WorldWideScience

Sample records for anticoincidence

  1. Anticoincidence scintillation counter

    CERN Multimedia

    1966-01-01

    This anticoincidence scintillation counter will be mounted in a hydrogen target vessel to be used in a measurement of the .beta. parameter in the .LAMBDA0. decay. The geometry of the counter optimizes light collection in the central part where a scintillation disk of variable thickness can be fitted.

  2. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  3. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  4. The ZEPLIN-III Anti-Coincidence Veto Detector

    CERN Document Server

    Akimov, D Yu; Barnes, E J; Belov, V A; Burenkov, A A; Chepel, V; Currie, A; Edwards, B; Francis, V; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Lüscher, R; Lyons, K; Majewski, P; Murphy, A St J; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Solovov, V N; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Taylor, R; Thorne, C; Walker, R J

    2010-01-01

    The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. The overall aim has been to achieve a veto detector of low threshold and high efficiency without the creation of additional background in ZEPLIN-III, all at a reasonable cost. Extensive experimental measurements of the components have been made, including radioactivity levels and performance characteristics. These have been used to inform a complete end-to-end Monte Carlo simulation that has then been used to calculate the expected performance of the new instrument, both operating alone and as an anti-coincidence detector for ZEPLIN-III. The veto device will be capable of rejecting over 65% of coincident nuclear recoil events from ...

  5. Standardization of (106)Ru/Rh by live-timed anticoincidence counting and gamma emission determination.

    Science.gov (United States)

    da Silva, C J; Rezende, E A; Poledna, R; Tauhata, L; Iwahara, A; Lopes, R T

    2017-04-01

    The absolute activity standardization measurement system of radionuclide by live-timed anticoincidence counting was implemented at LNMRI in 2008 to reduce the effects of some correction factors on the determination of activity with coincidence counting technique used for decades in the laboratory, for example, the corrections of dead time and resolution. With the live-timed anticoincidence system, the variety of radionuclides that can be calibrated by LNMRI was increased in relation to the type of decay. The objective of this study was to standardize the (106)Ru activity, determine gamma emission probabilities by spectrometric method for some energies, and estimate measurement uncertainties.

  6. Development of a TES-Based Anti-Coincidence Detector for Future X-Ray Observations

    Science.gov (United States)

    Bailey, Catherine N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2012-01-01

    Microcalorimeters onboard future x-ray observatories require an anticoincidence detector to remove environmental backgrounds. In order to most effectively integrate this anti-coincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.

  7. Absolute standardization of {sup 106}Ru by anti-coincidence method; Padronizacao absoluta do {sup 106}Ru pelo metodo de anticoincidencia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.J. da; Poledna, R.; Tahuata, L., E-mail: eduarda.rezende@ifrj.edu.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ/LNMRI), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes; Rezende, E.A.; Lopes, R.T. [Coordenacao dos Programas de Pos-Graducacao em Engenharia (LIN/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The system of absolute standardization activity of radionuclide by anti-coincidence counting and live-time techniques was implemented at LNMRI in 2008 to reduce the impacts of some influence factors in the determination of the activity with coincidence counting technique used for decades in the lab, for example, the measurement time. With the anti-coincidence system, the variety of radionuclides that can be calibrated by LNMRI was increased, in relation to the type of decay. The objective of this work is the standardization of {sup 106}Ru by the method of counting anti-coincidence and estimate its measurement uncertainties. (author)

  8. The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Moiseev, A.A.; Hartman, R.C.; Ormes, J.F.; Thompson, D.J.; Amato, M.J.; Johnson, T.E.; Segal, K.N.; Sheppard, D.A.

    2007-03-23

    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT's first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of {approx}8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.

  9. A DSP-based multichannel analyzer for simultaneous acquisition of coincidence and anticoincidence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Byun, S.H. [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada)], E-mail: soohyun@mcmaster.ca; Chin, K.; Prestwich, W.V.; McNeill, F.E.; Chettle, D.R. [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada)

    2007-10-15

    A digital signal processor (DSP) based multichannel analyzer (MCA) has been developed for simultaneous acquisition of coincidence and anticoincidence {gamma}-ray spectra. The shaped pulse from the spectroscopy amplifier is digitized by a flash analog-to-digital converter and then processed by a DSP. The coincidence mode operation is implemented by an external gate signal from a coincidence module. Fundamental performance was tested using NaI(Tl) detectors and compared with that of a standard NIM module. The new MCA is currently used for in vivo neutron activation analysis. Further development is in preparation toward full digital processing, which is free from the remaining analog component, that is the spectroscopy amplifier.

  10. Performance of the Anti-Coincidence Detector on the GLAST Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard; Charles, E.; /SLAC; Hartman, R.C.; /NASA, Goddard; Moiseev, A.A.; /NASA, Goddard; Ormes, J.F.; /NASA, Goddard /Denver U.

    2007-10-22

    The Anti-Coincidence Detector (ACD), the outermost detector layer in the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT), is designed to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly-charged relativistic particles, but must also have a low probability for self-veto of high-energy gammas by backsplash radiation from interactions in the LAT calorimeter. Simulations and tests demonstrate that the ACD meets its design requirements. The performance of the ACD has remained stable through stand-alone environmental testing, shipment across the U.S., installation onto the LAT, shipment back across the U.S., LAT environmental testing, and shipment to Arizona. As part of the fully-assembled GLAST observatory, the ACD is being readied for final testing before launch.

  11. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) Front Anti-Coincidence Counter (FACC) Testing

    Science.gov (United States)

    Chen, Mingqian

    The searching for proton decay (PDK) is going on current Water Cherenkov (WCh) detectors such as Super-Kamiokande. However, PDK-like backgrounds produced by the neutrino interactions will limit the sensitivity of the detectors. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is going to measure the neutron yield of neutrino interactions in gadolinium-loaded water by the Booster Neutrino Beam (BNB) with known characteristics. In this thesis, neutrino, neutrino oscillations, Dirac neutrino and Majorana neutrino and neutrino interactions are introduced. ANNIE experiment is also introduced. And two modes of proton decays are discussed. The ANNIE experiment requires detection of the neutrons produced by the BNB interactions with water. However, dirt muons produced by the interaction of the BNB with the rock and dirt upstream of the ANNIE hall will cause a correlated background. Therefore, the Front Anti-Coincidence Counter (FACC) was built to measure the rock muons. This thesis details the design, installation, and commissioning of the ANNIE FACC.

  12. A high-resolution, multi-parameter, β-γ coincidence, μ-γ anticoincidence system for radioxenon measurement

    Science.gov (United States)

    Schroettner, T.; Schraick, I.; Furch, T.; Kindl, P.

    2010-09-01

    A high-resolution β-γ coincidence measurement system has been developed by combining a high-purity broad energy germanium and a silicon surface barrier detector. The system is intended for calibration of reference spikes and re-measurement of CTBT samples, by detection of coincident β-γ or conversion electron and X-ray radiation of the four radioxenon isotopes 131mXe, 133mXe, 133Xe and 135Xe. The use of a high-resolution, list-mode, multi-parameter data acquisition system allows off-line setup and optimization of the (anti)coincidence. A 166mHo β-γ source has been produced and validated for energy calibration and system check. The β-γ coincidence has been further enhanced by a cosmic muon veto based on six plastic scintillation detectors. The μ-γ anticoincidence has been implemented using a 50 ns resolution real-time clock for time spectroscopy. This method has been verified by running conventional TAC-ADC (combined time-amplitude and analog-digital converter) based time spectroscopy in parallel. The whole measurement system has been characterized, by measuring various radioxenon spikes and backgrounds with and without (anti)coincidence. Peak efficiencies and minimum detectable activities (MDA) for the main radioxenon isotopes have been determined. Application of μ-γ anticoincidence reduced the MDA by about a factor of two for all four radioxenon isotopes. Complementary adoption of β-γ coincidence further reduced the MDA for the metastable isotopes by more than an order of magnitude. The MDA for 135Xe reaches about 6 mBq after 1 day of measurement. For 131mXe, 133Xe and 133mXe a MDA of about 2 mBq is obtained after one week measurement.

  13. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a program overview

    Science.gov (United States)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Laurenza, M.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.; Fiorini, M.; Molendi, S.; Uslenghi, M.; Mineo, T.; Bulgarelli, A.; Fioretti, V.; Cavazzuti, E.

    2016-07-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015 - 2025, scheduled to be launched on 2028 at L2 orbit. One of the two on-board instruments is the X-IFU (X-ray Integral Field Unit): it is a TES-based kilo-pixels order array able to perform simultaneous high-grade energy spectroscopy (2.5 eV at 6 keV) and imaging over the 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background which is induced by primary protons of both solar and Cosmic Rays origin, and secondary electrons. The studies performed by Geant4 simulations depict a scenario where it is mandatory the use of reduction techniques that combine an active anticoincidence detector and a passive electron shielding to reduce the background expected in L2 orbit down to the goal level of 0.005 cts/cm2/s/keV, so enabling the characterization of faint or diffuse sources (e.g. WHIM or Galaxy cluster outskirts). From the detector point of view this is possible by adopting a Cryogenic AntiCoincidence (CryoAC) placed within a proper optimized environment surrounding the X-IFU TES array. It is a 4-pixels detector made of wide area Silicon absorbers sensed by Ir TESes, and put at a distance < 1 mm below the TES-array. On October 2015 the X-IFU Phase A program has been kicked-off, and about the CryoAC is at present foreseen on early 2017 the delivery of the DM1 (Demonstration Model 1) to the FPA development team for integration, which is made of 1 pixel "bridgessuspended" that will address the final design of the CryoAC. Both the background studies and the detector development work is on-going to provide confident results about the expected residual background at the TES-array level, and the single pixel design to produce a detector for testing activity on 2016/2017. Here we will provide an overview of the CryoAC program, discussing some details about the background assessment having impact on the CryoAC design, the last single pixel characterization

  14. An anticoincidence-shielded gamma-ray spectrometer for analysis of low level environmental radionuclides.

    Science.gov (United States)

    Byun, Jong In; Choi, Yun Ho; Kwak, Seung Im; Hwang, Han-Yull; Chung, Kun-Ho; Choi, Geun Sik; Park, Doo-Won; Lee, Chang Woo

    2003-05-01

    We developed an ultralow-level background gamma-ray spectrometer, using active and passive shield devices at the same time. Cosmic-ray-induced background is suppressed by means of active shield devices consisting of plastic scintillating plates of 50mm thick and anti-coincidence electronic system. The observed background rate was 0.34 s(-1) (=0.12s(-1) per 100 cm(3) Ge volume) for energy regions between 50 and 3000 ke V. The detection efficiency curve for 10(3)ml Marinelli beaker samples is obtained over all the energy regions. The advantages of the method are demonstrated by measuring the activity of 137Cs in powdered milk sample prepared without taking any chemical procedure. The MDA for 137Cs is estimated to be (17+/-1.7)mBq at a confidence level of 95% and it is about a factor of 10 lower than the MDA obtained from the previous cryostat assembly with 10-cm thick lead shielding.

  15. Monte Carlo based approach to the LS–NaI 4πβ–γ anticoincidence extrapolation and uncertainty.

    Science.gov (United States)

    Fitzgerald, R

    2016-03-01

    The 4πβ–γ anticoincidence method is used for the primary standardization of β−, β+, electron capture (EC), α, and mixed-mode radionuclides. Efficiency extrapolation using one or more γ ray coincidence gates is typically carried out by a low-order polynomial fit. The approach presented here is to use a Geant4-based Monte Carlo simulation of the detector system to analyze the efficiency extrapolation. New code was developed to account for detector resolution, direct γ ray interaction with the PMT, and implementation of experimental β-decay shape factors. The simulation was tuned to 57Co and 60Co data, then tested with 99mTc data, and used in measurements of 18F, 129I, and 124I. The analysis method described here offers a more realistic activity value and uncertainty than those indicated from a least-squares fit alone.

  16. Standardization of (166m)Ho and 243Am/239Np by live-timed anti-coincidence counting with extending dead time.

    Science.gov (United States)

    da Silva, C J; Loureiro, J S; Delgado, J U; Poledna, R; Moreira, D S; Iwahara, A; Tauhata, L; da Silva, R L; Lopes, R T

    2012-09-01

    The National Laboratory for Metrology of Ionizing Radiation (LNMRI)/Brazil acquired (166m)Ho and (243)Am/(239)Np solutions from commercial suppliers in order to realize primary standardization and therefore reducing the associated uncertainties. The method used in the standardization was the live-timed 4πβ(LS)-γ(ΝaI(Tl)) anticoincidence counting. The live-timed anticoincidence system is operated since 2006 in LNMRI and is composed of two MTR2 modules donated by Laboratoire National Henri Becquerel (LNE-LNHB)/France. The data acquisition system uses a homemade LabView program and an Excel file for calculus. These systems have been used for primary standardization at LNMRI for many radionuclides and recently took part in the (124)Sb and (177)Lu International Key Comparisons with good performance.

  17. The design, implementation, and performance of the Atro-H SXS calorimeter array and anti-coincidence detector

    Science.gov (United States)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Massimiliano; Grein, Christoph; Jhabvala, Christine A.; Kelley, Richard L.; Kelly, Daniel P.; Leutenegger, Maurice A.; McCammon, Dan; Porter, F. S.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2016-07-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistorbearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  18. Exploring the capabilities of the Anti-Coincidence Shield of the INTEGRAL spectrometer to study solar flares

    CERN Document Server

    Rodríguez-Gasén, Rosa; Tatischeff, Vincent; Vilmer, Nicole; Hamadache, Clarisse; Klein, Karl-Ludwig

    2013-01-01

    INTEGRAL is a hard X-ray/gamma-ray observatory for astrophysics (ESA) covering photon energies from 15 keV to 10 MeV. It was launched in 2002 and since then the BGO detectors of the Anti-Coincidence shield (ACS) of the SPI spectrometer have detected many hard X-ray (HXR) bursts from the Sun, producing lightcurves at photon energies above ~ 100 keV. The spacecraft has a highly elliptical orbit, providing a long uninterrupted observing time (about 90% of the orbital period) with nearly constant background due to the reduction of the crossing time of the Earth's radiation belts. However, due to technical constraints, INTEGRAL cannot point to the Sun and high-energy solar photons are always detected in non-standard observation conditions. To make the data useful for solar studies, we have undertaken a major effort to specify the observing conditions through Monte-Carlo simulations of the response of ACS for several selected flares. We check the performance of the model employed for the Monte-Carlo simulations usi...

  19. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays

    Science.gov (United States)

    Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2016-07-01

    For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (˜ 0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 × 1.9 cm^2 chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold ˜ 100 times lower than is needed to detect minimum ionizing particles.

  20. Standardization of {sup 153}Sm using anti-coincidence method; Padronizacao do {sup 153}Sm pelo metodo de anti-coincidencia

    Energy Technology Data Exchange (ETDEWEB)

    Laranjeira, Adilson da Silva; Silva, Carlos J. da; Delgado, Jose Ubiratan; Cruz, Paulo A.L. da; Poledna, Roberto; Silva, Ronaldo L. da; Oliveira, Antonio E. de; Gomes, Regio S.; Veras, Eduardo V. de; Araujo, Miriam Taina Ferreira de, E-mail: adilson@ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    {sup 153}Sm was standardized at the Brazilian National Laboratory of Metrology of Ionizing Radiation to provide traceability for measurements in nuclear medicine services and manufacturers of radiopharmaceuticals in Brazil. {sup 153}Sm decays by emission β-γ to {sup 153}Eu, the gamma rays of higher-intensity are 69.7 keV (4.7%) and 103.2 keV (29.2%). The standardization was made by anticoincidence and CIEMAT/NIST methods with uncertainties combined (0.4% and 0.3%) and (0.5% and 0.4%), respectively. The difference between the standardized activities was 0.15%. The uncertainties are consistent with other publications. (author)

  1. The Cryogenic AntiCoincidence Detector for the ATHENA X-IFU: Design Aspects by Geant4 Simulation and Preliminary Characterization of the New Single Pixel

    Science.gov (United States)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Orlando, A.; Torrioli, G.

