WorldWideScience

Sample records for anticarcinogenic enzyme inducers

  1. Effects of dietary anticarcinogens and nonsteroidal anti-inflammatory drugs on rat gastrointestinal UDP-glucuronosyltransferases.

    NARCIS (Netherlands)

    Logt, E.M.J. van der; Roelofs, H.M.J.; Lieshout, E.M.M. van; Nagengast, F.M.; Peters, W.H.M.

    2004-01-01

    BACKGROUND: Dietary compounds or nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce cancer rates. Elevation of phase II detoxification enzymes might be one of the mechanisms leading to cancer prevention. We investigated the effects of dietary anticarcinogens and NSAIDs on rat gastrointestinal

  2. Antioxidant, antimutagenic, and anticarcinogenic effects of Papaver rhoeas L. extract on Saccharomyces cerevisiae.

    Science.gov (United States)

    Todorova, Teodora; Pesheva, Margarita; Gregan, Fridrich; Chankova, Stephka

    2015-04-01

    The aim of this work was to analyze the antioxidant and antimutagenic/anticarcinogenic capacity of Papaver rhoeas L. water extract against standard mutagen/carcinogen methyl methanesulfonate (MMS) and radiomimetic zeocin (Zeo) on a test system Saccharomyces cerevisiae. The following assays were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, quantitative determination of superoxide anion (antireactive oxygen species [antiROS test]), DNA topology assay, D7ts1 test--for antimutagenic--and Ty1 transposition test--for anticarcinogenic effects. Strong pro-oxidative capacity of Zeo was shown to correlate with its well-expressed mutagenic and carcinogenic properties. The mutagenic and carcinogenic effects of MMS were also confirmed. Our data concerning the antioxidant activity of P. rhoeas L. extract revealed that concentration corresponding to IC(50) in the DPPH assay possessed the highest antioxidant activity in the antiROS biological assay. It was also observed that a concentration with 50% scavenging activity expressed the most pronounced antimutagenic properties decreasing Zeo-induced gene conversion twofold, reverse mutation fivefold, and total aberrations fourfold. The same concentration possessed well-expressed anticarcinogenic properties measured as reduction of MMS-induced Ty1 transposition rate fivefold and fourfold when Zeo was used as an inductor. Based on the well-expressed antioxidant, antimutagenic, and anticarcinogenic properties obtained in this work, the P. rhoeas L. extract could be recommended for further investigations and possible use as a food additive.

  3. Dietary Carcinogens and Anticarcinogens.

    Science.gov (United States)

    Ames, Bruce N.

    1983-01-01

    Describes 16 mutagens/carcinogens found in plant food and coffee as well as several anticarcinogens also found in such food. Speculates on relevant biochemical mechanisms, particularly the role of oxygen radicals and their inhibitors in the fat/cancer relationship, promotion, anticarcinogenesis, and aging. (JN)

  4. Screening of anticarcinogens by medium-term carcinogenesis method

    International Nuclear Information System (INIS)

    Yun, Taik Koo; Kim, Sung Ho

    1988-02-01

    According to the many surveys, cancer is one of the major causes of death in most developed countries and the incidence of cancer appears to be on the increase. Therefore, many studies on carcinogens and anticarcinogens are urgently needed in order to establish efficient preventive measures for cancer. From this viewpoint, this experiment was performed with a view to verifying the anticarcinogenicity of spinach, Sesamum indicum, and Ganoderma lucidum. The mice were divided into 8 groups; 1% gelatin group, benzo-(a)pyrene (BP) injected group, spinach alone group, BP combined with spinach group, Sesamum indicum alone group, BP combined with Sesamum indicum group, Ganoderma lucidum alone group, BP combined with Ganoderma lucidum group. To verify the anti-carcinogenicity of these vegetables, NIH(GP) newborn mice, after injection of 0.5mg of BP in subscapular region, were administered spinach (25% in diet), Sesamum indicum (5% in diet) or Ganoderma lucidum (25% in diet) for six weeks after they were weaned. Each group of mice was sacrificed of 9th week to observe the incidence of lung adenoma. Major organs were examined grossly and histopathologically. This experiment was carried out to evaluate the anti-carcinogenic effect of spinach, Sesamum indicum, and Ganoderma lucidum. (Author)

  5. Anticarcinogenic effect of betel leaf extract against tobacco carcinogens.

    Science.gov (United States)

    Padma, P R; Lalitha, V S; Amonkar, A J; Bhide, S V

    1989-06-01

    Epidemiological studies have implicated that betel quid offers some protection to tobacco induced carcinogenesis. Earlier studies in our laboratory have shown betel leaf extract (BLE) to be antimutagenic against standard mutagens and tobacco-specific N'-nitrosamines (TSNA), N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the present study, we have tested the anticarcinogenic effect of BLE using Swiss male mice. Two protocols of study were used to test this effect. In the first protocol, the effect of BLE was tested against the standard carcinogen benzo[a]pyrene (BP) using Wattenberg's stomach tumor model, Cancer Res., 41 (1981) 2820-2823. In this protocol, BLE inhibited the tumorigenicity of BP to a significant extent. In the second protocol, the effect of BLE against the two tobacco-specific nitrosamines, NNN and NNK was studied using long-term studies on Swiss male mice. The nitrosamines were administered on the tongues of the mice, while the BLE was supplied in drinking water. Two doses of NNN (22 mg and 72 mg) and one dose of NNK (22 mg) were used. In this study, it was observed that the number of tumor bearing animals decreased, but the difference was significant only in the group treated with the low dose of NNN in combination with BLE. However, in all the BLE treated animals, irrespective of the dose of nitrosamine, the hepatic vitamin A and C levels were elevated significantly as compared to the corresponding nitrosamine-treated controls. These results indicate that BLE has a promising anticarcinogenic role to play in tobacco induced cancer.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Study of vitamin D serum level in patients with epilepsy treated with enzyme-inducing and non enzyme-inducing medications

    Directory of Open Access Journals (Sweden)

    sima Hashemipour

    2014-01-01

    Full Text Available Background : Changes of serum minerals and vitamin D have been reported in anticonvulsant drugs user patients. The present study aimed at comparing the changes of serum minerals and vitamin D among two groups of enzyme-inducing and non enzyme-inducing anticonvulsant drug users. Methods: In this study 22 patients treated with enzyme-inducing drugs (carbamazepin, phenytoin, phenobarbital were compared to 25 patients of matched sex, age, and BMI treated with non enzyme-inducing drugs (sodium evaporate, lamotrigine. Serum calcium, phosphate, parathormone, and 25-hydroxy vitamin D were calculated in both groups. Calcium was measured by Calorimetery method. Parathormone and vitamin D were measured using ELISA method. Results: The mean serum vitamin D level was lower in enzyme-inducing than non enzyme-inducing drugs users (15.9±8.3 and 24.2±14.8, P=0.02. Frequency of vitamin D deficiency was higher in enzyme-inducing compared to non enzyme-inducing drugs users, 84% and 48% , respectively (P=0.016. The mean serum calcium level was significantly lower in enzyme-inducing drugs users. (8.7±0.2 vs. 9.0± 0.7, p= 0.05. Four percent in enzyme-inducing group compared to twenty four percent of non enzyme-inducing group had secondary hyperparathyroidism (P=0.016. Conclusion: While vitamin D deficiency is more frequent in enzyme-inducing drug users, secondary hyperparathyroidism is less frequent.

