WorldWideScience

Sample records for anticipated radiological dose

  1. Environmental impacts of radiological consequences during the anticipated transients without scram (ATWS) events in nuclear power reactors

    International Nuclear Information System (INIS)

    El-Kafas, A.A.

    2011-01-01

    Anticipated transients without scram (ATWS), is one of the (worst case) accidents could happen if the system that provides a highly reliable means of shutting down the reactor (scram system )fails to work during a reactor event (anticipated transient).It has two general characteristics: (1) Initiation by a transient anticipated to occur one or more times in the life of reactor and ,(2) Assumed to proceed without scram.The types of events considered are those used for designing the plant .The evaluation of the radiological consequences during the assessment of the nuclear events,especially ATWS in nuclear power reactors, is very essential for environmental studies and public safety. In this paper, the root cases for nuclear events and dose calculation are presented. Scenario of accident sequences together with radiological impacts is illustrated for loss of coolant accident (LOCA) for a typical pressurized water reactor nuclear power plant. Recommendations for mitigating or preventing the release of radiation and high radioactive materials to environment are presented.

  2. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP

  3. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    CERN Document Server

    Weiss, E V

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

  4. Effective doses in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, Olga; Diaconescu, Cornelia; Roca, Antoaneta

    2001-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study is to assess in terms of effective doses the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses to the patient. Effective doses have been derived from measurements of dose-area product (DAP) carried out on over 900 patients undergoing X-ray examinations, in five paediatric units. The conversion coefficients for estimating effective doses are those calculated by the NRPB using Monte-Carlo technique on a series of 5 mathematical phantoms representing 0, 1, 5, 10 and 15 year old children. The annual frequency of X-ray examinations necessary for collective dose calculation are those reported in our last national study on medical exposure, conducted in 1995. The annual effective doses from all medical examinations for the average paediatric patient are as follows: 1.05 mSv for 0 year old, 0.98 mSv for 1 year old, 0.53 mSv for 5 year old, 0.65 mSv for 10 year old and 0.70 mSv for 15 year old. The resulting annual collective effective dose was evaluated at 625 man Sv with the largest contribution of pelvis and hip examinations (34%). The annual collective effective associated with paediatric radiology in Romania represent 5% of the annual value resulting from all diagnostic radiology. Examination of the chest is by far the most frequent procedure for children, accounting for about 60 per cent of all annually performed X-ray conventional examinations. Knowledge of real level of patient dose is an essential component of quality assurance programs in paediatric radiology. (authors)

  5. Paediatric doses from diagnostic radiology in Victoria

    International Nuclear Information System (INIS)

    Boal, T.J.; Cardillo, I.; Einsiedel, P.F.

    1998-01-01

    This study examines doses to paediatric patients from diagnostic radiology. Measurements were made at 29 hospitals and private radiology practices in the state of Victoria. Entrance skin doses in air were measured for the exposure factors used by hospital radiology departments and private radiology practices for a standard size 1, 5, 10 and 15 year old child, for the following procedures: chest AP/PA, lat; abdomen AP; pelvis AP; lumbar spine AP, lat; and skull AP, lat. There was a large range of doses for each particular procedure and age group. Factors contributing to the range of doses were identified. Guidance levels for paediatric radiology based on the third quartile value of the skin entrance doses have been recommended and are compared with guidance levels. Copyright (1998) Australasian Physical and Engineering Sciences in Medicine

  6. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  7. Managing patient dose in digital radiology

    International Nuclear Information System (INIS)

    2014-01-01

    Digital techniques have the potential to improve the practice of radiology but they also risk the overuse of radiation. The main advantages of digital imaging, i.e. wide dynamic range, post processing, multiple viewing options, and electronic transfer and archiving possibilities, are clear but overexposures can occur without an adverse impact on image quality. In conventional radiography, excessive exposure produces a black film. In digital systems, good images are obtained for a large range of doses. It is very easy to obtain (and delete) images with digital fluoroscopy systems, and there may be a tendency to obtain more images than necessary. In digital radiology, higher patient dose usually means improved image quality, so a tendency to use higher patient doses than necessary could occur. Different medical imaging tasks require different levels of image quality, and doses that have no additional benefit for the clinical purpose should be avoided. Image quality can be compromised by inappropriate levels of data compression and/or post processing techniques. All these new challenges should be part of the optimisation process and should be included in clinical and technical protocols. Local diagnostic reference levels should be re-evaluated for digital imaging, and patient dose parameters should be displayed at the operator console. Frequent patient dose audits should occur when digital techniques are introduced. Training in the management of image quality and patient dose in digital radiology is necessary. Digital radiology will involve new regulations and invoke new challenges for practitioners. As digital images are easier to obtain and transmit, the justification criteria should be reinforced. Commissioning of digital systems should involve clinical specialists, medical physicists, and radiographers to ensure that imaging capability and radiation dose management are integrated. Quality control requires new procedures and protocols (visualisation, transmission

  8. Nordic Guidance Levels for Patient Doses in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Saxebol, G.; Olerud, H.M.; Hjardemaal, O.; Leitz, W.; Servomaa, A.; Walderhaug, T.

    1998-01-01

    Within the framework of Nordic authoritative cooperation in radiation protection and nuclear safety, recommendations have been prepared dealing with dose constraints in diagnostic radiology. A working group with participants from all the Nordic countries has met and discussed possible implementations of the ICRP dose constraint for medical radiology. Dose constraints, expressed as guidance levels, were specified for six different radiological examinations, i.e. chest, pelvis, lumbar spine, urography, barium meal and enema in units of kerma-area product and entrance surface dose. The recommendations are described in report No 5 in the series 'Report on Nordic Radiation Protection Cooperation'. Examples of dose distributions and factors affecting the patient dose are described in the report. (author)

  9. Work practices and occupational radiation dose among radiologic technologists in Korea

    International Nuclear Information System (INIS)

    Cha, Eun Shil; Lee, Won Jin; Ha, Mina; Hwang, Seung Sik; Lee, Kyoung Mu; Jeong, Mee Seon

    2013-01-01

    Radiologic technologists are one of the occupational groups exposed to the highest dose of radiation worldwide. In Korea, radiologic technologists occupy the largest group (about 33%) among medical radiation workers and they are exposed to the highest dose of occupational dose of radiation as well (1). Although work experience with diagnostic radiation procedure of U.S. radiologic technologists was reported roughly (2), few studies have been conducted for description of overall work practices and the change by calendar year and evaluation of related factors on occupational radiation dose. The aims of the study are to describe work practices and to assess risk factors for occupational radiation dose among radiologic technologists in Korea. This study showed the work practices and occupational radiation dose among representative sample of radiologic technologists in Korea. The annual effective dose among radiologic technologists in Korea remains higher compared with those of worldwide average and varied according to demographic factors, year began working, and duration of working

  10. Conventional radiology and genetic dose

    International Nuclear Information System (INIS)

    Gonzalez-Vila, V.; Fernandez, A.; Rivera, F.; Martinez, M.; Gomez, A.; Luis, J.

    1992-01-01

    A research project was established in 1984 to evaluate the expected genetic abnormalities due to radiation received by the population attending the Outpatient Radiological Service due to medical radiological practices. The study was conducted in 1985 (12 weeks chosen by random). The equivalent gonadal dose was the chosen parameter, representing the social cost of the radiology. Samples of 2945 men and 2929 women were considered in the study. The number of genetic abnormalities, in relation to the mean age of reproduction (a generation every 30 years), was 2.13 cases per million in the first generation and 15.97 cases per million at equilibrium. The authors interpretation is that both the method and the expected genetic detriment are suitable procedures for the characterisation of the Radiological Service as a radiation source. (author)

  11. Dose assessment in radiological accidents

    International Nuclear Information System (INIS)

    Donkor, S.

    2013-04-01

    The applications of ionizing radiation bring many benefits to humankind, ranging from power generation to uses in medicine, industry and agriculture. Facilities that use radiation source require special care in the design and operation of equipment to prevent radiation injury to workers or to the public. Despite considerable development of radiation safety, radiation accidents do happen. The purpose of this study is therefore to discuss how to assess doses to people who will be exposed to a range of internal and external radiation sources in the event of radiological accidents. This will go a long way to complement their medical assessment thereby helping to plan their treatment. Three radiological accidents were reviewed to learn about the causes of those accidents and the recommendations that were put in place to prevent recurrence of such accidents. Various types of dose assessment methods were discussed.(au)

  12. Radiological-dose assessments of atolls in the northern Marshall Islands

    International Nuclear Information System (INIS)

    Robison, W.L.

    1983-04-01

    The Marshall Islands in the Equatorial Pacific, specifically Enewetak and Bikini Atolls, were the site of US nuclear testing from 1946 through 1958. In 1978, the Northern Marshall Islands Radiological Survey was conducted to evaluate the radiological conditions of two islands and ten atolls downwind of the proving grounds. The survey included aerial external gamma measurements and collection of soil, terrestrial, and marine samples for radionuclide analysis to determine the radiological dose from all exposure pathways. The methods and models used to estimate doses to a population in an environment where natural processes have acted on the source-term radionuclides for nearly 30 y, data bases developed for the models, and results of the radiological dose analyses are described

  13. Metrology of radiation doses in diagnostic radiology

    International Nuclear Information System (INIS)

    Leclet, H.

    2016-01-01

    This article recalls how to calculate effective and equivalent doses in radiology from the measured value of the absorbed dose. The 97/43 EURATOM directive defines irradiation standards for diagnostic radiology (NRD) as the value of the radiation dose received by the patient's skin when the diagnostic exam is performed. NRD values are standard values that can be exceeded only with right medical or technical reasons, they are neither limit values nor optimized values. The purpose of NRD values is to avoid the over-irradiation of patients and to homogenize radiologists' practices. French laws impose how and when radiologists have to calculate the radiation dose received by the patient's skin. The calculated values have to be compared with NRD values and any difference has to be justified. A table gives NRD values for all diagnostic exams. (A.C.)

  14. Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology.

    Science.gov (United States)

    Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N

    2017-01-01

    We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.

  15. Estimation of dose challenge in radiological exams policontuses patients in public hospital in Santiago with digital radiology equipment

    International Nuclear Information System (INIS)

    Diaz-Munoz Ihmaidan, Gabriela

    2012-01-01

    lonizing radiation is always present in our natural environment and with the development of new technologies in diagnostic radiology we have elevated the exposure to radiation with an increased dose to both patient and professionals. This is of great importance for secondary stochastic effects that could be generated by exposure to ionizing radiation. There are different x-ray entrance dose studies in patients with radiological examinations in conventional radiology equipment, but not in trauma patients examinated with digital radiology equipment where there is a supposed greater exposure to radiation because of the increase of the number of radiological examinations requested. This study determined the doses received by trauma patients in a direct digital x ray equipment (in a ER in Santiago, Chile) and see if the doses are within the ones recommended by international societies. We used thermoluminescent crystals which were first properly calibrated and located in the center of the radiation beam. The results obtained show that using good practice we can obtain acceptable dose levels, independently of the digital equipment used where it is presumed that could give a higher dose of ionizing radiation exposure than conventional x-ray equipment

  16. Assessment of Patients Radiation Dose During Interventional Radiological Procedure in PPUKM

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Husaini Salleh; Muhammad Jamal Muhammad Isa

    2014-01-01

    Interventional Radiology (IR) is a relatively new subspecialty of radiology. It is subspecialty where minimally invasive procedures are performed under radiological guidance using X-ray. This procedure can deliver high radiation doses compared with other radiological method due to long screening time. Because of these it is important to determine radiation doses received by patients undergoing IR procedures. It is to ensure that the dose is within the range deemed to be saved. A total of 128 patients undergoing IR procedures in PPUKM between 2012 and 2013 were study retrospectively. Dose area product (DAP) meter were used to measure the integral dose for the whole procedures. Mean kerma-area products for abdomen, head, pelvis, and thorax were 243.1, 107.3, 39.05 and 45.7 Gycm 2 , respectively. This study may provide the useful information which can be use to establish baseline patient dose data for dose optimizing study and carried out a recommendation on effective method of patient dose reduction during IR procedures. A more detail results of this study are presented in this paper. (author)

  17. Radiological assessment. A textbook on environmental dose analysis

    Energy Technology Data Exchange (ETDEWEB)

    Till, J.E.; Meyer, H.R. (eds.)

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  18. Radiological assessment. A textbook on environmental dose analysis

    International Nuclear Information System (INIS)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides

  19. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil

    1997-07-01

    A radiological dose assessment system named FADAS has been developed. This system is necessary to estimated the radiological consequences against a nuclear accident. Mass-consistent wind field module was adopted for the generation of wind field over the whole domain using the several measured wind data. Random-walk dispersion module is used for the calculation of the distribution of radionuclides in the atmosphere. And volume-equivalent numerical integration method has been developed for the assessment of external gamma exposure given from a randomly distributed radioactive materials and a dose data library has been made for rapid calculation. Field tracer experiments have been carried out for the purpose of analyzing the site-specific meteorological characteristics and increasing the accuracy of wind field generation and atmospheric dispersion module of FADAS. At first, field tracer experiment was carried out over flat terrain covered with rice fields using the gas samplers which were designed and manufactured by the staffs of KAERI. The sampled gas was analyzed using gas chromatograph. SODAR and airsonde were used to measure the upper wind. Korean emergency preparedness system CARE was integrated at Kori 4 nuclear power plants in 1995. One of the main functions of CARE is to estimate the radiological dose. The developed real-time dose assessment system FADAS was adopted in CARE as a tool for the radiological dose assessment. (author). 79 refs., 52 tabs., 94 figs.

  20. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  1. Paediatric radiology and scientific contributions to radiation dose at the meeting of the German Radiological Society-An analysis of an 11-year period

    International Nuclear Information System (INIS)

    Heyer, Christoph M.; Lemburg, Stefan P.; Peters, Soeren A.

    2010-01-01

    Aim: Evaluation of the emphasis on themes pertaining to paediatric radiology and radiation dose at the Meeting of the German Radiological Society from 1998 to 2008 in comparison to international data. Materials and methods: Retrospective analysis of 9440 abstracts with documentation of type of contribution, imaging modality, and examined body region. Abstracts primarily dealing with paediatric radiology and those stating radiation dose were documented. Results were compared with a Pubmed query. Results: 448 contributions in paediatric radiology were presented corresponding to 5% of all abstracts with an increase from 5 (1998) to 7% (2008). The proportion of prospective studies of all congress contributions was 10%, whereas in paediatric radiology, the share of prospective studies was 6%. From 1998 to 2008, the share of MRI fell from 48 to 38%, while CT contributions rose from 30 to 34%. Within paediatric radiology, the proportion of CT rose from 23 to 29%, while MRI and ultrasound fell from 63 to 48% and 35 to 19%, respectively. The share of abstracts dealing with radiation dose rose from 7 to 10% while that primarily pertaining to dose reduction grew from 2 to 4%. Of all abstracts concerning CT, 15% touched on radiation dose, whereas 6% primarily dealt with dose reduction. Among all abstracts dealing with paediatric radiology, 20 and 6% mentioned radiation dose and dose reduction, respectively. In the subgroup of paediatric radiology CT abstracts, radiation dose and dose reduction were mentioned in 34 and 16%, respectively. An online query produced 137,791 publications on CT, of whose abstracts 3% mentioned radiation dose and 0.5% mentioned dose reduction. 11% of all CT publications dealt with paediatric populations and 2% of these publications examined questions of radiation dose. Conclusions: In the last 11 years the Meeting of the German Radiological Society has presented a growing number of contributions pertaining to paediatric radiology. CT has shown the

  2. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.

    1998-01-01

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed

  3. A radiological dose assessment for the Port Hope conversion facility

    International Nuclear Information System (INIS)

    Garisto, N.C.; Cooper, F.; Janes, A.; Stager, R.; Peters, R.

    2011-01-01

    The Port Hope Conversion Facility (PHCF) receives uranium trioxide for conversion to uranium hexafluoride (UF 6 ) or uranium dioxide (UO 2 ). The PHCF Site has a long history of industrial use. A Radiological Dose Assessment was undertaken as part of a Site Wide Risk Assessment. This assessment took into account all possible human receptors, both workers and members of the public. This paper focuses on a radiological assessment of dose to members of the public. The doses to members of the public from terrestrial pathways were added to the doses from aquatic pathways to obtain overall dose to receptors. The benchmark used in the assessment is 1 mSv/y. The estimated doses related to PHCF operations are much lower than the dose limit. (author)

  4. Doses to patients from dental radiology in France

    International Nuclear Information System (INIS)

    Benedittini, M.; Maccia, C.; Lefaure, C.; Fagnani, F.

    1989-01-01

    In France, a national study was undertaken to estimate both dental radiology practices (equipment and activity) and the associated population collective dose. This study was done in two steps: A nationwide survey was conducted on the practitioner categories involved in dental radiology, and dosimetric measurements were performed on patients and on an anthropomorphic phantom by using conventional dental x-ray machines and pantomographic units. A total of 27.5 x 10(6) films were estimated to have been performed in 1984; 6% of them were pantomographic and 94% were conventional. Most of the organ doses measured for one intra-oral film were lower than 1 mGy (100 mrad); pantomogram dose values were generally higher than intra-oral ones. The collective effective dose equivalent figure was 2,000 person-Sv (2 x 10(5) person rem) leading to a per head dose equivalent of 0.037 mSv (3.7 mrem). The study allowed authors to identify ways to reduce the patient dose in France (e.g., implementing the use of long cone devices and controlling darkroom practices)

  5. Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations

    International Nuclear Information System (INIS)

    Cowley, W.L.

    1996-01-01

    The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms

  6. Radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Cohnen, M.; Kemper, J.; Moedder, U.; Moebes, O.; Pawelzik, J.

    2002-01-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology. (orig.)

  7. Estimated collective effective dose to the population from radiological examinations in Slovenia

    Science.gov (United States)

    Zontar, Dejan; Zdesar, Urban; Kuhelj, Dimitrij; Pekarovic, Dean; Skrk, Damijan

    2015-01-01

    Background The aim of the study was to systematically evaluate population exposure from diagnostic and interventional radiological procedures in Slovenia. Methods The study was conducted in scope of the “Dose Datamed 2” project. A standard methodology based on 20 selected radiological procedures was adopted. Frequencies of the procedures were determined via questionnaires that were sent to all providers of radiological procedures while data about patient exposure per procedure were collected from existing databases. Collective effective dose to the population and effective dose per capita were estimated from the collected data (DLP for CT, MGD for mammography and DAP for other procedures) using dose conversion factors. Results The total collective effective dose to the population from radiological in 2011 was estimated to 1300 manSv and an effective dose per capita to 0.6 mSv of which approximately 2/3 are due to CT procedures. Conclusions The first systematic study of population exposure to ionising radiation from radiological procedures in Slovenia was performed. The results show that the exposure in Slovenia is under the European average. It confirmed large contributions of computed tomography and interventional procedures, identifying them as the areas that deserve special attention when it comes to justification and optimisation. PMID:25810709

  8. Radiation dose to physicians’ eye lens during interventional radiology

    International Nuclear Information System (INIS)

    Bahruddin, N A; Hashim, S; Karim, M K A; Ang, W C; Salehhon, N; Sabarudin, A; Bakar, K A

    2016-01-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure. (paper)

  9. Evaluations of gonad and fetal doses for diagnostic radiology.

    Science.gov (United States)

    Tung, C J; Tsai, H Y

    1999-07-01

    A national survey of patient doses for diagnostic radiology was planned in the Republic of China. We performed a pilot study for this survey to develop a protocol of the dose assessments. Entrance skin doses and organ (including ovary, testicle and uterus) doses were measured by thermoluminescent dosimeters and calculated by means of Monte Carlo simulations for several diagnostic procedures. We derived a formula and used the RadComp software for the computation of entrance skin doses. This formula involves several factors, such as kVp, mAs, the focus-to-skin-distance and aluminum filtration. RadComp software was applied to obtain free-air entrance exposures which were converted to entrance skin doses by considering the backscattering radiation from the body. Organ doses were measured using a RANDO phantom and calculated using a mathematical phantom for several diagnostic examinations. Genetically significant doses were calculated from ovary and testicle doses for the evaluation of hereditary effects. Embryo/fetal doses were determined from the uterine doses by considering the increase in uterus size with gestational age. We found that the patient doses studied in this work were all below the reference doses recommended by the National Radiological Protection Board of the U.K.

  10. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-01-01

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides

  11. Software for the estimation of organ equivalent and effective doses from diagnostic radiology procedures

    International Nuclear Information System (INIS)

    Osei, Ernest K; Barnett, Rob

    2009-01-01

    Diagnostic radiological imaging such as conventional radiography, fluoroscopy and computed tomography (CT) examinations will continue to provide tremendous benefits in modern healthcare. The benefit derived by the patient should far outweigh the risk associated with a properly conducted imaging examination. Nonetheless, it is very important to be able to quantify the risk associated with any radiological examination of patients, and effective dose has been considered a useful indicator of patient exposure. Quantification of the risks associated with radiological imaging is very important as such information will be helpful to physicians and their patients for comparing risks from various imaging examinations and for making informed decisions whenever there is a need for any radiological imaging. The determination of equivalent and effective doses in diagnostic radiology is of interest as a basis for estimates of risk from medical exposures. In this paper we describe a simple computer program OrgDose, which calculates the doses to 27 organs in the body and then calculates the organ equivalent and effective doses and the risk from various procedures in the radiology department including conventional radiography, fluoroscopy and computed tomography examinations. The program will be a useful tool for the medical and paramedical personnel who are involved with assessing organ and effective doses and risks from diagnostic radiology procedures.

  12. Dose monitoring in radiology departments. Status quo and future perspectives

    International Nuclear Information System (INIS)

    Boos, J.; Bethge, O.T.; Antoch, G.; Kroepil, P.

    2016-01-01

    The number of computed tomography examinations has continuously increased over the last decades and accounts for a major part of the collective radiation dose from medical investigations. For purposes of quality assurance in modern radiology a systematic monitoring and analysis of dose related data from radiological examinations is mandatory. Various ways of collecting dose data are available today, for example the Digital Imaging and Communication in Medicine - Structured Report (DICOM-SR), optical character recognition and DICOM-modality performed procedure steps (MPPS). The DICOM-SR is part of the DICOM-standard and provides the DICOM-Radiation Dose Structured Report, which is an easily applicable and comprehensive solution to collect radiation dose parameters. This standard simplifies the process of data collection and enables comprehensive dose monitoring. Various commercial dose monitoring software devices with varying characteristics are available today. In this article, we discuss legal obligations, various ways to monitor dose data, current dose monitoring software solutions and future perspectives in regard to the EU Council Directive 2013/59/EURATOM.

  13. The genetically significant dose from diagnostic radiology in Great Britain in 1977

    International Nuclear Information System (INIS)

    Darby, S.C.; Kendall, G.M.; Rae, S.; Wall, B.F.

    1980-09-01

    This report is the third in a series concerned with the annual genetically significant dose to the population of Great Britain from diagnostic radiology. It combines information from a frequency survey of diagnostic radiological examinations carried out in Great Britain in 1977 and estimates of gonadal doses for different examination types, together with population and child expectancy data. The annual genetically significant dose from diagnostic radiology carried out in Great Britain in 1977, is estimated to 118 μGy (11.8 millirad) of which 113 μGy (11.3 millirad) is contributed by diagnostic radiology carried out in National Health Service hospitals. There has been a sharp fall in the contribution from obstetric examinations since 1957 when the last national survey was carried out. The contribution from most other examination types is broadly similar and there is little evidence of a change in the overall level of genetically significant dose. This is in spite of an increase in the frequency of radiological examinations per thousand of the population of about 50 per cent. No significant differences were found as between England, Scotland and Wales. The British figure compares favourably with the levels of GSD reported from other countries with developed radiological services. (author)

  14. Absorbed Doses to Embryo from Intravenous Urography at Selected Radiological Departments in Slovakia

    International Nuclear Information System (INIS)

    Karkus, R.; Nikodemova, D.; Horvathova, M.

    2003-01-01

    Actual legislation used in radiological protection requires quality assurance program for decreasing radiation load of patients from radiological examinations. The information about irradiation of pregnant women is very important, because the embryo is more radiosensitive as adult organism. On the basis of absence of unified calculations or measurements of absorbed doses to embryo from various radiological examinations in Slovakia we present in this study the values of absorbed doses to embryo from intravenous urography at selected radiological departments in Slovakia. Absorbed doses to embryo were obtained by measurement and calculation using the simulation of irradiation of pregnant woman by intravenous urography. The results of our study indicate, that absorbed doses to embryo were at various radiological departments considerably different, depending on type of X-ray machine and different settings of technical parameters of X-ray machine. In accordance with worldwide trend it is necessary to decrease radiation load of patients as low as possible level. Differences in radiation load between radiological departments indicate, that it is necessary to continue in solving of this problem and perform measurements and calculations of absorbed doses to embryo at different types of X-ray machines and at different examinations, where the embryo is in direct beam of X-ray. (author)

  15. ICRP recommendations on 'managing patient dose in digital radiology'

    International Nuclear Information System (INIS)

    Vano, E.

    2005-01-01

    The International Commission on Radiological Protection (ICRP) approved the publication of a document on 'Managing patient dose in digital radiology' in 2003. The paper describes the content of the report and some of its key points, together with the formal recommendations of the Commission on this topic. With digital techniques exists not only the potential to improve the practice of radiology but also the risk to overuse radiation. The main advantages of digital imaging: wide dynamic range, post-processing, multiple viewing options, electronic transfer and archiving possibilities are clear but overexposures can occur without an adverse impact on image quality. It is expected that the ICRP report helps to profit from the benefits of this important technological advance in medical imaging with the best management of radiation doses to the patients. It is also expected to promote training actions before the digital techniques are introduced in the radiology departments and to foster the industry to offer enough technical and dosimetric information to radiologists, radiographers and medical physicists to help in the optimisation of the imaging. (authors)

  16. Organ doses in interventional radiology procedures: Evaluation of software

    International Nuclear Information System (INIS)

    Tort, I.; Ruiz-Cruces, R.; Perez-Martinez, M.; Carrera, F.; Ojeda, C.; Diez de los Rios, A.

    2001-01-01

    Interventional Radiology (IR) procedures require large fluoroscopy times and important number of radiological images, so the levels of radiation to patient are high, which leads us to calculate the organ doses. The objective of this work is to estimate and make a comparison of the results given by the different software that we have to do the calculation of organ doses in complex procedures of IR. To do this, 28 patients have been selected, distributed in the 3 procedures with highest doses. The determination of organ doses and effective doses has been made using the projections utilized and different software based on Monte Carlo Methods: Eff-dose, PCXMC and Diasoft. We have obtained very high dispersion in the average organ dose between the 3 programs. In many cases, it is higher than 25% and in some particular cases, it is greater than 100%. Dispersion obtained in effective doses is not so high, being under 20% in all cases. This shows that a better solution is needed to solve the problem of the organ doses calculation; a more accurate method is necessary that brings us to a trustworthy approach to reality, and, at the moment, that we do not dispose of it. (author)

  17. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  18. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  19. Dose management in radiology. Review of the technological status

    International Nuclear Information System (INIS)

    Verius, M.

    2015-01-01

    The Euratom directive 2013/59 (''EU directive for radiation protection'') has to be implemented into national law by spring 2018 and requires a complete recording of patient dosages and relevant parameters. Additionally, a medical physics expert has to be consulted for each radiological examination above a defined threshold. A complete recording of the dosage administered from all modalities and optimization of the radiological procedures should result in a reduction of the total dosage. This can be achieved by automated systems that incorporate not only the detection of the dose parameters but also the evaluation and analysis of these data. When provided with warning levels such a system should be able to inform or warn the operator when dose thresholds have been exceeded or even better inform the operator about possible excess dosages before an examination. Depending on the information provided by the modality, dose management systems can operate at different levels in the picture archiving and communication system (PACS), radiological and hospital information systems (RIS/HIS) or with the header information of a digital imaging and communications in medicine (DICOM) image and evaluate and analyze this data. A practicable use of such systems is only possible by close cooperation of medical personnel, medical physicists and information technology (IT) administrators. Various systems are available commercially or free but an individual adaptation of these systems is useful and necessary, depending on the requirements of the radiology practice or hospital. (orig.) [de

  20. Effective dose delivered by conventional radiology to Aosta Valley population between 2002 and 2009

    Science.gov (United States)

    Zenone, F; Aimonetto, S; Catuzzo, P; Peruzzo Cornetto, A; Marchisio, P; Natrella, M; Rosanò, A M; Meloni, T; Pasquino, M; Tofani, S

    2012-01-01

    Objective Medical diagnostic procedures can be considered the main man-made source of ionising radiation exposure for the population. Conventional radiography still represents the largest contribution to examination frequency. The present work evaluates procedure frequency and effective dose from the majority of conventional radiology examinations performed at the Radiological Department of Aosta Hospital from 2002 to 2009. Method Effective dose to the patient was evaluated by means of the software PCXMC. Data provided by the radiological information system allowed us to obtain collective effective and per caput dose. Results The biggest contributors to per caput effective dose from conventional radiology are vertebral column, abdomen, chest, pelvis and (limited to females) breast. Vertebral column, pelvis and breast procedures show a significant dose increment in the period of the study. The mean effective dose per inhabitant from conventional radiology increased from 0.131 mSv in 2002 to 0.156 mSv in 2009. Combining these figures with those from our study of effective dose from CT (0.55 mSv in 2002 to 1.03 mSv in 2009), the total mean effective dose per inhabitant increased from 0.68 mSv to 1.19 mSv. The contribution of CT increased from 81% to 87% of the total. In contrast, conventional radiology accounts for 85% of the total number of procedures, but only 13% of the effective dose. Conclusion The study has demonstrated that conventional radiography still represents the biggest contributor to examination frequency in Aosta Valley in 2009. However, the frequency of the main procedures did not change significantly between 2002 and 2009. PMID:21937611

  1. Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

    1986-06-01

    This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors

  2. Estimate of dose in interventional radiology: a study of cases

    International Nuclear Information System (INIS)

    Pinto, N.; Braz, D.; Lopes, R.; Vallim, M.; Padilha, L.; Azevedo, F.; Barroso, R.

    2006-01-01

    Values of absorbed dose taken by patients and professionals involved in interventional radiology can be significant mainly for the reason of these proceedings taking long time of fluoroscopy There are many methods to estimate and reduce doses of radiation in the interventional radiology, particularly because the fluoroscopy is responsible for the high dose contribution in the patient and in the professional. The aim of this work is the thermoluminescent dosimetry to estimate the dose values of the extremities of the professionals involved in the interventional radiology and the product dose-area was investigated using a Diamentor. This evaluation is particularly useful for proceedings that interest multiple parts of the organism. In this study were used thermoluminescent dosimeters (LiF:Mg, Ti - Harshaw) to estimate the dose values of the extremities of the professionals and to calibrate them. They were irradiated with X rays at 50 mGy, in Kerma in air and read in the reader Harshaw-5500. The product dose-area (D.A.P.) were obtained through the Diamentor (M2-P.T.W.) calibrated in Cgy.cm 2 fixed in the exit of the X-rays tube. The patients of these study were divided in three groups: individuals submitted to proceedings of embolization, individuals submitted to cerebral and renal arteriography and individuals submitted to proceedings of Transjungular Inthahepatic Porta Systemic Stent Shunt (TIPS). The texts were always carried out by the same group: radiologist doctor), an auxiliary doctor and a nursing auxiliary. The section of interventional radiology has an Angiostar Plus Siemens equipment type arc C, in which there is trifocal Megalix X-ray tube and a intensifier of image from Sirecon 40-4 HDR/33 HDR. In this work the dose estimated values were 137.25 mSv/year for the doctors, 40.27 mSv/year for the nursing and 51.95 mSv/year for the auxiliary doctor and they are below the rule, but in this study it was not taken in consideration the emergency texts as they were

  3. Anticipated radiological impacts from the mining and milling of thorium for the nonproliferative fuels

    International Nuclear Information System (INIS)

    Meyer, H.R.; Till, J.E.

    1978-01-01

    Recent emphasis on proliferation-resistant fuel cycles utilizing thorium--uranium-233 fuels has necessitated evaluation of the potential radiological impact of mining and milling thorium ore. Therefore, an analysis has been completed of hypothetical mine-mill complexes using population and meteorological data representative of a thorium resource site in the Lemhi Pass area of Idaho/Montana, United States of America. Source terms for the site include thorium-232 decay chain radionuclides suspended as dusts and radon-220 and daughters initially released as gas. Fifty-year dose commitments to maximally exposed individuals of 2.4 mrem to total body, 9.5 mrem to bone, and 35 mrem to lungs are calculated to result from facility operation. Radium-228, thorium-228, thorium-232 and lead-212 (daughter of radon-220) are found to be the principal contributors to dose. General population doses for a 50-mile radius surrounding the facility are estimated to be 0.05 man-rem to total body, 0.1 man-rem to bone, and 0.7 man-rem to lungs. Generally speaking, the results of this study indicate that the radiological aspects of thorium mining and milling should pose no significant problems with regard to implementation of thorium fuel cycles

  4. Cumulative radiation dose caused by radiologic studies in critically ill trauma patients.

    Science.gov (United States)

    Kim, Patrick K; Gracias, Vicente H; Maidment, Andrew D A; O'Shea, Michael; Reilly, Patrick M; Schwab, C William

    2004-09-01

    Critically ill trauma patients undergo many radiologic studies, but the cumulative radiation dose is unknown. The purpose of this study was to estimate the cumulative effective dose (CED) of radiation resulting from radiologic studies in critically ill trauma patients. The study group was composed of trauma patients at an urban Level I trauma center with surgical intensive care unit length of stay (LOS) greater than 30 days. The radiology records were reviewed. A typical effective dose per study for each type of plain film radiograph, computed tomographic scan, fluoroscopic study, and nuclear medicine study was used to calculate CED. Forty-six patients met criteria. The mean surgical intensive care unit and hospital LOS were 42.7 +/- 14.0 and 59.5 +/- 28.5 days, respectively. The mean Injury Severity Score was 32.2 +/- 15.0. The mean number of studies per patient was 70.1 +/- 29.0 plain film radiographs, 7.8 +/- 4.1 computed tomographic scans, 2.5 +/- 2.6 fluoroscopic studies, and 0.065 +/- 0.33 nuclear medicine study. The mean CED was 106 +/- 59 mSv per patient (range, 11-289 mSv; median, 104 mSv). Among age, mechanism, Injury Severity Score, and LOS, there was no statistically significant predictor of high CED. The mean CED in the study group was 30 times higher than the average yearly radiation dose from all sources for individuals in the United States. The theoretical additional morbidity attributable to radiologic studies was 0.78%. From a radiobiologic perspective, risk-to-benefit ratios of radiologic studies are favorable, given the importance of medical information obtained. Current practice patterns regarding use of radiologic studies appear to be acceptable.

  5. Proposal of dose constraint values to the patient in diagnostic radiology

    International Nuclear Information System (INIS)

    Arranz, L.; Sastre, J.M.; Ferrer, N.; Andres, J.C. De; Guibelalde, E.; Tobarra, B.; Madrid, G.

    1996-01-01

    A dose constraint is the value of an individual dose not to be exceeded in the individual dose distribution considered in an optimization process. The objective of a dose constraints is to set a ceiling to the doses to individual from a source, practice or task which are considered acceptable in the optimization process at the design stage. Implicitly, as C. Zuur states, dose constraints are below the relevant dose limit and usually should be established as local or national levels. Exposures for medical purposes are not subject to dose limits and hence dose constraints were recommended by the ICRP just for occupational and public exposures. However, as an effective tool for optimization for medical exposures, ICRP-60 in paragraph 180 recognizes the value of applying this concept to patient diagnostic radiology with some peculiarities: 'Considerations should be given to the use of dose constraints, or investigation levels, selected by the appropriate professional or regulatory agency, for application in some common diagnostic procedures. They should be applied with flexibility to allow higher cases where indicated by sound clinical judgement.' This paper analyzes retrospectively the dose levels imparted to patient in some common examinations (chest, lumbar spine and mammography) at different optimization stages of different facilities to propose some local constraints for diagnostic examinations. Dose values have been obtained under routine working conditions. Centres included in the survey have been chosen all over Spain, classifying them with particular attention to the following aspects: -Organizational aspects of the diagnostic radiology service, i.e., operational, technical and clinical criteria, as well as quality requirements. - Evaluation and revision of routine medical protocols. -Quality control of the radiological equipment. - Quality criteria for the surveillance of the weekly procedures, with requirements of proper training of die technical staff

  6. [Evaluation of patient doses in interventional radiology].

    Science.gov (United States)

    Ropolo, R; Rampado, O; Isoardi, P; Gandini, G; Rabbia, C; Righi, D

    2001-01-01

    To verify the suitability of indicative quantities to evaluate the risk related to patient exposure, in abdominal and vascular interventional radiology, by the study of correlations between dosimetric quantities and other indicators. We performed in vivo measurements of entrance skin dose (ESD) and dose area product (DAP) during 48 procedures to evaluate the correlation among dosimetric quantities, and an estimation of spatial distribution of exposure and effective dose (E). To measure DAP we used a transmission ionization chamber and to evaluate ESD and its spatial distribution we used radiographic film packed in a single envelope and placed near the patient's skin. E was estimated by a calculation software using data from film digitalisation. From the data derived for measurements in 27 interventional procedures on 48 patients we obtained a DAP to E conversion factor of 0.15 mSv / Gy cm2, with an excellent correlation (r=.99). We also found a good correlation between DAP and exposure parameters such as fluoroscopy time and number of images. The greatest effective dose was evaluated for a multiple procedure in the hepatic region, with a DAP value of 425 Gy cm2. The greatest ESD was about 550 mGy. For groups of patients undergoing similar interventional procedures the correlation between ESD and DAP had conversion factors from 6 to 12 mGy Gy-1 cm-2. The evaluation of ESD and E by slow films represents a valid method for patient dosimetry in interventional radiology. The good correlation between DAP and fluoroscopy time and number of images confirm the suitability of these indicators as basic dosimetric information. All the ESD values found are lower than threshold doses for deterministic effects.

  7. Handbook of selected organ doses for projections common in pediatric radiology

    International Nuclear Information System (INIS)

    Rosenstein, M.; Beck, T.J.; Warner, G.G.

    1979-05-01

    This handbook contains data from which absorbed dose (mrad) to selected organs can be estimated for common projections in pediatric radiology. The organ doses are for three reference patients: a newborn (0 to 6 months), a 1-year old child, and a 5-year old child. One intent of the handbook is to permit the user to evaluate the effect on organ dose to these reference pediatric patients as a function of certain changes in technical parameters used in or among facilities. A second intent is to permit a comparison to be made of organ doses as a function of age. This comparison can be extended to a reference adult by referring to the previous Handbook of Selected Organ Doses fo Projections Common in Diagnostic Radiology, FDA 76-8031. Assignment of organ doses to individual pediatric patients using the Handbook data is not recommended unless the physical characteristics of the patient closely correlate with one of the three reference pediatric patients given in Appendix A

  8. Factors affecting patient dose in diagnostic radiology

    International Nuclear Information System (INIS)

    Poletti, J.L.

    1985-01-01

    There are two stages in the X-ray image forming process; first the irradiation of the patient to produce the X-ray pattern in space, known as the primary radiological image, and second, the conversion of this pattern into a visible form. This report discusses the first stage and its interrelation with image quality and patient dose

  9. Radiation doses in diagnostic radiology and methods for dose reduction. Report of a co-ordinated research programme (1991-1993)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs.

  10. Radiation doses in diagnostic radiology and methods for dose reduction. Report of a co-ordinated research programme (1991-1993)

    International Nuclear Information System (INIS)

    1995-04-01

    It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs

  11. Dose classification scheme for digital imaging techniques in diagnostic radiology

    International Nuclear Information System (INIS)

    Hojreh, A.

    2002-04-01

    Purpose: image quality in diagnostic radiology is determined in crucial extent by the signal-noise-ratio, which is proportional to the applied x-ray dose. Onward technological developments in the diagnostic radiology are therefore frequently connected with a dose increase, which subjectively is hardly or even not perceptible. The aim of this work was to define reproducible standards for image quality as a function of dose and expected therapeutical consequence in case of computed tomography of the paranasal sinuses and the upper and lower jaw (dental CT), whereby practical-clinical purposes are considered. Materials and methods: the image quality of computed tomography of the paranasal sinuses and dental CT was determined by standard deviation of the CT-numbers (pixel noise) in a region of interest of the phantom of American Association of Physicists in Medicine (AAPM phantom) and additionally in the patients CT images. The diagnostic quality of the examination was classified on the basis of patients CT images in three dose levels (low dose, standard dose and high dose). Results: the pixel noise of CT of the paranasal sinuses with soft tissue reconstruction amounts to 19.3 Hounsfield units (HU) for low dose, 8.8 HU for standard dose, and below 8 HU for high dose. The pixel noise of the dental CT with bone (high resolution) reconstruction amounts to 344 HU for low dose, 221 HU for standard dose, and below 200 HU for high dose. Suitable indications for low dose CT are the scanning of body regions with high contrast differences, like the bony delimitations of air-filled spaces of the facial bones, and radiological follow-up examinations with dedicated questions such as axis determination in dental implantology, as well as the images of objects with small diameter such as in case of children. The standard dose CT can be recommended for all cases, in which precise staging of the illness plays an indispensable role for the diagnosis and therapy planning. With high dose

  12. Methods of determining the effective dose in dental radiology

    International Nuclear Information System (INIS)

    Thilander-Klang, A.; Helmrot, E.

    2010-01-01

    A wide variety of X-ray equipment is used today in dental radiology, including intra-oral, ortho-pan-tomographic, cephalo-metric, cone-beam computed tomography (CBCT) and computed tomography (CT). This raises the question of how the radiation risks resulting from different kinds of examinations should be compared. The risk to the patient is usually expressed in terms of effective dose. However, it is difficult to determine its reliability, and it is difficult to make comparisons, especially when different modalities are used. The classification of the new CBCT units is also problematic as they are sometimes classified as CT units. This will lead to problems in choosing the best dosimetric method, especially when the examination geometry resembles more on an ordinary ortho-pan-tomographic examination, as the axis of rotation is not at the centre of the patient, and small radiation field sizes are used. The purpose of this study was to present different methods for the estimation of the effective dose from the equipment currently used in dental radiology, and to discuss their limitations. The methods are compared based on commonly used measurable and computable dose quantities, and their reliability in the estimation of the effective dose. (authors)

  13. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    International Nuclear Information System (INIS)

    Goekce, Senem Divrik; Gekce, Erkan; Coskun, Melek

    2012-01-01

    Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A X 2 -test was used for the evaluation of data obtained. Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period.

  14. Dose Evaluation and Quality Criteria in Dental Radiology

    International Nuclear Information System (INIS)

    Gori, C.; Rossi, F.; Stecco, A.; Villari, N.; Zatelli, G.

    2000-01-01

    Radioprotection in dental radiology is of particular interest in the framework of the Revised Medical Exposure Directive for the great number of examinations involving the adult as well as the paediatric population (Article 9: Special Practice). The present study is intended to find the quality criteria of orthodontic imaging and for evaluating the dose absorbed within the dental and maxillary volume in connection with radiological examinations performed with either spiral CT, dental panoramic tomography or teleradiography. The X ray dose to organs sited in the body, neck, ocular and intracranial area was measured using lithium fluoride dosemeters, positioned in a Rando phantom. Quality criteria have been established by an expert radiologist considering the diagnostic information obtained in the images. The dosimetric data obtained were comparable with other authors', although with some differences due to technical characteristics. These result data are useful for choosing the patient's diagnostic path, considering the radiobiological risk associated with increasing orthodontic imaging. (author)

  15. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    DEFF Research Database (Denmark)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dos...

  16. Discharges of nuclear waste into the Kola Bay and its impact on human radiological doses

    International Nuclear Information System (INIS)

    Matishov, Genady G.; Matishov, Dimitry G.; Namjatov, Alexey A.; Carroll, JoLynn; Dahle, Salve

    2000-01-01

    The civilian nuclear icebreaker facility, RTP ''ATOMFLOT,'' is located in Kola Bay, Northwest Russia, as are several nuclear installations operated by the Russian Northern Fleet. A treatment plant at the Atomflot facility discharges purified nuclear waste into the bay at an annual rate of 500 m 3 . As a result of plant modifications this rate will soon increase to 5000 m 3 /yr. Evidence of minor leakages of 60 Co are reported by in the vicinity of Atomflot as well as near several military installations in Kola and the adjacent Motovsky Bays. 137 Cs levels reported in the present study for seawater and seaweed collected from locations within the bays are at expected levels except in the vicinity of Atomflot, where the 137 Cs level in a seaweed sample was 46±5 Bq/kg w.w. indicating significant uptake of radionuclides to biota. Uptake also may be occurring in higher trophic levels of the food web through environmental exchange and/or biotransformation. We consider the impact of the present and anticipated discharges from Atomflot through a radiological dose assessment for humans consuming fish from Kola Bay. Mixing and transport of nuclear waste is simulated using a simple box model. Maximum doses, assuming consumption of 100 kg/yr of fish, are below 10 -9 Sv/yr; the planned ten-fold increase in the discharge of treated waste will increase the doses to below 10 -8 Sv/yr. Using data on radionuclide levels in sediments and assuming equilibrium partitioning of radionuclides among sediment, seawater and fish, we estimate that the total doses to humans consuming fish from different areas of Kola and Motovsky Bays, including adjacent to military-controlled nuclear installations, are ∼10 -7 Sv/yr. Nuclear activities in Kola and Motovsky Bays thus far have had minimal impact on the environment. Discharges from the treatment plant currently account for less than 0.2% of the total dose predictions. The increase in discharges from the treatment plant is not expected to change

  17. ICRP PUBLICATION 121: Radiological Protection in Paediatric Diagnostic and Interventional Radiology

    International Nuclear Information System (INIS)

    Khong, P-L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R.

    2013-01-01

    , use of protective shielding, optimisation of exposure factors, use of pulsed fluoroscopy, limiting fluoroscopy time, etc. Major paediatric interventional procedures should be performed by experienced paediatric interventional operators, and a second, specific level of training in radiological protection is desirable (in some countries, this is mandatory). For computed tomography, dose reduction should be optimised by the adjustment of scan parameters (such as mA, kVp, and pitch) according to patient weight or age, region scanned, and study indication (e.g. images with greater noise should be accepted if they are of sufficient diagnostic quality). Other strategies include restricting multiphase examination protocols, avoiding overlapping of scan regions, and only scanning the area in question. Up-to-date dose reduction technology such as tube current modulation, organ-based dose modulation, auto kV technology, and iterative reconstruction should be utilised when appropriate. It is anticipated that this publication will assist institutions in encouraging the standardisation of procedures, and that it may help increase awareness and ultimately improve practices for the benefit of patients.

  18. A review of radiology staff doses and dose monitoring requirements

    International Nuclear Information System (INIS)

    Martin, C. J.

    2009-01-01

    Studies of radiation doses received during X-ray procedures by radiology, cardiology and other clinical staff have been reviewed. Data for effective dose (E), and doses to the eyes, thyroid, hands and legs have been analysed. These data have been supplemented with local measurements to determine the most exposed part of the hand for monitoring purposes. There are ranges of 60-100 in doses to individual tissues reported in the literature for similar procedures at different centres. While ranges in the doses per unit dose-area product (DAP) are between 10 and 25, large variations in dose result from differences in the sensitivity of the X-ray equipment, the type of procedure and the operator technique, but protection factors are important in maintaining dose levels as low as possible. The influence of shielding devices is significant for determining the dose to the eyes and thyroid, and the position of the operator, which depends on the procedure, is the most significant factor determining doses to the hands. A second body dosemeter worn at the level of the collar is recommended for operators with high workloads for use in assessment of effective dose and the dose to the eye. It is proposed that the third quartile values from the distributions of dose per unit DAP identified in the review might be employed in predicting the orders of magnitude of doses to the eye, thyroid and hands, based on interventional operator workloads. Such dose estimates could be employed in risk assessments when reviewing protection and monitoring requirements. A dosemeter worn on the little finger of the hand nearest to the X-ray tube is recommended for monitoring the hand. (authors)

  19. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    Science.gov (United States)

    Divrik Gökçe, Senem; Coşkun, Melek

    2012-01-01

    Objective Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. Materials and Methods A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A χ2-test was used for the evaluation of data obtained. Results Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Conclusion Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period. PMID:22438688

  20. Systems automated reporting of patient dose in digital radiology

    International Nuclear Information System (INIS)

    Collado Chamorro, P.; Sanz Freire, C. J.; Martinez Mirallas, O.; Tejada San Juan, S.; Lopez de Gammarra, M. S.

    2013-01-01

    It has developed a procedure automated reporting of doses to patients in Radiology. This procedure allows to save the time required of the data used to calculate the dose to patients by yields. Also saves the time spent in the transcription of these data for the realization of the necessary calculations. This system has been developed using open source software. The characteristics of the systems of digital radiography for the automation of procedures, in particular the registration of dose should benefit from patient. This procedure is validated and currently in use at our institution. (Author)

  1. Radiology Residents' Awareness about Ionizing Radiation Doses in Imaging Studies and Their Cancer Risk during Radiological Examinations

    Energy Technology Data Exchange (ETDEWEB)

    Goekce, Senem Divrik [I. Ikad Community Health Center, Health Directorate, Samsun (Turkmenistan); Gekce, Erkan [Samsun Maternity and Women' s Disease and Pediatrics Hospital, Samsun (Turkmenistan); Coskun, Melek [Faculty of Medicine, Ondokuz May' s University, Samsun (Turkmenistan)

    2012-03-15

    Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A X{sup 2}-test was used for the evaluation of data obtained. Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period.

  2. A conceptual framework for managing radiation dose to patients in diagnostic radiology using reference dose levels

    International Nuclear Information System (INIS)

    Almen, Anja; Baath, Magnus

    2016-01-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. (authors)

  3. Comparative analysis of dose levels to patients in radiological procedures guided by fluoroscopy

    International Nuclear Information System (INIS)

    Gomez, Pablo Luis; Fernandez, Manuel; Ramos, Julio A.; Delgado, Jose Miguel; Cons, Nestor

    2013-01-01

    This work presents the comparative data of the dose indicators for patient in radiological processes with respect to the values published in the ICRP document. It is analyzed the need for different strategies to communicate to different specialists mechanisms to optimize the radiation beginning with practice by training of second degree level in radiological protection and then, working with them the basics of equipment management to reduce doses without detriment to the welfare purpose

  4. Doses from Hiroshima mass radiologic gastric surveys

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, S; Sawada, S; Russell, W J [Radiation Effects Research Foundation, Hiroshima (Japan)

    1980-05-01

    Doses to examinees from mass radiologic surveys of the stomach in Hiroshima Perfecture were estimated by surveying for the frequency of the examinations, and for the technical factors used in them, and by phantom dosimetry. The average surface, active bone marrow and male and female gonad doses per examination were 5.73 rad, 231 mrad, and 20.6 and 140 mrad, respectively. These data will be used in estimating doses from medical X-rays among atomic bomb survivors. By applying them to the Hiroshima population, the genetically significant, per caput mean marrow, and leukemia significant doses were 0.14,8.6 and 7.4 mrad, respectively. There was a benefit-to risk ratio of about 50 for mass gastric surveys performed in 1976. However, the calculated risk was greater than the benefit for examinees under 29 years of age because of the lower incidence of gastric cancer in those under 29 years.

  5. Criteria and actions facing a radiological environmental contamination

    International Nuclear Information System (INIS)

    Gutierrez, Jose; Montero, Milagros

    2008-01-01

    An approach to improve the management of the radiological risk due to an environmental contamination is presented. The experience gained in emergency response has clearly demonstrated the importance to have an efficient emergency system including planning, procedures and operational internally consistent criteria. The lack of these components in the emergency system could lead to important radiological and non radiological consequences. The setting of internationally agreed criteria and guides is very important in the anticipated emergency response plan. The paper firstly reviews the approaches proposed by international recommendations and norms. From this review, a substantial coincidence on the basic principles is stated, in spite of small differences in its formulation. Also, a need for harmonization is endorsed. So, generic levels, in terms of imparted dose or avoided dose due to intervention, and, in some cases, derived levels, in terms of activity concentration, are proposed. Numerical values for emergency actions are also identified. The second part deals with the adaptation of the existing prediction and decision systems to the above radiological criteria. Relations among deposition, activity concentrations and annual doses for different scenarios, exposure pathways and age groups are established. Also, the sensibility of the radiological impact against different characteristics of the intervention scenarios is stated. This makes easy to assess the radiological significance of different contamination situations by comparison to the existing action generic levels. Furthermore, the radiological impact can be numerically incorporated in a decision system which includes non radiological aspects of the applicable intervention options. Agricultural, urban and mixed scenarios are presented and solved for a 137 Cs contamination. The results can be further used to develop a methodology guide for setting action generic levels in post-accidental interventions and

  6. Evaluation of entrance skin dose to the skull in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamed, Anas Ali Elbushari

    2015-12-01

    Diagnostic x-ray radiology is a common diagnostic practice.Despite of its increasing hazard to human beings, imaging procedures should be achieved with less radiation dose and sufficient image quality. The aim of this study was to estimate the entrance skin dose(ESD) for patients undergoing selected diagnostic x-ray examinations in four hospitals.The study included the examinations of the skull; posterior- anterior(PA) and lateral projections. Fifty patients were enrolled in this study. ESDs were estimated from patients specific exposure parameters using established relation between output (μGy/mAs) and tube voltage(kVp). The estimated ESDs ranged from 0.0097-0.1846 mGy for skull (PA), 0.0097-0.1399 mGy for skull (LAT). These values were acceptable as compared with the international reference dose levels. This study provides additional data that can help the regulatory authority to establish reference dose levels for diagnostic radiology in Sudan.(Author)

  7. Analyses of superficial and depth doses in intraoral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Silva Santos de Oliveira, C.; Morais, R.P. de; Nascimento Souza, D. do [Universidade Federal de Sergipe - CCET - Dept. de Fisica, Sao Cristovao, SE (Brazil)

    2006-07-01

    In this work dosimetric analysis using thermoluminescence technique to study the beams characteristics of x-rays employed in dental radiology has been carried out. The obtained results with CaSO{sub 4}:Dy thermoluminescent dosimeters (TLD) were compared to the doses obtained with parallel-plates ionization chamber. Dosimetric evaluations were also done using radiographic films of large dimensions. The x-rays equipments analyzed were installed in the radiological services of Odontology Department of Sergipe Federal University (U.F.S.). Depending on the anatomical region to be examined the proper exposure time was select, for a fix voltage of 70 kV. The results with TLD and ionization chamber have been determined to female and male individuals. The intraoral regions analysed were the peri apical of the incisors, molar and pre-molar teeth and the occlusive region. These regions were simulated using acrylic plates absorbers installed on the film packet holder. The evaluation of the depth doses in the intraoral tissue was obtained using different acrylic plate thickness. The air kerma values have been evaluated with the ionization chamber located in the dental cone exit of the x-rays equipments. The integrated areas of the thermoluminescent glow curves showed coherent values when compared to the ones obtained with the ionization chamber and both methods presented a linear dependence with the exposition time. The analyses with films have allowed the evaluation of the beam scattering in the simulator apparatus. The studies had proven that the analysis of superficial dose and in depth used in dental radiology can be carried with thermoluminescent dosimeters. (authors)

  8. Analyses of superficial and depth doses in intraoral radiology

    International Nuclear Information System (INIS)

    Silva Santos de Oliveira, C.; Morais, R.P. de; Nascimento Souza, D. do

    2006-01-01

    In this work dosimetric analysis using thermoluminescence technique to study the beams characteristics of x-rays employed in dental radiology has been carried out. The obtained results with CaSO 4 :Dy thermoluminescent dosimeters (TLD) were compared to the doses obtained with parallel-plates ionization chamber. Dosimetric evaluations were also done using radiographic films of large dimensions. The x-rays equipments analyzed were installed in the radiological services of Odontology Department of Sergipe Federal University (U.F.S.). Depending on the anatomical region to be examined the proper exposure time was select, for a fix voltage of 70 kV. The results with TLD and ionization chamber have been determined to female and male individuals. The intraoral regions analysed were the peri apical of the incisors, molar and pre-molar teeth and the occlusive region. These regions were simulated using acrylic plates absorbers installed on the film packet holder. The evaluation of the depth doses in the intraoral tissue was obtained using different acrylic plate thickness. The air kerma values have been evaluated with the ionization chamber located in the dental cone exit of the x-rays equipments. The integrated areas of the thermoluminescent glow curves showed coherent values when compared to the ones obtained with the ionization chamber and both methods presented a linear dependence with the exposition time. The analyses with films have allowed the evaluation of the beam scattering in the simulator apparatus. The studies had proven that the analysis of superficial dose and in depth used in dental radiology can be carried with thermoluminescent dosimeters. (authors)

  9. Evaluation of patient radiation doses using DAP meter in interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Byung Sam [Dept. of Radiological Technology. Shingu University, Sungnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu Univeristy, Kyushu (Japan)

    2017-03-15

    The author investigated interventional radiology patient doses in several other countries, assessed accuracy of DAP meters embedded in intervention equipment in domestic country, conducted measurement of patient doses for 13 major interventional procedures with use of Dose Area Product(DAP) meters from 23 hospitals in Korea, and referred to 8,415 cases of domestic data related to interventional procedures by radiation exposure after evaluation the actual effective of dose reduction variables through phantom test. Finally, dose reference level for major interventional procedures was suggested. In this study, guidelines for patient doses were 237.7 Gy·cm{sup 2} in TACE, 17.3 Gy·cm{sup 2} in AVF, 114.1 Gy·cm{sup 2} in LE PTA and STENT, 188.5 Gy·cm{sup 2} in TFCA, 383.5 Gy·cm{sup 2} in Aneurysm Coil, 64.6 Gy·cm{sup 2} in PTBD, 64.6 Gy·cm{sup 2} in Biliary Stent, 22.4 Gy·cm{sup 2} in PCN, 4.3 Gy·cm{sup 2} in Hickman, 2.8 Gy·cm{sup 2} in Chemo-port, 4.4 Gy·cm{sup 2} in Perm-Cather, 17.1 Gy·cm{sup 2} in PCD, and 357.9 Gy·cm{sup 2} in Vis, EMB. Dose reference level acquired in this study is considered to be able to use as minimal guidelines for reducing patient dose in the interventional radiology procedures. For the changes and advances of materials and development of equipment and procedures in the interventional radiology procedures, further studies and monitoring are needed on dose reference level Korean DAP dose conversion factor for the domestic procedures.

