTUA (Greece); Kordas, G. [IAMPPNM, NCSR ' DEMOKRITOS' , Sol-Gel Laboratory (Greece)

    2013-08-15

    This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 {+-} 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.

  10. 2-Mercaptobenzothiazole doped chitosan/11-alkanethiolate acid composite coating: Dual function for copper protection

    Science.gov (United States)

    Bao, Qi; Zhang, Dun; Wan, Yi

    2011-10-01

    Chitosan (CS) hydrogel loaded with the well-known corrosion inhibitor 2-mercaptobenzothiazole (MBT) has been introduced into a composite coating to improve copper protection. This composite coating, which has both anticorrosion and antibacterial properties, was fabricated onto the surface of copper by combining a simple self-assembled monolayer technique with a sol-gel method. The anti-corrosion ability of the coating in 3.5 wt.% NaCl solution was investigated by electrochemical methods including potentiodynamic polarization and electrochemical impedance spectroscopy. The protection efficiency of the coating is 97.70%, calculated on the basis of the corrosion current density. The stability and integrity of the composite coating were evaluated by field emission scanning electron microscopy (FESEM) and energy dispersive spectrometry (EDS). The FESEM and EDS results suggest that the composite coating endows the copper substrate with antibacterial properties, as untreated bare copper underwent microbiologically influenced corrosion in the presence of sulphate reducing bacteria (SRB). This antibacterial feature was further confirmed by the SRB culture method. In a 3.5% NaCl solution and highly corrosive SRB culture media, the as-prepared CS based composite coating gave corrosion protection by exhibiting better barrier effects against the attack of aggressive environments.

  11. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    Science.gov (United States)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  12. Hybrid organic-inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30

    Science.gov (United States)

    Kartsonakis, I. A.; Koumoulos, E. P.; Charitidis, C. A.; Kordas, G.

    2013-08-01

    This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.

  13. Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater.

    Science.gov (United States)

    Yuan, S J; Liu, C K; Pehkonen, S O; Bai, R B; Neoh, K G; Ting, Y P; Kang, E T

    2009-01-01

    A novel surface modification technique was developed to provide a copper nickel alloy (M) surface with bactericidal and anticorrosion properties for inhibiting biocorrosion. 4-(chloromethyl)-phenyl tricholorosilane (CTS) was first coupled to the hydroxylated alloy surface to form a compact silane layer, as well as to confer the surface with chloromethyl functional groups. The latter allowed the coupling of 4-vinylpyridine (4VP) to generate the M-CTS-4VP surface with biocidal functionality. Subsequent surface graft polymerization of 4VP, in the presence of benzoyl peroxide (BPO) initiator, from the M-CTS-4VP surface produced the poly(4-vinylpyridine) (P(4VP)) grafted surface, or the M-CTS-P(4VP) surface. The pyridine nitrogen moieties on the M-CTS-P(4VP) surface were quaternized with hexylbromide to produce a high concentration of quaternary ammonium groups. Each surface functionalization step was ascertained by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements. The alloy with surface-quaternized pyridinium cation groups (N+) exhibited good bactericidal efficiency in a Desulfovibrio desulfuricans-inoculated seawater-based modified Barr's medium, as indicated by viable cell counts and fluorescence microscopy (FM) images of the surface. The anticorrosion capability of the organic layers was verified by the polarization curve and electrochemical impedance spectroscopy (EIS) measurements. In comparison, the pristine (surface hydroxylated) Cu-Ni alloy was found to be readily susceptible to biocorrosion under the same environment.

  14. Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans.

    Science.gov (United States)

    Yuan, S J; Xu, F J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-06-01

    To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants.

  15. The superior cycling performance of the hydrothermal synthesized carbon-coated ZnO as anode material for zinc-nickel secondary cells

    Science.gov (United States)

    Feng, Zhaobin; Yang, Zhanhong; Huang, Jianhang; Xie, Xiaoe; Zhang, Zheng

    2015-02-01

    Carbon-coated ZnO is synthesized by the hydrothermal method. The X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX) tests indicate that carbon is uniformly coated on the surface of the ZnO particle. And the crystal form of ZnO isn't changed. The effects of carbon layer on the electrochemical performances of ZnO have also been investigated by the charge/discharge cycling test, cyclic voltammetry (CV), Tafel polarization curves and electrochemical impedance spectroscope (EIS) tests. The CV curves at different scan rates exhibit that carbon-coated ZnO has the superior reversibility at high scan rate. The charge/discharge cycling tests under different charge/discharge rates show, even if at high-rate, the cycling performance and specific discharge capacity of carbon-coated ZnO are also superior to that of bare ZnO. The Tafel polarization curves and electrochemical impedance spectroscope (EIS) verify that the carbon layer can improve the anti-corrosion and charge-transfer performances of ZnO. The different rate experiments indicate that, compared with the increase of the conductivity, the effect of carbon layer on improving the anti-corrosion performance of ZnO plays a more dominating role in improving the electrochemical performances of ZnO at low charge/discharge rate.

  16. Discrimination of“Southerners Addicted to Salt,and Northerners Addicted to Sweet"%“南人嗜咸,北人嗜甘”辨析

    Institute of Scientific and Technical Information of China (English)

    程宇铮

    2012-01-01

    "Salty" or "sweet" has been regarded as one of the five basic tastes.There is a saying that "Southernerns addicted to salt,and northerners addicted to sweet" in ancient scholar's notes,which has a significant impact."Sugar",as the major source of sweet flavor,has not only seasoning function but also anti-corrosion function.So "Southernerns addicted to salt,and northerners addicted to sweet" is a recognition confusion of sugar's seasoning function and anti-corrosion function.%"咸""甜"一直以来被视为五味之一。古代文人笔记中关于饮食习俗上有"南人嗜咸,北人嗜甘"一说,影响甚大。"糖"作为甜味的主要调味来源,除了拥有调味功能以外还具有防腐功能,"南人嗜咸,北人嗜甘"是对糖的调味与防腐功能认识混淆的结果。

  17. Studies on the impact, detection, and control of microbiology influenced corrosion related to pitting failures in the Russian oil and gas industry. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.

    2006-09-30

    The objectives of the Project are: (1) to design effective anti-corrosion preparations (biocides, inhibitors, penetrants and their combinations) for gas- and oil-exploration industries; (2) to study a possibility of development of environmentally beneficial ('green') biocides and inhibitors of the new generation; (3) to develop chemical and microbiological methods of monitoring of sites at risk of corrosion; and (4) to evaluate potentialities in terms of technology, raw materials and material and technical basis to set up a production of effective anti-corrosion preparations of new generation in Russia. During the four years of the project 228 compounds and formulations were synthesized and studied in respect to their corrosion inhibiting activity. A series of compounds which were according to the Bubble tests more efficient (by a factor of 10-100) than the reference inhibitor SXT-1102, some possessing the similar activity or slightly better activity than new inhibitor ??-1154? (company ONDEO/Nalco). Two synthetic routes for the synthesis of mercaptopyrimidines as perspective corrosion inhibitors were developed. Mercaptopyrimidine derivatives can be obtained in one or two steps from cheap and easily available precursors. The cost for their synthesis is not high and can be further reduced after the optimization of the production processes. A new approach for lignin utilization was proposed. Water-soluble derivative of lignin can by transformed to corrosion protective layer by its electropolymerization on a steel surface. Varying lignosulfonates from different sources, as well as conditions of electrooxidation we proved, that drop in current at high anodic potentials is due to electropolymerization of lignin derivative at steel electrode surface. The electropolymerization potential can be sufficiently decreased by an increase in ionic strength of the growing solution. The lignosulfonate electropolymerization led to the considerable corrosion protection

  18. 铜经MBT和HQ钝化处理后在3.5%NaCl溶液中的电化学行为%Electrochemical behavior of copper passivated by MBT and HQ in 3.5%NaCl solution

    Institute of Scientific and Technical Information of China (English)

    贺甜; 谭澄宇; 唐娟; 郑勇

    2013-01-01

      采用循环伏安曲线、极化曲线和交流阻抗谱研究铜经2−巯基苯并噻唑(MBT)和8−羟基喹啉(HQ)钝化处理后在3.5%NaCl溶液中的电化学行为,利用扫描电镜观察铜经缓蚀溶液处理前后在3.5%NaCl 盐水中的腐蚀形貌。结果表明,MBT或HQ在铜表面形成的络合物膜能明显改善铜在3.5%NaCl溶液中的耐蚀能力;经0.5 mmol/L MBT+0.5 mmol/L HQ复配溶液处理后,其缓蚀率达90.3%;缓蚀剂的缓蚀效果由大到小的顺序为:MBT+HQ, MBT,HQ,Blank。分析了MBT与HQ两者具有缓蚀协同作用的机理。%The performance of benzotriazole(BTA) and 2­mercaptobenzothiazole(MBT) as corrosion inhibitors for copper was investigated in 3.5%NaCl solution. Potentiodynamic polarization, cyclic voltammogram and AC impedance spectroscopy were used to study the electrochemical behaviors of copper electrodes passivated by inhibitors and their complex. Corrosion morphologies of copper electrodes in 3.5%NaCl solution were observed directly by scanning electron microscopy (SEM). The results show that the complex compound films formatted by MBT or HQ on copper surface apparently increase the copper electrode anticorrosion in 3.5%NaCl solution. The anticorrosive efficiency of 0.5 mmol/LMBT+0.5 mmol/L HQ combined inhibitor is 90.3%. The anticorrosive effect order of those corrosion inhibitors is MBT+HQ>MBT>HQ>Blank. The mechanism of the synergistic effect for MBT and HQ has also been discussed in detail.