  7. Studies on carcinogenicity or anticarcinogenicity of isonicotinic acid hydrazide and caffeine by nine-week assay system

    International Nuclear Information System (INIS)

    Yun, Taik Koo; Oh, Yeong Ram; Kim, Sung Ho

    1986-12-01

    According to many surveys, cancer is one of the major causes of death in most developed countries and the incidence of cancer appears to be on the increase. Therefore, many studies on detection of carcinogenic or anticarcinogenic agents need urgently. The purpose of this investigation is evaluation the carcinogenic or anticarcinogenic effect of INH and caffeine, which were interpreted as showing either the presence or the absence of a carcinogenic or anticarcinogenic effect, using nine-week assay system. The non-inbred NIH(GP) newborn mice were injected subcutaneously with NIH(400,425, 450 or 480 μg/ head) or caffeine (75 or 100 μg/head) for evaluation of carcinogenicity. Caffeine (1 or 2 mg/ml of drinking water) was administered orally to the mice, which were injected subcutaneously with BP(500μg/head) at new-born, during 6 weeks after weaning for evaluation of anticarcinogenicity. Each group was killed at 9 weeks after the start of exanination. All major organs were examined grossly and histopathologically. Decreased lung adenoma incidence was observed statistically significant in mice fed with caffeine 1 mg(18.8%) or 2 mg(5.1%) per ml of drinking water compared to BP control group (41.3%). However, there was no statistical difference in the incidence of lung and other site tumor between the INH group and the normal control group or between caffeine injection group and normal control group. This result will be contribute to the prevention of cancer from the viewpoint of identifying carcinogenic or anticarcinogenic agents from the environment. (Author)

  8. Anticarcinogenic compounds in the Uzbek medicinal plant, Helichrysum maracandicum.

    Science.gov (United States)

    Yagura, Toru; Motomiya, Tomoko; Ito, Michiho; Honda, Gisho; Iida, Akira; Kiuchi, Fumiyuki; Tokuda, Harukuni; Nishino, Hoyoku

    2008-04-01

    An ethanol extract of Helichrysum maracandicum showed antiproliferative activity against cultured cells of SENCAR mouse in an in vitro assay, and activity-guided fractionation of the extract resulted in the isolation of isosalipurposide as an active substance. Naringenin chalcone, the aglycone of isosalipurposide, also showed strong antiproliferative activity. An in vivo assay of two-stage carcinogenesis on mouse skin revealed that epidermal application of isosalipurposide resulted in delayed formation of papillomas. Western blot analysis showed that the expression of p38 mitogen-activated protein kinase was suppressed by the administration of naringenin chalcone or isosalipurposide, which might be related to the anticarcinogenic activity.

  9. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  10. Non-nutritive anticarcinogens in foods : state of the art and future developments : a report of the international workshop held on March 26 - 27 1990 in Wageningen, The Netherlands

    NARCIS (Netherlands)

    Hertog, M.G.L.; Hollman, P.C.H.

    1990-01-01

    On March 26-27 1990 an international workshop on non-nutritive anticarcinogens in foods was organised in Wageningen, The Netherlands. Aim of the workshop was to review progress in the research on natural occurring non-nutritive anticarcinogens and to set priorities for future analytica! and

  11. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.

    Directory of Open Access Journals (Sweden)

    Benjamin R Jack

    2016-05-01

    Full Text Available Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.

  12. No de novo sulforaphane biosynthesis in broccoli seedlings

    NARCIS (Netherlands)

    Gorissen, Antonie; Kraut, Nicolai U.; de Visser, Ries; de Vries, Marcel; Roelofsen, Han; Vonk, Roel J.

    2011-01-01

    The isothiocyanate sulforaphane, present in significant amounts in broccoli (Brassica oleracea L.) seedlings in the form of its precursor glucoraphanin, has been identified as an inducer of quinine reductase, a phase-II detoxification enzyme known for its anticarcinogenic properties. Its

  13. Assessment of 105 Patients with Angiotensin Converting Enzyme-Inhibitor Induced Angioedema

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; von Buchwald, Christian; Wadelius, Mia

    2017-01-01

    Objective. To asses a cohort of 105 consecutive patients with angiotensin converting enzyme-inhibitor induced angioedema with regard to demographics, risk factors, family history of angioedema, hospitalization, airway management, outcome, and use of diagnostic codes used for the condition. Study...... gender was associated with a significantly higher risk of angiotensin converting enzyme-inhibitor induced angioedema. 6.7% had a positive family history of angioedema. Diabetes seemed to be a protective factor with regard to angioedema. 95% experienced angioedema of the head and neck. 4.7% needed...... Design. Cohort study. Methods. This was a retrospective cohort study of 105 patients with angiotensin converting enzyme-inhibitor induced angioedema in the period 1995-2014. Results. The cohort consisted of 67 females and 38 males (F : M ratio 1.8), with a mean age of 63 [range 26-86] years. Female...

  14. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pool-Zobel, Beatrice [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany)]. E-mail: b8pobe@uni-jena.de; Veeriah, Selvaraju [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany); Boehmer, Frank-D. [Institute of Molecular Cell Biology, University Hospital, Friedrich Schiller University Jena, 07743 Jena (Germany)

    2005-12-11

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  15. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    International Nuclear Information System (INIS)

    Pool-Zobel, Beatrice; Veeriah, Selvaraju; Boehmer, Frank-D.

    2005-01-01

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  16. Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Oxidative stress, an important factor in modulation of glycolytic pathway and induction of stress activated genes, is further augmented due to reduced antioxidant defense system, which promotes cancer progression via inducing angiogenesis. Curcumin, a naturally occurring chemopreventive phytochemical, is reported to inhibit carcinogenesis in various experimental animal models. However, the underlying mechanism involved in anticarcinogenic action of curcumin due to its long term effect is still to be reported because of its rapid metabolism, although metabolites are accumulated in tissues and remain for a longer time. Therefore, the long term effect of curcumin needs thorough investigation. The present study aimed to analyze the anticarcinogenic action of curcumin in liver, even after withdrawal of treatment in Dalton's lymphoma bearing mice. Oxidative stress observed during lymphoma progression reduced antioxidant enzyme activities, and induced angiogenesis as well as activation of early stress activated genes and glycolytic pathway. Curcumin treatment resulted in activation of antioxidant enzyme super oxide dismutase and down regulation of ROS level as well as activity of ROS producing enzyme NADPH:oxidase, expression of stress activated genes HIF-1α, cMyc and LDH activity towards normal level. Further, it lead to significant inhibition of angiogenesis, observed via MMPs activity, PKCα and VEGF level, as well as by matrigel plug assay. Thus findings of this study conclude that the long term effect of curcumin shows anticarcinogenic potential via induction of antioxidant defense system and inhibition of angiogenesis via down regulation of stress activated genes and glycolytic pathway in liver of lymphoma bearing mice.

  17. The synthesis of [3H]-indole-3-carbinol, a natural anti-carcinogen from cruciferous vegetables

    International Nuclear Information System (INIS)

    Dashwood, R.H.; Uyetake, Lyle; Fong, A.T.; Hendricks, J.D.; Bailey, G.S.

    1989-01-01

    Indole-3-carbinol is a natural anti-carcinogen found as a glucosinolate in cruciferous vegetables such as cabbage, cauliflower and broccoli. A complete understanding of the mechanisms of anti-carcinogenesis by this dietary inhibitor requires improved insight into the disposition and metabolic fate of indole-3-carbinol in vivo. Such metabolic studies have been hampered by the lack of a commercial source of radiolabelled compound. This provided the main impetus for the work reported here, the synthesis of 5-[ 3 H]-indole-3-carbinol from 5-bromoindole. (author)

  18. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and 2006. Sampling was ...

  19. Terminalia catappa , an anticlastogenic agent against MMS induced ...

    African Journals Online (AJOL)

    Subjects: Anticarcinogenic potential of methanolic extract of T. catappa has been tested against the carcinogenicity induced by methyl methanesulfonate in the in vitro and in vivo models. Methods: The parameters for evaluation included chromosomal aberrations (CA), sister chromatid exchanges (SCEs) and replication ...

  20. The synthesis of ( sup 3 H)-indole-3-carbinol, a natural anti-carcinogen from cruciferous vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, R H; Uyetake, Lyle; Fong, A T; Hendricks, J D; Bailey, G S [Oregon State Univ., Corvallis, OR (USA). Dept. of Food Science and Technology

    1989-08-01

    Indole-3-carbinol is a natural anti-carcinogen found as a glucosinolate in cruciferous vegetables such as cabbage, cauliflower and broccoli. A complete understanding of the mechanisms of anti-carcinogenesis by this dietary inhibitor requires improved insight into the disposition and metabolic fate of indole-3-carbinol in vivo. Such metabolic studies have been hampered by the lack of a commercial source of radiolabelled compound. This provided the main impetus for the work reported here, the synthesis of 5-({sup 3}H)-indole-3-carbinol from 5-bromoindole. (author).