    2016-08-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015-2025, scheduled to be launched on 2028 at L2 orbit. One of the two planned focal plane instruments is the X-ray Integral Field Unit (X-IFU), which will be able to perform simultaneous high-grade energy spectroscopy and imaging over the 5 arcmin FoV by means of a kilo-pixel array of transition-edge sensor (TES) microcalorimeters, coupled to a high-quality X-ray optics. The X-IFU sensitivity is degraded by the particle background, induced by primary protons of both solar and cosmic rays' origin and secondary electrons. A Cryogenic AntiCoincidence (CryoAC) TES-based detector, located sensed by Iridium TESs. We currently achieve a TRL = 3-4 at the single-pixel level. We have designed and developed two further prototypes in order to reach TRL = 4. The design of the CryoAC has been also optimized using the Geant4 simulation tool. Here we will describe some results from the Geant4 simulations performed to optimize the design and preliminary test results from the first of the two detectors, 1 cm2 area, made of 65 Ir TESs.

  2. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    Science.gov (United States)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing

  3. Implementation of a anti-coincidence system of 4{pi}NaI(Tl)-Cl and primary standardization of {sup 57}Co, {sup 124}Sb and {sup 241}Am; Implementacao de um sistema de anti-coincidencia 4{pi}NaI(Tl)-Cl e padronizacao primaria do {sup 57}Co, {sup 124}Sb e {sup 241}Am

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Jose da; Iwahara, Akira; Poledna, Roberto; Oliveira, Estela Maria de; Prinzio, Maria Antonieta de, E-mail: carlos@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Lopes, Ricardo Tadeu [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LIN/COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear

    2009-07-01

    The Radionuclide Metrology Laboratory of the IRD-Brazil, implemented a primary standardization system which utilizes the anti-coincidence technique with live time keeping. For testing the performance of these system it was made the standardization of the {sup 57}Co, {sup 124}Sb and {sup 241}Am. Encourages results were obtained not only the standardization of {sup 241}Am but also of the {sup 124}Sb whose reference value obtained by the LNMRI was utilized for the key comparison organized by the IAEA and EURAMET. The standard uncertainties were of 0.28%, 0.22% and 0.13% for the {sup 57}Co, {sup 124}Sb and {sup 241}Am, respectively

  4. Improved Stability of Mercuric Iodide Detectors for Anticoincidence Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize guard ring electrode structures and a new film growth technique to create improved polycrystalline mercuric iodide detectors for background...

  5. Design and applications of an anticoincidence shielded low background gamma-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Petri, H. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    1997-03-01

    A low background gamma-ray spectrometer has been constructed for measuring artificial and natural radioative isotopes. The design of the spectrometer, its properties and the application to the determination of natural radioactivity of dental ceramics are described. (orig.)

  6. Gamma-ray bursts observed by the INTEGRAL-SPI anticoincidence shield: A study of individual pulses and temporal variability

    DEFF Research Database (Denmark)

    Ryde, F.; Borgonovo, L.; Larsson, S.;

    2003-01-01

    derive the basic characteristics of the bursts: various duration measures, the count peak flux and the count fluence. Second, a sub-sample of 11 bursts with 12 individual, well-separated pulses is studied. We fit the pulse shape with a model by Kocevski et al. (2003) and find that the pulses are quite...... self-similar in shape. There is also a weak tendency for the pulses with steep power-law decays to be more asymmetric. Third, the variability of the complex light-curves is studied by analyzing their power-density-spectra (PDS) and their RMS variability. The averaged PDS, of the whole sample...

  7. Low-level gamma-ray spectrometry for the determination of 210Pb

    DEFF Research Database (Denmark)

    Markovic, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-01-01

    A well High purity germanium (HPGe) gamma spectrometer with NaI(Tl) Compton anticoincidence shield recently installed at DTU Nutech and specially designed for low-level measurements was used for the 210Pb determination in environmental samples. The system is compared to standard stand-alone HPGe...... spectrometers. The choice between high efficiency well and planar detectors as well as optimum sample size depending on available sample quantity are discussed. Results show that the only comparative advantage of the well anticoincidence system is when just small sample sizes are available....

  8. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry; Messung geringer Radioaktivitaet in Untertagelaboratorien mit Hilfe mehrdimensionaler Spektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Niese, Siegfried

    2008-01-15

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered.

  9. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    Science.gov (United States)

    Bergmann, B.; Caicedo, I.; Leroy, C.; Pospisil, S.; Vykydal, Z.

    2016-10-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  10. Enhanced detection of terrestrial gamma-ray flashes by AGILE

    CERN Document Server

    Marisaldi, M; Ursi, A; Gjesteland, T; Fuschino, F; Labanti, C; Galli, M; Tavani, M; Pittori, C; Verrecchia, F; D'Amico, F; Østgaard, N; Mereghetti, S; Campana, R; Cattaneo, P W; Bulgarelli, A; Colafrancesco, S; Dietrich, S; Longo, F; Gianotti, F; Giommi, P; Rappoldi, A; Trifoglio, M; Trois, A

    2016-01-01

    At the end of March 2015 the onboard software configuration of the AGILE satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma-Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration ($< 100 \\mathrm {\\mu s}$), and part of them has simultaneous association with lightning sferics detected by the World Wide Lightning Location Network (WWLLN). The new configuration provides the largest TGF detection rate surface density (TGFs/$\\mathrm{km^2}$/year) to date, opening prospects for improved correlation studies with lightning and atmospheric parameters on short spatial and temporal scales along the equatorial region.

  11. Standardization of {sup 57}Co using different methods of LNMRI; Padronizacao do {sup 57}Co por diferentes metodos do LNMRI

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, E.A.; Lopes, R.T., E-mail: eduarda.rezende@ifrj.edu.br [Coordenacao dos Programas de Pos-Graducacao em Engenharia (LIN/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Silva, C.J. da; Poledna, R.; Silva, R.L. da; Tauhata, L. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ/LNMRI), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes

    2015-07-01

    The activity of a {sup 57}Co solution was determined using four LNMRI different measurement methods. The solution was standardized by live-timed anti-coincidence method and sum-peak method. The efficiency curve and standard-sample comparison methods were also used in this comparison. The results and their measurement uncertainties demonstrating the equivalence of these methods. As an additional contribution, the gamma emission probabilities of {sup 57}Co were also determined. (author)

  12. Measurement of Total Reaction Cross-sections with Heavy Ions at the SC

    CERN Multimedia

    2002-01-01

    The aim of this experiment is the measurement of heavy ion total reaction cross-sections in the energy range 40-86 MeV/A with the anti-coincidence beam attenuation technique. A system of 19 @DE scintillation detectors together with a time-of-flight measurement is used for detection of the residual beam. The results will complete measurements at the Grenoble cyclotron and post accelerator over the energy range 10-40 MeV/A.

  13. Design of a hybrid gas proportional counter with CdTe guard counters for sup 1 sup 4 C dating system

    CERN Document Server

    Zhang, L; Hinamoto, N; Nakazawa, M; Yoshida, K

    2002-01-01

    Nowadays uniform, low-cost and large-size compound semiconductor detectors are available up to several square centimeters. We are trying to combine this technology with conventional gas detectors to upgrade an anticoincidence type proportional counter, Oeschger-type thin wall counter of 2.2 l, used for a sup 1 sup 4 C dating facility at the University of Tokyo. In order to increase the ratio of the signal to the background for smaller quantity of samples less than 1 g, an effective approach is to minimize the detector volume at higher gas pressure. However, the anticoincidence function suffers from such a small volume. Therefore we designed a new active wall gas counter of 0.13 l counting volume using CdTe compound semiconductor detectors as the wall of the gas proportional counter to perform anticoincidence. Simulation study showed that at noise thresholds less than 70 keV, the wall counters can reject above 99.8% of events arising from outer gamma rays. Measured noise levels of CdTe detectors were smaller t...

  14. Research and implementation of the monitor for in situ radioactivity measurements in the marine environment

    Institute of Scientific and Technical Information of China (English)

    REN; Guoxing; WEI; Zhiqiang; WANG; Xiaoying; ZHANG; Yingying; ZHANG; Guohua

    2015-01-01

    As the traditional methods can not meet the requirements of marine radioactivity monitoring,a radioactivity monitoring sensor used in marine field has been proposed.This sensor is based on Nal(TI) scintillation crystal and employs the special shielding method,the anticoincidence design,the spectrum stabilization algorithm of characteristic peaks and the Monte Carlo simulation fitting calibration formula.Through the continuous tests of terminals and the activity test for target nuclide 40K,it is found that the sensor is stable and the error is less than 10%.

  15. Development of signal processing system of avalanche photo diode for space observations by Astro-H

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, M., E-mail: ohno@hep01.hepl.hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8516 (Japan); Goto, K.; Hanabata, Y.; Takahashi, H.; Fukazawa, Y. [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8516 (Japan); Yoshino, M.; Saito, T.; Nakamori, T.; Kataoka, J. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sasano, M.; Torii, S.; Uchiyama, H.; Nakazawa, K. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Watanabe, S.; Kokubun, M.; Ohta, M.; Sato, T.; Takahashi, T. [Institute of Space and Astronautial Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku Sagamihara, Kanagawa 252-5120 (Japan); Tajima, H. [Cosmic-ray Research Facility, Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2013-01-21

    Astro-H is the sixth Japanese X-ray space observatory which will be launched in 2014. Two of onboard instruments of Astro-H, Hard X-ray Imager and Soft Gamma-ray Detector are surrounded by many number of large Bismuth Germanate (Bi{sub 4}Ge{sub 3}O{sub 12}; BGO) scintillators. Optimum readout system of scintillation lights from these BGOs are essential to reduce the background signals and achieve high performance for main detectors because most of gamma-rays from out of field-of-view of main detectors or radio-isotopes produced inside them due to activation can be eliminated by anti-coincidence technique using BGO signals. We apply Avalanche Photo Diode (APD) for light sensor of these BGO detectors since their compactness and high quantum efficiency make it easy to design such large number of BGO detector system. For signal processing from APDs, digital filter and other trigger logics on the Field-Programmable Gate Array (FPGA) is used instead of discrete analog circuits due to limitation of circuit implementation area on spacecraft. For efficient observations, we have to achieve as low threshold of anti-coincidence signal as possible by utilizing the digital filtering. In addition, such anti-coincident signals should be sent to the main detector within 5μs to make it in time to veto the A–D conversion. Considering this requirement and constraint from logic size of FPGA, we adopt two types of filter, 8 delay taps filter with only 2 bit precision coefficient and 16 delay taps filter with 8 bit precision coefficient. The data after former simple filter provides anti-coincidence signal quickly in orbit, and the latter filter is used for detail analysis after the data is down-linked. -- Highlights: ► We develop digital signal processing system of APD for Astro-H. ► We apply two types of digital filter instead of discrete analog circuit. ► By optimization, comparable or better energy threshold to analog shaper is archived. ► Developed digital filter works

  16. Gamma-quanta onboard identification in the GAMMA-400 experiment using the counting and triggers signals formation system.

    Science.gov (United States)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Chasovikov, E. N.; Galper, A. M.; Kheymits, M. D.; Murchenko, A. E.; Yurkin, Y. T.

    2016-02-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the new generation satellite gamma-observatory. Gamma-telescope GAMMA-400 consists of anticoincidence system (top and lateral sections - ACtop and AClat), the converter-tracker (C), time-of-flight system (2 sections S1 and S2), position-sensitive calorimeter CC1 makes of 2 strips layers and 2 layers of CsI(Tl) detectors, electromagnetic calorimeter CC2 composed of CsI(Tl) crystals, neutron detector ND, scintillation detectors of the calorimeter (S3 and S4) and lateral detectors of the calorimeter (LD). All detector systems ACtop, AClat, S1-S4, LD consist of two BC-408 based sensitive layers of 1 cm thickness each. Three apertures provide events registration both from upper and lateral directions. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution. Gamma-telescope GAMMA-400 is optimized for the gamma-quanta and charged particles with energy 100 GeV detection with the best parameters in the main aperture. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of both layers anticoincidence systems ACtop and AClat individual detectors. For double-layer ACtop taking into account both amplitude and temporal trigger marker onboard analysis only 2.8% photons will be wrongly recognized as electrons or protons for 100 GeV particles. The part of charged particles mistakenly identified as gammas is ∼10-5 using described algorithms. For E∼3 GeV less than 3% photons will be wrongly recognized as charged particles and fraction of wrongly identified charged particles will be also ∼10-5. In the additional aperture the particles identification is provided by analysis of signals corresponding to energy deposition in the

  17. Cosmic ray effects in microcalorimeter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, C.K. E-mail: cak@lheapop.gsfc.nasa.gov; Boyce, K.R.; Brown, G.V.; Cottam, J.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.L.; McCammon, D.; Porter, F.S.; Szymkowiak, A.E.; Tillotson, W.A

    2004-03-11

    We have identified signals resulting from cosmic rays and environmental gamma rays depositing energy in the pixels and in the silicon frame of the Astro-E2/X-Ray Spectrometer microcalorimeter array. Coincidences between pixels and between the array and an anti-coincidence detector determined the nature of the events. Pulse shapes and amplitudes from the cosmic ray events helped refine the thermal model of the array chip. We discuss how future arrays can be optimized either for the greatest background rejection or for the highest source count rates.

  18. Comprehensive measurements in 4 {pi} geometry for radio-active samples having a low {beta}-activity (1962); Ensemble de mesure'en geometrie 4 {pi} pour echantillons radioactifs de faible activite {beta} (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Colomer, J.; Valentin, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The realisation is described of a comprehensive measurement system having low background noise and, as well as a lead-wall protection, an electronic protection made up of a plastic scintillator placed in anticoincidence with the 4 {pi} counter used for making the measurements. The apparatus is described and its performance discussed. (authors) [French] Realisation d'un ensemble de mesures ayant un faible bruit de fond en utilisant en plus d'une protection par murs de Pb, une protection electronique constituee par un scintillateur plastique mis en ainticoincidence avec le compteur 4 {pi} utilise pour faire les mesures. L'appareillage est decrit et ses performances discutees. (auteurs)

  19. Search for annual modulation in low-energy CDMS-II data

    CERN Document Server

    Ahmed, Z; Anderson, A J; Arrenberg, S; Bailey, C N; Balakishiyeva, D; Baudis, L; Bauer, D A; Brink, P L; Bruch, T; Bunker, R; Cabrera, B; Caldwell, D O; Cooley, J; Cushman, P; Daal, M; DeJongh, F; Di Stefano, P C F; Dragowsky, M R; Fallows, S; Figueroa-Feliciano, E; Filippini, J; Fox, J; Fritts, M; Golwala, S R; Hall, J; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Kamaev, O; Kiveni, M; Kos, M; Leman, S W; Liu, S; Mahapatra, R; Mandic, V; McCarthy, K A; Mirabolfathi, N; Moore, D C; Nelson, H; Ogburn, R W; Phipps, A; Prasad, K; Pyle, M; Qiu, X; Rau, W; Reisetter, A; Ricci, Y; Saab, T; Sadoulet, B; Sander, J; Schnee, R W; Seitz, D; Serfass, B; Speller, D; Sundqvist, K M; Tarka, M; Thakur, R B; Villano, A N; Welliver, B; Yellin, S; Yoo, J; Young, B A; Zhang, J

    2012-01-01

    We report limits on annual modulation of the low-energy event rate from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Such a modulation could be produced by interactions from Weakly Interacting Massive Particles (WIMPs) with masses ~10 GeV/c^2. We find no evidence for annual modulation in the event rate of veto-anticoincident single-detector interactions consistent with nuclear recoils, and constrain the magnitude of any modulation to 98% confidence. For events consistent with electron recoils, no significant modulation is observed for either single- or multiple-detector interactions in the 3.0-7.4 keVee range.