  19. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qinghe [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical & Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Wei, Yan; Wei, Zhu [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-04-30

    Graphical abstract: - Highlights: • This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion without a bath. • It has a vital significance to the industrialization of the fabrication of superhydrophobic surface on hard metal due to the advantages such as low cost, high efficiency, can be prepared in a large area, easy to construct in the field. • The preparation approach is so facile and time-saving that it delivers an opportunity to construct a superhydrophobic surface on carbon steel substrate and provides the feasibility for industrial application of superhydrophobic surface. • The as-prepared surface has many excellent properties, like low adhesive property, anti-corrosion ability, mechanical durability and anti-icing performance. - Abstract: Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on

  20. 铁表面植酸钠自组装层缓蚀性能的电化学研究%Inhibition of iron surface with Na-salt of phytic acid self-assembled monolayers from corrosion:observed by electrochemistry

    Institute of Scientific and Technical Information of China (English)

    万琉方; 王芳; 郭玉辉; 陈慧文; 金溟南; 杨海峰

    2011-01-01

    将环境友好缓蚀剂植酸钠组装到铁基电极表面,运用电化学极化曲线方法,考察了不同组装液浓度、组装时间及次数形成的植酸钠层对铁基电极表面缓蚀性能的影响.实验结果表明:铁电极在10-2 mol·L-1和10-3 mol·L-1植酸钠溶液中分别组装数分钟,再经10-6mol·L-1植酸钠溶液组装7h,获得的植酸钠层对铁的缓蚀性能最佳.利用交流阻抗技术探究了最佳组装条件下形成的植酸钠层对铁电极表面的缓蚀机理,等效电路为R(QR)(QR).同时借鉴拉曼光谱进一步解释其缓蚀机理和组装方式.%Na-salt of phytic acid as an environmentally friendly corrosion inhibitor was self-assembled onto the surface of iron-based electrode. Effects of different assembly concentrations,including assembly time and assembly steps of Na-salt of phytic acid at iron-based electrode surface on anti-corrosion performance were evaluated by electrochemical polarization method. Experimental results revealed that the iron-based electrode with Na-salt of phytic acid monolayers formed by respective assemblies in 10- mol · L-1 and 10-3mol · L-1 Na-salt of phytic acid solutions for several minutes and then in l0-6mol · L-1 Na-salt of phytic acid solution for 7 hours exhibited the best anti-corrosive performance. AC impedance results demonstrated that the mechanism of Na-salt of phytic acid monolayers on iron-based electrode with the best anti-corrosive performance was consistent with the equivalent mode of R (QR) (QR) .which was further confirmed by Raman mapping.

  1. Bioinspired Composite Coating with Extreme Underwater Superoleophobicity and Good Stability for Wax Prevention in the Petroleum Industry.

    Science.gov (United States)

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Yang, Xin; Xu, Chang; Liu, Huicong

    2015-10-13

    Wax deposition is a detrimental problem that happens during crude oil production and transportation, which greatly reduces transport efficiency and causes huge economic losses. To avoid wax deposition, a bioinspired composite coating with excellent wax prevention and anticorrosion properties is developed in this study. The prepared coating is composed of three films, including an electrodeposited Zn film for improving corrosion resistance, a phosphating film for constructing fish-scale morphology, and a silicon dioxide film modified by a simple spin-coating method for endowing the surface with superhydrophilicity. Good wax prevention performance has been investigated in a wax deposition test. The surface morphology, composition, wetting behaviors, and stability are systematically studied, and a wax prevention mechanism is proposed, which can be calculated from water film theory. This composite coating strategy which shows excellent properties in both wax prevention and stability is expected to be widely applied in the petroleum industry.

  2. Corrosion Failure Analysis of Heat Exchangers in Nuclear Power Plant%核电站换热器腐蚀失效原因分析

    Institute of Scientific and Technical Information of China (English)

    姜媛媛; 刘飞华; 白荣国; 费克勋; 崔智勇; 孙永亮

    2012-01-01

      By researching corrosion failure cases of heat exchangers in nuclear power plant, the corrosion failure of heat exchangers were analyzed. The corrosion causes and mechanisms of the heat exchangers were analyzed. It also provided some suggestions on anti-corrosion and maintenance management.%  通过对大亚湾、岭澳核电站换热器失效案例进行调研,分析了引起核电站换热器腐蚀失效的原因,并进行机理分析,最后对核电站换热器的防腐蚀管理及维修策略管理提出建议。

  3. The enhancement of benzotriazole on epoxy functionalized silica sol-gel coating for copper protection

    Science.gov (United States)

    Peng, Shusen; Zhao, Wenjie; Li, He; Zeng, Zhixiang; Xue, Qunji; Wu, Xuedong

    2013-07-01

    The influence of the amount of benzotriazole (BTA) on the wetting and anticorrosion ability of the epoxy functionalized silica sol-gel (ESol) coating was studied by various complementary methods. IR results demonstrate that BTA reacted with ESol through a 1:1 addition reaction of Nsbnd H to epoxy group. The water contact angle of the ESol coating increases with an increase in the amount of BTA. SEM and adhesion tests reveal that BTA could improve the adhesion of ESol to copper surface. Moreover, the best protection was achieved when the amount of BTA equals to the molar number of epoxy group in the ESol coating according to the results of electrochemical measurements and salt spray test.

  4. In vitro and in vivo studies on biodegradable magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lida Hou

    2014-10-01

    Full Text Available The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™ were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7% for the as-cast alloy to 2.9% for the as-extruded one, both below 5%. BioDe MSM™ alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  5. Fabrication, Modification, and Emerging Applications of TiO2 Nanotube Arrays by Electrochemical Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Jian-Ying Huang

    2013-01-01

    Full Text Available Titania nanotube arrays (TNAs as a hot nanomaterial have a unique highly ordered array structure and good mechanical and chemical stability, as well as excellent anticorrosion, biocompatible, and photocatalytic performance. It has been fabricated by a facile electrochemical anodization in electrolytes containing small amounts of fluoric ions. In combination with our research work, we review the recent progress of the new research achievements of TNAs on the preparation processes, forming mechanism, and modification. In addition, we will review the potential and significant applications in the photocatalytic degradation of pollutants, solar cells, water splitting, and other aspects. Finally, the existing problems and further prospects of this renascent and rapidly developing field are also briefly addressed and discussed.

  6. Corrosion Behavior of Mg65Cu25-xZnxGd10 (x=0, 5) Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    LI Guoqiang; HUANG Wei; LI Huanxi; ZHENG Lijing; Hashmi M F

    2008-01-01

    The effect of substitutional element Zn on corrosion behavior of Mg65Cu25Gd10 glass was investigated. The amorphous structure of Mg65Cu25-xZnxGd10(x=0, 5) alloys were examined by X-ray diffractometry and differential scanning calorimetry (DSC). The dissolution rates of Mg65Cu25-xZnxGd10(x=0,5) metallic glasses in a 5 wt% NaCl solution with pH value of 7 were determined by a hydrogen evolution testing method. The corrosion behavior of these alloys was characterized using dipping tests with 5 wt% NaCl, in combination with electrochemical measurements and scanning electron microscopy (SEM). Results show that the anti-corrosion ability of Mg65Cu25Gd10 alloy is significantly improved due to the addition of Zn. Possible mechanism responsible for the improvement is discussed.