  1. Protective Effect of Morus alba Leaf Extract on N-Nitrosodiethylamine-induced Hepatocarcinogenesis in Rats.

    Science.gov (United States)

    Kujawska, Małgorzata; Ewertowska, Małgorzata; Adamska, Teresa; Ignatowicz, Ewa; Flaczyk, Ewa; Przeor, Monika; Kurpik, Monika; Liebert, Jadwiga Jodynis

    The leaves of white mulberry (Morus alba L.) contain various polyphenolic compounds possessing strong antioxidant activity and anticancer potential. This study was designed to investigate the chemopreventive effect of aqueous extract of mulberry leaves against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. Wistar rats were divided into four groups: control, mulberry extract-treated, NDEA-treated, and mulberry extract plus NDEA-treated. Mulberry extract was given in the diet (1,000 mg/kg b.w./day); NDEA was given in drinking water. Mulberry extract reduced the incidence of hepatocellular carcinoma, dysplastic nodules, lipid peroxidation, protein carbonyl formation, and DNA degradation. Treatment with mulberry leaf extract along with NDEA challenge did not affect the activity of antioxidant enzymes and glutathione content. Treatment with mulberry leaf extract partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and a direct antioxidant mechanism appears to contribute to its anticarcinogenic activity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Wu Xinjiang; Kassie, Fekadu; Mersch-Sundermann, Volker

    2005-01-01

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS

  3. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xinjiang [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Kassie, Fekadu [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Mersch-Sundermann, Volker [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany)]. E-mail: Volker.mersch-sundermann@uniklinikum-giessen.de

    2005-11-11

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.

  4. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Eva Brglez Mojzer

    2016-07-01

    Full Text Available Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity.

  5. Mechanism of anticarcinogenic properties of curcumin and its application for radio-sensitization and clinical treatment

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Miyagawa, Kiyoshi; Yamada, Junko

    2016-01-01

    Curcumin is a yellow-colored polyphenol and a major component of turmeric (Curcuma longa). It is also an active ingredient in the herbal remedy and dietary spice. Curcumin has a long history of administration in traditional medicine of China. Extensive investigations on pharmacological activity of curcumin have demonstrated that curcumin possesses anti-carcinogenic, anti-inflammatory, and anti-oxidant properties. Curcumin, a kind of phytochemical, due to its beneficial pharmacological effects and an excellent safety profile, is demonstrated to be a potential candidate for the prevention and/or treatment of a variety of diseases. In this review, we introduce pharmacological action and molecular targets of curcumin, and describe its application for radio-sensitization and clinical treatment. (author)

  6. Effect of enzyme inducing anticonvulsants on ethosuximide pharmacokinetics in epileptic patients

    Science.gov (United States)

    GIACCONE, M.; BARTOLI, A.; GATTI, G.; MARCHISELLI, R.; PISANI, F.; LATELLA, M.A.; PERUCCA, E.

    1996-01-01

    1To assess the effect of enzyme inducing anticonvulsants on ethosuximide pharmacokinetics, plasma ethosuximide concentrations after a single oral dose (500 mg) of the drug were compared in 12 healthy control subjects and 10 epileptic patients receiving chronic therapy with phenobarbitone, phenytoin and/or carbamazepine. 2Compared with controls, epileptic patients showed markedly shorter ethosuximide half-lives (29.0±7.8 vs 53.7±14.3 h, means±s.d., Panticonvulsants, the effect probably being mediated by stimulation of cytochrome CYP3A activity. 4The enhancement of ethosuximide clearance in patients comedicated with enzyme inducing anticonvulsants is likely to be clinically relevant. Higher ethosuximide dosages will be required to achieve therapeutic drug concentrations in these patients. PMID:8799524

  7. trans-11 18:1 Vaccenic Acid (TVA Has a Direct Anti-Carcinogenic Effect on MCF-7 Human Mammary Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ji-Na Lim

    2014-02-01

    Full Text Available Trans vaccenic acid (TVA; trans-11 18:1 is a positional and geometric isomer of oleic acid and it is the predominant trans isomer found in ruminant fats. TVA can be converted into cis-9, trans-11 conjugated linoleic acid (c9, t11-CLA, a CLA isomer that has many beneficial effects, by stearoyl CoA desaturase 1 (SCD1 in the mammary gland. The health benefits associated with CLA are well documented, but it is unclear whether trans fatty acids (TFAs from ruminant products have healthy effects. Therefore, the effects of TVA on the proliferation of MCF-7 human breast adenocarcinoma cells and MCF-10A human breast epithelial cells were investigated in the present study. Results showed that TVA inhibited the proliferation of MCF-7 cells but not MCF-10A cells by down-regulating the expression of Bcl-2 as well as procaspase-9. In addition, the suppressive effect of TVA was confirmed in SCD1-depleted MCF-7 cells. Our results suggested that TVA exerts a direct anti-carcinogenic effect on MCF-7 cells. These findings provided a better understanding of the research on the anti-carcinogenic effects of TVA and this may facilitate the manufacture of TVA/c9, t11-CLA fortified ruminant products.

  8. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress.

  9. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in in vitro experiments and animal studies in vivo

    DEFF Research Database (Denmark)

    Verhagen, H.; Aruoma, O.I.; van Delft, J.H.M.

    2003-01-01

    There is increasing evidence that chemicals/test substances cannot only have adverse effects, but that there are many substances that can (also) have a beneficial effect on health. As this journal regularly publishes papers in this area and has every intention in continuing to do so in the near......, provided they can be justified on scientific grounds. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in in vitro experiments and animal studies in vivo concern the following areas: (1) Hypothesis-driven study design; (2......) The nature of the test substance; (3) Valid and invalid test systems; (4) The selection of dose levels and gender; (5) Reversal of the effects induced by oxidants, carcinogens and mutagens; (6) Route of administration; (7) Number and validity of test variables; (8) Repeatability and reproducibility; (9...

  10. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells.

    Science.gov (United States)

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1-F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  11. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    Energy Technology Data Exchange (ETDEWEB)

    Abel, E.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Boulware, S. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, T.; McIvor, E.; Powell, K.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); DiGiovanni, J.; Vasquez, K.M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, M.C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  12. Procyanidins from Wild Grape (Vitis amurensis Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2 Coupled with p38 and PI3K/Akt Pathway in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Woo-Sik Jeong

    2012-01-01

    Full Text Available Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1–F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2 in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(PH:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  13. Prevention of DNA damage and anticarcinogenic activity of Activia® in a preclinical model.

    Science.gov (United States)

    Limeiras, S M A; Ogo, F M; Genez, L A L; Carreira, C M; Oliveira, E J T; Pessatto, L R; Neves, S C; Pesarini, J R; Schweich, L C; Silva, R A; Cantero, W B; Antoniolli-Silva, A C M B; Oliveira, R J

    2017-03-22

    Colorectal cancer is a global public health issue. Studies have pointed to the protective effect of probiotics on colorectal carcinogenesis. Activia ® is a lacto probiotic product that is widely consumed all over the world and its beneficial properties are related, mainly, to the lineage of traditional yoghurt bacteria combined with a specific bacillus, DanRegularis, which gives the product a proven capacity to intestinal regulation in humans. The aim of this study was to evaluate the antigenotoxic, antimutagenic, and anticarcinogenic proprieties of the Activia product, in response to damage caused by 1,2-dimethylhydrazine (DMH) in Swiss mice. Activia does not have shown antigenotoxic activity. However, the percent of DNA damage reduction, evaluated by the antimutagenicity assay, ranged from 69.23 to 96.15% indicating effective chemopreventive action. Activia reduced up to 79.82% the induction of aberrant crypt foci by DMH. Facing the results, it is inferred that Activia facilitates the weight loss, prevents DNA damage and pre-cancerous lesions in the intestinal mucosa.

  14. Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis.