  20. Investigating the background of a 1-cm(3) quartz gas proportional counter.

    Science.gov (United States)

    Klouda, George A

    2008-01-01

    The background count rate of a 1-cm(3) quartz gas proportional counter (GPC) was investigated for measuring natural radioactivity levels of small samples. Using a new multiparameter digital counting system, spurious or afterpulses that contribute to background were identified by their pulse waveform and by a special event indicator defined by the time (low-background NaI(Tl) scintillation guard detector, the weighted mean and standard uncertainty anticoincidence counts per day (d(-1)) was 6.2+/-0.4d(-1).

  1. Observations of low energy gamma-ray bursts with SAS-2

    Science.gov (United States)

    Oegelman, H.; Fichtel, C. E.; Kniffen, D. A.

    1975-01-01

    The present paper reports on the low-energy gamma-ray bursts observed by the plastic scintillator anticoincidence dome of the Small Astronomy Satellite-2 (SAS-2) gamma-ray telescope. SAS-2 detected two events observed by other satellites and discovered one which was subsequently confirmed by other satellite observations. Two events seen by other satellites were not detected by SAS-2, probably due to earth occultation. The event detection threshold for SAS-2 was almost two orders of magnitude lower than that of the Vela satellites.

  2. Standardization of {sup 59}Fe 4πβ(LS)-γcoincidence counting with digital sampling method

    Energy Technology Data Exchange (ETDEWEB)

    Agusbudiman, A.; Lee, K. B.; Lee, J. M.; Park, T. S. [Korea University of Science and Technology (UST), Daejeon (Korea, Republic of)

    2014-11-15

    The radionuclide 59Fe decays with a half-life of 44.494(12) days, by several beta minus emission to the ground state and to four excited states of {sup 59}Co, mainly to the 1099 keV and 1291 keV (Bé et al., 2004). The activity of {sup 59}Fe was measured by 4 πβ(LS)-γ coincidence counting method with digital sampling technique. A gamma spectrometry analysis was also conducted to check the impurities of the source. As comparison, the activity were also measured by using the 4πβ(PC)-γ coincidence counting system and 4πβ (LS)-γ anti-coincidence method. The radionuclide 59Fe has been standardized using the 4πβ(LS)-γcoincidence counting with digital sampling method. The result was in a good agreement with the result from 4πβ(PC)-γ coincidence counting and the 4πβ(LS)-γ anti-coincidence method.

  3. Experiment Signal for Gamma-Ray Research of the Sun

    Science.gov (United States)

    Galper, Arkady; Arkhangelskaja, Irene; Arkhangelsky, Andrey; Shustov, Alexander; Ulin, Sergey; Novikov, Alexander; Grachev, Viktor; Uteshev, Ziyaetdin; Petrenko, Denis; Vlasik, Konstantin; Krivova, Kira; Dmitrenko, Valery; Chernysheva, Irina

    Description as well as physical and technical characteristics of Scientific Instrument (SI) “Signal” are presented. This equipment will be installed onboard the spacecraft (SC) “Interhelioprobe” for researching the Sun and Heliosphere at close distance. “Signal” will be developed for study cosmic gamma-rays. It consists of Xenon Gamma-Spectrometer (XeGS), the anticoincidence scintillation system and the digital electronic module. XeGS is based on cylindrical pulse ionization chamber with Frisch grid filled with high pressure xenon. Anticoincidence system will be made of polystyrene organic scintillator and silicon photomultipliers. Digital electronic module provides analyzing and data processing, collecting measured gamma-ray spectra and communication with onboard systems of SC “Interhelioprobe”. Main “Signal” scientific tasks are: begin{itemize} Research of X-ray and gamma emission in lines and continuum in energy range 30 keV - 5 MeV; begin{itemize} Study of gamma-ray bursts with Galactic and Metagalactic origin; begin{itemize} Analysis of gamma-ray lines near the Earth and Venus; begin{itemize} Charged particle fluxes registration along the spacecraft trajectory.

  4. Simulation of background reduction and Compton depression in low-background HPGe spectrometer at a surface laboratory

    CERN Document Server

    Niu, ShunLi; Wu, ZhenZhong; Xie, YuGuang; Yu, BoXiang; Wang, ZhiGang; Fang, Jian; Sun, XiLei; Sun, LiJun; Liu, YingBiao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lv, JunGuang; Hu, Tao

    2014-01-01

    High-purity germanium detectors are well suited to analysis the radioactivity of samples. In order to reduce the environmental background, low-activity lead and oxygen free copper are installed outside of the probe to shield gammas, outmost is a plastic scintillator to veto the cosmic rays, and an anti-Compton detector can improve the Peak-to-Compton ratio. Using the GEANT4 tools and taking into account a detailed description of the detector, we optimize the sizes of the detectors to reach the design indexes. A group of experimental data from a HPGe spectrometer in using were used to compare with the simulation. As to new HPGe Detector simulation, considering the different thickness of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal thickness is 5.5cm, and the Peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. As the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0...

  5. Simulation of background reduction and Compton suppression in a low-background HPGe spectrometer at a surface laboratory

    Science.gov (United States)

    Niu, Shun-Li; Cai, Xiao; Wu, Zhen-Zhong; Liu, Yi; Xie, Yu-Guang; Yu, Bo-Xiang; Wang, Zhi-Gang; Fang, Jian; Sun, Xi-Lei; Sun, Li-Jun; Liu, Ying-Biao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lü, Jun-Guang; Hu, Tao

    2015-08-01

    High-purity germanium (HPGe) detectors are well suited to analyse the radioactivity of samples. In order to reduce the environmental background for an ultra-low background HPGe spectrometer, low-activity lead and oxygen free copper are installed outside the probe to shield from gamma radiation, with an outer plastic scintillator to veto cosmic rays, and an anti-Compton detector to improve the peak-to-Compton ratio. Using Geant4 tools and taking into account a detailed description of the detector, we optimize the sizes of these detectors to reach the design requirements. A set of experimental data from an existing HPGe spectrometer was used to compare with the simulation. For the future low-background HPGe detector simulation, considering different thicknesses of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal BGO thickness is 5.5 cm, and the peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. In the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0024 cps/100 cm3 Ge (50 keV-2.8 MeV), which is about 10-5 of the environmental background.

  6. Resolving photons from cosmic ray in DAMPE

    Science.gov (United States)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  7. Avalanche photodiode based time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C. [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  8. Study of XK and gamma photon emission following decay of 154Eu.

    Science.gov (United States)

    Terechtchenko, E; Rasko, M; Sepman, S; Zanevsky, A; Tuan, A Tran; Amiot, M N; Bobin, C; Morel, J

    2004-01-01

    A joint project has been established between VNIIM (D.I. Mendeleyev Institute for Metrology) and LNHB (Laboratoire National Henri Becquerel) to determine as accurately as possible the X- and gamma-ray emission probabilities of 154Eu. Point sources were prepared by VNIIM, and absolute measurements of activity per unit mass were undertaken by both laboratories using coincidence, anti-coincidence and 4pi-gamma counting methods. Other point sources and one aliquot were also prepared for precise gamma-ray spectrometry measurements. Absolute photon emission probabilities were determined with a maximum uncertainty of 0.5% for the most intense lines, supporting the development of this nuclide as a multigamma standard.

  9. The PAMELA experiment in space

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, V. E-mail: bonvicini@trieste.infn.it; Barbiellini, G.; Boezio, M.; Mocchiutti, E.; Schiavon, P.; Scian, G.; Vacchi, A.; Zampa, G.; Zampa, N.; Bergstroem, D.; Carlson, P.; Francke, T.; Lund, J.; Pearce, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S.A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Spinelli, P.; Adriani, O.; Boscherini, M.; D' Alessandro, R.; Finetti, N.; Grandi, M.; Papini, P.; Perego, A.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Marino, L.; Ricci, M.; Spataro, B.; Bidoli, V.; Casolino, M.; De Pascale, M.P.; Furano, G.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbier, L.M.; Christian, E.R.; Krizmanic, J.F.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Bravar, U.; Stochaj, S.J.; Bertazzoni, S.; Salsano, A.; Bazilevskaja, G.; Grigorjeva, A.; Mukhametshin, R.; Stozhokov, Y.; Bogomolv, E.; Krutkov, S.; Vasiljev, G.; Galper, A.M.; Koldashov, S.V.; Korotkov, M.G.; Mikhailov, V.V.; Moissev, A.A.; Ozerov, J.V.; Voronov, S.A.; Yurkin, Y.; Castellini, G.; Gabbanini, A.; Taccetti, F.; Tesi, M.; Vignoli, V

    2001-04-01

    We provide in this paper a status report of the space experiment PAMELA. PAMELA aims primarily to measure the flux of antiparticles, namely antiprotons and positrons, in cosmic rays with unprecedented statistics over a large energy range. In addition, it will measure the light nuclear components of cosmic rays, investigate phenomena connected to Solar and Earth physics and it will search for cosmic ray antinuclei with sensitivity better than 10{sup -7} in the He-bar/He ratio. PAMELA consists of a magnet spectrometer, a transition radiation detector, an imaging calorimeter, a time of flight system and an anticoincidence detector. The apparatus will be installed on board of the Russian satellite of the Resurs type in a polar orbit at about 680 km of altitude. The launch is foreseen for late 2002/early 2003.

  10. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    Science.gov (United States)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  11. Balloon-borne gamma-ray polarimetry

    CERN Document Server

    Pearce, Mark

    2011-01-01

    The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.

  12. Background model of NaI(Tl) detectors for the ANAIS Dark Matter Project

    CERN Document Server

    Amare, J; Cuesta, C; Garcia, E; Martinez, M; Olivan, M A; Ortigoza, Y; de Solorzano, A Ortiz; Pobes, C; Puimedon, J; Sarsa, M L; Villar, J A; Villar, P

    2015-01-01

    A thorough understanding of the background sources is mandatory in any experiment searching for rare events. The ANAIS (Annual Modulation with NaI(Tl) Scintillators) experiment aims at the confirmation of the DAMA/LIBRA signal at the Canfranc Underground Laboratory (LSC). Two NaI(Tl) crystals of 12.5 kg each produced by Alpha Spectra have been taking data since December 2012. The complete background model of these detectors and more precisely in the region of interest will be described. Preliminary background analysis of a new 12.5 kg crystal received at Canfranc in March 2015 will be presented too. Finally, the power of anticoincidence rejection in the region of interest has been analyzed in a 4x 5 12.5 kg detector matrix.

  13. Observation of polarised hard X-ray emission from the Crab by the PoGOLite Pathfinder

    CERN Document Server

    Chauvin, M; Jackson, M; Kamae, T; Kawano, T; Kiss, M; Kole, M; Mikhalev, V; Moretti, E; Olofsson, G; Rydström, S; Takahashi, H; Iyudin, A; Arimoto, M; Fukazawa, Y; Kataoka, J; Kawai, N; Mizuno, T; Ryde, F; Tajima, H; Takahashi, T; Pearce, M

    2015-01-01

    We have measured the linear polarisation of hard X-ray emission from the Crab in a previously unexplored energy interval, 20-120 keV. The introduction of two new observational parameters, the polarisation fraction and angle stands to disentangle geometrical and physical effects, thereby providing information on the pulsar wind geometry and magnetic field environment. Measurements are conducted using the PoGOLite Pathfinder - a balloon-borne polarimeter. Polarisation is determined by measuring the azimuthal Compton scattering angle of incident X-rays in an array of plastic scintillators housed in an anticoincidence well. The polarimetric response has been characterised prior to flight using both polarised and unpolarised calibration sources. We address possible systematic effects through observations of a background field. The measured polarisation fraction for the integrated Crab light-curve is ($18.4^{+9.8}_{-10.6}$)%, corresponding to an upper limit (99% credibility) of 42.4%, for a polarisation angle of ($...

  14. Five Years of SETI with the Allen Telescope Array: Lessons Learned

    Science.gov (United States)

    Harp, Gerald

    2016-01-01

    We discuss recent observations at the Allen Telescope Array (ATA) supporting a wide ranging Search for Extraterrestrial Intelligence (SETI). The ATA supports observations over the frequency range 1-10 GHz with three simultaneous phased array beams used in an anticoincidence detector for false positive rejection. Here we summarize observational results over the years 2011-2015 covering multiple campaigns of exoplanet stars, the galactic plane, infrared excess targets, etc. Approximately 2 x 108 signals were identified and classified over more than 5000 hours of observation. From these results we consider various approaches to the rapid identification of human generated interference in the process of the search for a signal with origins outside the radius of the Moon's orbit. We conclude that the multi-beam technique is superb tool for answering the very difficult question of the direction of origin of signals. Data-based simulations of future instruments with more than 3 beams are compared.

  15. Background observations on the SMM high energy monitor at energies greater than 10 MeV

    Science.gov (United States)

    Forrest, D. J.

    1989-01-01

    The background rate in any gamma ray detector on a spacecraft in near-earth orbit is strongly influenced by the primary cosmic ray flux at the spacecraft's position. Although the direct counting of the primary cosmic rays can be rejected by anticoincident shields, secondary production cannot be. Secondary production of gamma rays and neutrons in the instrument, the spacecraft, and the earth's atmospheric are recorded as background. A 30 day data base of 65.5 second records has been used to show that some of the background rates observed on the Gamma Ray Spectrometer can be ordered to a precision on the order of 1 percent This ordering is done with only two parameters, namely the cosmic ray vertical cutoff rigidity and the instrument's pointing angle with respect to the earth's center. This result sets limits on any instrumental instability and also on any temporal or spatial changes in the background radiation field.

  16. One year of AGILE Terrestrial Gamma-ray Flashes detection in the enhanced configuration

    Science.gov (United States)

    Marisaldi, Martino; Ursi, Alessandro; Argan, Andrea; Tavani, Marco; Labanti, Claudio; Fuschino, Fabio; Campana, Riccardo; Mezentsev, Andrey; Østgaard, Nikolai

    2016-04-01

    At the end of March 2015 the onboard configuration of the AGILE MiniCalorimeter was modified in order to disable the veto signal of the Anti-Coincidence shield. This change was motivated by the need to reduce the dead-time for TGF detection to a minimum. The change resulted in a ten fold improvement in Terrestrial Gamma-ray Flashes (TGFs) detection rate and in a nearly dead-time free TGF sample with events as short as 20 microseconds (M. Marisaldi et al., Geophys. Res. Lett. 42, 2015). Estimates based on the initial period of data acquisition in this enhanced configuration suggested the expected yearly TGF rate to be in the range 800-1000. We present here the updated statistical analysis of the enhanced AGILE TGF sample after one complete year of operations in the enhanced configuration.