  10. Optimization of the quality and dose in thorax general radiology

    International Nuclear Information System (INIS)

    Hwang, Suy Ferreira

    2001-01-01

    Image quality and radiation dose at skin entrance in chest radiography were studied for three exposure protocols, denoted as 1, 2 and 3. Protocol 1 represents the most used technique in radiology services in our country. This technique consists of the following parameters: 81 kV tube voltage, anti-scatter grid and 2 m focus-film distance. Protocol 2 uses the same parameters of the Protocol 1, without grid. Protocol 3 uses I 33kV without grid and 3,5 m focus-film distance. In Protocols 2 and 3 a 30 em air gap was used between patient and film. Two samples of 50 patients were radiographed in two different facilities, herein denoted 1 and 2. Protocol 1 was used in facility I to radiograph the first patient sample, and Protocols 2 and 3 were used in facility 2 to radiograph the second patient sample. Three experts in chest radiology evaluated the obtained chest images according anatomical quality criteria for this examination. For each patient exposure the radiation dose at skin entrance was measured. In this work, a chest phantom, containing test objects to evaluate quantitatively image quality, was made. The phantom was radiographed with the three protocols herein investigated. Results of this study showed clearly that Protocol 3 presents an average dose at skin entrance about half than Protocol 2 and about one third of Protocol 1. In regard to chest radiographic images and radiation dose, it was statistically demonstrated that the Protocol 3 is better than Protocols 1 and 2, with the improvement of the image quality and patient dose reduction in order of 3 times. This work also discusses the perspective of using optimized exposure technique proposed by Protocol 3 as an alternative technique far chest radiographic examinations to those currently used in our diagnostic radiology facilities. (author)

  11. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    International Nuclear Information System (INIS)

    Zonca, G.; Brusa, A.; Somigliana, A.; Pasqualotto, C.; Sichirollo, A.E.; Bellomi, M.; Cozzi, G.; Severini, A.

    1995-01-01

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  12. Software for the estimation of foetal radiation dose to patients and staff in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Osei, E K [Department of Radiation Physics, Princess Margaret Hospital, 610 University Avenue, Toronto ON M5G 2M9 (Canada); Darko, J B [Department of Radiation Physics, Princess Margaret Hospital, 610 University Avenue, Toronto ON M5G 2M9 (Canada); Faulkner, K [Quality Assurance Centre, Newcastle General Hospital, Westgate Road, Newcastle Upon Tyne NE4 6BE (United Kingdom); Kotre, C J [Regional Medical Physics Department, Newcastle General Hospital, Westgate Road, Newcastle Upon Tyne NE4 6BE (United Kingdom)

    2003-06-01

    Occasionally, it is clinically necessary to perform a radiological examination(s) on a woman who is known to be pregnant or an examination is performed on a woman who subsequently discovers that she was pregnant at the time. In radiological examinations, especially of the lower abdomen and pelvis area, the foetus is directly irradiated. It is therefore important to be able to determine the absorbed dose to the foetus in diagnostic radiology for pregnant patients as well as the foetal dose from occupational exposure of the pregnant worker. The determination of the absorbed dose to the unborn child in diagnostic radiology is of interest as a basis for risk estimates from medical exposure of the pregnant patient and occupational exposure of the pregnant worker. In this paper we describe a simple computer program, FetDose, which calculates the dose to the foetus from both medical and occupational exposures of the pregnant woman. It also calculates the risks of in utero exposure, compares calculated doses with published data in the literature and provides information on the natural spontaneous risks. The program will be a useful tool for the medical and paramedical personnel who are involved with foetal dose (and hence risks) calculations and counselling of pregnant women who may be concerned about in utero exposure of their foetuses.

  13. Software for the estimation of foetal radiation dose to patients and staff in diagnostic radiology

    International Nuclear Information System (INIS)

    Osei, E K; Darko, J B; Faulkner, K; Kotre, C J

    2003-01-01

    Occasionally, it is clinically necessary to perform a radiological examination(s) on a woman who is known to be pregnant or an examination is performed on a woman who subsequently discovers that she was pregnant at the time. In radiological examinations, especially of the lower abdomen and pelvis area, the foetus is directly irradiated. It is therefore important to be able to determine the absorbed dose to the foetus in diagnostic radiology for pregnant patients as well as the foetal dose from occupational exposure of the pregnant worker. The determination of the absorbed dose to the unborn child in diagnostic radiology is of interest as a basis for risk estimates from medical exposure of the pregnant patient and occupational exposure of the pregnant worker. In this paper we describe a simple computer program, FetDose, which calculates the dose to the foetus from both medical and occupational exposures of the pregnant woman. It also calculates the risks of in utero exposure, compares calculated doses with published data in the literature and provides information on the natural spontaneous risks. The program will be a useful tool for the medical and paramedical personnel who are involved with foetal dose (and hence risks) calculations and counselling of pregnant women who may be concerned about in utero exposure of their foetuses

  14. Effective dose to patients in interventional vascular radiology in Malaga and Tenerife

    International Nuclear Information System (INIS)

    Ruiz Cruces, R.; Perez Martinez, M.; Diez de los Rios Delgado, A.; Hernandez Armas, J.; Garcia-Granados, J.; Diaz Romero, F.J.

    1997-01-01

    The objective of the research is to estimate the effective dose that patients receive during the procedure of interventional vascular radiology screening using a digital system. The effective dose is the best indicator of radiological risks. A plane ionization camera is used to estimate dose per surface area (Gy/square cm). By means of the method described in the NRPB R-262 report, projections were selected which adjust to the field irradiated in each of the procedures analysed. The product values of the dose surface and effective dose has been 75.7 Gy/cm 2 and 10.5 mSv for abdominal angiography; 29.0 Gy/cm 2 and 7.6 mSv for arteriographic diagnosis of the inferior members; 104.5 Gy/cm 2 and 23.6 mSv for gall drainage; 90.5 Gy/cm 2 and 21.5 mSv for varicoceles, and 39.5 Gy/cm 2 and 9.6 mSv for nephrostomas

  15. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Entrance surface dose measurements in pediatric radiological examinations

    International Nuclear Information System (INIS)

    Ribeiro, L.A.; Yoshimura, E.M.

    2008-01-01

    A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo, in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0.068 mGy (5-9 years old); 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100 mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20 mGy, respectively) are above the European reference levels (1.5 mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a

  17. Northern Marshall Islands radiological survey: terrestrial food chain and total doses

    International Nuclear Information System (INIS)

    Robison, W.L.; Mount, M.E.; Phillips, W.A.; Conrado, C.A.; Stuart, M.L.; Stoker, C.E.

    1982-01-01

    A radiological survey was conducted from September through November of 1978 to assess the concentrations of persistent manmade radionuclides in the terrestrial and marine environments of 11 atolls and 2 islands in the Northern Marshall Islands. The survey consisted mainly of an aerial radiological reconnaissance to map the external gamma-ray exposure rates over the islands of each atoll. The logistical support for the entire survey was designed to accommodate this operation. As a secondary phase of the survey, shore parties collected appropriate terrestrial and marine samples to assess the radiological dose from pertinent food chains to those individuals residing on the atolls, who may in the future reside on some of the presently uninhabited atolls, or who collect food from these atolls. Over 5000 terrestrial and marine samples were collected for radionuclide analysis from 76 different islands. Soils, vegetation, indigenous animals, and cistern water and groundwater were collected from the islands. Reef and pelagic fish, clams, lagoon water, and sediments were obtained from the lagoons. The concentration data for 90 Sr, 137 Cs, 238 Pu, 239 240 Pu, and 241 Am in terrestrial food crops, fowl, and animals collected at the atolls or islands are summarized. An assessment of the total dose from the major exposure pathways including external gamma, terrestrial food chain including food products and drinking water, marine food chain, and inhalation is provided. Radiological doses at each atoll or island are calculated from the average radionuclide concentrations in the terrestrial foods, marine foods, etc. assuming the average daily intake for each food item

  18. Radiation dose evaluation in patients submitted to conventional radiological examinations

    International Nuclear Information System (INIS)

    Tilly Junior, Joao G.

    1997-01-01

    This work presents the results of the evaluation of radiation dose delivered to the patients undergoing conventional radiological procedures. Based in the realized measurement some indicators are settled to quantitative appraisal of the radiological protection conditions offered to the population. Data assessment was done in the county of Curitiba, in Parana State, Brazil, from 12/95 to 04/96, in ten rooms of three different institutions, under 101 patients, adults with 70 ± 10 kg, during real examinations of chest PA, chest LAT and abdomen AP. (author)

  19. Levels of doses to radiological workers in Ethiopia: 1977-1988

    International Nuclear Information System (INIS)

    Bayou, Teshome.

    1991-01-01

    During the period 1977 to 1988, a total of 10,494 Eastman Kodak type 2 film badges and 19,236 Vinten lithium fluoride thermoluminescence dosimeters (TLDS) were delivered to medical workers in Ethiopia of which 5,135 (48.93%) film badges and 19,177 (99.69%) TLDS were evaluated. The annual average occupational doses to the workers were estimated to be of 1.44 and 4.51 man-Sv with corresponding collective dose equivalents to 0.29 and 4.51 man-Sv respectively. Comparisons of doses to similar workers in different countries were compiled from the literature. Based on the TLD results and the 1977 International Commission on Radiological Protection (ICRP) risk coefficients it is estimated that the occurrence of extra fatal and non-fatal cancer cases is in the order of 74 per million radiological workers per year. The hereditary defects expected are 18 and 36 cases in the next two and in all future generations respectively. During these periods, the number of institutions monitored rose from 35 to 88 while the workers monitored increased from 100 to 450

  20. Optimization of Patient Doses in Interventional Radiology and Cardiology

    International Nuclear Information System (INIS)

    Nikodemova, D.; Boehm, K.

    2011-01-01

    Interventional radiology and cardiology belongs to the imaging modalities connected with significantly higher radiation exposure of patients and medical staff, compared to the exposure during other diagnostic procedures. The objective of this presentation is to promote typical technical parameters and parameters related to the radiation policy, used during the most frequent endovascular and cardiology procedures, as well as the monitoring of the exposure of patients. The presented study reports the results of collecting the data of monitoring doses received by 318 patients undergoing interventional examinations in 3 various departments of the Slovak National Institute of Cardiology and Vascular Diseases. There were 9 different endovascular and cardiology procedures reviewed. The reported patient's radiation exposures were established by using the KAP values, directly shown on the display of the X-ray equipment. From the measured KAP values the entrance surface doses were calculated. Equivalent doses have been measured on hands, legs and other parts of medical staff body, by using electronic dosimeters or thermoluminescent dosimeters. The presented results have covered a wide range of the measured fluoroscopy time values, different number of acquisitions used in various interventional procedures, various cumulated KAP values and also a wide range of the cumulated entrance surface doses. The occupational doses of the operators, followed during dose measurements on their left hands, covered the range from 0.1 μSv to 1513 μSv for one examination performed. The important contribution of the presented results to the radiation protection policy in the Slovak Republic is the mapping of the current situation of the radiation exposure of patients undergoing the chosen interventional examinations and the professional radiation exposure level of interventional operators, providing the most significant interventional procedures in the Slovak interventional hospitals. The

  1. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  2. Factors affecting patient dose in diagnostic radiology

    International Nuclear Information System (INIS)

    Poletti, J.L.

    1994-03-01

    The report, Factors Affecting Patient Dose in Diagnostic Radiology is divided into three main sections. Part one is introductory and covers the basic principles of x-ray production and image formation. It includes discussion of x-ray generators and x-ray tubes, radiation properties and units, specification and measurement of x-ray beams, methods of patient dose measurement, radiation effects, radiation protection philosophy and finally the essentials of imaging systems. Part two examines factors affecting the x-ray output of x-ray machines and the characteristics of x-ray beams. These include the influence of heat ratings, kVp, waveform, exposure timer, filtration, focus-film distance, beam intensity distribution, x-ray tube age and focal spot size. Part three examines x-ray machine, equipment and patient factors which affect the dose received by individual patients. The factors considered include justification of examinations, choice of examination method, film/screen combinations, kVp, mAs, focus-film distance, collimation and field size, exposure time, projection, scatter, generator calibration errors, waveform, filtration, film processing and patient size. The patient dose implications of fluoroscopy systems, CT scanners, special procedures and mammography are also discussed. The report concludes with a brief discussion of patient dose levels in New Zealand and dose optimisation. 104 refs., 32 figs., 27 tabs

  3. Genetically significant dose from diagnostic radiology in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Darby, S C; Wall, B F [National Radiological Protection Board, Harwell (UK)

    1981-01-01

    A brief discussion is presented of the use of population and child expectancy data to estimate the annual genetically significant dose for diagnostic radiology (GSD). The current estimate of GSD is compared with that reported in a survey 20 years previously. Comparisons are made with estimates of GSD from other countries.

  4. Dose and risk evaluation to the thyroid gland in intra-oral dental radiology

    International Nuclear Information System (INIS)

    Souza, Edmilson M.; Lima, Marco A.F.; Kelecom, Alphonse; Correa, Samanda C.A.; Silva, Ademir X.; Brito, Alan

    2008-01-01

    Intra-oral technique is one of the most frequently used procedures of dental radiology, allowing the detection of a variety of dental anomalies such as caries, dental trauma and periodontal lesions, while exposing patients to relatively low doses of radiation. However, although the adverse effects of doses generated by dental radiology are essentially stochastic, a number of epidemiological studies have provided evidence of an increased risk of thyroid tumors for dental radiography. Many studies have measured doses of radiation for dental radiography, but only a few have estimated thyroid dose. Furthermore, most of the studies on dose evaluation in dental radiology are based on standardized calculation phantoms, which neglect the variance of the patient size or even sex. The purpose of this study is to use the Monte Carlo code MCNPX and the FAX (Female Adult voXel) and MAX (Male Adult voXel) phantoms to investigate how absorbed doses to the thyroid gland in intraoral dental examinations vary in female and male patients. The lifetime cancer incidence attributable to dental examinations were estimated using the Biological Effects of Ionizing Radiations (BEIR) VII Committee Report. The phantoms study proved a useful trial for detecting the radiation dose to the thyroid gland and conclusively supported that the anatomy may be regarded as an influencing factor in radiation dose received during dental examination. Finally, the results have also confirmed that the association of the MCNPX code and the MAX and FAX phantoms is very useful in dosimetric studies on radiographic examinations of female and male patients. (author)

  5. The Northern Marshall Islands radiological survey: Data and dose assessments

    International Nuclear Information System (INIS)

    Robison, W.L.; Noshkin, V.E.; Conrado, C.L.

    1997-01-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for 137 Cs, 90 Sr, 239+240 Pu and 241 Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from 137 Cs accounts for about 10% to 30% of the dose. 239+240 Pu and 241 Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y -1 . The background dose in the Marshall Islands is estimated to be 2.4 mSv y -1 to 4.5 mSv y -1 . The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs

  6. Radiation exposure and dose evaluation in intraoral dental radiology

    International Nuclear Information System (INIS)

    Poppe, B.; Looe, H. K.; Pfaffenberger, A.; Eenboom, F.; Chofor, N.; Sering, M.; Ruehmann, A.; Poplawski, A.; Willborn, K.

    2007-01-01

    In this study, dose area product measurements have been performed to propose diagnostic reference levels (DRLs) in intraoral dental radiology. Measurements were carried out at 60 X-ray units for all types of intraoral examinations performed in clinical routine. The third quartile values calculated range from 26.2 to 87.0 mGy cm 2 . The results showed that there exists a large difference between the patient exposures among different dental facilities. It was also observed that dentists working with faster film type or higher tube voltage are not always associated with lower exposure. The study demonstrated the necessity to have the DRLs laid out as guidelines in dental radiology. (authors)

  7. Preliminary characterization of dose in personnel of interventional radiology

    International Nuclear Information System (INIS)

    Godolfim, Laura Larre; Anes, Mauricio; Bacelar, Alexandre; Lykawka, Rochelle

    2016-01-01

    Exposure to X-rays of Interventional Radiology professionals (IR) impacts in the high dose rate received by these individuals, and there are reports of biological effects of this professional activity. Therefore, it is fomented greater control over the doses received by these workers. This research intends to characterize the doses received by the professionals during IR procedures. We evaluated the doses of radiologists, anesthesiologists and nursing staff of the Hospital de Clinicas de Porto Alegre, through measures with dosimeters of the OSL type, distributed in up to six regions of the body of these professionals. Until now were accompanied 33 cholangiography procedures and 29 embolization procedures. As a preliminary result, it was possible to identify a wide variation between doses of the professionals of the same function in each procedure. In overview, the dose of the professionals presented in descending order as a radiologist 1> radiologist 2 > anesthetist > nursing. (author)

  8. Double dosimetry procedures for the determination of occupational effective dose in interventional radiology

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; D'Errico, F.

    2008-01-01

    Full text: In interventional radiology, for an accurate determination of occupational effective dose, measurements with two dosemeters ('double dosimetry', DD) have been recommended, one dosemeter located above and one under the protective apron. In this paper, based on an extensive literature search, the most recent algorithms developed for the determination of effective dose from the dosimeter readings have been compared for a few practical interventional procedures. Recommendations on the practices and algorithms are given on the basis of the results. For the comparison of algorithms, dosemeter readings and the effective dose were obtained both experimentally and by calculation. Further, data from published Monte Carlo calculations have been applied. The literature review has indicated that very few regulations for DD exist and the DD practices have not been harmonized. There is no firm consensus on the most suitable calculation algorithms. Single dosemeter (SD) measurements are still mostly used for the calculation of effective dose. Most DD and SD algorithms overestimate effective dose significantly, sometimes by over ten times. However, SD algorithms can significantly underestimate effective dose in certain interventional radiology conditions. Due to the possibility of underestimating effective dose, DD is generally recommended. The results suggest that there might not be a single DD algorithm which would be optimum for all interventional radiology procedures. However, the selection of a precise DD algorithm for each individual condition is not practical and compromises must be made. For accurate personnel dosimetry, the accuracy of the algorithm selected should be tested for typical local interventional radiology condition. Personnel dosemeters should be used in the recommended positions. The dosemeter above the apron should be on a collar and its reading also used to assess the risk of lens injuries. The dosemeter under the apron can be on the chest or

  9. Determining and managing fetal radiation dose from diagnostic radiology procedures in Turkey

    International Nuclear Information System (INIS)

    Ozbayrak, Mustafa; Cavdar, Iffet; Seven, Mehmet; Uslu, Lebriz; Yeyin, Nami; Tanyildizi, Handan; Abuqbeitah, Mohammad; Acikgoz, A. Serdar; Tuten, Abdullah; Demir, Mustafa

    2015-01-01

    We intended to calculate approximate fetal doses in pregnant women who underwent diagnostic radiology procedures and to evaluate the safety of their pregnancies. We contacted hospitals in different cities in Turkey where requests for fetal dose calculation are usually sent. Fetal radiation exposure was calculated for 304 cases in 218 pregnant women with gestational ages ranging from 5 days to 19 weeks, 2 days. FetDose software (ver. 4.0) was used in fetal dose calculations for radiographic and computed tomography (CT) procedures. The body was divided into three zones according to distance from the fetus. The first zone consisted of the head area, the lower extremities below the knee, and the upper extremities; the second consisted of the cervicothoracic region and upper thighs; and the third consisted of the abdominopelvic area. Fetal doses from radiologic procedures between zones were compared using the Kruskal-Wallis test and a Bonferroni-corrected Mann-Whitney U-test. The average fetal doses from radiography and CT in the first zone were 0.05 ± 0.01 mGy and 0.81 ± 0.04 mGy, respectively; 0.21 ± 0.05 mGy and 1.77 ± 0.22 mGy, respectively, in the second zone; and 6.42 ± 0.82 mGy and 22.94 ± 1.28 mGy, respectively, in the third zone (p < 0.001). Our results showed that fetal radiation exposures in our group of pregnant women did not reach the level (50 mGy) that is known to increase risk for congenital anomalies. Fetal radiation exposure in the diagnostic radiology procedures in our study did not reach risk levels that might have indicated abortion

  10. Determining and managing fetal radiation dose from diagnostic radiology procedures in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayrak, Mustafa; Cavdar, Iffet; Seven, Mehmet; Uslu, Lebriz; Yeyin, Nami; Tanyildizi, Handan; Abuqbeitah, Mohammad; Acikgoz, A. Serdar; Tuten, Abdullah; Demir, Mustafa [Istanbul University, Istanbul (Turkmenistan)

    2015-12-15

    We intended to calculate approximate fetal doses in pregnant women who underwent diagnostic radiology procedures and to evaluate the safety of their pregnancies. We contacted hospitals in different cities in Turkey where requests for fetal dose calculation are usually sent. Fetal radiation exposure was calculated for 304 cases in 218 pregnant women with gestational ages ranging from 5 days to 19 weeks, 2 days. FetDose software (ver. 4.0) was used in fetal dose calculations for radiographic and computed tomography (CT) procedures. The body was divided into three zones according to distance from the fetus. The first zone consisted of the head area, the lower extremities below the knee, and the upper extremities; the second consisted of the cervicothoracic region and upper thighs; and the third consisted of the abdominopelvic area. Fetal doses from radiologic procedures between zones were compared using the Kruskal-Wallis test and a Bonferroni-corrected Mann-Whitney U-test. The average fetal doses from radiography and CT in the first zone were 0.05 ± 0.01 mGy and 0.81 ± 0.04 mGy, respectively; 0.21 ± 0.05 mGy and 1.77 ± 0.22 mGy, respectively, in the second zone; and 6.42 ± 0.82 mGy and 22.94 ± 1.28 mGy, respectively, in the third zone (p < 0.001). Our results showed that fetal radiation exposures in our group of pregnant women did not reach the level (50 mGy) that is known to increase risk for congenital anomalies. Fetal radiation exposure in the diagnostic radiology procedures in our study did not reach risk levels that might have indicated abortion.

  11. Patient dose during radiological examination in the follow-up of bariatric surgery

    International Nuclear Information System (INIS)

    Moro, L.; Cazzani, C.; Tomarchio, O.; Morone, G.; Catona, A.; Fantinato, D.

    2007-01-01

    A patient dose survey was carried out measuring the kerma-area product (KAP) values during radiological evaluation in the follow-up of bariatric surgery. The procedures were performed by three radiologists to adjust laparoscopic gastric bands and to detect postoperative complications after Roux-en-Y gastric bypass procedures to treat morbid obesity. Total fluoroscopy time, exposure factors and the overall contribution of fluoroscopy to the accumulated KAP value were recorded. The median KAP values were used to estimate organ doses and effective dose to a standard patient; the radiation risk associated with the procedures was also evaluated. The doses were smaller for one of the three radiologists, owing to a more appropriate beam collimation and a reduction of the screening time. The KAP values ranged from 1.6 to 7.1 Gy cm 2 for the laparoscopic adjustable gastric banding management, and from 3.0 and 8.3 Gy cm 2 for the radiological examinations after gastric bypass. As a whole, the effective doses associated to these procedures were between 0.5 and 2.7 mSv. The organs receiving the highest doses were not only breast, stomach, pancreas and liver, but also lungs, owing to of their high radiosensitivity, significantly contributed to the effective dose. (authors)

  12. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1980-04-01

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  13. The current contribution of diagnostic radiology to the population dose in Great Britain

    International Nuclear Information System (INIS)

    Wall, B.F.; Rae, S.; Kendall, G.M.; Darby, S.C.; Fischer, E.S.; Harries, S.V.

    1980-01-01

    The National Radiological Protection Board of the UK has just completed a national survey to determine the genetically significant dose (GSD) to the population of Great Britain from diagnostic radiology. A statistically selected sample of about 80 hospitals spread throughout England, Scotland and Wales has supplied information on the numbers of patients examined in their X-ray departments during a week in June 1977, together with details of age, sex and examination technique. This sample is sufficient to make a reliable estimate of the total diagnostic work-load in all National Health Service Hospitals throughout Great Britain for a year. Gonadal doses from 16 examination types that are likely to be the main contributors to the GSD have been measured on nearly 5000 patients at 20 hospitals throug'out the country using specially developed thermoluminescent dosemeters. These gonadal doses are combined with the examination frequency figures and current values for child expectancy derived from data supplied by tthe registrar general, to estimate the GSD. Those changes in practice which have occurred since the late 1950's which may have influenced the new value for the GSD are discussed, as well as the progress that has been made in estimating population somatic doses from diagnostic radiology using clinical measurements that are currently underway. (H.K.)

  14. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment

    International Nuclear Information System (INIS)

    Unger, L.M.; Trubey, D.K.

    1982-05-01

    Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed

  15. Pilot study of the dose in crystalline lens in the interventional radiology practice

    International Nuclear Information System (INIS)

    Castro, A.; Martinez, A.; Fernandez, A.; Molina, D.; Sanchez, L.; Diaz, A.

    2014-08-01

    The interventional radiology involves considerable exposure levels for the occupationally exposed personnel (OEP). The doses can encompass a wide range of values in dependence of the function that develops the personnel and the complexity of each procedure. In organs like the crystalline lens and skin values can be reached that imply the appearance of deterministic effects if is not fulfilled the appropriate measures of radiological protection. This has been demonstrated through multiple studies, among those that the retrospective study of damages in the crystalline lens and dose has been one of those most commented, known as RELID. The objective of that study was to examine the opacity prevalence in the crystalline lens in workers linked to the interventional cardiology and to correlate it with the occupational exposition. The obtained results contributed to that the ICRP recommend a new limit value of equivalent dose for crystalline lens of 20 mSv in one year. With the objective of analyzing the operational implications, in the radiological surveillance programs that they could originate with the new recommendations was developed a pilot study to evaluate the dose in crystalline lens in the OEP linked to the interventional radiology in a Cuban hospital. For this, an anthropomorphic mannequin RANDO-ALDERSON was used on which thermoluminescent dosimeters were placed below and above of the leaded apron and in different positions at level of the crystalline lens: above, below and to the sides of the leaded lenses that the personnel uses routinely. The mannequin was located on the same positions that occupy the main specialist that execute the procedure, as well as of the nurse to assist him. The measurements were made simulating the more representative procedures about complexity, duration time and exposure rate. The used dosimeters were RADOS model for whole body composed of two thermoluminescent detectors Gr-200 (LiF: Mg, Cu, P) to evaluate personal equivalent dose

  16. Calculating the radiological parameters used in non-human biota dose assessment tools using ERICA Tool and site-specific data

    Energy Technology Data Exchange (ETDEWEB)

    Sotiropoulou, Maria [INRASTES, NCSR ' ' Demokritos' ' , Environmental Radioactivity Laboratory, Athens (Greece); Aristotle University of Thessaloniki, Atomic and Nuclear Physics Laboratory, Thessaloniki (Greece); Florou, Heleny [INRASTES, NCSR ' ' Demokritos' ' , Environmental Radioactivity Laboratory, Athens (Greece); Kitis, Georgios [Aristotle University of Thessaloniki, Atomic and Nuclear Physics Laboratory, Thessaloniki (Greece)

    2017-11-15

    The substantial complexity in ecosystem-radionuclide interactions is difficult to be represented in terms of radiological doses. Thus, radiological dose assessment tools use typical exposure situations for generalized organisms and ecosystems. In the present study, site-specific data and radioactivity measurements of terrestrial organisms (grass and herbivore mammals) and abiotic components (soil) are provided. The retrieved data are used in combination with the ERICA Assessment Tool for calculation of radiological parameters. The process of radionuclide transfer within ecosystem components is represented using concentration ratios (CRs), while for the calculation of dose rates the dose conversion coefficient (DCC) methodology is applied. Comparative assessments are performed between the generic and assessment-specific radiological parameters and between the resulting dose rates. Significant differences were observed between CRs calculated in this study and those reported in the literature for cesium and thorium, which can easily be explained. On the other hand, CRs calculated for radium are in very good agreement with those reported in the literature. The DCCs exhibited some small differences between the reference and the assessment-specific organism due to mass differences. The differences were observed for internal and external dose rates, but they were less pronounced for total dose rates which are typically used in the assessment of radiological impact. The results of the current work can serve as a basis for further studies of the radiological parameters in environments that have not been studied yet. (orig.)

  17. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P Thermoluminescent Dosemeter and its applications in diagnostic radiology - a review

    International Nuclear Information System (INIS)

    Fung, K.L.

    2004-01-01

    This study investigated the dosimetric properties of the high sensitivity TLD (Thermoluminescent Dosemeter) of LiF:Mg,Cu,P and its applications in diagnostic radiology. A reproducible readout and annealing regime for this high sensitivity TLD was developed in the initial part of this study with the newly installed automatic TLD Reader system. Basic dosimetric characteristics of this T.L. dosemeter were then investigated. This paved the foundation for subsequent selected novel application studies in diagnostic radiology. This study exploits the favourable dosimetric properties of these T.L. dosemeters in some selected novel dosimetric applications in diagnostic radiology with an anthropomorphic phantom. The applications studied in radiological procedures included: dose reduction in lumbar spine radiography utilizing the 'anode heel effect'; gonad dose variation with kV p in chest radiography; foetal dose comparison between computed tomography (CT) and computed radiography (CR) in X-ray pelvimetry; lens dose reduction with bismuth eye-shields in CT brain studies; foetal dose assessment of early pregnancy in common high risk radiological examinations. It is anticipated that the unique and favourable dosimetric performance of LiF:Mg,Cu,P T.L. phosphor will be exploited further in measurements of low level dose received by patients and staff in diagnostic radiological procedures such as paediatric X-ray examinations

  18. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P Thermoluminescent Dosemeter and its applications in diagnostic radiology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Fung, K.L. E-mail: orkarl@polyu.edu.hk

    2004-05-01

    This study investigated the dosimetric properties of the high sensitivity TLD (Thermoluminescent Dosemeter) of LiF:Mg,Cu,P and its applications in diagnostic radiology. A reproducible readout and annealing regime for this high sensitivity TLD was developed in the initial part of this study with the newly installed automatic TLD Reader system. Basic dosimetric characteristics of this T.L. dosemeter were then investigated. This paved the foundation for subsequent selected novel application studies in diagnostic radiology. This study exploits the favourable dosimetric properties of these T.L. dosemeters in some selected novel dosimetric applications in diagnostic radiology with an anthropomorphic phantom. The applications studied in radiological procedures included: dose reduction in lumbar spine radiography utilizing the 'anode heel effect'; gonad dose variation with kV{sub p} in chest radiography; foetal dose comparison between computed tomography (CT) and computed radiography (CR) in X-ray pelvimetry; lens dose reduction with bismuth eye-shields in CT brain studies; foetal dose assessment of early pregnancy in common high risk radiological examinations. It is anticipated that the unique and favourable dosimetric performance of LiF:Mg,Cu,P T.L. phosphor will be exploited further in measurements of low level dose received by patients and staff in diagnostic radiological procedures such as paediatric X-ray examinations.

  19. Measurement of radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Helmrot, E.; Carlsson, G. A.

    2005-01-01

    Patient dose audit is an important tool for quality control and it is important to have a well-defined and easy to use method for dose measurements. In dental radiology, the most commonly used dose parameters for the setting of diagnostic reference levels (DRLs) are the entrance surface air kerma (ESAK) for intraoral examinations and dose width product (DWP) for panoramic examinations. DWP is the air kerma at the front side of the secondary collimator integrated over the collimator width and an exposure cycle. ESAK or DWP is usually measured in the absence of the patient but with the same settings of tube voltage (kV), tube current (mA) and exposure time as with the patient present. Neither of these methods is easy to use, and, in addition, DWP is not a risk related quantity. A better method of monitoring patient dose would be to use a dose area product (DAP) meter for all types of dental examinations. In this study, measurements with a DAP meter are reported for intraoral and panoramic examinations. The DWP is also measured with a pencil ionisation chamber and the product of DWP and the height H (DWP x H) of the secondary collimator (measured using film) was compared to DAP. The results show that it is feasible to measure DAP using a DAP meter for both intraoral and panoramic examinations. The DAP is therefore recommended for the setting of DRLs. (authors)

  20. MO-DE-204-03: Radiology Dose Optimisation - An Australian Perspective

    International Nuclear Information System (INIS)

    Schick, D.

    2016-01-01

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  1. MO-DE-204-03: Radiology Dose Optimisation - An Australian Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Schick, D. [Princess Alexandra Hospital (United States)

    2016-06-15

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  2. Analysis of dose distribution in interventionist radiology professionals

    International Nuclear Information System (INIS)

    Mauricio, Claudia L.P.; Silva, Leonardo Peres; Canevaro, Lucia V.; Luz, Eara de Souza

    2005-01-01

    In this work, an evaluation was made of the distribution of dose received by professionals involved in some procedures of Interventional Radiology at hospitals and clinics in Rio de Janeiro, RJ, Brazil. For these measurements thermoluminescent dosemeters (TLD) of LiF: Mg, Ti (TLD100) were used, positioned at different points of the body of professionals: the hands, knees, neck, forehead and chest, inside and outside the lead apron. The measurements were made by procedure and/or a day of work, and the TLD were calibrated in equivalent operating magnitude of personal dose (Hp (d)) at different depths: 0.07 mm, 3 mm and 10 mm. In some procedures, physicians (holders of service and residents) received significant doses. The results show the importance of the appropriate training of these professionals and the use of personal protective equipment (PPE), such as thyroid shield, which is not always used. Based on these evaluations, some suggestions were made in order to optimize the dose values in these procedures and a discussion on the need for additional monitoring points

  3. Radiological protection in interventional radiology

    International Nuclear Information System (INIS)

    Padovani, R.

    2001-01-01

    Interventional radiology (IR) reduces the need for many traditional interventions, particularly surgery, so reducing the discomfort and risk for patients compared with traditional systems. IR procedures are frequently performed by non-radiologist physicians, often without the proper radiological equipment and sufficient knowledge of radiation protection. Levels of doses to patients and staff in IR vary enormously. A poor correlation exists between patient and staff dose, and large variations of dose are reported for the same procedure. The occurrence of deterministic effects in patients is another peculiar aspect of IR owing to the potentially high skin doses of some procedures. The paper reviews the use of IR and the radiological protection of patients and staff, and examines the need for new standards for IR equipment and the training of personnel. (author)

  4. Rapid radiological characterization method based on the use of dose coefficients

    International Nuclear Information System (INIS)

    Dulama, C.; Toma, Al.; Dobrin, R.; Valeca, M.

    2010-01-01

    Intervention actions in case of radiological emergencies and exploratory radiological surveys require rapid methods for the evaluation of the range and extent of contamination. When simple and homogeneous radionuclide composition characterize the radioactive contamination, surrogate measurements can be used to reduce the costs implied by laboratory analyses and to speed-up the process of decision support. A dose-rate measurement-based methodology can be used in conjunction with adequate dose coefficients to assess radionuclide inventories and to calculate dose projections for various intervention scenarios. The paper presents the results obtained for dose coefficients in some particular exposure geometries and the methodology used for deriving dose rate guidelines from activity concentration upper levels specified as contamination limits. All calculations were performed by using the commercial software MicroShield from Grove Software Inc. A test case was selected as to meet the conditions from EPA Federal Guidance Report no. 12 (FGR12) concerning the evaluation of dose coefficients for external exposure from contaminated soil and the obtained results were compared to values given in the referred document. The geometries considered as test cases are: contaminated ground surface; - infinite extended homogeneous surface contamination and soil contaminated to a depth of 15 cm. As shown by the results, the values agree within 50% relative difference for most of the cases. The greatest discrepancies were observed for depth contamination simulation and in the case of radionuclides with complicated gamma emission and this is due to the different approach from MicroShield and FGR12. A case study is presented for validation of the methodology, where both dose rate measurements and laboratory analyses were performed on an extended quasi-homogeneous NORM contamination. The dose rate estimations obtained by applying the dose coefficients to the radionuclide concentrations

  5. Overview of double dosimetry procedures for the determination of the effective dose to the interventional radiology staff

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Jansen, J.; Miljanic, S.; Nikodemova, D.; Ranogajec-Komor, M.; D'Errico, F.

    2008-01-01

    In interventional radiology, for an accurate determination of effective dose to the staff, measurements with two dosemeters have been recommended, one located above and one under the protective apron. Such 'double dosimetry' practices and the algorithms used for the determination of effective dose were reviewed in this study by circulating a questionnaire and by an extensive literature search. The results indicated that regulations for double dosimetry almost do not exist and there is no firm consensus on the most suitable calculation algorithms. The calculation of effective dose is mainly based on the single dosemeter measurements, in which either personal dose equivalent, directly, (dosemeter below the apron) or a fraction of personal dose equivalent (dosemeter above the apron) is taken as an assessment of effective dose. The most recent studies suggest that there might not be just one double dosimetry algorithm that would be optimum for all interventional radiology procedures. Further investigations in several critical configurations of interventional radiology procedures are needed to assess the suitability of the proposed algorithms. (authors)

  6. The Northern Marshall Islands Radiological Survey: data and dose assessments.

    Science.gov (United States)

    Robison, W L; Noshkin, V E; Conrado, C L; Eagle, R J; Brunk, J L; Jokela, T A; Mount, M E; Phillips, W A; Stoker, A C; Stuart, M L; Wong, K M

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for 137Cs, 90Sr, 239+240Pu and 241Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from 137Cs. 90Sr is the second most significant radionuclide via ingestion. External gamma exposure from 137Cs accounts for about 10% to 30% of the dose. 239+240Pu and 241Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y(-1) to 2.1 mSv y(-1). The background dose in the Marshall Islands is estimated to be 2.4 mSv y(-1). The combined dose from both background and bomb related radionuclides ranges from slightly

  7. Radiologic imaging in cystic fibrosis: cumulative effective dose and changing trends over 2 decades.

    LENUS (Irish Health Repository)

    O'Connell, Oisin J

    2012-06-01

    With the increasing life expectancy for patients with cystic fibrosis (CF), and a known predisposition to certain cancers, cumulative radiation exposure from radiologic imaging is of increasing significance. This study explores the estimated cumulative effective radiation dose over a 17-year period from radiologic procedures and changing trends of imaging modalities over this period.

  8. Foetal Radiation Dose and Risk from Diagnostic Radiology Procedures: A Multinational Study

    International Nuclear Information System (INIS)

    Osei, Ernest K.; Darko, Johnson

    2012-01-01

    In diagnostic radiology examinations there is a benefit that the patient derives from the resulting diagnosis. Given that so many examinations are performed each year, it is inevitable that there will be occasions when an examination(s) may be inadvertently performed on pregnant patients or occasionally it may become clinically necessary to perform an examination(s) on a pregnant patient. In all these circumstances it is necessary to request an estimation of the foetal dose and risk. We initiated a study to investigate fetal doses from different countries. Exposure techniques on 367 foetuses from 414 examinations were collected and investigated. The FetDoseV4 program was used for all dose and risk estimations. The radiation doses received by the 367 foetuses ranges: <0.001–21.9 mGy depending on examination and technique. The associated probability of induced hereditary effect ranges: <1 in 200000000 (5 × 10 −9 ) to 1 in 10000 (1 × 10 −4 ) and the risk of childhood cancer ranges <1 in 12500000 (8 × 10 −8 ) to 1 in 500 (2 × 10 −3 ). The data indicates that foetal doses from properly conducted diagnostic radiology examinations will not result in any deterministic effect and a negligible risk of causing radiation induced hereditary effect in the descendants of the unborn child

  9. Physical dose reconstruction in case of radiological accidents: an asset for the victims' management

    International Nuclear Information System (INIS)

    Huet, Christelle; Trompier, Francois; Clairand, Isabelle; Bottollier-Depois, Jean-Francois

    2008-01-01

    In most cases of radiological accidents caused by an external source, the irradiation is heterogeneous, even for a whole body irradiation. Therefore, more than a whole body dose, estimating the dose distribution in the victim's organism is essential to assess biological damages. This dose distribution can be obtained by physical dosimetric reconstruction methods. The laboratory has developed several techniques based on experimental and numerical dose reconstruction and retrospective dosimetry by ESR in order to assess as accurately as possible and as quickly as possible the dose received and especially its distribution throughout the organism so that the physicians may fine tune their diagnosis and prescribe the most suitable treatment. These last years, these techniques were applied several times and each time the results obtained proved to be essential for the physicians in charge of the victims in order to define the therapeutic strategy. This article proposes a review of the physical dose reconstructions performed in the laboratory for recent radiological accidents focusing on the complementarity of the methods and the gain for the victims' management. (author)

  10. Fast skin dose estimation system for interventional radiology.

    Science.gov (United States)

    Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-03-01

    To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.

  11. Introduction of radiological protection; Pengenalan kepada perlindungan radiologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: basic principles of radiological protection , dose limit which was suggested, stochastic and nonstochastic effects, equivalent dose and alternative of it`s calculation, limit for the publics, ICRP (International Commission for Radiological Protection) recommendations, and the principles of radiological protection. Dangerous radiation sources also briefly summarized i.e. x-ray generators, reactor nucleus.

  12. Monte Carlo simulation for radiation dose in children radiology

    International Nuclear Information System (INIS)

    Mendes, Hitalo R.; Tomal, Alessandra

    2016-01-01

    The dosimetry in pediatric radiology is essential due to the higher risk that children have in comparison to adults. The focus of this study is to present how the dose varies depending on the depth in a 10 year old and a newborn, for this purpose simulations are made using the Monte Carlo method. Potential differences were considered 70 and 90 kVp for the 10 year old and 70 and 80 kVp for the newborn. The results show that in both cases, the dose at the skin surface is larger for smaller potential value, however, it decreases faster for larger potential values. Another observation made is that because the newborn is less thick the ratio between the initial dose and the final is lower compared to the case of a 10 year old, showing that it is possible to make an image using a smaller entrance dose in the skin, keeping the same level of exposure at the detector. (author)

  13. A project: 'Radiological protection in radiology', IAEA - Universidad Central de Venezuela

    International Nuclear Information System (INIS)

    Diaz, A.R.; Salazar, G.; Fermin, R.; Gonzalez, M.

    2001-01-01

    For several years a reference center of the UCV has been working on the project VEN/9/007 on dose reduction in diagnostic radiology sponsored by the IAEA. The dose and quality image was evaluated for different types of radiological study (conventional radiology, CT, mammography, interventional radiology) in different facilities at Caracas and others regions of the Venezuela. TL dosimeters were used to assess dose and reduction in dose. Based on the recommendations given by CEC documents on diagnostic quality criteria, a quality control program in radiological protection of patients and staff has been developed, for example: Pilot study by using TLD in personnel radiation monitoring. Comparative study between high and low kVp in chest. Evaluation and dose reduction in chest pediatric. Reduction of radiation dose in studies of billiards via Quality Image and reduction of the dose in studies of colon by enema. Radiation dose of staff in fluoroscopy procedures. Evaluation and dose reduction in dental radiography in public Institutions. A mammography accreditation program for Venezuela, applied to public hospitals. (author)

  14. Quality control of diagnostic radiology to reduce absorbed dose of patients in Iran

    International Nuclear Information System (INIS)

    Aghahadi, Bahman.

    1996-01-01

    In order to reduce absorbed dose, to increase the image quality and to reduce the numbers of rejected films various quality control parameters were applied to X ray machines. These parameter are Kilo Volt peak, Milli Ampere, Exposure Time Focal Film Distance, Inherent Filters, Additional Filters Half Value Layer, Processor Condition, Cassettes. To evaluate and to apply these parameters in diagnostic radiological centers, ten hospitals were selected and a total number of 12 X ray machines were kept under quality control program. Considering different kinds of diagnostic radiology examination and to compare the dose before and after implementation of a quality control program, two kinds of examinations include in chest and abdomen examinations were considered. For each X ray machine, ten patients and for all selected centers, 120 patients were selected for chest examination and 120 patients for abdomen examinations; before and after implementation of quality control program, a total of 480 patients were selected randomly to be controlled. Base on different examinations carried out, it was concluded that both exposure conditions and general situations in radiological centers were not acceptable. The dosimetry results show that the average ski dose for chest and abdomen examinations were 0.28 m Gy and 4.23 Gy respectively. Before implementation of quality control step to reduce the surface skin dose, quality control parameters were applied and the exposure conditions were imposed. On average the absorbed doses for chest and abdomen examination were decreased to 79% and 61% respectively after the implementation of the program. From dose reduction point of view, the results of a part of this project which made by co-operation of International Atomic Energy Agency showed that Iran acquired the first grade for chest examination and second grade for abdomen examination. Base on the results obtained, the number of patients under chest and abdomen examination were 4041588 and

  15. Dose evaluation in medical staff during diagnostics procedures in interventional radiology; Avaliacao da dose na equipe medica durante procedimentos diagnoticos de radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Bacchim Neto, Fernando A.; Alves, Allan F.F.; Rosa, Maria E.D.; Miranda, Jose R.A. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Instituto de Biociencias. Departamento de Fisica e Biofisica; Moura, Regina [Faculdade de Medicina de Botucatu, SP (Brazil). Departamento de Cirurgia e Ortopedia; Pina, Diana R., E-mail: bacchim@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina. Departamento de Doencas Tropicais e Diagnostico por Imagem

    2014-08-15

    Studies show that personal dosimeters may underestimate the dose values in interventional physicians, especially in extremities and crystalline. The objective of this work was to study the radiation exposure levels of medical staff in diagnostic interventional radiology procedures. For this purpose LiF:Mg,Ti (TLD-100) dosimeters were placed in different regions of the physician body. When comparing with reference dose levels, the maximum numbers of annual procedures were found. This information is essential to ensure the radiological protection of those professionals. (author)

  16. Parameter calculation tool for the application of radiological dose projection codes

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vergara del C, J. A.; Galvan A, S. J.; Tijerina S, F.

    2016-09-01

    The use of specialized codes to estimate the radiation dose projection to an emergency postulated event at a nuclear power plant requires that certain plant data be available according to the event being simulated. The calculation of the possible radiological release is the critical activity to carry out the emergency actions. However, not all of the plant data required are obtained directly from the plant but need to be calculated. In this paper we present a computational tool that calculates the plant data required to use the radiological dose estimation codes. The tool provides the required information when there is a gas emergency venting event in the primary containment atmosphere, whether well or dry well and also calculates the time in which the spent fuel pool would be discovered in the event of a leak of water on some of the walls or floor of the pool. The tool developed has mathematical models for the processes involved such as: compressible flow in pipes considering area change and for constant area, taking into account the effects of friction and for the case of the spent fuel pool hydraulic models to calculate the time in which a container is emptied. The models implemented in the tool are validated with data from the literature for simulated cases. The results with the tool are very similar to those of reference. This tool will also be very supportive so that in postulated emergency cases can use the radiological dose estimation codes to adequately and efficiently determine the actions to be taken in a way that affects as little as possible. (Author)

  17. The establishment and use of dose reference levels in general paediatric radiology

    International Nuclear Information System (INIS)

    Marsden, P.J.; Hardwick, J.; Mencik, C.; McLaren, C.; Young, C.; Mashford, P.

    2001-01-01

    Diagnostic reference levels for general paediatric radiology have been established in terms of delivered exposure parameters rather than skin dose or dose-area product. With supporting measurements from equipment quality assurance and assumptions of standard patient sizes it was possible to derive reference levels in terms of entrance surface dose. This allowed comparison to be made with other published data. The reference levels for common examinations are presented for different age bands. There is a notable variation with patient age for some examinations which is not apparent in other published data. (author)

  18. SUDOQU, a new dose-assessment methodology for radiological surface contamination.

    Science.gov (United States)

    van Dillen, Teun; van Dijk, Arjan

    2018-06-12

    A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked

  19. Reference doses and patient size in paediatric radiology

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.; Shrimpton, P.

    2000-01-01

    There is a wide range in patient size from a newborn baby to a 15 year old adolescent. Reference doses for paediatric radiology can sensibly be established only for specific sizes of children. Here five standard sizes have been chosen, representing 0 (newborn), 1, 5, 10 and 15 year old patients. This selection of standard ages has the advantage of matching the paediatric mathematical phantoms which are often used in Monte Carlo organ dose calculations. A method has been developed for calculating factors for normalising doses measured on individual children to those for the nearest standard-sized 'child'. These normalisation factors for entrance surface dose (ESD) and dose-area product (DAP) measurements depend on the thickness of the real child, the thickness of the nearest standard 'child', and an effective linear attenuation coefficient (μ) which is itself a function of the x-ray spectrum, the field size, and whether or not an antiscatter grid is used. Entrance and exit dose measurements were made with phantom material representing soft tissue to establish μ values for abdominal and head examinations, and with phantom material representing lung for chest examinations. These measurements of μ were confirmed and extended to other x-ray spectra and field sizes by Monte Carlo calculations. The normalisation factors are tabulated for ESD measurements for specific radiographic projections through the head and trunk, and for DAP measurements for complete multiprojection examinations in the trunk. The normalisation factors were applied to European survey data for entrance surface dose and dose-area product measurements to derive provisional reference doses for common radiographic projections and for micturating cystourethrography (MCU) examinations - the most frequent fluoroscopic examination on children. (author)

  20. Developing low-dose C-arm CT imaging for temporomandibular joint (TMJ) disorder in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Cahill, Anne Marie [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Felice, Marc [University of Pennsylvania, Environmental Health and Radiation Safety, Philadelphia, PA (United States); Johnson, Laura [Computed Tomography Division, Siemens Healthcare Sector, Shanghai (China); Sarmiento, Marily [Siemens Medical Solutions, Angiography and X-ray Division, Hoffman Estates, IL (United States)

    2011-04-15

    Manufacturers have provided C-arm CT imaging technologies for applications in interventional radiology in recent years. However, clinical imaging protocols and radiation doses have not been well studied or reported. The purpose of this study is to develop low-dose settings for clinically acceptable CT imaging of temporomandibular joint in interventional radiology suites, using a C-arm imaging angiography system. CT scans were performed with a flat-panel digital C-arm angiographic system on a 5-year-old anthropomorphic phantom. The CTDI was determined for various rotation times, dose settings and Cu filter selections. The CTDI values were compared with those of conventional low-dose CT for the same phantom. The effectiveness of using Cu filters to reduce dose was also investigated. Images were reviewed by a senior radiologist for clinical acceptance. The manufacturer's default setting gave an equivalent CTDI of 4.8 mGy. Optimizing the dose settings and adding copper filtration reduced the radiation dose by 94%. This represents a 50% reduction from conventional CT. Use of Cu filters and low-dose settings significantly reduced radiation dose from that of standard settings. This phantom study process successfully guided the clinical implementation of low-dose studies for all ages at our institution. (orig.)

  1. [Cooperation with the electronic medical record and accounting system of an actual dose of drug given by a radiology information system].

    Science.gov (United States)

    Yamamoto, Hideo; Yoneda, Tarou; Satou, Shuji; Ishikawa, Toru; Hara, Misako

    2009-12-20

    By input of the actual dose of a drug given into a radiology information system, the system converting with an accounting system into a cost of the drug from the actual dose in the electronic medical record was built. In the drug master, the first unit was set as the cost of the drug, and we set the second unit as the actual dose. The second unit in the radiology information system was received by the accounting system through electronic medical record. In the accounting system, the actual dose was changed into the cost of the drug using the dose of conversion to the first unit. The actual dose was recorded on a radiology information system and electronic medical record. The actual dose was indicated on the accounting system, and the cost for the drug was calculated. About the actual dose of drug, cooperation of the information in a radiology information system and electronic medical record were completed. It was possible to decide the volume of drug from the correct dose of drug at the previous inspection. If it is necessary for the patient to have another treatment of medicine, it is important to know the actual dose of drug given. Moreover, authenticity of electronic medical record based on a statute has also improved.

  2. RASCAL [Radiological Assessment System for Consequence AnaLysis]: A screening model for estimating doses from radiological accidents

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Athey, G.F.; Sakenas, C.A.; McKenna, T.J.

    1988-01-01

    The Radiological Assessment System for Consequence AnaLysis (RASCAL) is a new MS-DOS-based dose assessment model which has been written for the US Nuclear Regulatory Commission for use during response to radiological emergencies. RASCAL is designed to provide crude estimates of the effects of an accident while the accident is in progress and only limited information is available. It has been designed to be very simple to use and to run quickly. RASCAL is unique in that it estimates the source term based on fundamental plant conditions and does not rely solely on release rate estimation (e.g., Ci/sec of I-131). Therefore, it can estimate consequences of accidents involving unmonitored pathways or projected failures. RASCAL will replace the older model, IRDAM. 6 refs

  3. Reconstructive dosimetry and radiation doses evaluation of members of the public due to radiological accident in industrial radiography

    International Nuclear Information System (INIS)

    Lima, Camila Moreira Araujo de

    2016-01-01

    Radiological accidents have occurred mainly in the practices recognized as high risk radiological and classified by the IAEA as Categories 1 and 2, and highlighted the radiotherapy, industrial irradiators and industrial radiography. In Brazil, since there were five major cases in industrial radiography, which involved 7 radiation workers and 19 members of the public, causing localized radiation lesions on the hands and fingers. One of these accidents will be the focus of this work. In this accident, a "1"9"2Ir radioactive source was exposed for more than 8 hours in the workplace inside a company, exposing radiation workers, individuals of the public and people from the surrounding facilities, including children of a school. The radioactive source was also handled by a security worker causing severe radiation injuries in the hand and fingers. In this paper, the most relevant and used techniques of reconstructive dosimetry internationally are presented. To estimate the radiation doses received by exposed individuals in various scenarios of radiological accident in focus, the following computer codes were used: Visual Monte Carlo Dose Calculation (VMC), Virtual Environment for Radiological and Nuclear Accidents Simulation (AVSAR) and RADPRO Calculator. Through these codes some radiation doses were estimated, such as, 33.90 Gy in security worker's finger, 4.47 mSv in children in the school and 55 to 160 mSv for workers in the company during the whole day work. It is intended that this work will contribute to the improvement of dose reconstruction methodology for radiological accidents, having then more realist radiation doses. (author)

  4. Estimation of patient radiation doses during radiologic examinations in the Republic of Haiti

    International Nuclear Information System (INIS)

    Massillon, J.G.; Borras, C.

    2001-01-01

    The International Commission on Radiological Protection and the international organizations that co-sponsored the International Basic Safety Standards for the Protection against Ionization Radiation and for the Safety of Radiation Sources (BSS) - among them PAHO and WHO - recommended the use of investigation levels to provide guidance for medical exposures. In this work, entrance surface doses for several common diagnostic radiology procedure have been determined from exposure rate measurements and patient technique factors in seven 'World Health Imaging System - Radiography' (WHIS-RAD) units, installed in public health services facilities of the Republic of Haiti. The results show the entrance surface doses below the guidance levels published in the BSS. Concomitant image quality measurements performed, however, indicate serious artifacts in the film processing, calling for the need of additional training of the technologists. (author)

  5. Evaluation of radiological protection and dose of skin entrance in paediatric dentistry examinations

    International Nuclear Information System (INIS)

    Khoury, Helen Jamil; Silveira, Marcia Maria Fonseca da; Couto, Geraldo Bosco Lindoso; Brasileiro, Izabela Vanderley

    2005-01-01

    In this work the radiological protection conditions and dose at the entrance of pediatric patients undergoing dental intraoral radiographs were evaluated. The study was conducted in two clinics of the dentistry course at the Federal University of Pernambuco, Recife, PB, Brazil, equipped with conventional X-ray apparatus, with 60 and 70 kV. 254 exams of 113 patients between the ages of 3 to 12 years were evaluated. The skin entrance dose was estimated using TLD-100 thermoluminescent dosemeters. During the examination were also recorded information regarding the time of exposure, radiographic technique used, use of thyroid protectors and lead apron, angle and distance of the cone Locator to the patient's skin. The results showed that the input skin doses ranged from 0.3 mGy to 10mGy. The lead apron was used in 71% of exams while the thyroid shield was only used in 58% of the exams. The exposure times ranged from 0,5s to 1,5s. From the results it can be concluded that the radiological procedures are not optimized and that in some cases the patient dose is high.

  6. Efforts towards enhancing the quality of radiological services in Malaysia: review of patient dose surveys 1993-2007

    International Nuclear Information System (INIS)

    Hairuman, H.; Sapiin, B.; Muthuvelu, P.; Hatta, N.; Hambali, A.S.

    2008-01-01

    Full text: The Ministry of Health (MoH) Malaysia is continuously taking steps to improve the quality of radiological services provided by the public and private medical institutions. This is to ensure that optimum diagnostic information is obtained with the least exposure to patients as well as staff. Over the years, MOH has taken both administrative and legislative measures to enforce the various requirements under the Atomic Energy Licensing Act 1984. In order to further upgrade and enhance the quality, safety and efficacy of radiological services, implementation of the Quality Assurance Programme (QAP) has been made mandatory. Implementation of the QAP comprises certification of irradiating equipment, training of personnel (continuous professional education), film reject rate analysis and film auditing and assessment. All these particulars must be documented and submitted annually to the MoH in order to comply with licensing requirements. It is envisaged that with the implementation of QAP, the medical institutions will be able to institutionalise and internalise the culture of quality and safety in the applications of radiation in medicine. This implementation will indirectly result in reduction of dose to the patient and importantly in optimization the use of ionizing radiation in medicine. With the QAP in place a survey of doses to patient in 7 routine X-ray examinations was initiated in 1993 to provide a reference dose baseline in Malaysia. This was then followed by further dose surveys involving other modalities namely interventional radiology, mammography, adult chest and abdominal X-rays and computer tomography dose index (CTDI) for head and body phantom in CT scanner. The results of these dose surveys will be reviewed in this paper. The results of the mean entrance surface dose (ESD) (mGy) to patients in 7 routine X-ray examination done (1993 - 1995), the mean values of dose area product (DAP) (Gycm 2 ) for patient undergoing interventional radiology

  7. Offsite dose calculation manual guidance: Standard radiological effluent controls for boiling water reactors

    International Nuclear Information System (INIS)

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-- 01, which allows Radiological Effluent Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft form for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. 11 tabs

  8. Information about radiation dose and risks in connection with radiological examinations: what patients would like to know

    International Nuclear Information System (INIS)

    Ukkola, Leila; Oikarinen, Heljae; Haapea, Marianne; Tervonen, Osmo; Henner, Anja; Honkanen, Hilkka

    2016-01-01

    To find out patients' wishes for the content and sources of the information concerning radiological procedures. A questionnaire providing quantitative and qualitative data was prepared. It comprised general information, dose and risks of radiation, and source of information. Two tables demonstrating different options to indicate the dose or risks were also provided. Patients could give one or many votes. Altogether, 147 patients (18-85 years) were interviewed after different radiological examinations using these devices. 95 % (139/147) of the patients wished for dose and risk information. Symbols (78/182 votes) and verbal scale (56/182) were preferred to reveal the dose, while verbal (83/164) and numerical scale (55/164) on the risk of fatal cancer were preferred to indicate the risks. Wishes concerning the course, options and purpose of the examination were also expressed. Prescriber (3.9 on a scale 1-5), information letter (3.8) and radiographer (3.3) were the preferred sources. Patients aged 66-85 years were reluctant to choose electronic channels. Apart from general information, patients wish for dose and risk information in connection with radiological examinations. The majority preferred symbols to indicate dose and verbal scales to indicate risks, and the preferred source of information was the prescriber or information letter. (orig.)

  9. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    International Nuclear Information System (INIS)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Metivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Moeller, Anders

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h -1 ) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h -1 ), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-transformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity. (authors)

  10. Potential effects of climatic change on radiological doses from disposal of Canadian nuclear fuel waste

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1997-01-01

    The environmental assessment of deep geologic disposal of Canadian nuclear fuel waste considers many processes that could affect radionuclide transport to humans over thousands of years. Climatic change is an important feature that will occur over these long times. Glaciation will likely occur within the next 100,000 years over much of Canada, and its impact on radiological doses has been assessed previously. In the present study, we investigate the potential effect of short- term climatic change, usually associated with global warming caused by increases in atmospheric trace gases. We study the main biosphere transport pathways causing a radiological dose to humans from 129 I, which is the most important radionuclide in disposal of Canadian used nuclear fuel. Irrigation of a garden with contaminated well water is the main pathway and it can be affected by changes in temperature and precipitation. A cold, wet climate decreases the need for irrigation, and this decreases the radiological dose. A drastic climatic change, such as an increase in temperature from 10 to 20 degrees C and decrease in precipitation from 0.3 to 0.2 m during the growing season, is estimated to increase the dose by a factor of four. This is a relatively small change compared to the range of doses that arise from the variability and uncertainty in many of the parameters used in the environmental assessment models. Therefore, it is likely that the results of probabilistic dose assessment models can include the consequences of short-term climatic change. 39 refs., 3 figs

  11. Commercial sugar, an alternative dosemeter for the dose determination in radiological emergency conditions

    International Nuclear Information System (INIS)

    Urena N, F.; Galindo, S.