  7. Boronized steels with corundum-baddeleyite coatings

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes preparation and properties of anti-corrosion and anti-abrasive coatings from corundum-baddeleyite ceramics deposited on surface of low-carbon boronized steel S235JRH-1.0038 (EN 10025-1 by plasma spraying method. Adhesive interlayers Fe2B reaches bond strength of up to 20 MPa in the pull-off tests, the ZrO2 - Al2O3 - SiO2 coatings have a value of fracture adhesion of 4 - 6 MPa. Hardness of these ceramic coatings on steel is as high as 1 800 HV100 and its polarization resistance is 1 600 Ω/cm2 to 4 000 Ω/cm2.

  8. Design of Norway HAKRDANGER Steel Box Girder Bridge Coating Process%挪威HAKRDANGER大桥钢箱梁涂装工艺设计

    Institute of Scientific and Technical Information of China (English)

    李连缀; 李敏风

    2011-01-01

    The anti-corrosion matching scheme and performance of the Norwegian HAKRDANGER bridge steel box girder inside and outside were introduced. The design of coating process including surface treatment, arc spraying zinc process, spray construction process equipment and related technical parameters requirements were introduced in detail.%介绍了挪威HAKRDANGER大桥钢箱梁内外侧防腐配套方案及性能。着重介绍了涂装工艺设计,包括表面处理、电弧喷锌工艺、喷漆施工等工艺设备及相关技术参数要求等。

  9. Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Golden yellow rare earths chemical conversion coating was obtained on the surface of magnesium alloy by immersing in cerium sulfate solution.The corrosion resistance of RE conversion coating was evaluated using immersion test and potentiodynamic polarization measurements in 3.5%NaCl solution.The morphologies of samples before corrosion and after corrosion were observed by SEM.The structures and compositions of the RE conversion coating were studied by means of XPS.XRD and IR.The results show that,the conversion coating consists of mainly two kinds of element Ce and O,the valences of cerium are+3 and+4.and OH exists in the coating.The anti-corrosion property of magnesium alloy is increased obviously by rare earths conversion coating,Its self-corrosion current density decreases and the coating has self-repairing capability in the corrosion process in 3.5%NaCl solution.

  10. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  11. Analysis of Wetting Characteristics on Microstructured Hydrophobic Surfaces for the Passive Containment Cooling System

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2015-01-01

    Full Text Available As the heat transfer surface in the passive containment cooling system, the anticorrosion coating (AC of steel containment vessel (CV must meet the requirements on heat transfer performance. One of the wall surface ACs with simple structure, high mechanical strength, and well hydrophobic characteristics, which is conductive to form dropwise condensation, is significant for the heat removal of the CV. In this paper, the grooved structures on silicon wafers by lithographic methods are systematically prepared to investigate the effects of microstructures on the hydrophobic property of the surfaces. The results show that the hydrophobicity is dramatically improved in comparison with the conventional Wenzel and Cassie-Baxter model. In addition, the experimental results are successfully explained by the interface state effect. As a consequence, it is indicated that favorable hydrophobicity can be obtained even if the surface is with lower roughness and without any chemical modifications, which provides feasible solutions for improving the heat transfer performance of CV.

  12. Production and market analysis of butyl rubber%丁基橡胶生产及市场分析

    Institute of Scientific and Technical Information of China (English)

    刘隽姝; 王东巍; 吴玉峰; 王启弘

    2012-01-01

    Butyl rubber(IIR) is an unreplacbale rubber of the tyre with or without inner tube due to its excellent airtightness, watertightness, weathering resistance and chemical anticorrosivity. This paper inroduces production actuality of IIR, summarizes production capacity, import/export and appearance consumption of IRR,and analyzes and predicts market trend. Furthermore, this paper gives some advices on domestic IIR industry development.%介绍了国内外丁基橡胶(IIR)的生产现状,总结了IIR的产能、进出口量和表观消费量,并对国内IIR的市场发展趋势进行了分析及预测.此外,还对国内IIR行业的发展提出了几点建议.

  13. Aviation Lubricants

    Science.gov (United States)

    Lansdown, A. R.; Lee, S.

    Aviation lubricants must be extremely reliable, withstand high specific loadings and extreme environmental conditions within short times. Requirements are critical. Piston engines increasingly use multi-grade oils, single grades are still used extensively, with anti-wear and anti-corrosion additives for some classes of engines. The main gas turbine lubricant problem is transient heat exposure, the main base oils used are synthetic polyol esters which minimise thermal degradation. Aminic anti-oxidants are used together with anti-wear/load-carrying, corrosion inhibitor and anti-foam additives. The majority of formulation viscosities are 5 cSt at 100°C. Other considerations are seal compatibility and coking tendency.

  14. Electrodeposition and Corrosion Resistance Properties of Zn-Ni/TiO2 Nano composite Coatings

    Directory of Open Access Journals (Sweden)

    B. M. Praveen

    2011-01-01

    Full Text Available Nano sized TiO2 particles were prepared by sol-gel method. TiO2 nano particles were dispersed in zinc-nickel sulphate electrolyte and thin film of Zn-Ni-TiO2 composite was generated by electrodeposition on mild steel plates. The effect of TiO2 on the corrosion behavior and hardness of the composite coatings was investigated. The film was tested for its corrosion resistance property using electrochemical, weight loss, and salt spray methods. The paper revealed higher resistance of composite coating to corrosion. Microhardness of the composite coating was determined. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature. Average crystalline size of the composite coating was calculated. The anticorrosion mechanism of the composite coating was also discussed.

  15. Boric Acid as an Accelerator of Cerium Surface Treatment on Aluminum

    Directory of Open Access Journals (Sweden)

    K. Cruz-Hernández

    2014-01-01

    Full Text Available Aluminum pieces are often used in various industrial processes like automotive and aerospace manufacturing, as well as in ornamental applications, so it is necessary to develop processes to protect these materials, processes that can be industrialized to protect the aluminum as well or better than chromate treatments. The purpose of this research is to evaluate boric acid as an accelerator by optimizing its concentration in cerium conversion coatings (CeCC with 10-minute immersion time with a concentration of 0.1 g L−1 over aluminum to protect it. The evaluation will be carried out by measuring anticorrosion properties with electrochemical techniques (polarization resistance, Rp, polarization curves, PC, and electrochemical impedance spectroscopy, EIS in NaCl 3.5% wt. aqueous solution and surface characterization with scanning electron microscopy (SEM.

  16. Improvement in corrosion resistance of magnesium coating with cerium treatment

    Institute of Scientific and Technical Information of China (English)

    Samia Ben Hassen; Latifa Bousselmi; Patricc Bercot; El Mustafa Rezrazi; Ezzeddine Triki

    2009-01-01

    Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was ataibuted to the formation of cerium oxides and hydroxides that gave to a physical barrier effect.

  17. 浅谈钢结构制作在桥梁加固中的关键工艺及质量控制措施%On the steel production in Bridge strengthening the key process and quality control measures

    Institute of Scientific and Technical Information of China (English)

    忽国奇

    2012-01-01

      钢结构工程中,钢结构制作的关键技术在于钢构件几何尺寸精度的控制、焊接质量的控制及防腐处理的控制。结合工程实例,重点介绍了钢结构关键施工工艺的特点及质量控制措施。%  steel structure engineering, steel production in the key technology is the control of the geometry precision steel components, welding quality control and the control of anti-corrosion treatment.With an example, focuses on the steel structure key characteristics of the construction process and quality control measures.

  18. ENVIRONMENTAL FRIENDLY ANODIZING ON AZ91D MAGNESIUM ALLOYS AND COATING CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    A. Saijo; M. Hino; M. Hiramatsu; T. Kanadani

    2005-01-01

    An environmental friendly anodizing treatment (Anomag) from a phosphate-based solution without heavy metals on AZ91D magnesium alloy was studied. The characteristics of the coatings,such as structure, composition and corrosion resistance were investigated. The effects of this anodizing treatment on the mechanical properties were examined. X-ray diffraction (XRD) analysis revealed that the structure of the coatings is amorphous or glassy. In salt spray tests coatings with an average thickness of 10μm had an anticorrosive performance of over 1000 hours. Fatigue tests revealed that anodizing onto AZ91D magnesium alloy does not affect the fatigue strength. These results demonstrate the utility of this anodizing treatment on magnesium alloy for application as a structural material, such as in the automotive field.

  19. Assessment of the WWER-440/V-213 reactor condition

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, B.T. [CRISM ' Prometey' , 49 Shpalernaya Street, 19105 St Petersburg (Russian Federation)]. E-mail: prometey@pop3.rcom.ru; Karzov, G.P. [CRISM ' Prometey' , 49 Shpalernaya Street, 19105 St Petersburg (Russian Federation)

    2006-03-15

    The current state of materials (steel, welds, anticorrosive cladding metal) of WWER-440/V-213 RPVs has been evaluated with respect to the peculiarities of their manufacturing process and operation for 30 years. The possibility of operating these reactors after the design service life has been assessed considering the degradation of properties due to thermal and radiation embrittlement, as well as damage from cyclic loads. Taking into account that the main results of operating effects were obtained in research laboratories it is necessary first of all to continue the investigations in the commercial reactors. In future, it will be possible to extend the service life of this type of reactors. For example, the positive results have been already obtained for unit No. 3 Kola NPP reactor.