  17. Geant4 simulation of the solar neutron telescope at Sierra Negra, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L.X., E-mail: xavier@geofisica.unam.m [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, 04510 D.F. (Mexico); Sanchez, F. [Comision Nacional de Energia Atomica, 1429 Buenos Aires (Argentina); Valdes-Galicia, J.F. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, 04510 D.F. (Mexico)

    2010-02-01

    The solar neutron telescope (SNT) at Sierra Negra (19.0 deg. N, 97.3 deg. W and 4580 m.a.s.l) is part of a worldwide network of similar detectors (Valdes-Galicia et al., (2004)). This SNT has an area of 4 m{sup 2}; it is composed by four 1 mx1 mx30 cm plastic scintillators (Sci). The Telescope is completely surrounded by anti-coincidence proportional counters (PRCs) to separate charged particles from the neutron flux. In order to discard photon background it is shielded on its sides by 10 mm thick iron plates and on its top by 5 mm lead plates. It is capable of registering four different channels corresponding to four energy deposition thresholds: E>30, >60, >90 and >120 MeV. The arrival direction of neutrons is determined by gondolas of PRCs in electronic coincidence, four layers of these gondolas orthogonally located underneath the SNT, two in the NS direction and two in the EW direction. We present here simulations of the detector response to neutrons, protons, electrons and gammas in range of energies from 100 to 1000 MeV. We report on the detector efficiency and on its angular resolution for particles impinging the device with different zenith angles. The simulation code was written using the Geant4 package (Agostinelli et al., (2003)), taking into account all relevant physical processes.

  18. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  19. Assessment of backgrounds of the ANAIS experiment for dark matter direct detection

    CERN Document Server

    Amare, J; Cuesta, C; Garcia, E; Martinez, M; Olivan, M A; Ortigoza, Y; de Solorzano, A Ortiz; Puimedon, J; Sarsa, M L; Villar, J A; Villar, P

    2016-01-01

    A large effort has been carried out to characterize the background of sodium iodide crystals within the ANAIS (Annual modulation with NaI Scintillators) project. In this paper, the background models developed for three 12.5-kg NaI(Tl) detectors produced by Alpha Spectra Inc. and operated at the Canfranc Underground Laboratory are presented together with an evaluation of the background prospects for the full experiment. Measured spectra from threshold to high energy in different conditions are well described by the models based on quantified activities. At the region of interest, crystal bulk contamination is the dominant background source. Contributions from 210Pb, 40K, 22Na and 3H are the most relevant. Those from 40K and 22Na could be efficiently suppressed thanks to anticoincidence operation in a crystals matrix or inside a Liquid Scintillator Veto (LSV), while that from 210Pb has been reduced by improving crystal production methods and 3H production could be reduced by shielding against cosmic rays during...

  20. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    CERN Document Server

    Struminsky, Alexei

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  1. High Energy Telescope With Neutron Detection Capabilities (HETn)

    Science.gov (United States)

    Posner, A.; Wimmer-Schweingruber, R. F.; Böhm, E.; Böttcher, s.; Connell, J. J.; Dröge, W.; Hassler, D. M.; Heber, B.; Lopate, C.; McKibben, R. B.; Steigies, C. T.

    2007-01-01

    The High-Energy Telescope with neutron detection capabilities (HETn) for the Solar Orbiter will measure and resolve energetic charged particles, in particular electrons, proton, and heavy ions up to Fe including selected isotopes up to energies equivalen to the penetration depth of 100 MeV protons. The full active anti-coincidence encloses detectors sensitive to 1-30 MeV neutrons and 0.5-5 MeV X-/gamma-rays. The sensor consists of the angle-detecting inclined sensors (ADIS) solid-state detector detector telescope utilizing a shared calorimeter for total energy and X-/gamma-ray measurement. A separate plastic detector provides sensitivity to neutrons via the recoil process. HETn will open a new window on solar eruptive events with its neutron detection capability and allows determination of high-energy close to the Sun. Timing and spectral information on neutral particles (neutrons and X-/gamma rays ), on relativistic electrons and high-energy heavy ions will provide new insights into the processes which accelerate particles to high energies at the sun and into transport processes between the source and the spacecraft in the near-Sun environment.

  2. A NIM (Nuclear Instrumentation Module) system conjugated with optional input for pHEMT amplifier for beta and gamma spectroscopy; Um sistema de modulos NIM conjugados com entrada opcional por amplificador pHEMT para espectroscopia beta e gama

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Barbara; Lüdke, Everton, E-mail: barbarakonradmev@gmail.com, E-mail: eludke@smail.ufsm.br [Universidade Federal de Santa Maria (LAE/UFSM), RS (Brazil). Lab. de Astrofisica e Eletronica

    2014-07-01

    This work presents a high speed NIM module (Nuclear Instrumentation Module) to detect radiation, gamma and muons, as part of a system for natural radiation monitoring and of extraterrestrial origin. The subsystem developed consists of a preamplifier and an integrated SCA (Single Channel Analyzer), including power supplies of ± 12 and ± 24V with derivations of +3.6 and ± 5V. The single channel analyzer board, consisting of discrete logic components, operating in window modes, normal and integral. The pulse shaping block is made up of two voltage comparators working at 120 MHz with a response time > 60 ns and a logic anticoincidence system. The preamplifier promotes a noise reduction and introduces the impedance matching between the output of anode / diode photomultiplier tubes (PMTs) and subsequent equipment, providing an input impedance of 1MΩ and output impedance of 40 to 140Ω. The shaper amplifier is non-inverting and has variable input capacitance of 1000 pF. The upper and lower thresholds of the SCA are adjustable from 0 to ± 10V, and the equipment is compatible with various types of detectors, like PMTs coupled to sodium iodide crystals. For use with liquid scintillators and photodiodes with crystals (CsI: Tl) is proposed to include a preamplifier circuit pHEMT (pseudomorphic High Electron Mobility Transistor) integrated. Yet, the system presents the possibility of applications for various purposes of gamma spectroscopy and automatic detection of events producing of beta particles.

  3. Radioactivity Backgrounds in ZEPLIN-III

    CERN Document Server

    Araujo, H M; Barnes, E J; Belov, V A; Bewick, A; Burenkov, A A; Currie, V Chepel A; DeViveiros, L; Edwards, B; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Luscher, R; Majewski, P; Neves, A StJ Murphy F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    We examine electron and nuclear recoil backgrounds from radioactivity in the ZEPLIN-III dark matter experiment at Boulby. The rate of electron recoils in the liquid xenon WIMP target is 0.75$\\pm$0.05 events/kg/day/keV at low energy, which represents a 20-fold improvement over the rate observed in the first run of the experiment. Energy and spatial distributions agree with those predicted by component-level Monte Carlo simulations based on measured radiological contamination. Neutron elastic scattering is predicted to yield 3.05$\\pm$0.5 nuclear recoils with energy 5-50 keV per year, which translates to an expectation of 0.4 events in a 1-year dataset in anti-coincidence with the veto detector for realistic signal acceptance. Less obvious background sources are discussed, especially in the context of future experiments. These include contamination of scintillation pulses with Cherenkov light from $\\beta$ activity internal to photomultipliers, which can increase the size and lower the apparent time constant of t...

  4. Study of response of {sup 3}He detectors to monoenergetic neutrons; Etude des reponses des detecteurs a {sup 3}He par des neutrons monoenergetiques

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A. [European Organization for Nuclear Research, Geneva (CERN); Andriamonje, S.; Arnould, H.; Barreau, G.; Bercion, M. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Casagrande, F.; Cennini, P. [European Organization for Nuclear Research, Geneva (CERN); Del Moral, R. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Gonzales, E. [European Organization for Nuclear Research, Geneva (CERN); Lacoste, V.; Pdemay, G.; Pravikoff, M.S. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); TARC Collaboration under leadership of C. Rubbia

    1997-06-01

    In the search of a hybrid system (the coupling of the particle accelerator to an under-critical reactor) for radioactive waste transmutation the TARC (Transmutation by Adiabatic Resonance Crossing) program has been developed. Due to experimental limitations, the time-energy relation at higher neutron energies, particularly, around 2 MeV, which is an important domain for TARC, cannot be applied. Consequently the responses of the {sup 3}He ionization neutron detector developed for TARC experiment have been studied using a fast monoenergetic neutron source. The neutrons were produced by the interaction of the proton delivered by Van de Graaff accelerator of CENBG. The originality of the detector consists in its structure of three series of electric conductors which are mounted around the anode: a grid ensuring the detector proportionality, a cylindrical suit of alternating positive voltage and grounded wires aiming at eliminating the radial end effects, serving as veto and two cylinders serving as end plugs to eliminate the perpendicular end effects. Examples of anode spectra conditioned (in anticoincidence) by the mentioned vetoes are given. One can see the contribution of the elastic scattering from H and {sup 3}He. By collimating the neutron beam through a borated polyethylene system it was possible to obtain a mapping of the detector allowing the study of its response as a function of the irradiated zones (anode and grid) 2 refs. This paper is related to TRN FR9810178

  5. Gamma rays, electrons and positrons up to 3 TeV with the Fermi Gamma-ray Space Telescope

    CERN Document Server

    Bruel, Philippe

    2012-01-01

    The Fermi Gamma-ray Space Telescope (formerly known as Gamma-ray Large Area Space Telescope, GLAST) was successfully launched on June 11 2008. Its main instrument is the Large Area Telescope (LAT), which detects gamma rays from 20 MeV to more than 300 GeV. It is a pair-conversion telescope with 16 identical towers (tracker and calorimeter), covered by an anti-coincidence detector to reject charged particles. The calorimeter is a hodoscopic array of CsI(Tl) crystals, arranged in 8 alternating orthogonal layers, with a total thickness of 8.6 radiation lengths. In this paper we will present the performance of the LAT, with special attention to the calorimeter, which provides a good energy measurement up to 3 TeV. We will also review some of its scientific results after 4 years of operation, focusing on measurements which extend up to very high energy, such as the spectrum of the extragalactic diffuse emission, the spectrum of cosmic electrons and the positron fraction.

  6. PANGU: a wide field gamma-ray imager and polarimeter

    Science.gov (United States)

    Wu, X.; Walter, R.; Su, M.; Ambrosi, G.; Azzarello, P.; Böttcher, M.; Chang, J.; Chernyakova, M.; Fan, Y.; Farnier, C.; Gargano, F.; Grenier, I.; Hajdas, W.; Mazziotta, M. N.; Pearce, M.; Pohl, M.; Zdziarski, A.

    2016-07-01

    PANGU (the PAir-productioN Gamma-ray Unit) is a gamma-ray telescope with a wide field of view optimized for spectro-imaging, timing and polarization studies. It will map the gamma-ray sky from 10 MeV to a few GeV with unprecedented spatial resolution. This window on the Universe is unique to detect photons produced directly by relativistic particles, via the decay of neutral pions, or the annihilation or decay light from anti-matter and the putative light dark matter candidates. A wealth of questions can be probed among the most important themes of modern physics and astrophysics. The PANGU instrument is a pair-conversion gamma-ray telescope based on an innovative design of a silicon strip tracker. It is light, compact and accurate. It consists of 100 layers of silicon micro-strip detector of 80 x 80 cm2 in area, stacked to height of about 90 cm, and covered by an anticoincidence detector. PANGU relies on multiple scattering effects for energy measurement, reaching an energy resolution between 30-50% for 10 MeV - 1 GeV. The novel tracker will allow the first polarization measurement and provide the best angular resolution ever obtained in the soft gamma ray and GeV band.

  7. A burst of energetic gamma rays. [measured by balloon-borne instruments

    Science.gov (United States)

    Koga, R.; Simnett, G.; White, R. S.

    1974-01-01

    A burst of gamma rays with energies greater than 1 MeV occurring on May 14, 1972, at 201247 UT (151247 local time) was detected during a balloon flight from Palestine, Texas, at a float altitude of 4g/sq cm residual atmosphere. The detector was a tank of liquid scintillator 1m x 0.5 m x 15 cm surrounded by a 0.6 cm plastic scintillator in anticoincidence. The signal was 60 standard deviations above a steady background of 600 counts/sec. The flux was 0.12 (+0.07 or -0.04) gamma/sq cm, and the time integrated flux 20(+11 or -7) gamma/sq cm. Only one such event was seen during the 8 hours of observation in the daytime on May 14 and 15. Two sub-flares in H alpha occurred during the burst, but not coincident with the start time. A detector on the Solrad satellite observed X-rays on all channels 2 minutes after the gamma ray start time. This event is similar to three earlier reported events.

  8. Status of LUMINEU program to search for neutrinoless double beta decay of {sup 100}Mo with cryogenic ZnMoO{sub 4} scintillating bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Bergé, L.; Chapellier, M.; Drillien, A.-A.; Dumoulin, L.; Humbert, V.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Olivieri, E.; Plantevin, O.; Tenconi, M. [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Université Paris-Sud, 91405 Orsay (France); Coron, N.; Redon, T.; Torres, L. [IAS, CNRS, Université Paris-Sud, 91405 Orsay (France); Devoyon, L.; Koskas, F. [CEA, Centre d’Etudes Saclay, Orphée, 91191 Gif-Sur-Yvette Cedex (France); and others

    2015-10-28

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  9. LArGe - Active background suppression using argon scintillation for the GERDA $0\

    CERN Document Server

    Agostini, M; Budjáš, D; Cattadori, C; Gangapshev, A; Gusev, K; Heisel, M; Junker, M; Klimenko, A; Lubashevskiy, A; Pelczar, K; Schönert, S; Smolnikov, A; Zuzel, G

    2015-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m$^3$, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times $10^3$ have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12$-$4.6)$\\cdot 10^{-2}$ cts/(keV$\\cdot$kg$\\cdot$y) (90% C.L.), which is at the level of GERDA Phase I. Fu...

  10. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Ambriola, M.; Barbarino, G.; Barbier, L.M.; Bartalucci, S.; Bazilevskaja, G.; Bellotti, R.; Bertazzoni, S.; Bidoli, V.; Boezio, M.; Bogomolov, E.; Bonechi, L.; Bonvicini, V.; Boscherini, M.; Bravar, U.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellano, M.; Castellini, G.; Christian, E.R.; Ciacio, F.; Circella, M.; D' Alessandro, R.; De Marzo, C.N.; De Pascale, M.P.; Finetti, N.; Furano, G.; Gabbanini, A.; Galper, A.M.; Giglietto, N.; Grandi, M.; Grigorjeva, A.; Guarino, F.; Hof, M.; Koldashov, S.V.; Korotkov, M.G.; Krizmanic, J.F.; Krutkov, S.; Lund, J.; Marangelli, B.; Marino, L.; Menn, W.; Mikhailov, V.V.; Mirizzi, N.; Mitchell, J.W.; Mocchiutti, E.; Moiseev, A.A.; Morselli, A.; Mukhametshin, R.; Ormes, J.F.; Osteria, G.; Ozerov, J.V.; Papini, P.; Pearce, M.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Salsano, A.; Schiavon, P.; Scian, G.; Simon, M.; Sparvoli, R.; Spataro, B.; Spillantini, P.; Spinelli, P.; Stephens, S.A.; Stochaj, S.J.; Stozhkov, Y.; Straulino, S. E-mail: straulino@fi.infi.it; Streitmatter, R.E.; Taccetti, F.; Tesi, M.; Vacchi, A.; Vannuccini, E.; Vasiljev, G.; Vignoli, V.; Voronov, S.A.; Yurkin, Y.; Zampa, G.; Zampa, N

    2002-02-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e{sup +}) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10{sup -7} in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discussed here.

  11. A Calorimetric Search on Double Beta Decay of 130Te

    CERN Document Server

    Arnaboldi, C; Bucci, C; Capelli, S; Cremonesi, O; Fiorini, Ettore; Giuliani, A; Nucciotti, A; Pedretti, M; Pobes, C; Pavan, M M; Pessina, G; Pirro, S; Previtali, E; Sisti, M; Vanzini, M

    2003-01-01

    We report on the final results of a series of experiments on double decay of 130Te carried out with an array of twenty cryogenic detectors. The set-up is made with crystals of TeO2 with a total mass of 6.8 kg, the largest operating one for a cryogenic experiment. Four crystals are made with isotopically enriched materials: two in 128Te and two others in 130Te. The remaining ones are made with natural tellurium, which contains 31.7 % and 33.8 % 128Te and 130Te, respectively. The array was run under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. By recording the pulses of each detector in anticoincidence with the others a 90 % C.L. lower limit of 2.1 x 10^{23}$ years has been obtained at the 90 % C.L. on the lifetime for neutrinoless double beta decay of 130Te. In terms of effective neutrino mass this is the most restrictive limit in direct experiments, after those obtained with Ge diodes. Limits on other lepton violating decays of 130Te and to the neutrinoless double be...