    1997-01-01

    It was carried out the dosimetric evaluation of commercial sugar, with the purpose to determine the feasibility to be able to use this type of substance as a dosimetric material in cases to present some radiological emergency cases. The studied parameters using the Electron Paramagnetic Resonance (EPR) technique were: pre-doses signal or depth signal, dose-response stability, reproducibility, reliability and signal clearing decreasing. (Author)

  12. Analysis of dose to crystalline in Interventional radiology: a purpose of one case

    International Nuclear Information System (INIS)

    Carrera M, F.; Moreno R, F.; Velazquez M, F.; Manzano M, F.J.; Moreno S, T.

    1998-01-01

    The present work shows the dose values to crystalline for the personnel which works in interventional radiology procedures. It was took data of 436 studies with a total of 2,133.4 minutes in fluoroscopy and 19,563 images. It was showed dose values to crystalline in three situations: without blinding, with blinding of 0.25 and 0.50 mm Pb and by type of study: fluoroscopy, graphie and total. The dose means and ranges to patient for each of these studies also are detailed. (Author)

  13. Assessment of eye lens doses in interventional radiology: a simulation in laboratory conditions

    International Nuclear Information System (INIS)

    Cemusova, Z.; Ekendahl, D.; Judas, L.

    2016-01-01

    As workers in interventional radiology belong to one of the most occupationally exposed groups, methods for sufficiently accurate quantification of their external exposure are sought. The objective of the authors' experiment was to investigate the relations between eye lens dose and H p (10), H p (3) or H p (0.07) values measured with a conventional whole-body personal thermoluminescence dosemeter (TLD). Conditions of occupational exposure during common interventional procedures were simulated in laboratory. An anthropomorphic phantom represented a physician. The TLDs were fixed to the phantom in different locations that are common for purposes of personal dosimetry. In order to monitor the dose at the eye lens level during the exposures, a special thermoluminescence eye dosemeter was fixed to the phantom's temple. Correlations between doses measured with the whole-body and the eye dosemeters were found. There are indications that personnel in interventional radiology do not need to be unconditionally equipped with additional eye dosemeters, especially if an appropriate whole-body dosimetry system has been already put into practice. (authors)

  14. Online software for the estimation of fetal radiation dose to patients and staff members in diagnostic radiology

    International Nuclear Information System (INIS)

    Costa, Paulo Roberto; Groff, Sybele Guedes de Paulo

    2009-01-01

    An online software, named 'Dose Fetal Web', which calculates the dose of the fetus and the radiological risks from both medical and occupational exposures of pregnant women is described. The software uses a mathematical methodology where coefficients for converting uterus to fetal dose, NUD, have been calculated by using Monte Carlo simulation. In the fetal dose from diagnostic medical examination of the pregnant patient, database information regarding output and other equipment related to parameters from the QA database, maternal and fetal parameters collected by ultrasound procedures were used for the fetal dose estimation. In the case of fetal dose of the pregnant staff member the database information regarding routine individual monitoring dosimetry, such as occupational dose and workload, were used for the estimation. In the first case suppose a 26 weeks pregnant patient had to undergo a single AP abdomen procedure (70 kVp peak tube voltage and total filtration 3mmAl), the fetal dose calculated by the software was 4.61 mGy and the radiological risks would be 5.0·10 -4 and 0.14 to the probability of mental retardation induction and decline in the IQ score, respectively. In the second case, considering that the staff member can be pregnant, and assuming that she wore a 0,5 mm lead equivalent apron during every interventional radiology procedure and a personal dosimetry reading of 2 mGy TLD /month measured with the TLDs outside the apron, the fetal dose calculated by the software was 0.02 mSv/month. (author)

  15. A pilot experience launching a national dose protocol for vascular and interventional radiology

    International Nuclear Information System (INIS)

    Vano, E.; Segarra, A.; Fernandez, J. M.; Ordiales, J. M.; Simon, R.; Gallego, J. J.; Del Cerro, J.; Casasola, E.; Verdu, J. F.; Ballester, T.; Sotil, J.; Aspiazu, A.; Garcia, M. A.; Moreno, F.; Carreras, F.; Canis, M.; Soler, M. M.; Palmero, J.; Ciudad, J.; Diaz, F.; Hernandez, J.; Gonzalez, M.; Rosales, P.

    2008-01-01

    The design of a national dose protocol for interventional radiology has been one of the tasks during the European SENTINEL Coordination Action. The present paper describes the pilot experience carried out in cooperation with the Spanish Society on Vascular and Interventional Radiology (SERVEI). A prospective sample of procedures was initially agreed. A common quality control of the X-ray systems was carried out, including calibration of the air kerma area product (KAP) meters. Occupational doses of the radiologists involved in the survey were also included in the survey. A total of 10 Spanish hospitals with interventional X-ray units were involved. Six hundred and sixty-four patient dose data were collected from 397 diagnostic and 267 therapeutic procedures. Occupational doses were evaluated in a sample of 635 values. The obtained KAP median/mean values (Gy.cm 2 ) for the gathered procedures were: biliary drainage (30.6/68.9), fistulography (4.5/9.8), lower limb arteriography (52.2/60.7), hepatic chemoembolisation (175.8/218.3), iliac stent (45.9/73.2) and renal arteriography (39.1/59.8). Occupational doses (mean monthly values, in mSv) were 1.9 (over apron); 0.3 (under apron) and 4.5 (on hands). With this National experience, a protocol was agreed among the SENTINEL partners to conduct future similar surveys in other European countries. (authors)

  16. Determination of organ doses in radiographic imaging and diagnostic radiology

    International Nuclear Information System (INIS)

    Rathjen, M.

    1981-01-01

    Earlier publications on diagnostic radiation exposure commonly presented data on the gonadal dose. This emphasis on the genetic radiation risk is no longer valid in view of recent radiobiological findings; equal attention should be paid to the somatic radiation risk which is manifested by the induction of malignant neoplasms, e.g. in the lungs, red bone marrow, thyroid and female breast (ICRP 26). The permissible radiation doses for these organs and the gonals for routine diagnostic radiology are determined. A formula is established on the basis of terms from relevant publications (e.g. open-air dose, backscattering factor) and from the author's own measurements in an Alderson-Rando phantom (depth dose curves, dose decrements). The measurements were carried out using CaP 2 thermoluminescence dosemeters, and the organ doses for the various techniques of X-ray examination were calculated by computer. Calculations of this type will enable the radiologist to determine the patient exposure quickly and easily from the records kept according to Sect. 29 of the X-ray Ordinance. Experimental value from relevant publications are compared with the author's own results. (orig./HP) [de

  17. Dose monitoring in radiology departments. Status quo and future perspectives; Dosismonitoring in der Radiologie. Status quo und Zukunftsperspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Boos, J. [Harvard Medical School, Boston, MA (United States). Dept. of Radiology; Duesseldorf Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Meineke, A. [Cerner Healthcare Services, Idstein (Germany); Bethge, O.T.; Antoch, G.; Kroepil, P. [Duesseldorf Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2016-05-15

    The number of computed tomography examinations has continuously increased over the last decades and accounts for a major part of the collective radiation dose from medical investigations. For purposes of quality assurance in modern radiology a systematic monitoring and analysis of dose related data from radiological examinations is mandatory. Various ways of collecting dose data are available today, for example the Digital Imaging and Communication in Medicine - Structured Report (DICOM-SR), optical character recognition and DICOM-modality performed procedure steps (MPPS). The DICOM-SR is part of the DICOM-standard and provides the DICOM-Radiation Dose Structured Report, which is an easily applicable and comprehensive solution to collect radiation dose parameters. This standard simplifies the process of data collection and enables comprehensive dose monitoring. Various commercial dose monitoring software devices with varying characteristics are available today. In this article, we discuss legal obligations, various ways to monitor dose data, current dose monitoring software solutions and future perspectives in regard to the EU Council Directive 2013/59/EURATOM.

  18. Entrance surface dose in cerebral interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Rico, M.; Lopez-Rendon, X.; Rivera-Ordonez, C. E.; Gamboa-deBuen, I. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 DF (Mexico); Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez, 14269 DF (Mexico); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 DF (Mexico)

    2012-10-23

    At the Instituto Nacional de Neurologia y Neurocirugia (INNN) diagnostic as well as therapeutic procedures of interventional radiology are carried out. Since the procedures can last from some minutes to several hours, the absorbed dose for the patient could increase dangerously. An investigation had begun in order to determine the entrance surface dose (ESD) using 25 thermoluminiscent dosimeters TLD-100 and 8 strips of 15 Multiplication-Sign 1 cm{sup 2} of Gafchromic XR-QA2 film bound in a holder of 15 Multiplication-Sign 15 cm{sup 2} in the posteroanterior (PA) and lateral (LAT) positions during all the procedure. The results show that maximum ESD could be from 0.9 to 2.9 Gy for the PA position and between 1.6 and 2.5 Gy for the lateral position. The average ESD was between 0.7 and 1.3 Gy for the PA position, and from 0.44 to 1.1 Gy for the lateral position in a therapeutic procedure.

  19. Entrance surface dose in cerebral interventional radiology procedures

    International Nuclear Information System (INIS)

    Barrera-Rico, M.; López-Rendón, X.; Rivera-Ordóñez, C. E.; Gamboa-deBuen, I.

    2012-01-01

    At the Instituto Nacional de Neurología y Neurocirugía (INNN) diagnostic as well as therapeutic procedures of interventional radiology are carried out. Since the procedures can last from some minutes to several hours, the absorbed dose for the patient could increase dangerously. An investigation had begun in order to determine the entrance surface dose (ESD) using 25 thermoluminiscent dosimeters TLD-100 and 8 strips of 15 ×1 cm 2 of Gafchromic XR-QA2 film bound in a holder of 15×15 cm 2 in the posteroanterior (PA) and lateral (LAT) positions during all the procedure. The results show that maximum ESD could be from 0.9 to 2.9 Gy for the PA position and between 1.6 and 2.5 Gy for the lateral position. The average ESD was between 0.7 and 1.3 Gy for the PA position, and from 0.44 to 1.1 Gy for the lateral position in a therapeutic procedure.

  20. Dose audit for patients undergoing two common radiography examinations with digital radiology systems.

    Science.gov (United States)

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey.

  1. Study of the variation of radiation dose in function of the radiological techniques used in X-ray diagnosis exams

    International Nuclear Information System (INIS)

    Fernandes, Marco A.R.; Reis, Charlene O.; Garcia, Paulo L.; Lima, Marcelo A.F.; Dalaqua, Fernando L.D.

    2011-01-01

    This paper values the importance of the implantation of a quality control program in medical x-ray diagnosis services that it seeks mainly to the reduction of the radiation dose applied in the radiology exams, and attempt to the precepts of the Effective Legislation as for the Basic Guidelines of Radiological Protection (law decree MS no. 453 in June 1 st 1998). The study was accomplished Radiology Section of the Medicine Faculty - FMB (UNESP - Botucatu) and it consisted of the accomplishment of measures of the radiation dose applied in the radiological exams, taking as base the x-rays techniques realized by four technicians in radiology the service, using only one x-rays equipment. Was intended analyze the variation of the radiation dose in function of the different applied technical parameters, and this way, guide the professionals as for the possibility of obtaining of x-ray images of better quality and smaller patient exposition. For radiation dose measure a detector of solid state was utilized. During the accomplishment of the measures it was verified that there no a general consensus among the technicians of the section being observed differences of the order of 80% in the mAs. In terms of radiation dose measured, the largest value of verified was 4.752 mGy (exam of lateral lumbar column) and the smallest value of 0.165 mGy (child's thorax).The results showed that a standardization in the x-ray techniques executed by the professionals of the section will be able to reduce significantly the radiation exposition of the assisted patients. (author)

  2. Offsite dose calculation manual guidance: Standard radiological effluent controls for pressurized water reactors

    International Nuclear Information System (INIS)

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-01, which allows Radiological Effect Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft from (NUREG-0471 and -0473) for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. Also included for completeness are: (1) radiological environmental monitoring program guidance previously which had been available as a Branch Technical Position (Rev. 1, November 1979); (2) existing ODCM guidance; and (3) a reproduction of generic Letter 89-01

  3. Preliminary characterization of dose in personnel of interventional radiology; Caracterizacao preliminar da dose em profissionais de radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Godolfim, Laura Larre; Anes, Mauricio; Bacelar, Alexandre; Lykawka, Rochelle [Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS (Brazil)

    2016-07-01

    Exposure to X-rays of Interventional Radiology professionals (IR) impacts in the high dose rate received by these individuals, and there are reports of biological effects of this professional activity. Therefore, it is fomented greater control over the doses received by these workers. This research intends to characterize the doses received by the professionals during IR procedures. We evaluated the doses of radiologists, anesthesiologists and nursing staff of the Hospital de Clinicas de Porto Alegre, through measures with dosimeters of the OSL type, distributed in up to six regions of the body of these professionals. Until now were accompanied 33 cholangiography procedures and 29 embolization procedures. As a preliminary result, it was possible to identify a wide variation between doses of the professionals of the same function in each procedure. In overview, the dose of the professionals presented in descending order as a radiologist 1> radiologist 2 > anesthetist > nursing. (author)

  4. MO-DE-204-00: International Symposium: Patient Dose Reduction in Diagnostic Radiology

    International Nuclear Information System (INIS)

    2016-01-01

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  5. MO-DE-204-00: International Symposium: Patient Dose Reduction in Diagnostic Radiology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The main topic of the session is to show how dose optimization is being implemented in various regions of the world, including Europe, Australia, North America and other regions. A multi-national study conducted under International Atomic Energy Agency (IAEA) across more than 50 less resourced countries gave insight into patient radiation doses and safety practices in CT, mammography, radiography and interventional procedures, both for children and adults. An important outcome was the capability development on dose assessment and management. An overview of recent European projects related to CT radiation dose and optimization both to adults and children will be presented. Existing data on DRLs together with a European methodology proposed on establishing and using DRLs for paediatric radiodiagnostic imaging and interventional radiology practices will be shown. Compared with much of Europe at least, many Australian imaging practices are relatively new to the task of diagnostic imaging dose optimisation. In 2008 the Australian Government prescribed a requirement to periodically compare patient radiation doses with diagnostic reference levels (DRLs), where DRLs have been established. Until recently, Australia had only established DRLs for computed tomography (CT). Regardless, both professional society and individual efforts to improved data collection and develop optimisation strategies across a range of modalities continues. Progress in this field, principally with respect to CT and interventional fluoroscopy will be presented. In the US, dose reduction and optimization efforts for computed tomography have been promoted and mandated by several organizations and accrediting entities. This presentation will cover the general motivation, implementation, and implications of such efforts. Learning Objectives: Understand importance of the dose optimization in Diagnostic Radiology. See how this goal is achieved in different regions of the World. Learn about the global trend

  6. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    Energy Technology Data Exchange (ETDEWEB)

    Almen, A J

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs.

  7. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    International Nuclear Information System (INIS)

    Almen, A.J.

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs

  8. Staff extremity doses in interventional radiology. Results of the ORAMED measurement campaign

    International Nuclear Information System (INIS)

    Nikodemová, D.; Brodecki, M.; Carinou, E.; Domienik, J.; Donadille, L.; Koukorava, C.; Krim, S.; Ruiz-López, N.; Sans-Merce, M.; Struelens, L.; Vanhavere, F.; Zaknoune, R.

    2011-01-01

    The introduction of interventional radiology (IR) procedures in the 20th century has demonstrated significant advantages over surgery procedures. As a result, their number is continuously rising in diagnostic, as well as, in therapy field and is connected with progress in highly sophisticated equipment used for these purposes. Nowadays, in the European countries more than 400 fluoroscopically guided IR procedures were identified with a 10–12% increase in the number of IR examinations every year (). Depending on the complexity of the different types of the interventions large differences in the radiation doses of the staff are observed. The staff that carries out IR procedures is likely to receive relatively high radiation doses, because IR procedures require the operator to remain close to the patient and close to the primary radiation beam. In spite of the fact that the operator is shielded by protective apron, the hands, eyes and legs remain practically unshielded. For this reason, one of the aims of the ORAMED project was to provide a set of standardized data on extremity doses for the personnel that are involved in IR procedures and to optimize their protection by evaluating the various factors that affect the doses. In the framework of work package 1 of the ORAMED project the impact of protective equipment, tube configuration and access routes were analyzed for the selected IR procedures. The position of maximum dose measured is also investigated. The results of the extremity doses in IR workplaces are presented in this study together with the influence of the above mentioned parameters on the doses. -- Highlights: ► We present a set of data on extremity doses for staff in selected interventional radiology procedures. ► We studied the influence of different parameters. ► The measured doses are analyzed according to the operators skill,his position during work, tube configuration, etc. ► Maximum doses recorded for all types of embolisation, in all

  9. Initial radiation dose in critical organs el pediatric radiology in INEN

    International Nuclear Information System (INIS)

    Marquez, J. F.; Benavente, T.; Cisneros, F.

    2006-01-01

    The medical practices diagnostic, therapeutic and interventionists, the patients and professionals are exposed to a radiological risk that in many cases is a critic due to the severity of the damage that it might cause, for example for the cases of pregnant patients, children and in general in a the irradiation of organs of high risk as thyroid, gonads, crystalline, others. In this work I develop a methodology that allows determining the dose absorbed of the beam of X-ray. In the critical organs out of the region to examination in paediatric radiology of thorax, using a system shaped by detectors thermoluminescence of fluoride of lithium activated with magnesium and titanium (LiF: Mg, Ti), and of fluoride of calcium activated with disprosio (CaF2: Dy). The results show that by means of the implementation of this methodology it is possible to reduce up to 50% the dose received for the paediatric patients (in the critical organs thyroid, crystalline and gonads) in the diagnostic practices with X-ray. With this there would be to reducing up to 50% the possibility of appearance of an effect stochastic. (Author)

  10. Pediatric radiology for medical-technical radiology assistants/radiologists

    International Nuclear Information System (INIS)

    Oppelt, Birgit

    2010-01-01

    The book on pediatric radiology includes the following chapter: differences between adults and children; psycho-social aspects concerning the patient child in radiology; relevant radiation doses in radiology; help for self-help: simple phantoms for image quality estimation in pediatric radiology; general information; immobilization of the patient; pediatric features for radiological settings; traumatology; contrast agents; biomedical radiography; computerized tomography; NMR imaging; diagnostic ultrasonography; handling of stress practical recommendations; medical displays.

  11. Radiological Consequences Analysis for Abnormal Condition on NPPs 1000 MWe by Using Radcon Model

    International Nuclear Information System (INIS)

    Pande Mande Udiyani; Sri Kuntjoro

    2009-01-01

    The operation of NPPs (Nuclear Power Plants) in Indonesia to anticipates rare of energy will generate various challenges, especially about NPPs safety. So installation organizer of nuclear must provide scientific argument to safety NPPs, one of them is by providing document of safety analysis. Calculation of radiological consequences after abnormal condition applies on generic PWR-1000 power reactor. Calculation is done by using program package RadCon (Radiological Consequences Model), with postulate condition is based on DBA (Design Basis Accident). Calculation of dispersion of radionuclide concentration is using PC-COSYMA as input data for RadCon. Simulation for radiological consequences analysis uses by site data sample. Analysis result shows that maximum receiving of internal - externals radiological consequence for short term and long-term below 1 km radius area is below the limit acceptably effective dose for a member of the public as a result of an accident which should not exceed 5 mSv (ICRP 1990). (author)

  12. Modification of the radiological technique of Parma for reduction of irradiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Stampfel, G.; Ionesco-Farco, F.

    1982-04-01

    A modified radiological technique to demonstrate the temporo-mandibular joint is presented. An ordinary X-ray tube put on the skin is directed 10/sup 0/ dorso-ventrally and 10/sup 0/ caudo-cranially to the temporo-mandibular joint. The irradiation skin dose applied is ten times smaller than by using the conventional contact technique.

  13. Study of the variation of radiation dose in function of the radiological techniques used in X-ray diagnosis exams

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marfernandes@fmb.unesp.br [Faculty of Medicine. UNESP, Botucatu (FMB), SP (Brazil); Reis, Charlene O.; Garcia, Paulo L. [Institute of Biosciences of Botucatu. UNESP, Botucatu, SP (Brazil); Nucleate Radiometry Ltd., Aracatuba, SP (Brazil); Lima, Marcelo A.F.; Dalaqua, Fernando L.D. [UNESP, Botucatu, SP (Brazil). Hospital. Radiology Service

    2011-07-01

    This paper values the importance of the implantation of a quality control program in medical x-ray diagnosis services that it seeks mainly to the reduction of the radiation dose applied in the radiology exams, and attempt to the precepts of the Effective Legislation as for the Basic Guidelines of Radiological Protection (law decree MS no. 453 in June 1{sup st} 1998). The study was accomplished Radiology Section of the Medicine Faculty - FMB (UNESP - Botucatu) and it consisted of the accomplishment of measures of the radiation dose applied in the radiological exams, taking as base the x-rays techniques realized by four technicians in radiology the service, using only one x-rays equipment. Was intended analyze the variation of the radiation dose in function of the different applied technical parameters, and this way, guide the professionals as for the possibility of obtaining of x-ray images of better quality and smaller patient exposition. For radiation dose measure a detector of solid state was utilized. During the accomplishment of the measures it was verified that there no a general consensus among the technicians of the section being observed differences of the order of 80% in the mAs. In terms of radiation dose measured, the largest value of verified was 4.752 mGy (exam of lateral lumbar column) and the smallest value of 0.165 mGy (child's thorax).The results showed that a standardization in the x-ray techniques executed by the professionals of the section will be able to reduce significantly the radiation exposition of the assisted patients. (author)

  14. Principles of the International Commission on Radiological Protection system of dose limitation

    International Nuclear Information System (INIS)

    Thorne, M.C.

    1987-01-01

    The formulation of a quantitative system of dose limitation based on ICRP principles of 'stochastic' and 'non-stochastic' effects requires that judgements be made on several factors including: relationships between radiation dose and the induction of deleterious effects for a variety of endpoints and radiation types; acceptable levels of risk for radiation workers and members of the public; and methods of assessing whether the cost of introducing protective measures is justified by the reduction in radiation detriment which they will provide. In the case of patients deliberately exposed to ionising radiations, the objectives of radiation protection differ somewhat from those applying to radiation workers and members of the public. For patients, risks and benefits relate to the same person and upper limits on acceptable risks may differ grossly from those appropriate to normal individuals. For these reasons, and because of its historical relationship with the International Congress of Radiology, the ICRP has given special consideration to radiation protection in medicine and has published reports on protection of the patient in diagnostic radiology and in radiation therapy. (author)

  15. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters.

    Science.gov (United States)

    Miksys, Nelson; Gordon, Christopher L; Thomas, Karen; Connolly, Bairbre L

    2010-05-01

    The purpose of this study was to estimate the effective doses received by pediatric patients during interventional radiology procedures and to present those doses in "look-up tables" standardized according to minute of fluoroscopy and frame of digital subtraction angiography (DSA). Organ doses were measured with metal oxide semiconductor field effect transistor (MOSFET) dosimeters inserted within three anthropomorphic phantoms, representing children at ages 1, 5, and 10 years, at locations corresponding to radiosensitive organs. The phantoms were exposed to mock interventional radiology procedures of the head, chest, and abdomen using posteroanterior and lateral geometries, varying magnification, and fluoroscopy or DSA exposures. Effective doses were calculated from organ doses recorded by the MOSFET dosimeters and are presented in look-up tables according to the different age groups. The largest effective dose burden for fluoroscopy was recorded for posteroanterior and lateral abdominal procedures (0.2-1.1 mSv/min of fluoroscopy), whereas procedures of the head resulted in the lowest effective doses (0.02-0.08 mSv/min of fluoroscopy). DSA exposures of the abdomen imparted higher doses (0.02-0.07 mSv/DSA frame) than did those involving the head and chest. Patient doses during interventional procedures vary significantly depending on the type of procedure. User-friendly look-up tables may provide a helpful tool for health care providers in estimating effective doses for an individual procedure.

  16. Dose audit for patients undergoing two common radiography examinations with digital radiology systems

    Science.gov (United States)

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    PURPOSE We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. MATERIALS AND METHODS Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. RESULTS The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. CONCLUSION This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey. PMID:24317331

  17. Assessment of eye lens doses for workers during interventional radiology procedures

    International Nuclear Information System (INIS)

    Urboniene, A.; Sadzeviciene, E.; Ziliukas, J.

    2015-01-01

    The assessment of eye lens doses for workers during interventional radiology (IR) procedures was performed using a new eye lens dosemeter. In parallel, the results of routine individual monitoring were analysed and compared with the results obtained from measurements with a new eye lens dosemeter. The eye lens doses were assessed using H p (3) measured at the level of the eyes and were compared with H p (10) measured with the whole-body dosemeter above the lead collar. The information about use of protective measures, the number of performed interventional procedures per month and their fluoroscopy time was also collected. The assessment of doses to the lens of the eye was done for 50 IR workers at 9 Lithuanian hospitals for the period of 2012-2013. If the use of lead glasses is not taken into account, the estimated maximum annual dose equivalent to the lens of the eye was 82 mSv. (authors)

  18. Development of a Real-time Hand Dose Monitor for Personnel in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, N.; Nakaoka, H.; Haruta, R.; Murakami, Y.; Kubo, T.; Maeda, T.; Kusama, T

    2001-07-01

    Medical procedures denoted as interventional radiology require operation near an X ray beam, which brings high dose exposures to the operators' hands. For the effectual control of their extremity doses, a prototype of a real-time wrist dosemeter has been developed, hand dose monitor (HDM), based on a single silicon detector. Experiments were performed to test its response to diagnostic X rays. The HDM was highly sensitive and showed a linear response down to doses of a few tens of microsieverts. Though dose rate, energy and angular dependence of the response were observed in some extreme conditions, the HDM was proved to be of practical use if it was appropriately calibrated. Since an HDM enables personnel to check their hand doses on a real-time basis, it would enable medical staff to control the exposure themselves. (author)

  19. Development of a real-time extremity dose monitor for personnel in interventional radiology

    International Nuclear Information System (INIS)

    Ban, Nobuhiko; Kusama, Tomoko; Adachi, Akiko

    2000-01-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  20. Development of a real-time extremity dose monitor for personnel in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Nobuhiko; Kusama, Tomoko [Oita University of Nursing and Health Sciences, Oita (Japan); Adachi, Akiko [Oita Medical University, Oita (JP)] [and others

    2000-05-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  1. Experimental method for calculation of effective doses in interventional radiology; Metodo experimental para calculo de dosis efectivas en radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz Lblanca, M. D.; Diaz Romero, F.; Casares Magaz, O.; Garrido Breton, C.; Catalan Acosta, A.; Hernandez Armas, J.

    2013-07-01

    This paper proposes a method that allows you to calculate the effective dose in any interventional radiology procedure using an anthropomorphic mannequin Alderson RANDO and dosimeters TLD 100 chip. This method has been applied to an angio Radiology procedure: the biliary drainage. The objectives that have been proposed are: to) put together a method that, on an experimental basis, allows to know dosis en organs to calculate effective dose in complex procedures and b) apply the method to the calculation of the effective dose of biliary drainage. (Author)

  2. Automatic management system for dose parameters in interventional radiology and cardiology

    International Nuclear Information System (INIS)

    Ten, J. I.; Fernandez, J. M.; Vano, E.

    2011-01-01

    The purpose of this work was to develop an automatic management system to archive and analyse the major study parameters and patient doses for fluoroscopy guided procedures performed in cardiology and interventional radiology systems. The X-ray systems used for this trial have the capability to export at the end of the procedure and via e-mail the technical parameters of the study and the patient dose values. An application was developed to query and retrieve from a mail server, all study reports sent by the imaging modality and store them on a Microsoft SQL Server data base. The results from 3538 interventional study reports generated by 7 interventional systems were processed. In the case of some technical parameters and patient doses, alarms were added to receive malfunction alerts so as to immediately take appropriate corrective actions. (authors)

  3. Automatic management system for dose parameters in interventional radiology and cardiology.

    Science.gov (United States)

    Ten, J I; Fernandez, J M; Vaño, E

    2011-09-01

    The purpose of this work was to develop an automatic management system to archive and analyse the major study parameters and patient doses for fluoroscopy guided procedures performed in cardiology and interventional radiology systems. The X-ray systems used for this trial have the capability to export at the end of the procedure and via e-mail the technical parameters of the study and the patient dose values. An application was developed to query and retrieve from a mail server, all study reports sent by the imaging modality and store them on a Microsoft SQL Server data base. The results from 3538 interventional study reports generated by 7 interventional systems were processed. In the case of some technical parameters and patient doses, alarms were added to receive malfunction alerts so as to immediately take appropriate corrective actions.

  4. Occupational exposure in interventional radiology

    International Nuclear Information System (INIS)

    Oh, H.J.; Lee, K.Y.; Cha, S.H.; Kang, Y.K.; Kim, H.J.; Oh, H.J.

    2003-01-01

    This study was conducted to survey of radiation safety control and to measure occupational radiation exposure dose of staff in interventional radiology in Korea. Interventioanl radiology requires the operator and assisting personnel to remain close to the patient, and thus close to primary beams of radiation. Therefore exposure doses of these personnel are significant from a radiological protection point of view. We surveyed the status of radiation safety on interventional radiology of 72 hospitals. The result were that 119 radiation equipments are using in interventional radiology and 744 staffs are composed of 307 radiologists, 116 residents of radiology, 5 general physicians, 171 radiologic technologists and 145 nurses. 81.4% and 20.2 % of operating physicians are using neck collar protector and goggle respectively. The average radiation dose was measured 0.46±0.15 mSv/10 hours fluoroscopy inside examination room in radiation protection facilities. Occupational radiation exposure data on the staff were assessed in interventional radiology procedures from 8 interventional radiology equipments of 6 university hospitals. The dose measurements were made by placing a thermoluminesent dosimeter(TLD) on various body surface of operation and assistant staff during actual interventional radiology. The measured points were the corner of the eyes, neck(on the thyroid) , wrists, chest(outside and inside of the protector), and back. Average radiation equivalent dose of the corner of left eye and left wrist of operating physicians were 1.19 mSv(0.11∼4.13 mSv)/100 minutes fluoroscopy and 4.32 mSv(0.16∼11.0 mSv)/100 minutes fluoroscopy respectively. Average exposure dose may vary depending on the type of procedure, personal skills and the quality of equipment. These results will be contributed to prepare the guide line in interventional radiology in Korea

  5. A model for radiological dose assessment in an urban environment

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Jeong, Hyo Joon; Suh, Kyung Suk; Han, Moon Hee

    2007-01-01

    A model for radiological dose assessment in an urban environment, METRO-K has been developed. Characteristics of the model are as follows ; 1) mathematical structures are simple (i.e. simplified input parameters) and easy to understand due to get the results by analytical methods using experimental and empirical data, 2) complex urban environment can easily be made up using only 5 types of basic surfaces, 3) various remediation measures can be applied to different surfaces by evaluating the exposure doses contributing from each contamination surface. Exposure doses contributing from each contamination surface at a particular location of a receptor were evaluated using the data library of kerma values as a function of gamma energy and contamination surface. A kerma data library was prepared for 7 representative types of Korean urban building by extending those data given for 4 representative types of European urban buildings. Initial input data are daily radionuclide concentration in air and precipitation, and fraction of chemical type. Final outputs are absorbed dose rate in air contributing from the basic surfaces as a function of time following a radionuclide deposition, and exposure dose rate contributing from various surfaces constituting the urban environment at a particular location of a receptor. As the result of a contaminative scenario for an apartment built-up area, exposure dose rates show a distinct difference for surrounding environment as well as locations of a receptor

  6. Radiological dose assessment of naturally occurring radioactive materials in concrete building materials

    International Nuclear Information System (INIS)

    Amran AB Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Ismail Bahari

    2013-01-01

    Previous studies have shown that the natural radioactivity contained in building materials have significantly influenced the dose rates in dwelling. Exposure to natural radiation in building has been of concerned since almost 80 % of our daily live are spend indoor. Thus, the aim of the study is to assess the radiological risk associated by natural radioactivity in soil based building materials to dwellers. A total of 13 Portland cement, 46 sand and 43 gravel samples obtained from manufacturers or bought directly from local hardware stores in Peninsular of Malaysia were analysed for their radioactivity concentrations. The activity concentrations of 226 Ra, 232 Th and 40 K in the studied building materials samples were found to be in the range of 3.7-359.3, 2.0-370.8 and 10.3-1,949.5 Bq kg -1 respectively. The annual radiation dose rates (μSv year -1 ) received by dwellers were evaluated for 1 to 50 years of exposure using Resrad-Build Computer Code based on the activity concentration of 226 Ra, 232 Th and 40 K found in the studied building material samples. The rooms modelling were based on the changing parameters of concrete wall thickness and the room dimensions. The annual radiation dose rates to dwellers were found to increase annually over a period of 50 years. The concrete thicknesses were found to have significantly influenced the dose rates in building. The self-absorption occurred when the concrete thickness was thicker than 0.4 m. Results of this study shows that the dose rates received by the dwellers of the building are proportional to the size of the room. In general the study concludes that concrete building materials; Portland cements, sands, and gravels in Peninsular of Malaysia does not pose radiological hazard to the building dwellers. (author)

  7. Enhanced radiological work planning; TOPICAL

    International Nuclear Information System (INIS)

    DECKER, W.A.

    1999-01-01

    The purpose of this standard is to provide Project Hanford Management Contractors (PHMC) with guidance for ensuring radiological considerations are adequately addressed throughout the work planning process. Incorporating radiological controls in the planning process is a requirement of the Hanford Site Radiological Control Manual (HSRCM-I), Chapter 3, Part 1. This standard is applicable to all PHMC contractors and subcontractors. The essential elements of this standard will be incorporated into the appropriate site level work control standard upon implementation of the anticipated revision of the PHMC Administration and Procedure System

  8. Radiation dose evaluation in patients submitted to conventional radiological examinations; Avaliacoes de doses de radiacao em pacientes submetidos a exames radiologicos convencionais

    Energy Technology Data Exchange (ETDEWEB)

    Tilly, Junior, Joao G

    1997-07-01

    This work presents the results of the evaluation of radiation dose delivered to the patients undergoing conventional radiological procedures. Based in the realized measurement some indicators are settled to quantitative appraisal of the radiological protection conditions offered to the population. Data assessment was done in the county of Curitiba, in Parana State, Brazil, from 12/95 to 04/96, in ten rooms of three different institutions, under 101 patients, adults with 70 {+-} 10 kg, during real examinations of chest PA, chest LAT and abdomen AP. (author)

  9. Patient radiation doses and reference levels in pediatric interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Habib Geryes, Bouchra; Lachaux, Julie; Boddaert, Nathalie; Brunelle, Francis [Hopital Universitaire Necker Enfants Malades, Department of Paediatric Radiology, Paris (France); Bak, Adeline; Ozanne, Augustin; Saliou, Guillaume [Hopital Bicetre, Hopitaux Universitaires Paris-Sud, Department of Neuroradiology, Le Kremlin Bicetre (France); Naggara, Olivier [Hopital Universitaire Necker Enfants Malades, Department of Paediatric Radiology, Paris (France); Centre Hospitalier Sainte-Anne, Universite Paris Descartes Sorbonne Paris Cite, Centre de Psychiatrie et Neurosciences, INSERM S894, DHU Neurovasculaire, Paris (France); Centre Hospitalier Sainte-Anne, Department of Neuroradiology, Universite Paris Descartes, Sorbonne Paris Cite, INSERM UMR894, Paris (France)

    2017-09-15

    To describe, in a multicentric paediatric population, reference levels (RLs) for three interventional radiological procedures. From January 2012 to March 2015, children scheduled for an interventional radiological procedure in two French tertiary centres were retrospectively included and divided into four groups according to age: children younger than 2 years (A1), aged 2-7 years (A5), 8-12 years (A10) and 13-18 years (A15). Three procedures were identified: cerebral digital subtraction angiography (DSA), brain arteriovenous malformation (bAVM) embolization, and head and neck superficial vascular malformation (SVM) percutaneous sclerotherapy. Demographic and dosimetric data, including dose area product (DAP), were collected. 550 procedures were included. For DSA (162 procedures), the proposed RL values in DAP were 4, 18, 12 and 32 Gy.cm{sup 2} in groups A1, A5, A10 and A15, respectively. For bAVM embolization (258 procedures), values were 33, 70, 105 and 88 Gy.cm{sup 2} in groups A1, A5, A10 and A15, respectively. For SVM sclerotherapy (130 procedures), values were 350, 790, 490 and 248 mGy.cm{sup 2} in groups A1, A5, A10 and A15, respectively. Consecutive data were available to permit a proposal of reference levels for three major paediatric interventional radiology procedures. (orig.)

  10. Assessment of dose in thyroid and salivary glands in dental radiology using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Mantuano, Natalia de O.; Silva, Ademir X. da; Correa, Samanda C.A.

    2011-01-01

    Radiobiological and epidemiological studies have provided evidence of risk of salivary and thyroid glands tumors incidence associated with oral radiology. Based on these studies, the tissue weighting factors were reviewed by the International Commission on Radiological Protection (ICRP) in 2007. The main objective of the present work is to estimate the absorbed dose on thyroid and salivary glands (parotid, submandibular and sublingual), during a complete periapical examination. The complete periapical examination was simulated using a Spectro 70X Seletronic X-ray dental equipment on an Alderson Rando phantom with Harshaw LiF:Mg,Ti thermoluminescent dosemeters (TLD100). A PTW DIADOS dosimetric system was used for calibration. The TLD100 were inserted into the phantom slices corresponding to the organs of interest. During a complete periapical examination, the highest evaluated mean absorbed dose was 4.9 mGy in the right submandibular gland and the lowest one of 1.5 mGy in the left thyroid lobe. Entrance surface doses ranged from 2.1 to 2.6 mGy, measured, respectively, for the techniques of upper left molar and lower right molar. When compared with the diagnostic reference levels (DRL), the entrance surface doses values were lower than the DRLs recommended in Brazilian current legislation. However, the dosimetric results show the need of optimization for complete periapical examination to minimize patient exposure. Measurements were performed without the use of thyroid protectors. The use of this device is certainly an easy and simple method of dose reduction. (author)

  11. Assessment of dose in thyroid and salivary glands in dental radiology using thermoluminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano, Natalia de O.; Silva, Ademir X. da [Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa em Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Canevaro, Luca V.; Mauricio, Claudia Lucia P. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ) Rio de Janeiro, RJ (Brazil); Correa, Samanda C.A., E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Radiobiological and epidemiological studies have provided evidence of risk of salivary and thyroid glands tumors incidence associated with oral radiology. Based on these studies, the tissue weighting factors were reviewed by the International Commission on Radiological Protection (ICRP) in 2007. The main objective of the present work is to estimate the absorbed dose on thyroid and salivary glands (parotid, submandibular and sublingual), during a complete periapical examination. The complete periapical examination was simulated using a Spectro 70X Seletronic X-ray dental equipment on an Alderson Rando phantom with Harshaw LiF:Mg,Ti thermoluminescent dosemeters (TLD100). A PTW DIADOS dosimetric system was used for calibration. The TLD100 were inserted into the phantom slices corresponding to the organs of interest. During a complete periapical examination, the highest evaluated mean absorbed dose was 4.9 mGy in the right submandibular gland and the lowest one of 1.5 mGy in the left thyroid lobe. Entrance surface doses ranged from 2.1 to 2.6 mGy, measured, respectively, for the techniques of upper left molar and lower right molar. When compared with the diagnostic reference levels (DRL), the entrance surface doses values were lower than the DRLs recommended in Brazilian current legislation. However, the dosimetric results show the need of optimization for complete periapical examination to minimize patient exposure. Measurements were performed without the use of thyroid protectors. The use of this device is certainly an easy and simple method of dose reduction. (author)

  12. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers.

    Science.gov (United States)

    Paolicchi, F; Miniati, F; Bastiani, L; Faggioni, L; Ciaramella, A; Creonti, I; Sottocornola, C; Dionisi, C; Caramella, D

    2016-04-01

    To evaluate radiation protection basic knowledge and dose assessment for radiological procedures among Italian radiographers A validated questionnaire was distributed to 780 participants with balanced demographic characteristics and geographic distribution. Only 12.1 % of participants attended radiation protection courses on a regular basis. Despite 90 % of radiographers stating to have sufficient awareness of radiation protection issues, most of them underestimated the radiation dose of almost all radiological procedures. About 5 % and 4 % of the participants, respectively, claimed that pelvis magnetic resonance imaging and abdominal ultrasound exposed patients to radiation. On the contrary, 7.0 % of the radiographers stated that mammography does not use ionising radiation. About half of participants believed that radiation-induced cancer is not dependent on age or gender and were not able to differentiate between deterministic and stochastic effects. Young radiographers (with less than 3 years of experience) showed a higher level of knowledge compared with the more experienced radiographers. There is a substantial need for radiographers to improve their awareness of radiation protection issues and their knowledge of radiological procedures. Specific actions such as regular training courses for both undergraduate and postgraduate students as well as for working radiographers must be considered in order to assure patient safety during radiological examinations. • Radiographers should improve their knowledge on radiation protection issues. • Only 12.1 % of participants attended radiation protection courses on a regular basis. • Specific actions must be considered in order to increase knowledge and awareness.

  13. Product kerma air area and effective dose in dental radiology; Produto kerma no ar-area e dose efetiva em radiodiagnostico odontologico

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Rodrigo A.P.; Souza, M. Daiane M.; Costa, Alessandro M. [Universidade de Sao Paulo (USP), Ribeirao Preto (USP), SP (Brazil). Faculdade de Filosofia Ciencias e Letras

    2016-07-01

    The main purpose of patient dosimetry in diagnostic radiology is to determine dosimetric quantities for the establishment and use of reference levels and comparative risk assessment. The use of the air kerma-area product, P{sub KA}, has been suggested in dental radiology, as this quantity is more closely related to risk. The aim of this study was to perform a preliminary survey of P{sub KA} and effective dose in different types of dental examinations. The future perspective is a large-scale survey for the establishment and use of diagnostic reference levels in dentistry in Brazil. (author)

  14. Product kerma air area and effective dose in dental radiology; Produto kerma no ar area e dose efetiva em radiodiagnostico odontologico

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Rodrigo A.P.; Souza, Daiane M.; Costa, Alessandro M., E-mail: rodrigomauro@usp.br [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia Ciencias e Letras

    2016-07-01

    The main purpose of patient dosimetry in diagnostic radiology is to determine dosimetric quantities for the establishment and use of reference levels and comparative risk assessment. The use of the air kerma-area product, P{sub KA}, has been suggested in dental radiology, as this quantity is more closely related to risk. The aim of this study was to perform a preliminary survey of P{sub KA} and effective dose in different types of dental examinations. The future perspective is a large-scale survey for the establishment and use of diagnostic reference levels in dentistry in Brazil. (author)

  15. The role of the dose-area product in the determination of doses to patients in diagnostic radiology. Experiences and current understanding

    International Nuclear Information System (INIS)

    Maier, W.

    1995-01-01

    Described are systems and procedures developed to assess the radiation exposure of patients. They may at the same time be used to reduce the doses to patients undergoing radiological examinations. As the digitalization of state-of-the-art X-ray equipments permits the technical data of any radiographic procedure to be retrieved, it is requested that these are fed into appropriate data systems so that information about any inadequate strategies or technical misfunctions would be available in due course. This request implies the general requirement of an automatic documentation of data relevant to radiological protection. (orig.) [de

  16. Eye lens dose estimation during interventional radiology and its impact on the existing radiation protection and safety program: in the context with new International Commission on Radiological Protection guidelines

    International Nuclear Information System (INIS)

    Chaudhari, Suresh

    2014-01-01

    Interventional radiology procedures are used for diagnosing certain medical conditions. The radiologists and medical professionals are exposed to ionizing radiation from X-rays of the equipments and also from scattered radiation during these procedures. The radiation exposure to the eye is more important to be assessed while performing such procedures. ICRP has revised the annual dose limit to the lens of the eye from 150 mSv to 20 mSv. In view of this revision, a study was carried out to evaluate the dose to the lens of the eye during interventional radiology. The paper gives the details of calibration of TLDs using a head phantom, predict annual equivalent dose and also highlight the dependence of dose on the position of TLD on the head. It is observed the predicted annual equivalent doses to the lens of eye are in the range of 25 mGy to 37 mGy. The selection of dosimeter placement may also result in an uncertainty of -14% to 20%. (author)

  17. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.E.; Harris, A.M.; van der Merwe, E.J.; Nortje, C.J. (Ontario Cancer Institute, Princess Margaret Hospital, Toronto (Canada))

    1991-05-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing.

  18. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Wood, R.E.; Harris, A.M.; van der Merwe, E.J.; Nortje, C.J.

    1991-01-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing

  19. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine

    International Nuclear Information System (INIS)

    Teles, Pedro; Vaz, Pedro; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Lanca, Isabel; Matela, Nuno; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Simaozinho, Paula

    2013-01-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of ≈ 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications

  20. Management of patient dose in radiology in the UK

    International Nuclear Information System (INIS)

    Martin, C. J.

    2011-01-01

    Programmes to manage patient dose in radiology are becoming a higher priority as the number of imaging examinations and the proportion of higher dose computed tomography (CT) and complex interventional procedures all continue to rise. Such programmes have a number of components and their implementation in UK hospitals, which have been developing such programmes over two decades, is described. As part of any programme to manage patient doses, elements should be in place for both justification and optimisation. The system for justification needs to be robust in order to minimise the number of unnecessary procedures and requires the provision of training in radiation protection for medical and other staff to ensure that they understand the risks. Optimisation of X-ray techniques requires performance tests on equipment at installation and regularly thereafter, linked to surveys of patient doses. Confirming the performance of the available options on fluoroscopy and CT equipment is essential and the information obtained should be available to radiographers and radiologists, so they can make informed choices in developing imaging protocols. Patient doses should be compared with diagnostic reference levels set in terms of measured dose quantities to allow the identification of equipment that is giving higher doses. Taking the next step of analysing results to determine the reasons for high doses is crucial and requires a link with the equipment performance tests and an understanding of the underlying physics. Medical physics services play an important role at the hub of the dose management programme for carrying out tests, organising surveys, making recommendations on optimisation strategies and training other staff in radiation protection, performance testing and dose reduction. Programmes for management of patient doses in UK hospitals were first set up in the late 1980's by medical physicists and have been developed since that time to keep pace with the developments in

  1. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  2. Estimation of staff doses in complex radiological examinations using a Monte Carlo computer code

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2007-01-01

    The protection of medical personnel in interventional radiology is an important issue of radiological protection. The irradiation of the worker is largely non-uniform, and a large part of his body is shielded by a lead apron. The estimation of effective dose (E) under these conditions is difficult and several approaches are used to estimate effective dose involving such a protective apron. This study presents a summary from an extensive series of simulations to determine scatter-dose distribution around the patient and staff effective dose from personal dosimeter readings. The influence of different parameters (like beam energy and size, patient size, irradiated region, worker position and orientation) on the staff doses has been determined. Published algorithms that combine readings of an unshielded and a shielded dosimeter to estimate effective dose have been applied and a new algorithm, that gives more accurate dose estimates for a wide range of situations was proposed. A computational approach was used to determine the dose distribution in the worker's body. The radiation transport and energy deposition was simulated using the MCNP4B code. The human bodies of the patient and radiologist were generated with the Body Builder anthropomorphic model-generating tool. The radiologist is protected with a lead apron (0.5 mm lead equivalent in the front and 0.25 mm lead equivalent in the back and sides) and a thyroid collar (0.35 mm lead equivalent). The lower-arms of the worker were folded to simulate the arms position during clinical examinations. This realistic situation of the folded arms affects the effective dose to the worker. Depending on the worker position and orientation (and of course the beam energy), the difference can go up to 25 percent. A total of 12 Hp(10) dosimeters were positioned above and under the lead apron at the neck, chest and waist levels. Extra dosimeters for the skin dose were positioned at the forehead, the forearms and the front surface of

  3. Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry

    International Nuclear Information System (INIS)

    Smith, K.P.; Blunt, D.L.; Williams, G.P.; Tebes, C.L.

    1995-01-01

    A preliminary radiological dose assessment related to equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials in production waste streams. The assessment evaluated the relative dose of these activities and included a sensitivity analysis of certain input parameters. Future studies and potential policy actions are recommended

  4. Optimization of radiological protection and dose constraints in the new draft ICRP Recommendations 2006

    International Nuclear Information System (INIS)

    Klener, V.

    2007-01-01

    The overall concept of the new ICRP Recommendations 2006 is analyzed, the concept of dose constraints as a basic tool of radiological protection management is described, arguments and criticisms against the current proposal are cited and points of dispute highlighted, and perspectives of the Recommendations are assessed. (author)

  5. Assessing radiological impacts (exposures and doses) associated with the mining and milling of radioactive ores

    International Nuclear Information System (INIS)

    Williams, G.A.

    1990-01-01

    The basic units and concepts applicable to radiological assessment are presented. Data relevant to the assessment of radiological exposures from the mining and milling phases of uranium and thorium ores are discussed. As a guide to the assessment of environmental exposures to members of the public, concepts such as the critical group are defined. Environmental transport and exposure pathways are presented in general terms, together with a discussion of the use of mathematical models. The dose assessment procedures defined in the 1987 Code of Practice are described. 13 refs., 2 tabs., 1 fig

  6. Image Quality in Vascular Radiology

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.

    2005-01-01

    In vascular radiology, the radiologists use the radiological image to diagnose or treat a specific vascular structure. From literature, we know that related doses are high and that large dose variability exists between different hospitals. The application of the optimization principle is therefore necessary and is obliged by the new legislation. So far, very little fieldwork has been performed and no practical instructions are available to do the necessary work. It's indisputable that obtaining quantitative data is of great interest for optimization purposes. In order to gain insight into these doses and the possible measures for dose reduction, we performed a comparative study in 7 hospitals. Patient doses will be measured and calculated for specific procedures in vascular radiology and evaluated against their most influencing parameters. In view of optimization purposes, a protocol for dose audit will be set-up. From the results and conclusions in this study, experimentally based guidelines will be proposed, in order to improve clinical practice in vascular radiology

  7. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  8. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    International Nuclear Information System (INIS)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose

  9. Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry

    International Nuclear Information System (INIS)

    Smith, K.P.; Blunt, D.L.; Williams, G.P.

    1996-09-01

    A preliminary radiological dose assessment of equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials (NORM) in production waste streams. The assessment estimated maximum individual dose equivalents for workers and the general public. Sensitivity analyses of certain input parameters also were conducted. On the basis of this assessment, it is concluded that (1) regulations requiring workers to wear respiratory protection during equipment cleaning operations are likely to result in lower worker doses, (2) underground injection and downhole encapsulation of NORM wastes present a negligible risk to the general public, and (3) potential doses to workers and the general public related to smelting NORM-contaminated equipment can be controlled by limiting the contamination level of the initial feed. It is recommended that (1) NORM wastes be further characterized to improve studies of potential radiological doses; (2) states be encouraged to permit subsurface disposal of NORM more readily, provided further assessments support this study; results; (3) further assessment of landspreading NORM wastes be conducted; and (4) the political, economic, sociological, and nonradiological issues related to smelting NORM-contaminated equipment be studied to fully examine the feasibility of this disposal option

  10. Analysis of occupational doses in interventional radiology and cardiology installations

    International Nuclear Information System (INIS)

    Vano, E.; Gonzalez, L.; Ten, J.I.; Guibelalde, E.; Fernandez, J.M.

    1997-01-01

    The relationship between patient dose (PD) and occupational dose (OD) is not easily predictable in interventional radiology installations due to a large number of factors which can modify the occupational risk (OR). In the present work an analysis is made of the four main aspects which influence OR, namely, x-ray beam used, radiation protection (RP) tools available (aprons, thyroid protectors, gloves, screens, etc) and their regular use, type and number of procedures performed (diagnostic or therapeutic, complexity level, etc), and RP training level of the specialists. High filtration x-ray beams can entail a decrease of 20% in OD. A regular use of ceiling mounted faceplates can involve dose savings up to 65%. Mean values of dose per procedure for interventional radiologists are something greater (about 15%) than those recorded for cardiologists, except for the dosimeters placed on left forearm and shoulder. The ratio between OD and PD range around 100 μSv/1,000 cGy.cm 2 . The influence of the staff RP training level on OD is difficult to assess. In the IC Service from the Madrid San Carlos University Hospital (SCUH), PD have been reduced in above 30% and OD in a factor of 3, after running some training programmes. (author)

  11. An education and training programme for radiological institutes: impact on the reduction of the CT radiation dose

    International Nuclear Information System (INIS)

    Schindera, Sebastian T.; Allmen, Gabriel von; Vock, Peter; Szucs-Farkas, Zsolt; Treier, Reto; Trueb, Philipp R.; Nauer, Claude

    2011-01-01

    To establish an education and training programme for the reduction of CT radiation doses and to assess this programme's efficacy. Ten radiological institutes were counselled. The optimisation programme included a small group workshop and a lecture on radiation dose reduction strategies. The radiation dose used for five CT protocols (paranasal sinuses, brain, chest, pulmonary angiography and abdomen) was assessed using the dose-length product (DLP) before and after the optimisation programme. The mean DLP values were compared with national diagnostic reference levels (DRLs). The average reduction of the DLP after optimisation was 37% for the sinuses (180 vs. 113 mGycm, P < 0.001), 9% for the brain (982 vs. 896 mGycm, P < 0.05), 24% for the chest (425 vs. 322 mGycm, P < 0.05) and 42% for the pulmonary arteries (352 vs. 203 mGycm, P < 0.001). No significant change in DLP was found for abdominal CT. The post-optimisation DLP values of the sinuses, brain, chest, pulmonary arteries and abdomen were 68%, 10%, 20%, 55% and 15% below the DRL, respectively. The education and training programme for radiological institutes is effective in achieving a substantial reduction in CT radiation dose. (orig.)

  12. Estimation of absorbed dose and its biological effects in subjects undergoing neuro interventional radiological procedures

    International Nuclear Information System (INIS)

    Basheerudeen, Safa Abdul Syed; Subramanian, Vinodhini; Venkatachalam, Perumal; Joseph, Santosh; Selvam, Paneer; Jose, M.T.; Annalakshmi, O.

    2016-01-01

    Radiological imaging has many applications due to its non-invasiveness, rapid diagnosis of life threatening diseases, and shorter hospital stay which benefit patients of all age groups. However, these procedures are complicated and time consuming, which use repeated imaging views and radiation, thereby increasing patient dose, and collective effective dose to the background at low doses. The effects of high dose radiation are well established. However, the effects of low dose exposure remain to be determined. Therefore, investigating the effect on medically exposed individuals is an alternative source to understand the low dose effects of radiation. The ESD (Entrance Surface Dose) was recorded using Lithium borate based TL dosimeters to measure the doses received by the head, neck and shoulder of the study subjects (n = 70) who underwent procedures like cerebral angiography, coiling, stenting and embolization

  13. Fetal dose in radiology, nuclear medicine and radiotherapy; Dosis fetal en radiodiagnostico, medicina nuclear y radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, F. J.; Martinez, L. C.; Candela, C.

    2015-07-01

    Sometimes irradiation of the fetus in the mother's womb is inevitable in the field of diagnostic radiology, nuclear medicine and radiotherapy, either through ignorance a priori status of this pregnancy, either because for clinical reasons it is necessary to perform the radiological study or treatment. In the first cases, know the dose at which it has exposed the fetus is essential when assessing the associated risk, while in the second it is when assessing the justification of the test. (Author)

  14. Finger doses during interventional radiology: The value of flexible protective gloves

    International Nuclear Information System (INIS)

    Vehmas, T.

    1991-01-01

    Finger doses of radiologists and assistants during 19 interventional radiological procedures were measured with thermoluminescent dosimeters (TLDs), and two types of flexible protective gloves were compared with each other. There were considerable differences in doses between different sites of TLDs on fingers. The exact site of TLDs on hands/fingers should thus be reported in papers. Both gloves were also irradiated through an Alderson phantom and the attenuation values were measured. The gloves with slightly greater attenuation proved to be significantly less comfortable to use. Wearing flexible protective gloves did not lengthen screening times as compared to a previous study in the same department. Various aspects of using such gloves are discussed. The attenuation values of gloves reported by the manufacturers may not apply under all clinical circumstances. (orig.) [de

  15. Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France

    International Nuclear Information System (INIS)

    Etard, Cecile; Bigand, Emeline; Salvat, Cecile; Vidal, Vincent; Beregi, Jean Paul; Hornbeck, Amaury; Greffier, Joel

    2017-01-01

    A national retrospective survey on patient doses was performed by the French Society of Medical physicists to assess reference levels (RLs) in interventional radiology as required by the European Directive 2013/59/Euratom. Fifteen interventional procedures in neuroradiology, vascular radiology and osteoarticular procedures were analysed. Kerma area product (KAP), fluoroscopy time (FT), reference air kerma and number of images were recorded for 10 to 30 patients per procedure. RLs were calculated as the 3rd quartiles of the distributions. Results on 4600 procedures from 36 departments confirmed the large variability in patient dose for the same procedure. RLs were proposed for the four dosimetric estimators and the 15 procedures. RLs in terms of KAP and FT were 90 Gm.cm 2 and 11 mins for cerebral angiography, 35 Gy.cm 2 and 16 mins for biliary drainage, 75 Gy.cm 2 and 6 mins for lower limbs arteriography and 70 Gy.cm 2 and 11 mins for vertebroplasty. For these four procedures, RLs were defined according to the complexity of the procedure. For all the procedures, the results were lower than most of those already published. This study reports RLs in interventional radiology based on a national survey. Continual evolution of practices and technologies requires regular updates of RLs. (orig.)