    Science.gov (United States)

    Agrawal, L; Louboutin, J-P; Reyes, B A S; Van Bockstaele, E J; Strayer, D S

    2006-12-01

    Human immunodeficiency virus-1 (HIV-1) infection in the central nervous system (CNS) may lead to neuronal loss and progressively deteriorating CNS function: HIV-1 gene products, especially gp120, induce free radical-mediated apoptosis. Reactive oxygen species (ROS), are among the potential mediators of these effects. Neurons readily form ROS after gp120 exposure, and so might be protected from ROS-mediated injury by antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD1) and/or glutathione peroxidase (GPx1). Both enzymes detoxify oxygen free radicals. As they are highly efficient gene delivery vehicles for neurons, recombinant SV40-derived vectors were used for these studies. Cultured mature neurons derived from NT2 cells and primary fetal neurons were transduced with rSV40 vectors carrying human SOD1 and/or GPx1 cDNAs, then exposed to gp120. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Transduction efficiency of both neuron populations was >95%, as assayed by immunostaining. Transgene expression was also ascertained by Western blotting and direct assays of enzyme activity. Gp120 induced apoptosis in a high percentage of unprotected NT2-N. Transduction with SV(SOD1) and SV(GPx1) before gp120 challenge reduced neuronal apoptosis by >90%. Even greater protection was seen in cells treated with both vectors in sequence. Given singly or in combination, they protect neuronal cells from HIV-1-gp120 induced apoptosis. We tested whether rSV40 s can deliver antioxidant enzymes to the CNS in vivo: intracerebral injection of SV(SOD1) or SV(GPx1) into the caudate putamen of rat brain yielded excellent transgene expression in neurons. In vivo transduction using SV(SOD1) also protected neurons from subsequent gp120-induced apoptosis after injection of both into the caudate putamen of rat brain. Thus, SOD1 and GPx1 can be delivered by SV40 vectors in vitro or in vivo. This approach may merit consideration for

  15. Endocytosis of a maltose permease is induced when amylolytic enzyme production is repressed in Aspergillus oryzae.

    Science.gov (United States)

    Hiramoto, Tetsuya; Tanaka, Mizuki; Ichikawa, Takanori; Matsuura, Yuka; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-09-01

    In the filamentous fungus Aspergillus oryzae, amylolytic enzyme production is induced by the presence of maltose. Previously, we identified a putative maltose permease (MalP) gene in the maltose-utilizing cluster of A. oryzae. malP disruption causes a significant decrease in α-amylase activity and maltose consumption, indicating that MalP is a maltose transporter required for amylolytic enzyme production in A. oryzae. Although the expression of amylase genes and malP is repressed by the presence of glucose, the effect of glucose on the abundance of functional MalP is unknown. In this study, we examined the effect of glucose and other carbon sources on the subcellular localization of green fluorescence protein (GFP)-tagged MalP. After glucose addition, GFP-MalP at the plasma membrane was internalized and delivered to the vacuole. This glucose-induced internalization of GFP-MalP was inhibited by treatment with latrunculin B, an inhibitor of actin polymerization. Furthermore, GFP-MalP internalization was inhibited by repressing the HECT ubiquitin ligase HulA (ortholog of yeast Rsp5). These results suggest that MalP is transported to the vacuole by endocytosis in the presence of glucose. Besides glucose, mannose and 2-deoxyglucose also induced the endocytosis of GFP-MalP and amylolytic enzyme production was inhibited by the addition of these sugars. However, neither the subcellular localization of GFP-MalP nor amylolytic enzyme production was influenced by the addition of xylose or 3-O-methylglucose. These results imply that MalP endocytosis is induced when amylolytic enzyme production is repressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. CARDIOPROTECTIVE EFFECT OF ESCULETIN ON CARDIAC MARKER ENZYMES AND MEMRANE BOUND ENZYMES IN ISOPROTERENOL-INDUCED MYOCARDIAL INFARCTION IN WISTAR RATS

    OpenAIRE

    Palanivel Karthika; Murugan Rajadurai; Palanisamy Ganapathy; Ganesan Kanchana

    2011-01-01

    This study evaluates the cardioprotective effect of esculetin on isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Rats were pretreated with esculetin (10 and 20 mg/kg) orally for a period of 21 days. After the treatment period ISO (85 mg/kg) was administered subcutaneously to rats at an interval of 24 h for 2 days. ISO-induced rats showed a significant increase in the activities of marker enzymes such as creatine kinase (CK), creatine kinase-MB (CK-MB), aspartate transaminase (...

  17. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    International Nuclear Information System (INIS)

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-01-01

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis

  18. Simultaneously and separately immobilizing incompatible dual-enzymes on polymer substrate via visible light induced graft polymerization

    Science.gov (United States)

    Zhu, Xing; He, Bin; Zhao, Changwen; Ma, Yuhong; Yang, Wantai

    2018-04-01

    Developing facile and mild strategy to construct multi-enzymes immobilization system has attracted considerable attentions in recent years. Here a simple immobilization strategy called visible light induced graft polymerization that can simultaneously and separately encapsulate two kinds of enzymes on one polymer film was proposed. Two incompatible enzymes, trypsin and transglutaminase (TGase) were selected as model dual-enzymes system and simultaneously immobilized on two sides of low-density polyethylene (LDPE) film. After immobilization, it was found that more than 90% of the enzymes can be embedded into dual-enzymes loaded film without leakage. And the activities of both separately immobilized enzymes were higher than the activities of mixed co-immobilized enzymes or the sequential immobilized ones. This dual-enzymes loaded film (DEL film) showed excellent recyclability and can retain >87% activities of both enzymes after 4 cycles of utilization. As an example, this DEL film was used to conjugate a prodrug of cytarabine with a target peptide. The successful preparation of expected product demonstrated that the separately immobilized two enzymes can worked well together to catalyze a two-step reaction.

  19. Extracellular Enzyme Composition and Functional Characteristics of Aspergillus niger An-76 Induced by Food Processing Byproducts and Based on Integrated Functional Omics.

    Science.gov (United States)

    Liu, Lin; Gong, Weili; Sun, Xiaomeng; Chen, Guanjun; Wang, Lushan

    2018-02-07

    Byproducts of food processing can be utilized for the production of high-value-added enzyme cocktails. In this study, we utilized integrated functional omics technology to analyze composition and functional characteristics of extracellular enzymes produced by Aspergillus niger grown on food processing byproducts. The results showed that oligosaccharides constituted by arabinose, xylose, and glucose in wheat bran were able to efficiently induce the production of extracellular enzymes of A. niger. Compared with other substrates, wheat bran was more effective at inducing the secretion of β-glucosidases from GH1 and GH3 families, as well as >50% of proteases from A1-family aspartic proteases. Compared with proteins induced by single wheat bran or soybean dregs, the protein yield induced by their mixture was doubled, and the time required to reach peak enzyme activity was shortened by 25%. This study provided a technical platform for the complex formulation of various substrates and functional analysis of extracellular enzymes.

  20. Potential Antioxidant Role of Tridham in Managing Oxidative Stress against Aflatoxin-B1-Induced Experimental Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Vijaya Ravinayagam

    2012-01-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most fatal cancers due to delayed diagnosis and lack of effective treatment options. Significant exposure to Aflatoxin B1 (AFB1, a potent hepatotoxic and hepatocarcinogenic mycotoxin, plays a major role in liver carcinogenesis through oxidative tissue damage and p53 mutation. The present study emphasizes the anticarcinogenic effect of Tridham (TD, a polyherbal traditional medicine, on AFB1-induced HCC in male Wistar rats. AFB1-administered HCC-bearing rats (Group II showed increased levels of lipid peroxides (LPOs, thiobarbituric acid substances (TBARs, and protein carbonyls (PCOs and decreased levels of enzymic and nonenzymic antioxidants when compared to control animals (Group I. Administration of TD orally (300 mg/kg body weight/day for 45 days to HCC-bearing animals (Group III significantly reduced the tissue damage accompanied by restoration of the levels of antioxidants. Histological observation confirmed the induction of tumour in Group II animals and complete regression of tumour in Group III animals. This study highlights the potent antioxidant properties of TD which contribute to its therapeutic effect in AFB1-induced HCC in rats.

  1. Enzyme-inducing anticonvulsants increase plasma clearance of dexmedetomidine: a pharmacokinetic and pharmacodynamic study.