  20. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    Science.gov (United States)

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials.

  1. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis.

    Science.gov (United States)

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-15

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties.

  2. Analysis of electrochemical noise data in both time and frequency domains to evaluate the effect of ZnO nanopowder addition on the corrosion protection performance of epoxy coatings

    Directory of Open Access Journals (Sweden)

    H. Ashassi-Sorkhabi

    2016-11-01

    Full Text Available Epoxy–ZnO nanocomposite coatings have been developed for corrosion protection of steel. Structural characterization of the prepared nanocomposites was performed using scanning electron microscopy (SEM. The anti-corrosive properties of the coatings were evaluated by electrochemical noise (EN. On the basis of the EN results in both time and frequency domains, the nanocomposite material with low ZnO concentration (0.1% wt.% was found to be much superior in corrosion protection when tested in aqueous NaCl electrolyte. Finally, EIS measurements were carried out and the data fitted with suitable equivalent circuit. Resistance parameters obtained by both techniques were found to be in relatively good agreement.

  3. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  4. The design of underwater hull-cleaning robot

    Institute of Scientific and Technical Information of China (English)

    YUAN Fu-cai; GUO Li-bin; MENG Qing-xin; LIU Fu-qiang

    2004-01-01

    The research on underwater ship-hull cleaning robot was conducted on the purpose of realizing the automation of cleaning underwater ship hull so that service life of ship will be prolonged and ship speed will raised. Moreover, fuel consumption and the work intensity of divers will be reduced. In this paper, the current situation and the latest technology in China and abroad were analyzed;meanwhile, the typical characteristics of the underwater cleaning robot were introduced. According to the work principle of the underwater cleaning robot, the emphasis was put on the analysis and study of permanent-magnetic absorption, magnetic wheel, airproof and anticorrosion, underwater cleaning equipment and control system. The robot is easy in rotation and simple in control.

  5. Design of a Typical Offshore Transportation System for External Corrosion

    Directory of Open Access Journals (Sweden)

    Shittu, A. A

    2016-07-01

    Full Text Available The external corrosion assessment of a typical offshore transportation system has been presented. Cathodic protection design was carried out for the pipeline and it was found that a bracelet square weld on anode of L = 195, G =101.6 , Thickness = 70, M = 149.75 , ∅ = 1.2235, N = 128 and s = 300was found to be satisfactory in providing secondary/ backup protection for the 48inchespipeline in the external environment provided. The external anticorrosion coating selected is the Three layer polyethylene (3LPE coating based on the dimensions of the pipeline and the design temperature of 80℃. The 3LPE external corrosioncoating will comprise of an inner layer fusion bond epoxy, a middle layer: adhesive and an outer layer: High density polyethylene (HDPE base with additives.

  6. Noise resistance applied to the study paints; Aplicacion de la tecnica de ruido electroquimico al estudio de pinturas comerciales de efecto barrera

    Energy Technology Data Exchange (ETDEWEB)

    Lanchas Garcia-Zarco, S.; Alfosin Perez, V.; Suarez Garcia, A.; Urrejola Madrinan, S.; Sanchez Bermudez, A.

    2015-03-30

    Electrochemical noise is one of the methods of analysis used to interpret the phenomenon of corrosion. It has a number of advantages over other methodology types including its simplicity, its low cost and the fact that it does not disturb the system. This methodology appears to be effective together with other techniques in metal-electrolyte systems. In this case the technique is applied on its own on commercial anti-corrosion paints for which no information is available from other techniques. The main result of this study reveals the effectiveness of the noise resistance parameter, which had already been tested in the lab, when it is used to explain how the paint system behaves in industry. (Author)

  7. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Allen Haynes, J.

    2013-07-15

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  8. Preparation and Investigation Performance of Water- Based Epoxy Coating Containing Supercritical CO2 Synthesized SelfDoped Polyaniline-Expanded Graphite Nanohybrids As A Anti Corrosion Pigment

    Directory of Open Access Journals (Sweden)

    M.R.Baghezadeh

    2017-03-01

    Full Text Available In this research, self- doped polyaniline- expanded graphite nanohybrid (SPEG was synthesized by supercritical CO2 method and the anti-corrosion performance of SPEG in water- based epoxy coatings was considered. For this purpose, SPEG was introduced into water- based hardener and epoxy resin, separately via direct mixing under an ultrasonic homogenizer. The distribution of SPEG in both matrices was studied by zeta sizer, XRD and TEM characterization methods. The corrosion behavior of coatings was characterized salt spray and electrochemical impedance spectroscopy (EIS in 3.5 % NaCl solution. The results showed that coatings prepared by using SPEG in water-based hardener had the best corrosion resistance.

  9. The Research Situation and the Progress of Functional Waterborne Polyurethane Building Coatings%功能型水性聚氨酯建筑涂料的研究现状和最新进展∗

    Institute of Scientific and Technical Information of China (English)

    许凯翔; 杨建军

    2016-01-01

    综述了近几年功能型水性聚氨酯在建筑涂料中的应用现状和最新进展,主要包括防霉杀菌、防腐蚀、阻燃、防涂鸦、节能环保等特殊性能的水性聚氨酯功能型涂料;展望了功能型水性聚氨酯建筑涂料的发展前景。%The latest progress in functional waterborne polyurethane coatings in the field of building was intro⁃duced, including antimicrobial coatings, anticorrosive coatings, flame retardant coatings, anti⁃graffiti coatings and environment⁃friendly coatings, etc. The application prospect of waterborne polyurethane building coatings was pros⁃pected.

  10. Aluminium Electrodeposition from Ionic Liquid: Effect of Deposition Temperature and Sonication †

    Directory of Open Access Journals (Sweden)

    Enrico Berretti

    2016-08-01

    Full Text Available Since their discovery, ionic liquids (ILs have attracted a wide interest for their potential use as a medium for many chemical processes, in particular electrochemistry. As electrochemical media they allow the electrodeposition of elements that are impossible to reduce in aqueous media. We have investigated the electrodeposition of aluminium from 1-butyl-3-methyl-imidazolium chloride ((BmimCl/AlCl3 (40/60 mol % as concerns the effect of deposition parameters on the quality of the deposits. Thick (20 μm aluminium coatings were electrodeposited on brass substrates at different temperatures and mixing conditions (mechanical stirring and sonication. These coatings were investigated by means of scanning electron microscope, roughness measurements, and X-ray diffraction to assess the morphology and the phase composition. Finally, electrochemical corrosion tests were carried out with the intent to correlate the deposition parameters to the anti-corrosion properties.

  11. Orthogonal test of phosphating process on iron substrate%铁基体表面磷化工艺正交试验研究

    Institute of Scientific and Technical Information of China (English)

    王菊平

    2014-01-01

    通过正交实验法,讨论了促进剂、磷化液 pH 值、磷化温度及时间四个因素对铁基表面实施磷化的影响,实验结果表明,优化后的磷化层均匀,较致密,其耐腐蚀性明显提高,能有效保护铁金属免遭腐蚀。%The process of phosphating conversion coatings on iron substrate has been fulfilled to improve its corrosion resistance.Four influential factors on orthogonal test had been discussed which are promotion agent,pH,temperature and time of phosphating process. The results showed that the phosphating coatings prepared under technological parameters on iron substrate,were anti-corrosive.

  12. Development of inorganic and organic hybrid nanocoating based on carbon nanotubes for corrosion resistance.

    Science.gov (United States)

    Kang, T H; Bagkar, Nitin C; Jung, Y S; Chun, H H; Shin, S C; Cho, H; Kim, J K; Kim, T G

    2014-10-01

    In this study, we report the synthesis and characterization of novel hybrid nanocoating based on carbon nanotubes (CNTs) on anodized aluminum surfaces (AAO). The hybrid nanocoating was deposited by number of methods which include spray coating, spin coating and dip coating. The bonding of nanocoating with metal surface is an important parameter for successful modification of the metal surfaces. The improved adhesion of nanocoating on metal surfaces could be attributed to chemical bonding of sol-gel nanocoating with anodized surfaces. The nanocoated anodized aluminum surfaces showed superior adhesion and excellent anticorrosive properties. The nanocoated panels showed enhanced galvanic protection comparable to 80% of titanium metal as determined by galvanic corrosion measurements. It also showed higher thermal conductivities than stainless steel and bare anodized surfaces.