  16. Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France

    Energy Technology Data Exchange (ETDEWEB)

    Etard, Cecile [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); French Society of Medical Physicists (SFPM), Paris (France); Bigand, Emeline [French Society of Medical Physicists (SFPM), Paris (France); La Timone University Hospital, Department of Radiology, Marseille Cedex (France); Salvat, Cecile [French Society of Medical Physicists (SFPM), Paris (France); Lariboisiere Hospital, Department of Medical Physics and Radiation Protection, Paris (France); Vidal, Vincent [La Timone University Hospital, Department of Radiology, Marseille Cedex (France); French Society of Radiology (SFR) - Interventional Radiology Federation (FRI), Paris (France); Beregi, Jean Paul [French Society of Radiology (SFR) - Interventional Radiology Federation (FRI), Paris (France); Nimes University Hospital, Medical Imaging Group Nimes, Department of Radiology, Nimes (France); Hornbeck, Amaury [French Society of Medical Physicists (SFPM), Paris (France); Trousseau University Hospital, Department of Pediatric Radiology, Paris (France); Greffier, Joel [French Society of Medical Physicists (SFPM), Paris (France); Nimes University Hospital, Medical Imaging Group Nimes, Department of Radiology, Nimes (France)

    2017-10-15

    A national retrospective survey on patient doses was performed by the French Society of Medical physicists to assess reference levels (RLs) in interventional radiology as required by the European Directive 2013/59/Euratom. Fifteen interventional procedures in neuroradiology, vascular radiology and osteoarticular procedures were analysed. Kerma area product (KAP), fluoroscopy time (FT), reference air kerma and number of images were recorded for 10 to 30 patients per procedure. RLs were calculated as the 3rd quartiles of the distributions. Results on 4600 procedures from 36 departments confirmed the large variability in patient dose for the same procedure. RLs were proposed for the four dosimetric estimators and the 15 procedures. RLs in terms of KAP and FT were 90 Gm.cm{sup 2} and 11 mins for cerebral angiography, 35 Gy.cm{sup 2} and 16 mins for biliary drainage, 75 Gy.cm{sup 2} and 6 mins for lower limbs arteriography and 70 Gy.cm{sup 2} and 11 mins for vertebroplasty. For these four procedures, RLs were defined according to the complexity of the procedure. For all the procedures, the results were lower than most of those already published. This study reports RLs in interventional radiology based on a national survey. Continual evolution of practices and technologies requires regular updates of RLs. (orig.)

  17. Thyroid Radiation Dose to Patients from Diagnostic Radiology Procedures over Eight Decades: 1930-2010.

    Science.gov (United States)

    Chang, Lienard A; Miller, Donald L; Lee, Choonsik; Melo, Dunstana R; Villoing, Daphnée; Drozdovitch, Vladimir; Thierry-Chef, Isabelle; Winters, Sarah J; Labrake, Michael; Myers, Charles F; Lim, Hyeyeun; Kitahara, Cari M; Linet, Martha S; Simon, Steven L

    2017-12-01

    This study summarizes and compares estimates of radiation absorbed dose to the thyroid gland for typical patients who underwent diagnostic radiology examinations in the years from 1930 to 2010. The authors estimated the thyroid dose for common examinations, including radiography, mammography, dental radiography, fluoroscopy, nuclear medicine, and computed tomography (CT). For the most part, a clear downward trend in thyroid dose over time for each procedure was observed. Historically, the highest thyroid doses came from the nuclear medicine thyroid scans in the 1960s (630 mGy), full-mouth series dental radiography (390 mGy) in the early years of the use of x rays in dentistry (1930s), and the barium swallow (esophagram) fluoroscopic exam also in the 1930s (140 mGy). Thyroid uptake nuclear medicine examinations and pancreatic scans also gave relatively high doses to the thyroid (64 mGy and 21 mGy, respectively, in the 1960s). In the 21st century, the highest thyroid doses still result from nuclear medicine thyroid scans (130 mGy), but high thyroid doses are also associated with chest/abdomen/pelvis CT scans (18 and 19 mGy for males and females, respectively). Thyroid doses from CT scans did not exhibit the same downward trend as observed for other examinations. The largest thyroid doses from conventional radiography came from cervical spine and skull examinations. Thyroid doses from mammography (which began in the 1960s) were generally a fraction of 1 mGy. The highest average doses to the thyroid from mammography were about 0.42 mGy, with modestly larger doses associated with imaging of breasts with large compressed thicknesses. Thyroid doses from dental radiographic procedures have decreased markedly throughout the decades, from an average of 390 mGy for a full-mouth series in the 1930s to an average of 0.31 mGy today. Upper GI series fluoroscopy examinations resulted in up to two orders of magnitude lower thyroid doses than the barium swallow. There are

  18. Correlation between radiological, scintigraphic and histological changes in bone in rabbits following irradiation with single and fractionated doses

    International Nuclear Information System (INIS)

    Burgener, F.A.; King, M.A.; Weber, D.A.

    1979-01-01

    In the left hind legs of eight rabbits were irradiated with 1,750 rad in a single dose or with 4,650 rad divided over a period of three weeks. These animals, as well as four who had not been irradiated, were examined periodically radiologically and with 99 mTechnetium pyrophosphate scintigrams during one year. No difference could be detected between the results of the single and fractionated doses. Scintigraphically there was a biphasic increase in uptake, the first peak co-inciding with the irradiation and of vascular origin, whereas the second peak occured at four months and was due to a change in bone metabolism. At the end of a year uptake in the irradiated limb was slightly reduced. The earliest radiological changes were found after six months, at the end of the second scintigraphic peak; they consisted of coarsening and blurring of the trabeculae, non-homogeneous spotty mineralisation and endosteal scalloping. Six animals developed a radiation-induced bone sarcoma, first demonstrated either by scintigraphy or radiology depending on its histology. The value of combining radiological and scintigraphic examinations for the early detection of post-radiation abnormalities is stressed. (orig.) [de

  19. Avoidance of unnecessary dose to patients while transitioning from analogue to digital radiology

    International Nuclear Information System (INIS)

    2011-10-01

    Agency, Pan American Health Organization, United Nations Environment Programme and World Health Organization, require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and through optimization. In keeping with its responsibility for the application of standards, the IAEA programme on radiological protection of patients encourages the reduction of patient doses in diagnostic and interventional radiological procedures. This monograph, including data from a coordinated research project (CRP) on this topic, is a further contribution to the resources provided by the IAEA in support of implementation of the BSS. The International Action Plan for the Radiological Protection of Patients, approved by the General Conference of the IAEA in September 2002, requires that: 'The practice-specific documents under preparation should be finalized as guidance rather than regulations, and they should include input from professional bodies, from international organizations and from authorities with responsibility for radiation protection and medical care.' This monograph is prepared and issued in this spirit. In the first instance, it provides advice for those involved in one of the more dose intensive areas developing in radiology today.

  20. Managing patient dose in digital radiology; Gestión de la dosis al paciente en radiología digital

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Digital techniques have the potential to improve the practice of radiology but they also risk the overuse of radiation. The main advantages of digital imaging, i.e. wide dynamic range, post processing, multiple viewing options, and electronic transfer and archiving possibilities, are clear but overexposures can occur without an adverse impact on image quality. In conventional radiography, excessive exposure produces a black film. In digital systems, good images are obtained for a large range of doses. It is very easy to obtain (and delete) images with digital fluoroscopy systems, and there may be a tendency to obtain more images than necessary. In digital radiology, higher patient dose usually means improved image quality, so a tendency to use higher patient doses than necessary could occur. Different medical imaging tasks require different levels of image quality, and doses that have no additional benefit for the clinical purpose should be avoided. Image quality can be compromised by inappropriate levels of data compression and/or post processing techniques. All these new challenges should be part of the optimisation process and should be included in clinical and technical protocols. Local diagnostic reference levels should be re-evaluated for digital imaging, and patient dose parameters should be displayed at the operator console. Frequent patient dose audits should occur when digital techniques are introduced. Training in the management of image quality and patient dose in digital radiology is necessary. Digital radiology will involve new regulations and invoke new challenges for practitioners. As digital images are easier to obtain and transmit, the justification criteria should be reinforced. Commissioning of digital systems should involve clinical specialists, medical physicists, and radiographers to ensure that imaging capability and radiation dose management are integrated. Quality control requires new procedures and protocols (visualisation, transmission

  1. Dosimetry in Radiology

    International Nuclear Information System (INIS)

    Andisco, D.; Blanco, S.; Buzzi, A.E

    2014-01-01

    The steady growth in the use of ionizing radiation in diagnostic imaging requires to maintain a proper management of patient’s dose. Dosimetry in Radiology is a difficult topic to address, but vital for proper estimation of the dose the patient is receiving. The awareness that every day is perceived in our country on these issues is the appropriate response to this problem. This article describes the main dosimetric units used and easily exemplifies doses in radiology through internationally known reference values. (authors) [es

  2. Image and dose quality in selected studies of conventional radiology in designed hospitals

    International Nuclear Information System (INIS)

    Cardenas H, J.; Martinez G, A.; Machado T, A.; Mora M, R. de la; Pedroso, L.; Villa Z, R.; Sotolongo C, J.A.; Rodriguez S, R.M.; Martinez A, U.; Figueroa G, L.M.

    2006-01-01

    The medical exposures have a significant contribution to the received doses by the population. As they generally contribute to the patient's direct benefit during a lot of time has been paid smaller attention that to other exposure forms, in spite of existing potentialities of reducing dose to the patients as consequence of these applications. In such sense in the last years the scientific community and international organizations have defined requirements to contribute to that the doses to the patients are the minimum ones necessary to achieve its diagnostic objective. The work exposes the results obtained in the evaluation of the image quality and dose in studies of radiology of thorax posteroanterior and of lumbosacral column anteroposterior and lateral, carried out in 2 university hospitals of La Havana, as well as the contribution of this investigation to the establishment of guidance levels in our country. (Author)

  3. Radiological consequences of the reactor accident at Three Mile Island, Pennsylvania, USA

    International Nuclear Information System (INIS)

    Bryant, P.M.

    1979-01-01

    The findings of the Ad Hoc Population Dose Assessment Group are reviewed and summarized (Population Dose and Health Impact of the Accident at the Three Mile Island Nuclear Station. A preliminary assessment for the period March 28 through April 7, 1979; May 10, 1979. Washington DC, US Government Printing Office, 1979). The principal radionuclides released were xenon-133 and xenon-135, with some iodine-131. External exposure to gamma radiation was estimated from TLDs positioned at various on-site and off-site locations. Lung exposure from inhaled xenon-133 was calculated and air and milk monitoring results gave potential dose equivalents to a child's thyroid. These numerical estimates will be further refined, but only minor corrections to the present values are anticipated. The findings of this preliminary assessment have indicated that the radiological consequences to the public of the reactor accident are minimal. (UK)

  4. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    International Nuclear Information System (INIS)

    Fulea, D.; Cosma, C.

    2006-01-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several methods which

  5. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Fulea, D [Institute of Public Health ' Prof.Dr.Iuliu Moldovan' , Cluj-Napoca (Romania); Cosma, C [Babes-Bolyai Univ., Faculty of Physics, Cluj-Napoca (Romania)

    2006-07-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several methods which

  6. The role and impact of reference doses on diagnostic radiology, how to use them at the national level?

    International Nuclear Information System (INIS)

    Nikodemova, D.; Horvathova, M.; Karkus, R.

    2003-01-01

    Results of patient dose audits reported in this paper for several types of examinations and various technical units have shown the importance of applications of reference dose levels in radiological practice. On the basis of national surveys slightly lower or higher standard dose reference levels (DRL) values could be justified. Continuing revision of DRL values and their extension to other types of radiographic and fluoroscopic examinations is needed

  7. Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project

    International Nuclear Information System (INIS)

    Vanhavere, F.; Carinou, E.; Domienik, J.; Donadille, L.; Ginjaume, M.; Gualdrini, G.; Koukorava, C.; Krim, S.; Nikodemova, D.; Ruiz-Lopez, N.; Sans-Merce, M.; Struelens, L.

    2011-01-01

    Within the ORAMED project (Optimization of Radiation Protection of Medical Staff) a coordinated measurement program for occupationally exposed medical staff was performed in different hospitals in Europe ( (www.oramed-fp7.eu)). The main objective was to obtain a set of standardized data on extremity and eye lens doses for staff involved in interventional radiology and cardiology and to optimize radiation protection. Special attention was given to the measurement of the doses to the eye lenses. In this paper an overview will be given of the measured eye lens doses and the main influence factors for these doses. The measured eye lens doses are extrapolated to annual doses. The extrapolations showed that monitoring of the eye lens should be performed on routine basis.

  8. A study on the food consumption rates for off-site radiological dose assessment around Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Gab Bock; Chung, Yang Geun

    2008-01-01

    The internal dose by food consumption mostly accounts for radiological dose of public around Nuclear Power Plants (NPPs). But, food consumption rates applied to off-site dose calculation in Korea which are the result of field investigation around Kori NPP by the KAERI (Korea Atomic Energy Research Institute) in 1988, are not able to reflect the latest dietary characteristics of Korean. The food consumption rates to be used for radiological dose assessment in Korea are based on the maximum individual of US NRC (Nuclear Regulatory Commission) Regulatory Guide 1.109. However, the representative individual of the critical group is considered in the recent ICRP (International Commission on Radiological Protection) recommendation and European nations' practice. Therefore, the study on the re-establishment of the food consumption rates for individual around nuclear power plant sites in Korea was carried out to reflect on the recent change of the Korean dietary characteristics and to apply the representative individual of critical group to domestic regulations. The ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. The statistical data such as mean, standard deviation, various percentile values about food consumption rates to be used for the representative individual of the critical group were analyzed by using the raw data of the national food consumption survey in 2001∼2002. Also, the food consumption rates for maximum individual are re-estimated

  9. Dose from radiological examinations

    International Nuclear Information System (INIS)

    Imamura, Keiko; Uji, Teruyuki; Sakuyama, Keiko; Fujikawa, Mitsuhiro; Fujii, Masamichi

    1976-01-01

    Relatively high gonad doses, several hundred to one thousand mR, have been observed in case of pelvis, hip-joint, coccyx, lower abdomen and lumber examination. Dose to the ovary is especially high in barium enema and I.V.P. examinations. About 12 per cent of the 4-ray examination are high-dose. The gonad dose is relatively high in examination of abdomen and lower extremities, in infants. The dose to the eyes is especially high, 1.0 to 2.5R per exposure, in temporal bone and nasal sinuses tomography. X-ray doses have been compared with dose limits recommended by ICRP and with the gonad dose from natural radiations. The gonad dose in lumbar examination, barium enema, I.V.P. etc. is as high as the maximum permissible dose per year recommended by ICRP. Several devices have been made for dose reduction in the daily examinations: (1) separating the radiation field from the gonad by one centimeter decreases the gonad dose about one-half. (2) using sensitive screens and films. In pelvimetry and in infant hip-joint examination, the most sensitive screen and film are used. In the I.V.P. examination of adult, use of MS screen in place of FS screen decreases the dose to one-third, in combination with careful setting of radiation field, (3) use of grid increases the dose about 50 percent and the lead rubber protection (0.1mm lead equivalent) decreases the gonad dose to one-thirtieth in the spinal column examination of infant, (4) A lead protector, 1mm thickness and 2.5cm in diameter, on the eyes decreases the dose to about one-eighth in the face and nead examinations. These simple and effective methods for dose reduction. Should be carried out in as many examinations as possible in addition to observing dose limits recommended by ICRP. (Evans, J.)

  10. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey

    International Nuclear Information System (INIS)

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    Highlights: • Medical students tend to overstate their knowledge of radiation protection (RP). • Overall RP knowledge of young doctors and students is suboptimal. • RP teaching to undergraduates and postgraduates needs to be substantially improved. - Abstract: Purpose: To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. Material and methods: A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Results: Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Conclusions: Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological

  11. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey

    Energy Technology Data Exchange (ETDEWEB)

    Faggioni, Lorenzo, E-mail: lfaggioni@sirm.org [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy); Paolicchi, Fabio [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy); Bastiani, Luca [Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124, Pisa (Italy); Guido, Davide [Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia (Italy); Caramella, Davide [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy)

    2017-01-15

    Highlights: • Medical students tend to overstate their knowledge of radiation protection (RP). • Overall RP knowledge of young doctors and students is suboptimal. • RP teaching to undergraduates and postgraduates needs to be substantially improved. - Abstract: Purpose: To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. Material and methods: A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Results: Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Conclusions: Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological

  12. ATWS analyses. Analysis of anticipated transients without reactor scram in Combustion Engineering NSSS's

    International Nuclear Information System (INIS)

    1976-05-01

    Results are presented of analyses of the transient thermal-hydraulic conditions and radiological release consequences which would occur in power plants which employ a Combustion Engineering Nuclear Steam Supply System during Anticipated Transients Without Scram due to a lack of insertion of the Control Element Assemblies upon signals for automatic or manual reactor shutdown. The transients analyzed include all events which meet the criterion to be considered as anticipated at least once in the plant lifetime with automatic reactor shutdown

  13. Assessment of fetal radiation dose to patients and staff in diagnostic radiology

    International Nuclear Information System (INIS)

    Osei, E.K.

    2000-07-01

    A major source of uncertainty in the estimation of fetal absorbed radiation dose is the influence of fetal size and position as these change with gestational age. Consequently, dose to the fetus is related to gestational age. Most studies of fetal dose estimation during pregnancy assume that the uterus dose is equal to fetal dose. These dose estimates do not take account of gestational age and individual fetal depth, factors which are significant when calculating dose. To establish both positional and size data for estimation of fetal absorbed dose from radiological examinations, the depths from the mother's anterior surface to the mid-line of the fetal head and abdomen were measured from ultrasound scans in 215 pregnant women. Depths were measured along a ray path projected in the anterior-posterior direction from the mother's abdomen. The fetal size was estimated from measurements of the fetal abdominal and head circumference, femur length and the biparietal diameter. The effects of fetal presentation, maternal bladder volume, placenta location, gestational age and maternal AP thickness on fetal depth and size were analysed. A Monte Carlo (MC) model was developed, and used to derive factors for converting dose-area product and free-in-air entrance surface dose from medical exposure of a pregnant patient to absorbed dose to the uterus/embryo, and for converting uterus dose to fetal dose in the later stages of pregnancy. Also presented are factors for converting thermoluminescence dosimeter reading from occupational exposure of a pregnant worker to equivalent dose to the fetus. The MC model was verified experimentally by direct measurement of uterus depth dose in a female Rando phantom, and also by comparison with other experimental work and MC results in the literature. The application of the various conversion factors is demonstrated by a review of the dose estimation process in 50 cases of fetal irradiation from medical exposures. (author)

  14. Study of the dose rate measured by the radiological surveillance network of the Basque country

    International Nuclear Information System (INIS)

    Alegria, N.; Legarda, F.; Herranz, M.

    2006-01-01

    Full text of publication follows: The radiological Surveillance Network of the Basque Country, which is constituted by three stations located in Bilbao, Vitoria and San Sebastian, measures and records the dose date every 10 minutes. Some environmental parameters affect the behaviour of the dose rate. One of most important meteorological parameters is rain. So, it has been necessary to study separately the behaviour of dose rate in the absence of rain, defining that time as Dry Time, and the behaviour when it rains, designating that time as Wet Time. Previous studies have confirmed that dose rate values are fitted to normal distributions, and in those cases, Critical Limits can be calculated using Curie formulation. Every January, data recorded in previous year, two Critical Limits are obtained, one of them for dry time and other one for wet time, and both together define the Alarm Level for each radiological station. That Alarm Level is the reference value for dose rate. If some dose rate value is higher than the corresponding Alarm Level, the recorded values have to be studied in order to identify the origin or the cause of that value. In most cases, in which the dose rate is higher than the corresponding Alarm Level due to precipitation, occurs that when rain stops the dose rate value does not fall immediately to dry rime values, and then the Alarm Level which is now that for dry time is exceeded by the dose rate. So, those values can be considered a special group called Transition Area. The second part of the study tries to explain the cause and the behaviour of the values in the transition Area by means of the study of the behaviour of radon daughters in the atmosphere and their deposition onto the ground during rain intervals. To check the results several situations have been simulated using the Monte Carlo code MCNP-4C. (authors)

  15. Interventional radiology simulation and measurement of patient doses; Simulacion en radiologia intervencionista y medida de dosis a pacientes

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz Lablanca, M. d.; Diaz Romero, F.; Hernandez Armas, J.

    2011-07-01

    In this paper we propose a method of work to calculate the effective dose in any interventional radiology procedure using an Alderson Rando anthropomorphic phantom and dosimeters TLD 100 chip. We applied this method in the case of biliary drainage and allowed us to establish the dose value corresponding reference in the Hospital Universitario de Canarias (HUC).

  16. Reconstructive dosimetry and radiation doses evaluation of members of the public due to radiological accident in industrial radiography; Dosimetria reconstrutiva e avaliacao de dose de individuos do publico devido a acidente radiologico em radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Camila Moreira Araujo de

    2016-07-01

    Radiological accidents have occurred mainly in the practices recognized as high risk radiological and classified by the IAEA as Categories 1 and 2, and highlighted the radiotherapy, industrial irradiators and industrial radiography. In Brazil, since there were five major cases in industrial radiography, which involved 7 radiation workers and 19 members of the public, causing localized radiation lesions on the hands and fingers. One of these accidents will be the focus of this work. In this accident, a {sup 192}Ir radioactive source was exposed for more than 8 hours in the workplace inside a company, exposing radiation workers, individuals of the public and people from the surrounding facilities, including children of a school. The radioactive source was also handled by a security worker causing severe radiation injuries in the hand and fingers. In this paper, the most relevant and used techniques of reconstructive dosimetry internationally are presented. To estimate the radiation doses received by exposed individuals in various scenarios of radiological accident in focus, the following computer codes were used: Visual Monte Carlo Dose Calculation (VMC), Virtual Environment for Radiological and Nuclear Accidents Simulation (AVSAR) and RADPRO Calculator. Through these codes some radiation doses were estimated, such as, 33.90 Gy in security worker's finger, 4.47 mSv in children in the school and 55 to 160 mSv for workers in the company during the whole day work. It is intended that this work will contribute to the improvement of dose reconstruction methodology for radiological accidents, having then more realist radiation doses. (author)

  17. Establishing diagnostic reference levels in digital radiology

    International Nuclear Information System (INIS)

    Bana, Remy Wilson

    2016-04-01

    Medical application of radiation has gained wider study since diagnostic radiology plays a very important role in modern medicine. The need of the service seems to increase since the invention of digital radiology as a new technology that promises greater accuracy while minimizing patient dose. However, it is not exempted in the harmonization of doses delivered to the patient undergoing same radiologic examination in different institutions either regional or nationwide. The objective of this project was to review the establishment of Diagnostic Reference Levels (DRLs) in digital radiology at National level with the aim to reduce patient dose while maintaining appropriate image quality. A general discussion on digital radiology has been presented focusing on the optimization of patient dose as well as dosimetric quantities used for the establishment of DRLs. Recommendations have been provided for Rwanda to initiate steps to establish National Diagnostic Reference Levels for common procedures in digital radiology. (au)

  18. Dose levels from thoracic and pelvic examinations in two pediatric radiological departments in Norway - a comparison study of dose-area product and radiographic technique

    International Nuclear Information System (INIS)

    Kjernlie Saether, Hilde; Traegde Martinsen, Anne Catrine; Lagesen, Bente; Platou Holsen, Eva; Oevreboe, Kirsti Marie

    2010-01-01

    Background: Pediatric doses expressed in dose-area product (DAP) can be retrieved from only a few publications; most of which correlate DAP to patient size or large age spans. In clinical practice age is often the only available parameter describing the patient, and thus, evaluation of dose levels in pediatric radiology on the basis of DAP related to age alone would be useful in optimization work. Purpose: To provide comparable data on age-related DAP from thoracic and pelvic radiological examinations of children, and evaluate the usefulness of comparing age-related DAP and radiographic technique between systems to identify areas with potential for optimization. Material and Methods: DAP, age, and radiographic technique were registered for 575 thoracic examinations and 371 pelvic examinations of children from newborn up to 14 years of age in groups with an age span of 1 year, performed with two digital flat-panel systems and one computed radiography system. Results: DAP varies from 2.2 to 54.0 mGycm2 for thoracic examinations, and from 4.6 to 532.5 mGycm2 for pelvic examinations. There are significant differences in DAP between systems and departments due to differences in technique, equipment, and staff. Conclusion: This study provides comparable data on age-related DAP from thoracic and pelvic radiological examinations of children, which could be used as an input to estimate diagnostic reference levels. The comparison between systems of DAP and radiographic technique has proven useful in identifying areas where there may be a potential for optimization.

  19. Real-time assessment of exposure dose to workers in radiological environments during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok; Jeong, SeongYoung; Lee, JungJun; Song, HaeSang; Lee, SangWha; Son, BongKi

    2014-01-01

    Highlights: • The method of exposure dose assessment to workers during decommissioning of nuclear facilities. • The environments of simulation were designed under a virtual reality. • To assess exposure dose to workers, human model was developed within a virtual reality. - Abstract: This objective of this paper is to develop a method to simulate and assess the exposure dose to workers during decommissioning of nuclear facilities. To simulate several scenarios, decommissioning environments were designed using virtual reality. To assess exposure dose to workers, a human model was also developed using virtual reality. The exposure dose was measured and assessed under the principle of ALARA in accordance with radiological environmental change. This method will make it possible to plan for the exposure dose to workers during decommissioning of nuclear facilities

  20. Characterization of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure.

    Science.gov (United States)

    Bassinet, Céline; Huet, Christelle; Baumann, Marion; Etard, Cécile; Réhel, Jean-Luc; Boisserie, Gilbert; Debroas, Jacques; Aubert, Bernard; Clairand, Isabelle

    2013-04-01

    As MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detectors allow dose measurements in real time, the interest in these dosimeters is growing. The aim of this study was to investigate the dosimetric properties of commercially available TN-502RD-H MOSFET silicon detectors (Best Medical Canada, Ottawa, Canada) in order to use them for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure. Reproducibility of the measurements, dose rate dependence, and dose response of the MOSFET detectors have been studied with a Co source. Influence of the dose rate, frequency, and pulse duration on MOSFET responses has also been studied in pulsed x-ray fields. Finally, in order to validate the integrated dose given by MOSFET detectors, MOSFETs and TLDs (LiF:Mg,Cu,P) were fixed on an Alderson-Rando phantom in the conditions of an interventional neuroradiology procedure, and their responses have been compared. The results of this study show the suitability of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of accident, provided a well-corrected energy dependence, a pulse duration equal to or higher than 10 ms, and an optimized contact between the detector and the skin of the patient are achieved.

  1. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige

    2015-01-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses’ annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units’ pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses. (practical matter)

  2. Action research regarding the optimisation of radiological protection for nurses during vascular interventional radiology.

    Science.gov (United States)

    Mori, Hiroshige

    2015-06-01

    The optimisation and decision-making processes for radiological protection have been broadened by the introduction of re-examination or feedback after introducing protective measures. In this study, action research was used to reduce the occupational exposure of vascular interventional radiology (IR) nurses. Four radiological protection improvement measures were continuously performed in cooperation with the researchers, nurses and stakeholders, and the nurses' annual effective doses were compared before and after the improvements. First, the dosimetry equipment was changed from one electronic personal dosimeter (EPD) to two silver-activated phosphate glass dosimeters (PGDs). Second, the nurses were educated regarding maintaining a safe distance from the sources of scattered and leakage radiation. Third, portable radiation shielding screens were placed in the IR rooms. Fourth, the x-ray units' pulse rates were reduced by half. On changing the dosimetry method, the two PGDs recorded a 4.4 fold greater dose than the single EPD. Educating nurses regarding radiological protection and reducing the pulse rates by half decreased their effective doses to one-third and two-fifths of the baseline dose, respectively. No significant difference in their doses was detected after the placement of the shielding screens. Therefore, the action research effectively decreased the occupational doses of the vascular IR nurses.

  3. Dose - Response Curves for Dicentrics and PCC Rings: Preparedness for Radiological Emergency in Thailand

    International Nuclear Information System (INIS)

    Rungsimaphorn, B.; Rerkamnuaychoke, B.; Sudprasert, W.

    2014-01-01

    Establishing in-vitro dose calibration curves is important for reconstruction of radiation dose in the exposed individuals. The aim of this pioneering work in Thailand was to generate dose-response curves using conventional biological dosimetry: dicentric chromosome assay (DCA) and premature chromosome condensation (PCC) assay. The peripheral blood lymphocytes were irradiated with 137 Cs at a dose rate of 0.652 Gy/min to doses of 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4 and 5 Gy for DCA technique, and 5, 10, 15, 20 and 25 Gy for PCC technique. The blood samples were cultured and processed following the standard procedure given by the IAEA with slight modifications. At least 500-1,000 metaphases or 100 dicentrics/ PCC rings were analyzed using an automated metaphase finder system. The yield of dicentrics with dose was fitted to a linear quadratic model using Chromosome Aberration Calculation Software (CABAS, version 2.0), whereas the dose-response curve of PCC rings was fitted to a linear relationship. These curves will be useful for in-vitro dose reconstruction and can support the preparedness for radiological emergency in the country.

  4. SU-D-209-03: Radiation Dose Reduction Using Real-Time Image Processing in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kanal, K; Moirano, J; Zamora, D; Stewart, B [University Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To characterize changes in radiation dose after introducing a new real-time image processing technology in interventional radiology systems. Methods: Interventional radiology (IR) procedures are increasingly complex, at times requiring substantial time and radiation dose. The risk of inducing tissue reactions as well as long-term stochastic effects such as radiation-induced cancer is not trivial. To reduce this risk, IR systems are increasingly equipped with dose reduction technologies.Recently, ClarityIQ (Philips Healthcare) technology was installed in our existing neuroradiology IR (NIR) and vascular IR (VIR) suites respectively. ClarityIQ includes real-time image processing that reduces noise/artifacts, enhances images, and sharpens edges while also reducing radiation dose rates. We reviewed 412 NIR (175 pre- and 237 post-ClarityIQ) procedures and 329 VIR (156 preand 173 post-ClarityIQ) procedures performed at our institution pre- and post-ClarityIQ implementation. NIR procedures were primarily classified as interventional or diagnostic. VIR procedures included drain port, drain placement, tube change, mesenteric, and implanted venous procedures. Air Kerma (AK in units of mGy) was documented for all the cases using a commercial radiation exposure management system. Results: When considering all NIR procedures, median AK decreased from 1194 mGy to 561 mGy. When considering all VIR procedures, median AK decreased from 49 to 14 mGy. Both NIR and VIR exhibited a decrease in AK exceeding 50% after ClarityIQ implementation, a statistically significant (p<0.05) difference. Of the 5 most common VIR procedures, all median AK values decreased, but significance (p<0.05) was only reached in venous access (N=53), angio mesenteric (N=41), and drain placement procedures (N=31). Conclusion: ClarityIQ can reduce dose significantly for both NIR and VIR procedures. Image quality was not assessed in conjunction with the dose reduction.

  5. Diagnostic radiology dosimetry: status and trends

    International Nuclear Information System (INIS)

    Rivera M, T.

    2015-10-01

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  6. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  7. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Fulea, D. [Institute of Public Health ' Prof.Dr.Iuliu Moldovan' , Cluj-Napoca (Romania); Cosma, C. [Babes-Bolyai Univ., Faculty of Physics, Cluj-Napoca (Romania)

    2006-07-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several

  8. Evaluation of radiological detriment from negative radiological examinations

    International Nuclear Information System (INIS)

    Frometa Suarez, I.; Jerez Vergueria, S.F.

    1997-01-01

    The individul doses of radiation due to diagnostic radiology are usually low, though their contribution to the collective dose is very important given the large numbers of people exposed to these. This paper presents an analysis of the number of negative radiologiacl examinations in a major Cuban Hospital, and their contribution to the collective dose, and radiation organ and tissue, effective (expressed as severe hereditary effect and the occurrence of fatal and non fatal cancers) are all evaluated. The negative findings constitute 41 % of all examinations. The total contribution of negative examinations to the collective dose is very important given the large numbers of people exposed to these. This papaer presents an analysis of the number of negative radiological examinations in major Cuban Hospital, and their contribution to the collective dose of radiation. The absorbed dose by irradiation organ and tissue, effective dose equivalent, collective dose, and radiation risk (expressed as severe herditary effect and the occureence of fatal and non fatal cancers) are all evaluated. The negative findings constitute 41% of all examinations. The total contribution of negative examinations. The total contribution of negative examinations to the collective dose are found to make up 52.9 %: 11.35 Sv-man in the studied population

  9. Assessment of medical radiation exposure to patients and ambient doses in several diagnostic radiology departments

    Science.gov (United States)

    Sulieman, A.; Elhadi, T.; Babikir, E.; Alkhorayef, M.; Alnaaimi, M.; Alduaij, M.; Bradley, D. A.

    2017-11-01

    In many countries diagnostic medical exposures typically account for a very large fraction of the collective effective dose that can be assigned to anthropological sources and activities. This in part flags up the question of whether sufficient steps are being taken in regard to potential dose saving from such medical services. As a first step, one needs to survey doses to compare against those of best practice. The present study has sought evaluation of the radiation protection status and patient doses for certain key radiological procedures in four film-based radiology departments within Sudan. The radiation exposure survey, carried out using a survey meter and quality control test tools, involved a total of 299 patients their examinations being carried out at one or other of these four departments. The entrance surface air kerma (ESAK) was determined from exposure settings using DosCal software and an Unfors -Xi-meter. The mean ESAK for x-ray examination of the chest was 0.30±0.1 mGy, for the skull it was 0.96±0.7 mGy, for the abdomen 0.85±0.01 mGy, for spinal procedures 1.30±0.6 mGy and for procedures involving the limbs it was 0.43±0.3 mGy. Ambient dose-rates in the reception area, at the closed door of the x-ray room, recorded instantaneous values of up to 100 μSv/h. In regard to protection, the associated levels were found to be acceptable in three of the four departments, corrective action being required for one department, regular quality control also being recommended.

  10. Patient exposure evaluation in Romanian radiological departments

    International Nuclear Information System (INIS)

    Girjoaba, O.; Cucu, A.

    2012-01-01

    Purpose: A nation-wide evaluation of ionizing radiation exposure of the Romanian population due to the radiological examinations is performed in accordance with European Directive 97/43 EURATOM implemented in national regulations. Method: The study is applied to the collected data from radiological departments from Romanian hospitals during 2010. The radiological examinations were grouped in three categories: conventional diagnostic radiology, interventional radiology and computed tomography. The annual collective dose was determined from the reported data about the mean effective doses and the frequency for each type of radiological examination, in conformity with the national regulations. Regarding the frequency aspects, the results include the age and gender distributions. Major results: More then 6 million radiological examinations were performed in 2010, Romania having a population about of 20.3 million inhabitants. The collective effective dose for 2010 resulted from the study is 152 mSv per 1000 inhabitants. Conclusions: Medical practitioners must select the best medical imaging investigation for each clinical case taking into account the importance of keeping the patient dose as low as possible. Medical physicists should be strongly involved in the establishing of the dosimetry procedures. (author)

  11. Interventional radiology and undesirable effects

    International Nuclear Information System (INIS)

    Benderitter, M.

    2009-01-01

    As some procedures of interventional radiology are complex and long, doses received by patients can be high and cause undesired effects, notably on the skin or in underlying tissues (particularly in the brain as far as interventional neuroradiology is concerned and in lungs in the case of interventional cardiology). The author briefly discusses some deterministic effects in interventional radiology (influence of dose level, delay of appearance of effects, number of accidents). He briefly comments the diagnosis and treatment of severe radiological burns

  12. Evaluation of dose equivalent to the people accompanying patients in diagnostic radiology using MCNP4C Monte Carlo code

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.

    2007-01-01

    Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations

  13. Proposed procedure and analysis of results to verify the indicator of the product dose-area in radiology equipment

    International Nuclear Information System (INIS)

    Garcia Marcos, R.; Gallego Franco, P.; Sierra Diaz, F.; Gonzalez Ruiz, C.; Rodriguez Checa, M.; Brasa Estevez, M.; Gomez Calvar, R.

    2013-01-01

    The aim of this work is to establish a procedure to verify the value of the product dose-area showing certain teams of Radiology, with an alternative to the use of external transmission cameras. (Author)

  14. Occupational radiological protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Mota, H.C.

    1983-01-01

    The following topics are discussed: occupational expossure (the ALARA principle, dose-equivalent limit, ICRP justification); radiological protection planning (general aspects, barrier estimation) and determination of the occupational expossures (individual monitoring). (M.A.) [pt

  15. Contributions to the genetic and mean bone-marrow doses of the Australian population from radiological procedures

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1980-06-01

    The results of a national survey of radiological procedures used for diagnosis and therapy in medicine, dentistry and chiropracty are reviewed. Statistical data for the distribution and frequency of various procedures in Australian hospitals and practices are summarised, together with their associated radiation doses. Annual genetically significant and mean bone-marrow doses to the Australian population arising from these procedures are derived for the survey year of 1970. Values of 176 microgray and 651 microgray for the annual (per capita) genetic and mean bone-marrow doses respectively are reported. These compare closely with corresponding estimates in other countries with similar medical practices to those in Australia

  16. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey.

    Science.gov (United States)

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; Pradiological procedures was significantly worse among medical students than radiology residents and radiography students (Pradiology residents as to knowledge of radiation protection issues (PRadiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Estimation of staff lens doses during interventional procedures. Comparing cardiology, neuroradiology and interventional radiology

    International Nuclear Information System (INIS)

    Vano, E.; Sanchez, R.M.; Fernandez, J.M.

    2015-01-01

    The purpose of this article is to estimate lens doses using over apron active personal dosemeters in interventional catheterisation laboratories (cardiology IC, neuroradiology IN and radiology IR) and to investigate correlations between occupational lens doses and patient doses. Active electronic personal dosemeters placed over the lead apron were used on a sample of 204 IC procedures, 274 IN and 220 IR (all performed at the same university hospital). Patient dose values (kerma area product) were also recorded to evaluate correlations with occupational doses. Operators used the ceiling-suspended screen in most cases. The median and third quartile values of equivalent dose Hp(10) per procedure measured over the apron for IC, IN and IR resulted, respectively, in 21/67, 19/44 and 24/54 μSv. Patient dose values (median/third quartile) were 75/128, 83/176 and 61/159 Gy cm 2 , respectively. The median ratios for dosemeters worn over the apron by operators ( protected by the ceiling-suspended screen) and patient doses were 0.36; 0.21 and 0.46 μSv Gy -1 cm -2 , respectively. With the conservative approach used (lens doses estimated from the over apron chest dosemeter) we came to the conclusion that more than 800 procedures y -1 and per operator were necessary to reach the new lens dose limit for the three interventional specialties. (authors)

  18. Derivation of the source term, dose results and associated radiological consequences for the Greek Research Reactor – 1

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Charalampos, E-mail: chpappas@ipta.demokritos.gr; Ikonomopoulos, Andreas; Sfetsos, Athanasios; Andronopoulos, Spyros; Varvayanni, Melpomeni; Catsaros, Nicolas

    2014-07-01

    Highlights: • Source term derivation of postulated accident sequences in a research reactor. • Various containment ventilation scenarios considered for source term calculations. • Source term parametric analysis performed in case of lack of ventilation. • JRODOS employed for dose calculations under eighteen modeled scenarios. • Estimation of radiological consequences during typical and adverse weather scenarios. - Abstract: The estimated source term, dose results and radiological consequences of selected accident sequences in the Greek Research Reactor – 1 are presented and discussed. A systematic approach has been adopted to perform the necessary calculations in accordance with the latest computational developments and IAEA recommendations. Loss-of-coolant, reactivity insertion and fuel channel blockage accident sequences have been selected to derive the associated source terms under three distinct containment ventilation scenarios. Core damage has been conservatively assessed for each accident sequence while the ventilation has been assumed to function within the efficiency limits defined at the Safety Analysis Report. In case of lack of ventilation a parametric analysis is also performed to examine the dependency of the source term on the containment leakage rate. A typical as well as an adverse meteorological scenario have been defined in the JRODOS computational platform in order to predict the effective, lung and thyroid doses within a region defined by a 15 km radius downwind from the reactor building. The radiological consequences of the eighteen scenarios associated with the accident sequences are presented and discussed.

  19. A probable radiological emergency in nuclear medicine

    International Nuclear Information System (INIS)

    Colombo, J.C.

    1998-01-01

    Full text: When a therapeutic dose of 131 I is indicated, especially in the thyroid carcinomas, the authorized doctor must always have present the possibility that the patient eliminates high activities of the radio-active material with the vomit. Keeping in mind that dose of 100 to 200 mCi is habitual in the carcinoma of thyroid, this episode can constitute a true radiological emergency, particularly because the first ones in taking knowledge of the fact can be people without appropriate preparation to this situation, what can cause contaminations difficult to manage them. Because it is not acceptable that a source open of high activity remains without treatment long time, the authorized doctor must act immediately, for that which should be prepared with anticipation, and have the necessary elements, to have an operative routine and to administer the storage of the polluted elements appropriately. To such an effect, we have orchestrated a sequential program of performance of 11 points, in the cases of plentiful vomits, with contamination of floors and things of the room. The program begins with the writing instructions for the patient and the personnel of infirmary in case of feeling desires to vomit, and de program is completed in case of being necessary. The elements are detailed in a handbag that contains for radiological emergencies for vomit. It notes that the low cost of the elements and clothes kind for surgery disposable. It discusses about the necessity of having prepared rooms for to receive patient with treatment with 131 I, in the clinics and public hospitals. (author) [es

  20. Estimation of personal dose based on the dependent calibration of personal dosimeters in interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige; Koshida, Kichiro; Ichikawa, Katsuhiro

    2007-01-01

    The purpose of present study is, in interventional radiology (IVR), to elucidate the differences between each personal dosimeter, and the dependences and calibrations of area or personal dose by measurement with electronic dosimeters in particular. We compare space dose rate distributions measured by an ionization survey meter with the value measured by personal dosimeter: an optically stimulated luminescence, two fluoroglass, and two electronic dosimeters. Furthermore, with electronic dosimeters, we first measured dose rate, energy, and directional dependences. Secondly, we calibrated the dose rate measured by electronic dosimeters with the results, and estimated these methods with coefficient of determination and Akaike's Information Criterion (AIC). The results, especially in electronic dosimeters, revealed that the dose rate measured fell by energy and directional dependences. In terms of methods of calibration, the method is sufficient for energy dependence, but not for directional dependence, because of the lack of stable calibration. This improvement poses a question for the future. The study suggested that these dependences of the personal dosimeter must be considered when area or personal dose is estimated in IVR. (author)

  1. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  2. The design and quality control of radioactive medical diagnostic products with reference to the radiological doses to patients and to hospital staff

    International Nuclear Information System (INIS)

    Charlton, J.C.

    1977-01-01

    The role of the manufacturer in reducing radiological dose to patient and to hospital staff, arising from the use of radiopharmaceuticals and radioactive clinical laboratory reagents (radioimmunoassay and related techniques), is indicated. The source of unnecessary radiation dose to the patient are as follows: the choice of an inappropriate radionuclide; radionuclidic impurities in the preparation; the choice of an inappropriate chemical form; radio-chemical impurities in the preparation. An example of a radiopharmaceutical, Indium-11 DTPA for cisternography, is given. The radiological hazards of radioimmunoassay (excluding preparation of the labelled antigen) are found to be negli

  3. Radiological Dose Calculations And Supplemental Dose Assessment Data For Neshap Compliance For SNL Nevada Facilities 1996.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity. Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.

  4. Specification of carbon ion dose at the National Institute of Radiological Sciences (NIRS)

    International Nuclear Information System (INIS)

    Matsufuji, Naruhiro; Nakai, Tatsuaki; Kanematsu, Nobuyuki

    2007-01-01

    The clinical dose distributions of therapeutic carbon beams, currently used at National Institute of Radiological Sciences (NIRS) Heavy Ion Medical Accelerator in Chiba (HIMAC), are based on in-vitro Human Salivary Gland (HSG) cell survival response and clinical experience from fast neutron radiotherapy. Moderate radiosensitivity of HSG cells is expected to be a typical response of tumours to carbon beams. At first, the biological dose distribution is designed so as to cause a flat biological effect on HSG cells in the spread-out Bragg peak (SOBP) region. Then, the entire biological dose distribution is evenly raised in order to attain a RBE (relative biological effectiveness)=3.0 at a depth where dose-averaged LET (linear energy transfer) is 80 keV/μm. At that point, biological experiments have shown that carbon ions can be expected to have a biological effect identical to fast neutrons, which showed a clinical RBE of 3.0 for fast neutron radiotherapy at NIRS. The resulting clinical dose distribution in this approximation is not dependent on dose level, tumour type or fractionation scheme and thus reduces the unknown parameters in the analysis of the clinical results. The width SOBP and the clinical/physical dose at the center of SOBP specify the dose distribution. The clinical results analyzed in terms of tumor control probability (TCP) were found to show good agreement with the expected RBE value at higher TCP levels. The TCP analysis method was applied for the prospective dose estimation of hypofractionation. (author)

  5. Radiological dose and metadata management

    International Nuclear Information System (INIS)

    Walz, M.; Madsack, B.; Kolodziej, M.

    2016-01-01

    This article describes the features of management systems currently available in Germany for extraction, registration and evaluation of metadata from radiological examinations, particularly in the digital imaging and communications in medicine (DICOM) environment. In addition, the probable relevant developments in this area concerning radiation protection legislation, terminology, standardization and information technology are presented. (orig.) [de

  6. Federal Radiological Monitoring and Assessment Center Phased Response Operations

    International Nuclear Information System (INIS)

    Riland, C.A.; Bowman, D.R.

    1999-01-01

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to the Lead Federal Agency (LFA) or state request when a major radiological emergency is anticipated of has occurred. The FRMAC becomes a coalition of federal off-site monitoring and assessment activities to assist the LFA, state(s), local, and tribal authorities. State, local, and tribal authorities are invited to co-locate and prioritize monitoring and assessment efforts in the FRMAC. The Department of Energy is tasked by the Federal Radiological Emergency Response Plan to coordinate the FRMAC

  7. When is a dose not a dose?

    International Nuclear Information System (INIS)

    Green, Patrick

    1992-01-01

    There is confusion over radiation dose limits between the International Commission on Radiological Protection, the National Radiological Protection Board and the Ministry of Agriculture, Fisheries and Food (MAFF), reports a Friends of the Earth's radiation campaigner. MAFF is suggesting the inadequate ICRP public dose limit does not apply to public exposures which arise from environmental contamination from past radioactive discharges. (author)

  8. Anesthesia for radiologic procedures

    International Nuclear Information System (INIS)

    Forestner, J.E.

    1987-01-01

    Anesthetic techniques for neurodiagnostic studies and radiation therapy have been recently reviewed, but anesthetic involvement in thoracic and abdominal radiology has received little attention. Patient reactions to radiologic contrast media may be of concern to the anesthesiologist, who is often responsible for injecting these agents during diagnostic procedures, and thus is included in this discussion. Finally, the difficulties of administering anesthesia for magnetic resonance imaging (MRI) scans are outlined, in an effort to help anesthesiologist to anticipate problems with this new technologic development. Although there are very few indications for the use of general anesthesia for diagnostic radiologic studies in adults, most procedures performed with children, the mentally retarded, or the combative adult require either heavy sedation or general anesthesia. In selecting an anesthetic technique for a specific procedure, both the patient's disease process and the requirements of the radiologist must be carefully balanced

  9. Evaluation of the radiological quality of the water on Bikini and Eneu Islands in 1975: dose assessment based on initial sampling

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Robison, W.L.; Wong, K.M.; Eagle, R.J.

    1977-01-01

    This report describes the radiological quality of the groundwater on the two main islands (Eneu and Bikini) of Bikini Atoll during June 1975 (from data obtained from water samples collected at old and new well sites on both islands) and the cistern water on Bikini Island. Based on analyses of these samples, we found that the cistern water from Bikini Island is both chemically and radiologically acceptable as drinking water in accordance with standard limits established by the U.S. Public Health Service. However, on both islands the quality of the groundwater varied from one site to another. At some wells both chemical and radiological quality are acceptable; at others one or both are unacceptable according to U.S. Public Health Standards. The doses we predict from consumption of both cistern and groundwater are acceptable under federal guidelines. However, doses predicted from consumption of groundwater are high enough to warrant careful evaluation of other potential exposure pathways

  10. Worker radiological protection: occupational medical aspects

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Fernandez Gomez, Isis Maria

    2008-01-01

    Radiation exposures experienced by workers are widely explained. The first evidences of biological effects, the implications for human health and the radiological protection have been covered. The conceptual structure that covers the radiological protection and adequate protection without limiting benefits, the scientific basis of radiology, the benefits and risks of the radiological protection are specified. The effective per capita doses are exposed in medical uses both for Latin America and for other regions in the average radiology, dental radiology, nuclear medicine and radiotherapy. The manners of occupational exposures in the medicine are presented. Industrial uses have also its average effective dose in the industrial irradiation, industrial radiography and radioisotopes production. Within the natural radiation the natural sources can significantly contribute to occupational exposure and have their average effective dose. Occupational medical surveillance to be taken into industrial sites is detailed. In addition, the plan of international action for the solution of dilemmas of occupational exposures is mentioned and the different dilemmas of radioactive exposure are showed. The external irradiation, the acute diseases by radiations, the cutaneous syndrome of the chronic radiation, the radioactive contamination, the internal radioactive contamination, the combined lesion and accidental exposures are also treated [es

  11. Radiochromic film for dosimetric measurements in radiation shielding composites synthesized for applied in radiology procedures of high dose

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C. C. P. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Baptista N, A. T.; Faria, L. O., E-mail: crissia@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: Medical radiology offers great benefit to patients. However, although specifics procedures of high dose, as fluoroscopy, Interventional Radiology, Computed Tomography (CT) make up a small percent of the imaging procedures, they contribute to significantly increase dose to population. The patients may suffer tissue damage. The probability of deterministic effects incidence depends on the type of procedure performed, exposure time, and the amount of applied dose at the irradiated area. Calibrated radiochromic films can identify size and distribution of the radiated fields and measure intensities of doses. Radiochromic films are sensitive for doses ranging from 0.1 to 20 c Gy and they have the same response for X-rays effective energies ranging from 20 to 100 keV. New radiation attenuators materials have been widely investigated resulting in dose reduction entrance skin dose. In this work, Bi{sub 2}O{sub 3} and ZrO{sub 2}:8 % Y{sub 2}O{sub 3} composites were obtained by mixing them with P(VDF-Tr Fe) copolymers matrix from casting method and then characterized by Ftir. Dosimetric measurements were obtained with Xr-Q A2 Gafchromic radiochromic films. In this setup, one radiochromic film is directly exposed to the X-rays beam and another one measures the attenuated beam were exposed to an absorbed dose of 10 mGy of RQR5 beam quality (70 kV X-ray beam). Under the same conditions, irradiated Xr-Q A2 films were stored and scanned measurement in order to obtain a more reliable result. The attenuation factors, evaluated by Xr-Q A2 radiochromic films, indicate that both composites are good candidates for use as patient radiation shielding in high dose medical procedures. (Author)

  12. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    International Nuclear Information System (INIS)

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1992-01-01

    The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure γ-emitters, such as 40 K, 60 Co and 137 Cs, present in individuals. Urine samples are used to measure α and β-emitting nuclides, such as 239 Pu and 90 Sr, that are undetectable by WBC routine methods

  13. Radiation protection during radiological examinations of children

    International Nuclear Information System (INIS)

    Claus, D.; Gillet, R.; Wambersie, A.

    The dose delivered to children during radiological examinations were assessed and their variations compared with an experimental model. It is shown how to make good radiological examinations limiting the dose delivered to children and reducing the hazard to the medical staff [fr

  14. Estimation of staff lens doses during interventional procedures. Comparing cardiology, neuroradiology and interventional radiology.

    Science.gov (United States)

    Vano, E; Sanchez, R M; Fernandez, J M

    2015-07-01

    The purpose of this article is to estimate lens doses using over apron active personal dosemeters in interventional catheterisation laboratories (cardiology IC, neuroradiology IN and radiology IR) and to investigate correlations between occupational lens doses and patient doses. Active electronic personal dosemeters placed over the lead apron were used on a sample of 204 IC procedures, 274 IN and 220 IR (all performed at the same university hospital). Patient dose values (kerma area product) were also recorded to evaluate correlations with occupational doses. Operators used the ceiling-suspended screen in most cases. The median and third quartile values of equivalent dose Hp(10) per procedure measured over the apron for IC, IN and IR resulted, respectively, in 21/67, 19/44 and 24/54 µSv. Patient dose values (median/third quartile) were 75/128, 83/176 and 61/159 Gy cm(2), respectively. The median ratios for dosemeters worn over the apron by operators (protected by the ceiling-suspended screen) and patient doses were 0.36; 0.21 and 0.46 µSv Gy(-1) cm(-2), respectively. With the conservative approach used (lens doses estimated from the over apron chest dosemeter) we came to the conclusion that more than 800 procedures y(-1) and per operator were necessary to reach the new lens dose limit for the three interventional specialties. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. EcoDoses. Improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Sven P.; Isaksson, M.; Nilsson, Elisabeth (and others)

    2005-07-01

    The NKS B-programme EcoDoses project started in 2003 as a collaboration between all the Nordic countries. The aim of the project is to improve the radiological assessments of doses to man from terrestrial ecosystems. The present report sums up the work performed in the second phase of the project. The main topics in 2004 have been: (i) A continuation of previous work with a better approach for estimating global fallout on a regional or national scale, based on a correlation between precipitation and deposition rates. (ii) Fur-ther extension of the EcoDoses milk database. Estimation of effective ecological half lives of {sup 137}Cs in cows milk focussing on suitable post-Chernobyl time-series. Modelling integrated transfer of {sup 13}7{sup C}s to cow's milk from Nordic countries. (iii) Determination of effective ecological half lives for fresh water fish from Nordic lakes. (iv) Investigate ra-dioecological sensitivity for Nordic populations. (v) Food-chain modelling using the Eco-sys-model, which is the underlying food- and dose-module in several computerised deci-sion-making systems. (au)

  16. EcoDoses. Improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2004

    International Nuclear Information System (INIS)

    Nielsen, Sven P.; Isaksson, M.; Nilsson, Elisabeth

    2005-07-01

    The NKS B-programme EcoDoses project started in 2003 as a collaboration between all the Nordic countries. The aim of the project is to improve the radiological assessments of doses to man from terrestrial ecosystems. The present report sums up the work performed in the second phase of the project. The main topics in 2004 have been: (i) A continuation of previous work with a better approach for estimating global fallout on a regional or national scale, based on a correlation between precipitation and deposition rates. (ii) Fur-ther extension of the EcoDoses milk database. Estimation of effective ecological half lives of 137 Cs in cows milk focussing on suitable post-Chernobyl time-series. Modelling integrated transfer of 13 7 C s to cow's milk from Nordic countries. (iii) Determination of effective ecological half lives for fresh water fish from Nordic lakes. (iv) Investigate ra-dioecological sensitivity for Nordic populations. (v) Food-chain modelling using the Eco-sys-model, which is the underlying food- and dose-module in several computerised deci-sion-making systems. (au)

  17. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P thermoluminescent dosemeter and its applications in diagnostic radiology

    International Nuclear Information System (INIS)

    Fung, K.K.L.

    2000-12-01

    evaluate the potential of this T.L. phosphor in the measurement of the very low level doses received by remote critical radiosensitive organs such as the gonads and thyroid eland from scattered X-ray photons. The use of conventional LiF:Mg,Ti T.L. dosemeters for these low level dose measurements is not always feasible. The applications studied in radiological procedures included: dose reduction in lumbar spine radiography utilizing the ''anode heel effect''; gonad dose variation with kV p in chest radiography; foetal dose comparison between computed tomography (CT) and computed radiography (CR) in X-ray pelvimetry; lens dose reduction with bismuth eye shields in CT brain studies; foetal dose assessment of early pregnancy in common high risk radiological examinations. It is anticipated that the unique and favourable dosimetric performance of LiF:Mg,Cu,P T.L. phosphor will be exploited further in measurements of low level dose received by patients and staff in diagnostic radiological procedures such as paediatric X-rays and interventional fluoroscopic examinations. (author)

  18. Investigation of dosimetric characteristics of the high sensitivity LiF:Mg,Cu,P thermoluminescent dosemeter and its applications in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Fung, K.K.L

    2000-12-01

    evaluate the potential of this T.L. phosphor in the measurement of the very low level doses received by remote critical radiosensitive organs such as the gonads and thyroid eland from scattered X-ray photons. The use of conventional LiF:Mg,Ti T.L. dosemeters for these low level dose measurements is not always feasible. The applications studied in radiological procedures included: dose reduction in lumbar spine radiography utilizing the ''anode heel effect''; gonad dose variation with kV{sub p} in chest radiography; foetal dose comparison between computed tomography (CT) and computed radiography (CR) in X-ray pelvimetry; lens dose reduction with bismuth eye shields in CT brain studies; foetal dose assessment of early pregnancy in common high risk radiological examinations. It is anticipated that the unique and favourable dosimetric performance of LiF:Mg,Cu,P T.L. phosphor will be exploited further in measurements of low level dose received by patients and staff in diagnostic radiological procedures such as paediatric X-rays and interventional fluoroscopic examinations. (author)

  19. Clay as Thermoluminescence Dosemeter in diagnostic Radiology ...

    African Journals Online (AJOL)

    This paper reports the investigation of the basic thermoluminescence properties of clay at x-rays in the diagnostic radiology range, including dose monitoring in abdominal radiography. Clay sourced from Calabar, Nigeria, was tested for thermoluminescence response after irradiation at diagnostic radiology doses, including ...

  20. Dosimetric behavior of thermoluminescent dosimeters at low doses in diagnostic radiology

    International Nuclear Information System (INIS)

    Del Sol F, S.; Garcia S, R.; Guzman M, J.; Sanchez G, D.; Rivera M, T.; Ramirez R, G.; Gaona, E.

    2015-10-01

    Thermoluminescent (Tl) characteristics of TLD-100, LiF:Mg,Cu,P, and CaSO 4 : Dy the under homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescent dosimetry is presented. The irradiations were performed utilizing an X-ray beam generated by a Radiology Mexican Company: MRH-II E GMX 325-AF SBV-1 model, with Rotating Anode X-Ray Tube installed in the Hospital Juarez Norte de Mexico in Mexico City. Different thermoluminescent characteristics of dosimetric material were studied, such as, batch homogeneity, Tl glow curve, Tl response as a function of X-ray dose, reproducibility and fading. Materials were calibrated in terms of absorbed dose to the standard calibration distance and positioned in a generic Phantom was used. Dose verification and comparison with the measurements made with that obtained by TLD-100 were analyzed. Preliminary results indicate the dosimetric peak appears at 243, 236 and 277 ± 5 degrees C respectively, these peaks are in agreement with that reported in the literature. Tl glow curve as a function of X-ray dose showed a linearity in the range from 1.76 mGy up to 14.70 mGy for all materials. Fading for a period of one month at room temperature showed low fading LiF:Mg,Cu,P, medium and high for TLD-100 and CaSO 4 : Dy. The results suggest that the three materials are suitable for measurements at low doses in radiodiagnostic, however, for its dosimetric characteristics are most effective for individual applications: personal dosimetry and monitors limb (LiF:Mg,Cu,P), clinical dosimetry and environmental (TLD-100 and CaSO 4 : Dy). (Author)

  1. Evaluation of radiological protection and dose of skin entrance in paediatric dentistry examinations; Avaliacao da protecao radiologica e da dose de entrada na pele em exames de odontologia pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Helen Jamil [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Vasconcelos, Flavia Maria Nassar de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Silveira, Marcia Maria Fonseca da [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Fac. de Odontologia; Couto, Geraldo Bosco Lindoso [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Fac. de Odontopediatria; Brasileiro, Izabela Vanderley

    2005-07-01

    In this work the radiological protection conditions and dose at the entrance of pediatric patients undergoing dental intraoral radiographs were evaluated. The study was conducted in two clinics of the dentistry course at the Federal University of Pernambuco, Recife, PB, Brazil, equipped with conventional X-ray apparatus, with 60 and 70 kV. 254 exams of 113 patients between the ages of 3 to 12 years were evaluated. The skin entrance dose was estimated using TLD-100 thermoluminescent dosemeters. During the examination were also recorded information regarding the time of exposure, radiographic technique used, use of thyroid protectors and lead apron, angle and distance of the cone Locator to the patient's skin. The results showed that the input skin doses ranged from 0.3 mGy to 10mGy. The lead apron was used in 71% of exams while the thyroid shield was only used in 58% of the exams. The exposure times ranged from 0,5s to 1,5s. From the results it can be concluded that the radiological procedures are not optimized and that in some cases the patient dose is high.