    Science.gov (United States)

    Flexman, Alana M; Wong, Harvey; Riggs, K Wayne; Shih, Tina; Garcia, Paul A; Vacas, Susana; Talke, Pekka O

    2014-05-01

    Dexmedetomidine is useful during mapping of epileptic foci as it facilitates electrocorticography unlike most other anesthetic agents. Patients with seizure disorders taking enzyme-inducing anticonvulsants appear to be resistant to its sedative effects. The objective of the study was to compare the pharmacokinetic and pharmacodynamic profile of dexmedetomidine in healthy volunteers with volunteers with seizure disorders receiving enzyme-inducing anticonvulsant medications. Dexmedetomidine was administered using a step-wise, computer-controlled infusion to healthy volunteers (n = 8) and volunteers with seizure disorders (n = 8) taking phenytoin or carbamazapine. Sedation and dexmedetomidine plasma levels were assessed at baseline, during the infusion steps, and after discontinuation of the infusion. Sedation was assessed by using the Observer's Assessment of Alertness/Sedation Scale, Ramsay Sedation Scale, and Visual Analog Scale and processed electroencephalography (entropy) monitoring. Pharmacokinetic analysis was performed on both groups, and differences between groups were determined using the standard two-stage approach. A two-compartment model was fit to dexmedetomidine concentration-time data. Dexmedetomidine plasma clearance was 43% higher in the seizure group compared with the control group (42.7 vs. 29.9 l/h; P = 0.007). In contrast, distributional clearance and the volume of distribution of the central and peripheral compartments were similar between the groups. No difference in sedation was detected between the two groups during a controlled range of target plasma concentrations. This study demonstrates that subjects with seizure disorders taking enzyme-inducing anticonvulsant medications have an increased plasma clearance of dexmedetomidine as compared with healthy control subjects.

  2. Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently.

    Science.gov (United States)

    Lippmann, Doris; Lehmann, Carsten; Florian, Simone; Barknowitz, Gitte; Haack, Michael; Mewis, Inga; Wiesner, Melanie; Schreiner, Monika; Glatt, Hansruedi; Brigelius-Flohé, Regina; Kipp, Anna P

    2014-06-01

    High consumption of Brassica vegetables is considered to prevent especially colon carcinogenesis. The content and pattern of glucosinolates (GSLs) can highly vary among different Brassica vegetables and may, thus, affect the outcome of Brassica intervention studies. Therefore, we aimed to feed mice with diets containing plant materials of the Brassica vegetables broccoli and pak choi. Further enrichment of the diets by adding GSL extracts allowed us to analyze the impact of different amounts (GSL-poor versus GSL-rich) and different patterns (broccoli versus pak choi) of GSLs on inflammation and tumor development in a model of inflammation-triggered colon carcinogenesis (AOM/DSS model). Serum albumin adducts were analyzed to confirm the up-take and bioactivation of GSLs after feeding the Brassica diets for four weeks. In agreement with their high glucoraphanin content, broccoli diets induced the formation of sulforaphane-lysine adducts. Levels of 1-methoxyindolyl-3-methyl-histidine adducts derived from neoglucobrassicin were the highest in the GSL-rich pak choi group. In the colon, the GSL-rich broccoli and the GSL-rich pak choi diet up-regulated the expression of different sets of typical Nrf2 target genes like Nqo1, Gstm1, Srxn1, and GPx2. GSL-rich pak choi induced the AhR target gene Cyp1a1 but did not affect Ugt1a1 expression. Both colitis and tumor number were drastically reduced after feeding the GSL-rich pak choi diet while the other three diets had no effect. GSLs can act anti-inflammatory and anti-carcinogenic but both effects depend on the specific amount and pattern of GSLs within a vegetable. Thus, a high Brassica consumption cannot be generally considered to be cancer-preventive.

  3. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Suryanarayana, Palla; Satyanarayana, Alleboena; Balakrishna, Nagalla; Kumar, Putcha Uday; Reddy, Geereddy Bhanuprakash

    2007-12-01

    There is increasing evidence that complications related to diabetes are associated with increased oxidative stress. Curcumin, an active principle of turmeric, has several biological properties, including antioxidant activity. The protective effect of curcumin and turmeric on streptozotocin (STZ)-induced oxidative stress in various tissues of rats was studied. Three-month-old Wistar-NIN rats were made diabetic by injecting STZ (35 mg/kg body weight) intraperitoneally and fed either only the AIN-93 diet or the AIN-93 diet containing 0.002% or 0.01% curcumin or 0.5% turmeric for a period of eight weeks. After eight weeks the levels of oxidative stress parameters and activity of antioxidant enzymes were determined in various tissues. STZ-induced hyperglycemia resulted in increased lipid peroxidation and protein carbonyls in red blood cells and other tissues and altered antioxidant enzyme activities. Interestingly, feeding curcumin and turmeric to the diabetic rats controlled oxidative stress by inhibiting the increase in TBARS and protein carbonyls and reversing altered antioxidant enzyme activities without altering the hyperglycemic state in most of the tissues. Turmeric and curcumin appear to be beneficial in preventing diabetes-induced oxidative stress in rats despite unaltered hyperglycemic status.

  4. Unfolded protein response is required for Aspergillus oryzae growth under conditions inducing secretory hydrolytic enzyme production.

    Science.gov (United States)

    Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    Unfolded protein response (UPR) is an intracellular signaling pathway for adaptation to endoplasmic reticulum (ER) stress. In yeast UPR, Ire1 cleaves the unconventional intron of HAC1 mRNA, and the functional Hac1 protein translated from the spliced HAC1 mRNA induces the expression of ER chaperone genes and ER-associated degradation genes for the refolding or degradation of unfolded proteins. In this study, we constructed an ireA (IRE1 ortholog) conditionally expressing strain of Aspergillus oryzae, a filamentous fungus producing a large amount of amylolytic enzymes, and examined the contribution of UPR to ER stress adaptation under physiological conditions. Repression of ireA completely blocked A. oryzae growth under conditions inducing the production of hydrolytic enzymes, such as amylases and proteases. This growth defect was restored by the introduction of unconventional intronless hacA (hacA-i). Furthermore, UPR was observed to be induced by amylolytic gene expression, and the disruption of the transcriptional activator for amylolytic genes resulted in partial growth restoration of the ireA-repressing strain. In addition, a homokaryotic ireA disruption mutant was successfully generated using the strain harboring hacA-i as a parental host. These results indicated that UPR is required for A. oryzae growth to alleviate ER stress induced by excessive production of hydrolytic enzymes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Rao, M.V.; Paliyath, G.; Ormrod, D.P.

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O 3 ) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O 3 -induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O 3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O 3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O 3 , enhanced the activation oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O 3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O 3 , UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. 10 figs., 4 tabs

  6. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  7. Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1979-01-01

    The effect of cooling rate of a monomeric system on the porosity and activity of an immobilized enzyme prepared by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperatures has been studied. Slow cooling gave the same effect on porosity of the polymer as decreasing the monomer concentration. A glass-forming solvent such as diethylene glycol was added to water to study the effect of the supercooling tendency of the solvent. Addition of diethylene glycol decreased porosity and also enzymic activity. Water was replaced by the miscible solvent p-dioxane and the immiscible solvent n-decane in order to clarify the effect of solvent. p-Dioxane had a similar effect to water on the relation between the monomer concentration, porosity and activity. On the other hand, polymer prepared from the system containing n-decane showed different immobilization properties owing to the presence of independent pores in the matrix. (author)

  8. Antioxidant enzymes response induced by static magnetic field in pregnant rats

    International Nuclear Information System (INIS)

    Chater, S.; Abdelmelek, H.; Garrel, C.; Favier, A.; Sakly, M.; Rhouma, K.B.