  13. Formation and structure of composite coating of HDA and micro-plasma oxidation on A3 steel

    Institute of Scientific and Technical Information of China (English)

    YU Sheng-xue; XIA Yuan; CHEN Ling; GUAN Yong-jun; YAO Mei

    2004-01-01

    Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.

  14. 纤维增强复合材料FRP的组分对性能的影响%Impacts of Fiber-Reinforced Polymer FRP constituent on the performance

    Institute of Scientific and Technical Information of China (English)

    高娜

    2011-01-01

    简单归纳了纤维增强复合材料强度高、重量轻和耐锈蚀等优异性能,介绍了复合材料的主要组成成分(树脂和增强纤维),分析了其对复合材料性能的影响,得出了一些有指导意义的结论。%This article outlines the advantages of Fiber-Reinforced Polymer including high strength, light weight and anti-corrosion, introduces main components(resin and enhancing fiber) of Fiber-Reinforced Polymer, analyzes its impacts on composites performance, an.d draws some guiding conclusions.

  15. A time-release technique for corrosion prevention

    Energy Technology Data Exchange (ETDEWEB)

    Dry, C.M.; Corsaw, M.J.T. [Univ. of Illinois, Champaign, IL (United States). School of Architecture

    1998-08-01

    Researchers at the University of Illinois have developed an anti-corrosion system that is activated automatically where and when it is needed. Porous fibers are filled with calcium nitrite and coated with a salt-sensitive substance to control the response. The release of the corrosion inhibitor chemical is at the portion of the reinforcing bar in danger of corrosion when conditions would allow corrosion to initiate. In a series of tests with concrete samples containing either no protection or the conventional freely mixed calcium nitrite, this system performed well in that it delayed the onset of corrosion by at least three weeks in the laboratory specimens and reduced the amount of total corrosion by more than half.

  16. CONTRIBUTION FROM DEICING SALT TO CHEMICAL COMPOSITION OF SALT SUPPLYED TO AREA UNDER THE BRIDGES

    Science.gov (United States)

    Takebe, Masamichi; Ohya, Makoto; Hirose, Nozomu; Ochibe, Keishi; Aso, Toshihiko

    Salt is known to accelerate the corrosion of weathering steel bridges. The origin of salt around girders is valuable information in terms of the maintenance for anti-corrosion of steel bridges. Salt around girders generally originates from sea-salt and deicing salt. Since salt of both origin increases in winter, contribution of deicing salt is hard to be estimated only from fluctuation of total abundance of salt around the bridge. In this study, abundance of Mg2+ as well as that of Cl- in salt sampled under bridges is analyzed. As a result, this study revealed that the supply of deicing salt declines Mg2+/Cl- ratio of salt on the girder. In addition, examination of Mg2+/Cl- ratio of salt sampled under the examined bridge near sea revealed that the fluctuation of quantity of air-born salt under the bridge is ascribed to the fluctuation of supply of sea salt.

  17. The construction key points of city pipeline engineering%城市管道工程施工要点

    Institute of Scientific and Technical Information of China (English)

    程文海

    2012-01-01

    Combining with the working practice,this paper summarized the construction key points of city pipeline project,including the trench excavation,pipe installation,pipe anti-corrosion insulation,pipe functional test and backfilling etc.,provided reference for a variety of pipeline construction.%结合工作实践,综述了城市管道工程的施工要点,包括沟槽开挖、管道安装、管道防腐保温、管道功能性试验及回填等,为城市各种管道工程施工提供参考与借鉴。

  18. The thermomechanical stability of Fe-based amorphous ribbons exhibiting magnetocaloric effect

    Science.gov (United States)

    Shishkin, D. A.; Volegov, A. S.; Baranov, N. V.

    2016-12-01

    The Fe-Nb-B and Fe71.5Cr2Si13.5B9Nb3Cu1 alloys have been prepared by rapid quenching from the melt, and the magnetic properties of alloys in the vicinity of the magnetic ordering have been studied before and after thermomechanical processing. It has been shown that change in the Fe:Nb:B ratio allows tuning the magnetic ordering temperature and the position of maximum of the isothermal magnetic entropy change | { - Δ Sm } | from 256 to 333 K. The thermomechanical treatment of alloys at 623 K under applied tensile stresses observed does not affect remarkably the magnetocaloric properties of alloys. The combination of high thermomechanical stability, good electrical, anti-corrosive and thermomagnetic properties makes these alloys promising for use in magnetic refrigeration devices.

  19. Corrosion Resistance of Electroless Ni-Cu-P Ternary Alloy Coatings in Acidic and Neutral Corrosive Mediums

    Directory of Open Access Journals (Sweden)

    Mbouillé Cissé

    2010-01-01

    Full Text Available Electroless Ni-Cu-P alloy coatings were deposited on the ordinary steel substrate in an acidic hypophosphite-type plating bath. These coatings were characterized by a scanning electron microscope (SEM and an X-ray diffraction. The micrograph shows that coating presents a nodular aspect and is relatively homogeneous and very smooth. The EDX analysis shows that the coating contains 12 wt.% of phosphorus element with a predominance of nickel element. In addition, the anticorrosion properties of the Ni-Cu-P coatings in 1 M HCl, 1 M H2SO4, and 3% NaCl solutions were investigated using Tafel polarization curves, electrochemical impedance spectroscopy, and SEM/EDX analysis. The result showed a marginal improvement in corrosion resistance in 3% NaCl solution compared to acidic medium. It also showed that the corrosion mechanism depends on the nature of the solution.

  20. Deposition of electroless Ni-P/Ni-W-P duplex coatings on AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by all acid-sulfate nickel bath.Nickel suitIhate and sodium tungstate were used as metal ion sources and sodium hypophosphite was used as reducing agent.The coating was characterized for its structure,morphologies,microhardness and corrosion properties.The presence of dense and coarse nodules in the duplex coatings Was observed by SEM and EDS.Tungsten content in Ni-P/Ni-W-P alloy is about 0.65%(mass fraction)and the phosphorus content is 8.1 8%(mass fraction).The microhardness of the coatings is 622 VHN.The coating shows good adhesion to the substrate.The results of electrochemical analysis,the porosity and the immersion test show that Ni-P/Ni-W-P duplex coatings possess noble anticorrosion properties to protect the AZ91D magnesium alloy.

  1. A Study on Salt Attack Protection of Structural and Finishing Materials in Power Plant Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W.B.; Kweon, K.J.; Suh, Y.P.; Nah, H.S.; Lee, K.J.; Park, D.S.; Jo, Y.K. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This is a final report written by both KEPRI and KICT as a co-operative research titled {sup A} study on Salt Protection of Structural and Finishings in Power Plant Structures{sup .} This study presented the methods to prevent the chloride-induced corrosion of power plant structures through collection and analysis of research datum relating to design, construction and maintenance for the prevention of structural and finishing materials, thru material performance tests for anti-corrosion under many kinds of chloride-induced corrosion environments. As a result, this study proposed the guidelines for design, construction and maintenance of power plant structures due to chloride-induced corrosion. (author). 257 refs., 111 figs., 86 tabs.

  2. Study on the inhibition of mild steel corrosion by 1,3-bis-(morpholin-4-yl-phenyl-methyl-thiourea in hydrochloric acid medium

    Directory of Open Access Journals (Sweden)

    Devaraj Karthik

    2014-12-01

    Full Text Available 1,3-Bis-(morpholin-4-yl-phenyl-methyl-thiourea (MBT was synthesized and their influence on the inhibition of corrosion on mild steel in various hydrochloric acid concentrations has been investigated by weight loss, potentiodynamic polarization, electrochemical impedance (EI, Tafel polarization, scanning electron microscope (SEM and FT-IR methods. The result of weight loss study shows that the corrosion inhibition efficiency (IE is directly proportional to the concentration of the inhibitor and inversely proportional to the temperature. Electrochemical study proved that the inhibitor acts as a mixed type inhibitor. SEM shows the formation of a protective film of the inhibitor on the mild steel. The IR data also provide evidence for the anticorrosion effect of the inhibitor.

  3. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole

    2014-04-01

    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  4. Spin-Coated Polyelectrolyte Coacervate Films.