  2. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Tajikistan

    International Nuclear Information System (INIS)

    Lespukh, E.; Stegnar, P.; Yunusov, M.; Tilloboev, H.; Zyazev, G.; Kayukov, P.; Hosseini, A.; Strømman, G.; Salbu, B.

    2013-01-01

    An assessment of the radiological situation due to exposure to gamma radiation, radon ( 222 Rn) and thoron ( 220 Rn) was carried out at former uranium (U) mining and processing sites in Taboshar and at Digmai in Tajikistan. Gamma dose rate measurements were made using various field instruments. 222 Rn/ 220 Rn measurements were carried out with field instruments for instantaneous measurements and then discriminative 222 Rn/ 220 Rn solid state nuclear track detectors (SSNTD) were used for longer representative measurements. The detectors were exposed for an extended period of time in different outdoor and indoor public and residential environments at the selected U legacy sites. The results showed that gamma, 222 Rn and 220 Rn doses were in general low, which consequently implies a low to relatively low radiological risk. The radiation doses deriving from external radiation (gamma dose rate), indoor 222 Rn and 220 Rn with their short-lived progenies did not exceed national or international standards. At none of the sites investigated did the average individual annual effective doses exceed 10 mSv, the recommended threshold value for the general public. A radiation hazard could be associated with exceptional situations, such as elevated exposures to ionizing radiation at the Digmai tailings site and/or in industrial facilities, where gamma and 222 Rn/ 220 Rn dose rates could reach values of several 10 mSv/a. Current doses of ionizing radiation do not represent a hazard to the health of the resident public, with the exception of some specific situations. These issues should be adequately addressed to further reduce needless exposure of the resident public to ionizing radiation

  3. Potential radiological doses associated with the disposal of petroleum industry NORM via landspreading. Final report, September 1998

    International Nuclear Information System (INIS)

    Smith, K.P.; Blunt, D.L.; Arnish, J.J.

    1998-12-01

    As a result of oil and gas production and processing operations, naturally occurring radioactive materials (NORM) sometimes accumulate at elevated concentrations in by-product waste streams. The primary radionuclides of concern in NORM wastes are radium-226 of the uranium-238 decay series, and radium-228, of the thorium-232 decay series. The production waste streams most likely to be contaminated by elevated radium concentrations include produced water, scale, and sludge. Scales and sludges removed from production equipment often are disposed of by landspreading, a method in which wastes are spread over the soil surface to allow the hydrocarbon component of the wastes to degrade. In this study, the disposal of NORM-contaminated wastes by landspreading was modeled to evaluate potential radiological doses and resultant health risks to workers and the general public. A variety of future land use scenarios--including residential, industrial, recreational, and agricultural scenarios--were considered. The waste streams considered included scales and sludges containing NORM above background levels. The objectives of this study were to (1) estimate potential radiological doses to workers and the general public resulting from the disposal of NORM wastes by noncommercial landspreading activities and (2) analyze the effect of different land use scenarios on potential doses

  4. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young

    2011-02-15

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H{sub p}(10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  5. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    International Nuclear Information System (INIS)

    Kim, Ji Young

    2011-02-01

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H p (10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  6. Patient dose monitoring systems: A new way of managing patient dose and quality in the radiology department.

    Science.gov (United States)

    Fitousi, N

    2017-12-01

    Due to the upcoming European Directive (2013/59/EURATOM) and the increased focus on patient safety in international guidelines and regulations, Patient Dose Monitoring Systems, also called Dose Management Systems (DMS), are introduced in medical imaging departments. This article focusses on the requirements for a DMS, its benefits and the necessary implementation steps. The implementation of a DMS can be perceived as a lengthy, yet worthy, procedure: users have to select the appropriate system for their applications, prepare data collection, validate, perform configuration, and start using the results in quality improvement projects. A state of the art DMS improves the quality of service, ensures patient safety and optimizes the efficiency of the department. The gain is multifaceted: the initial goal is compliance monitoring against diagnostic reference levels. At a higher level, the user gets an overview of the performance of the devices or centers that are under his supervision. Error identification, generation of alerts and workflow analysis are additional benefits. It can also enable a more patient-centric approach with personalized dosimetry. Skin dose, size-specific dose estimates and organ doses can be calculated and evaluated per patient. A DMS is a powerful tool and essential for improved quality and patient care in a radiology department. It can be configured to the needs of medical physicists, radiologists, technologists, even for the management of the hospital. Collaboration between all health professionals and stakeholders, input-output validation and communication of findings are key points in the process of a DMS implementation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Guidelines for a radiology department

    International Nuclear Information System (INIS)

    1981-05-01

    This manual presents guidelines for hospitals on a radiology quality assurance and dose measurement audit program and a system of planned actions that monitor and record the performance and effectiveness of the radiological service

  8. Evaluation of the effectiveness of gonad protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Kawaura, Chiyo; Aoyama, Takahiko; Koyama, Shuji

    2004-01-01

    In the present study we describes the evaluation of the effectiveness of gonad protection in diagnostic radiology based on the measurement of organ and the effective doses with and without lead clothing to gonads. We devised in-phantom dosimetry system and measured organ and effective doses in x-ray radiography and CT examinations with the new dosimetry system. From the data of organ and the effective doses we assessed the effectiveness of radiological protection by the use of lead clothing to gonads. Although in chest radiography and chest CT examinations, the effectiveness of radiological protection was not found, in the case of hip joint radiography (AP), gonad doses decreased remarkably by using lead clothing. The effectiveness of radiological protection, i.e. the ratio of the decreased dose to the dose value without protection, in testis and ovary were found to be 91.4% and 68.0%, respectively. It was also found that gonad doses observed with and without gonad protection were extremely lower than those of threshold for sterility recommended by the International Commission on Radiological Protection 60 (ICRP Publ. 60). (author)

  9. [Evaluation of the effectiveness of gonad protection in diagnostic radiology].

    Science.gov (United States)

    Kawaura, Chiyo; Aoyama, Takahiko; Koyama, Shuji

    2004-01-01

    In the present study we describe the evaluation of the effectiveness of gonad protection in diagnostic radiology based on the measurement of organ and the effective doses with and without lead clothing to gonads. We devised in-phantom dosimetry system and measured organ and effective doses in x-ray radiography and CT examinations with the new dosimetry system. From the data of organ and the effective doses we assessed the effectiveness of radiological protection by the use of lead clothing to gonads. Although in chest radiography and chest CT examinations, the effectiveness of radiological protection was not found, in the case of hip joint radiography (AP), gonad doses decreased remarkably by using lead clothing. The effectiveness of radiological protection, i.e. the ratio of the decreased dose to the dose value without protection, in testis and ovary were found to be 91.4% and 68.0%, respectively. It was also found that gonad doses observed with and without gonad protection were extremely lower than those of threshold for sterility recommended by the International Commission on Radiological Protection 60 (ICRP Publ. 60).

  10. Protection of staff in interventional radiology

    International Nuclear Information System (INIS)

    Melkamu, M. A.

    2013-04-01

    This project focuses on the interventional radiology. The main objective of this project work was to provide a guidance and advice for occupational exposure and hospital management to optimize radiation protection safety and endorse safety culture. It provides practical information on how to minimize occupational exposure in interventional radiology. In the literature review all considerable parameters to reduce dose to the occupationally exposed are well discussed. These parameters include dose limit, risk estimation, use of dosimeter, personal dose record keeping, analysis of surveillance of occupational dose, investigation levels, and proper use of radiation protection tools and finally about scatter radiation dose rate. In addition the project discusses the ways to reduce occupational exposure in interventional radiology. The methods for dose reduction are minimizing fluoroscopic time, minimizing the number of fluoroscopic image, use of patient dose reduction technologies, use of collimation, planning interventional procedures, positioning in low scattered areas, use of protective shielding, use of appropriate fluoroscopic imaging equipment, giving training for the staff, wearing the dosimeters and know their own dose regularly, and management commitment to quality assurance and quality control system and optimization of radiation protection of safety. (author)

  11. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    International Nuclear Information System (INIS)

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-11-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southwest of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral islands, having a total land area of about 180 km 2 , distributed over more than 2.5 x 10 6 of ocean. Between 1946 and 1958 the United states conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planning to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure γ-emitters, such as 40 K, 60 Co and 137 Cs, present in individuals. Urine samples are used to measure α and β-emitting nuclides such as 239 Pu and 90 Sr, that are undetectable by WBC routine methods

  12. A snapshot of patients' awareness of radiation dose and risks associated with medical imaging examinations at an Australian radiology clinic.

    Science.gov (United States)

    Singh, N; Mohacsy, A; Connell, D A; Schneider, M E

    2017-05-01

    Cumulative radiation exposure is linked to increasing the lifetime attributable risk of cancer. To avoid unnecessary radiation exposure and facilitate shared decision making, patients should be aware of these issues. This paper examines patients' awareness of radiation dose and risks associated with medical imaging examinations. Consecutive patients attending a private radiology clinic over a nine week period in 2014 in Metropolitan Melbourne were surveyed while waiting to undergo an imaging examination. Patients who were under 18 years of age, did not speak English and/or were referred for interventional imaging procedures were excluded from participation. Survey questions addressed patients' awareness of radiation dose associated with various imaging modalities' and patients' experience and preferences regarding communication of information about radiation. Data was analysed using SPSS (Ver 20.1). A total of 242 surveys were completed. Most participants were male (143/239, 59.8%) and aged between 33 and 52 years (109/242, 45%). Over half of participants were not concerned about radiation from medical imaging (130/238, 54.6%). Only a third of participants (80/234, 34.2%) correctly reported that CT has a higher radiation dose than X-ray. Very few participants correctly identified mammography, DEXA, PET and PET/CT as radiation emitting examinations. The majority of participants (202/236, 85.6%) indicated that they were not informed about radiation dose and risks by their referring doctor in advance. This paper provides information relevant to a single private radiology clinic in Australia. Nevertheless, our results have shown that patients presenting for medical imaging have little awareness of radiation dose and risks associated with these examinations and received little information by their referring physicians or staff at the radiology clinic. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  13. Federal Radiological Monitoring and Assessment Center: Phase I Response

    International Nuclear Information System (INIS)

    Riland, C.; Bowman, D.R.; Lambert, R.; Tighe, R.

    1999-01-01

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to a Lead Federal Agency (LFA) or State request when a radiological emergency is anticipated or has occurred. The FRMAC coordinates the off-site monitoring, assessment, and analysis activities during such an emergency. The FRMAC response is divided into three phases. FRMAC Phase 1 is a rapid, initial-response capability that can interface with Federal or State officials and is designed for a quick response time and rapid radiological data collection and assessment. FRMAC Phase 1 products provide an initial characterization of the radiological situation and information on early health effects to officials responsible for making and implementing protective action decisions

  14. Design and implementation of wireless dose logger network for radiological emergency decision support system

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee–Pro wireless modules and PSoC controller for wireless interfacing, and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.

  15. Design and implementation of wireless dose logger network for radiological emergency decision support system.

    Science.gov (United States)

    Gopalakrishnan, V; Baskaran, R; Venkatraman, B

    2016-08-01

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee-Pro wireless modules and PSoC controller for wireless interfacing, and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.

  16. Design and implementation of wireless dose logger network for radiological emergency decision support system

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, V.; Baskaran, R.; Venkatraman, B. [Radiation Impact Assessment Section, Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India)

    2016-08-15

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee–Pro wireless modules and PSoC controller for wireless interfacing, and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.

  17. Radiological effects

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Environmental monitoring in the vicinity of the Calvert Cliffs Nuclear Power Plant has been shown the radiation dose to the public from plant operation to be quite small. Calculations from the reported release rates yield 0.2 mrem whole body dose and 0.6 mrem skin dose for the calendar quarter of maximum release. Radioactivity discharges to the Chesapeake Bay have resulted in detectable concentrations of /sup 110m/Ag, 58 Co, and 60 Co in sediments and shellfish. The area yielding samples with detectable concentrations of plant effluents extends for roughly six miles up and down the western shore, with maximum values found at the plant discharge area. The radiation dose to an individual eating 29 doz oysters and 15 doz crabs (5 kg of each) taken from the plant discharge area would be about 4/1000 mrem whole body dose and 0.2 mrem gastrointestinal tract dose (about 0.007% and 0.5% of the applicable guidelines, respectively.) Comparison of these power plant-induced doses with the fluctuations in natural radiation dose already experienced by the public indicates that the power plant effects are insignificant. The natural variations are tens of times greater than the maximum doses resulting from Calvert Cliffs Power Plant. Although operations to date provide an insufficient basis to predict radiological impact of the Calvert Cliffs Plant over its operational lifetime, available data indicate that the plant should continue to operate with insignificant radiological impact, well within all applicable guidelines

  18. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    Science.gov (United States)

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  19. Facial exposure dose assessment during intraoral radiography by radiological technologists

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwan; Yang, Han Joon [Dept. of International Radiological Science, Hallym University of Graduate Studies, Chuncheon (Korea, Republic of)

    2014-09-15

    The study examined the changes in the decreased facial exposure dose for radiological technologists depending on increased distance between the workers and the X-ray tube head during intraoral radiography. First, the facial phantom similar to the human tissues was manufactured. The shooting examination was configured to the maxillary molars for adults (60 kVp, 10 mA, 50 msec) and for children (60 kVp, 10 mA, 20 msec), and the chamber was fixed where the facial part of the radiation worker would be placed using the intraoral radiography equipment. The distances between the X-ray tube head and the phantom were set to 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, and 40 cm. The phantom was radiated 20 times with each examination condition and the average scattered doses were examined. The rate at the distance of 40 cm decreased by about 92.6% to 7.43% based on the scattered rays radiated at the distance of 10 cm under the adult conditions. The rate at the distance of 40 cm decreased by about 97.6% to 2.58% based on the scattered rays radiated at the distance of 10 cm under the children conditions. Protection from the radiation exposure was required during the dental radiographic examination.

  20. DIMOND II: Measures for optimising radiological information content and dose in digital imaging

    International Nuclear Information System (INIS)

    Dowling, A.; Malone, J.; Marsh, D.

    2001-01-01

    The European Commission concerted action on 'Digital Imaging: Measures for Optimising Radiological Information Content and Dose', DIMOND II, was conducted by 12 European partners over the period January 1997 to June 1999. The objective of the concerted action was to initiate a project in the area of digital medical imaging where practice was evolving without structured research in radiation protection, optimisation or justification. The main issues addressed were patient and staff dosimetry, image quality, quality criteria and technical issues. The scope included computed radiography (CR), image intensifier radiography and fluoroscopy, cardiology and interventional procedures. The concerted action was based on the consolidation of work conducted in the partner's institutions together with elective new work. Protocols and approaches to dosimetry, radiological information content/image quality measurement and quality criteria were established and presented at an international workshop held in Dublin in June 1999. Details of the work conducted during the DIMOND II concerted action and a summary of the main findings and conclusions are presented in this contribution. (author)

  1. Patient exposure in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study was to assess, in terms of effective dose, the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses delivered to patient

  2. Dosimetry in Diagnostic Radiology for Paediatric Patients

    International Nuclear Information System (INIS)

    2013-01-01

    Concern about the radiation dose to children from diagnostic radiology examinations has recently been popularly expressed, particularly as related to computed tomography (CT) procedures. This involves the observation that children can receive doses far in excess of those delivered to adults, in part due to the digital nature of the image receptors that may give no warning to the operator of the dose to the patient. Concern for CT examinations should be extended to the broad range of paediatric diagnostic radiological procedures responsible for radiation doses in children, especially as factors, such as increased radiosensitivity and the longer life expectancy of children, increase the associated radiation risk. In all cases, owing to the added paediatric radiological examination factor of patient size and its associated impact on equipment selection, clinical examination protocol and dosimetric audit, the determination of paediatric dose requires a distinct approach from adult dosimetry associated with diagnostic radiological examinations. In response to this, there is a need to inform health professionals about standardized methodologies used to determine paediatric dose for all major modalities such as general radiography, fluoroscopy and CT. Methodologies for standardizing the conduct of dose audits and their use for the derivation and application of diagnostic reference levels for patient populations, that vary in size, are also required. In addition, a review is needed of the current knowledge on risks specific to non-adults from radiation, and also an analysis of the management of factors contributing to dose from paediatric radiological examinations. In 2007, the IAEA published a code of practice, Dosimetry in Diagnostic Radiology: An International Code of Practice, as Technical Reports Series No. 457 (TRS 457). TRS 457 recommends procedures for dosimetric measurement and calibration for the attainment of standardized dosimetry, and addresses requirements

  3. Controllable dose

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Anaya M, R.A.

    2004-01-01

    With the purpose of eliminating the controversy about the lineal hypothesis without threshold which found the systems of dose limitation of the recommendations of ICRP 26 and 60, at the end of last decade R. Clarke president of the ICRP proposed the concept of Controllable Dose: as the dose or dose sum that an individual receives from a particular source which can be reasonably controllable by means of any means; said concept proposes a change in the philosophy of the radiological protection of its concern by social approaches to an individual focus. In this work a panorama of the foundations is presented, convenient and inconveniences that this proposal has loosened in the international community of the radiological protection, with the purpose of to familiarize to our Mexican community in radiological protection with these new concepts. (Author)

  4. Guidelines on radiology standards for primary dental care

    International Nuclear Information System (INIS)

    1994-01-01

    A Joint Working Party (JWP) on patient dose reduction in diagnostic radiology was established between the Royal College of Radiologists (RCR) and the National Radiological Protection Board (NRPB) towards the end of 1988. JWP identified a large potential for patient dose reduction on a national scale, and a report of its findings was published in 1990. This guidance was only generally applicable to dental radiology and in 1992 a further joint venture between RCR and NRPB resulted in the formation of a Working Party (WP) to consider all aspects of dental radiology applicable to primary dental care. Dental radiology is one of the largest single groups of radiographic examination performed, although the effective dose per radiograph is small. This means that individual risks from dental radiology are low, but WP has identified a significant potential for reduction in the collective dose and for improvements in the diagnostic quality of radiographs. The WP recommendations cover all aspects of dental radiology: training and examination regimes for dentists and staff, patient selection and clinical justification for radiography, diagnostic interpretation, equipment and procedural aspects, and finally the question of quality assurance in dental radiology. The economic impact of the many recommendations by WP has been considered in some detail. The benefits and cost of each recommendation either have been assigned a monetary value or have been assessed more qualitatively. The conclusion is that there is a strong economic justification for implementation of the full package of recommendations. (Author)

  5. JUSTIFICATION FOR THE RADIOLOGICAL CRITERIA FOR THE USE OF AREAS WITH RESIDUAL RADIOACTIVE CONTAMINATION BASED ON THE DOSE APPROACH

    Directory of Open Access Journals (Sweden)

    V. Yu. Golikov

    2017-01-01

    Full Text Available The article presents a methodology for assessing the radiological criteria for the use of the territory (a land plot with buildings with residual radioactive contamination from the so-called “green area”, i.e., complete release from radiation control until a number of restrictions are imposed on the use of the territory. In accordance with the further use of the territory, a range of scenarios and pathways for the exposure of the population was considered. A set of models and their parameters, corresponding to the number of the considered pathways of exposure, was defined. Assuming a uniform distribution of a radionuclide with a unit concentration in the source zone, the distribution of effective doses for the population living in the territory with the residual radioactive contamination for different irradiation scenarios was calculated by stochastic modeling, 95% of the quantile of which was attributed to the dose in the representatives of the critical population group. Next, the value of radiological criteria, depending on the implemented scenario, was determined as the ratio of the dose constraint EL = 0,3 mSv/yr and 95% quantile in the distribution of the effective dose from a unit contamination. The numerical values of radiological criteria for the presence of radionuclides in the soil are presented, both for the radiation scenarios that correspond to the permanent residence of the population in the contaminated territory and for recreational use. A further consideration is given to the so-called worker scenario, which corresponds to the limited time spent on the contaminated territory and the simultaneous effects of radionuclides contained both in the soil and in the construction of the buildings. A comparison of the results of the own calculations with the data of other authors was carried out.

  6. Guidance levels, achievable doses and expectation levels

    International Nuclear Information System (INIS)

    Li, Lianbo; Meng, Bing

    2002-01-01

    The National Radiological Protection Board (NRPB), the International Atomic Energy Agency (IAEA) and the Commission of the European Communities (CEC) published their guidance levels and reference doses for typical X-ray examination and nuclear medicine in their documents in 1993, 1994 and 1996 respectively. From then on, the concept of guidance levels or reference doses have been applied to different examinations in the field of radiology and proved to be effective for reduction of patient doses. But the guidance levels or reference doses are likely to have some shortcomings and can do little to make further reduction of patient dose in the radiology departments where patient dose are already below them. For this reason, the National Radiological Protection Board (NRPB) proposed a concept named achievable doses which are based on the mean dose observed for a selected sample of radiology departments. This paper will review and discuss the concept of guidance levels and achievable doses, and propose a new concept referred to as Expectation Levels that will encourage the radiology departments where patient dose are already below the guidance levels to keep patient dose as low as reasonably achievable. Some examples of the expectation levels based on the data published by a few countries are also illustrated in this paper

  7. Northern Marshall Islands radiological survey: radionuclide concentrations in fish and clams and estimated doses via the marine pathway

    International Nuclear Information System (INIS)

    Robison, W.L.; Noshkin, V.E.; Phillips, W.A.; Eagle, R.J.

    1981-01-01

    The survey consisted, in part, of an aerial radiological reconnaissance to map the external gamma-ray exposure rates. As a secondary phase, terrestrial and marine samples were collected to assess the radiological dose from pertinent food chains to atoll inhabitants. The marine sample collection, processing, and dose assessment methodology are presented as well as the concentration data for 90 Sr, 137 Cs, 238 Pu, 239+240 Pu, 241 Am, and any of the other gamma emitters in fish and clam muscle tissue from the different species collected. Doses are calculated from the average radionuclide concentrations in fish and clam muscle tissue assuming an average daily intake of 200 and 10 g, respectivelty. The 90 Sr concentration in muscle tissue is very low and there is little difference in the average concentrations from the different fish from different atolls or islands. The 239+240 Pu concentration in the muscle tissue of all reef species, however, is higher than that in pelagic lagoon fish. In contrast, 137 Cs concentrations are lowest in the muscle tissue of the bottom-feeding reef species and highest in pelagic logoon fish. Recent measurements of radionuclide concentrations in fish muscle tissue and other marine dietary items from international sources show that the average concentrations in species from the Marshall Islands are comparable to those in fish typically consumed as food in the United States and are generally lower than those in most international marine dietary items. The whole-body dose rates based on continuous consumption of 200 g/d of fish range from 0.028 to 0.1 mrem/y; the bone-marrow dose rates range from 0.029 to 0.12 mrem/y. The dose commitment, or 30-y integral doses, range from 0.00063 to 0.0022 rem for the whole body and from 0.00065 to 0.0032 rem for the bone marrow

  8. Follow-up radiological surveillance, Marshall Islands

    International Nuclear Information System (INIS)

    Greenhouse, N.A.

    1978-01-01

    The political approvals have been given for the return of Bikini and Enewetak Atolls to their original inhabitants. These two regions, which comprised the Pacific Nuclear Testing Areas from 1946 to 1958, are now being repopulated by their original inhabitants and their families. Recent assessments of internal and external exposure pathways at Bikini and Enewetak have indicated that doses and dose commitments in excess of current radiation protection guidelines are possible or even likely for persons living in these areas. Rongelap and Utirik Atolls, which were downwind of the 1954 Bravo event, also received significant fallout; potential radiological problems exist in these areas as well. In view of this prospect, follow-up environmental monitoring and personnel monitoring programs are being established to maintain our cognizance of radiological conditions, and to make corrective action where necessary. The unexpected finding of detectable amounts (above background) of plutonium in the urine of individuals at Bikini and Rongelap Atolls also raises the possibility of radiological problems in the long term from environmentally-derived plutonium via pathways which are not completely understood. This finding adds further impetus to the surveillance programs for an area where real radiological concerns for the general public are already known to exist. The continuing environmental and personnel monitoring programs which this paper describes are a necessary part of the BNL radiological safety program in the Marshall Islands, which is designed to do the following: (1) elucidate the internal exposure pathways; (2) define the external radiation environment; (3) assess the doses and dose commitments from radioactivity in the environment; (4) provide the feedback necessary to improve existing predictive modelling of radiological trends; and (5) suggest actions which will minimize doses via the more significant pathways. (author)

  9. A snapshot of patients' awareness of radiation dose and risks associated with medical imaging examinations at an Australian radiology clinic

    International Nuclear Information System (INIS)

    Singh, N.; Mohacsy, A.; Connell, D.A.; Schneider, M.E.

    2017-01-01

    Background: Cumulative radiation exposure is linked to increasing the lifetime attributable risk of cancer. To avoid unnecessary radiation exposure and facilitate shared decision making, patients should be aware of these issues. This paper examines patients' awareness of radiation dose and risks associated with medical imaging examinations. Methods: Consecutive patients attending a private radiology clinic over a nine week period in 2014 in Metropolitan Melbourne were surveyed while waiting to undergo an imaging examination. Patients who were under 18 years of age, did not speak English and/or were referred for interventional imaging procedures were excluded from participation. Survey questions addressed patients' awareness of radiation dose associated with various imaging modalities' and patients' experience and preferences regarding communication of information about radiation. Data was analysed using SPSS (Ver 20.1). Results: A total of 242 surveys were completed. Most participants were male (143/239, 59.8%) and aged between 33 and 52 years (109/242, 45%). Over half of participants were not concerned about radiation from medical imaging (130/238, 54.6%). Only a third of participants (80/234, 34.2%) correctly reported that CT has a higher radiation dose than X-ray. Very few participants correctly identified mammography, DEXA, PET and PET/CT as radiation emitting examinations. The majority of participants (202/236, 85.6%) indicated that they were not informed about radiation dose and risks by their referring doctor in advance. Conclusion: This paper provides information relevant to a single private radiology clinic in Australia. Nevertheless, our results have shown that patients presenting for medical imaging have little awareness of radiation dose and risks associated with these examinations and received little information by their referring physicians or staff at the radiology clinic. - Highlights: • Patients' awareness regarding

  10. Radiological hazards

    International Nuclear Information System (INIS)

    Hamilton, M.

    1984-01-01

    The work of the (United Kingdom) National Radiological Protection Board is discussed. The following topics are mentioned: relative contributions to genetically significant doses of radiation from various sources; radon gas in non-coal mines and in dwelling houses; effects of radiation accidents; radioactive waste disposal; radiological protection of the patient in medicine; microwaves, infrared radiation and cataracts; guidance notes for use with forthcoming Ionising Radiations Regulations; training courses; personal dosimetry service; work related to European Communities. (U.K.)

  11. Dosimetry in diagnosis examinations in radiology

    International Nuclear Information System (INIS)

    Lisbona, Albert; Aubert, Bernard; Laffont, Sophie; Beaumont, Stephane; Catala, Alexandre; Cohard, Cecile; Cordoliani, Yves-Sebastien; Giraud, Jean-Yves; Lescrainier, Jacques; Noel, Alain; Verdun, Francis R.

    2003-01-01

    This document aims at helping the professionals involved in radiology when assessing the delivered doses to patients during conventional radiology examinations, in mammography and scanography. The first part recalls all the dosimetric data susceptible to characterize the X ray beam, the patient exposure and the radiological risk. The second part addresses the different types of sensors which can be used to obtain the different measurable dosimetric values. The third part presents the calculation, analytical and numerical methods. The fourth part proposes a set of sheets of data to be acquired on an installation to perform a measurement and/or a dose calculation

  12. Validation of a mathematical phantom for dose assessment of radiological accidents

    International Nuclear Information System (INIS)

    Gomes, Joana D' Arc R.L.; Gomes, Rogerio S.; Costa, Mara Lucia L.

    2013-01-01

    Sealed radioactive sources are widely used in the industry with the purpose of well logging, non-destructive testing, food irradiation, process control systems, elemental analysis and others. Among the most used sources, it can mention: 137 Cs, 60 Co, 192 Ir, 85 Kr and Americium-Beryllium with radiation activities ranging between a few MegaBecquerels (MBq) to million of GBq, as the case of food irradiation. In general, these sources present sufficient activity to represent a significant health hazard when inadequately shielded or not handled according to proper safety procedures, producing radiation exposures to workers and to members of public. In cases of overexposure to ionizing radiation, an estimative of the dose received by victims of radiation accidents, as well as its distribution within the organism, can be provided by use an anthropomorphic phantom associates with a theoretical simulation Monte Carlo method to simulate the radioactive source and its interactions with the phantom. In this work is presented the validation results of application of a mathematical phantom modeled in Geant4, as a tool to reconstruct dose of radiological accidents due to external exposure. The results are compared with the dosimetry of real accidents. (author)

  13. The radiological assessment system for consequence analysis - RASCAL

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Ramsdell, J.V.; Athey, G.F.

    1996-01-01

    The Radiological Assessment System for Consequence Analysis, Version 2.1 (RASCAL 2.1) has been developed for use during a response to radiological emergencies. The model estimates doses for comparison with U.S. Environmental Protection Agency (EPA) Protective Action Guides (PAGs) and thresholds for acute health effects. RASCAL was designed to be used by U.S. Nuclear Regulatory Commission (NRC) personnel who report to the site of a nuclear accident to conduct an independent evaluation of dose and consequence projections and personnel who conduct training and drills on emergency responses. It allows consideration of the dominant aspects of the source term, transport, dose, and consequences. RASCAL consists of three computational tools: ST-DOSE, FM-DOSE, and DECAY. ST-DOSE computes source term, atmospheric transport, and dose to man from accidental airborne releases of radionuclides. The source-term calculations are appropriate for accidents at U.S. power reactors. FM-DOSE computes doses from environmental concentrations of radionuclides in the air and on the ground. DECAY computes radiological decay and daughter in-growth. RASCAL 2.1 is a DOS application that can be run under Windows 3.1 and 95. RASCAL has been the starting point for other accident consequence models, notably INTERRAS, an international version of RASCAL, and HASCAL, an expansion of RASCAL that will model radiological, biological, and chemical accidents

  14. Radiological dose assessments in the northern Marshall Islands (1989--1991)

    International Nuclear Information System (INIS)

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.; Clinton, J.H.; Kaplan, E.

    1991-12-01

    The Republic of the Marshall Islands (RMI) is located in the central Pacific Ocean about 3500 km southeast of Hawaii and 4500 km east of Manila, Philippines. It consists of 34 atolls and 2 coral island, having a total land area of about 180 km 2 , distributed over more than 2.5 x 10 6 km 2 of ocean. Between 1946 and 1958 the United States conducted nuclear tests there: 43 at Enewetak and 23 at Bikini. Thirty-three years after the cessation of nuclear testing in the RMI, the impact of these operations on the health and radiological safety of the people living in or planing to return to their contaminated homelands is still an important concern. The present Brookhaven National Laboratory (BNL) Marshall Islands Radiological Safety Program (MIRSP) began in 1987 with funding from the US Department of Energy (DOE). The objectives of the MIRSP are to determine the radionuclides present in the bodies of those people potentially exposed to residual radionuclide from weapon tests and fallout, and to assess their present and lifetime dose from external and internal sources. Field bioassay missions involving whole-body counting (WBC) and urine sample collection have, therefore, been important components of the program. WBC is used to measure γ-emitters, such as 40 K, 60 Co and 137 Cs, present in individuals. Urine samples are used to measure α and β-emitting nuclides, such as 239 Pu and 90 Sr, that are undetectable by WBC routine methods. 6 refs

  15. Radiologic exposure conditions and resultant skin doses in application of xeroradiography to the orthodontic diagnosis

    International Nuclear Information System (INIS)

    Nakasima, A.; Nakata, S.; Shimizu, K.; Takahama, Y.

    1980-01-01

    Xeroradiography is the recording of radiologic image by a photoelectric process rather than the photochemical one used in conventional radiography. In order to investigate the advantages and disadvantages of xeroradiography in the orthodontic field, minimum xeroradiologic exposure conditions for skull projections, joint projections, and hand projections were established by thirteen examiners and the relationship between the image production and x-ray radiation was compared with conventional film techniques. The advantages of xeroradiograph were finer and clear images caused by the edge effect and wide latitude of xeroradiography; the main hazard was the unavoidable larger skin dose required by the projection procedures. The skin doses with xeroradiography were 2.4 to 16.2 times larger than those with conventional film techniques

  16. Image quality and doses on selected studies of conventional radiology in designed hospitals

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Martinez Gonzalez, Alina; Machado Tejeda, Adalberto; Mora Machado, Roxana de la; Pedroso, Luis; Martinez Acosta, Ubaldo; Fiqueroa Garcia, Luisa M.

    2008-01-01

    The medical exposures have a significant contribution to the doses received by the population, although it has been given minor attention than to other exposure forms, despite of existing potentialities of reducing doses to the patients as consequence of these applications. In the last years the scientific community and international organizations have defined requirements to contribute to that the doses to the patients are the minimum ones necessary to achieve their diagnostic objective. The present work gives the results obtained in the evaluation of the image quality and doses for exams of thorax PA, lumbar spine AP and lumbar spine lateral, carried out in 2 university hospitals of Havana, as well as the contribution on this investigation to the establishment of the guidance levels in the country. During the investigation it took as reference for the reference for the evaluation of the image quality of the radiological studies the emitted criteria by European Union. The behavior of these approaches for the case of the thorax studies presented its biggest difficulties with the achievement of the approaches related with the visualization of breathing structures, being the execution percentages lower than the remaining countries of the region. In general the behaviour of the approaches of quality image in the ARCAL project. The behaviour of the image quality approaches are associated to different technical factors. The obtained results of doses for thorax PA are bigger than the recommended International Standards Basics in both hospitals. (author)

  17. Preliminary mortality survey from 1973 to 1977 of Japanese radiological technologists and analyses of the association of mortality with cumulative doses

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Ishizaka, Masatsuna; Yamamoto, Yoichi; Kano, Eiichi; Nikaido, Osamu.

    1981-01-01

    The Japan Association of Radiologic Technologists reported that, from 1941 to 1978, 395 deaths occurred among Japanese radiological technologists who belong to the association. Using these data, Sakka, Kitabatake and colleagues, and the present authors studied mortality and cause of death among these technologists for 11 years from 1955 to 1965, for 7 years from 1966 to 1972, and for 5 years from 1973 to 1977, respectively. In general, the number of cancer deaths in the three studies was less than expected. However, Kitabatake et al. and the present authors found that deaths from skin cancer were significantly more frequent than expected. The present authors recently estimated the cumulative doses of radiation exposure for the majority of deaths (268 out of 395). The mean dose of radiation related to cancer deaths was then compared with that for non-cancer deaths. Also the proportional mortality ratios for cancers were observed in relation to the estimated dose level. In the present study, however, statistical tests to assess for the relationship between mortality and dose of radiation exposure showed no correlation, for the majority of deaths from cancer. (author)

  18. Radiological dose assessment for bounding accident scenarios at the Critical Experiment Facility, TA-18, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1991-09-01

    A computer modeling code, CRIT8, was written to allow prediction of the radiological doses to workers and members of the public resulting from these postulated maximum-effect accidents. The code accounts for the relationships of the initial parent radionuclide inventory at the time of the accident to the growth of radioactive daughter products, and considers the atmospheric conditions at time of release. The code then calculates a dose at chosen receptor locations for the sum of radionuclides produced as a result of the accident. Both criticality and non-criticality accidents are examined

  19. Advanced Neutron Source radiological design criteria

    International Nuclear Information System (INIS)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design

  20. Comparative analysis of dose levels to patients in radiological procedures guided by fluoroscopy; Analisis comparativo de los niveles de dosis a paciente en procedimientos radiologicos guiados por fluoroscopia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Pablo Luis; Fernandez, Manuel; Ramos, Julio A.; Delgado, Jose Miguel; Cons, Nestor, E-mail: pablogll@eresmas.com [Hospital Universitario de Salamanca (Spain). Servicio de Radio fisica y Proteccion Radiologica

    2013-07-01

    This work presents the comparative data of the dose indicators for patient in radiological processes with respect to the values published in the ICRP document. It is analyzed the need for different strategies to communicate to different specialists mechanisms to optimize the radiation beginning with practice by training of second degree level in radiological protection and then, working with them the basics of equipment management to reduce doses without detriment to the welfare purpose.

  1. Comparison of patient doses in interventional radiology procedures performed in two large hospitals in Greece

    International Nuclear Information System (INIS)

    Papageorgiou, E.; Tsapaki, V.; Tsalafoutas, I. A.; Maurikou, E.; Kottou, S.; Orfanos, A.; Karidas, G.; Fidanis, T.; Zafiriadou, E.; Neofotistou, V.

    2007-01-01

    Purpose of the study was to determine patient doses in the most common interventional radiology (IR) procedures performed in two large Greek hospitals. A total of 164 patients who underwent 4 types of IR procedures were studied. Fluoroscopy time, total exposure time, number of frames, number of runs, radiation field size, and cumulative dose-area product (DAP) were recorded. The median DAP values for carotid arteriography and lower limb arteriography were 66 and 123 Gy cm 2 for hospital 'A' and 21 and 49 Gy cm 2 for hospital 'B'. For the cerebral arteriographies performed in hospital 'A', the median DAP was 116 Gy cm 2 while for the hepatic embolizations performed in hospital 'B', it was 104 Gy cm 2 . The DAP values observed in hospital 'A' for carotid arteriography and lower limb arteriography were almost three times than those of hospital 'B'. From the data analysis, it is evident that dose optimization in hospital 'A' should be pursued through revision of the techniques used. (authors)

  2. Radiology standards for primary dental care: report by the Royal College of Radiologists and the National Radiological Protection Board

    International Nuclear Information System (INIS)

    Hudson, Tony

    1994-01-01

    In 1992 a joint venture between the Royal College of Radiologists (RCR) and the National Radiological Protection Board (NRPB) resulted in the formation of a Working Party (WP) to consider dental radiology. Although individual doses to patients are low, WP identified considerable scope for reducing the collective dose to patients and for improving the diagnostic quality of radiographs. The report published in the Documents of the NRPB series presents the WP conclusions in the form of guidelines that deal with all aspects of dental radiology in primary dental care. (Author)

  3. Online dose rate monitoring: Better information by using the IRMA concept (Integral Radiological Multidetector Arrays)

    International Nuclear Information System (INIS)

    Genrich, V.

    1989-01-01

    A new GM detector system has been developed for online environmental monitoring. The approach is unorthodox, but simple: A) Take a set of radiological probes and feed all their information to an 'intelligent' front-end. B) Elaborate some algorithms, so that the system will give out just one gamma dose rate (running over more than nine decades). C) If necessary, associate some additional sensors, and the system will exhibit better discriminating qualities for the detection of artificial nuclides in the environment. (orig.)

  4. Practical measurement of radiation dose in pediatric radiology: use of the dose-area product on digital fluoroscopy and neonatal chest radiographs

    International Nuclear Information System (INIS)

    Chateil, J.F.; Rouby, C.; Brun, M.; Labessan, C.; Diard, F.

    2004-01-01

    Purpose. Control of radiation dose in pediatric radiology requires knowledge of the reference levels for all examinations. These data are useful for daily quality assessment, but are not perfectly known for some radiographic examinations. The purpose of our study was to evaluate the dose related to voiding cysto-urethrograms (VCUG), upper GI (UGI) and intravenous urography (IVU). Neonatal chest radiographs in the intensive care unit were also evaluated. Material and methods. For examinations with contrast material (478VCUG, 220UGI, 80IVU), the children were divided in groups based on their weight, from 5 to 30 Kg. Measurements were performed using an ionization chamber and expressed with the-dose-area product (DAP). For chest radiographs, a direct measurement of the entrance-skin dose was performed, with secondary calculation of the DAP. Results. For-VCUGs, the DAP ranged between 42.89 cGy.cm 2 and 125.41 cGy.cm 2 . The range was between 76.43, and 150.62 cGy.cm 2 for UGIs and between 49.06 and 83.33 cGy.cm 2 for IVUs. For neonate chest radiographs, DAP calculations were between 0.29 and 0.99 cGy.cm 2 . Conclusion. These values represent our reference doses. They allow continuous monitoring of our radiographic technical parameters and radiographic equipment and help to correct and improve them if necessary. (author)

  5. White paper from the ACR Task Force on Print Media in Radiology.

    Science.gov (United States)

    Duszak, Richard; Haines, G Rebecca; Van Duyn Wear, Vanessa; Lexa, Frank James; Bashir, Mustafa; D'Souza, Sharon; Carlos, Ruth; Chen, James Yen-Yu; King, Bernard F; Wald, Christoph

    2011-10-01

    The rapidly changing technological and business environment in which scientific journals are published will necessitate ongoing reassessment of operations, goals, and priorities. In this white paper, the ACR Task Force on Print Media in Radiology reviews the history and role of print media in radiology; discusses current and anticipated societal, technological, and financial challenges; and explores a variety of strategies to help ensure the relevance of professional society publishing in the future. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Science.gov (United States)

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Benefits of an automatic patient dose registry system for interventional radiology and cardiology at five hospitals of the Madrid area

    International Nuclear Information System (INIS)

    Fernandez-Soto, J.M.; Vano, E.; Sanchez, R.M.; Ten, J.I.; Espana, M.; Pifarre, X.

    2015-01-01

    The purpose of this article is to present the results of connecting the interventional radiology and cardiology laboratories of five university hospitals to a unique server using an automatic patient dose registry system (Dose On Line for Interventional Radiology, DOLIR) developed in-house, and to evaluate its feasibility more than a year after its introduction. The system receives and stores demographic and dosimetric parameters included in the MPPS DICOM objects sent by the modalities to a database. A web service provides a graphical interface to analyse the information received. During 2013, the system processed 10 788 procedures (6874 cardiac, 2906 vascular and 1008 neuro interventional). The percentages of patients requiring clinical follow-up due to potential tissue reactions before and after the use of DOLIR are presented. The system allowed users to verify in real-time, if diagnostic (or interventional) reference levels are fulfilled. (authors)

  8. Plan gauge in pediatric radiology: dosimetry (experience of ten months)

    International Nuclear Information System (INIS)

    Fraysse, V.; Lacaze, M.T.; Ferran, J.L.; Couture, A.; Gardien, E.

    2006-01-01

    The objectives were to optimize the radiological constants in the use of the sensors plans(shots) in general radiology. Definition of doses, calculation and communication to the parents of the received dose. (N.C.)

  9. Guidance levels for diagnostic radiology in Romania

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.

    2002-01-01

    Over two decades surveys of radiological practice in Romania have demonstrated wide variations in patient dose levels between different hospitals. Local and national investigations revealed poor performances as well as of radiological equipment, darkroom procedure or technology of investigation. Hitherto, the annual collective effective dose to the population of Romania from diagnostic medical exposures attained a value of 13,820 manSv. Since the annual frequencies of radiological examinations remain unchanged over last ten years, this value is mostly attributed to the individual dose levels in different X-ray procedures. Notwithstanding the huge benefits to patients, the reduction of unnecessary exposures and individual doses are our principal concern and the establishment of national reference dose levels should solve this problem. British experience demonstrated that reference doses are a practical tool in this purpose and the adoption of national reference dose values indicated an overall improvement in patient exposure. Even the local of reference dose values proved a useful way to achieve patient dose reduction. In meantime the optimization of patient protection, each X-ray examination should be conducted with lowest necessary dose to achieve the clinical aim. This paper presents the first approach to establish local reference dose levels for some diagnostic examinations based on the measurements made in six (from the eighth of Eastern territory of Romania) districts, invited to cooperate in this end

  10. Tennessee Valley region study: potential year 2000 radiological dose to population resulting from nuclear facility operations

    International Nuclear Information System (INIS)

    1978-06-01

    A companion report, DOE/ET-0064/1, presents a geographic, cultural, and demographic profile of the Tennessee Valley Region study area. This report describes the calculations of radionuclide release and transport and of the resultant dose to the regional population, assuming a projected installed capacity of 220,000 MW in the year 2000, of which 144,000 MW would be nuclear. All elements of the fuel cycle were assumed to be in operation. The radiological dose was calculated as a one-year dose based on ingestion of 35 different food types as well as for nine non-food pathways, and was reported as dose to the total body and for six specific organs for each of four age groups (infant, child, teen, and adult). Results indicate that the average individual would receive an incremental dose of 7 x 10 -4 millirems in the year 2000 from the operation of nuclear facilities within and adjacent to the region, five orders of magnitude smaller than the dose from naturally occurring radiation in the area. The major contributor to dose was found to be tritium, and the most significant pathways were immersion in air, inhalation of air, transpiration of tritium (absorption through the skin), and exposure radionuclide-containing soil. 60 references

  11. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    Science.gov (United States)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  12. Physical and Radiological Characterisation of Measuring Sites Within The Croatian Gamma Dose Rate Early Warning Network

    International Nuclear Information System (INIS)

    Cindro, M.; Stepisnik, M.; Pinezic, D.; Sinka, D.; Skanata, D.

    2016-01-01

    The work described in this paper was done within the EU funded project 'Upgrading the systems for the on- and off-line monitoring of radioactivity in the environment in Croatia in regular and emergency situations'. The existing system of early warning in case of nuclear accident in Croatia (SPUNN), managed by the State Office for Radiological and Nuclear Safety, includes 33 stations for measuring ambient gamma dose rate (GDR). The aim of the project was to determine appropriate correction factors that will allow the results from this network to be used not only for timely warning in case of nuclear accident but also in routine environmental monitoring to determine the background radiation. Additionally, in the case of fresh deposition due to radioactive contamination, the corrected values are better suited to be used as an input for support systems for decision making in the case of emergency (such as RODOS), as well as for international data exchange (EURDEP) or automatic interpolation and mapping of radiological data (INTAMAP). The response of the individual probes to natural or accidental radiation mostly depends on the geometry or topography, surrounding buildings, vegetation (trees) and the type of soil beneath the detector. In the case of measuring the dose rate, objects such as buildings act as a shield against gamma radiation and limit the field of vision of the detector. If we want to have representative values that can be compared with other measuring sites, it is clear that we need to define standard conditions that each location has to meet. This is true not only for the probes within the same network, but can also be applied more broadly, at the international level, since data exchange mechanisms for GDR data already exist across Europe. The response of each probe is not determined only by the physical features, it is also important to understand the radiological characteristics of the site. Radiological characterization was performed through

  13. Contribution of the french society of radiological protection to the current reflections on the possible improvement of the radiological risk management system

    International Nuclear Information System (INIS)

    Lecomte, J.F.; Schieber, C.

    2000-01-01

    Following the invitation by IRPA to comment the article by Prof. R. Clarke entitled 'Control of Low Level Radiation Exposures: Time for a Change?', the Board of the French Radiological Protection Society (SFRP) has decided to set up a specific Working Group. This Group consists of some twenty members representing the stakeholders involved in radiological protection in France. Its goal is, starting from an analysis of R. Clarke's text, to formulate questions and proposals to assist ICRP in making its radiological protection system more understandable and more efficient. The aim of this review is not to restart from scratch but to consolidate and improve the existing system. The Working Group has therefore focused its thoughts on the following four points: 1. The basis of the radiological risk management system. In the absence of scientific certainty as to the effects of low doses of radiation, a prudent attitude has been adopted as to the manner of managing the radiological risk, based on the hypothesis that the dose-effect relationship is linear with no threshold. The Group discusses this basic assumption and its implications on the elaboration of the objectives of the radiological risk management system. 2. Exposure situations. Exposure situations are multifarious and the existing system divides them into categories for management purpose (e.g. practice/intervention; natural/artificial; medical/public/occupational; actual exposure/potential exposure; etc.). Some of these divisions are pertinent but some are less so and the Group examines if another way of conceptualising exposures situations could be more efficient. 3. Risk management indicators and tools. The radiological protection system provides the professionals with a series of indicators and tools, enabling them to manage exposure situations (dose, dose limit, dose constraint, individual dose, collective dose, investigation level, action level, interventional level, exemption level, clearance level

  14. Current situation of doses delivered to the patients in the field of dental radiology

    International Nuclear Information System (INIS)

    Baechler, S.; Monnin, P.; Aroua, A.; Valley, J.F.; Verdun, F.R.; Perrier, M.

    2006-01-01

    The purpose of this paper is to present an overview of the doses delivered to the patients in the field of dental radiology. The technology progress in medical imaging will be discussed from a dose perspective. In this work, patient dosimetry has been performed for intra-oral, panoramic and CT dental examinations. Doses were estimated using appropriate dosimetric indicators such as the entrance surface kerma (ESK) and the kerma area product (KAP). These indicators are easily measurable and enable to estimate the effective dose for a standard patient. KAP values were measured for two intra-oral systems using D and E/F speed dental films, as well as a digital system based on the CCD technology. In addition, the KAP was measured on three ortho-pan-tomograms (OPGs) of various generations. Finally, in order to assess the dose delivered during dental implants planning, the kerma length product (KLP) and the computed tomography dose index (CTDI W ) were determined for a CT scanner using the Dentascan protocol and a new DVT (Digital Volume Tomography) dedicated system. Using E/F speed instead of D speed films allowed to educe the KAP by a factor of 2 without significant loss of image quality. A further dose reduction by a factor of 6 was possible with digital systems but with an important degradation of the spatial resolution (variation of the MTF at 50% from 13 mm -1 to 5 mm -1 ). KAP measurements on OPGs showed that old systems delivered doses three times higher than a more recent devices. The new dedicated tomographic system enabled a reduction of the patient dose by a factor of 18 when compared with the Dentascan CT system. (author)

  15. Dose reduction in diagnostic radiology. Proceedings of the Hospital Physicists' Association meeting on 8th December 1983 at Birbeck College, London

    International Nuclear Information System (INIS)

    Brennen, S.E.; Putney, R.G.

    1984-01-01

    Nine chapters review the Proceedings of the Hospital Physicists' Association Meeting held in London in 1983 on 'Dose Reduction in Diagnostic Radiology'. Among the topics discussed were the balance between dose reduction and image quality, various procedures and techniques for keeping the dose to the patient to a minimum including the use of K-edge filtration and rare-earth intensifying screens, equipment for assessing the area exposure product in patients and the balance between radiation risk and benefit from radiographic examinations. All nine chapters are indexed separately. (U.K.)

  16. Extremity doses of medical staff involved in interventional radiology and cardiology: Correlations and annual doses (hands and legs)

    International Nuclear Information System (INIS)

    Krim, S.; Brodecki, M.; Carinou, E.; Donadille, L.; Jankowski, J.; Koukorava, C.; Dominiek, J.; Nikodemova, D.; Ruiz-Lopez, N.; Sans-Merce, M.; Struelens, L.; Vanhavere, F.

    2011-01-01

    An intensive measurement campaign was launched in different hospitals in Europe within work package 1 of the ORAMED project (Optimization of RAdiation protection for MEDical staff). Its main objective was to obtain a set of standardized data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimize staff protection. The monitored procedures were divided in three main categories: cardiac, general angiography and endoscopic retrograde cholangio-pancreatography(ERCP) procedures. Using a common measurement protocol, information such as the protective equipment used (lead table curtain, transparent lead glass ceiling screen, patient shielding, whole body shielding or special cabin etc.) as well as Kerma Area Product (KAP) values and access of the catheter were recorded. This study was performed with a final database of more than 1300 procedures performed in 34 European hospitals. Its objectives were firstly to determine if the measured extremity doses could be correlated to the KAP values; secondly to check if the doses to the eyes could be linked to the doses to the hands (finger or wrist positions) and finally if the doses to the fingers could be estimated based on the doses to the wrists. General correlations were very difficult to find and their strength was mostly influenced by three main parameters: the X-ray tube configuration, the room collective radioprotective equipment and the access of the catheter. The KAP value can provide a simple mean to estimate the extremity doses of the operator given that it is assessed correctly for the operator when he is actually using the X-ray tube. Moreover, this study showed that the doses to the left finger are strongly correlated to the doses to the left wrist when no ceiling shield is used. It is also possible to estimate the doses to the eyes given the doses to the left finger or left wrist but the X-ray tube configuration and the access have to be considered. The annual

  17. Does bridging the gap between knowledge and practice help? Example of patient dose reduction in radiology

    International Nuclear Information System (INIS)

    Rehani, M.M.; Kaul, Rashmi; Kumar, Pratik; Berry, M.

    1995-01-01

    The paper is aimed at bridging the gap between knowledge and practice and evaluating the impact of this activity on reduction of patient dose. While enormous data on radiation doses in diagnostic radiology exists, there is absolute lack of information at user's level. For example, the implications on patient dose from 1cm error in x-ray field size or error of 5 kVp or 5mAs is invariably not known. We estimated that 1 cm increase in field size results in irradiation of 600-900cc of extra volume of patient which may contain sensitive tissue, 5 kVp increase results in exposure of 35-65 mR, with more effect in case of lumbar spine and abdomen x-ray and lesser for chest and D-spine, 5 mAs error results in 4-25 mR. The impact of information supply to users was evaluated and it was found that information based approach results in dose reduction to patient and improved image quality. (author). 3 refs., 4 figs., 3 tabs

  18. Preliminary study of using imaging plates to map skin dose of patients in interventional radiology procedures

    International Nuclear Information System (INIS)

    Ohuchi, H.; Satoh, T.; Eguchi, Y.; Mori, K.

    2005-01-01

    A method using europium-doped BaFBr imaging plates (IPs) has been studied for mapping entrance skin doses during interventional radiology (IR); the mapping is useful for detecting overlap between irradiation fields and determining the most exposed skin areas. IPs, which are two-dimensional radiation sensors made of photostimulated luminescence materials, have a linear dose response up to ∼100 Gy, can accurately measure doses from 1 μGy to 10 Gy and can be used repeatedly. Because the energy dependence of IPs is rather high, the IPs were characterised in this study and a sensitivity variation of ∼13% was observed for effective energies of 32.7 to 44.7 keV, which are used in IR procedures. Simulation of actual interventional cardiology procedures showed that the variation of sensitivity was within 5%, meaning that IPs are practical for measuring skin doses during IR. Moreover, the patient data can be stored online and easily called up when IR procedures must be repeated, helping to prevent radiation injuries. (authors)

  19. Significance and principles of the calculation of the effective dose equivalent for radiological protection of personnel and patients

    International Nuclear Information System (INIS)

    Drexler, G.; Williams, G.

    1985-01-01

    The application of the effective dose equivalent, Hsub(E), concept for radiological protection assessments of occupationally exposed persons is justifiable by the practicability thus achieved with regard to the limiting principles. Nevertheless, it would be proper logic to further use as the basic limiting quantity the real physical dose equivalent of homogeneous whole-body exposure, and for inhomogeneous whole-body irradiation the Hsub(E) value, calculated by means of the concept of the effective dose equivalent. For then the required concepts, models and calculations would not be connected with a basic radiation protection quantity. Application of the effective dose equivalent for radiation protection assessments for patients is misleading and is not practical with regard to assessing an individual or collective radiation risk of patients. The quantity of expected harm would be better suited to this purpose. There is no need to express the radiation risk by a dose quantity, which means careless handling of good information. (orig./WU) [de

  20. Staff lens doses in interventional urology. A comparison with interventional radiology, cardiology and vascular surgery values

    International Nuclear Information System (INIS)

    Vano, E; Fernandez, J M; Sanchez, R M; Resel, L E; Moreno, J

    2016-01-01

    The purpose of this work is to evaluate radiation doses to the lens of urologists during interventional procedures and to compare them with values measured during interventional radiology, cardiology and vascular surgery. The measurements were carried out in a surgical theatre using a mobile C-arm system and electronic occupational dosimeters (worn over the lead apron). Patient and staff dose measurements were collected in a sample of 34 urology interventions (nephrolithotomies). The same dosimetry system was used in other medical specialties for comparison purposes. Median and 3rd quartile values for urology procedures were: patient doses 30 and 40 Gy cm 2 ; personal dose equivalent Hp(10) over the apron (μSv/procedure): 393 and 848 (for urologists); 21 and 39 (for nurses). Median values of over apron dose per procedure for urologists resulted 18.7 times higher than those measured for radiologists and cardiologists working with proper protection (using ceiling suspended screens) in catheterisation laboratories, and 4.2 times higher than the values measured for vascular surgeons at the same hospital. Comparison with passive dosimeters worn near the eyes suggests that dosimeters worn over the apron could be a reasonable conservative estimate for ocular doses for interventional urology. Authors recommend that at least the main surgeon uses protective eyewear during interventional urology procedures. (paper)

  1. Radiation protection and quality assurance in dental radiology: II. Panoramic radiology

    International Nuclear Information System (INIS)

    Jodar-Porlan, S.; Alcaraz, M.; Martinez-Beneyto, Y.; Saura-Iniesta, A.M.; Velasco-Hidalgo, E.

    2001-01-01

    This paper studies 278 official reports on quality assurance in dental radiology in the context of the first revision of these dental clinics, as a result of the entry into force of the regulations establishing the duties for these types of facilities. In the results section we present a quantitative analysis of the facilities equipped with an panoramic radiology apparatus, making a special reference to the brands they have available, as well as their physical features (kV, mA, filtration) and the deviations detected in their operation. Some of their features in the process of obtaining radiological images at those facilities (film control, development time, liquid renewal) are determined, and the average dose of ionising radiation used in order to obtain the same tooth radiological image is presented. This paper shows, in a quantitative way, the characteristic features of panoramic radiology in our medium. The study is intended to be continued during the next years, which would allow the assessment of the prospective improvement in dental radiological performances as a result of the newly established regulations. (author)

  2. Handling of overexposed persons in radiological emergencies

    International Nuclear Information System (INIS)

    Estrada, E.

    2000-01-01

    The purpose of this standard procedure of the criteria in case of radiological emergencies is to describe the standard procedures used to define an radiological accident in terms of the doses received, and to describe the medical procedures for diagnoses and treatment of health hazards caused by external and internal irradiation in radiological emergencies

  3. Estimation of effective dose for the diagnosis and follow-up of multiple myeloma using conventional radiology

    International Nuclear Information System (INIS)

    Tsalafoutas, I.; Kostopoulou, H.; Steinhauer, G.; Koukourakis, G.; Yakoumakis, E.