    2005-01-01

    Some recent epidemiologic studies have suggested that static magnetic fields (MF) affect human health and, in particular, that the incidence of certain types of cancer, depression, and miscarriage might increase among individuals living or working in environments exposed to such fields. However, despite numerous studies concerning MF, the mechanism of its adverse effect still remains unknown. So, our work hypothesis was that abortion effects induced by MF exposure could be due to an over production of reactive oxygen species produced by pregnant rats. The aim of our study was to examine if MF was able to induce an oxidative stress in pregnant-rats. Pregnant female Wistar rats were exposed to MF (128 mT/1h/day) on day 6 to 19 of gestation. Animals were sacrificed three days after delivery and plasma was collected to determine malondialdehyde (MDA), an indirect oxidative stress marker, glutathion peroxidase activity (GPX), an antioxydant enzyme, and the total antioxidant status (TAS). MF exposure had no effects on MDA level (2.97 ± 0.50 μmol/l vs 2.62 ±0.19 μmol/l, p>0.05) and plasma GPX activity (6936.00 ±109.59 U/l vs 6258.00 ±111.12 U/l, p>0.05). Interestingly, MF exposure induced elevation in the total antioxidant status values (0.716 ±0.018 mmol/l vs 0.646 ±0.023 mmol/l, p<0.05). The results indicated that sub-acute exposures to magnetic field during rat pregnancy have no effects on lipid peroxidation, probably related to the protection role of antioxidant enzymes

  9. The molecular origin of the thiamine diphosphate-induced spectral bands of ThDP-dependent enzymes.

    Science.gov (United States)

    Kovina, Marina V; De Kok, Aart; Sevostyanova, Irina A; Khailova, Ludmila S; Belkina, Natalya V; Kochetov, German A

    2004-08-01

    New and previously published data on a variety of ThDP-dependent enzymes such as baker's yeast transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase from pigeon breast muscle, bovine heart, bovine kidney, Neisseria meningitidis and E. coli show their spectral sensitivity to ThDP binding. Although ThDP-induced spectral changes are different for different enzymes, their universal origin is suggested as being caused by the intrinsic absorption of the pyrimidine ring of ThDP, bound in different tautomeric forms with different enzymes. Non-enzymatic models with pyrimidine-like compounds indicate that the specific protein environment of the aminopyrimidine ring of ThDP determines its tautomeric form and therefore the changeable features of the inducible effect. A polar environment causes the prevalence of the aminopyrimidine tautomeric form (short wavelength region is affected). For stabilization of the iminopyrimidine tautomeric form (both short- and long-wavelength regions are affected) two factors appear essential: (i) a nonpolar environment and (ii) a conservative carboxyl group of a specific glutamate residue interacting with the N1' atom of the aminopyrimidine ring. The two types of optical effect depend in a different way upon the pH, in full accordance with the hypothesis tested. From these studies it is concluded that the inducible optical rotation results from interaction of the aminopyrimidine ring with its asymmetric environment and is defined by the protonation state of N1' and the 4'-nitrogen. Copyright 2004 Wiley-Liss, Inc.

  10. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  11. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  12. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    International Nuclear Information System (INIS)

    Peres, G.B.; Juliano, M.A.; Aguiar, J.A.K.; Michelacci, Y.M.

    2014-01-01

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10 th or the 30 th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10 th , but not on the 30 th day. Sulfatase decreased 30% on the 30 th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver

  13. Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells.

    Science.gov (United States)

    Kirlin, W G; Cai, J; DeLong, M J; Patten, E J; Jones, D P

    1999-10-01

    Dietary agents that induce glutathione S-transferases and related detoxification systems (Phase 2 enzyme inducers) are thought to prevent cancer by enhancing elimination of chemical carcinogens. The present study shows that compounds of this group (benzyl isothiocyanate, allyl sulfide, dimethyl fumarate, butylated hydroxyanisole) activated apoptosis in human colon carcinoma (HT29) cells in culture over the same concentration ranges that elicited increases in enzyme activity (5-25, 25-100, 10-100, 15-60 micromol/L, respectively). Pretreatment of cells with sodium butyrate, an agent that induces HT29 cell differentiation, resulted in parallel increases in Phase 2 enzyme activities and induction of apoptosis in response to the inducers. Cell death characteristics included apoptotic morphological changes, appearance of cells at sub-G1 phase on flow cytometry, caspase activation, DNA fragmentation and TUNEL-positive staining. The results suggest that dietary Phase 2 inducers may protect against cancer by a mechanism distinct from and in addition to that associated with enhanced elimination of carcinogens. If this occurs in vivo, diets high in such compounds could eliminate precancerous cells by apoptosis at time points well after initial exposure to chemical mutagens and carcinogens.

  14. Seeing & Feeling How Enzymes Work Using Tangible Models

    Science.gov (United States)

    Lau, Kwok-chi

    2013-01-01

    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  15. Functional effects of Japanese style fermented soy sauce (shoyu) and its components.

    Science.gov (United States)

    Kataoka, Shigehiro

    2005-09-01

    The functional effects of Japanese style fermented soy sauce (shoyu) have been studied. Soy sauce promotes digestion, because the consumption of a cup of clear soup containing soy sauce enhances gastric juice secretion in humans. Soy sauce possesses antimicrobial activity against bacteria such as Staphylococcus aureus, Shigella flexneri, Vibrio cholera, Salmonella enteritidis, nonpathogenic Escherichia coli and pathogenic E. coli O157:H7. Soy sauce also contains an antihypertensive component. An angiotensin I-converting enzyme inhibitor having antihypertensive effects was found in soy sauce. The active compound was identified as nicotianamine, which comes from soybeans. Soy sauce exhibits anticarcinogenic effects. Giving diets containing soy sauce to mice inhibit benzo[a]pyrene (BP)-induced forestomach neoplasia. The anticarcinogenic compounds in soy sauce were identified. The flavor components of Japanese style fermented soy sauce, such as 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), which is a characteristic flavor component of Japanese style fermented soy sauce and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 4-hydroxy-5-methyl-3(2H)-furanone (HMF) exhibit antioxidant activities and anticarcinogenic effects on BP-induced mice forestomach neoplasia when fed following carcinogen exposure. The feeding of a diet containing 10% soy sauce to male C3H mice for 13 months also reduces the frequency and multiplicity of spontaneous liver tumors. HDMF and HEMF also exhibit anticataract effects in the spontaneous cataract rat (ICR/f rat). Fermented soy sauce contains three tartaric isoflavone derivatives called shoyuflavones. These shoyuflavones were shown to have inhibitory activities against histidine decarboxylase, which produces histamine, a mediator of inflammation, allergy and gastric acid secretion. Soy sauce also exhibits antiplatelet activity. beta-Carbolines were isolated from soy sauce as the active compounds. Soybeans and wheat, which are the

  16. A Comparative Study of the Aneugenic and Polyploidy-inducing Effects of Fisetin and Two Model Aurora Kinase Inhibitors

    Science.gov (United States)

    Gollapudi, P.; Hasegawa, L.S.; Eastmond, D.A.

    2014-01-01

    Fisetin, a plant flavonol commonly found in fruits, nuts and vegetables, is frequently added to nutritional supplements due to its reported cardioprotective, anti-carcinogenic and antioxidant properties. Earlier reports from our laboratory and others have indicated that fisetin has both aneugenic and clastogenic properties in cultured cells. More recently, fisetin has also been reported to target Aurora B kinase, a Ser/Thr kinase involved in ensuring proper microtubule attachment at the spindle assembly checkpoint, and an enzyme that is overexpressed in several types of cancer. Here we have further characterized the chromosome damage caused by fisetin and compared it with that induced by two known Aurora kinase inhibitors, VX-680 and ZM-447439, in cultured TK6 cells using the micronucleus assay with CREST staining as well as a flow cytometry-based assay that measures multiple types of numerical chromosomal aberrations. The three compounds were highly effective in inducing aneuploidy and polyploidy as evidenced by increases in kinetochore-positive micronuclei, hyperdiploidy, and polyploidy. With fisetin, however, the latter two effects were most significantly observed only after cells were allowed to overcome a cell cycle delay, and occurred at higher concentrations than those induced by the other Aurora kinase inhibitors. Modest increases in kinetochore-negative micronuclei were also seen with the model Aurora kinase inhibitors. These results indicate that fisetin induces multiple types of chromosome abnormalities in human cells, and indicate a need for a thorough investigation of fisetin-augmented dietary supplements. PMID:24680981

  17. Differential effects of valproic acid and enzyme-inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients

    Science.gov (United States)

    Tartara, A.; Galimberti, C.A.; Manni, R.; Parietti, L.; Zucca, C.; Baasch, H.; Caresia, L.; Mück, W.; Barzaghi, N.; Gatti, G.; Perucca, E.