    Science.gov (United States)

    Kelly, Kristopher D; Schlenoff, Joseph B

    2015-07-01

    Thin films of complexes made from oppositely charged polyelectrolytes have applications as supported membranes for separations, cell growth substrates, anticorrosion coatings, biocompatible coatings, and drug release media, among others. The relatively recent technique of layer-by-layer assembly reliably yields conformal coatings on substrates but is impractically slow for films with thickness greater than about 1 μm, even when accelerated many fold by spraying and/or spin assembly. In the present work, thin, uniform, smooth films of a polyelectrolyte complex (PEC) are rapidly made by spin-coating a polyelectrolyte coacervate, a strongly hydrated viscoelastic liquidlike form of PEC, on a substrate. While the apparatus used to deposit the PEC film is conventional, the behavior of the coacervate, especially the response to salt concentration, is highly nontraditional. After glassification by immersion in water, spun-on films may be released from their substrates to yield free-standing membranes of thickness in the micrometer range.

  5. Functional Coatings or Films for Hard-Tissue Applications

    Directory of Open Access Journals (Sweden)

    Guocheng Wang

    2010-07-01

    Full Text Available Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear debris; poor implant fixation resulting from lack of osteoconductivity and osteoinductivity; implant-associated infections due to the bacterial adhesion and colonization at the implantation site. For overcoming these surface-originated problems, a variety of surface modification techniques have been used on metallic implants, including chemical treatments, physical methods and biological methods. This review surveys coatings that serve to provide properties of anti-corrosion and anti-wear, biocompatibility and bioactivity, and antibacterial activity.

  6. Corrosion resistance of Mg-Mn-Ce magnesium alloy modified by polymer plating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polymeric nano-film on the surface of Mg-Mn-Ce magnesium alloy was fabricated by polymer plating of 6-dihexylamino-1,3,5-triazine-2,4-dithiol monosodium(DHN)to improve its corrosion resistance.The electrochemical reaction process was analyzed by cyclic voltammetry and two obvious peaks of oxidation reaction were observed.The static contact angle of distilled water on polymer-plated surface can be up to 106.3°while on the blank surface it is 45.8°.Potentiodynamic polarization results show that the polymeric film Can increase the corrosion potential from-1.594 V VS SCE for blank to-0.382 V VS SCE.The results of electrochemical impedance spectroscopy indicate that the charge transfer resistances of blank and polymer-plated fabricating hydrophobic film on Mg-Mn-Ce alloy surface and improving its anti-corrosion property.

  7. Controlling the release of active compounds from the inorganic carrier halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M. [National Research Council - Institute of Composites and Biomedical Materials, P.le E. Fermi, 1 80055 Portici (Naples) (Italy)

    2014-05-15

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  8. Non-wetting droplets on hot superhydrophilic surfaces

    Science.gov (United States)

    Adera, Solomon; Raj, Rishi; Enright, Ryan; Wang, Evelyn N.

    2013-09-01

    Controlling wettability by varying surface chemistry and roughness or by applying external stimuli is of interest for a wide range of applications including microfluidics, drag reduction, self-cleaning, water harvesting, anti-corrosion, anti-fogging, anti-icing and thermal management. It has been well known that droplets on textured hydrophilic, that is superhydrophilic, surfaces form thin films with near-zero contact angles. Here we report an unexpected behaviour where non-wetting droplets are formed by slightly heating superhydrophilic microstructured surfaces beyond the saturation temperature (>5 °C). Although such behaviour is generally not expected on superhydrophilic surfaces, an evaporation-induced pressure in the structured region prevents wetting. In particular, the increased thermal conductivity and decreased vapour permeability of the structured region allows this behaviour to be observed at such low temperatures. This phenomenon is distinct from the widely researched Leidenfrost and offers an expanded parametric space for fabricating surfaces with desired temperature-dependent wettability.

  9. Quantum chemical modeling of adsorption of ureides, that used as inhibitor of microbiological corrosion, on the iron of st3s grade of steel

    Directory of Open Access Journals (Sweden)

    Andrei Sikachina

    2016-07-01

    Full Text Available In published work presents modeled using quantum chemical package HyperChem version 8.0.7 using the semiempirical method ZINDO/1, the process of adsorption of organic compounds of ureidе ranging from simple to more complex, a cluster of iron (present in the steel in amounts of 97%. This approach, as will be shown, with high accuracy reflects the process of corrosion protection with bacterial content by chemisorption of organic compounds on the metal surface with the formation of complex compounds. In the research process were obtained and analyzed global and local electrophilicity heteroatoms, reflects the composition of the complexes, lit a graph showing the dependence of the local electrophilicity from protective anti-corrosion effect.

  10. A Study on Corrosion Resistance of Coating System on Steel

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Hwan Seon; Lee, Hyeon Ju; Kim, Kang Seok [Korea Electricity Power Research Institute, Daejeon (Korea, Republic of); Lee, Chul Woo [KEPCO E and Co., Yongin (Korea, Republic of)

    2007-04-15

    The design purpose of architectural finish on steel structures is to prevent corrosion in the respect of structural durability, function, beauty and economy. In particular, as structures located on shores is easily degraded due to damage from salt, it is necessary to evaluate the applied coating systems on steel structures. This study is focused on anti-corrosive tests of both steel surfaces and high strength bolts. Two kinds of tests were conducted on each specimen under the condition of outdoor exposure and salt spray comparatively during 760 hours. In case of coating systems on steel surfaces, three layered coating system showed the best function among the various coating systems. Regarding the coating systems on high strength bolts, the coating system composed of zinc dust on hot dip galvanized coating was found to be the best against corrosion.

  11. Sol-gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024.

    Science.gov (United States)

    Dalmoro, V; dos Santos, J H Z; Armelin, E; Alemán, C; Azambuja, D S

    2014-07-15

    The present work reports the production of films on AA2024-T3 composed of vinyltrimethoxysilane (VTMS)/tetraethylorthosilicate (TEOS) with incorporation of montmorillonite (sodium montmorillonite and montmorillonite modified with quaternary ammonium salt, abbreviated Na and 30B, respectively), generated by the sol-gel process. According to FT-IR analyses the incorporation of montmorillonite does not affect silica network. Electrochemical characterization was performed by electrochemical impedance spectroscopy measurement in 0.05 mol L(-1) NaCl solution. Results indicate that montmorillonite incorporation improves the corrosion protection compared to the non-modified system. Scanning electron microscopy micrographs reveal that high concentrations of montmorillonite provide agglomerations on the metallic surface, which is in detriment of the anticorrosive performance. The VTMS/TEOS/30B films with the lowest concentration (22 mg L(-1)) of embedded clay provide the highest corrosion protection.

  12. Corrosion inhibition of α,β-unsaturated carbonyl compounds on steel in acid medium

    Institute of Scientific and Technical Information of China (English)

    Gao Jiancun; Weng Yongji; Salitanate; Feng Li; Yue Hong

    2009-01-01

    Corrosion inhibition of three α,β-unsaturated carbonyl compounds on N80 steel at high temperature and in concentrated acid medium was evaluated, and the inhibition mechanism was investigated.The results proved that both cinnamaidehyde and benzalacetone had an evident anticorrosion effect and could reduce the corrosion of steel effectively in acid medium, α,β-unsaturated carbonyl compounds with a benzene ring structure had good adsorption on steel surface.The experiments proved that polymerization of α,β-unsaturated carbonyl compounds on the steel surface at a high temperature and in concentrated acid medium resulted in a good corrosion inhibiting effect, which was attributed to the structures of α,β-unsaturated carbonyl compounds.

  13. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    Science.gov (United States)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  14. CHARACTERIZATION AND PROCESSING OF SCALES FROM THE MECHANICAL DESCALING OF CARBON STEELS FOR RECYCLING AS COATING PIGMENTS

    Directory of Open Access Journals (Sweden)

    Anderson de Oliveira Fraga

    2014-10-01

    Full Text Available The large volume of solid wastes generated as scales in Steel Mills accounts to circa 1% to 2% of the total steel production and has led to studies aiming the recycling of scales, usually resulting in products of low added value. In this study, scales from the mechanical descaling of SAE 1045 steel were characterized by SEM and by quantitative X-Ray diffraction (Rietveld method, as well as by differential thermal analysis, aiming to develop its pretreatment for the further use as lamellar pigments in anticorrosive coatings of high added value. Aspect ratios between 1:50 and 1:100 were obtained by the processing of scales, which allows the replacement of other micaceous iron oxides.

  15. Effect of Synthesizing Temperature on Microstructure and Electrochemical Property of the Hydrothermal Conversion Coating on Mg-2Zn-0.5Mn-Ca-Ce Alloy

    Directory of Open Access Journals (Sweden)

    Guanghui Guo

    2016-02-01

    Full Text Available Mg(OH2 conversion coatings were formed on an Mg-2Zn-0.5Mn-Ca-Ce alloy via hydrothermal method at three different synthesizing temperatures (160, 170 and 180 °C. The effect of synthesizing temperature on microstructure and electrochemical property of the coatings were systematically studied. With increasing synthesizing temperature, the coating became thicker due to the faster reaction and deposition of Mg(OH2 on the α-Mg phase and secondary phases of the substrate Mg alloy. Internal micro-cracks were also generated in the higher-temperature synthesized coatings due to the increased shrinking stress, but the cross-cutting micro-cracks were suppressed. Benefiting from the improved barrier effect against penetration of corrosive medium, the higher-temperature synthesized thicker coating presented significantly enhanced electrochemical property and anti-corrosion efficiency in Hanks’ solution.