  12. PoGOLite - A High Sensitivity Balloon-Borne Soft Gamma-ray Polarimeter

    CERN Document Server

    Kamae, Tuneyoshi; Arimoto, Makoto; Axelsson, Magnus; Bettolo, Cecilia Marini; Björnsson, Claes-Ingvar; Bogaert, Gilles; Carlson, Per; Craig, William; Ekeberg, Tomas; Engdegård, Olle; Fukazawa, Yasushi; Gunji, Shuichi; Hjalmarsdotter, Linnea; Iwan, Bianca; Kanai, Yoshikazu; Kataoka, Jun; Kawai, Nobuyuki; Kazejev, Jaroslav; Kiss, Mózsi; Klamra, Wlodzimierz; Larsson, Stefan; Madejski, Grzegorz; Mizuno, Tsunefumi; Ng, Johnny; Pearce, Mark; Ryde, Felix; Suhonen, Markus; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takuya; Thurston, Timothy; Ueno, Masaru; Varner, Gary; Yamamoto, Kazuhide; Yamashita, Yuichiro; Ylinen, Tomi; Yoshida, Hiroaki

    2007-01-01

    We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200mCrab point-like sources between 25 and 80keV in one 6 hour flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high-energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles has been the biggest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow FOV (1.25msr) obtained with well-type phoswich detector technology and the use of thick background shields enhance the detected S/N ratio. Event selections based on recorded phototube wavefor...

  13. The High Resolution Microcalorimeter Soft X-ray Spectrometer for the Astro-H Mission

    Science.gov (United States)

    Kelley, Richard L.; Mitsuda, K.; International SXS Team

    2013-04-01

    We are developing the Soft X-Ray Spectrometer (SXS) for the JAXA Astro-H mission. The instrument is based on a 36-pixel array of semiconductor micro calorimeters that provides high spectral resolution over the 0.3-12 keV energy band at the focus of a high throughput, grazing-incidence x-ray mirror, giving a 3 x 3 arcmin field of view and more than 200 cm2 of collecting area at 6 keV. The instrument is a collaboration between the JAXA Institute of Space and Astronautical Science and their partners in Japan, the NASA/Goddard Space Flight Center, the University of Wisconsin, the Space Research Organization of the Netherlands, and Geneva University. The principal components of the spectrometer are the microcalorimeter detector system, low-temperature anticoincidence detector, 3-stage ADR and dewar. The dewar is a long-life, hybrid design with a superfluid helium cryostat, Joule-Thomson cooler, and Stirling coolers. The instrument is capable of achieving 4-5 eV resolution across the array and is designed to operate for at least three years in orbit, and can operate either without liquid helium or the cooling power of the Joule-Thomson cooler. In this presentation we describe the design and status of the Astro-H/SXS instrument.

  14. Preliminary results from the high resolution gamma-ray and hard x-ray spectrometer (HIREGS) '92-'93 long duration balloon flight in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Lin, R.P.; Feffer, P.T.; Slassi, S.; Whiteside, W.; Smith, D.M.; Hurley, K.C.; Kane, S.R.; McBride, S.; Primbsch, J.H.; Youssefi, K.; Zimmer, G. (Univ. of California, Berkeley, CA (United States)); Pelling, R.M. (Univ. of California, San Diego, CA (United States)); Cotin, F.; Lavigne, J.M.; Rouaix, G.; Vedrenne, G.; Pehl, R.; Cork, C.; Luke, P.; Madden, N.; Malone, D.

    1993-01-01

    HIREGS consists of an array of twelve 6.7 cm diameter x 6.1 cm long liquid nitrogen-cooled segmented germanium detectors enclosed in a bismuth germanate (BGO) active anticoincidence shield. A CsI front collimator defines a 24 degree FWHM field-of-view. The energy resolution is one to several keV FWHM over the instrument energy range of 20 keV to 16 MeV. HIREGS was flown on a 10-day (31 Dec 92--10 Jan 93) circumpolar balloon flight from McMurdo Station, Antarctica. 30.5 hours of observation were obtained between 31 Dec 0400-2130 UT and 1 Jan 0600-1900 UT. Because the Sun was inactive during the flight, only one small flare was detected on 31 Dec 1933 UT. Excellent high resolution [open quotes]quiet[close quotes] Sun hard X-ray and gamma-ray spectra were obtained. These provide stringent upper limits for solar gamma-ray line and hard X-ray and gamma-ray continuum emission, which in turn can constrain the storage and/or continuous acceleration of ions and electrons by the Sun.

  15. The Counting and Triggers Signals Formation System for Gamma-telescope GAMMA-400

    Science.gov (United States)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Chasovikov, E. N.; Galper, A. M.; Kheymits, M. D.; Murchenko, A. E.; Yurkin, Y. T.

    Gamma-telescope GAMMA-400 consists of anticoincidence system (polyvinylyltoluene BC-408 based top and lateral detector sections, the converter-tracker with thickness of ∼1 X0 (where X0 is radiation length), time-of-flight system (two sections composed of BC-408 detectors with 50 cm distance between), two calorimeters makes of CsI(Tl) crystals (position-sensitive and electromagnetic. Also it includes neutron detector, two BC-408 based scintillation detectors of the calorimeter, and four BC-408 based lateral detectors of the calorimeter. The total calorimeter thickness is 25 X0 or 1.2 λ0 for vertical incident particles registration and 54 X0 or 2.5 λ0 for laterally incident ones (where λ0 is nuclear interaction length). The counting and triggers signals formation system started the data acquisition and provides particle identification. It used 2 pulses types: fast (t≤10 ns) from BC-408 based scintillation detectors and slow (t≤10 ms) from inorganic ones. Also fast pulses (t∼10 ns) from inorganic calorimeters individual detectors amplitude discriminators are included to this system information processing. Only signals from each detectors system individual detecting units without any summation are used for particle identification. The relationship between γ-quanta and relativistic particles (electrons and protons) energy deposition in GAMMA-400 detectors are discussed. The onboard triggers and trigger markers formation algorithms are described jointly with particles identification methods.

  16. Measuring Neutrons and Gamma Rays on Mars - The Mars Science Laboratory Radiation Assessment Detector MSL/RAD

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Martin, C.; Kortmann, O.; Boehm, E.; Kharytonov, A.; Ehresmann, B.; Hassler, D. M.; Zeitlin, C.; Rad Team

    2010-12-01

    The Mars Science Laboratory (MSL) missions Radiation Assessment Detector (RAD) will measure the radiation environment on the Martian surface. One of the difficult measurements is that of the neutral radiation component consisting of neutrons and gamma rays. Different from Earth, this neutral component contributes substantially to the total dose on the planetary surface, principally because the Martian atmosphere is so thin. The RAD instrument is capable of measuring neutral particles through a combination of sensitive anti-coincidence and organic and inorganic scintillator materials. In this work, we will explain how RAD will measure the neutral particle radiation on Mars and compare with calibration results. The problem of inverting measured neutron and gamma data is a non-trivial task. For all inversions, one generally assumes that the measurement process can be described by a system of linear equations, A ěc{f} = ěc{z}, where the matrix A describes the instrument response function (IRF), ěc{f} the underlying, but unknown, ``real'' physical parameters, and ěc{z} the measured data. The inversion of this deceptively simple-looking set of equations is in fact a key example of an ill-posed or inverse problem. Such problems are notoriously difficult to solve.

  17. A dual purpose Compton suppression spectrometer

    CERN Document Server

    Parus, J; Raab, W; Donohue, D

    2003-01-01

    A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

  18. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    CERN Document Server

    Atwood, W B

    2009-01-01

    (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration wit...

  19. Protoexist1

    Science.gov (United States)

    Copete, Antonio; Allen, B.; Hong, J.; Grindlay, J.; Gehrels, N.; Barthelmy, S.; Baker, R.; Apple, J.; Benson, C.; Garson, T.; Krawczynski, H.; McLean, R.; Cook, R.

    2009-01-01

    The ProtoEXIST1 mission, a pathfinder for the EXIST high energy telescope (HET), is slated for a spring 2009 flight out of Ft. Sumner, NM. The ProtoEXIST payload consists of two coded aperture telescopes, each with a 10^ 10^deg field of view and an angular resolution of approximately 10'. One telescope will be outfitted with passive Pb/Sn/Cu rear and side shielding while the other will utilize a rear active CsI anti-coincidence shield and passive side shielding for comparison of background rejection efficiency. The detector plane of each telescope consists of a 8 times 8 large tiled array of 2.04 cm times 2.04 cm CZT detectors, each with thickness of 0.5 cm and a pixilated anode consisting of 2.5 mm pixels. Each detector is read out utilizing the Caltech RADNET ASIC. In total the detector plane of a single telescope measures 16 cm times 16 cm and is sensitive over an energy range of 10 keV up to 500 keV, with an energy resolution of 3.1 keV FWHM at 59 keV. The ProtoEXIST1 flight will validate the use of tiled CZT arrays in flight and pave the way for ProtoEXIST2 which will demonstrate the use of a tiled array of CZT detectors with 0.6 mm pixels.

  20. ProtoEXIST: Advanced Prototype CZT Coded Aperture Telescopes for EXIST

    CERN Document Server

    Allen, Branden; Grindlay, Josh; Barthelmy, Scott D; Baker, Robert G; Gehrels, Neil A; Garson, Trey; Krawwczynski, Henric S; Cook, Walter R; Harrison, Fiona A; Apple, Jeffery A; Ramsey, Brian D; 10.1117/12.857940

    2010-01-01

    {\\it ProtoEXIST1} is a pathfinder for the {\\it EXIST-HET}, a coded aperture hard X-ray telescope with a 4.5 m$^2$ CZT detector plane a 90$\\times$70 degree field of view to be flown as the primary instrument on the {\\it EXIST} mission and is intended to monitor the full sky every 3 h in an effort to locate GRBs and other high energy transients. {\\it ProtoEXIST1} consists of a 256 cm$^2$ tiled CZT detector plane containing 4096 pixels composed of an 8$\\times$8 array of individual 1.95 cm $\\times$ 1.95 cm $\\times$ 0.5 cm CZT detector modules each with a 8 $\\times$ 8 pixilated anode configured as a coded aperture telescope with a fully coded $10^\\circ\\times10^\\circ$ field of view employing passive side shielding and an active CsI anti-coincidence rear shield, recently completed its maiden flight out of Ft. Sumner, NM on the 9th of October 2009. During the duration of its 6 hour flight on-board calibration of the detector plane was carried out utilizing a single tagged 198.8 nCi Am-241 source along with the simult...

  1. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    Science.gov (United States)

    Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge

    2014-04-01

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.

  2. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  3. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    Science.gov (United States)

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.; Nagai, Y.; Hurtado, A.; Musalem, O.; García, R.; Anzorena, M. A.; González, L. X.; Itow, Y.; Sako, T.; Lopez, D.; Sasai, Y.; Munakata, K.; Kato, C.; Kozai, M.; Shibata, S.; Takamaru, H.; Kojima, H.; Watanabe, K.; Tsuchiya, H.; Koi, T.

    2016-11-01

    In this work we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system of the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.

  4. Observation of polarized hard X-ray emission from the Crab by the PoGOLite Pathfinder

    Science.gov (United States)

    Chauvin, M.; Florén, H.-G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; Rydström, S.; Takahashi, H.; Iyudin, A.; Arimoto, M.; Fukazawa, Y.; Kataoka, J.; Kawai, N.; Mizuno, T.; Ryde, F.; Tajima, H.; Takahashi, T.; Pearce, M.

    2016-02-01

    We have measured the linear polarization of hard X-ray emission from the Crab in a previously unexplored energy interval, 20-120 keV. The introduction of two new observational parameters, the polarization fraction and angle stands to disentangle geometrical and physical effects, thereby providing information on the pulsar wind geometry and magnetic field environment. Measurements are conducted using the PoGOLite Pathfinder - a balloon-borne polarimeter. Polarization is determined by measuring the azimuthal Compton scattering angle of incident X-rays in an array of plastic scintillators housed in an anticoincidence well. The polarimetric response has been characterized prior to flight using both polarized and unpolarized calibration sources. We address possible systematic effects through observations of a background field. The measured polarization fraction for the integrated Crab light curve is 18.4^{+9.8}_{-10.6} per cent, corresponding to an upper limit (99 per cent credibility) of 42.4 per cent, for a polarization angle of (149.2 ± 16.0)°.

  5. Remote Nuclear Spectrometer for Martian Moon Exploration

    Science.gov (United States)

    Hasebe, Nobuyuki; Okada, Tatsuaki; Kameda, Shingo; Karouji, Yuzuru; Amano, Yoshiharu; Shibamura, Eido; Cho, Yuichiro; Ohta, Toru; Naito, Masayuki; Kusano, Hiroki; Nagaoka, Hiroshi; Yoshida, Kohei; Adachi, Takuto; Kuno, Haruyoshi; Martínez-Frías, Jesus; Nakamura, Tomoki; Takashi, Mikouchi; Shimizu, Sota; Shirai, Naoki; Fagan, Timothy J.; Hitachi, Akira; Matias Lopes, José A.; Miyamoto, Hideaki; Niihara, Takafumi; Kim, Kyeong

    2016-07-01

    The Gamma-ray and Neutron Spectrometer (GNS) on the Mars Moon eXploration (MMX) forms part of the geochemistry investigation. The remote observation from spacecraft orbit provides us global information of the Moons showing evidence of their origin. The Gamma-Ray Sensor (GS) detects gamma-ray emissions in the 0.2- to 10-MeV energy range with an energy resolution of plastic scintillation detector surrounding the main detector as an anticoincidence detector. The HPGe crystal is cooled by a compact mechanical cooler below 90K. The Neutron Sensor (NS) consists of a Li-glass scintillator to measure thermal neutrons, and a borated plastic scintillator to measure epithermal and fast neutrons. The GNS measures elements such as O, Mg, Si, Ca, Ti, Fe, K, Th and volatile elements such as H, S and Cl. The GNS shows distinct features of light weight, low power, excellent energy resolution and high hydrogen-sensitivity. The high concentration of such volatile elements as H and S in their Moons shows the evidence that they are primordial bodies in the solar system and low values of Ca/F and Si/Fe-ratios also suggest the primordial origin. The present status of the GNS development will be reviewed.

  6. PoGOLite measurement of Crab polarisation and future plans

    Science.gov (United States)

    Pearce, Mark

    2016-07-01

    (For the PoGOLite Collaboration) The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter designed for the observation of bright, ~1 Crab, sources. Polarisation is determined by measuring the azimuthal Compton scattering angle of incident X-rays in an array of plastic scintillators housed in an BGO anticoincidence well. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013 resulting in a near-circumpolar flight of two weeks duration. The linear polarisation of hard X-ray emissions from the Crab was measured in a previously unexplored energy interval, 20-120 keV. The polarimetric response was characterised prior to flight using both polarised and unpolarised calibration sources. Systematic effects were addressed through observations of a background field. An upgraded polarimeter, PoGO+, is scheduled to fly in summer 2016 from Esrange. Results from the 2013 Pathfinder flight and prospects for the 2016 flight will be discussed.