    2012-01-01

    Background and objective: Multiple myeloma (MM) is a haemolytic neoplasm which produces osteolytic lesions and necessitates the periodical radiological examination of the skeleton for monitoring the disease progression. This involves the acquisition of multiple radiographs every 3 to 6 months, depending on the extent and the stage of the disease. Our objective was to estimate the cumulative patient dose during the radiographic investigation of MM. Materials and methods: Sixty eight MM radiographic examinations performed with a digital X-ray unit were recorded on a CD-rom in DICOM format. The DICOM data were extracted using appropriate software (DICOM Info Extractor) and were input into a Microsoft Excel based spreadsheet, containing embedded algorithms for the identification of the radiological examination type and the estimation of entrance surface air kerma (ESAK), dose area product (DAP) and effective dose (E) in each radiograph. The DAP to E conversion coefficients for each examination type were derived using the PCXMC 2.0 Monte Carlo simulation software for the case of a standard adult patient utilizing the irradiation geometry as this was perceived from the images and the DICOM data. Results: The mean values [and ranges] were: for number of radiographs= 14 [7-23], for cumulative ESAK 13 [2-44] mGy, for cumulative DAP= 6 [1.35-16.5] Gycm 2 and for E= 0. [0.14-2.4] mSv. Conclusion: The average E value calculated is smaller than the values of 1.7 and 2.4 mSv reported in the literature and even smaller than the values of 4.8 and 4.1 mSv reported for MM diagnosis using whole-body CT. (authors)

  4. Radiological NESHAP ANNUAL REPORT CY 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2016, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES (Radiological NESHAP). A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  5. Work procedures and risk factors for high rdiation exposure among radiologic technologists in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Young; Choi, Yeong Chull [Dept. of Preventive Medicine, Keimyung University College of Medicine, Daegu (Korea, Republic of); Lee, Won Jin; Cha, Eun Shil [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Radiologic technologists currently consist of 31.5% among diagnostic radiation workers in South Korea. Among diagnostic radiation workers, radiologic technologists receive the highest annual and collective doses in South Korea. Comprehensive assessment of the work practices and associated radiation doses from diagnostic radiology procedures should be undertaken for effective prevention for radiologic technologists. Using the national survey, this study aimed (1) to explore the distribution of the work procedures performed by gender, (2) to evaluate occupational radiation exposure by work characteristics and safety compliance, (3) to identify the primary factors influencing high radiation exposure among radiologic technologists in South Korea. This study provided detailed information on work practices, number of procedures performed on weekly basis, and occupational radiation doses among radiologic technologists in South Korea. Average radiation dose for radiologic technologists is higher than other countries, and type of facility, work safety, and wearing lead apron explained quite a portion of increased risk in the association between radiology procedures and radiation exposure among radiologic technologists.

  6. Work procedures and risk factors for high rdiation exposure among radiologic technologists in South Korea

    International Nuclear Information System (INIS)

    Kim, Jae Young; Choi, Yeong Chull; Lee, Won Jin; Cha, Eun Shil

    2016-01-01

    Radiologic technologists currently consist of 31.5% among diagnostic radiation workers in South Korea. Among diagnostic radiation workers, radiologic technologists receive the highest annual and collective doses in South Korea. Comprehensive assessment of the work practices and associated radiation doses from diagnostic radiology procedures should be undertaken for effective prevention for radiologic technologists. Using the national survey, this study aimed (1) to explore the distribution of the work procedures performed by gender, (2) to evaluate occupational radiation exposure by work characteristics and safety compliance, (3) to identify the primary factors influencing high radiation exposure among radiologic technologists in South Korea. This study provided detailed information on work practices, number of procedures performed on weekly basis, and occupational radiation doses among radiologic technologists in South Korea. Average radiation dose for radiologic technologists is higher than other countries, and type of facility, work safety, and wearing lead apron explained quite a portion of increased risk in the association between radiology procedures and radiation exposure among radiologic technologists.

  7. Pilot study of the dose in crystalline lens in the interventional radiology practice; Estudio piloto de la dosis en cristalino en la practica de radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.; Martinez, A.; Fernandez, A.; Molina, D. [Centro de Proteccion e Higiene de las Radiaciones, Carretera de la Cantera, Victoria II, Km. 21.5 Guanabacoa, La Habana (Cuba); Sanchez, L.; Diaz, A., E-mail: ailza@cphr.edu.cu [Hospital Clinico Quirurgico Hermanos Ameijeiras, San Lazaro 701, Centro Habana, La Habana (Cuba)

    2014-08-15

    The interventional radiology involves considerable exposure levels for the occupationally exposed personnel (OEP). The doses can encompass a wide range of values in dependence of the function that develops the personnel and the complexity of each procedure. In organs like the crystalline lens and skin values can be reached that imply the appearance of deterministic effects if is not fulfilled the appropriate measures of radiological protection. This has been demonstrated through multiple studies, among those that the retrospective study of damages in the crystalline lens and dose has been one of those most commented, known as RELID. The objective of that study was to examine the opacity prevalence in the crystalline lens in workers linked to the interventional cardiology and to correlate it with the occupational exposition. The obtained results contributed to that the ICRP recommend a new limit value of equivalent dose for crystalline lens of 20 mSv in one year. With the objective of analyzing the operational implications, in the radiological surveillance programs that they could originate with the new recommendations was developed a pilot study to evaluate the dose in crystalline lens in the OEP linked to the interventional radiology in a Cuban hospital. For this, an anthropomorphic mannequin RANDO-ALDERSON was used on which thermoluminescent dosimeters were placed below and above of the leaded apron and in different positions at level of the crystalline lens: above, below and to the sides of the leaded lenses that the personnel uses routinely. The mannequin was located on the same positions that occupy the main specialist that execute the procedure, as well as of the nurse to assist him. The measurements were made simulating the more representative procedures about complexity, duration time and exposure rate. The used dosimeters were RADOS model for whole body composed of two thermoluminescent detectors Gr-200 (LiF: Mg, Cu, P) to evaluate personal equivalent dose

  8. Rational use of diagnostic radiology

    International Nuclear Information System (INIS)

    Racoveanu, N.T.; Volodin, V.

    1992-01-01

    Radiologists in USA and UK have since early 1970 questioned the efficacy of various radiological investigations and produced substantial evidence that more rational approaches are necessary. WHO initiated, in 1977, a programme which has issued four technical reports giving practical recommendations on how to rationalise the use of radiological examinations. Three main directions are considered: (1) Abandonment of routine radiological examinations, as procedures with no clinical or epidemiologic significance and which represent a waste of resources and patient dose. (2) Patient selection for various radiological investigations based on clinical criteria (high, intermediate, low yield). Selected patients have an increased prevalence of the given disease and the predictive value of radiological investigation is much higher. (3) Use of diagnostic algorithms with higher cost/efficiency and risk/benefit ratios, improving the outcome of radiological examinations. (author)

  9. Recommendations to reduce extremity and eye lens doses in interventional radiology and cardiology

    International Nuclear Information System (INIS)

    Carinou, E.; Brodecki, M.; Domienik, J.; Donadille, L.; Koukorava, C.; Krim, S.; Nikodemová, D.; Ruiz-Lopez, N.; Sans-Merce, M.; Struelens, L.; Vanhavere, F.

    2011-01-01

    The main aim of the Work Package 1 (WP1) of the ORAMED project, Collaborative Project (2008–2011), supported by the European Commission within its 7th Framework Programme, was to obtain a set of standardized data on extremity and eye lens doses for staff in interventional radiology and cardiology (IR/IC) workplaces and to recommend a series of guidelines on radiation protection in order to both guarantee and optimize staff protection. Within the project, coordinated measurements were performed in 34 hospitals in 6 European countries. Furthermore, simulations of the most representative workplaces in IR and IC were performed to determine the main parameters that influence the extremity and eye lens doses. The work presented in this paper shows the recommendations that were formulated by the results obtained from both measurements and simulations. The presented guidelines are directed to operators, assistant personnel, radiation protection officers and medical physics experts. They concern radiation protection issues, such as the use of room protective equipment, as well as the positioning of the extremity and eye lens dosemeters for routine monitoring.

  10. Utilization management in radiology, part 2: perspectives and future directions.

    Science.gov (United States)

    Duszak, Richard; Berlin, Jonathan W

    2012-10-01

    Increased utilization of medical imaging in the early part of the last decade has resulted in numerous efforts to reduce associated spending. Recent initiatives have focused on managing utilization with radiology benefits managers and real-time order entry decision support systems. Although these approaches might seem mutually exclusive and their application to radiology appears unique, the historical convergence and broad acceptance of both programs within the pharmacy sector may offer parallels for their potential future in medical imaging. In this second installment of a two-part series, anticipated trends in radiology utilization management are reviewed. Perspectives on current and future potential roles of radiologists in such initiatives are discussed, particularly in light of emerging physician payment models. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Accountable care organizations and radiology: threat or opportunity?

    Science.gov (United States)

    Abramson, Richard G; Berger, Paul E; Brant-Zawadzki, Michael N

    2012-12-01

    Although the anticipated rise of accountable care organizations brings certain potential threats to radiologists, including direct threats to revenue and indirect systemic changes jeopardizing the bargaining leverage of radiology groups, accountable care organizations, and other integrated health care delivery models may provide radiology with an important opportunity to reassert its leadership and assume a more central role within health care systems. Capitalizing on this potential opportunity, however, will require radiology groups to abandon the traditional "film reader" mentality and engage actively in the design and implementation of nontraditional systems service lines aimed at adding differentiated value to larger health care organizations. Important interlinked and mutually reinforcing components of systems service lines, derived from radiology's core competencies, may include utilization management and decision support, IT leadership, quality and safety assurance, and operational enhancements to meet organizational goals. Such systems-oriented service products, tailored to the needs of individual integrated care entities and supported by objective performance metrics, may provide market differentiation to shield radiology from commoditization and could become an important source of new nonclinical revenue. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of the conditions and practices of radiological protection technicians in radiology, according to Ordinance 453

    International Nuclear Information System (INIS)

    Costa, Rogerio Ferreira da

    2013-01-01

    Professionals in radiology suffer whole body exposure to low doses for long periods . The system of radiological protection should keep exposures below recommended thresholds, thus avoiding the stochastic effects that can be triggered with any dose level value, and there is not a threshold for induction of the same. Therefore it is important to use personal dosimeter for monitoring doses and protective equipment. The increase in procedures using ionizing radiation in recent years has been noted with concern, since many companies are not complying with the standards of protection. This is because some procedures may be performed without the need of surgery, which presents a greater risk to the patient. Furthermore, Brazilians are being exposed to radiation without necessity. The reasons range from radiological equipment miscalibrated to poorly trained staff. Thus we evaluate the conditions and practices of radiation protection technicians in radiology according to Ordinance 453 in Goiania, GO, Brazil. Through a descriptive survey with a quantitative approach, we used the technique of gathering information based on a questionnaire. From this survey, we identified the procedures used by radiation protection professionals and concluded that there are failures in the procedures for protecting patients and accompanying and in the training of the professionals. (author)

  13. Patient dosimetry in interventional radiology

    International Nuclear Information System (INIS)

    Silva, Mauro Wilson O. da; Canevaro, Lucia V.; Rodrigues, Barbara Beatriz D.

    2009-01-01

    Mapping skin doses in interventional radiology is useful to determine the probability of a possible injury, to detect areas of overlapping field and to obtain a permanent register of the most exposed skin areas. A method for the evaluation of patient doses in interventional radiology procedures is the slow film, Kodak EDR2 (Extended Dose Range). Kodak EDR 2 film was calibrated in the range of 50 kVp to 120 kVp beam qualities. Its dose-response curve was plotted up to the saturation point of 1000 mGy. Dose responses are a function of facility dependent factors including processing conditions the density sampling, and exposure monitoring equipment. The distribution and the form of all the irradiation fields have been registered in the Kodak EDR 2 films. The Dosimetric analysis was performed in a sample of 37 patients submitted the procedures coronariography and angioplasty. The film has a threshold of saturation around 1 Gy, the applied methodology is efficient to quantify the doses and to identify the distribution of the fields. (author)

  14. EcoDoses improving radiological assessment of doses to man from terrestrial ecosystems. A status report for the NKS-B project 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, T. [Lavrans Skuterud, Haevard Thoerring (Norway); Liland, A. [Norwegian Radiation Protection Authority (NRPA) (Denmark)] (eds.)

    2004-05-01

    The NKS B-programme EcoDoses project started in 2003 as a collaboration between all the Nordic countries. The aim of the project is to improve the radiological assessments of doses to man from terrestrial ecosystems. The first part, conducted in 2003, has focussed on an extensive collation and review of both published and unpublished data from all the Nordic countries for the nuclear weapons fallout period and the post-Chemobyl period. This included data on radionuclides in air filters, precipitation, soil samples, milk and reindeer. Based on this, an improved model for estimating radioactive fallout based on precipitation data during the nuclear weapons fallout period has been developed. Effective ecological half- lives for 137Cs and 90Sr in milk have been calculated for the nuclear weapons fallout period. For reindeer the ecological half- lives for 137Cs have been calculated for both the nuclear weapons fallout period and the post-Chemobyl period. The data were also used to compare modelling results with observed concentrations. This was done at a workshop where the radioecological food-and-dose module in the ARGOS decision support system was used to predict transfer of deposited radionuclides to foodstuffs and subsequent radiation doses to man. The work conducted the first year is presented in this report and gives interesting, new results relevant for terrestrial radioecology. (au)

  15. Radiologic protection in pediatric radiology: ICRP recommendations

    International Nuclear Information System (INIS)

    Sanchez, Ramon; Khong, Pek-Lan; Ringertz, Hans

    2013-01-01

    ICRP has provided an updated overview of radiation protection principles in pediatric radiology. The authors recommend that staff, radiologists, medical physicists and vendors involved in pediatric radiology read this document. For conventional radiography, the report gives advice on patient positioning, immobilization, shielding and appropriate exposure conditions. It describes extensively the use of pulsed fluoroscopy, the importance of limiting fluoroscopy time, and how shielding and geometry must be used to avoid unnecessary radiation to the patient and operator. Furthermore, the use of fluoroscopy in interventional procedures with emphasis on dose reduction to patients and staff is discussed in light of the increasing frequency, complexity and length ofthe procedures. CT is the main reason that medical imaging in several developed countries is the highest annual per capita effective radiation dose from man-made sources. The ICRP report gives extensive descriptions of how CT protocols can be optimized to minimize radiation exposure in pediatric patients. The importance of balancing image quality with acceptable noise in pediatric imaging and the controversies regarding the use of protective shielding in CT are also discussed.

  16. Dose measurements in dental radiology using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Chiara, Ana Claudia M. de; Costa, Alessandro M.; Pardini, Luiz Carlos

    2009-01-01

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm 2 , 101.5 +- 9.5 mGy.cm 2 and 116.8 +- 10.4 mGy.cm 2 . The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  17. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine; Estimativa da dose coletiva na populacao portuguesa devido a exames medicos de radiologia de diagnostico e de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Pedro; Vaz, Pedro [Instituto Tecnologico e Nuclear, Sacavem (Portugal). Instituto Superior Tecnico; Sousa, M. Carmen de [Instituto Portugues de Oncologia de Coimbra (Portugal); Paulo, Graciano; Santos, Joana [Escola Superior de Tecnologia da Saude de Coimbra (Portugal); Pascoal, Ana [Kings College Hospital, London (United Kingdom). Kings Health Partners; Cardoso, Gabriela; Santos, Ana isabel [Hospital Garcia de Orta, Almada (Portugal); Lanca, Isabel [Administracao Regional de Saude, Coimbra (Portugal); Matela, Nuno [Universidade de Lisboa (Portugal). Fac. de Ciencias. Instituto de Biofisica e Engenharia Biomedica; Janeiro, Luis [Escola superior de Saude da Cruz Vermelha Portuguesa, Lisboa (Portugal); Sousa, Patrick [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal); Carvoeiras, Pedro; Parafita, Rui [Medical Consult, SA, Lisboa (Portugal); Simaozinho, Paula [Administracao Regional de Saude, Faro (Portugal)

    2013-11-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of Almost-Equal-To 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications.

  18. Systems automated reporting of patient dose in digital radiology; Sistema automatizado para generacion de informes de dosis a paciente en radiologia digital

    Energy Technology Data Exchange (ETDEWEB)

    Collado Chamorro, P.; Sanz Freire, C. J.; Martinez Mirallas, O.; Tejada San Juan, S.; Lopez de Gammarra, M. S.

    2013-07-01

    It has developed a procedure automated reporting of doses to patients in Radiology. This procedure allows to save the time required of the data used to calculate the dose to patients by yields. Also saves the time spent in the transcription of these data for the realization of the necessary calculations. This system has been developed using open source software. The characteristics of the systems of digital radiography for the automation of procedures, in particular the registration of dose should benefit from patient. This procedure is validated and currently in use at our institution. (Author)

  19. Controllable dose; Dosis controlable

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J T; Anaya M, R A [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    With the purpose of eliminating the controversy about the lineal hypothesis without threshold which found the systems of dose limitation of the recommendations of ICRP 26 and 60, at the end of last decade R. Clarke president of the ICRP proposed the concept of Controllable Dose: as the dose or dose sum that an individual receives from a particular source which can be reasonably controllable by means of any means; said concept proposes a change in the philosophy of the radiological protection of its concern by social approaches to an individual focus. In this work a panorama of the foundations is presented, convenient and inconveniences that this proposal has loosened in the international community of the radiological protection, with the purpose of to familiarize to our Mexican community in radiological protection with these new concepts. (Author)

  20. Radiological impact of the Argentine Nuclear Programme

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1983-01-01

    An assessment is made of the radiological impact resulting from the activities carried out so far under the Argentine Nuclear Programme, together with a prediction of the impact which could result from the future activities planned under that Programme. The average individual risks and the radiological detriment due to the various activities are determined in terms of the average individual effective dose equivalents and the collective effective dose equivalent commitments. The assessments cover exposures of occupationally exposed workers and the public. The data obtained indicate that both the risks and the resultant detriment are reasonably comparable with those derived from other similar programmes. Moreover, they clearly indicate that the radiological impact of the Programme is tending to decrease with time so that it can be assumed that the radiological impact per unit of practice will be even lower in future. (author)

  1. A comparison of newborn stylized and tomographic models for dose assessment in paediatric radiology

    International Nuclear Information System (INIS)

    Staton, R J; Pazik, F D; Nipper, J C; Williams, J L; Bolch, W E

    2003-01-01

    Establishment of organ doses from diagnostic and interventional examinations is a key component to quantifying the radiation risks from medical exposures and for formulating corresponding dose-reduction strategies. Radiation transport models of human anatomy provide a convenient method for simulating radiological examinations. At present, two classes of models exist: stylized mathematical models and tomographic voxel models. In the present study, organ dose comparisons are made for projection radiographs of both a stylized and a tomographic model of the newborn patient. Sixteen separate radiographs were simulated for each model at x-ray technique factors typical of newborn examinations: chest, abdomen, thorax and head views in the AP, PA, left LAT and right LAT projection orientation. For AP and PA radiographs of the torso (chest, abdomen and thorax views), the effective dose assessed for the tomographic model exceeds that for the stylized model with per cent differences ranging from 19% (AP abdominal view) to 43% AP chest view. In contrast, the effective dose for the stylized model exceeds that for the tomographic model for all eight lateral views including those of the head, with per cent differences ranging from 9% (LLAT chest view) to 51% (RLAT thorax view). While organ positioning differences do exist between the models, a major factor contributing to differences in effective dose is the models' exterior trunk shape. In the tomographic model, a more elliptical shape is seen thus providing for less tissue shielding for internal organs in the AP and PA directions, with corresponding increased tissue shielding in the lateral directions. This observation is opposite of that seen in comparisons of stylized and tomographic models of the adult

  2. Occupational exposure of diagnostic radiology staff in Israel during 1994-1996

    International Nuclear Information System (INIS)

    Biran, T.; Malchi, S.; Shamai, Y.

    1997-01-01

    Personnel who perform interventional radiological procedures which involve long fluoroscopy times and with a high workload, may receive radiation doses comparable to one of the dose limits suggested by the International Commission on Radiological protection. It is therefore important to monitor accurately the radiation dose to every staff member. who is involved in fluoroscopy procedures. (authors)

  3. Evaluation of doses in conventional radiology in the cities of Rio de Janeiro e Recife, Brazil

    International Nuclear Information System (INIS)

    Azevedo, Ana Cecilia P.; Osibote, Adelaja O.; Khoury, Helen J.

    2005-01-01

    This work is part of a program of evaluating doses in patients developed in several hospitals in the States of Rio de Janeiro and Pernambuco. We used the program DoseCal to evaluate the Input Skin Dose (DEP) and the Effective Dose (DE) in big public hospitals in the cities of Rio de Janeiro and Recife. It were included in the survey the doses of chest radiographs, cervical spine, lumbar spine, skull and pelvis in the projections AP, PA and LAT. To chest in PA the average value of DEP for the hospital A was 0.19 mGy. For to hospital B was 0.07 mGy. For the exam of the skull in PA the average value in A was 3.25 mGy and B of 0.49 mGy. With respect to radiological techniques might be noted that in most cases the hospital A used kilovoltage lower than in B and miliamperes higher. This can be one of the explanations for the difference of the values found for DEP and DE. The results showed significant discrepancies in values of doses as radiographic techniques when compared to the requirements established by the European Community for X-rays with image quality. This result is due to several factors: filtration, radiographic technique, professional technical experience and performance of radiographic equipment

  4. Rational use of diagnostic radiology

    International Nuclear Information System (INIS)

    Racoveanu, N.T.; Volodin, V.

    1992-01-01

    The escalating number of radiodiagnostic investigations has, as a consequence, an increase in medical irradiation of patients and of cost of radiological services. Radiologists in USA and UK have since early 1970 questioned the efficacy of various radiological investigations and produced substantial evidence that more rational approaches are necessary. WHO initiated, in 1977, a programme in this direction which has issued four technical reports which give practical recommendations on how to rationalize the use of radiological examinations. Three main directions are considered: (1) Abandonment of routine radiological examinations, as procedures with no clinical or epidemiologic significance and which represent a waste of resources and patient dose. (2) Patient selection for various radiological investigations based on clinical criteria (high, intermediate, low yield). Selected patients have an increased prevalence of the given disease and the predictive value of radiological investigation is much higher. (3) Use of diagnostic algorithms with higher cost/efficiency and risk/benefit ratios, improving the outcome of radiological examinations

  5. Radiologic protection in dental radiology

    International Nuclear Information System (INIS)

    Pacheco Jimenez, R.E.; Bermudez Jimenez, L.A.

    2000-01-01

    With this work and employing the radioprotection criterion, the authors pretend to minimize the risks associated to this practice; without losing the quality of the radiologic image. Odontology should perform the following criterions: 1. Justification: all operation of practice that implies exposition to radiations, should be reweighed, through an analysis of risks versus benefits, with the purpose to assure, that the total detriment will be small, compared to resultant benefit of this activity. 2. Optimization: all of the exposures should be maintained as low as reasonable possible, considering the social and economic factors. 3. Dose limit: any dose limit system should be considered as a top condition, nota as an admissible level. (S. Grainger)

  6. Science and values in radiological protection: impact on radiological protection decision making

    International Nuclear Information System (INIS)

    Salomaa, Sisko; Pinak, Miroslav

    2008-01-01

    Full text: This work summarises the main ideas and achievements of the Science and Values in Radiological Protection Workshop that was held on 15-17 January 2008 in Helsinki, Finland. In the view of developing of new radiological applications and emerging scientific phenomena it has been recognized a need to develop a shared understanding of emerging challenges for radiological protection among scientific and regulatory communities, public and other concerned stake holders. In response to this the Committee of Radiation Protection and Public Health of the OECD Nuclear Energy Agency and Radiation and Nuclear Safety Authority of Finland tried to initiate a process of longer-term reflection on scientific and societal issues that might challenge radiological protection in the coming years. Among general issues like radiological policy issues, improvement of understanding between research and policy communities, sharing views on emerging scientific issues, there were addressed several scientific issues, like non-targeted effects, individual sensitivity; and circulatory diseases. The main focus of these discussions was to elaborate potential 'what if' scenarios and propose feasible solutions at various levels. These discussions addressed effects that are not direct and evident consequence of the initial lesions produced at the cellular and DNA level like bystander responses, genomic instability, gene induction, adaptive responses and low dose. Particular interest was paid to an extrapolation of risk estimates to low doses and role of Linear Non-Threshold theory in setting regulatory principles. Individual radio-sensitivity and identification of genes that are suspected of having an influence on it were also discussed in one of the Breakout Sessions. Another Breakout Session addressed circulatory diseases. There is emerging evidence in the A-bomb survivors and in other exposed groups that ionising radiation also causes other diseases than cancer, such as circulatory

  7. Factors that elevate the internal radionuclide and chemical retention, dose and health risks to infants and children in a radiological-nuclear emergency

    International Nuclear Information System (INIS)

    Richardson, R. B.

    2009-01-01

    The factors that influence the dose and risk to vulnerable population groups from exposure and internal uptake of chemicals are examined and, in particular, the radionuclides released in chemical, biological, radiological, nuclear and explosive events. The paper seeks to identify the areas that would benefit from further research. The intake and body burdens of carbon and calcium were assessed as surrogates for contaminants that either act like or bind to hydrocarbons (e.g. tritium and 14 C) or bone-seeking radionuclides (e.g. 90 Sr and 239 Pu). The shortest turnover times for such materials in the whole body were evaluated for the newborn: 11 d and 0.5 y for carbon and calcium, respectively. However, their biokinetic behaviour is complicated by a particularly high percentage of the gut-absorbed dietary intake of carbon (∼16%) and calcium (∼100%) that is incorporated into the soft tissue and skeleton of the growing neonate. The International Commission on Radiological Protection dose coefficients (Sv Bq -1 ) were examined for 14 radionuclides, including 9 of concern because of their potential use in radiological dispersal devices. The dose coefficients for a 3-month-old are greater than those for adults (2-56 times more for ingestion and 2-12 times for inhalation). The age-dependent dose and exposure assessment of contaminant intakes would improve by accounting for gender and growth where it is currently neglected. Health risk is evaluated as the product of the exposure and hazard factors, the latter being about 10-fold greater in infants than in adults. The exposure factor is also approximately 10-fold higher for ingestion by infants than by adults, and unity for inhalation varying with the contaminant. Qualitative and quantitative physiological and epidemiological evidence supports infants being more vulnerable to cancer and neurological deficit than older children). (authors)

  8. Radiation dose to infants, children and adults in X-ray diagnostic radiology-in the case of plain radiography

    International Nuclear Information System (INIS)

    Aoyama, Takahiko; Koyama, Shuji; Yamauchi-Kawaura, Chiyo; Sugimoto, Naruto; Fujii, Keisuke; Kawasaki, Toshio

    2012-01-01

    The objective of this study was to evaluate radiation doses to infant, child and adult patients undergoing various types of plain radiography and to compare the doses among them. The doses were measured using newborn, 6-year-child and adult anthropomorphic phantoms, in which photodiode dosimeters were implanted at various tissue and organ positions. Measured doses were used to evaluate organ and effective doses. Organ doses obtained in various types of radiography were lower than 0.7 mGy for adults, 0.3 mGy for children and 0.2 mGy for infants, excepting lens dose of approximately 1 mGy in adult head radiography, where the doses for children and infants lowered to 1/2-1/3 of the doses for adults. Effective doses in various types of head radiography for adults, children and infants were in identical levels in a range of 5-30 μSv. In chest, abdomen and hip-joint radiography, effective doses of 0.02-0.11 mSv for children and 0.02-0.08 mSv for infants were identical to or in a fraction of the doses for adults of 0.06-0.15 mSv. In adult head and spinal radiography, effective doses by International Commission of Radiological Protection (ICRP) Publication 60 lowered respectively to 1/6-1/9 and 1/3-1/9 of the doses listed in United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000. (author)

  9. The Effect of Realtime Monitoring on Dose Exposure to Staff Within an Interventional Radiology Setting

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Frederic, E-mail: fredericbaumann@hotmail.com; Katzen, Barry T. [Baptist Hospital of Miami, Miami Cardiac & Vascular Institute (MCVI) (United States); Carelsen, Bart [Philips HealthCare, Clinical Science Interventional X-ray (Netherlands); Diehm, Nicolas [Kantonsspital Aarau, Clinical and Interventional Angiology (Switzerland); Benenati, James F.; Peña, Constantino S. [Baptist Hospital of Miami, Miami Cardiac & Vascular Institute (MCVI) (United States)

    2015-10-15

    PurposeThe purpose of this study is to evaluate a new device providing real-time monitoring on radiation exposure during fluoroscopy procedures intending to reduce radiation in an interventional radiology setting.Materials and MethodsIn one interventional suite, a new system providing a real-time radiation dose display and five individual wireless dosimeters were installed. The five dosimeters were worn by the attending, fellow, nurse, technician, and anesthesiologist for every procedure taking place in that suite. During the first 6-week interval the dose display was off (closed phase) and activated thereafter, for a 6-week learning phase (learning phase) and a 10-week open phase (open phase). During these phases, the staff dose and the individual dose for each procedure were recorded from the wireless dosimeter and correlated with the fluoroscopy time. Further subanalysis for dose exposure included diagnostic versus interventional as well as short (<10 min) versus long (>10 min) procedures.ResultsA total of 252 procedures were performed (n = 88 closed phase, n = 50 learning phase, n = 114 open phase). The overall mean staff dose per fluoroscopic minute was 42.79 versus 19.81 µSv/min (p < 0.05) comparing the closed and open phase. Thereby, anesthesiologists were the only individuals attaining a significant dose reduction during open phase 16.9 versus 8.86 µSv/min (p < 0.05). Furthermore, a significant reduction of total staff dose was observed for short 51 % and interventional procedures 45 % (p < 0.05, for both).ConclusionA real-time qualitative display of radiation exposure may reduce team radiation dose. The process may take a few weeks during the learning phase but appears sustained, thereafter.

  10. The Effect of Realtime Monitoring on Dose Exposure to Staff Within an Interventional Radiology Setting

    International Nuclear Information System (INIS)

    Baumann, Frederic; Katzen, Barry T.; Carelsen, Bart; Diehm, Nicolas; Benenati, James F.; Peña, Constantino S.

    2015-01-01

    PurposeThe purpose of this study is to evaluate a new device providing real-time monitoring on radiation exposure during fluoroscopy procedures intending to reduce radiation in an interventional radiology setting.Materials and MethodsIn one interventional suite, a new system providing a real-time radiation dose display and five individual wireless dosimeters were installed. The five dosimeters were worn by the attending, fellow, nurse, technician, and anesthesiologist for every procedure taking place in that suite. During the first 6-week interval the dose display was off (closed phase) and activated thereafter, for a 6-week learning phase (learning phase) and a 10-week open phase (open phase). During these phases, the staff dose and the individual dose for each procedure were recorded from the wireless dosimeter and correlated with the fluoroscopy time. Further subanalysis for dose exposure included diagnostic versus interventional as well as short (<10 min) versus long (>10 min) procedures.ResultsA total of 252 procedures were performed (n = 88 closed phase, n = 50 learning phase, n = 114 open phase). The overall mean staff dose per fluoroscopic minute was 42.79 versus 19.81 µSv/min (p < 0.05) comparing the closed and open phase. Thereby, anesthesiologists were the only individuals attaining a significant dose reduction during open phase 16.9 versus 8.86 µSv/min (p < 0.05). Furthermore, a significant reduction of total staff dose was observed for short 51 % and interventional procedures 45 % (p < 0.05, for both).ConclusionA real-time qualitative display of radiation exposure may reduce team radiation dose. The process may take a few weeks during the learning phase but appears sustained, thereafter

  11. SU-C-18C-06: Radiation Dose Reduction in Body Interventional Radiology: Clinical Results Utilizing a New Imaging Acquisition and Processing Platform

    Energy Technology Data Exchange (ETDEWEB)

    Kohlbrenner, R; Kolli, KP; Taylor, A; Kohi, M; Fidelman, N; LaBerge, J; Kerlan, R; Gould, R [University of California, San Francisco, San Francisco, CA (United States)

    2014-06-01

    Purpose: To quantify the patient radiation dose reduction achieved during transarterial chemoembolization (TACE) procedures performed in a body interventional radiology suite equipped with the Philips Allura Clarity imaging acquisition and processing platform, compared to TACE procedures performed in the same suite equipped with the Philips Allura Xper platform. Methods: Total fluoroscopy time, cumulative dose area product, and cumulative air kerma were recorded for the first 25 TACE procedures performed to treat hepatocellular carcinoma (HCC) in a Philips body interventional radiology suite equipped with Philips Allura Clarity. The same data were collected for the prior 85 TACE procedures performed to treat HCC in the same suite equipped with Philips Allura Xper. Mean values from these cohorts were compared using two-tailed t tests. Results: Following installation of the Philips Allura Clarity platform, a 42.8% reduction in mean cumulative dose area product (3033.2 versus 1733.6 mGycm∧2, p < 0.0001) and a 31.2% reduction in mean cumulative air kerma (1445.4 versus 994.2 mGy, p < 0.001) was achieved compared to similar procedures performed in the same suite equipped with the Philips Allura Xper platform. Mean total fluoroscopy time was not significantly different between the two cohorts (1679.3 versus 1791.3 seconds, p = 0.41). Conclusion: This study demonstrates a significant patient radiation dose reduction during TACE procedures performed to treat HCC after a body interventional radiology suite was converted to the Philips Allura Clarity platform from the Philips Allura Xper platform. Future work will focus on evaluation of patient dose reduction in a larger cohort of patients across a broader range of procedures and in specific populations, including obese patients and pediatric patients, and comparison of image quality between the two platforms. Funding for this study was provided by Philips Healthcare, with 5% salary support provided to authors K. Pallav

  12. SU-C-18C-06: Radiation Dose Reduction in Body Interventional Radiology: Clinical Results Utilizing a New Imaging Acquisition and Processing Platform

    International Nuclear Information System (INIS)

    Kohlbrenner, R; Kolli, KP; Taylor, A; Kohi, M; Fidelman, N; LaBerge, J; Kerlan, R; Gould, R

    2014-01-01

    Purpose: To quantify the patient radiation dose reduction achieved during transarterial chemoembolization (TACE) procedures performed in a body interventional radiology suite equipped with the Philips Allura Clarity imaging acquisition and processing platform, compared to TACE procedures performed in the same suite equipped with the Philips Allura Xper platform. Methods: Total fluoroscopy time, cumulative dose area product, and cumulative air kerma were recorded for the first 25 TACE procedures performed to treat hepatocellular carcinoma (HCC) in a Philips body interventional radiology suite equipped with Philips Allura Clarity. The same data were collected for the prior 85 TACE procedures performed to treat HCC in the same suite equipped with Philips Allura Xper. Mean values from these cohorts were compared using two-tailed t tests. Results: Following installation of the Philips Allura Clarity platform, a 42.8% reduction in mean cumulative dose area product (3033.2 versus 1733.6 mGycm∧2, p < 0.0001) and a 31.2% reduction in mean cumulative air kerma (1445.4 versus 994.2 mGy, p < 0.001) was achieved compared to similar procedures performed in the same suite equipped with the Philips Allura Xper platform. Mean total fluoroscopy time was not significantly different between the two cohorts (1679.3 versus 1791.3 seconds, p = 0.41). Conclusion: This study demonstrates a significant patient radiation dose reduction during TACE procedures performed to treat HCC after a body interventional radiology suite was converted to the Philips Allura Clarity platform from the Philips Allura Xper platform. Future work will focus on evaluation of patient dose reduction in a larger cohort of patients across a broader range of procedures and in specific populations, including obese patients and pediatric patients, and comparison of image quality between the two platforms. Funding for this study was provided by Philips Healthcare, with 5% salary support provided to authors K. Pallav

  13. Radiological consequence analysis with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.L.; Warinner, D.K.; Matos, J.E.

    1984-01-01

    A model for estimating the radiological consequences from a hypothetical accident in HEU and LEU fueled research and test reactors is presented. Simple hand calculations based on fission product yield table inventories and non-site specific dispersion data may be adequate in many cases. However, more detailed inventories and site specific data on meteorological conditions and release rates and heights can result in substantial reductions in the dose estimates. LEU fuel gives essentially the same doses as HEU fuel. The plutonium buildup in the LEU fuel does not significantly increase the radiological consequences. The dose to the thyroid is the limiting dose. 10 references, 3 figures, 7 tables.

  14. Radiological consequence analysis with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Woodruff, W.L.; Warinner, D.K.; Matos, J.E.

    1984-01-01

    A model for estimating the radiological consequences from a hypothetical accident in HEU and LEU fueled research and test reactors is presented. Simple hand calculations based on fission product yield table inventories and non-site specific dispersion data may be adequate in many cases. However, more detailed inventories and site specific data on meteorological conditions and release rates and heights can result in substantial reductions in the dose estimates. LEU fuel gives essentially the same doses as HEU fuel. The plutonium buildup in the LEU fuel does not significantly increase the radiological consequences. The dose to the thyroid is the limiting dose. 10 references, 3 figures, 7 tables

  15. Magnitudes and units in the X-ray dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Tovar M, V. M.; Cejudo A, J.; Vergara M, F.

    2009-10-01

    The dosimetry objective in the radiological image is the quantification from the exposition to the radiation with a commitment of optimizing the image quality to the reason of the absorbed dose. The dosimetry has the meaning of avoiding excessive dose that could imply a significant risk of deterministic effects induction. The dosimetric magnitudes and dosimetry protocols in the radiological image, are those that are related to the risks for the patient. Exist in diagnostic radiology two fundamentals reason to measure or to estimate the patient radiation dose. First, the mensurations are a means to verify the good practices and an aid to the optimization of the patient protection. Second, the absorbed dose estimation to tissues and organs in the patient are necessary to determine the risks, and this way to indicate that the radiological techniques employees can be justified and in investigated cases of over exposition. (Author)

  16. Implementation of Ray Safe i2 System for staff dose measuring in interventional radiology

    International Nuclear Information System (INIS)

    Gershan, Vesna; Atsovska, Violeta

    2013-01-01

    Interventional radiology procedures usually delivered the highest radiation dose to the patients as well as to medical personal. Beside another factors like patient size, fluoroscopy time, machine calibration etc., a good clinical practice has strong effects to staff and patient’s radiation dose. Materials and methods: In August 2012, a Ray Safe i2 system was installed in a private hospital in Skopje. The main purpose of this dosimetry system is to provide real time indication for the current exposure level of the medical personal. Knowing that, the staff has prerequisites to adjust their behavior to minimize unnecessary exposure like changing distance from exposed volume, C-ram angulations, field of view etc. and on this way to develop a good clinical practice. The Ray Safe i2 system is consisted by ten digital dosimeters, two dock stations, real time display, dose viewer and dose manager software. During interventional procedures, each involved staff wears dosimeter which measures and records X-Ray exposure every second and transfer the data wirelessly to the real time display. Color indication bars (green, yellow, red) represents the intensity of the currently received exposure, whereas green zone indicates < 0.2 mSv/h, yellow zone from 0.2 to 2 mSv/h and red zone indications from 2 to 20 mSv/h. Additionally, accumulated dose per individual is displayed next to the color indication bars. By using the software, information about personal dose history, such as annual dose, dose per particular session, hour, day or week, can be viewed and analyzed. Results: In this work it was found that staff accumulated doses were constantly increased over time, but reported number of procedures does not correspond to this tendency. Our assumption is that there is a misleading between reported number and actual performed procedures. Doctor1 received 55 times more dose than Doctor2 and Nurse1 received 11 to 3 times more dose than another Nurses. It was found a correlation of R2

  17. Results of the study of entrance surface dose from conventional examinations in diagnostic radiology

    International Nuclear Information System (INIS)

    Martinez, A.; Jova, L.; Carrazana, J.; Diaz, E.; Mora, R. de la; Guevara, C.; Fleitas, I.

    2001-01-01

    The wide diffusion of X-ray diagnostic together with the quick development and expansion that has come with experiencing the technology in this practice, has motivated the emission of recommendations in the Basic Safety Standards of the IAEA for the establishment of guidance levels for different radiological examinations in each country that allow the optimization of the medical exposure. Considering the above-mentioned and the existence in Cuba in a great number of conventional X-ray equipment, with an average of over 10 years of use which influences directly on the patient dose, in 1999, an investigation began in the country on the patient exposure in this practice. This work shows the first results of measurements carried out in 9 major hospitals of several provinces of the country. The doses were evaluated in the examinations of lumbar spine AP, lumbar spine LAT, thorax PA, skull AP and skull LAT. The determination of the doses in these examinations was carried out by 'in-vivo' measurements on the patients, placing in the center of the irradiation field TLD of LiF. The distributions obtained in the studies are compared with the guidance levels that is shown in the Basic Safety Standards of the IAEA. (author)

  18. Radiological protection of the unborn child. Recommendation of the Commission on Radiological Protection and scientific grounds

    International Nuclear Information System (INIS)

    Sarenio, O.

    2006-01-01

    The Commission on Radiological Protection was asked to give advice on the practical implications of the absorption of the maximum possible activity values that, under the Radiological Protection Ordinance, may be incorporated in women of child-bearing age occupationally exposed to radiation with regard to incorporation monitoring and compliance with the dose limit for the protection of the unborn child. An unborn child's conceivable level of exposure to radiation in the least favourable case due to continuous and single incorporations of radionuclides in the mother was determined on a nuclide-specific basis by the Federal Office for Radiation Protection with the aid of the mathematical metabolic models provided in ICRP 88. At the proposal of the Commission on Radiological Protection, the Federal Office for Radiation Protection considered the following very conservative scenarios: - the mother's maximum possible exposure due to a continuous intake of activity over 10 years prior to the pregnancy and in the first 10 weeks postconception based on the limits set out in the Radiological Protection Ordinance; - the mother's maximum possible exposure due to a single intake at the most unfavourable time in the first 10 weeks postconception based on the limits set out in the Radiological Protection Ordinance. Examination of these scenarios found that, with a few exceptions, the dose to the unborn child attributable to the incorporation of radiation in the mother summed up over 70 years is less than that to the mother. The committed effective dose to the unborn child from certain radionuclides may exceed the value of 1 mSv when the dose to the mother reaches the maximum limit. The Commission on Radiological Protection was therefore asked 1. to examine whether compliance with the limit of 1 mSv effective dose is sufficient for the protection of the unborn child or whether any additional limitation is required for individual organs, 2. to discuss the implications for

  19. Chronic uranium exposure and growth toxicity for phytoplankton. Dose-effect relationship: first comparison of chemical and radiological toxicity

    International Nuclear Information System (INIS)

    Gilbin, R.; Pradines, C.; Garnier-Laplace, J.

    2004-01-01

    The bioavailability of uranium for freshwater organisms, as for other dissolved metals, is closely linked to chemical speciation in solution (U aqueous speciation undergoes tremendous changes in the presence of ligands commonly found in natural waters e.g. carbonate, phosphate, hydroxide and natural organic matter). For the studied chemical domain, short-term uranium uptake experiments have already shown that the free uranyl ion concentration [UO 2 2+ ] is a good predictor of uranium uptake by the green algae Chlamydomonas reinhardtii, as predicted by the Free Ion Activity Model. In agreement with these results, acidic pH and low ligands concentrations in water enhance uranium bioavailability and consequently its potential chronic effects on phytoplankton. Moreover, uranium is known to be both radio-toxic and chemo-toxic. The use of different isotopes of uranium allows to expose organisms to different radiological doses for the same molar concentration: e.g. for a given element concentration (chemical dose), replacing depleted U by U-233 obviously leads to an enhanced radiological delivered dose to organisms (x10 4 ). In this work we established relationships between uranium doses (depleted uranium and 233-U ) and effect on the growth rate of the green algae Chlamydomonas reinhardtii. Uranium bioaccumulation was also monitored. Growth rate was measured both in classical batch (0-72 hrs) and continuous (turbidostat) cultures, the latter protocol allowing medium renewal to diminish exudates accumulation and speciation changes in the medium. The differences in effects will be, if possible, related to the development of defence mechanisms against the formation of reactive oxygen species (forms of glutathione) and the production of phyto-chelatins (small peptides rich in cystein that play an important role in the homeostasis and the detoxication of metals in cells). (author)

  20. Radiological services pact relies on teamwork and experience [dose management

    International Nuclear Information System (INIS)

    Cruden, D.S.

    1988-01-01

    Virginia Power has entered into a radiological service agreement with Westinghouse. The contract commits Westinghouse to work in partnership with Virginia Power to improve performance in the areas of radiological protection, decontamination, ALARA, and radioactive waste management. It is expected that the agreement will solve the problems caused by the shortage of qualified contractor personnel during scheduled outages. (U.K.)

  1. Anticipating and projective-anticipating synchronization of coupled multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    In this Letter, the model of coupled multidelay feedback systems is investigated with the schemes of anticipating and projective-anticipating synchronizations. Under these synchronization schemes, the slave anticipates the master's trajectory. Moreover, with projective-anticipating synchronization there exists a scale factor in the amplitudes of the master's and slave's state variables. In the both cases, the driving signals are in the form of multiple nonlinear transformations of delayed state variable. The Krasovskii-Lyapunov theory is used to consider the sufficient condition for synchronization. The effectiveness of the proposed schemes is confirmed by the numerical simulation of specific examples with modified Ikeda and Mackey-Glass systems

  2. Dose Reduction Techniques

    CERN Document Server

    Waggoner, L O

    2000-01-01

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the sm...

  3. Radiological characterisation - Know your objective

    International Nuclear Information System (INIS)

    Lindow, Veronica; Moeller, Jennifer

    2012-01-01

    When developing a programme for mapping the radiological characteristics of a facility to be decommissioned it is important to take into account the objectives of the programme. Will the results be used to plan for radiological control and selection of appropriate decontamination and dismantling techniques? Will the radiological inventory be used for dimensioning of future waste repositories? These are two examples of the applications for such studies, which could require that a radiological characterisation programme be adapted to provide the data appropriate to the intended use. The level of detail and scope needed for a radiological characterisation will also vary depending on how the data will be used. An application to free-release a facility requires a comprehensive survey and well documented analysis in order to ensure that no radioactive contamination above prescribed levels is present. A bounding calculation to determine the maximum anticipated volumes and activity of radioactive waste requires a different approach. During the past few years, older decommissioning studies for the Swedish nuclear power plants have been updated (or are in the process of being updated). The decommissioning study's main purpose is to estimate the cost for decommissioning. The cost estimation is based on material and activity inventories, which in turn is based on previous and, in some cases, updated radiological characterisations of the facilities. The radiological inventory is an important part of the study as it affects the cost of decommissioning but also the uncertainties and accuracy of the cost estimation. The presentation will discuss the challenges in specifying a radiological characterisation programme with multiple objectives, together with insights on how data delivered can be applied to yield results suitable for the intended purpose, without introducing excessive conservatism. The intent of the presentation is to define issues that can be of use in various aspects

  4. A radiological consequence analysis with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Woodruff, W.L.; Warinner, D.K.; Matos, J.E.

    1985-01-01

    A model for estimating the radiological consequences from a hypothetical accident in HEU and LEU fueled research and test reactors is presented. Simple hand calculations based on fission product yield table inventories and nonsite specific dispersion data may be adequate in many cases. However, more detailed inventories and site specific data on meteorological conditions and release rates and heights can result in substantial reductions in the dose estimates. LEU fuel gives essentially the same doses as HEU fuel. The plutonium buildup in the LEU fuel does not significantly increase the radiological consequences. The dose to the thyroid is the limiting dose. (author)

  5. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry

    International Nuclear Information System (INIS)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de

    2014-01-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  6. Full-field digital mammography versus computed radiology mammography: comparison in image quality and radiation dose

    International Nuclear Information System (INIS)

    Zhao Yongxia; Song Shaojuan; Liu Chuanya; Qi Hengtao; Qin Weichang

    2008-01-01

    Objective: To investigate the differences in image quality and radiation dose between full- field digital mammography (FFDM) system and compute radiology mammography (CRM) system. Methods: The ALVIM mammographic phantom was exposed by FFDM system with automatic exposure control (AEC) and then exposed by CRM system with the unique imaging plank on the same condition. The FFDM system applied the same kV value and the different mAs values (14, 16, 18, 22 and 24 mAs), and the emission skin dose (ESD) and the average gland dose (AGD) were recorded for the above-mentioned exposure factors. All images were read by five experienced radiologists under the same condition and judged based on 5-point scales. And then receive operating characteristic (ROC) curve was drawn and the probability (P det ) values were calculated. The data were statistically processed with ANOVA. Results: The P det values of calcifications and lesion lump were higher with FFDM system than with CRM system at the same dose (1.36 mGy). Especially, for microcalcifications and lesion lump, the largest difference of the P det value was 0.215, and that of lesion lump was 0.245. In comparison with CRM system, the radiation dose of FFDM system could be reduced at the same P det value. The ESD value was reduced by 26%, and the ACD value was reduced by 41%. When the mAs value exceed AEC value, the P det value almost had no change, though the radiation dose was increased. Conclusions: The detection rates of microcalcifications and lesion lump with FFDM system are proven to be superior to CRM system at the same dose. The radiation dose of FFDM system was less than CRM system for the same image quality. (authors)

  7. Comprehensive Clinical Audits of Diagnostic Radiology Practices: A Tool for Quality Improvement. Quality Assurance Audit for Diagnostic Radiology Improvement and Learning (QUAADRIL)

    International Nuclear Information System (INIS)

    2011-01-01

    Interest in quality assurance processes and quality improvement in diagnostic radiology is being driven by a number of factors. These include the high cost and complexity of radiological equipment, acknowledgement of the possibility of increasing doses to patients, and the importance of radiological diagnosis to patient management within the health care environment. To acknowledge these interests, clinical audits have been introduced and, in Europe, mandated under a European Directive (Council Directive 97/47/EURATOM). Comprehensive clinical audits focus on clinical management and infrastructure, patient related and technical procedures, and education and research. This publication includes a structured set of standards appropriate for diagnostic radiology, an audit guide to their clinical review, and data collection sheets for the rapid production of reports in audit situations. It will be a useful guide for diagnostic radiology facilities wishing to improve their service to patients through timely diagnosis with minimal radiation dose.

  8. Comprehensive Clinical Audits of Diagnostic Radiology Practices: A Tool for Quality Improvement. Quality Assurance Audit for Diagnostic Radiology Improvement and Learning (QUAADRIL)

    International Nuclear Information System (INIS)

    2010-01-01

    Interest in quality assurance processes and quality improvement in diagnostic radiology is being driven by a number of factors. These include the high cost and complexity of radiological equipment, acknowledgement of the possibility of increasing doses to patients, and the importance of radiological diagnosis to patient management within the health care environment. To acknowledge these interests, clinical audits have been introduced and, in Europe, mandated under a European Directive (Council Directive 97/47/EURATOM). Comprehensive clinical audits focus on clinical management and infrastructure, patient related and technical procedures, and education and research. This publication includes a structured set of standards appropriate for diagnostic radiology, an audit guide to their clinical review, and data collection sheets for the rapid production of reports in audit situations. It will be a useful guide for diagnostic radiology facilities wishing to improve their service to patients through timely diagnosis with minimal radiation dose.

  9. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    International Nuclear Information System (INIS)

    L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

    2003-01-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions

  10. Evolution of the radiological protection paradigms

    International Nuclear Information System (INIS)

    Sordi, Gian Maria A.A.

    2009-01-01

    We consider as initial radiological protection paradigms those in vigour after the release of the atomic energy for pacific usages in 1955. In that occasion, only one paradigm was introduced, presently named dose limitation system. After arguing about the basis that raised the paradigm, we introduced the guidance, that is, the measurements to be implemented to comply with the paradigm. In that occasion, they were two, i.e., the radiation dose monitoring and the workplace classification. Afterwards, the reasons that caused the radiological protection paradigms changes in force until 1995 are discussed. The initial paradigm was modified introducing the justification and the optimization principles, adding that the radiological protection should be economical and effective. The guidance also increased to four: personal monitoring, workplace classification, reference level and workers classification. Afterwards, we give the main justifications for the present paradigms that besides the formers were added the dose constraints, the potential exposure and the annual risk limits. Due to these modifications, the workers classifications were eliminated from the guidance, but the potential exposure and the search for the dose constraints were added. Eventually, we discuss the tendencies for the next future and the main changes introduced by the ICRP in the Publication 103, 2007. (author)

  11. Tennessee Valley region study: potential year 2000 radiological dose to population resulting from nuclear facility operations. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A companion report, DOE/ET-0064/1, presents a geographic, cultural, and demographic profile of the Tennessee Valley Region study area. This report describes the calculations of radionuclide release and transport and of the resultant dose to the regional population, assuming a projected installed capacity of 220,000 MW in the year 2000, of which 144,000 MW would be nuclear. All elements of the fuel cycle were assumed to be in operation. The radiological dose was calculated as a one-year dose based on ingestion of 35 different food types as well as for nine non-food pathways, and was reported as dose to the total body and for six specific organs for each of four age groups (infant, child, teen, and adult). Results indicate that the average individual would receive an incremental dose of 7 x 10/sup -4/ millirems in the year 2000 from the operation of nuclear facilities within and adjacent to the region, five orders of magnitude smaller than the dose from naturally occurring radiation in the area. The major contributor to dose was found to be tritium, and the most significant pathways were immersion in air, inhalation of air, transpiration of tritium (absorption through the skin), and exposure radionuclide-containing soil. 60 references.

  12. Health Risks of Diagnostic Radiology

    International Nuclear Information System (INIS)

    Al-Oraby, M.N.A.

    2014-01-01

    Exposure to ionizing radiation during diagnostic radiologic procedures carries small but real risks. Children, young adults and pregnant women are especially vulnerable. Exposure of patients to diagnostic energy levels of ionizing radiation should be kept to the minimum necessary to provide useful clinical information and allay patients concerns about radiation-related risks. Computerized Tomography (CT) accounts for two thirds of the cumulative patient dose from diagnostic radiological procedures and the cumulative dose from CT is rising as technological advances increase the number of indications and the capabilities of CT. Carcinogenesis and teratogenesis are the main concerns with ionizing radiation. The risk increases as the radiation dose increases. There is no minimum threshold and the risk is cumulative: a dose of 1 mSv once a year for 10 years is equivalent to a single dose of 10 mSv. Whenever practical, choose an imaging test that uses less radiation or no radiation and lengthen the periods between follow-up imaging tests. Some patients may avoid screening mammography because of fear of radiation-induced cancer, yet this test uses a very small radiation dose (0.6 mSv, much less than the annual dose from background radiation, 3.6 mSv). (author)

  13. Radiological Protection Science and Application

    International Nuclear Information System (INIS)

    Janssens, Augustin; ); Mossman, Ken; Morgan, Bill

    2016-01-01

    Since the discovery of radiation at the end of the 19. century, the health effects of exposure to radiation have been studied more than almost any other factor with potential effects on human health. The NEA has long been involved in discussions on the effects of radiation exposure, releasing two reports in 1994 and 2007 on radiological protection science. This report is the third in this state-of-the-art series, examining recent advances in the understanding of radiation risks and effects, particularly at low doses. It focuses on radiobiology and epidemiology, and also addresses the social science aspects of stakeholder involvement in radiological protection decision making. The report summarises the status of, and issues arising from, the application of the International System of Radiological Protection to different types of prevailing circumstances. Reports published by the NEA Committee on Radiation Protection and Public Health (CRPPH) in 1998 and 2007 provided an overview of the scientific knowledge available at that time, as well as the expected results from further research. They also discussed the policy implications that these results could have for the radiological protection system. The 2007 report highlighted challenges posed by developments in relation to medical exposure and by intentions to include the environment (i.e. non-human species), within the scope of the radiological protection system. It also addressed the need to be able to respond to a radiological terrorist attack. This report picks up on where the 1998 and 2007 reports left off, and addresses the state of the art in radiological prevention science and application today. It is divided into five chapters. Firstly, following broadly the structural topics from the 1998 and 2007 reports, the more purely scientific aspects of radiological protection are presented. These include cancer risk of low dose and dose rates, non-cancer effects and individual sensitivity. In view of the increasing

  14. Dose in conventional radiography

    International Nuclear Information System (INIS)

    Acuna D, E.; Padilla R, Z. P.; Escareno J, E.; Vega C, H. R.

    2011-10-01

    It has been pointed out that medical exposures are the most significant sources of exposure to ionizing radiation for the general population. Inside the medical exposures the most important is the X-ray use for diagnosis, which is by far the largest contribution to the average dose received by the population. From all studies performed in radiology the chest radiography is the most abundant. In an X-ray machine, voltage and current are combined to obtain a good image and a reduce dose, however due to the workload in a radiology service individual dose is not monitored. In order to evaluate the dose due to chest radiography in this work a plate phantom was built according to the ISO recommendations using methylmethacrylate walls and water. The phantom was used in the Imaging department of the Zacatecas General Hospital as a radiology patient asking for a chest study; using thermoluminescent dosimeters, TLD 100 the kerma at the surface entrance was determined. (Author)

  15. Comparison of the radiological and chemical toxicity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose.

  16. Comparison of the radiological and chemical toxicity of lead

    International Nuclear Information System (INIS)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose

  17. Radiological protection report 2016

    International Nuclear Information System (INIS)

    2017-06-01

    In the radiological protection report 2016, the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an overview of the radiological protection in its area of supervision. Part A of the report deals with protecting the staff of nuclear power plants from the dangers of ionising radiation. It also includes a list of the personal doses accumulated by the staff, broken down using various parameters. Applying the optimisation imperative, it has been proved possible to significantly reduce the annual collective doses in Switzerland's nuclear power plants since they came on stream thanks to major efforts by the operators. In 2016, a total of 6,153 people measured accumulated 2,877 person-mSv. The collective doses have reached a low level corresponding to the radiological condition of the plants and the scope of the work required to be performed in controlled zones (e.g. non-destructive materials testing). ENSI will continue to follow the trend for collective doses and assess the reasons for local variances as well as for measures initiated. The individual doses for people employed in ENSI's area of supervision in 2016 showed a maximum figure of 10 mSv and a mean value of 0.5 mSv which was significantly below the dose limit of 20 mSv for occupational radiation exposure. The discharge of radioactive substances with the exhaust air and waste water from nuclear power plants are dealt with in Part B of the report. In 2016, nuclear power plant operators again met the admissible release limits set by the authorities, in some cases by a considerable margin. The emissions of Swiss nuclear power plants led to a dose of less than 0.01 mSv per year in the direct neighbourhood. A comparison with the average annual radiation dose for the Swiss population of 5.5 mSv shows that the relevant contribution from nuclear power plants lies in the area of one percent of this figure. Effluents from Swiss nuclear power plants were also below the target of 1 GBq per year set by ENSI

  18. Study of the parameters affecting operator doses in interventional radiology using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koukorava, C.; Carinou, E.; Ferrari, P.; Krim, S.; Struelens, L.

    2011-01-01

    Measurements performed within the ORAMED project helped to evaluate the dose levels to the operators’ hands, wrists, legs and eye lenses, during several types of interventional radiology (IR) and cardiology (IC) procedures, and also to determine the parameters that affect the doses. However, the study of the effect of each parameter separately, was possible only through Monte Carlo (MC) simulations, as in clinical practice many of those parameters change simultaneously. The influence of the protective equipment, the beam projections, the beam quality, the field size and the position of the operator according to the position of access of the catheter was investigated, using anthropomorphic phantoms in setups that represent realistic IR/IC procedures. The proper use of protective shields was found to be the most important way of reducing extremity and eye lens exposure during such examinations. Ceiling suspended shields can reduce the doses to the eye lenses up to 97%, but they can also reduce hand doses about 70% when placed correctly. The highest exposure to the operator is observed for left anterior oblique (LAO) and cranial projections. Additionally, for overcouch irradiations the eyes and the hands are about 6 times more exposed compared to the cases where the tube is below the operating table. For the lateral LAO projection, placing the ceiling suspended shield at the left side of the operator is twice more effective for the protection of the eyes compared to the cases where it is placed above the patient. Finally, beam collimation was found to play an important role in the reduction of the hands and wrists doses, especially when the operator is close to the irradiation field.