  16. Electrochemical deposition and characterization of zinc-nickel alloys deposited by direct and pulse current

    Directory of Open Access Journals (Sweden)

    GORAN R. RADOVIC

    2002-09-01

    Full Text Available Chemical composition and phase structure of Zn-Ni alloys obtained by electrochemical deposition under various conditions were investigated. The alloys were deposited on a rotating disc electrode and steel panel from chloride solutions by direct and pulse current. The influence of the pulse plating variables (on-time, off-time, relation of off- and on-time on the composition, phase structure and corrosion properties were investigated. The phase composition affects the anticorrosive properties of Zn-Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that a Zn-Ni alloy electrodeposited by pulse current with a pulse time of 1 ms and an off- and on-time ratio of 1 exhibits the best corrosion properties.

  17. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  18. The Research Progress of Graphene Preparation, Transfer and Application%石墨烯的制备转移及应用研究进展

    Institute of Scientific and Technical Information of China (English)

    巨浩波; 吕生华; 马宇娟; 邱超超

    2013-01-01

      The preparation and transfer of graphene and its application in electrical energy storage, high polymer chemistry, optical, catalytic carrier, antibiotics, anticorrosion and environmental filed were reviewed in this paper. In addition, the direction of research and application of graphene materials was also prospected.%  本文综述了石墨烯在制备、转移及石墨烯材料在导电储能、高分子化学、光学应用、催化载体、抗菌素以及防腐环保领域的研究进展,并对石墨烯材料未来的研究、应用方向进行了展望。

  19. PREPARATION AND CORROSION RESISTANCE OF NiP/TiO2 COMPOSITE FILM ON CARBON STEEL IN SULFURIC ACID SOLUTION

    Institute of Scientific and Technical Information of China (English)

    L.Z. Song; S.Z. Song; J. Zhao

    2006-01-01

    A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy)and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.

  20. ARTICLES: Preparation and Characterization of Nanostructured Ni-TiN Composite Films

    Science.gov (United States)

    Wang, Jie; Cai, Chao; Ma, Shi-liang; Cao, Fa-he; Zhang, Zhao; Zhang, Jian-qing

    2010-06-01

    Ni-TiN nanocomposite films were produced from a Ni plating bath containing TiN nanoparticles by using dc electroplating method. The structure and surface morphology of Ni-TiN composite coatings were analyzed by atom force microscope, X-ray diffraction, and transmission electron microscopy. Meanwhile, the anti-corrosion properties, hardness and thermostability of Ni-TiN nanocomposite films were also investigated and compared with the traditional polycrystalline Ni coatings. The results show that, compared with the traditional polycrystalline Ni film, Ni-TiN nanocomposite coatings display much better corrosion resistance, higher film hardness, and thermal stability. In addition, the hardness of Ni-TiN nanocomposite coatings decreases slightly with the increase of electroplating current density, which may be due to the synergism of hydrogen evolution and faster nucleation/growth rate of nickel crystallites.

  1. Controlling the release of active compounds from the inorganic carrier halloysite

    Science.gov (United States)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-05-01

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  2. On optimized design for portal frame industrial workshop and its application%门式刚架工业厂房的优化设计与应用

    Institute of Scientific and Technical Information of China (English)

    肖玉

    2012-01-01

    Combining with the factual projects, the paper explores the optimized design for the design scheme, the material selection, the joint design, the anticorrosion and fireproof design, so as to provide the beneficial reference for the design of similar projects and to enhance the extensive application of the portal frame in the industrial workshop.%与具体工程相结合,就门式刚架工业厂房的设计方案、材料选择、节点设计、防腐蚀和防火设计等进行了优化设计的探讨,为同类工程的设计提供有益的借鉴,促进了门式刚架在工业厂房中的广泛应用。

  3. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-02-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  4. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.

    Science.gov (United States)

    Kao, W H; Su, Y L; Horng, J H; Zhang, K X

    2016-08-01

    Ti-C:H coatings were deposited on original, nitrided, and polished-nitrided AISI 316L stainless steel substrates using a closed field unbalanced magnetron sputtering system. Sliding friction wear tests were performed in 0.89 wt.% NaCl solution under a load of 30 N against AISI 316L stainless steel, Si3N4, and Ti6Al4V balls, respectively. The electrochemical properties of the various specimens were investigated by means of corrosion tests performed in 0.89 wt.% NaCl solution at room temperature. Finally, the biocompatibility properties of the specimens were investigated by performing cell culturing experiments using purified mouse leukemic monocyte macrophage cells (Raw264.7). In general, the results showed that plasma nitriding followed by Ti-C:H coating deposition provides an effective means of improving the wear resistance, anti-corrosion properties, and biocompatibility performance of AISI 316L stainless steel.

  5. Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator.

    Science.gov (United States)

    Yu, Qiangliang; Wu, Yang; Li, DongMei; Cai, Meirong; Zhou, Feng; Liu, Weimin

    2017-02-01

    A new class of ionic liquid gels (ionogels) is prepared through the supramolecular self-assembly of imidazolium-based ionic liquids (ILs) bearing the urea group as gelators in normal ILs. The ILs gelator can self-assemble through hydrogen bonding and hydrophobic interaction to form analogous lamellar structures and solidify base ILs. The obtained ionogels exhibit superior anticorrosion and conductivity characteristics. Moreover, ionogels show fully thermoreversible and favorable thixotropic characteristics, such that they can be used as high-performance semisolid conductive lubricants. The tribological tests reveal that these ionogels lubricants can effectively reduce the friction of sliding pairs effectively and have better tribological performance than the pure ILs under harsh conditions. Ionogel lubricants not only maintain the excellent tribological properties and conductivity of ILs, but also prevent base liquids from creeping and leakage. Therefore, ionogel lubricants can be potentially used in the conductive parts of electrical equipments.

  6. 钛白冷冻结晶罐钛材包覆搅拌器的应用技术%Application of Titanium Coated Agitator in Freezing and Crystallization Vessels for Titanium Dioxide

    Institute of Scientific and Technical Information of China (English)

    夏步前

    2001-01-01

    本文探讨了钛材在钛白冷冻结晶罐中防腐蚀的机理,提出了钛材用作防腐蚀层的搅拌包覆层的结构设计,制造技术及成本和可靠性分析。%The anticorrosion mechanism of titanium naterial in the freezingand crystallization vessels for titanium dioxide was discussed in this article.The structural design of using titanium as the coated layer to protect corrosion for the agitator,the fabrication thechnique and the method for the cost analysis and reliability analysis were also introduced.

  7. Nanoparticles-based phenol-formaldehyde hybrid resins.

    Science.gov (United States)

    Hernández-Padrón, Genoveva; García-Garduño, Margarita; Canseco, Miguel A; Castaño, Victor M

    2008-06-01

    The synthesis, characterization and corrosion properties of a novel material, produced by the reaction of silica nanoparticles with a functionalized Phenol-Formaldehyde Resin (PFR), are presented. Carboxylic groups were attached in situ to the PFR skeleton to produce a functionalized resin (PFR-SA), which is then reacted with sol-gel-prepared silica nanoparticles, yielding a novel hybrid (organic/inorganic) material (PFR-SA-nanoSiO2). This hybrid material was characterized by FT-IR, FT-Raman, TGA, DSC, SEM and corrosion tests, whose results showed significant improvement of the thermal properties in comparison with the PFR coating. In addition, the new material was efficient and durable against corrosion of metals, with the anticorrosive performance of PFR-SA and PFR-SA/nanoSiO2 coating films being superior to those of the original PFR coating.

  8. Smart self-repairing protective coatings

    Directory of Open Access Journals (Sweden)

    Daria V. Andreeva

    2008-10-01

    Full Text Available Nanocontainers with a shell possessing controlled release properties can be used to fabricate a new family of active coatings that can respond quickly to changes in the coating environment or the coating's integrity. The release of corrosion inhibitors encapsulated within nanocontainers is triggered by the corrosion process, which prevents the spontaneous leakage of the corrosion inhibitor out of the coating. Moreover, if different types of nanocontainers loaded with the corresponding active agents are incorporated simultaneously into a coating matrix, the coating can act in several different ways (e.g. antibacterial, anticorrosion and antistatic. This review presents methods for the fabrication of such nanocontainers, how they can encapsulate active material, and their permeability properties.