    1991-01-01

    1 The single dose pharmacokinetics of orally administered nimodipine (60 mg) were investigated in normal subjects and in two groups of epileptic patients receiving chronic treatment with hepatic microsomal enzyme-inducing anticonvulsants (carbamazepine, phenobarbitone or phenytoin) and sodium valproate, respectively. 2 Compared with the values found in the control group, mean areas under the plasma nimodipine concentration curve were lowered by about seven-fold (P anticonvulsants and increased by about 50% (P < 0.05) in patients taking sodium valproate. 3 Nimodipine half-lives were shorter in enzyme-induced patients than in controls (3.9 ± 2.0 h vs 9.1 ± 3.4 h, means ± s.d., P < 0.01), but this difference could be artifactual since in the patients drug concentrations declined rapidly below the limit of assay, thus preventing identification of a possible slower terminal phase. In valproate-treated patients, half-lives (8.2 ± 1.8 h) were similar to those found in controls. PMID:1777370

  18. Gene expression for peroxisome-associated enzymes in hepatocellular carcinomas induced by ciprofibrate, a hypolipidemic compound

    International Nuclear Information System (INIS)

    Rao, M.S.; Nemali, M.R.; Reddy, J.K.

    1986-01-01

    Administration of hypolipidemic compounds leads to marked proliferation of peroxisomes and peroxisome-associated enzymes (PAE) in the livers of rodents and non-rodent species. The increase peroxisome-associated enzymes such as fatty acid β-oxidation system and catalase is shown to be due to an increase in the levels of mRNA. In this experiment they have examined hepatocellular carcinomas (HCC), induced in male F-344 rats by ciprofibrate (0.025%, w/w for 60 weeks), for gene expression of PAE. Total RNA was purified from HCC as well as from control and ciprofibrate (0.025% for 2 weeks) fed rat livers. Northern blot analysis was performed using [32/sub p/]cDNA probes for albumin, fatty acetyl-CoA oxidase, enoyl-CoA hydratase 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and catalase. mRNA levels in HCC for albumin, fatty acid β-oxidation enzymes and catalase were comparable with those levels observed in the livers of rats given ciprofibrate for 2 weeks. In control livers the mRNAs for β-oxidation enzymes were low. Albumin mRNA levels in all the 3 groups were comparable. Additional studies are necessary to determine whether the increased level of mRNAs for the β-oxidation enzymes in HCC is due to the effect of ciprofibrate or to the gene amplification

  19. Correlation between mixed-function oxidase enzyme induction and aflatoxin B1-induced unscheduled DNA synthesis in the chick embryo, in vivo

    International Nuclear Information System (INIS)

    Hamilton, J.W.; Bloom, S.E.

    1984-01-01

    The unscheduled DNA synthesis (UDS) technique has been adapted for use in the chick embryo, in vivo, to determine the relationship between induction of the mixed-function oxidase (MFO) enzyme system and genetic damage from an indirect-acting mutagen-carcinogen. Embryos were injected at 6 days of incubation (DI) with either phenobarbital (PB), a specific inducer of P-450-associated enzyme activities, or 3,4,3',4'-tetrachlorobiphenyl (TCB), a specific inducer of P 1 -450-associated enzyme activities. Aflatoxin B 1 (AFB1) was injected 24 hr later (7 DI), followed by a 5-hr continuous 3 H-thymidine exposure. The livers were removed, prepared for autoradiography, and hepatocytes were scored for an increase in grains/nucleus, indicative of UDS. Aflatoxin B 1 caused a dose-related increase in UDS in all control and induction groups. Phenobarbital-induced embryos had an increased UDS response while TCB-induced embryos had a decreased UDS response, relative to noninduced embryos, for each dosage of AFB1. This suggests that the genotoxicity of an indirect-acting mutagen-carcinogen can be either increased or decreased, in vivo, depending on the inducer used. The chick embryo provides an excellent system for studying the effect of MFO induction on the genotoxicity of promutagen-carcinogens in a developing system

  20. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  1. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens

    Science.gov (United States)

    Fahey, Jed W.; Zhang, Yuesheng; Talalay, Paul

    1997-01-01

    Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10–100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at −50°C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect

  2. Vanillin Differentially Affects Azoxymethane-Injected Rat Colon Carcinogenesis and Gene Expression

    OpenAIRE

    Ho, Ket Li; Chong, Pei Pei; Yazan, Latifah Saiful; Ismail, Maznah

    2012-01-01

    Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rat...

  3. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model

    NARCIS (Netherlands)

    Krul, C.A.M.; Humblot, C.; Philippe, C.; Vermeulen, M.; Nuenen, M. van; Havenaar, R.; Rabot, S.

    2002-01-01

    Cruciferous vegetables, such as Brassica, which contain substantial quantities of glucosinolates, have been suggested to possess anticarcinogenic activity. Cutting and chewing of cruciferous vegetables releases the thioglucosidase enzyme myrosinase, which degrades glucosinolates to isothiocyanates

  4. Burn-induced stimulation of lysosomal enzyme synthesis in skeletal muscle

    International Nuclear Information System (INIS)

    Odessey, R.

    1986-01-01

    A localized burn injury to a rat hindlimb results in atrophy of soleus muscle (in the absence of cellular damage) which is attributable to an increase in muscle protein breakdown. Previous work has shown that lysosomal enzyme activities (cathepsins B, H, L, and D) are elevated in muscle from the burned leg by 50% to 100%. There is no change in endogenous neutral protease activity (+/- Ca ++ ). The increase in protease activity can not be attributed to changes in endogenous protease inhibitors. The latency [(Triton X100 treated - control)/triton treated] of lysosomal enzymes is approximately 50% and is not altered by burn injury. The rate of sucrose uptake is also not altered by burn. These experiments suggest that the rate of substrate supply to the lysosomal apparatus via endocytosis or autophagocytosis is not altered by burn. When muscles are preincubated with 3 H-phenylalanine or 3 H-mannose burn increased incorporation into protein of the fraction containing lysosomes by 100%. Preincubation in the presence of tunicamycin (an inhibitor of glycoprotein synthesis) inhibited incorporation of both labels into a microsomal fraction of the muscle from the burned leg, but has little effect on incorporation in the control muscle. These findings are consistent with the hypothesis that the burn-induced increase in protein breakdown is caused by an increase in lysosomal protease synthesis

  5. Mitigation of radiation-induced lung fibrosis by angiotensin converting enzyme inhibitors

    International Nuclear Information System (INIS)

    Kma, Lakhan; Gao, Feng; Jacobs, Elizabeth R.; Medhora, Meetha; Fish, Brian L.; Moulder, John E.