  19. Evaluation of radiological doses to the terrestrial plants around Trombay

    International Nuclear Information System (INIS)

    Ajay Kumar; Singhal, R.K.; Preetha, J.; Joshi, S.N.; Hegde, A.G.

    2005-01-01

    Existing policies for radiation protection do not provide explicit criteria for the protection of species other than humans, i.e. not for flora and fauna. Concern over this omission is now being widely expressed and moves are under way to evaluate the doses to terrestrial and aquatic biota. During the present work radiological doses (external and internal) to the terrestrial plants were evaluated by estimating the concentration of anthropogenic ( 137 Cs, 90 Sr) and natural radionuclides ( 238 U, 232 Th and 40 K) in the plant leaves and by measuring the external gamma radiation due to different radionuclide. The soil and vegetation sample were collected from fifteen sampling locations around the different locations at Trombay. The samples were processed as per IAEA (International Atomic Energy Agency) protocol for the estimation of naturally occurring and anthropogenic radionuclides in soil and terrestrial plants. The gamma emitting radionuclides were measured by high resolution gamma (HPGe) spectrometry system. Maximum exposure (external + internal) to the terrestrial plants was observed due to 232 Th while 238 U showed minimum exposure. The average value of radiation exposure to the terrestrial plants for 40 K, 137 Cs, 90 Sr, 238 U and 232 Th was 1555.2 ± 92.4, 691.2 ± 54.3, 2564.1 ± 534.9, 82.5 ±5.2, and 4419.6 ± 1165.5 μGy/y respectively. The radiation exposure (external + internal ) to the terrestrial plants due to all radionuclides was found within the permissible limits (i.e. 10 mGy/d) as per recommended by the United States, Department of Energy (DOE). (author)

  20. Protective effect of lead aprons in medical radiology

    International Nuclear Information System (INIS)

    Huyskens, C.J.

    1995-01-01

    This article summarizes the results of an ongoing study regarding the protective effect that lead aprons, as used in medical radiology, have on the resulting effective dose for medical personnel. By means of model calculations we have analyzed the protection efficacy of lead aprons for various lead thicknesses, in function of tube potential and of variations in exposure geometry as they occur in practice. The degree of efficacy appears to be highly dependent on the fit of aprons because of the dominating influence of the equivalent dose of partially unshielded organs on the resulting effective dose. Also by model calculations we investigated the ratio between the effective dose and the operational quantify for personal dose monitoring. Our study enables the choice of appropriate correction factors for convering personal dosimetry measurements into effective dose, for typical exposure situations in medical radiology. (orig.) [de

  1. Radiation dose to patients from the coronary angiography and percutaneous transluminal coronary angioplasty in interventional radiology procedures

    International Nuclear Information System (INIS)

    Zheng, Jun-Zheng; Bai, Mei; Liu, Bin

    2008-01-01

    Full text: Objective: To survey and assess radiation dose to patients from coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) in Beijing Xuanwu Hospital of Capital University of Medical Sciences. Methods: The dose-area product (DAP) values to the patient and cumulative dose (CD) were recorded from 84 coronary angiographies and 51 percutaneous transluminal coronary angioplasty. A Monte-Carlo based program PCXMC was used to calculate the effective dose from DAP values for each patient. Organ doses were also measured by thermoluminescent dosimeters (TLD) using a human-shaped phantom to compare the calculated organ dose from DAP. Results: The difference between the organ doses measured by TLDs and those from PCXMC software (P>0.05) were tolerable. The DAP value ranged from 7611∼60538 mGy·cm 2 for CA and 16423∼161973 mGy·cm 2 for PTCA. The effective dose for all procedures was determined to be in the range of 1.1∼6.9 mSv for CA and 2.3∼20.1 mSv for PTCA. CD ranged from 120.0 to 1016.0 mGy for CA and 287 to 2883 mGy for PTCA. Conversion factors between effective dose and DAP were 0.114∼0.139 mSv·Gy - 1·cm -2 for CA and 0.124∼0.142 mSv·Gy -1 ·cm -2 for PTCA; Conversion factors between organ dose and CD were derived for CA and PTCA, respectively. Conclusions: DAP and CD can be used as the dose indicator to calculate the organ dose and effective dose of patient based on Monte Carlo simulation. Using this method can provide important information of patient absorbed dose and enhance the radiation protection of patient in interventional radiology procedures. (author)

  2. Radiological Risk Assessment and Survey of Radioactive Contamination for Foodstuffs

    International Nuclear Information System (INIS)

    Lee, W.R.; Lee, C.W.; Choi, K.S.

    2007-11-01

    After the Chernobyl nuclear accident in 1986, a radiological dose assessment and a survey of a radioactive contamination for foodstuffs have been investigated by many countries such as EU, Japan, USA. In the case of Japan which is similar to our country for the imported regions of foodstuffs, there were some instances of the excess for regulation on the maximum permitted levels of radioactive contamination among some imported foodstuffs. Concerns about the radioactive contamination of foodstuffs are increased because of the recently special situation (Nuclear test of North Korea). The purpose of this study is a radiological dose assessment and a survey of a radioactive contamination for foodstuffs in order to reduce the probability of intake of contaminated foodstuffs. Analytical results of the collected samples are below MDA. In this project, the model of radiological dose assessment via the food chain was also developed and radiological dose assessment was conducted based on surveys results of a radioactive contamination for foodstuffs in the Korean open markets since 2002. The results of radiological dose assessment are far below international reference level. It shows that public radiation exposure via food chain is well controlled within the international guide level. However, the radioactive contamination research of imported foodstuffs should be continuous considering the special situation(nuclear test of North Korea). These results are used to manage the radioactive contamination of the imported foodstuffs and also amend the regulation on the maximum permitted levels of radioactive contamination of foodstuffs

  3. Radiological protection in computed tomography and cone beam computed tomography.

    Science.gov (United States)

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Radiological protection report 2014; Strahlenschutzbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    In its 11{sup th} Annual Report on Radiological Protection, the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides the public with information on dose rates for individuals professionally exposed to radiation, releases of radioactive material and the monitoring of environmental radiation. ENSI, as the regulatory body for nuclear facilities in Switzerland, is continuing to expand its information provision over and above that contained in the Radiological Protection Report. At 0.6 mSv per year, the average individual dose for professionally exposed persons remains significantly below the annual limit of 20 mSv specified by the Swiss Federal Council. It is also less than the average annual rate of natural environmental exposure of 5.5 mSv for the population in Switzerland as a whole. The highest individual dose during the year was 12 mSv. The collective doses lie within the range of past years. There is a trend towards higher collective doses at KKL. As a general rule, planning by the licensees of nuclear facilities in the field of radiological protection is of a high standard. Actual collective doses in 2014 at Beznau 1, Goesgen and Leibstadt were within 10% of projected exposure rates and at Beznau 2 and Muehleberg the doses were about 30% lower. Demands in terms of radiological protection were particularly high at Leibstadt and Beznau 1; at Leibstadt mainly as a result of a fuel cladding defect and at Beznau 1 because of the continuing elevated ambient rate for components in the primary circuit. ENSI concluded that the Swiss nuclear facilities continue to operate a consistent approach to radiological protection. In 2014, licensees of nuclear facilities remained within official release limits, in some cases by a significant margin. Liquid releases from Muehleberg were below the target value of 1 GBq per year set by ENSI on the basis of international recommendations. At the Central Interim Storage Facility (ZWILAG) and at the Paul Scherrer Institute (PSI

  5. Research and development in radiological protection

    International Nuclear Information System (INIS)

    Butragueno, J. L.; Villota, C.; Gutierrez, C.; Rodriguez, A.

    2004-01-01

    The objective of Radiological Protection is to guarantee that neither people, be they workers or members of the public, or the environment are exposed to radiological risks considered by society to be unacceptable. Among the various resources available to meet this objective is Research and Development (R and D), which is carried out in three areas: I. Radiological protection of persons: (a) knowledge of the biological effects of radiations, in order to determine the relationship that exists between radiation exposure dose and its effects on health; (b) the development of new personal dosimetry techniques in order to adapt to new situations, instrumental techniques and information management technologies allowing for better assessment of exposure dose; and (c) development of the principle of radiological protection optimisation (ALARA), which has been set up internationally as the fundamental principle on which radiological protection interventions are based. II. Assessment of environmental radiological impact, the objective of which is to assess the nature and magnitude of situations of exposure to ionising radiations as a result of the controlled or uncontrolled release of radioactive material to the environment, and III.Reduction of the radiological impact of radioactive wastes, the objective of which is to develop radioactive material and waste management techniques suitable for each situation, in order to reduce the risks associated with their definitive management or their release to the environment. Briefly described below are the strategic lines of R and D of the CSN, the Electricity Industry, Ciemat and Enresa in the aforementioned areas. (Author)

  6. Comparison of the distribution of non-radiological and radiological fatal risk in Ontario industries (addendum)

    International Nuclear Information System (INIS)

    Davis, C.K.; Forbes, W.F.; Hayward, L.M.

    1986-09-01

    Occupational limits for exposure to ionizing radiation, in force in Canada, are based on recommendations of international bodies, particularly the International Commission on Radiological Protection (ICRP). To determine whether the ICRP assertions concerning the similarity of the distributions of occupational risk at the higher risk levels (from non-radiation and from radiation work) to Canada a study of the high end of the distributions of non-radiological risk of occupational fatalities in the province of Ontario was performed. For the present study total doses from exposure to sources of ionizing radiation for Ontario workers were converted to relative risk rates to allow direct comparison with the non-radiological results. In addition, absolute values for the radiological risk rates (RRR) were derived. The radiological risk estimates are based on workers who work both from nuclear reactions and from X-rays. The conclusion is made that the radiological and non-radiological risk rate (NRRR) distributions are similar in shape, but the RRR are approximately 1 to 27 percent of the NRRR, depending on the industry concerned

  7. Radiation exposure of children in pediatric radiology, Pt. 8. Radiation doses during thoracoabdominal babygram and abdominal X-ray examination of the newborn and young infants

    International Nuclear Information System (INIS)

    Schneider, Karl; Seidenbusch, M.C.

    2010-01-01

    Purpose: Reconstruction of radiation doses for the thoracoabdominal babygram and the abdomen X-ray from radiographic settings and exposure data acquired at Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007; comparison of these dose values with values reported in the literature; recommendation of a reference dose value for the thoracoabdominal babygram. Materials and Methods: The data from all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 1493 thoracoabdominal babygrams and 3632 abdomen X-rays of newborns and young infants. With the computer program PAeDOS, a specific dose reconstruction algorithm was developed. Results: the entrance dose values of thoracoabdominal babygrams and abdomen X-rays in DvHK could be reduced in the last 30 years by a factor of 5 to 8. They are far below the entrance dose values reported by other radiology departments in Europe. Nevertheless, a slight increase in the entrance doses that correlates with the introduction of a digital storage phosphor system could be observed in the last years. Conclusion: because nearly all radiosensitive body organs in early life are involved during a thoracoabdominal babygram and because of the high radiation sensitivity of newborns, thoracoabdominal babygrams should be performed in neonatology with caution. A dose value of 1.0 cGy cm 2 could serve as the actual reference dose value for the thoracoabdominal babygram of the newborn. (orig.)

  8. Concepts of collective dose in radiological protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1985-01-01

    The collective dose (S) is the product of the number of individuals exposed and their average radiation dose. ''Radiation dose'' is usually taken to be the effective dose equivalent (Hsub(E)) as defined by the ICRP. The unit of the collective dose is then the man.sievert (man.Sv). The following four applications of the collective dose are the most common: (a) in the assessment of the highest per caput dose rate in the future from a continued practice which exposes some critical group or the population as a whole to radiation; (b) in the limitation of present radiation sources, if it is believed that additional sources in the future may add to the per caput dose in a population so that it might reach unacceptable levels unless all sources are controlled at an early stage; (c) as an input to justification assessments, indicating the total detriment from a certain practice; and (d) as an input to optimization assessments as the basis for costing detriment in differential cost-benefit analyses of protection arrangements. It is sometimes said that the collective dose is a useful quantity only if the assumption of a non-threshold, linear dose-response relation is valid. This assumption is not always necessary. Applications (a) and (b) are possible without any assumption on the dose-response relationship at very low doses. Only applications (c) and (d) require the assumption of a non-threshold, linear dose-response relation. Some hesitation in using the collective dose originates in distrust in the biological assumptions implied by uses (c) and (d), but also in lack of confidence in the meaningfulness of collective doses that have been derived by adding dose contributions over very long time periods. However, none of the four applications (a) - (d) is by necessity related to extreme time scales. That problem mainly arises in the assessment of radioactive waste repositories

  9. Effective radiological safety program for electron linear accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.

    1980-10-01

    An outline is presented of some of the main elements of an electron accelerator radiological safety program. The discussion includes types of accelerator facilities, types of radiations to be anticipated, activity induced in components, air and water, and production of toxic gases. Concepts of radiation shielding design are briefly discussed and organizational aspects are considered as an integral part of the overall safety program

  10. Fine tuning of work practices of common radiological investigations performed using computed radiography system

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Timothy Peace, B.S.; Sunny, S.; Victor Raj, D.

    2007-01-01

    Introduction: The advent of the computed radiography (CR) has brought about remarkable changes in the field of diagnostic radiology. A relatively large cross-section of the human population is exposed to ionizing radiation on account of common radiological investigations. This study is intended to audit radiation doses imparted to patients during common radiological investigations involving the use of CR systems. Method: The entrance surface doses (ESD) were measured using thermoluminescent dosimeters (TLD) for various radiological investigations performed using the computed radiography (CR) systems. Optimization of radiographic techniques and radiation doses was done by fine tuning the work practices. Results and conclusion: Reduction of radiation doses as high as 47% was achieved during certain investigations with the use of optimized exposure factors and fine-tuned work practices

  11. A method to reduce patient's eye lens dose in neuro-interventional radiology procedures

    International Nuclear Information System (INIS)

    Safari, M.J.; Wong, J.H.D.; Kadir, K.A.A.; Sani, F.M.; Ng, K.H.

    2016-01-01

    Complex and prolonged neuro-interventional radiology procedures using the biplane angiography system increase the patient's risk of radiation-induced cataract. Physical collimation is the most effective way of reducing the radiation dose to the patient's eye lens, but in instances where collimation is not possible, an attenuator may be useful in protecting the eyes. In this study, an eye lens protector was designed and fabricated to reduce the radiation dose to the patients’ eye lens during neuro-interventional procedures. The eye protector was characterised before being tested on its effectiveness in a simulated aneurysm procedure on an anthropomorphic phantom. Effects on the automatic dose rate control (ADRC) and image quality are also evaluated. The eye protector reduced the radiation dose by up to 62.1% at the eye lens. The eye protector is faintly visible in the fluoroscopy images and increased the tube current by a maximum of 3.7%. It is completely invisible in the acquisition mode and does not interfere with the clinical procedure. The eye protector placed within the radiation field of view was able to reduce the radiation dose to the eye lens by direct radiation beam of the lateral x-ray tube with minimal effect on the ADRC system. - Highlights: • The eye protector can considerably reduce the patient's eye lens dose during neuro-interventional procedures. • This protector does not significantly perturb the fluoroscopy image and was completely invisible on the acquisition image due to image subtraction. • The eye protector does not significantly change the exposure parameters (kV and mAs).

  12. A method for optimization of patient dose estimation in conventional radiology; Un metodo per l'ottimizzazione della stima della dose al paziente nella radiologia tradizionale

    Energy Technology Data Exchange (ETDEWEB)

    Tofani, A.; Del Corona, A. [Azienda Unita' Sanitaria Locale 6, Livorno (Italy). Unita' Ospedaliera di Fisica Sanitaria; Niespolo, A. [Azienda Ospedaliera Pisana, Pisa (Italy). Unita' Ospedaliera di Fisica Sanitaria

    2000-05-01

    The method recommended by Report no. 34 (1982) of the International Commission on Radiological Protection (ICRP) for patient dose computation in diagnostic radiology is based on tabulated dosimetric data obtained from Monte Carlo simulations on anthropomorphic phantoms described by simple mathematical functions. When computing the dose absorbed by an adult patient, this method suffers from two main limitations: first, the geometrical parameters and in particular focus to film distance and film size are fixed, which makes the dosimetric data of limited use when the examination geometry differs form the ICRP standard. In addition, when patient size and mass differ considerably from the corresponding quantities of the mathematically described phantom (the so-called reference man, with a height of 174 cm and a mass of 70.9 Kg) the ICRP method may lead to great errors in dose estimate. The aim of the present paper is to indicate a method to overcome the above limitations. The algorithm proposed in this work is based on the method suggested by Huda Gkanatsios in order to compute the effective dose through a linear first of the energy imparted per unit dose-area product a function of the half value thickness and by using a fit coefficients depending on both phantom thickness and peak voltage. It was devised a procedure to normalize the dose computed with this methods with respect to the equivalent effective dose obtained with the ICRP method. Therefore it was determined the dependence of the absorbed dose on focus-to-film distance, film size and patient anatomy. It was found that for each value of patient mass the dose dependence on film size can be approximated by a polynomial function, while the dose dependence on focus-to-film distance can be approximated by a power law. If the above parameters vary in a limited range close to the ICRP standard, a linear fit can be performed without introducing a considerable error. The linear fit coefficients, on the other hand, were

  13. Radiological protection in medicine: work of ICRP Committee 3

    International Nuclear Information System (INIS)

    Vañó, E.; Cosset, J.M.; Rehani, M.M.

    2012-01-01

    Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with protection in medicine, and develops recommendations and guidance on the protection of patients, staff, and the public against radiation exposure in medicine. This paper presents an overview of the work of Committee 3 over recent years, and the work in progress agreed at the last annual meeting in Bethesda, MD in October 2011. The reports published by ICRP dealing with radiological protection in medicine in the last 10 years cover topics on: education and training in radiological protection; preventing accidental exposures in radiation therapy; dose to patients from radiopharmaceuticals; radiation safety aspects of brachytherapy; release of patients after therapy with unsealed radionuclides; managing patient dose in digital radiology and computed tomography; avoidance of radiation injuries from medical interventional procedures; pregnancy and medical radiation; and diagnostic reference levels in medical imaging. Three new reports will be published in the coming months dealing with aspects of radiological protection in fluoroscopically guided procedures outside imaging departments; cardiology; and paediatric radiology. The work in progress agreed by Committee 3 is also described.

  14. Pediatric digital radiography education for radiologic technologists: current state

    International Nuclear Information System (INIS)

    Morrison, Gregory; Culbertson, John; Carbonneau, Kira; John, Susan D.; Goske, Marilyn J.; Smith, Susan N.; Charkot, Ellen; Herrmann, Tracy

    2011-01-01

    Digital radiography (DR) is one of several new products that have changed our work processes from hard copy to digital formats. The transition from analog screen-film radiography to DR requires thorough user education because of differences in image production, processing, storage and evaluation between the forms of radiography. Without adequate education, radiologic technologists could unknowingly expose children to higher radiation doses than necessary for adequate radiograph quality. To evaluate knowledge about image quality and dose management in pediatric DR among radiologic technologists in the U.S. This communication describes a survey of 493 radiologic technologists who are members of the American Society of Radiologic Technologists (ASRT) and who evaluated the current state of radiological technologist education in image quality and dose management in pediatric DR. The survey included 23 survey questions regarding image acquisition issues, quality assurance, radiation exposure and education in DR of infants and children. Radiologic technologists express many needs in areas of training and education in pediatric DR. Suggested improvements include better tools for immediate feedback about image quality and exposure, more information about appropriate technique settings for pediatric patients, more user-friendly vendor manuals and educational materials, more reliable measures of radiation exposure to patients, and more regular and frequent follow-up by equipment vendors. There is a clear and widespread need for comprehensive and practical education in digital image technology for radiologic technologists, especially those engaged in pediatric radiography. The creation of better educational materials and training programs, and the continuation of educational opportunities will require a broad commitment from equipment manufacturers and vendors, educational institutions, pediatric radiology specialty organizations, and individual imaging specialists. (orig.)

  15. Estimation of entrance dose on chest radiographs according to the exposure index on Computerized Radiology System: preliminary results; Estimativa de dose de entrada a partir do indice de exposicao em sistema CR: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Donomai, Luana Kaoru; Jornada, Tiago da Silva; Daros, Kellen Adriana Curci, E-mail: luana.donomai@gmail.com, E-mail: tiagosjornada@gmail.com, E-mail: daros.kellen@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil)

    2014-07-01

    Digital radiology has improved image quality in radiographs in comparison to screen/film systems though the visual control of the quantity of radiation involved on these exams became more demanding due to the low perception of over and underexposed images. Therefore, this study aims to analyze the exposure index (EI) from chest examinations and relate them to the entrance skin dose. Indices from 29 patients and kerma entrance dose were correlated. A correlation coefficient equal to 0,6881 was calculated. EI and entrance dose are correlated positive and moderately, indicating the relevance to deepen the subject. (author)

  16. Anticipation across disciplines

    CERN Document Server

    2016-01-01

    Never before was anticipation more relevant to the life and activity of humankind than it is today. “It is no overstatement to suggest that humanity’s future will be shaped by its capacity to anticipate….” (Research Agenda for the 21st Century, National Science Foundation). The sciences and the humanities can no longer risk explaining away the complexity and interactivity that lie at the foundation of life and living. The perspective of the world that anticipation opens justifies the descriptor “the post-Cartesian Revolution.” If anticipation is a valid research domain, what practical relevance can we await? Indeed, anticipation is more than just the latest catch-word in marketing the apps developed by the digital technology industry. Due to spectacular advances in the study of the living, anticipation can claim a legitimate place in current investigations and applications in the sciences and the humanities. Biology, genetics, medicine, as well as politics and cognitive, behavioral, and social sci...

  17. Dose Reduction Techniques

    International Nuclear Information System (INIS)

    WAGGONER, L.O.

    2000-01-01

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program

  18. Dose Reduction Techniques

    Energy Technology Data Exchange (ETDEWEB)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  19. Patients and personnel radiation protection in interventional radiology and in surgery

    International Nuclear Information System (INIS)

    Menechal, P.; Valero, M.; Godet, J.L.

    2009-01-01

    The development of the interventional radiology and acts realised under radiological guiding is a real benefit for patients. The doses delivered can however, generate important detriments (determinist effects). the patients and the personnel are exposed to important doses, heterogeneous and very different doses according the operator, the patient morphology and the treated pathology. This theme is considered by the the nuclear safety Authority as a priority in the medical medium. (N.C.)

  20. Dose tracking and dose auditing in a comprehensive computed tomography dose-reduction program.

    Science.gov (United States)

    Duong, Phuong-Anh; Little, Brent P

    2014-08-01

    Implementation of a comprehensive computed tomography (CT) radiation dose-reduction program is a complex undertaking, requiring an assessment of baseline doses, an understanding of dose-saving techniques, and an ongoing appraisal of results. We describe the role of dose tracking in planning and executing a dose-reduction program and discuss the use of the American College of Radiology CT Dose Index Registry at our institution. We review the basics of dose-related CT scan parameters, the components of the dose report, and the dose-reduction techniques, showing how an understanding of each technique is important in effective auditing of "outlier" doses identified by dose tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Radiological emergency preparedness (REP) program

    International Nuclear Information System (INIS)

    Kwiatkowski, D.H.

    1995-01-01

    This talk focuses on the accomplishments of Radiological Emergency Preparedness Program. Major topics include the following: strengthening the partnership between FEMA, the States, and the Industry; the Standard Exercise Report Format (SERF); Multi-year performance partnership agreement (MYPPA); new REP Program guidance; comprehensive exercise program; federal radiological emergency response plan (FRERP); international interest; REP user fee; implementation EPA PAGs and Dose Limits; Contamination monitoring standard for portal monitors; guidance documents and training

  2. The patient dose survey and dose reduction in diagnostic radiology

    International Nuclear Information System (INIS)

    Dang Thanh Luong; Duong Van Vinh; Ha Ngoc Thach

    2000-01-01

    This paper presented the results of the patient dose survey in some hospitals in Hanoi from 1995 to 1997. The main investigated types of the X-ray examination were: Chest PA, LAT; Skull PA/AP, LAT; Lumbar spine AP, LAT; and Pelvis AP. The fluctuation of the entrance surface doses (ESD) was too large, even in the same type of X-ray examination and X-ray facility. It was found that the ratio of maximum and minimum ESD were ranged from 1.5 to 18. The mean values of ESD for chest and skull were higher than CEC recommended values, while the mean values of lumbar spine and pelvis were smaller than that of CEC recommended values. The result of dose intercomparison was also reported. Some methods of dose reduction were applied for improving the patient dose in X-ray departments such as a high kV technique, high sensitive screen-film combination. (author)

  3. Radiological characterisation on V1 NPP technological systems and buildings - Contamination

    International Nuclear Information System (INIS)

    Hanzel, Richard; Rapant, Tibor; Svitek, Jaroslav

    2012-01-01

    Since 2001, the preparation of V1 NPP practical decommissioning has been supported and partly financed by the Bohunice International Decommissioning Support Fund, under the administration of the European bank for Reconstruction and development. AMEC Nuclear Slovakia, together with partners STM Power and EWN GmbH, performed BIDSF B.4 project - Decommissioning database development. The main purpose of the B6.4 project was to develop a comprehensive physical and radiological inventory database to support RAW management development of the decommissioning studies and decommissioning project of Bohunice V1 NPP. AMEC Nuclear Slovakia was responsible mainly for DDB design, planning documents and physical and radiological characterization including sampling and analyses of the plant controlled area. The objective of V1 NPP radiological characterization was summarisation of sampling and analyses results, description of methodology used for radiological characterization and determination of the V1 NPP radiological inventory. Results of the characterization survey included the identification and distribution of contamination in buildings, structures, and other site facilities or other impacted media. The characterization survey clearly identified those portions of the site that have been affected by site activities and are contaminated. The survey also identified the portions of the site that have not been affected by these activities and can be marked as 'not impacted'. Radiological data have been presented also on the basis of index RAI level, where 5 radiological classes have been defined. On the basis of sampling and analyses results following radiological parameters have been assigned to all impacted components and civil structures included in DDB: dose rate in contact, dose rate in distance 1 m, external surface contamination, internal surface contamination and volume/mass contamination. Each room in controlled area has been described by following radiological parameters

  4. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  5. A kinematic-based methodology for radiological protection: Runoff analysis to calculate the effective dose for internal exposure caused by ingestion of radioactive isotopes

    Science.gov (United States)

    Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.

    2014-05-01

    We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes

  6. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.

    2016-03-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques.

  7. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    International Nuclear Information System (INIS)

    Karim, M K A; Hashim, S; Bahruddin, N A; Ang, W C; Salehhon, N; Bradley, D A

    2016-01-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques. (paper)

  8. Radiological maps for Trabzon, Turkey

    International Nuclear Information System (INIS)

    Kurnaz, A.; Kucukomeroglu, B.; Damla, N.; Cevik, U.

    2011-01-01

    The activity concentrations and absorbed gamma dose rates due to primordial radionuclides and 137 Cs have been ascertained in 222 soil samples in 18 counties of the Trabzon province of Turkey using a HPGe detector. The mean activity concentrations of 238 U, 232 Th, 40 K and 137 Cs in soil samples were 41, 35, 437 and 21 Bq kg -1 , respectively. Based on the measured concentrations of these radionuclides, the mean absorbed gamma dose in air was calculated as 59 nGy h -1 and hence, the mean annual effective dose due to terrestrial gamma radiation was calculated as 72 μSv y -1 . In addition, outdoor in situ gamma dose rate (D) measurements were performed in the same 222 locations using a portable NaI detector and the annual effective dose was calculated to be 66 μSv y -1 from these results. The results presented in this study are compared with other parts of Turkey. Radiological maps of the Trabzon province were composed using the results obtained from the study. - Highlights: → →The study highlights activity concentrations of 238 U, 232 Th, 40 K and 137 Cs in soil. → The absorbed gamma dose in air and the mean annual effective dose were calculated. → The calculated results compared with outdoor in situ gamma dose measurements. → Radiological maps of the Trabzon province were created using ArcGIS applications. → The results will be valuable data for future estimations of radioactive pollution.

  9. The quality assurance in diagnostic radiology and their effect in the quality image and radiological protection of the patient

    International Nuclear Information System (INIS)

    Gaona, Enrique

    2002-01-01

    The quality assurance in diagnostic radiology in Mexico before 1997 was virtually nonexistent except in few academic institutions and hospitals. The purpose of this study was to carry out an exploratory survey of the issue of quality control parameters of general and fluoroscopy x-ray systems in the Mexican Republic and their effects in the quality image and radiological protection of the patient. A general result of the survey is that there is not significant difference in the observed frequencies among public and private radiology departments for α = 0.05, then the results are valid for both departments. 37% of x-ray systems belong to public radiology departments. In the radiology departments that didn't agree with the Mexican regulations in: light field to mach the x-ray field, light field intensity, kV, time and output. In those cases, we found a repeat rate of radiography studies >30% with non necessary dose to patient, low quality image and high operating costs of the radiology service. We found in x-ray fluoroscopy systems that 62% had a low quality image due to electronic noise in the television chain. In general the x-ray systems that didn't agree with Mexican regulations are 35% and they can affect in a way or other the quality image and the dose to patient

  10. Practical aspects of radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    Faulkner, K.; Vano, E.; Ortiz, P.; Ruiz, R.

    2000-01-01

    The rise in the frequency of interventional procedures over recent years is due to the significant benefits of interventional radiology in which the patient may often be treated as an out-patient for clinical conditions, which would have previously meant that the patient would need surgery, i.e., a more traumatic and expensive treatment. Patients and the public demand greater access to interventional radiology for the these reasons. In some circumstances, for example in neuroradiology the aneurysm may be inoperable surgically and interventional radiology is the only method of treatment. The growth in interventional radiology therefore reflects an drive towards better, safer and more cost effective medicine. Certain types of interventional radiology procedures are quite complicated and may involve the use of extended fluoroscopy times and the use of high dose rates. In some cases reappearance of the original disease may lead to repeated interventions. This combination together with a lack of quality control in x-ray systems, has led deterministic effects in the skin of patients ranging from transient erythema to necrosis. In a few cases, staff doses reached the levels of deterministic effects, such as dot-like sub-capsular opacities (cataracts) and small dot-like paranuclear opacities and discrete posterior sub-capsular condensations in both eyes. A close review of the reported cases reveals that the working conditions were extreme, mainly: a) very short distance from x-ray focus to the patient, collimator in direct contact with the skin, b) use of high dose rate mode for a time much longer than necessary, c) fixed projection exposing the same area of skin during the entire procedure and d) malfunction of automatic exposure control systems. From these lessons, measure for preventing deterministic effects are straightforward: a) placing the x-ray tube at a distance of 50 cm or more from the skin whenever possible, b) placing the image intensifier as close as possible

  11. Prospective radiological dose assessment. Amersham plc (Amersham site) variation application December 1998

    International Nuclear Information System (INIS)

    Allott, R.

    2001-01-01

    Amersham plc (previously Nycomed-Amersham plc) submitted an application to the Environment Agency in December 1998 for a variation to their radioactive waste discharge authorisations granted under the Radioactive Substances Act 1993. The application requested a reduction in the discharge limits for certain radionuclides and no change for the remaining radionuclides. Amersham plc undertook a further review of their discharge requirements and submitted a new assessment for revised limits in January 2001. This report provides an assessment of the radiological implications of discharges at these revised limits requested by Amersham plc and the limits proposed by the Agency. It has been prepared by the National Compliance Assessment Service at the request of Thames Region to support their determination of the application. Four candidate critical groups were identified who could be exposed to discharges from the Amersham site: 1) Sewage workers at the Maple Lodge sewage works who might be exposed to external radiation from discharges contained within sewage and inadvertently inhale or ingest sewage. 2) Anglers on the Grand Union Canal who eat a small proportion of their annual catch of freshwater fish, who drink water abstracted solely from the River Colne and eat vegetables irrigated by water from the canal. 3) Persons living closest to site who eat locally produced food. 4) Dog walkers living near to site who eat locally produced food. For continuous discharges at the Agency's proposed annual limits, the highest dose of 160 μSv/y is predicted to be received by infants who live closest to the site and eat locally produced food. Therefore, this has been identified as the critical group. Children and adults living at the same location and eating locally produced food receive doses of 140 μSv/y and 130 μSv/y respectively. The critical group dose is less than the source constraint of 300 μSv/y. The dose is dominated by direct radiation from the site (110 μSv/y) and the

  12. An investigation of entrance surface dose calculations for diagnostic radiology using Monte Carlo simulations and radiotherapy dosimetry formalisms

    International Nuclear Information System (INIS)

    Omrane, L Ben; Verhaegen, F; Chahed, N; Mtimet, S

    2003-01-01

    Our aim in this work was to investigate the methodology used in the determination of the entrance surface dose (ESD) in diagnostic radiology. In kV x-rays for low-energy photons (tube potential up to 160 kV, HVL: 1-8 mm Al), the ESD is based on the use of the ratio of mass-energy absorption coefficients and backscatter factors. A full simulation of the photon and electron transport in a kilovoltage x-ray unit, using the Monte Carlo code BEAM/EGS4, was performed to obtain an accurate beam phase space for use in dose calculation. The modelled phase space was experimentally validated for the beam qualities (measured HVL: 3.3 mm Al-2.2 mm Cu) and showed good agreement between calculated and measured HVLs, air kerma and relative dose distributions. We have computed the conversion factors from air kerma to water or soft tissue absorbed dose at the surface of a phantom for beam qualities (HVL: 3.3-8.35 mm Al). The same model was also used to calculate the ESD in water and in soft tissue for the low-energy photon range considered. The results show that the numerical differences between the air kerma and the water kerma based backscatter factors are insignificant. The same conclusion was reached for the (μ en /ρ) ratios, for soft tissue to air, evaluated using either the primary photon spectra or the spectra at the surface of a phantom. Furthermore, the good agreement obtained for the computation of the conversion factors with a full BEAM/EGS4 model confirms the previous studies which are based on different sources for the spectral distribution and different beam geometries (pencil beam or point source assumptions). On the other hand, the ESD in water or soft tissue is well described either with the B air or the B w formalism. Conversion factors from air kerma to ESD in these media are proposed in this work for several beam qualities in diagnostic radiology

  13. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  14. Radiological Source Terms for Tank Farms Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  15. Statistical behavior of high doses in medical radiodiagnosis; Comportamento estatistico das altas doses em radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Adriana Elisa, E-mail: adrianaebarboza@gmail.com, E-mail: elisa@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This work has as main purpose statistically estimating occupational exposure in medical diagnostic radiology in cases of high doses recorded in 2011 at national level. For statistical survey of this study, doses of 372 IOE's diagnostic radiology in different Brazilian states were evaluated. Data were extracted from the work of monograph (Research Methodology Of High Doses In Medical Radiodiagnostic) that contains the database's information Sector Management doses of IRD/CNEN-RJ, Brazil. The identification of these states allows the Sanitary Surveillance (VISA) responsible, becomes aware of events and work with programs to reduce these events. (author)

  16. Intercomparison of active personal dosemeters in interventional radiology

    International Nuclear Information System (INIS)

    Clairand, I.; Struelens, L.; Bordy, J. M.; Daures, J.; Debroas, J.; Denozieres, M.; Donadille, L.; Gouriou, J.; Itie, C.; Vaz, P.; D'Errico, F.

    2008-01-01

    The use of active personal dosemeters (APD) in interventional radiology was evaluated by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its sixth Framework Programme. Interventional radiology procedures can be very complex and they can lead to relatively high doses to personnel who stand close to the primary radiation field and are mostly exposed to radiation scattered by the patient. For the adequate dosimetry of the scattered photons, APDs must be able to respond to low-energy [10-100 keV] and pulsed radiation with relatively high instantaneous dose rates. An intercomparison of five APD models deemed suitable for application in interventional radiology was organised in March 2007. The intercomparison used pulsed and continuous radiation beams, at CEA-LIST (Saclay (France)) and IRSN (Fontenay-aux-Roses (France)), respectively. A specific configuration, close to the clinical practice, was considered. The reference dose, in terms of Hp(10), was derived from air kerma measurements and from the measured and calculated energy distributions of the scattered radiation field. Additional Monte Carlo calculations were performed to investigate the energy spectra for different experimental conditions of the intercomparison. The results of this intercomparison are presented in this work and indicate which APDs are able to provide a correct response when used in the specific low-energy spectra and dose rates of pulsed X-rays encountered in interventional radiology. (authors)

  17. An estimation of the percentage of dose in intraoral radiology exams using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Bonzoumet, S.P.J.; Braz, D.; Lopes, R.T.; Anjos, M.J.; Universidade do Estado do Rio de Janeiro; Padilha, Lucas

    2005-01-01

    In this work we used the EGS4 code in a simulated study of dose percentage in intraoral examination to 10 energy range to 140 keV. The simulation was carried out on a model consisting of different geometry (cheek, tooth and mouth cavity) under normal incidence X-ray beam over the surface of the various simulated materials. It was observed that for energy smaller than 30 keV most of the energy is deposited on the cheek. In 30 keV there is a point of maximum radiation absorption in the tooth (approximately 60% of the energy of the incident radiation is deposited on the tooth) in relation to other simulated materials. It means that in this energy there is a better contrast in the radiographic image of the tooth and a smaller dose on the cheek. In 40 keV the deposited energy in the tooth is roughly equal to the energy that is transmitted (to the radiographic film or buccal cavity) causing a degradation in the radiographic image and/or a higher dose in the oral cavity. For energies above 40 keV, the amount of energy transmitted (to the oral cavity and/or radiographic film) is higher than the energy deposited in other materials, i.e, it only contributes to increasing of dose in the regions close to the oral cavity and the radiographic image degradation. These results can provide important information for radiological procedures applied in dentistry where the image quality is a relevant factor to a dental evaluation needs as well as reducing dose in the oral cavity.

  18. Estimated radiation exposure from medical imaging for patients of radiology service of Al Faraby Hospital, Oujda Morocco

    Directory of Open Access Journals (Sweden)

    Slimane Semghouli

    2015-09-01

    Full Text Available Purpose: To evaluate the effective dose received per radiological examination per patient and the additional cancer risk factor in the Radiological Service of Al Faraby Hospital in 2012. Methods: From the number of radiological procedures (NX made in 2012 in the radiology service of Al Faraby Hospital and the average effective dose DEX associated with each type of act exam X, it is possible to calculate the effective dose collective [S =∑ DEX * NX]. The additional cancer risk factor is calculated by the X-ray risk software promoting responsible imaging through patient and provider education. It is function of the effective dose received, the age at the time of exam, and gender of patient. Results: The radiological average effective dose received per act exam is 1 millisievert (mSv, whereas it is 4.45 mSv and 0.21 mSv for the computed tomography (CT scan and conventional radiological examinations, respectively. As for the average number of acts per patient 2.66, the effective dose is 1.16 mSv and 3.8 mSv for CT scan and conventional radiological examinations, respectively. As for the average effective dose per patient 2.69 mSv, it is 5.16 mSv and 0.81 mSv for CT scan and conventional radiological examinations, respectively. As for the additional cancer risk in 40 years at the time of exam, the average additional cancer risk is equal to 2.17 × 10-4, wheras the risk is 4.17 × 10-4 and 6.54 × 10-5 for CT scan and conventional radiological examinations, respectively. Conclusion: Medical exposure related to the diagnosis of patients in the radiology service in 2012 can be characterized by: (a 2.66 Act exams on average per patient diagnosis corresponding to a mean effective dose equal to 2.69 mSv per patient, (bfrequency of conventional radiology and CT scan was 81% and 19%, respectively. These act exams contribute to the collective effective dose by 17% and 83%, respectively, and (c radiological acts can be divided into three levels of exposures

  19. Radiological protection report 2012

    International Nuclear Information System (INIS)

    2013-06-01

    Two years after the massive release of radiation from the nuclear power plants at Fukushima Dai-ichi, the repercussions continue to preoccupy the radiological and emergency protection community, both in Switzerland and internationally. In Switzerland the Swiss Federal Nuclear Safety Inspectorate (ENSI) has initiated measures as part of the European Union Stress Tests and has its own Fukushima Action Plan. In this Annual Report, ENSI focuses on radiological protection in Swiss nuclear facilities. The average individual dose has changed little compared with previous years. At 0.7 mSv, it is significantly below the limit both for persons exposed to radiation during their work (20 mSv) and the annual average rate of exposure for the population in Switzerland as a whole (5.5 mSv). In terms of collective doses, the extensive maintenance work at the Leibstadt power plant (KKL) resulted in a doubling of rates compared with recent years. However, in the remaining nuclear facilities the rates have not changed significantly. The highest individual dose during the year under review was 13 mSv. Exposure rates in 2012 for all those exposed to radiation during work in facilities subject to ENSI surveillance were below the maximum limit. Greater attention is now being given to work in high and variable radiation fields and in difficult conditions. Swiss nuclear facilities continue to operate a consistent radiological protection approach. Measuring equipment plays an important role in radiological protection. Having conducted a range of inspections and comparative measurements of aerosol-iodine filters and waste water sampling together with measurements in the field of personal dosimetry, ENSI has concluded that the required measuring equipment for radiological protection exists, that this equipment is correctly used and provides reliable data. ENSI maintains a test laboratory that analyses samples from nuclear facilities and their immediate vicinity and also conducts field

  20. Analysis of records of external occupational dose records in Brazil; Analise dos registros de dose ocupacional externa no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia L.P.; Silva, Herica L.R. da, E-mail: claudia@ird.gov.br, E-mail: herica@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Silva, Claudio Ribeiro da, E-mail: claudio@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Brazil, a continental country, with actually more than 150,000 workers under individual monitoring for ionizing radiation, has implemented in 1987 a centralized system for storage of external occupational dose. This database has been improved over the years and is now a web-based information system called Brazilian External Occupational Dose Management Database System - GDOSE. This paper presents an overview of the Brazilian external occupational dose over the years. The estimated annual average effective dose shows a decrease from 2.4 mSv in 1987 to about 0.6 mSv, having been a marked reduction from 1987 to 1990. Analyzing by type of controlled practice, one sees that the medical and dental radiology is the area with the largest number of users of individual monitors (70%); followed by education practices (8%) and the industrial radiography (7%). Additionally to photon whole body monitoring; neutron monitors are used in maintenance (36%), reactor (30%) and education (27%); and extremity monitors, in education (27%), nuclear medicine (22%) and radiology (19%). In terms of collective dose, the highest values are also found in conventional radiology, but the highest average dose values are those of interventional radiology. Nuclear medicine, R and D and radiotherapy also have average annual effective dose higher than 1 mSv. However, there is some very high dose values registered in GDOSE that give false information. This should be better analyzed in the future. Annual doses above 500 are certainly not realistic. (author)

  1. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    using dose guidance (reference) levels in radiology and nuclear medicine examinations, Radiological protection of the embryo and foetus in pregnant patients, Radiological protection of paediatric patients, Radiological protection of patients in radiotherapy: external beam, Radiological protection of patients in radiotherapy: brachytherapy, Radiological protection of patients in biomedical research, Influence of standardization in the design and development of medical radiological equipment on the radiological protection of patients, Education, training and continuous professional development in the radiological protection of patients, Topics for research and development in the radiological protection of patients, Implementation of regulations on the radiological protection of patients

  2. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    using dose guidance (reference) levels in radiology and nuclear medicine examinations, Radiological protection of the embryo and foetus in pregnant patients, Radiological protection of paediatric patients, Radiological protection of patients in radiotherapy: external beam, Radiological protection of patients in radiotherapy: brachytherapy, Radiological protection of patients in biomedical research, Influence of standardization in the design and development of medical radiological equipment on the radiological protection of patients, Education, training and continuous professional development in the radiological protection of patients, Topics for research and development in the radiological protection of patients, Implementation of regulations on the radiological protection of patients.

  3. Transposition of the 97/43 EURATOM directive. Mission on procedures and standard levels of medical examinations using ionizing radiations. The radiological procedures: quality criteria and doses optimization

    International Nuclear Information System (INIS)

    2001-07-01

    The objective of this report concerns the optimization of radiological practices, to avoid delivering unuseful doses while ensuring an image quality necessary to the obtaining of the desired diagnosis information. (N.C.)

  4. Radiological protection and quality control for diagnostic radiology in China

    International Nuclear Information System (INIS)

    Baorong, Yue

    2008-01-01

    Full text: There are 43,000 diagnostic departments, nearly 70,000 X-ray diagnostic facilities, 7,000 CT, 250 million for the annual total numbers of X-ray examinations, 120,000 occupationally exposed workers in diagnostic radiology. 'Basic standards for protection against ionizing radiation and for the safety of radiation sources' is promulgated on October, 2002. This basic standard follows the BSS. 'Rule on the administration of radio-diagnosis and radiotherapy', as a order of the Ministry of Health No. 46, is promulgated by Minister of Health on January 24, 2006. It includes general provisions, requirements and practice, establishment and approval of radio-diagnosis and radiotherapy services, safeguards and quality assurance, and so on. There are a series of radiological protection standards and quality control standards in diagnostic radiology, including 'radiological protection standard for the examination in X-ray diagnosis', 'radiological health protection standards for X-ray examination of child-bearing age women and pregnant women', 'radiological protection standards for the children in X-ray diagnosis', 'standards for radiological protection in medical X-ray diagnosis', 'specification for radiological protection monitoring in medical X-ray diagnosis', 'guide for reasonable application of medical X-ray diagnosis', 'general aspects for quality assurance in medical X-ray image of diagnosis', 'specification of image quality control test for the medical X-ray diagnostic equipment', 'specification of image quality assurance test for X-ray equipment for computed tomography', 'specification for testing of quality control in computed radiography (CR)' and 'specification for testing of quality control in X-ray mammography'. With the X-ray diagnostic equipment, there are acceptant tests, status tests and routing tests in large hospitals. It is poor for routing test in middle and smaller hospitals. CT is used widely in diagnostic radiology, however most workers in CT

  5. Quality assurance program on diagnostic radiology

    International Nuclear Information System (INIS)

    Yacovenco, Alejandro; Borges, Jose Carlos; Mota, Helvecio Correa

    1995-01-01

    Aiming to elaborate a methodology to optimize the performance of the Radiology Service of the Military Police Hospital, in Rio de Janeiro, some goals were established: improvement of the attendance to patients; improvement of the qualification of technicians; achievement and maintenance of high degrees of quality in each step of the radiological process; improvement of the image quality; optimization of dose per examination and cost reduction. (author). 8 refs., 3 figs

  6. Radiological informed consent in cardiovascular imaging: towards the medico-legal perfect storm?

    Directory of Open Access Journals (Sweden)

    Loré Cosimo

    2007-10-01

    Full Text Available Abstract Use of radiation for medical examinations and tests is the largest manmade source of radiation exposure. No one can doubt the immense clinical and scientific benefits of imaging to the modern practice of medicine. Every radiological and nuclear medicine examination confers a definite (albeit low long-term risk of cancer, but patients undergoing such examinations often receive no or inaccurate information about radiological dose exposure and corresponding risk directly related to the radiological dose received. Too detailed information on radiological dose and risk may result in undue anxiety, but information "economical with the truth" may violate basic patients' rights well embedded in ethics (Oviedo convention 1997 and law (97/43 Euratom Directive 1997. Informed consent is a procedure needed to establish a respectful and ethical relation between doctors and patients. Nevertheless, in an "ideal" consent process, the principle of patient autonomy in current radiological practice might be reinforced by making it mandatory to obtain explicit and transparent informed consent form for radiological examination with high exposure (≥ 500 chest x-rays. The form may spell-out the type of examination, the exposure in effective dose (mSv, derived from reference values in guidelines or – better – from actual values from their department. The dose equivalent might be also expressed in number of chest radiographs and the risk of cancer as number of extra cases in the exposed population, derived from most recent and authorative guidelines (e.g., BEIR VII Committee, release 2006. Common sense, deontological code, patients'rights, medical imaging guidelines, Euratom law, all coherently and concordantly encourage and recommend a justified, optimized, responsible and informed use of testing with ionizing radiation. Although the idea of informed consent for radiation dose does not seem to be on the immediate radar screen at least in the US, the

  7. Anticipation and medicine

    CERN Document Server

    2017-01-01

    In this book, practicing physicians and experts in anticipation present arguments for a new understanding of medicine. Their contributions make it clear that medicine is the decisive test for anticipation. The reader is presented with a provocative hypothesis: If medicine will align itself with the anticipatory condition of life, it can prompt the most important revolution in our time. To this end, all stakeholders—medical practitioners, patients, scientists, and technology developers—will have to engage in the conversation. The book makes the case for the transition from expensive, and only marginally effective, reactive treatment through “spare parts” (joint replacements, organ transplants) and reliance on pharmaceuticals (antibiotics, opiates) to anticipation-informed healthcare. Readers will understand why the current premise of treating various behavioral conditions (attention deficit disorder, hyperactivity, schizophrenia) through drugs has to be re-evaluated from the perspective of anticipation...

  8. Site identification: environmental and radiological considerations

    International Nuclear Information System (INIS)

    Waite, D.A.

    1980-01-01

    Radiological and environmental considerations are recognized as being of utmost importance in planning, siting, licensing, operating, and decommissioning a high-level nuclear waste repository. In such a complex undertaking, it is important to identify the major concerns anticipated to arise in all of these phases in order to address them as early as possible in the program. Three representative activities/studies are summarized which will identify some of the important radiological and environmental considerations which must be addressed through this prolonged sequence of events and will indicate how these considerations are being addressed. It should be emphasized that these are only three of many which could have been chosen. The three key activities/studies are: (1) the NWTS Program criteria for identifying repository sites, (2) the generic guide for preparing environmental evaluations for deep drilling and (3) a preliminary environmental assessment for disposal of mined rock during excavation of a repository

  9. Training for Radiation Protection in Interventional Radiology

    International Nuclear Information System (INIS)

    Bartal, G.; Sapoval, M.; Ben-Shlomo, A.

    1999-01-01

    Program in radiological equipment has incorporated more powerful x-ray sources into the standard Fluoroscopy and CT systems. Expanding use of interventional procedures carries extensive use of fluoroscopy and CT which are both associated with excessive radiation exposure to the patient and personnel. During cases of Intravenous CT Angiography and direct Intraarterial CT Angiography, one may substitute a substantial number of diagnostic angiography checks. Basic training in interventional radiology hardly includes some of the fundamentals of radiation protection. Radiation Protection in Interventional Radiology must be implemented in daily practice and become an integral part of procedure planning strategy in each and every case. Interventional radiological most master all modern imaging modalities in order to choose the most effective, but least hazardous one. In addition, one must be able to use various imaging techniques (Fluoroscopy, CTA, MM and US) as a stand-alone method, as well as combine two techniques or more. Training programs for fellows: K-based simulation of procedures and radiation protection. Special attention should be taken in the training institutions and a basic training in radiation protection is advised before the trainee is involved in the practical work. Amendment of techniques for balloon and stent deployment with minimal use of fluoroscopy. Attention to the differences between radiation protection in cardiovascular and nonvascular radiology with special measures that must be taken for each one of them (i.e., peripheral angiography vs. stenting, Endo luminal Aortic Stent Graft, or nonvascular procedures such as biliary or endo urological stenting or biliary intervention). A special emphasis should be put on the training techniques of Interventional Radiologists, both beginners and experienced. Patient dose monitoring by maintaining records of fluoroscopic time is better with non-reset timer, but is optional. Lee of automated systems that

  10. Analysis of dose to crystalline in Interventional radiology: a purpose of one case; Analisis de dosis a cristalino en Radiologia intervencionista: a proposito de un caso

    Energy Technology Data Exchange (ETDEWEB)

    Carrera M, F.; Moreno R, F.; Velazquez M, F.; Manzano M, F.J.; Moreno S, T. [Hospital `Juan Ramon Jimenez` Ronda Norte s/n 21005. Huelva, Espana (Spain)

    1998-12-31

    The present work shows the dose values to crystalline for the personnel which works in interventional radiology procedures. It was took data of 436 studies with a total of 2,133.4 minutes in fluoroscopy and 19,563 images. It was showed dose values to crystalline in three situations: without blinding, with blinding of 0.25 and 0.50 mm Pb and by type of study: fluoroscopy, graphie and total. The dose means and ranges to patient for each of these studies also are detailed. (Author)

  11. Radiological protection report 2015; Strahlenschutzbericht 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    In the 2015 annual report on radiological protection, the Swiss Federal Nuclear Safety Inspectorate (ENSI) reports on occupational radiation doses, releases of radioactive material and the monitoring of environmental radiation in the areas subject to its surveillance. It concludes that Swiss nuclear facilities continue to maintain a consistent approach to radiological protection. ENSI has identified an increasing public interest in data concerning radiation and has therefore introduced a number of new concepts, such as the online availability of monthly nuclear power plant releases. There is also a new development concerning the data from the network for automatic measurement of dose rates in the vicinity of nuclear power plants (MADUK) which has been in operation since 1994. It is now possible to view dose rates since 1994 averaged over periods of ten minutes, one hour and one day. A special chapter of this report deals with {sup 14}C releases, which are the subject of enquiries from interested parties. The mean annual individual occupational radiation dose remains at 0.6 mSv, being significantly less than the mean annual radiation dose of the population in Switzerland of 5.5 mSv. The highest annual individual dose was almost 11 mSv so that once again in 2015 the annual limit of 20 mSv was not exceeded. The collective doses lie within the range of past years. However, the trend towards a higher collective dose noted at the Leibstadt Nuclear Power Plant has continued. Planning by the operators of nuclear facilities in the field of radiological protection is of a high standard so that the resulting collective doses generally closely match the projected values. In 2015, nuclear power plant operators have again complied with the release limits specified by the authorities, to some extent by a considerable margin. Emissions from Swiss nuclear power plants resulted in a dose of less than 0.01 mSv per year in their immediate surroundings. Liquid releases from Swiss

  12. Radiological protection of patients

    International Nuclear Information System (INIS)

    Niroomand-Rad, A.

    2003-01-01

    The benefits of ionizing radiation in the diagnosis and treatment of cancer, as well as other conditions such as cardiac ablation, are well established. However determination, monitoring, and evaluation of patient doses is not as easy task. Furthermore, radiation doses for individual patients may vary greatly from one radiological procedure to another. Attention is needed to reduce unnecessary radiation exposure to patients from All types of radiation producing machines and equipment. The patient risk from radiation injury-stochastic and/or deterministic must be weighted against the benefits of a proper medical examination or treatment as well as the risk of depriving the patient from the necessary medical care. Arbitrary reduction of radiological patient doses without regard to final outcome is determined to proper medical care provided to the patient. Sacrificing image quality in order to reduce patient dose is potentially harmful to the patient as well. Furthermore, the role of radiation exposure incurred from screening procedures such as mammography, needs to be properly considered and differentiated from medically indicated procedures. A known radiation induced risk needs to be balanced against diagnostic efficacy of a screening procedure. In these cases, regulations on standards and guidelines for determination, monitoring, and evaluation of patient doses may be appropriate. In this paper, the technical data collected in the United States have been compared with the corresponding data in Canada. However, even here, it has been recognized that we can not assume that one dose limit fits all. It is advisable to consider individual patient specifics if it means the difference between detection and miss

  13. Predictions of models for environmental radiological assessment

    International Nuclear Information System (INIS)

    Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando

    2011-01-01

    In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)

  14. Effects of long-term low dose radiation. Epstein-Barr virus-specific antibodies in radiological technologists

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Etsuko; Higashida, Yoshiharu; Onomichi, Mitsukazu; Nakamura, Ikuo; Tanoue, Shozo; Tanaka, Ryuji; Kumagai, Takashi; Katsuki, Takato; Sawada, Shozo.

    1988-09-01

    To clarify the long-term effects of occupational exposure to low doses of radiation, Epstein-Barr virus (EBV)-specific antibody titers in sera from 104 radiological technologists (R.T.) and 118 controls in Kumamoto prefecture were measured by the immunofluorescence method. Antibody titers to viral capsid antigen (VCA)-IgG increased with the years of experience as R.T., and the prevalence of abnormal antibody titers to both VCA-IgG and early antigen (EA)-IgG were significantly higher in R.T. with over 15 years of experience or 30 rads of cumulative radiation dose than in the controls. However, there was no correlation between exposure and the frequency of abnormal EBV-associated nuclear antigen (EBNA) antibody titers. The EBV-specific antibody titers of 24 Hiroshima atomic-bomb survivors were also measured. They were similar to those of the R.T. with over 30 years of experience. The EBV-specific antibody titers of R.T. suggest that there may be an impairment of immunologic competence after continuous long-term exposure to low doses of radiation. Also, the correlation of EBV-specific antibody titers and frequency of cells with chromosome aberrations in 53 R.T. was studied. Some correlations were found between the antibody titers to both of the VCA-IgG and EBNA and the frequency of cells with chromosome aberrations.

  15. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  16. Radioactive Waste Management Complex low-level waste radiological performance assessment

    International Nuclear Information System (INIS)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected

  17. Dosimetry applied to radiology and radiotherapy

    International Nuclear Information System (INIS)

    Yoshimura, Elisabeth Mateus

    2010-01-01

    Full text. The uses of ionizing radiation in medicine are increasing worldwide, and the population doses increase as well. The actual radiation protection philosophy is based on the balance of risks and benefits related to the practices, and patient dosimetry has an important role in the implementation of this point of view. In radiology the goal is to obtain an image with diagnostic quality with the minimum patient dose. In modern Radiotherapy the cure indexes are higher, giving rise to longer survival times to the patients. Dosimetry in radiotherapy helps the treatment planning systems to get a better protection to critical organs, with higher doses to the tumor, with a guarantee of better life quality to the patient. We will talk about the new trends in dosimetry of medical procedures, including experimental techniques and calculation tools developed to increase reliability and precision of dose determination. In radiology the main concerns of dosimetry are: the transition from film- radiography to digital image, the pediatric patient doses, and the choice of dosimetric quantities to quantify fluoroscopy and tomography patient doses. As far as Radiotherapy is concerned, there is a search for good experimental techniques to quantify doses to tissues adjacent to the target volumes in patients treated with new radiotherapy techniques, as IMRT and heavy particle therapy. (author)

  18. INTDOS: a computer code for estimating internal radiation dose using recommendations of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Ryan, M.T.

    1981-09-01

    INTDOS is a user-oriented computer code designed to calculate estimates of internal radiation dose commitment resulting from the acute inhalation intake of various radionuclides. It is designed so that users unfamiliar with the details of such can obtain results by answering a few questions regarding the exposure case. The user must identify the radionuclide name, solubility class, particle size, time since exposure, and the measured lung burden. INTDOS calculates the fractions of the lung burden remaining at time, t, postexposure considering the solubility class and particle size information. From the fraction remaining in the lung at time, t, the quantity inhaled is estimated. Radioactive decay is accounted for in the estimate. Finally, effective committed dose equivalents to various organs and tissues of the body are calculated using inhalation committed dose factors presented by the International Commission on Radiological Protection (ICRP). This computer code was written for execution on a Digital Equipment Corporation PDP-10 computer and is written in Fortran IV. A flow chart and example calculations are discussed in detail to aid the user who is unfamiliar with computer operations

  19. L'anticipation comme actualisation

    DEFF Research Database (Denmark)

    Mondeme, Chloé

    2018-01-01

    It is commonly stated that anticipation is a phenomenon that is prior to a given action or situation, both time-wise and logically speaking. In this article, we focus in detail on how anticipation reconfigures the very action being anticipated. By ‘in detail’, we mean through the meticulous...... observation and analysis of ordinary interactions. The corpus is constituted of learning interactions, between dog educator and dogs in formation, in which anticipating an action, notably by assessing it before it happens, contributes in a large part to (re)configure it. This point leads us to develop...