  7. A Study of Active Shielding Optimized for 1-80 keV Wide-Band X-ray Detector in Space

    CERN Document Server

    Furuta, Yoshihiro; Hiraga, Junko S; Sasano, Makoto; Murakami, Hiroaki; Nakazawa, Kazuhiro

    2015-01-01

    Active shielding is an effective technique to reduce background signals in hard X-ray detectors and to enable observing darker sources with high sensitivity in space. Usually the main detector is covered with some shield detectors made of scintillator crystals such as BGO (Bi$_4$Ge$_3$O$_{12}$), and the background signals are filtered out using anti-coincidence among them. Japanese X-ray observing satellites "Suzaku" and "ASTRO-H" employed this technique in their hard X-ray instruments observing at > 10 keV. In the next generation X-ray satellites, such as the NGHXT proposal, a single hybrid detector is expected to cover both soft (1-10 keV) and hard (> 10 keV) X-rays for effectiveness. However, present active shielding is not optimized for the soft X-ray band, 1-10 keV. For example, Bi and Ge, which are contained in BGO, have their fluorescence emission lines around 10 keV. These lines appear in the background spectra obtained by ASTRO-H Hard X-ray Imager, which are non-negligible in its observation energy b...

  8. Hard X-ray Detector (HXD) on Board Suzaku

    CERN Document Server

    Takahashi, T; Endo, M; Endo, Y; Ezoe, Y; Fukazawa, Y; Hamaya, M; Hirakuri, S; Hong, S; Horii, M; Inoue, H; Isobe, N; Itoh, T; Iyomoto, N; Kamae, T; Kasama, D; Kataoka, J; Kato, H; Kawaharada, M; Kawano, N; Kawashima, K; Kawasoe, S; Kishishita, T; Kitaguchi, T; Kobayashi, Y; Kokubun, M; Kotoku, J; Kouda, M; Kubota, A; Kuroda, Y; Madejski, G; Makishima, K; Masukawa, K; Matsumoto, Y; Mitani, T; Miyawaki, R; Mizuno, T; Mori, K; Mori, M; Murashima, M; Murakami, T; Nakazawa, K; Niko, H; Nomachi, M; Okada, Y; Ohno, M; Oonuki, K; Ota, N; Ozawa, H; Sato, G; Shinoda, S; Sugiho, M; Suzuki, M; Taguchi, K; Takahashi, H; Takahashi, I; Takeda, S; Tamura, K; Tamura, T; Tanaka, T; Tanihata, C; Tashiro, M; Terada, Y; Tominaga, S; Uchiyama, Y; Watanabe, S; Yamaoka, K; Yanagida, T; Yonetoku, D

    2006-01-01

    The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from 10 keV to 600 keV by combination of silicon PIN diodes and GSO scintillators. The HXD is designed to achieve an extremely low in-orbit back ground based on a combination of new techniques, including the concept of well-type active shield counter. With an effective area of 142 cm^2 at 20 keV and 273 cm2 at 150 keV, the background level at the sea level reached ~1x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 30 keV for the PI N diodes, and ~2x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 100 keV, and ~7x10^{-6} cts s^{-1} cm^{-2} keV^{-1} at 200 keV for the phoswich counter. Tight active shielding of the HXD results in a large array of guard counters surrounding the main detector parts. These anti-coincidence counters, made of ~4 cm thick BGO crystals, have a large effective area for sub-MeV to MeV gamma-rays. They work as an excellent gamma-ray burst monitor with limited angular resolution (~5 degree). The on-board signal-processing system and th...

  9. SETI Observations of Exoplanets with the Allen Telescope Array

    CERN Document Server

    Harp, G R; Tarter, Jill C; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wimberly, M K R; Ross, John; Barott, W C; Ackermann, R F; Blair, Samantha

    2016-01-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA) for about 19000 hours from May 2009 to Dec 2015. This search focused on narrow-band radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their Habitable Zone. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1-9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrow-band (0.7-100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from -0.3 to 0.3 m/s^2. A total of 1.9 x 10^8 unique signals requiring immediate follow-up were detected in observations covering more than 8 x 10^9 star-MHz. We detected no persistent signals from extrate...

  10. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    CERN Document Server

    Adriani, O; Barbarino, G C; Barbier, L M; Bartalucci, S; Bazilevskaja, G; Bellotti, R; Bertazzoni, S; Bidoli, V; Boezio, M; Bogomolov, E A; Bonechi, L; Bonvicini, V; Boscherini, M; Bravar, U; Cafagna, F; Campana, D; Carlson, Per J; Casolino, M; Castellano, M; Castellini, G; Christian, E R; Ciacio, F; Circella, M; D'Alessandro, R; De Marzo, C N; De Pascale, M P; Finetti, N; Furano, G; Gabbanini, A; Galper, A M; Giglietto, N; Grandi, M; Grigorieva, A; Guarino, F; Hof, M; Koldashov, S V; Korotkov, M G; Krizmanic, J F; Krutkov, S; Lund, J; Marangelli, B; Marino, L; Menn, W; Mikhailov, V V; Mirizzi, N; Mitchell, J W; Mocchiutti, E; Moiseev, A A; Morselli, A; Mukhametshin, R; Ormes, J F; Osteria, G; Ozerov, J V; Papini, P; Pearce, M; Perego, A; Piccardi, S; Picozza, P; Ricci, M; Salsano, A; Schiavon, Paolo; Scian, G; Simon, M; Sparvoli, R; Spataro, B; Spillantini, P; Spinelli, P; Stephens, S A; Stochaj, S J; Stozhkov, Yu I; Straulino, S; Streitmatter, R E; Taccetti, F; Tesi, M; Vacchi, A; Vannuccini, E; Vasiljev, G; Vignoli, V; Voronov, S A; Yurkin, Y; Zampa, G; Zampa, N

    2002-01-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e sup +) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10 sup - sup 7 in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discus...

  11. Photospheric radius expansion in superburst precursors from neutron stars

    CERN Document Server

    Keek, L

    2012-01-01

    Thermonuclear runaway burning of carbon is in rare cases observed from accreting neutron stars as day-long X-ray flares called superbursts. In the few cases where the onset is observed, superbursts exhibit a short precursor burst at the start. In each instance, however, the data was of insufficient quality for spectral analysis of the precursor. Using data from the propane anti-coincidence detector of the PCA instrument on RXTE, we perform the first detailed time resolved spectroscopy of precursors. For a superburst from 4U 1820-30 we demonstrate the presence of photospheric radius expansion. We find the precursor to be 1.4-2 times more energetic than other short bursts from this source, indicating that the burning of accreted helium is insufficient to explain the full precursor. Shock heating would be able to account for the lacking energy. We argue that this precursor is a strong indication that the superburst starts as a detonation, and that a shock induces the precursor. Furthermore, we employ our techniq...

  12. Improving Charge-Collection Efficiency of Kyoto's SOI Pixel Sensors

    CERN Document Server

    Matsumura, Hideaki; Tanaka, Takaaki; Takeda, Ayaki; Ito, Makoto; Ohmura, Syunichi; Arai, Yasuo; Mori, Koji; Nishioka, Yusuke; Takenaka, Ryota; Kohmura, Takayoshi

    2015-01-01

    We have been developing X-ray SOIPIXs for next-generation satellites for X-ray astronomy. Their high time resolution ($\\sim10~\\mu$s) and event-trigger-output function enable us to read out without pile-ups and to use anti-coincidence systems. Their performance in imaging spectroscopy is comparable to that in the CCDs. A problem in our previous model was degradation of charge-collection efficiency (CCE) at pixel borders. We measured the response in the sub-pixel scale, using finely collimated X-ray beams at $10~\\mu$m\\Phi$ at SPring-8, and investigated the non-uniformity of the CCE within a pixel. We found that the X-ray detection efficiency and CCE degrade in the sensor region under the pixel circuitry placed outside the buried p-wells (BPW). A 2D simulation of the electric fields shows that the isolated pixel-circuitry outside the BPW creates local minimums in the electric potentials at the interface between the sensor and buried oxide layers. Thus, a part of signal charge is trapped there and is not collecte...

  13. EPHIN anisotropy measurement capability

    Science.gov (United States)

    Banjac, S.; Gómez-Herrero, R.; Heber, B.; Kühl, P.; Terasa, C.

    2015-08-01

    The EPHIN instrument (Electron Proton Helium INstrument) forms a part of the COSTEP experiment (COmprehensive SupraThermal and Energetic Particle Analyzer) within the CEPAC collaboration on board of the SOHO spacecraft (SOlar and Heliospheric Observatory). The EPHIN sensor is a stack of six solid-state detectors surrounded by an anticoincidence. It measures energy spectra of electrons in the range 250 keV to > 8.7 MeV, and hydrogen and helium isotopes in the range 4 MeV/nuc to > 53 MeV/nuc. In order to improve the isotopic resolution, the first two detectors have been segmented: 5 sectors form a ring enclosing a central segment. This does not only allow to correct the energy-losses for particles with different path-lengths in the detectors, but allows also an estimation of the arrival direction with respect to the sensor axis. For that purpose we developed a method that allows for inferring the angle of incidence and angular distribution for ions. Here we describe the method and apply it to the November, 3, 2011 event. Due to the lack of magnetic field measurements and the restricted view cone of 83°, it is not possible to derive a real pitch angle distribution during this event. However, we can show that the particle distribution is anisotropic for several hours with a symmetry axis that deviates by about 20° from the sensor axis.

  14. Distinguishing Photons from Muons using the Time-Over-Threshold in the Tracker from the Gamma Ray Large Area Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, Renata A

    2003-09-23

    The Gamma Ray Large Area Space Telescope, GLAST, is a large scientific instrument designed to study gamma ray activity in space. GLAST is designed to detect gamma rays with greater energy and angular resolution then previously done by gamma ray telescopes. A portion of GLAST is the Large Area Space Telescope (LAT), which is made up of sixteen identical towers encased in an anticoincidence detector. The source of the data for this study is a simulation of one of these towers. The LAT will detect gamma rays by using a technique known as pair-conversion. When a gamma ray slams into a layer of tungsten in the tower it creates a pair of subatomic particles (an electron and its anti-matter counterpart, a positron). Where this pair hits the detector has an effect on the photon's signal distribution. When a specific series of cuts are done a difference in the gamma ray signal as compared to the background signal is seen. This shape difference will ideally be the crux of detecting gamma rays. This study is a small portion of the Total preparations done to enhance the gamma ray signal coming into the detector.

  15. Search for Cosmic-Ray Antiparticles with Balloon-borne and Space-borne Experiments

    CERN Document Server

    von Doetinchem, Ph

    2009-01-01

    This thesis discusses two different approaches for the measurement of cosmic-ray antiparticles in the GeV to TeV energy range. The first part of this thesis discusses the prospects of antiparticle flux measurements with the proposed PEBS detector. The project allots long duration balloon flights at one of Earth's poles at an altitude of 40 km. GEANT4 simulations were carried out which determine the atmospheric background and attenuation especially for antiparticles. The second part covers the AMS-02 experiment which will be installed in 2010 on the International Space Station at an altitude of about 400 km for about three years to measure cosmic rays without the influence of Earth's atmosphere. The present work focuses on the anticoincidence counter system (ACC). The ACC is needed to reduce the trigger rate during periods of high fluxes and to reject external particles crossing the tracker from the side or particles resulting from interactions within the detector which would otherwise disturb the clean charge...

  16. In-orbit background of X-ray microcalorimeters and its effects on observations

    CERN Document Server

    Lotti, S; Macculi, C; Mineo, T; Natalucci, L; Perinati, E; Piro, L; Federici, M; Martino, B

    2014-01-01

    Methods.There are no experimental data about the background experienced by microcalorimeters in the L2 orbit, and thus the particle background levels were calculated by means of Monte Carlo simulations: we considered the original design configuration and an improved configuration aimed to reduce the unrejected background, and tested them in the L2 orbit and in the low Earth orbit, comparing the results with experimental data reported by other X-ray instruments.To show the results obtainable with the improved configuration we simulated the observation of a faint, high-redshift, point source (F[0.5-10 keV]~6.4E-16 erg cm-2 s-1, z=3.7), and of a hot galaxy cluster at R200 (Sb[0.5-2 keV]=8.61E-16 erg cm-2 s-1 arcmin-2,T=6.6 keV). Results.First we confirm that implementing an active cryogenic anticoincidence reduces the particle background by an order of magnitude and brings it close to the required level.The implementation and test of several design solutions can reduce the particle background level by a further ...

  17. The first demonstration of the concept of “narrow-FOV Si/CdTe semiconductor Compton camera”

    Energy Technology Data Exchange (ETDEWEB)

    Ichinohe, Yuto, E-mail: ichinohe@astro.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Uchida, Yuusuke; Watanabe, Shin [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Edahiro, Ikumi [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hayashi, Katsuhiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Kawano, Takafumi; Ohno, Masanori [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohta, Masayuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Takeda, Shin' ichiro [Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Fukazawa, Yasushi [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Katsuragawa, Miho [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakazawa, Kazuhiro [University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Odaka, Hirokazu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Tajima, Hiroyasu [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601 (Japan); Takahashi, Hiromitsu [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); and others

    2016-01-11

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60–600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm{sup 2} meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  18. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    CERN Document Server

    Ichinohe, Yuto; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin'ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki

    2015-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed onboard the {\\it ASTRO-H} satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600~keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10\\% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75\\% of the signal...

  19. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    Science.gov (United States)

    Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki

    2016-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  20. Université de Genève | Séminaire de physique corpusculaire | 8 May

    CERN Multimedia

    2013-01-01

    The PAMELA mission: more than six years of Cosmic Rays investigation, Dr Francesco Cafagna, Bari University and INFN.   Wednesday 8 May, 11:15 am Science III, Auditoire 1S081 30, quai Ernest-Ansermet, 1211 Genève 4 Abstract: The PAMELA mission major scientific objective is the measurements of Cosmic Rays energy spectra, with special focus on the antiparticles, i.e. antiprotons and positrons, ones. The PAMELA apparatus is a satellite borne magnetic spectrometer and comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, and shower tail catcher scintillator. It has been more than six years that the PAMELA mission is taking data in space, on board of the russian satellite Resurs-DK. Important results have been obtained on the positron and antiproton abundance and spectra. Moreover new results have been obtained on the composition of the charged cosmic radiation that challenge our current und...

  1. Balloon-borne hard X-ray polarimetry with PoGOLite

    CERN Document Server

    ,

    2012-01-01

    PoGOLite is a hard X-ray polarimeter operating in the 25-100 keV energy band. The instrument design is optimised for the observation of compact astrophysical sources. Observations are conducted from a stabilised stratospheric balloon platform at an altitude of approximately 40 km. The primary targets for first balloon flights of a reduced effective area instrument are the Crab and Cygnus-X1. The polarisation of incoming photons is determined using coincident Compton scattering and photo-absorption events reconstructed in an array of plastic scintillator detector cells surrounded by a bismuth germanate oxide (BGO) side anticoincidence shield and a polyethylene neutron shield. A custom attitude control system keeps the polarimeter field-of-view aligned to targets of interest, compensating for sidereal motion and perturbations such as torsional forces in the balloon rigging. An overview of the PoGOLite project is presented and the outcome of the ill-fated maiden balloon flight is discussed.