  9. Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers.

    Science.gov (United States)

    Tedim, J; Poznyak, S K; Kuznetsova, A; Raps, D; Hack, T; Zheludkevich, M L; Ferreira, M G S

    2010-05-01

    The present work reports the synthesis of layered double hydroxides (LDHs) nanocontainers loaded with different corrosion inhibitors (vanadate, phosphate, and 2-mercaptobenzothiazolate) and the characterization of the resulting pigments by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The anticorrosion activity of these nanocontainers with respect to aluminum alloy AA2024 was investigated by electrochemical impedance spectroscopy (EIS). The bare metallic substrates were immersed in dispersions of nanocontainers in sodium chloride solution and tested to understand the inhibition mechanisms and efficiency. The nanocontainers were also incorporated into commercial coatings used for aeronautical applications to study the active corrosion protection properties in systems of industrial relevance. The results show that an enhancement of the active protection effect can be reached when nanocontainers loaded with different inhibitors are combined in the same protective coating system.

  10. Novel accelerated corrosion test for LY12CZ and LC4CS aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CAI Jian-ping; LIU Ming

    2006-01-01

    A new accelerated corrosion test-comprehensive environmental test (CET) was developed in order to estimate the outdoor corrosion of aluminum alloys in marine environment. The environmental characteristics in CET were studied by atmospheric corrosion monitor (ACM), and the morphology of corrosion product was observed by SEM. The correlation between the accelerated corrosion tests and outdoor exposure was discussed. The results show that the anti-corrosion ranking for LY12CZ, LC4CS, clad LY12CZ, and clad LC4CS in CET is the same as that of the alloys exposed outdoor, and ACM study shows that CET demonstrates the same environmental characteristics as that exposed outdoor. CET is a more accurate accelerated corrosion test, and a mathematical relation was obtained to describe the relation between CET and outdoor test.

  11. Corrosion behavior of Zn-Ni-Al2O3 composite coating

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huanyu; AN Maozhong; LU Junfeng

    2006-01-01

    The corrosion behavior and anti-corrosion mechanism of the Zn-Ni-Al2O3 composite coating were investigated by SEM, EDS and XPS.The results indicate that the corrosion type of the Zn-Ni-Al2O3 coatings in neutral 5 wt.% NaCl solution is uniform corrosion.The presence of compact and uniformly dispersed nano alumina particles substantially inhibits the corrosion of Zn-Ni-Al2O3 composite coatings.In the initial corrosion stage, the corrosive products of Zn-Ni matrix form a compact ZnCl2·4Zn(OH)2 layer.With the development of corrosion, some nano alumina particles are embedded and form a Ni enrichment layer.In Ni enrichment layer, Ni presents as Ni and NiO.

  12. Installation and operation maintenance of petrochemical pipelines%石油化工管道的安装与运行维护技术研究

    Institute of Scientific and Technical Information of China (English)

    徐国喜

    2015-01-01

    本文从石油管道阀门安装、石油管道的焊接、石油管道的管段安装与制作方面浅谈了石油化工管道安装技术,并从石油管道的防腐、管道的保养和巡视、管道的检测与泄露监测等方面,探讨了石油化工管道的运行维护技术.%The installation technologies of petrochemical pipelines are discussed in this paper in term of valve installation,pipeline welding,section installation and manufacturing. The operation and maintenance technologies are described in view of anticorrosion, maintenance and patrolling,detection and leakage monitoring on pipelines.

  13. Investigation of an Intumescent Coating System in Pilot and Laboratory-scale Furnaces

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen

    (450 - 600 °C), at which the collapse may occur, is the use of a fire protective intumescent coating, which swells when exposed to temperatures above about 200 °C. The swelling of the intumescent coating happens according to a complex sequence of chemical reactions, whereby the coating forms a porous...... char, which thermally insulates the substrate. In addition to the coating itself, several process parameters influence the performance of the intumescent coating. Such parameters may for instance be the interaction with an underlying anticorrosive primer, the heating rate employed, or the oxygen...... content in the fire. In this work, focus has been on process parameters for an intumescent coating for so-called cellulosic fires. The thesis contains five chapters, where Chapter 1 is a literature survey providing background knowledge on coatings, intumescent coatings in particular, and fire scenarios...

  14. Colorful Hydrophobic Poly(Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process

    Science.gov (United States)

    Yan, Xu; You, Ming-Hao; Lou, Tao; Yu, Miao; Zhang, Jun-Cheng; Gong, Mao-Gang; Lv, Fu-Yan; Huang, Yuan-Yuan; Long, Yun-Ze

    2016-12-01

    Colorful nanofibrous membranes have attracted much attention for their visual varieties and various functionalities. In this article, a colored solution electrospinning process was used to fabricate colorful hydrophobic poly(vinyl butyral) (PVB)/cationic dye nanofibrous membranes (NFMs) successfully. The color and morphology of these as-spun nanofibrous membranes have been analyzed by colorimetry, spectroscopy, and scanning electron microscopy (SEM). It is shown that the as-spun colorful PVB-based membranes exhibit excellent level-dyeing property and color stability. Furthermore, the doping of cationic dye and the increase of dye concentration can decrease the diameter of the as-spun colored fibers, which results in better level-dyeing property and higher water contact angle more than 140°. The stained PVB fibrous membranes with excellent level-dyeing property and hydrophobicity are promising in some applications such as textiles, wallpapers, and anticorrosive coating/painting.

  15. Application of Potassium Cinnamon in the Soft Drinks%肉桂酸钾在软饮料中的应用

    Institute of Scientific and Technical Information of China (English)

    李春发; 徐峥嵘

    2012-01-01

    在分析软饮料中使用防腐剂存在问题的基础上,从广谱性和安全实用性2方面介绍了肉桂酸钾的性能特点,阐述了肉桂酸钾在软饮料中的防腐机理,并对肉桂酸钾应用于软饮料防腐剂的研究方向进行了展望。%Based on analyzing the existing problems of preservatives in the soft drinks, the performance characteristics of potassium cinnamate were introduced from the aspects of wide-adaptability and safety applicability. The anticorrosion mechanism of potassium cinnamate in soft drinks was described. Then, the research direction of potassium cinnamate aplied in soft drinks was prospected.

  16. Surface Modification of Biomaterials in Hard Tissue Applications

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan-yong; DING Chuan-xian; CHU Paul K

    2004-01-01

    Surface modification technologies are quite common in the biomedical field to improve the mechanical,chemical, physical and biological properties of implants such as artificial joint and cardiovascular devices. In this paper, recent progress in the investigation of the bioactivity and biocompatibility enhancement of implants using plasma spraying and plasmabased ion implantation (PIII) is described. Plasma sprayed hydroxyapatite (HA) coatings are commonly used as bioactive coatings but the relatively poor adhesion between the coatings and titanium is one of main disadvantages which have limited their biomedical applications. In our recent studies, novel bioactive coatings, such as wollastonite and dicalcium silicate, were deposited onto titanium to enhance the surfaces bioactivity and biocompatibility. Our results indicate that plasma sprayed wollastonite and dicalcium silicate coatings possess excellent bioactivity as well as relatively high bonding strength. Plasma immersion ion implantation was also employed to improve the anti-corrosion and biological properties of implants.

  17. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-01

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  18. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  19. In vitro and in vivo studies on biodegradable magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Lida Hou; Zhen Li; Yu Pan; Li Du; Xinlin Li; Yufeng Zheng; Li Li

    2014-01-01

    The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™) were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7%for the as-cast alloy to 2.9%for the as-extruded one, both below 5%. BioDe MSM™alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  20. 燃煤电厂脱硫烟囱防腐技术创新和应用探讨%Discussion on technology innovation of coal -fired power plant desulfurization chimney corrosion and its application

    Institute of Scientific and Technical Information of China (English)

    张庆虎; 吴金土

    2015-01-01

    Through the analysis of the existing coal-fired power plant desulfurization chimney corrosion technolo-gy, summed up the basic reason desulfurization chimney corrosion failures, technological innovation ideas pro-posed chimney desulfurization corrosion.And briefly describes the use of self-vulcanized butyl rubber anti-corrosion lining for coal-fired power plant desulfurization chimney antiseptic feasibility and success stories.%通过对现行燃煤电厂脱硫烟囱防腐技术分析,总结了脱硫烟囱防腐失效的原因,提出了脱硫烟囱防腐的技术创新思路。简要介绍了采用自硫化丁基橡胶防腐衬里对燃煤电厂脱硫烟囱进行防腐的可行性和成功案例。