  20. Data processing in radiology: Resume and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, H.P.; Tiemann, J.

    1985-12-01

    The technical aspects of radiology are particularly suitable for electronic data processing. In addition to automation of radiological apparatus and tumour registration, there are three areas in radiology particularly suitable for electronic data processing: treatment planning, dose calculations and supervision of radiotherapy techniques in radio-oncology. It can be used for work processing in the office and for documentation, both in diagnostic and therapeutic radiology, and digital techniques can be employed for image transmission, storage and manipulation. Computers for treatment planning and dose calculation are standard techniques and suitable computers allow one to spot occasional and systematic errors during radiation treation treatment and to eliminate these. They also provide for the automatic generation of the required protocols. Word processors have proved particularly valuable in private practice. They are valuable for composing reports from their basic elements, but less valuable for texts that are stereotypes. The most important developments are in digital imaging, image storage and image transmission. The storage of images on video discs, transmission through fibre-optic cables and computer manipulation of images are described and the consequences and problems, which may affect the radiologist, are discussed.

  1. Data processing in radiology: Resume and prospects

    International Nuclear Information System (INIS)

    Heilmann, H.P.; Tiemann, J.

    1985-01-01

    The technical aspects of radiology are particularly suitable for electronic data processing. In addition to automation of radiological apparatus and tumour registration, there are three areas in radiology particularly suitable for electronic data processing: treatment planning, dose calculations and supervision of radiotherapy techniques in radio-oncology. It can be used for work processing in the office and for documentation, both in diagnostic and therapeutic radiology, and digital techniques can be employed for image transmission, storage and manipulation. Computers for treatment planning and dose calculation are standard techniques and suitable computers allow one to spot occasional and systematic errors during radiation treation treatment and to eliminate these. They also provide for the automatic generation of the required protocols. Word processors have proved particularly valuable in private practice. They are valuable for composing reports from their basic elements, but less valuable for texts that are stereotypes. The most important developments are in digital imaging, image storage and image transmission. The storage of images on video discs, transmission through fibre-optic cables and computer manipulation of images are described and the consequences and problems, which may affect the radiologist, are discussed. (orig.) [de

  2. Dose management in radiology. Review of the technological status; Dosismanagement in der Radiologie. Ein Ueberblick zum Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Verius, M. [LKH Innsbruck, Universitaetsklinik fuer Radiologie, Innsbruck (Austria)

    2015-08-15

    The Euratom directive 2013/59 (''EU directive for radiation protection'') has to be implemented into national law by spring 2018 and requires a complete recording of patient dosages and relevant parameters. Additionally, a medical physics expert has to be consulted for each radiological examination above a defined threshold. A complete recording of the dosage administered from all modalities and optimization of the radiological procedures should result in a reduction of the total dosage. This can be achieved by automated systems that incorporate not only the detection of the dose parameters but also the evaluation and analysis of these data. When provided with warning levels such a system should be able to inform or warn the operator when dose thresholds have been exceeded or even better inform the operator about possible excess dosages before an examination. Depending on the information provided by the modality, dose management systems can operate at different levels in the picture archiving and communication system (PACS), radiological and hospital information systems (RIS/HIS) or with the header information of a digital imaging and communications in medicine (DICOM) image and evaluate and analyze this data. A practicable use of such systems is only possible by close cooperation of medical personnel, medical physicists and information technology (IT) administrators. Various systems are available commercially or free but an individual adaptation of these systems is useful and necessary, depending on the requirements of the radiology practice or hospital. (orig.) [German] Die Euratom-Richtlinie 2013/59 (''EU-Richtlinie zum Strahlenschutz'') besagt, dass sie bis zum Fruehjahr 2018 in nationales Recht der Mitgliedstaaten umgesetzt werden muss, d. h. eine lueckenlose Erfassung der Patientendosen zu erfolgen hat. Ausserdem muss zu jeder Modalitaet in einem bestimmten Ausmass ein Medizinphysikexperte hinzugezogen werden. Die

  3. A study on the radiation and environmental safety -Development of a real-time radiological dose assessment system-

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Heui; Lee, Yung Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The real-time dose assessment system under development has been updated and the technology for tracer experiment has been established. The calculation of external gamma dose is the most difficult and time-consuming part of the dose calculations. The characteristics of external gamma exposure have been investigated and the method for reducing the calculation time has been devised. The internal exposure via the ingestion of the contaminated foodstuffs is one of the important pathways to the total radiological exposure. In the emergency, it is necessary to take an action such like food ban to protect the internal exposure. An algorithm for the interface between the real-time system and the food chain model has been provided. The second field tracer experiment over flat terrain has been carried out on a plain in Iksan city in Junrabook-Do. Sequential tracer sampler which can be sampled the tracer gas over arbitrary 12 time interval has been designed and manufactured. SF{sub 6} has been used as the tracer gas and the sampled gas has been analysed by gas-chromatographer. 55 figs, 32 tabs, 65 refs. (Author).

  4. Methodology of high dose research in medical radiodiagnostic; Metodologia de investigacao de doses elevadas em radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Adriana E.; Martins, Cintia P. de S., E-mail: ird@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-11-01

    This work has as main purpose to study occupational exposure in diagnostic radiology in medical cases of high doses recorded in 2011 at the national level . These doses were recorded by monitoring individual of the occupationally exposed individuals (OEI's). This monitoring of the doses received by ionizing radiation has as main objective to ensure that the principle of dose limitation is respected. In this study it were evaluated doses of 372 OEI's radiology in different Brazilian states. Doses were extracted from the database of Sector Management Doses of the Institute for Radioprotection and Dosimetry - IRD/CNEN-RJ, Brazil. The information from the database provide reports of doses from several states, which allows to quantify statistically, showing those with the highest doses in four areas: dose greater than or equal to 20 mSv apron and chest and dose greater than or equal to 100 mSv apron and chest. The identification of these states allows the respective Sanitary Surveillance (VISA), be aware of the events and make plans to reduce them. This study clarified the required procedures when there is a record of high dose emphasizing the importance of using protective radiological equipment, dosimeter and provide a safety environment work by maintaining work equipment. Proposes the ongoing training of professionals, emphasizing the relevance of the concepts of radiation protection and the use of the questionnaire with their investigative systematic sequence, which will allow quickly and efficiently the success the investigations.

  5. Early estimates of UK radiation doses from the Chernobyl reactor

    International Nuclear Information System (INIS)

    Fry, F.A.; Clarke, R.H.; O'Riordan, M.C.

    1986-01-01

    The plume of radioactive material from the Chernobyl reactor accident passed over the United Kingdom and will increase the radiation dose to the population in the coming year. The increase above the normal annual dose from natural radiation, averaged over persons of all ages, will be about 15% in the north and 1% in the south of the country. Averaged over all ages and areas, the increase will be about 4%. This excess dose will decrease substantially in subsequent years. The accident at the nuclear power station in Chernobyl, near Kiev, on or after 26 April 1986, led to substantial quantities of radioactive material being released to the atmosphere. Wind initially transported the material towards northern and western Europe. Activity was first detected in the southern United Kingdom, some ∼ 2,000 km away, on 2 May. The National Radiological Protection Board (NRPB), the operators of nuclear installations and the regulating authorities, had anticipated this eventuality and had intensified their normal programmes of environmental monitoring. During the following days many measurements were made and a considerable amount of data was generated throughout the country. NRPB was assigned responsibility for collating and evaluating these results; the initial information is used here to make a preliminary estimate of the radiation doses to the population of the United Kingdom

  6. Studies on optimization of radiation protection for patients in diagnostic radiology

    International Nuclear Information System (INIS)

    Wei, Z.; Zhang, Q.; Li, W.; Li, K.; Wei, L.; Zong, X.; Qiang, Z.; Wu, Y.

    1994-01-01

    For the exposure of patients in diagnostic radiology, individual dose limit does not apply, but optimization of radiological protection may play a major role. This project has been carried out with the purpose of improving the protection of patients in medical diagnostic radiology in China utilizing the principles of optimization. Taking Sichuan, Shandong and Beijing as surveyed areas, we investigated the present situation of the protection of patients. In the survey, the patient doses were classified into practical dose, justified dose and optimized dose to evaluate the influences of managerial and equipment factors separately. The results show that there are some urgent protection problems in X-ray protection to be solved in the surveyed regions. This paper, however, points out that the prospects of reducing patient doses are encouraging provided that appropriate measures are adopted. For instance, taking proper managerial measures without radical change of existing equipments may reduce patient doses in chest fluoroscopy and radiography by 40% and 18% respectively; refitting some equipment may reduce the doses by 82.4% in chest fluoroscopy, 66% in chest radiography, and 80% in barium meal examination of the gastrointestinal (GI) tract. Using chest radiography instead of fluoroscopy supplemented by other protection measures may reduce the doses by 91.7%. Optimization analysis shows that adoption of the above measures conforms to the principle of optimization of radiation protection. (authors). 5 refs., 7 tabs

  7. Ethical values in radiological protection

    International Nuclear Information System (INIS)

    Oughton, D.H.

    1996-01-01

    Issues like consent, equity, control and responsibility are important for an ethical evaluation of radiation risks. This paper discusses the incorporation of ethical values in radiological protection policy and compares how ICRP recommendations promote their use in practice and intervention cases. The paper contends that in cases of intervention, where the overall aim is dose reduction, social and ethical factors are often alluded to when evaluating costs of an action. However, possible ethical or social benefits of intervention measures are seldom raised. On the other hand, when assessing a practice, wherein the net effect is an increase in radiation dose, one is more likely to find an appeal to ethical factors on the benefits side of the equation than with the costs. The paper concludes that all decisions concerning radiological protection should consider both positive and negative ethical aspects. (author)

  8. Report by the work-group on radiation protection in interventional radiology. Recommendations related to the improvement of radiation protection in interventional radiology

    International Nuclear Information System (INIS)

    2010-01-01

    This report aims at proposing recommendations for the improvement of the quality of radiation protection of workers and patients in the field of interventional radiology. These recommendations concern the training of health personnel, the application of the optimization principle to health professionals and patients, dosimetry and the definition of diagnosis reference levels. More particularly, these recommendations concern professions involved in interventional radiology, and take into account the experience of other European Union State members and recommendations made by the IAEA. The authors analyze the equipment, radiological actions, procedures and doses, practitioners, equipment used for radio-guided interventions. They discuss doses received by patients, patient monitoring and radio-induced lesions. Then, they address the role and training of the different interveners in radiation protection, the equipment maintenance issue, and personnel dosimetry and protection

  9. Radiological protection report 2007; Strahlenschutzbericht 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. It provides comprehensive data on radiation protection activities in Switzerland during 2007. This is the fourth annual summary report on the radiological protection issues regulated by the Inspectorate. It provides comprehensive data on doses for the staff and for individual jobs. It also includes year-to-year comparisons and comments on the continuing decline in collective and average doses for persons exposed to radiation in the course of their work. Radiation doses are commented on. Radiation in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities is commented on. The Swiss radiation measurement network is commented on and the results obtained are discussed. The Inspectorate concludes that radiological protection in Swiss nuclear facilities is carried out consistently and in compliance with existing legislation.

  10. Guidelines for planning and design of mobile radiological units

    Energy Technology Data Exchange (ETDEWEB)

    Schelenz, R [Federal Office for Environmental Radioactivity in Food, Total Diet and Infant Food, Federal Research Centre for Nutrition, Karlsruhe (Germany)

    1995-07-01

    A significant number of mobile radiological units are in operation worldwide aiming to provide reliable radiological data. They mainly have been designed and constructed on a national basis according to the particular needs and commitments of the specific laboratory or country. In most cases, these units are intended to be used in emergency situations for in-situ radiological measurements of accidentally released radioactivity, sometimes for monitoring environmental pollution. As the purpose of these units is very diversified in regard to the kind of vehicle and its in-built measuring equipment the varying outfit of these units cannot be adopted in general for other countries aiming to improve their capability for in-situ radiological measurement. In order to achieve harmonization of equipment and comparability of radiological data being obtained from field measurements it is necessary to have general guidelines available for designing mobile radiological units taking into account different sceneries and tasks to be achieved. In the very early stages of an accident most of the information available on the quantity of radioactive material being released, its radionuclide composition and the likely progression of the accident will come from the operator, and will be based on the conditions in the plant. Few environmental monitoring results from off-side can be expected within the first few hours. In this very early phase, decisions on the application of protective measures will therefore, be based largely on plant status and forecasts of changes in that status as well as on meteorological data. As time progresses, results will increasingly become available from the monitoring of radionuclides in the environment (e.g. dose rates and concentration of radionuclides in air and particular materials such as water, food etc). Monitoring results can be used to estimate potential doses to people and the need for further protective measures can thus be determined from a

  11. Guidelines for planning and design of mobile radiological units

    International Nuclear Information System (INIS)

    Schelenz, R.

    1995-01-01

    A significant number of mobile radiological units are in operation worldwide aiming to provide reliable radiological data. They mainly have been designed and constructed on a national basis according to the particular needs and commitments of the specific laboratory or country. In most cases, these units are intended to be used in emergency situations for in-situ radiological measurements of accidentally released radioactivity, sometimes for monitoring environmental pollution. As the purpose of these units is very diversified in regard to the kind of vehicle and its in-built measuring equipment the varying outfit of these units cannot be adopted in general for other countries aiming to improve their capability for in-situ radiological measurement. In order to achieve harmonization of equipment and comparability of radiological data being obtained from field measurements it is necessary to have general guidelines available for designing mobile radiological units taking into account different sceneries and tasks to be achieved. In the very early stages of an accident most of the information available on the quantity of radioactive material being released, its radionuclide composition and the likely progression of the accident will come from the operator, and will be based on the conditions in the plant. Few environmental monitoring results from off-side can be expected within the first few hours. In this very early phase, decisions on the application of protective measures will therefore, be based largely on plant status and forecasts of changes in that status as well as on meteorological data. As time progresses, results will increasingly become available from the monitoring of radionuclides in the environment (e.g. dose rates and concentration of radionuclides in air and particular materials such as water, food etc). Monitoring results can be used to estimate potential doses to people and the need for further protective measures can thus be determined from a

  12. Audit Programmes in a Diagnostic Radiological Facility (invited paper)

    International Nuclear Information System (INIS)

    Moores, B.M.; Connolly, P.A.; Cole, P.R.

    1998-01-01

    The effective implementation of optimisation strategies for radiation protection in diagnostic radiology including nuclear medicine requires mechanisms for ongoing audit of all relevant factors. The Quality Criteria of the Commission of European Communities highlights clearly the three aspects of a radiological examination which needed to be considered, which are: (i) radiographic technique, (ii) patient dose, and (iii) image quality. Therefore, it is important that the choice of a known and acceptable radiographic technique provides a known outcome in terms of patient dose and image quality. This requirement should be capable of being achieved throughout Europe and capable of being updated as new radiological strategies are developed. Audit programmes aimed at monitoring that this situation exists may be considered at three levels: Level 1 involves routine, periodic, assessment of patient doses on a representative sample of patients undergoing a particular type of examination. Results from this audit are then compared with acceptable and clearly defined diagnostic reference levels or reference dose values which provides a framework for guidance on acceptable practice. A summary of such level 1 programmes which are being pursued in Europe is presented. Level 2 audit programmes, beside patient dose assessment, will also involve an assessment of all those parameters relevant to an X ray examination which may have a bearing on the actual dose delivered to the patient. Such level 2 audit programmes provide the basis for implementation of optimisation strategies for radiation protection in terms of risk reduction, one of the fundamental tenets of radiation protection philosophy. Level 3 audit programmes also include assessment and verification of image quality requirements for particular examinations. This latter aspect is a necessary basis for overall optimisation of radiation protection in diagnostic radiology. (author)

  13. Antiplatelet and Anticoagulant Drugs in Interventional Radiology

    International Nuclear Information System (INIS)

    Altenburg, Alexander; Haage, Patrick

    2012-01-01

    In treating peripheral arterial disease, a profound knowledge of antiplatelet and anticoagulative drug therapy is helpful to assure a positive clinical outcome and to anticipate and avoid complications. Side effects and drug interactions may have fatal consequences for the patient, so interventionalists should be aware of these risks and able to control them. Aspirin remains the first-line agent for antiplatelet monotherapy, with clopidogrel added where dual antiplatelet therapy is required. In case of suspected antiplatelet drug resistance, the dose of clopidogrel may be doubled; prasugrel or ticagrelor may be used alternatively. Glycoprotein IIb/IIIa inhibitors (abciximab or eptifibatide) may help in cases of hypercoagulability or acute embolic complications. Desmopressin, tranexamic acid, or platelet infusions may be used to decrease antiplatelet drug effects in case of bleeding. Intraprocedurally, anticoagulant therapy treatment with unfractionated heparin (UFH) still is the means of choice, although low molecular-weight heparins (LMWH) are suitable, particularly for postinterventional treatment. Adaption of LMWH dose is often required in renal insufficiency, which is frequently found in elderly patients. Protamine sulphate is an effective antagonist for UFH; however, this effect is less for LMWH. Newer antithrombotic drugs, such as direct thrombin inhibitors or factor X inhibitors, have limited importance in periprocedural treatment, with the exception of treating patients with heparin-induced thrombocytopenia (HIT). Nevertheless, knowing pharmacologic properties of the newer drugs facilitate correct bridging of patients treated with such drugs. This article provides a comprehensive overview of antiplatelet and anticoagulant drugs for use before, during, and after interventional radiological procedures.

  14. Fetal dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Faulkner, K.

    2002-01-01

    Diagnostic radiology examinations are frequently performed in all countries because of the benefit that the patient derives from the resultant diagnosis. Given that so many examinations are performed it is inevitable that there will be occasions when the planned exposure of a woman who is known to be pregnant is contemplated. In these circumstances, there must be rigorous justification of the examination and the procedure itself must be optimised as well. Radiation risks from fetal irradiation are well established. These risks fall into three categories: 1) a cancer induction risk (mainly leukaemia); 2) hereditary effects (as the fetus is a potential parent); 3) a risk of serious mental retardation (if the fetus is exposed in the critical 8-15 weeks period when the forebrain is being developed). Risk factors for these effects have been reviewed by the International Commission on Radiological Protection. Special rules apply to the radiology of women who are or who may be pregnant. These rules have been developed to avoid he unintended irradiation of the fetus. These rules have been variously referred to as the 10-day rule and the 28-day rules, in which radiology of potentially pregnant women is restricted to the first 10 or 28 days following menstruation. It is apparent that the advice provided by national bodies varies, as different rules apply internationally, due presumably to a lack of an international consensus on the subject. The advice from the National Radiological Protection Board, the College of Radiographers and the Royal College of Radiologists applies in the United Kingdom. In summary, the advice is that women of child bearing age are asked before a diagnostic radiology examination in which the pelvis is in, or near, the primary beam are asked if they are, or may be, pregnant. If pregnancy can be excluded then the examination can proceed. If it is likely that the patient is pregnant, then the proposed examination must undergo rigorous justification. If

  15. Internal Dose Conversion Coefficients of Domestic Reference Animal and Plants for Dose Assessment of Non-human Species

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Choi, Yong Ho

    2009-01-01

    Traditionally, radiation protection has been focused on a radiation exposure of human beings. In the international radiation protection community, one of the recent key issues is to establish the methodology for assessing the radiological impact of an ionizing radiation on non-human species for an environmental protection. To assess the radiological impact to non-human species dose conversion coefficients are essential. This paper describes the methodology to calculate the internal dose conversion coefficient for non-human species and presents calculated internal dose conversion coefficients of 25 radionuclides for 8 domestic reference animal and plants

  16. Dosimetry with slow films in Interventional Radiology

    International Nuclear Information System (INIS)

    Ten, J.I.; Guibelalde, E.; Fernandez, J.M.; Canevaro, L.; Ramirez, R.; Vano, E.

    1998-01-01

    In this work it is presented a method for evaluation of patients doses in Interventional Radiology (RI). The method proposed in this work allows the simultaneous valoration of the product dose-area (PDA), the dose in the patient skin (DES) and the distribution of the irradiated fields, all of they together with their corresponding dose levels. The latter sometimes can be essential since the possible damages in skin depend not only of the doses, but also the irradiated area. The method has been resulted adequate for to evaluate doses to patients in Interventional Radiology procedures. It was possible to apply it as a routine form seeing that its not interfering significantly in the normal development of the medical intervention. The fundamental advantages of this dosimetric method in relation with the unique PDA measure or with the utilization of TLD is that it provide information about the total irradiated area, distribution and length of fields, collimation and wedge used besides that allow to determine the most irradiated zone. The visualization of the irradiated regions and the length fields utilized suggest the possibility to optimize the realization protocols of the interventional procedure in the cases in which it is considered that the doses have been very elevated. (Author)

  17. Radiological consequence evaluation of DBAs with alternative source term method for a Chinese PWR

    International Nuclear Information System (INIS)

    Li, J.X.; Cao, X.W.; Tong, L.L.; Huang, G.F.

    2012-01-01

    Highlights: ► Radiological consequence evaluation of DBAs with alternative source term method for a Chinese 900 MWe PWR has been investigated. ► Six typical DBA sequences are analyzed. ► The doses of control room, EAB and outer boundary of LPZ are acceptable. ► The differences between AST method and TID-14844 method are investigated. - Abstract: Since a large amount of fission products may releases into the environment, during the accident progression in nuclear power plants (NPPs), which is a potential hazard to public risk, the radiological consequence should be evaluated for alleviating the hazard. In most Chinese NPPs the method of TID-14844, in which the whole body and thyroid dose criteria is employed as dose criteria, is currently adopted to evaluate the radiological consequences for design-basis accidents (DBAs), but, due to the total effective dose equivalent is employed as dose criteria in alternative radiological source terms (AST) method, it is necessary to evaluate the radiological consequences for DBAs with AST method and to discuss the difference between two methods. By using an integral safety analysis code, an analytical model of the 900 MWe pressurized water reactor (PWR) is built and the radiological consequences in DBAs at control room (CR), exclusion area boundary (EAB), low population zone (LPZ) are analyzed, which includes LOCA and non-LOCA DBAs, such as fuel handling accident (FHA), rod ejection accident (REA), main steam line break (MSLB), steam generator tube rupture (SGTR), locked rotor accident (LRA) by using the guidance of the RG 1.183. The results show that the doses in CR, EAB and LPZ are acceptable compared with dose criteria in RG 1.183 and the differences between AST method and TID-14844 method are also discussed.

  18. Registration and monitoring of radiation exposure from radiological imaging

    International Nuclear Information System (INIS)

    Jungmann, F.; Pinto dos Santos, D.; Hempel, J.; Dueber, C.; Mildenberger, P.

    2013-01-01

    Strategies for reducing radiation exposure are an important part of optimizing medical imaging and therefore a relevant quality factor in radiology. Regarding the medical radiation exposure, computed tomography has a special relevance. The use of the integrating the healthcare enterprise (IHE) radiation exposure monitoring (REM) profile is the upcoming standard for organizing and collecting exposure data in radiology. Currently most installed base devices do not support this profile generating the required digital imaging and communication in medicine (DICOM) dose structured reporting (SR). For this reason different solutions had been developed to register dose exposure measurements without having the dose SR object. Registration and analysis of dose-related parameters is required for constantly optimizing examination protocols, especially computed tomography (CT) examinations based on the latest research results in order to minimize the individual radiation dose exposure from medical imaging according to the principle as low as reasonably achievable (ALARA). (orig.) [de

  19. Idaho National Engineering Laboratory Radiological Control performance indicator report: First quarter, calendar year 1995

    International Nuclear Information System (INIS)

    Aitken, S.B.

    1995-07-01

    The INEL Radiological Control Performance Indicator Report is provided quarterly, inaccordance with Article 133 of the INEL Radiological Control Manual. Indicators are used as a measure of performance of the Radiological Control Program and as a motivation for improvement, not as a goal in themselves. These indicators should be used by management to assist in focusing priorities and attention and adherence to As-Low-As-Reasonably-Achievable (ALARA) practices. The ALARA Committees establish ALARA goals for the INEL based on forecasts and goals provided by each facility organizational manager or supervisor.Performance goals are realistic and measurable. Stringent goals are set at least annually to reflect expected workloads and improvement of radiological performance. Goals higher than previous goals may occasionally be set due to changes in work scope or mission. The INEL Radiological Control Performance Indicators consist of: Collective dose in person-rem; average worker dose, maximum dose to a worker, and maximum neutron dose to a worker;the number of skin and clothing contaminations, including the number of contaminated wounds and facial contaminations; the number of radioactive material intakes; the area of Contamination, High Contamination, and Airborne Radioactivity Areas in square feet; and airborne radioactivity events and spills

  20. Radiological passports as a decision support technique for post Chernobyl dose reduction in contaminated settlements

    International Nuclear Information System (INIS)

    Grebenkov, A.; Mansoux, H.; Yakushau, A.; Antsipov, G.; Averin, V.; Zhouchenko, Y.; Minenko, V.; Tirmarche, M.

    2004-01-01

    In 2000, IRSN and GRS initiated a support for collecting, securing and validating of existing data in the field of Chernobyl accident consequences and establishing a database including a detailed documentation in order to make available all reliable and objective information for decision makers, for planning of actions, for information of the public and for further scientific work. Three projects as a part of French/German Initiative (FGI) for humanitarian and technical assistance in favour of the Ukraine, Belarus and Russia have been established. The authors represent sub-project 3.9.1, which objectives are as follows: (i) develop and replenish the database for the Radiological-Hygienic Passports (RHP) and perform additional investigation of the target settlements in Belarus where comprehensive information has not been acquired yet, (ii) establish conditions and communication infrastructure for database availability, (iii) provide data analysis involving data on individual effective dose monitoring and results of countermeasures applied, and (iii) formulate the wider recommendations for the target settlements located in contaminated areas, concerning radiation, health, sanitary and social protection, countermeasures, industrial infrastructure development and reviving the local economy. During implementation of the project, 96 settlements with total population of 25 thousand were investigated and their RHPs were compiled. Every RHP consisted of 13 separate forms grouped under three principal headings: Statistics (societal and demographic structure of population, housing, land used and predominant soil type); Economical infrastructure and public utilities (farms, industries, schools, hospitals, shops, service, etc.); Radiological data and doses (total area subdivided vs. level of contamination, Cs-137 content in human body, contamination of agricultural products, contamination of households, annual effective dose). Every RHP was concluded with proposals as to the

  1. Natural radiation - a perspective to radiological risk factors of nuclear energy production

    DEFF Research Database (Denmark)

    Mustonen, R.; Christensen, T.; Stranden, E.

    1992-01-01

    Radiation doses from natural radiation and from man-made modifications on natural radiation, and different natural radiological environments in the Nordic countries are summarized and used as a perspective for the radiological consequences of nuclear energy production. The significance of different...... radiation sources can be judged against the total collective effective dose equivalent from natural radiation in the Nordic countries, 92 000 manSv per year. The collective dose from nuclear energy production during normal operation is estimated to 20 manSv per year and from non-nuclear energy production...... to 80 manSv per year. The increase in collective dose due to the conservation of heating energy in Nordic dwellings is estimated to 23 000 manSv per year, from 1973 to 1984. An indirect radiological danger index is defined in order to be able to compare the significance of estimated future releases...

  2. Maximum skin dose assessment in interventional cardiology: large area detectors and calculation methods

    International Nuclear Information System (INIS)

    Quail, E.; Petersol, A.

    2002-01-01

    Advances in imaging technology have facilitated the development of increasingly complex radiological procedures for interventional radiology. Such interventional procedures can involve significant patient exposure, although often represent alternatives to more hazardous surgery or are the sole method for treatment. Interventional radiology is already an established part of mainstream medicine and is likely to expand further with the continuing development and adoption of new procedures. Between all medical exposures, interventional radiology is first of the list of the more expansive radiological practice in terms of effective dose per examination with a mean value of 20 mSv. Currently interventional radiology contribute 4% to the annual collective dose, in spite of contributing to total annual frequency only 0.3% but considering the perspectives of this method can be expected a large expansion of this value. In IR procedures the potential for deterministic effects on the skin is a risk to be taken into account together with stochastic long term risk. Indeed, the International Commission on Radiological Protection (ICRP) in its publication No 85, affirms that the patient dose of priority concern is the absorbed dose in the area of skin that receives the maximum dose during an interventional procedure. For the mentioned reasons, in IR it is important to give to practitioners information on the dose received by the skin of the patient during the procedure. In this paper maximum local skin dose (MSD) is called the absorbed dose in the area of skin receiving the maximum dose during an interventional procedure

  3. Effective dose and dose to crystalline lens during angiographic procedures

    International Nuclear Information System (INIS)

    Pages, J.

    1998-01-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  4. Radiological environmental impacts from transportation of nuclear materials

    International Nuclear Information System (INIS)

    Shuai Zhengqing

    1994-01-01

    The author describes radiological impacts from transportation of nuclear materials. RADTRAN 4.0 supplied by IAEA was adopted to evaluate radiological consequence of incident-free transportation as well as the radiological risks from vehicular accidents occurring during transportation. The results of calculation show that the collective effective dose equivalent of incident-free transportation to the public and transportation workers is 7.94 x 10 -4 man·Sv. The calculated data suggest that the environmental impacts under normal and assumed accidental conditions are acceptable

  5. Aspects of radiological protection in nuclear installations

    International Nuclear Information System (INIS)

    Hunt, J.G.; Oliveira Filho, D.S.; Rabello, P.N.P.

    1987-01-01

    Due to the short term, long term and genetic effects of radiation, the work with radioactive materials requires special protection measures. The objective of radiological protection is to assure the occupational health of the workers by maintaining the dose levels as low as reasonably achievable. The radiological protection measures implanted in the NUCLEBRAS fuel element factory are described. The philosophy and practical measures taken are explained, and a comparison between radiation protection and industrial safety norms is made. The result of this work shows that the radiological safety of the element factory is assured. (author) [pt

  6. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Ryong; Ha, Wi Ho; Yoon, Seok Won; Han, Eun Ae; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  7. The mandate and work of ICRP Committee 3 on radiological protection in medicine.

    Science.gov (United States)

    Miller, D L; Martin, C J; Rehani, M M

    2018-01-01

    The mandate of Committee 3 of the International Commission on Radiological Protection (ICRP) is concerned with the protection of persons and unborn children when ionising radiation is used in medical diagnosis, therapy, and biomedical research. Protection in veterinary medicine has been newly added to the mandate. Committee 3 develops recommendations and guidance in these areas. The most recent documents published by ICRP that relate to radiological protection in medicine are 'Radiological protection in cone beam computed tomography' (ICRP Publication 129) and 'Radiological protection in ion beam radiotherapy' (ICRP Publication 127). A report in cooperation with ICRP Committee 2 entitled 'Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances' (ICRP Publication 128) has also been published. 'Diagnostic reference levels in medical imaging' (ICRP Publication 135), published in 2017, provides specific advice on the setting and use of diagnostic reference levels for diagnostic and interventional radiology, digital imaging, computed tomography, nuclear medicine, paediatrics, and multi-modality procedures. 'Occupational radiological protection in interventional procedures' was published in March 2018 as ICRP Publication 139. A document on radiological protection in therapy with radiopharmaceuticals is likely to be published in 2018. Work is in progress on several other topics, including appropriate use of effective dose in collaboration with the other ICRP committees, guidance for occupational radiological protection in brachytherapy, justification in medical imaging, and radiation doses to patients from radiopharmaceuticals (an update to ICRP Publication 128). Committee 3 is also considering the development of guidance on radiological protection in medicine related to individual radiosusceptibility, in collaboration with ICRP Committee 1.

  8. Radiological protection report 2016; Strahlenschutzbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-15

    In the radiological protection report 2016, the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an overview of the radiological protection in its area of supervision. Part A of the report deals with protecting the staff of nuclear power plants from the dangers of ionising radiation. It also includes a list of the personal doses accumulated by the staff, broken down using various parameters. Applying the optimisation imperative, it has been proved possible to significantly reduce the annual collective doses in Switzerland's nuclear power plants since they came on stream thanks to major efforts by the operators. In 2016, a total of 6,153 people measured accumulated 2,877 person-mSv. The collective doses have reached a low level corresponding to the radiological condition of the plants and the scope of the work required to be performed in controlled zones (e.g. non-destructive materials testing). ENSI will continue to follow the trend for collective doses and assess the reasons for local variances as well as for measures initiated. The individual doses for people employed in ENSI's area of supervision in 2016 showed a maximum figure of 10 mSv and a mean value of 0.5 mSv which was significantly below the dose limit of 20 mSv for occupational radiation exposure. The discharge of radioactive substances with the exhaust air and waste water from nuclear power plants are dealt with in Part B of the report. In 2016, nuclear power plant operators again met the admissible release limits set by the authorities, in some cases by a considerable margin. The emissions of Swiss nuclear power plants led to a dose of less than 0.01 mSv per year in the direct neighbourhood. A comparison with the average annual radiation dose for the Swiss population of 5.5 mSv shows that the relevant contribution from nuclear power plants lies in the area of one percent of this figure. Effluents from Swiss nuclear power plants were also below the target of 1 GBq per year set by ENSI

  9. Radiological protection in industrial gamma scintigraphy facilities

    International Nuclear Information System (INIS)

    Rodriguez, M.; Suarez, S.

    2002-01-01

    Operational experience has shown that the mobile scintigraphy sector is not only that where individual doses are highest but also where there are the greatest number of high doses, overdoses and incidents. This fact highlights the need for improvement in the optimisation of radiological protection in the sector. In this context the CSN has adopted and implemented an action plan aimed at reducing doses to operation staff. (Author)

  10. A methodology for radiological accidents analysis in industrial gamma radiography

    International Nuclear Information System (INIS)

    Silva, F.C.A. da.

    1990-01-01

    A critical review of 34 published severe radiological accidents in industrial gamma radiography, that happened in 15 countries, from 1960 to 1988, was performed. The most frequent causes, consequences and dose estimation methods were analysed, aiming to stablish better procedures of radiation safety and accidents analysis. The objective of this work is to elaborate a radiological accidents analysis methodology in industrial gamma radiography. The suggested methodology will enable professionals to determine the true causes of the event and to estimate the dose with a good certainty. The technical analytical tree, recommended by International Atomic Energy Agency to perform radiation protection and nuclear safety programs, was adopted in the elaboration of the suggested methodology. The viability of the use of the Electron Gamma Shower 4 Computer Code System to calculate the absorbed dose in radiological accidents in industrial gamma radiography, mainly at sup(192)Ir radioactive source handling situations was also studied. (author)

  11. Anticipation in sport.

    Science.gov (United States)

    Loffing, Florian; Cañal-Bruland, Rouwen

    2017-08-01

    Anticipation has become an increasingly important research area within sport psychology since its infancy in the late 1970s. Early work has increased our fundamental understanding of skilled anticipation in sports and how this skill is developed. With increasing theoretical and practical insights and concurrent technological advancements, researchers are now able to tackle more detailed questions with sophisticated methods. Despite this welcomed progress, some fundamental questions and challenges remain to be addressed, including the (relative) contributions of visual and motor experience to anticipation, intraindividual and interindividual variation in gaze behaviour, and the impact of non-kinematic (contextual or situational) information on performance and its interaction with advanced kinematic cues during the planning and execution of (re)actions in sport. The aim of this opinion paper is to shortly sketch the state of the art, and then to discuss recent work that has started to systematically address open challenges thereby inspiring promising future routes for research on anticipation and its application in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Regression analysis of radiological parameters in nuclear power plants

    International Nuclear Information System (INIS)

    Bhargava, Pradeep; Verma, R.K.; Joshi, M.L.

    2003-01-01

    Indian Pressurized Heavy Water Reactors (PHWRs) have now attained maturity in their operations. Indian PHWR operation started in the year 1972. At present there are 12 operating PHWRs collectively producing nearly 2400 MWe. Sufficient radiological data are available for analysis to draw inferences which may be utilised for better understanding of radiological parameters influencing the collective internal dose. Tritium is the main contributor to the occupational internal dose originating in PHWRs. An attempt has been made to establish the relationship between radiological parameters, which may be useful to draw inferences about the internal dose. Regression analysis have been done to find out the relationship, if it exist, among the following variables: A. Specific tritium activity of heavy water (Moderator and PHT) and tritium concentration in air at various work locations. B. Internal collective occupational dose and tritium release to environment through air route. C. Specific tritium activity of heavy water (Moderator and PHT) and collective internal occupational dose. For this purpose multivariate regression analysis has been carried out. D. Tritium concentration in air at various work location and tritium release to environment through air route. For this purpose multivariate regression analysis has been carried out. This analysis reveals that collective internal dose has got very good correlation with the tritium activity release to the environment through air route. Whereas no correlation has been found between specific tritium activity in the heavy water systems and collective internal occupational dose. The good correlation has been found in case D and F test reveals that it is not by chance. (author)

  13. Commercial sugar, an alternative dosemeter for the dose determination in radiological emergency conditions; Azucar comercial, un dosimetro alternativo para la determinacion de dosis en situaciones de emergencia radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F.; Galindo, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    It was carried out the dosimetric evaluation of commercial sugar, with the purpose to determine the feasibility to be able to use this type of substance as a dosimetric material in cases to present some radiological emergency cases. The studied parameters using the Electron Paramagnetic Resonance (EPR) technique were: pre-doses signal or depth signal, dose-response stability, reproducibility, reliability and signal clearing decreasing. (Author)

  14. What constitutes a radiology radiation accident

    International Nuclear Information System (INIS)

    Wallace, A.; Edmonds, K.; Hayton, A.; Tingey, D.

    2010-01-01

    Full text: A review of the literature indicates a very small number of articles on radiology radiation accidents. This may be due to there being no agreed definition of the term 'accident' when applied to radiology incidents. As the intensity of X-ray beams and the functionality of various modalities increase there is a consequent development in procedures to which 'high dose' applications are required. We may therefore expect to see more incidents in future. How are we to manage them? Radiology radiation accidents are usually exemplified by deterministic skin burns which may take many weeks or months to become apparent and any procedure leading to a radiation induced fatality is difficult to prove. (author)

  15. [Radiation protection in interventional radiology].

    Science.gov (United States)

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  16. Development of the model MAAP5-DOSE for dose analysis in Cofrentes NPP

    International Nuclear Information System (INIS)

    Gonzalez, C.; Diaz, P.; Ibanez, L.; Lamela, B.; Serrano, C.

    2013-01-01

    Iberdrola Ingenieria y Construccion has developed a model of Cofrentes NPP with code MAAP5-DOSE in order to be able to assess in realistic conditions the the expected dose in points and radiological consequences of severe accident of local action.

  17. Radiological consequences of radioactive effluents

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1979-01-01

    A study of the differential radiological impact of the nuclear fuel cycle with and without plutonium recycle is being undertaken jointly by the National Radiological Protection Board and the Commissariat a l'Energie Atomique (CEA). A summary is given of the development of the methodology detailed in their first report to the Commission of the European Communities (CEC) (NRPB/CEA, A methodology for evaluating the radiological consequences of radioactive effluents released in normal operations. Luxembourg, CEC Doc. V/3011/75 EN (1979)). The Collective Effective Dose Equivalent Commitment was used in an attempt to assess the total health detriment. The application of the methodology within particular member states of the European Community has been discussed at seminars. Sensitivity analysis can identify the more important parameters for improving the accuracy of the assessment. (UK)

  18. Anticipation: learning from the past. The Russian/Soviet contributions to the science of anticipation

    Science.gov (United States)

    Bazac, Ana

    2018-05-01

    The focus on Russian/Soviet contributions is only an opportunity to understand the objective premises of anticipation. Since anticipation expresses a main concept characterizing human action, it is important to see whether and how it corresponds to the neuro-physiology of the human. The aim of this review is to show that anticipation is neuro-physiologically constitutive and is intertwined with all other reflective, cognitive, and coordinative functions that form an inseparable unity in the process of adaptation. The experiments described in the book draw attention to anticipation as the internal tendency of the living that cannot be ignored. The review highlights the dialectic of continuity and discontinuity in the living from the standpoint of anticipation, and the holistic conclusions of the scientific research regarding the living and the human being.

  19. Concepts of optimisation and justification consequences for radiological mass screening

    International Nuclear Information System (INIS)

    Carmichael, J.H.E.

    1987-01-01

    Mass radiological screening campaigns have been mounted in many countries for different conditions and the needs of one country are not necessarily those of another. However, in the European community there is a reasonable uniformity about disease patterns and therefore, a mass screening situation applicable to one country is probably equally applicable throughout the Community. In radiation protection terms, all these potential surveys must be looked at under the same factors. In radiation protection, one thinks first of all justification of the practice. Then one follows it by optimisation of the technique used, so as to obtain the best balance between benefit and detriment, and at this point one must remember that the radiation protection concept of optimisation includes a financial element as well as a purely clinical element and this must lead us on eventually to touch on cost effectiveness. The last portion of the ICRP system is the actual setting of dose limits. Now these are really only applicable to workers not to patients. One cannot set an upper limit on the dose one is prepared to use in a diagnostic radiological examination, but one can say that the dose per examination, should be examined and that the dose range of that examination between various institutions should be ascertained. This should enable any one institution to see where their dose range lies in the larger dose range, and to see that their radiological practice is giving as low a dose as is reasonably achievable

  20. Estimation of radiological dose from radon, thoron and their progeny levels in the dwellings of Shivamogga district, Karnataka, India

    International Nuclear Information System (INIS)

    Rangaswamvi, D.R.; Sannappa, J.; Srinivasa, E.

    2018-01-01

    Among all natural radiation exposure to man, inhalation of radon, thoron and their progenies are the major contributor (50 %) to the dose from ionizing radiation received by the general population. Based on the results of epidemiological studies in Europe and North America, the World Health Organization (WHO) has recommended reducing the indoor radon reference level from 200 to 100 Bq.m -3 . In view of this, focus has now been given for simultaneous measurement of radon, thoron and their progeny concentration in indoor air and also to estimate radiological dose in the dwellings of the Shivamogga district. The geology of the Shivamogga district comprises different types of rock formation such as granites, schists, magnetites and gneisses, Meta basalt, laterites, quartz and chlorite schist, Graywacke etc. Present study was concentrating more in granite bed rock regions along with their surrounding regions

  1. Patient dose assessment in various Interventional radiology and cardiology procedures in Algeria (IAEA regional project results)

    International Nuclear Information System (INIS)

    Khelassi-Toutaoui, Nadia; Merad, Ahmed; Toutaoui, A.E.K.; Bairi, Souad

    2008-01-01

    Full text: Purpose: To evaluate patient doses in Interventional Radiology (IR) and Cardiology (IC) procedures in Algeria, within the framework of an International Atomic Energy Agency (IAEA) regional project on radiation protection of patients and medical exposure control (RAF 9033). Materials and Methods: Three public hospitals (CHU Bab el Oued, CHU Parnet and CHU Mustapha) and one specialised Cardiology Service (Clinique Maouche) were chosen for the study. For Maximum Skin Dose (MSD) evaluation, gafchromic films XR type R were used, placed on patient's back before the procedure. The Dose Area Product (DAP) and MSD were measured in 57 IR and IC procedures, either diagnostic or therapeutic. Results: The results revealed large variations in MSD (0.06-3.3 Gy) and DAP (5.5-332 mGycm 2 ). Mean MSD was 0.227 Gy in cerebral angiography, 0.202 Gy in coronary angiography, 1.162 Gy in Percutaneus Transluminal Coronary Angioplasty (PTCA) and 0.128 in abdominal angiography. The correlation of DAP and MSD was significant (r = 0.7). The correlation was DAP and fluoroscopy time was also significant (r = 0.8). Conclusion: The highest MSD values were found in PTCA which is a therapeutic procedure. Two PTCAs out of the 57 procedures measured in total had MSD over the threshold of 2 Gy for deterministic effects (MSD 1 = 3.0 Gy and MSD 2 3.3 Gy). The large variations in MSD reveal the need to continuously monitor patient doses in IR and IC procedures with special emphasis in PTCA procedure. (author)

  2. Depleted uranium residual radiological risk assessment for Kosovo sites

    International Nuclear Information System (INIS)

    Durante, Marco; Pugliese, Mariagabriella

    2003-01-01

    During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 μSv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity

  3. Additional radiation dose to population due to X-ray diagnostic procedures

    International Nuclear Information System (INIS)

    Chougule, A.

    2006-01-01

    Full text of publication follows: Discovery of X rays has revolutionised the medical diagnosis but the fact that the diagnostic radiological procedures contribute about 80 to 90 % of the radiation dose to population as compared to other man made radiation sources cannot be ignored especially when X ray diagnostic facilities are being made available to larger section of the society. The estimated frequency of radiological procedures in India is 12,000 procedures/ year/100,000 population, though it is quite less as compared to developed countries, its increasing day by day. As part of the project, a radiation protection survey of X ray installations and patient radiation dose measurement during various radiological procedures was undertaken. 193 X ray installations were surveyed and the radiation doses received by the patient during various radiological procedure was measured. For measurement of radiation doses, CaSO 4 : Dy thermoluminescence (T.L.) discs of size 13.3 mm diameter and 0.8 mm thickness were used. Pre annealed T.L. discs were fixed by adhesive tape on the patient skin at the center of entrance beam before the exposure. After exposure the T.L. discs were estimated f or entrance skin dose during that particular projection/ examination. 10,000 measurements at different centers during various radiological procedures were done. It was found that chest radiography accounts for 37 % of all radiological procedures and further it was observed that 70 % of the chest X rays were normal with out any pathology indicating scope for curtailing the unwarranted radiological procedures. The special investigations like barium swallow, barium meal and fallow through accounts for about 1.5 % of the total radiological procedures. The entrance skin dose [E.S.D.] during chest radiography was 0.3 + 0.1 mGy where as during K.U.B. and cervical spine radiography it was 6.2 + 1.1 mGy and 5.1 + 0.9 mGy respectively. The details of frequency of various radiological procedures and the

  4. Lessons learned from events declared to the ASN related to interventional radiology and having occurred during radiation-based acts

    International Nuclear Information System (INIS)

    Lachaume, Jean-Luc

    2014-01-01

    Based on an analysis of events declared to the ASN and inspection observations performed in the field of interventional radiology, this report outlines that the majority of these events could have been avoided and that they result from a lack of culture in radiation protection, notably an unawareness of doses delivered to patients or received by practitioners, and of risks related to exposure to ionizing radiations. The report notably outlines that events are related to a lack of staff and means in the field of patient and personnel radiation protection, an underdeveloped risk management and radiation protection implementation, lacks in the management of delivered or received doses and absence of approaches of professional practice assessment, operator insufficient education, and weaknesses in the management of subcontracted operations. Recommendations are made related to needs in medical radio-physics, identification of acts and patients at risk and definition of patient follow-up modalities, the implementation of an approach of professional practice assessment, the storage of dosimetric data, the improvement of operator technical education, the control of subcontracted operations, and the anticipation of technical and organisational changes

  5. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  6. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Tingey, D.R.C.

    1996-01-01

    Recent surveys in the UK and New Zealand have shown that although the number of CT examinations small compared to conventional Radiology, CT contributes about 20% to the overall dose from diagnostic radiology. In view of these findings and the rapid increase in the number of CT facilities in recent years, a survey of the number of facilities, frequency of examination, techniques and patient doses has been performed. Australia, with 329 units is well endowed with CT equipment compared to European Countries and New Zealand. For many examinations a wide range was found in the number of slices and slice widths used and this led to a large spread in the corresponding doses. Assuming the practices of the non-responders are statistically similar to those who responded, some preliminary estimates of population doses can be made. There could be as many as 1.1 million CT examinations each year in Australia resulting in a per capur effectie dose of 0.36 mSv. Although the results of this survey are still subject to some refinement, they indicate that CT is a major, and possibly the dominant, contributor to doses from diagnostic radiology in Australia. (author)

  7. Evaluation of radionuclide levels and radiological dose in three populations of marine mammals in the eastern Canadian Arctic

    International Nuclear Information System (INIS)

    Macdonald, C.R.; Ewing, L.L.; Wiewel, A.M.; Harris, D.A.; Stewart, R.E.A.

    1993-01-01

    Radionuclide levels were measured in beluga, walrus and ringed seal populations collected in 1992 to assess radiation dose and changes in dose with age and sex. The authors hypothesized that Arctic marine food chains accumulate high levels of naturally-occurring radionuclides such as polonium-210 and that radiation may pose a stress to animals which also accumulate metals such as cadmium. Liver, kidney, muscle and jawbone were analyzed by gamma spectrometry for cesium-137, cesium-134, lead-210, potassium-40 and radium-226 and fission-derived nuclides. Polonium-210 was analyzed by alpha spec after autodeposition onto a silver disk. Cesium-137 concentrations in muscle in all three populations were low, and ranged from below detection limits to 10 Bq/kg ww. There was no evidence of fission-derived radionuclides such as zinc-65 or cobalt-60. Lead-210 levels ranged from below detection limits in muscle of ringed seal and walrus to a mean of 82.3 Bq/kg ww in walrus bone. Polonium-210 in the three population ranged from 10 to 30 Bq/kg ww in bone and kidney. The major contributor to dose in the animals was polonium-210 because it is an alpha emitter and accumulates to moderate levels in liver and kidney. Radiological dose is approximately 20--30 times higher than background in humans, and is considerably lower than the dose observed in terrestrial food chains in the Arctic

  8. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  9. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  10. Implications of tissue reactions for radiological protection

    International Nuclear Information System (INIS)

    Miyazaki, S.

    2013-01-01

    Cancer effects and risks at low doses from ionising radiation have been main issues within the field of radiological protection. In contrast, non-cancer effects and risks at low doses from ionising radiation are controversial topics within the field of radiation protection. These issues are discussed in ICRP Publication 118, 'ICRP Statement on Tissue Reactions.' Both non-cancer effects and risks are expected to become increasingly important to the system of radiation protection. Before this can happen, several factors must be considered: thorough characterization of the relationship between dose and risk; verification of the biological mechanisms for any noted excess risk; and adjustment of noted excess risks through the use of a detriment factor. It is difficult to differentiate the relatively small risks associated with radiation from other risk factors in the low-dose region of the dose response curve. Several recent papers also indicate the possibility of a non-linear dose response relationship for non-cancer effects. In addition, there are still many uncertainties associated with the biological mechanisms for non-cancer effects. Finally, it is essential to consider the incorporation of detriment into a well-defined system of radiological protection. Given the recent interest in non-cancer effects, it is essential to facilitate discussions in order to more clearly define dose limits within the existing system of radiation protection for both cancer and non-cancer effects. (author)

  11. Oil wells and gas wells: aspects of radiological safety

    International Nuclear Information System (INIS)

    Soares, S.M.V.O.

    1987-01-01

    The objective of the present work is to present and analyse the main radiological protection problems associated with non destructive inspections of oil wells, with the view of minimizing the dose to members of the public living in nearby urban zones. Problems related to the surveillance of such activities and the need for well formulated procedures are also discussed based on specific Brasilian regulations. Finally, some examples of radiological accidents that have occured in urban zones are described including the methodology employed for the rescue of Iridium-192 sources and for the estimate of radiation doses for workers and general public. (author) [pt

  12. Review of specific radiological accident considerations

    International Nuclear Information System (INIS)

    Elder, J.

    1984-01-01

    Specific points of guidance provided in the forthcoming document A Guide to Radiological Accident Considerations for Siting and Design of Nonreactor Nuclear Facilities are discussed. Of these, the following are considered of particular interest to analysts of hypothetical accidents: onsite dose limits; population dose, public health effects, and environmental contamination as accident consequences which should be addressed; risk analysis; natural phenomena as accident initiators; recommended dose models; multiple organ equivalent dose; and recommended methods and parameters for source terms and release amount calculations. Comments are being invited on this document, which is undergoing rewrite after the first stage of peer review

  13. Radiological Protection in Medicine

    International Nuclear Information System (INIS)

    Valetin, J.

    2011-01-01

    This report was prepared to underpin the Commission's 2007 Recommendations with regard to the medical exposure of patients, including their comforters and carers, and volunteers in biomedical research. It addresses the proper application of the fundamental principles (justification, optimisation of protection, and application of dose limits) of the Commission's 2007 Recommendations to these individuals. With regard to medical exposure of patients, it is not appropriate to apply dose limits or dose constraints, because such limits would often do more harm than good. Often, there are concurrent chronic, severe, or even life-threatening medical conditions that are more critical than the radiation exposure. The emphasis is then on justification of the medical procedures and on the optimisation of radiological protection. In diagnostic and interventional procedures, justification of procedures (for a defined purpose and for an individual patient), and management of the patient dose commensurate with the medical task, are the appropriate mechanisms to avoid unnecessary or unproductive radiation exposure. Equipment features that facilitate patient dose management, and diagnostic reference levels derived at the appropriate national, regional, or local level, are likely to be the most effective approaches. In radiation therapy, the avoidance of accidents is a predominant issue. With regard to comforters and carers, and volunteers in biomedical research, dose constraints are appropriate. Over the last decade, the Commission has published a number of documents that provided detailed advice related to radiological protection and safety in the medical applications of ionising radiation. Each of the publications addressed a specific topic defined by the type of radiation source and the medical discipline in which the source is applied, and was written with the intent of communicating directly with the relevant medical practitioners and supporting medical staff. This report

  14. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  15. Post-Remediation Radiological Dose Assessment, Linde Site, Tonawanda, New York

    Energy Technology Data Exchange (ETDEWEB)

    Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Durham, Lisa A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-06-01

    A post-remediation radiological dose assessment was conducted for the Formerly Utilized Sites Remedial Action Program (FUSRAP) Linde Site by using the measured residual concentrations of the radionuclides of concern following the completion of the soils remedial action. The site’s FUSRAP-related contaminants of concern (COCs) are radionuclides associated with uranium processing activities conducted by the Manhattan Engineer District (MED) in support of the Nation’s early atomic energy and weapons program and include radium-226 (Ra-226), thorium-230 (Th-230), and total uranium (Utotal). Remedial actions to address Linde Site soils and structures were conducted in accordance with the Record of Decision for the Linde Site, Tonawanda, New York (ROD) (USACE 2000a). In the ROD, the U.S. Army Corps of Engineers (USACE) determined that the cleanup standards found in Title 40, Part 192 of the Code of Federal Regulations (40 CFR Part 192), the standards for cleanup of uranium mill sites designated under the Uranium Mill Tailings Radiation Control Act (UMTRCA), and the Nuclear Regulatory Commission (NRC) standards for decommissioning of licensed uranium and thorium mills, found in 10 CFR Part 40, Appendix A, Criterion 6(6), are Applicable or Relevant and Appropriate Requirements (ARARs) for cleanup of MED-related contamination at the Linde Site. The major elements of this remedy will involve excavation of the soils with COCs above soil cleanup levels and placement of clean materials to meet the other criteria of 40 CFR Part 192.

  16. Radiation protection of patients in diagnostic radiology: implementation of a management system optimization

    International Nuclear Information System (INIS)

    Corpas Rivera, L.; Devesa Pardo, F. J.; Gamez Jimenez, J. L.; Vallejo Carrascal, C.; Garcia de Diego, A. A.; Amador Vela-Hidalgo, J. J.

    2011-01-01

    The enforcement of quality in diagnostic radiology (Royal Decree 1976/1999 laying down the criteria for quality in diagnostic radiology and Royal Decree 815/2001 to justify the use of ionizing radiations for medical exposure, etc.) and recommendations and European regulations on the matter, is done by carrying out the optimization of the doses received, based on image quality in a continuous process of monitoring of such dose from the dose reference Values ??(VRD ) that the system has allowed to establish for each technique.

  17. Radiological hazard indices and elemental composition of Brazilian and Swiss ornamental rocks

    Energy Technology Data Exchange (ETDEWEB)

    El Hajj, T.M. [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil); Silva, P.S.C.; Santos, A., E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Gandolla, M.P.A. [Universita della Svizzera Italiana (USI), Lugano (Switzerland); Dantas, G.A.S.A.; Delboni Junior, H. [Universidade de Sao Paulo (USP), SP (Brazil)

    2017-09-01

    The objective of this paper was to evaluate the radiological risk index of ornamental rocks sold both in Brazil and Europe and to correlate their radioactive content with their chemical composition. The {sup 238}U, {sup 232}Th and {sup 40}K mean values were 62 ± 65, 122 ± 111, 1126 ± 516 Bq kg{sup -1} for Brazilian and 93 ± 59, 70 ± 67 and 1005 ± 780 Bq kg{sup -1} for Swiss samples, respectively. The radiological index: radium equivalent, external hazard index, absorbed dose rate in air, annual gonadal equivalent dose, annual effective dose equivalent, and excess lifetime cancer risk for Brazilian and Swiss samples were calculated. The main contribution for the radiological indices observed was the radionuclide {sup 232}Th, which is associated with REE, Br, Hf, Na, Rb, Sb and Zr in the rock matrix. (author)

  18. ICRP Publication 139: Occupational Radiological Protection in Interventional Procedures.

    Science.gov (United States)

    López, P Ortiz; Dauer, L T; Loose, R; Martin, C J; Miller, D L; Vañó, E; Doruff, M; Padovani, R; Massera, G; Yoder, C

    2018-03-01

    In recent publications, such as Publications 117 and 120, the Commission provided practical advice for physicians and other healthcare personnel on measures to protect their patients and themselves during interventional procedures. These measures can only be effective if they are encompassed by a framework of radiological protection elements, and by the availability of professionals with responsibilities in radiological protection. This framework includes a radiological protection programme with a strategy for exposure monitoring, protective garments, education and training, and quality assurance of the programme implementation. Professionals with responsibilities in occupational radiological protection for interventional procedures include: medical physicists; radiological protection specialists; personnel working in dosimetry services; clinical applications support personnel from the suppliers and maintenance companies; staff engaged in training, standardisation of equipment, and procedures; staff responsible for occupational health; hospital administrators responsible for providing financial support; and professional bodies and regulators. This publication addresses these elements and these audiences, and provides advice on specific issues, such as assessment of effective dose from dosimeter readings when an apron is worn, estimation of exposure of the lens of the eye (with and without protective eyewear), extremity monitoring, selection and testing of protective garments, and auditing the interventional procedures when occupational doses are unusually high or low (the latter meaning that the dosimeter may not have been worn).

  19. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    OpenAIRE

    Dobrescu, Lidia; Rădulescu, Gheorghe-Cristian

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase ...

  20. Radiological characterization of practices employed at the Center for the Protection and Hygiene of Radiation (CPHR)

    International Nuclear Information System (INIS)

    Domenech Nieves, H.; Callis Fernandez, E.

    1998-01-01

    This work makes the radiological characterization of practices carried out at the CPHR to evaluate dose possible restrictions. The characterization was based on data processed from annual individual doses to which workers were exposed during 1994-1997. This was done in a global way and also for different groups of workers identified (Group of Radioactive Refuses; Secondary laboratory of Dosimetric Calibration; the Laboratory of Environmental Radiological Surveillance and the Group that Evaluates Radiological Safety)