  2. Exceptional flaring activity of the anomalous X-ray pulsar 1E 1547.0-5408

    CERN Document Server

    Savchenko, V; Beckmann, V; Produit, N; Walter, R

    2009-01-01

    (Abridged) We studied an exceptional period of activity of the anomalous X-ray pulsar 1E 1547.0-5408 in January 2009, during which about 200 bursts were detected by INTEGRAL. The major activity episode happened when the source was outside the field of view of all the INTEGRAL instruments. But we were still able to study the properties of 84 bursts detected simultaneously by the anti-coincidence shield of the spectrometer SPI and by the detector of the imager ISGRI. We find that the luminosity of the 22 January 2009 bursts of 1E 1547.0-5408 was > 1e42 erg/s. This luminosity is comparable to that of the bursts of soft gamma repeaters (SGR) and is at least two orders of magnitude larger than the luminosity of the previously reported bursts from AXPs. Similarly to the SGR bursts, the brightest bursts of 1E 1547.0-5408 consist of a short spike of ~100 ms duration with a hard spectrum, followed by a softer extended tail of 1-10 s duration, which occasionally exhibits pulsations with the source spin period of ~2 s. ...

  3. The Student Experiment on the GEMS Mission

    Science.gov (United States)

    Allured, Ryan; Kaaret, Philip; Prieskorn, Zachary; Maxwell, Alicia

    2009-11-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) is an exciting new mission that will make X-ray polarization measurements of a large number of objects of different classes. The main instrument is sensitive in the 2-10keV band. Students at the University of Iowa are currently building a Bragg Reflection Polarimeter (BRP) that will supplement the main instrument by providing sensitivity at 500eV. The BRP consists of a multilayer crystal reflector, a proportional counter, and electronics. The multilayer crystal will be used to reflect the soft X-rays from the telescope beam to the proportional counter. In addition to having a high reflectivity at 500eV, the reflector must transmit the high-energy X-rays efficiently, so as not to interfere with the main instrument. The proportional counter will use charge division to sense position in one dimension, and will contain anti-coincidence anodes to reject background events. The BRP will make polarization measurements by measuring the intensity of observed radiation as the spacecraft rotates around the telescope axis. The primary use for low energy polarization measurements is to fix the inclination angle of the accretion disks of black holes.

  4. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, M., E-mail: ohno@hep01.hepl.hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y. [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); and others

    2016-09-21

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5–80 keV) and soft gamma-rays (60–600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector. - Highlights: • A detail of development of signal processing system for ASTRO-H is presented. • Digital filer with FPGA instead of discrete analog circuit is applied. • Expected performance is verified after integration of the satellite.

  5. Gamma ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model Overview

    CERN Document Server

    Thompson, D J; Williams, S; Grove, J E; Mizuno, T; Sadrozinski, H F W

    2002-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (>20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under c...

  6. The Solar Electron And Proton Telescope (sept)

    Science.gov (United States)

    Falkner, P.; Johlander, B.; Mueller-Mellin, R.; Sanderson, T.; Habinc, S.

    The Solar Electron and Proton Telescope consists of two dual double-ended mag- net/foil particle telescopes which cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The instrument utilizes an ASIC-PDFE (Particle Detection Front End), which provides low noise charge sensi- tive pre-amplifier, filters, pulse shaper, 8-bit ADC and anti-coincidence electronics for a single solid-state detector. The counts are accumulated in 256 linear bins on a radia- tion hardened SRAM under control of an FPGA and read out once every minute by the supervising DPU. The FPGA provides the possibility of quasi-logarithmic binning be- fore transferring the data to the main DPU. A simple ramp pulser provides electronic in-flight instrument calibration and testing. The complete instrument with 4 complete channels has a mass of 500 g and consumes 500 mW of power. The maximum count rate is 250 ksamples per second per channel. The instrument is to be flown on the Solar Terrestrial Relations Observatory (STEREO) mission with intended launch in 2005. The talk describes the technical implementation of the instrument.

  7. GRB Simulations in GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Omodei, Nicola; /INFN, Pisa; Battelino, Milan; /Stockholm Observ.; Komin, Nukri; /Montpellier U.; Longo, Francesco; /INFN, Trieste /Trieste U.; McEnery, Julie; /NASA, Goddard; Ryde, Felix; /Denver U.

    2007-10-22

    The Gamma-ray Large Area Space Telescope (GLAST), scheduled to be launched in fall of 2007, is the next generation satellite for high-energy gamma-ray astronomy. The Large Area Telescope (LAT) is a pair conversion telescope built with a high precision silicon tracker, a segmented CsI electromagnetic calorimeter and a plastic anticoincidence shield. The LAT will survey the sky in the energy range between 20 MeV to more than 300 GeV, shedding light on many issues left open by its highly successful predecessor EGRET. LAT will observe Gamma-Ray Bursts (GRB) in an energy range never explored before; to tie these frontier observations to the better-known properties at lower energies, a second instrument, the GLAST Burst Monitor (GBM) will provide important spectra and timing in the 10 keV to 30 MeV range. We briefly present the instruments onboard the GLAST satellite, their synergy in the GRB observations and the work done so far by the collaboration in simulation, analysis, and GRB sensitivity estimation.

  8. Installation of a muon veto for low background gamma spectroscopy at the LBNL low-background facility

    Science.gov (United States)

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Chan, Y. D.

    2013-10-01

    An active veto system consisting of plastic scintillation panels was installed outside the Pb shielding of a 115% n-type HPGe detector in an effort to reduce background continuum generated by cosmic ray muons on the surface. The Low Background Facility at the Lawrence Berkeley National Laboratory performs low level assay (generally of primordial U, Th, K) of candidate construction materials for experiments that require a high level of radiopurity. The counting is performed in two facilities: one local surface site and a remote underground site of approximately 600 m.w.e. For the recently installed veto system at the surface location, the top scintillator panel has been in use for nearly 1 year and the full 3π anticoincidence shield was commissioned into normal counting operations in January 2013. The integrated background from 20 to 3600 keV is reduced overall by a factor of 8, where most of the energy spectrum above 100 keV achieves an overall reduction that varies from 8 to 10. A dramatic improvement of peak-to-background across the entire continuum is observed, greatly enhancing low-level peaks that would otherwise be obscured.

  9. CdZnTe Background Measurement at Balloon Altitudes

    CERN Document Server

    Bloser, P F; Narita, T; Harrison, F

    1998-01-01

    We report results of an experiment conducted in May 1997 to measure CdZnTe background and background reduction schemes in space flight conditions similar to those of proposed hard X-ray astrophysics missions. A 1 cm^2 CdZnTe detector was placed adjacent to a thick BGO anticoincidence shield and flown piggybacked onto the EXITE2 scientific balloon payload. The planar shield was designed to veto background countsproduced by local gamma-ray production in passive material and neutron interactions in the detector. The CdZnTe and BGO were partially surrounded by a Pb-Sn-Cu shield to approximate the grammage of an X-ray collimator, although the field of view was still ~2 pi sr. At an altitude of 127000 feet we find a reduction in background by a factor of 6 at 100 keV. The non-vetoed background is 9 X 10^{-4} cts /cm^2-sec-keV at 100 keV, about a factor of 2 higher than that of the collimated (4.5 deg FWHM) EXITE2 phoswich detector. We compare our recorded spectrum with that expected from simulations using GEANT and...

  10. Detector Assembly and the Ultralow-Temperature Refrigerator for XRS

    Science.gov (United States)

    Porter, F. S.; Dipirro, M. J.; Kelley, R. L.; Pham, T.; Stahle, C. K.; Szymkowiak, A. E.; Tuttle, J. G.; Audley, M. D.; Gendraau, K. C.; Brekosky, R. P.; Gysax, J. D.

    1999-01-01

    The X-ray spectrometer (XRS) on the Japanese Astro-E Spacecraft is the first ultra low temperature space borne instrument. The system utilizes a 900g Ferric Ammonium Alum (FAA) Adiabatic Demagnetization Refrigerator (ADR) with a helium-3 gas gap heat switch to cool the detector assembly to 0.060K. The system operates in a "single shot" configuration allowing the system to remain at its operating temperature for about 40 hours in the lab. The on-orbit performance is expected to be about 35 hours with a 97% duty cycle. The detector assembly for XRS consists of a 32 channel microcalorimeter array bias electronics, thermometry, and an anti-coincidence detector that are attached to the cold stage of the ADR. To thermally Isolate the detector system from the superfluid helium reservoir, the detector system is suspended by Kevlar cords and electrical connection in made by L30, 17-micron diameter, tensioned NbTi leads. The detectors are read out in a source-follower arrangement using FET amplifiers operating at 130K mounted in multiply-thermally-isolated assemblies that also use Kevlar and stainless steel wiring. The design and thermal performance of this system will be discussed and compared to the theoretical limits.

  11. Assessment of backgrounds of the ANAIS experiment for dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Amare, J.; Cebrian, S.; Garcia, E.; Olivan, M.A.; Ortigoza, Y.; Ortiz de Solorzano, A.; Puimedon, J.; Sarsa, M.L.; Villar, J.A.; Villar, P. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Laboratorio Subterraneo de Canfranc, Huesca (Spain); Cuesta, C. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Laboratorio Subterraneo de Canfranc, Huesca (Spain); University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Martinez, M. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Laboratorio Subterraneo de Canfranc, Huesca (Spain); Universita di Roma La Sapienza, Rome (Italy)

    2016-08-15

    A large effort has been carried out to characterize the background of sodium iodide crystals within the Annual modulation with NaI Scintillators (ANAIS) project. In this paper, the background models developed for three 12.5 kg NaI(Tl) scintillators produced by Alpha Spectra Inc. and operated at the Canfranc Underground Laboratory are presented together with an evaluation of the background prospects for the full experiment. Measured spectra from threshold to high energy in different conditions are well described by the models based on quantified activities. At the region of interest, crystal bulk contamination is the dominant background source. Contributions from {sup 210}Pb, {sup 40}K, {sup 22}Na and {sup 3}H are the most relevant. Those from {sup 40}K and {sup 22}Na could be efficiently suppressed thanks to anticoincidence operation in a crystals matrix or inside a liquid scintillator veto (LSV), while that from {sup 210}Pb has been reduced by improving crystal production methods and {sup 3}H production could be reduced by shielding against cosmic rays during production. Assuming the activities of the last characterized detector, for nine crystals with a total mass of 112.5 kg the expected background rate is 2.5 counts/(keV kg day) in the region from 1 to 4 keV, which could be reduced at 1.4 counts/(keV kg day) by using a LSV. (orig.)

  12. UNIVERSITE DE GENEVE

    CERN Multimedia

    2007-01-01

    Ecole de physique - Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet
1211 GENEVE 4
Tél: (022) 379 62 73 - Fax: (022) 379 69 92 Wednesday 3rd October 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium The first year in orbit of the PAMELA space experiment by Dr Silvio Orsi, INFN Roma Tor Vergata The satellite-borne PAMELA experiment is designed to study charged particles in the cosmic radiation with a particular focus on antiparticles. PAMELA is mounted on the Resurs DK1 satellite that was launched from the Baikonur cosmodrome in Kazakhstan on June 15th 2006 and has a lifetime of at least 3 years. The PAMELA apparatus comprises a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. PAMELA is performing indirect dark matter search through a detailed study of the positron and antiproton spectra (50Me...

  13. Fission-product energy release for times following thermal-neutron fission of /sup 235/U between 2 and 14000 seconds

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of /sup 235/U. Samples of mass 1 to 10 ..mu..g were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub ..gamma../) vs E/sub ..gamma../ and N(E/sub beta/) vs E/sub ..beta../. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub ..gamma../ and E/sub ..beta../ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables.

  14. LArGe: active background suppression using argon scintillation for the GERDA 0νββ-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Budjas, D.; Schoenert, S. [Technische Universitaet Muenchen, Munich (Germany); Barnabe-Heider, M. [Technische Universitaet Muenchen, Munich (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cattadori, C. [Universita degli Studi di Milano, Milan (Italy); INFN, Milan (Italy); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institut for Nuclear Research, Moscow (Russian Federation); Gusev, K. [Technische Universitaet Muenchen, Munich (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); National Research Center Kurchatov Institut, Moscow (Russian Federation); Heisel, M.; Smolnikov, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Junker, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Klimenko, A.; Lubashevskiy, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); Pelczar, K. [Jagellonian University, Cracow (Poland); Zuzel, G. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jagellonian University, Cracow (Poland)

    2015-10-15

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m{sup 3}, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12 - 4.6) x 10{sup -2} cts/(keV kg year) (90 % C.L.), which is at the level of GERDA Phase I. Furthermore, for the first time we monitor the natural {sup 42}Ar abundance (parallel to GERDA), and have indication for the 2νββ-decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in GERDA Phase II is pursued. (orig.)

  15. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    Science.gov (United States)

    Christe, Steven

    -based detector system through the (1) design, manufacture, and test of front-end electronics instrument boards and (2) calibration of the detectors to assess their performance and (3) vibration and environmental testing. By the end of this program, multiple detector assemblies will be built and characterized, and can be used as part of future instruments. We propose to augment the existing effort with the development of an anti-coincidence shield for these HEXITEC-based detector assemblies to maximize sensitivity. Designing the anti-coincidence shield is enabled by the addition of a new team member, Wayne Baumgartner, who has recently and fortuitously joined the existing effort. Dr. Baumgartner has valuable and relevant past experience with a similar shield systems developed for NuSTAR and the InFOCμS x-ray telescope. We are asking for a modest amount of additional funding in this proposal year, as it coincides with a key time in the characterization and environmental testing of the detector assemblies. Characterization and environmental testing of the bare assemblies is already funded under the current effort. The addition of this active shield will allow for a more complete detector module vibration and environment test at the end of the existing development program so that this project results in a detector system with a demonstrated TRL of 6: "System/subsystem model or prototype demonstration in a relevant environment."

  16. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  17. The plastic scintillator detector calibration circuit for DAMPE

    Science.gov (United States)

    Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.

  18. Overview of a FPGA-based nuclear instrumentation dedicated to primary activity measurements.

    Science.gov (United States)

    Bobin, C; Bouchard, J; Pierre, S; Thiam, C

    2012-09-01

    In National Metrology Institutes like LNE-LNHB, renewal and improvement of the instrumentation is an important task. Nowadays, the current trend is to adopt digital boards, which present numerous advantages over the standard electronics. The feasibility of an on-line fulfillment of nuclear-instrumentation functionalities using a commercial FPGA-based (Field-Programmable Gate Array) board has been validated in the case of TDCR primary measurements (Triple to Double Coincidence Ratio method based on liquid scintillation). The new applications presented in this paper have been included to allow either an on-line processing of the information or a raw-data acquisition for an off-line treatment. Developed as a complementary tool for TDCR counting, a time-to-digital converter specifically designed for this technique has been added. In addition, the description is given of a spectrometry channel based on the connection between conventional shaping amplifiers and the analog-to-digital converter (ADC) input available on the same digital board. First results are presented in the case of α- and γ-counting related to, respectively, the defined solid angle and well-type NaI(Tl) primary activity techniques. The combination of two different channels (liquid scintillation and γ-spectrometry) implementing the live-time anticoincidence processing is also described for the application of the 4πβ-γ coincidence method. The need for an optimized coupling between the analog chain and the ADC stage is emphasized. The straight processing of the signals delivered by the preamplifier connected to a HPGe detector is also presented along with the first development of digital filtering.

  19. ProtoEXIST: advanced prototype CZT coded aperture telescopes for EXIST

    Science.gov (United States)

    Allen, Branden; Hong, Jaesub; Grindlay, Josh; Barthelmy, Scott D.; Baker, Robert G.; Gehrels, Neil A.; Garson, Trey; Krawczynski, Henric S.; Cook, Walter R.; Harrison, Fiona A.; Apple, Jeffrey A.; Ramsey, Brian D.

    2010-07-01

    ProtoEXIST1 is a pathfinder for the EXIST-HET, a coded aperture hard X-ray telescope with a 4.5 m2 CZT detector plane a 90x70 degree field of view to be flown as the primary instrument on the EXIST mission and is intended to monitor the full sky every 3 h in an effort to locate GRBs and other high energy transients. ProtoEXIST1 consists of a 256 cm2 tiled CZT detector plane containing 4096 pixels composed of an 8x8 array of individual 1.95 cm x 1.95 cm x 0.5 cm CZT detector modules each with a 8 x 8 pixilated anode configured as a coded aperture telescope with a fully coded 10° x 10° field of view employing passive side shielding and an active CsI anti-coincidence rear shield, recently completed its maiden flight out of Ft. Sumner, NM on the 9th of October 2009. During the duration of its 6 hour flight on-board calibration of the detector plane was carried out utilizing a single tagged 198.8 nCi Am-241 source along with the simultaneous measurement of the background spectrum and an observation of Cygnus X-1. Here we recount the events of the flight and report on the detector performance in a near space environment. We also briefly discuss ProtoEXIST2: the next stage of detector development which employs the NuSTAR ASIC enabling finer (32×32) anode pixilation. When completed ProtoEXIST2 will consist of a 256 cm2 tiled array and be flown simultaneously with the ProtoEXIST1 telescope.

  20. Distinguishing 3He and 4He with the Electron Proton Telescope (EPT) on Solar Orbiter

    Science.gov (United States)

    Boden, S.; Kulkarni, S. R.; Steinhagen, J.; Tammen, J.; Martin-Garcia, C.; Wimmer-Schweingruber, R. F.; Boettcher, S. I.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Schuster, B.; Kulemzin, A.; Kolbe, S.; Mahesh, Y.; Knieriem, V.; Yu, J.; Kohler, J.; Panitzsch, L.; Terasa, C.; Boehm, E.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.

    2015-12-01

    The Electron Proton Telescope (EPT) is one of the sensors of the Energetic Particle Detector (EPD) for the Solar Orbiter mission, which will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four different sensors (STEP, SIS, EPT and HET) which together will resolve the energetic particle spectrum from 2 keV to 20 MeV for electrons, 3 keV to 100 MeV for protons and circa 100 keV/nuc to 100 MeV/nuc for heavier ions.EPT itself is primarily designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. To achieve this, EPT uses two back-to-back solid state detectors with a magnet system to deflect electrons on one side and a Polyimide foil to stop protons below ~400 keV on the other side. The two detectors then serve as each other's anti-coincidence. Additionally this setup also allows us to measure penetrating particles with deposited energies in the 1 MeV to 40 MeV range. Looking at the ratio of deposited energy in the two detectors versus total deposited energy allows us to differentiate between protons and alpha particles. Distinguishing 3He from 4He will be challenging, but possible provided good knowledge of the instrument, high-fidelity modeling and a precise calibration of EPT. Here, we will present feasibility studies leading to a determination of the 3He / 4He ratio with EPT.

  1. Definition of a Twelve-Point Polygonal SAA Boundaryfor the GLAST Mission

    Energy Technology Data Exchange (ETDEWEB)

    Djomehri, Sabra I.; /UC, Santa Cruz /SLAC

    2007-08-29

    The Gamma-Ray Large Area Space Telescope (GLAST), set to launch in early 2008, detects gamma rays within a huge energy range of 100 MeV - 300 GeV. Background cosmic radiation interferes with such detection resulting in confusion over distinguishing cosmic from gamma rays encountered. This quandary is resolved by encasing GLAST's Large Area Telescope (LAT) with an Anti-Coincidence Detector (ACD), a device which identifies and vetoes charged particles. The ACD accomplishes this through plastic scintillator tiles; when cosmic rays strike, photons produced induce currents in Photomultiplier Tubes (PMTs) attached to these tiles. However, as GLAST orbits Earth at altitudes {approx}550km and latitudes between -26 degree and 26 degree, it will confront the South Atlantic Anomaly (SAA), a region of high particle flux caused by trapped radiation in the geomagnetic field. Since the SAA flux would degrade the sensitivity of the ACD's PMTs over time, a determined boundary enclosing this region need be attained, signaling when to lower the voltage on the PMTs as a protective measure. The operational constraints on such a boundary require a convex SAA polygon with twelve edges, whose area is minimal ensuring GLAST has maximum observation time. The AP8 and PSB97 models describing the behavior of trapped radiation were used in analyzing the SAA and defining a convex SAA boundary of twelve sides. The smallest possible boundary was found to cover 14.58% of GLAST's observation time. Further analysis of defining a boundary safety margin to account for inaccuracies in the models reveals if the total SAA hull area is increased by {approx}20%, the loss of total observational area is < 5%. These twelve coordinates defining the SAA flux region are ready for implementation by the GLAST satellite.

  2. Development of a Gamma-Ray Spectrometer for Korean Pathfinder Lunar Orbiter

    Science.gov (United States)

    Kim, Kyeong Ja; Park, Junghun; Choi, Yire; Lee, Sungsoon; Yeon, Youngkwang; Yi, Eung Seok; Jeong, Meeyoung; Sun, Changwan; van Gasselt, Stephan; Lee, K. B.; Kim, Yongkwon; Min, Kyungwook; Kang, Kyungin; Cho, Jinyeon; Park, Kookjin; Hasebe, Nobuyuki; Elphic, Richard; Englert, Peter; Gasnault, Olivier; Lim, Lucy; Shibamura, Eido; GRS Team

    2016-10-01

    Korea is preparing for a lunar orbiter mission (KPLO) to be developed in no later than 2018. Onboard the spacecraft is a gamma ray spectrometer (KLGRS) allowing to collect low energy gamma-ray signals in order to detect elements by either X-ray fluorescence or by natural radioactive decay in the low as well as higher energy regions of up to 10 MeV. Scientific objectives include lunar resources (water and volatile measurements, rare earth elements and precious metals, energy resources, major elemental distributions for prospective in-situ utilizations), investigation of the lunar geology and studies of the lunar environment (mapping of the global radiation environment from keV to 10 MeV, high energy cosmic ray flux using the plastic scintillator).The Gamma-Ray Spectrometer (GRS) system is a compact low-weight instrument for the chemical analysis of lunar surface materials within a gamma-ray energy range from 10s keV to 10 MeV. The main LaBr3 detector is surrounded by an anti-coincidence counting module of BGO/PS scintillators to reduce both low gamma-ray background from the spacecraft and housing materials and high energy gamma-ray background from cosmic rays. The GRS system will determine the elemental compositions of the near surface of the Moon.The GRS system is a recently developed gamma-ray scintillation based detector which can be used as a replacement for the HPGe GRS sensor with the advantage of being able to operate at a wide range of temperatures with remarkable energy resolution. LaBr3 also has a high photoelectron yield, fast scintillation response, good linearity and thermal stability. With these major advantages, the LaBr3 GRS system will allow us to investigate scientific objectives and assess important research questions on lunar geology and resource exploration.The GRS investigation will help to assess open questions related to the spatial distribution and origin of the elements on the lunar surface and will contribute to unravel geological surface

  3. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3

  4. Progress report on the Astro-H Soft X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Mitsuda, Kazuhisa

    2016-04-01

    We describe the initial in-orbit operations and performance of the Astro-H Soft X-Ray Spectrometer (SXS). Astro-H, JAXA's sixth X-ray observatory, is scheduled for launch on February 12, 2016, from the Tanegashima Space Center in Japan abord an H-IIA rocket. The instrument is based on a 36-pixel array of microcalorimeters designed for high resolution over the 0.3-12 keV energy band at the focus of a high throughput, grazing-incidence x-ray mirror. The instrument is the result of a joint collaboration between the JAXA Institute of Space and Astronautical Science and many partners in Japan, and the NASA/Goddard Space Flight Center and collaborators in the US. The principal components of the spectrometer are the microcalorimeter detector system, a low-temperature anticoincidence detector, a 3-stage adiabatic demagnetization refrigerator (ADR) to maintain 50 mK operation under both cryogen and cryogen-free operation, a hybrid liquid helium/cryogen-free dewar with both Stirling and Joule-Thomson coolers, electronics for reading out the array, processing the x-ray data for spectroscopy, and operating the ADR and cryocoolers. The dewar is closed out by an aperture system with five thin-film filters designed to provide high x-ray transmission with low heat loads to the dewar and detector system, and prevent contamination from condensing on the filters. The instrument was designed to have better than 7 eV energy resolution, and was demonstrated to achieve 4-5 eV resolution across the array at the full spacecraft level of integration during extensive ground testing prior to launch. The overall cooling chain has been designed to provide a lifetime of at least 3 years in orbit, and continue to operate without liquid helium to provide redundancy and the longest operational lifetime for the instrument. In this presentation, we will describe the early phases of the SXS instrument in orbit and provide a sense of the astronomical results that can be expected. This presentation is

  5. Liquid argon as active shielding and coolant for bare germanium detectors. A novel background suppression method for the GERDA 0{nu}{beta}{beta} experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peiffer, J.P.

    2007-07-25

    Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the StandardModel and the absolute values of the neutrino masses. The neutrinoless double beta (0{nu}{beta}{beta}) decay, which can be investigated using {sup 76}Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0{nu}{beta}{beta} decay in the Heidelberg-Moscow (HdM) {sup 76}Ge experiment by a part of the HdM collaboration. The new {sup 76}Ge experiment Gerda aims to check this claim within one year with 15 kg.y of statistics in Phase I at a background level of {<=}10{sup -2} events/(kg.keV.y) and to go to higher sensitivity with 100 kg.y of statistics in Phase II at a background level of {<=}10{sup -3} events/(kg.keV.y). In Gerda bare germanium semiconductor detectors (enriched in {sup 76}Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced {sup 60}Co is expected to be {proportional_to}2.5.10{sup -3} events/(kg.keV.y). LAr scintillates in UV ({lambda}=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for {sup 60}Co and a factor 17 for {sup 232}Th around Q{sub {beta}}{sub {beta}} = 2039 keV. This suppression will further increase for a one ton active volume (factor O(100) for {sup 232}Th and {sup 60}Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength

  6. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton U.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  7. Neutron dosimetric measurements in shuttle and MIR.

    Science.gov (United States)

    Reitz, G

    2001-06-01

    anticoincidence logic is under development.

  8. Development of a phoswich detector for neutron dose rate measurements in the Earth's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Doensdorf, Esther Miriam

    2014-04-30

    The Earth is constantly exposed to a stream of energetic particles from outer space. Through the interaction of this radiation with the Earth's magnetosphere and atmosphere a complex radiation field is formed which varies with the location inside the Earth's atmosphere. This radiation field consists of charged and uncharged particles leading to the constant exposure of human beings to radiation. As this ionizing radiation can be harmful for humans, it is necessary to perform dose rate measurements in different altitudes in the Earth's atmosphere. Due to their higher biological effectiveness the exposure to neutrons is more harmful than the exposure to γ-rays and charged particles, which is why the determination of neutron dose rates is the focus of this work. In this work the prototype of a Phoswich detector called PING (Phoswich Instrument for Neutrons and Gammas) is developed to determine dose rates caused by neutrons in the Earth's atmosphere and to distinguish these from γ-rays. The instrument is composed of two different scintillators optically coupled to each other and read out by one common photomultiplier tube. The scintillator package consists of an inner plastic scintillator made of the material BC-412 and a surrounding anti-coincidence made of sodium doped caesium iodide (CsI(Na)). In this work the instrument is calibrated, tested and flown and a procedure for a pulse shape analysis for this instrument is developed. With this analysis it is possible to distinguish pulses from the plastic scintillator and pulses from the CsI(Na). The pulses from the plastic scintillator are mainly due to the interaction of neutrons but there is an energy-dependent contribution of γ-rays to these events. Measurements performed on board an airplane show that the dose rates measured with the developed detector are in the same order of magnitude as results of other instruments. During measurements on board stratospheric balloons the altitude dependence

  9. Characteristics of Energetic Electron Events in Mercury's Magnetosphere at the 10-ms Timescale

    Science.gov (United States)

    McNutt, R. L., Jr.; Goldsten, J. O.; Lawrence, D. J.; Starr, R. D.; Ho, G. C.; Peplowski, P. N.; Anderson, B. J.; Korth, H.; Krimigis, S. M.; Gold, R. E.; Solomon, S. C.; Baker, D. N.

    2013-12-01

    Throughout its orbital mission, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has detected energetic electrons at Mercury. The electrons have been measured by the Energetic Particle Spectrometer (EPS) component of the Energetic Particle and Plasma Spectrometer (EPPS). Fewer, but related bursts of hard X-rays measured in the sensors of the Gamma-Ray and Neutron Spectrometer (GRNS) on the MESSENGER spacecraft are identified as bremsstrahlung from these electron events produced within the sensors of these instruments. After ~9500 h of problem-free operation, the cryogenic cooler used to cool the GRS high-purity germanium detector, which had an expected life of 8000 to 12,000 h, failed in June 2012, rendering the detector unusable and leaving GRS unable to measure individual elemental species in Mercury's surface materials. However, the GRS anticoincidence shield (ACS) of borated plastic remained fully functional and able to detect neutrons and energetic electron (EE) events. As part of the second extension of the MESSENGER mission, the GRS was repurposed for making high-time-resolution measurements of the energetic electrons. A software upload on 25 February 2013 allowed for intensity, but not energy information, to be obtained at a 10-ms cadence, compared with the 600-ms resolution of the energetic particle detector on Mariner 10. The large geometric factor of the ACS allows for good signal-to-noise ratios even at these short measurement intervals. Substantial intensity variations (up to ~30%) occur over short time intervals (≤ 30 ms) in the most 'bursty' of the events. In many of the EE events, marked structure is seen down to at least 100 ms, structure not resolvable in the earlier MESSENGER or Mariner 10 measurements. At typical spacecraft orbital speeds, the observed temporal variations map to spatial scales ~30 to 300 m. Comparison of the largest events with data from other MESSENGER instruments, which provide energy

  10. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    Science.gov (United States)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  11. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    Science.gov (United States)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  12. In-orbit background of X-ray microcalorimeters and its effects on observations

    Science.gov (United States)

    Lotti, S.; Cea, D.; Macculi, C.; Mineo, T.; Natalucci, L.; Perinati, E.; Piro, L.; Federici, M.; Martino, B.

    2014-09-01

    microcalorimeters in the L2 orbit, and thus the particle background levels were calculated by means of Monte Carlo simulations: we considered the original design configuration and an improved configuration aimed to reduce the unrejected background, and tested them in the L2 orbit and in the low Earth orbit, comparing the results with experimental data reported by other X-ray instruments. For the diffuse component, we used the background levels measured from a 1 sr region representative of typical high galactic latitude pointings and analyzed the variations expected with the different orbital conditions. To show the results obtainable with the improved configuration we simulated the observation of a faint, high-redshift, point source (F[ 0.5 - 10 keV ] ~ 6.4 × 10-16 erg cm-2 s-1, z = 3.7), and of a hot galaxy cluster at R200 (Sb [ 0.5-2 keV ] = 8.61 × 10-16 erg cm-2 s-1 arcmin-2, T = 6.6 keV). Results: First we confirm that implementing an active cryogenic anticoincidence reduces the particle background by an order of magnitude and brings it close to the required level. The implementation and test of several design solutions can reduce the particle background level by a further factor of 6 with respect to the original configuration. The residual background is dominated by secondary particles, and this component can be decreased by design solutions such as passive shielding with appropriate materials. The best background level achievable in the L2 orbit with the implementation of ad-hoc passive shielding for secondary particles is similar to that measured in the more favorable LEO environment without the passive shielding, allowing us to exploit the advantages of the L2 orbit. We define a reference model for the diffuse background and collect all the available information on its variation with epoch and pointing direction. With this background level the ATHENA mission with the X-IFU instrument is able to detect ~4100 new obscured AGNs with F> 6.4 × 10-16 erg cm-2 s-1 during three