    2014-01-01

    The aim of this study was to test the mitigating potential of angiotensin converting enzyme inhibitors (ACEi) against radiation-induced pulmonary fibrosis, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were exposed to a single dose of 13 Gy of X-irradiation to the whole thorax, at the dose rate of 1.43 Gy/min. Three structurally-different ACEi's, captopril (145-207 mg/m 2 /day), enalapril (19-28 mg/m 2 /day) and fosinopril (19-28 mg/m 2 /day) were administered in drinking water beginning 1 week after whole thoracic irradiation. Rats that survived acute pneumonitis (6-12 weeks) were accessed monthly after irradiation for the effects on lung structure and function. Endpoints included breathing rate, wet:dry weight ratio, collagen content and histolopathological studies. Treatment with captopril or enalapril, but not fosinopril, beginning 1 week after 13 Gy X-irradiation improved survival of rats. Mortality of 30-35% was observed with administration of captopril or enalapril compared to 70% for 13 Gy alone. All three ACEi's attenuated radiation-induced lung fibrosis at 7 months after irradiation based on histological indices and measurement of lung collagen. After whole-thoracic irradiation, ACEi's mitigate radiation induced pulmonary fibrosis based on histological and biochemical endpoints. These treatments were effective even when administration was not started until one week after irradiation. Our findings support the therapeutic potential of ACEi's against chronic radiation induced lung injury. (author)

  6. Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities

    International Nuclear Information System (INIS)

    Leeuw, Marina de; Roiz, Levava; Smirnoff, Patricia; Schwartz, Betty; Shoseyov, Oded; Almog, Orna

    2007-01-01

    Native ACTIBIND was successfully crystallized and it was shown that the interaction between ACTIBIND and actin is in a molar ratio of 1:2, with a binding constant of 16.17 × 10 4 M −1 . ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 × 10 4 M −1 . Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 × 0.5 × 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3 1 21 space group, with unit-cell parameters a = 78, b = 78, c = 104 Å

  7. Tumour Microenvironments Induce Expression of Urokinase Plasminogen Activator Receptor (uPAR) and Concomitant Activation of Gelatinolytic Enzymes

    Science.gov (United States)

    Magnussen, Synnøve; Hadler-Olsen, Elin; Latysheva, Nadezhda; Pirila, Emma; Steigen, Sonja E.; Hanes, Robert; Salo, Tuula; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjørg

    2014-01-01

    Background The urokinase plasminogen activator receptor (uPAR) is associated with poor prognosis in oral squamous cell carcinoma (OSCC), and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells’ expression level of uPAR affected the activity of gelatinolytic enzymes. Methods The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM) proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography. Results We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes. Conclusions Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the

  8. Tumour microenvironments induce expression of urokinase plasminogen activator receptor (uPAR and concomitant activation of gelatinolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Synnøve Magnussen

    Full Text Available The urokinase plasminogen activator receptor (uPAR is associated with poor prognosis in oral squamous cell carcinoma (OSCC, and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells' expression level of uPAR affected the activity of gelatinolytic enzymes.The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography.We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes.Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the regulation of posttranslational

  9. Role of microsomal enzyme inducers in the reduction of misonidazole neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.H.; Bleehen, N.M.; Workman, P.; Smith, N.C. (Cambridge Univ. (UK). Dept. of Clinical Oncology and Radiotherapeutics; Addenbrooke' s Hospital, Cambridge (UK))

    1983-11-01

    It has been shown that phenytoin, 300 mg daily for one week, produces consistent hepatic microsomal enzyme induction, resulting in a decrease of 25% in misonidazole half-life, without causing any toxicity per se. A longer period of administration gives only a slightly greater induction. Phenobarbitone in a daily dose of 90 mg causes a reduction of 18% and 23% in misonidazole half-life after 1 and 2 weeks' pre-treatment respectively, but is less suitable clinically because of its sedative effect. A further series of studies using phenytoin as the inducing agent has shown that, despite adequate enzyme induction and increased misonidazole metabolism, it is impossible to increase the total dose of misonidazole beyond the usually accepted value of 12 g/m/sup 2/ because of unacceptable neuropathy (a rate of 50% at a dose of 14 g/m/sup 2/ over three weeks). In single doses of above 3.0-4.0 g of misonidazole, severe nausea and vomiting are prominent, so that this side effect is a determining factor in the treatment fractionation. Audiometric studies show no correlation between the incidence of peripheral neuropathy and abnormal audiograms, and have no value in the early prediction of neurotoxicity.

  10. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  11. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  12. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  13. Toxicologic study of carboxyatractyloside (active principle in cocklebur--Xanthium strumarium) in rats treated with enzyme inducers and inhibitors and glutathione precursor and depletor.

    Science.gov (United States)

    Hatch, R C; Jain, A V; Weiss, R; Clark, J D

    1982-01-01

    Male rats (10 rats/group) were treated with phenobarbital (PB), phenylbutazone (PBZ), stanozolol (3 inducers of cytochrome P450-dependent enzymes), piperonyl butoxide (PBO; a P450 inhibitor), cobaltous chloride (CoCl2; an inhibitor of hemoprotein synthesis), 5,6-benzoflavone (BNF; an inducer of cytochrome P448 dependent enzymes), cysteine [CYS; a glutathione (GSH) precursor], or ethyl maleate (EM; a GSH depletor). The rats were then given a calculated LD50 dosage (13.5 mg/kg of body weight) of carboxyatractyloside (CAT) intraperitoneally. Clinical signs of toxicosis, duration of illness, lethality, gross lesions, and hepatic and renal histopathologic lesions were recorded. Seemingly, (i) CAT toxicosis has independent lethal and cytotoxic components (PBZ decreased lethality and cytotoxicity; CoCl2 decreased cytotoxicity but not lethality; BNF decreased duration of illness, and perhaps lethality, but not cytotoxicity); (ii) CAT cytotoxicity could be partly due to an active metabolite formed by de novo-synthesized, P450-/P448-independent hemoprotein (PBZ and CoCl2 had anticytotoxic effects, but PB, stanozolol, PBO, and BNF did not); (iii) CAT detoxification may occur partly through a hemoprotein-independent, PBZ-inducible enzyme, and partly through a P448-dependent (BNF-inducible) enzyme; and (iv) CAT detoxification apparently is not P450 or GSH-dependent because PB, stanozolol, and CYS had no beneficial effects, and PBO, CoCl2, and EM did not enhance toxicosis. Metabolism of CAT may have a role in its cytotoxic and lethal effects.

  14. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes-An in vitro study

    International Nuclear Information System (INIS)

    Kiruthiga, P.V.; Pandian, S. Karutha; Devi, K. Pandima

    2010-01-01

    PAHs are a ubiquitous class of environmental contaminants that have a large number of hazardous consequences on human health. An important prototype of PAHs, B(a)P, is notable for being the first chemical carcinogen to be discovered and the one classified by EPA as a probable human carcinogen. It undergoes metabolic activation to QD, which generate ROS by redox cycling system in the body and oxidatively damage the macromolecules. Hence, a variety of antioxidants have been tested as possible protectors against B(a)P toxicity. Silymarin is one such compound, which has high human acceptance, used clinically and consumed as dietary supplement around the world for its strong anti-oxidant efficacy. Silymarin was employed as an alternative approach for treating B(a)P induced damage and oxidative stress in PBMC, with an emphasis to provide the molecular basis for the effect of silymarin against B(a)P induced toxicity. PBMC cells exposed to either benzopyrene (1 μM) or silymarin (2.4 mg/ml) or both was monitored for toxicity by assessing LPO, PO, redox status (GSH/GSSG ratio), glutathione metabolizing enzymes GR and GPx and antioxidant enzymes CAT and SOD. This study also investigated the protective effect of silymarin against B(a)P induced biochemical alteration at the molecular level by FT-IR spectroscopy. Our findings were quite striking that silymarin possesses substantial protective effect against B(a)P induced oxidative stress and biochemical changes by restoring redox status, modulating glutathione metabolizing enzymes, hindering the formation of protein oxidation products, inhibiting LPO and further reducing ROS mediated damages by changing the level of antioxidant enzymes. The results suggest that silymarin exhibits multiple protections and it should be considered as a potential protective agent for environmental contaminant induced immunotoxicity.

  15. Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    International Nuclear Information System (INIS)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai; Chen, Zhi Xiang; Yu, Jing Quan

    2012-01-01

    Highlights: ► Activity of certain Calvin cycle enzymes and CO 2 assimilation are induced by BRs. ► BRs upregulate the activity of the ascorbate–glutathione cycle in the chloroplasts. ► BRs increase the chloroplast thiol reduction state. ► A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO 2 assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate–glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate–glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO 2 assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  16. The role of microsomal enzyme inducers in the reduction of misonidazole neurotoxicity

    International Nuclear Information System (INIS)

    Jones, D.H.; Bleehen, N.M.; Workman, P.; Smith, N.C.

    1983-01-01

    It has been shown that phenytoin, 300 mg daily for one week, produces consistent hepatic microsomal enzyme induction, resulting in a decrease of 25% in misonidazole half-life, without causing any toxicity per se. A longer period of administration gives only a slightly greater induction. Phenobarbitone in a daily dose of 90 mg causes a reduction of 18% and 23% in misonidazole half-life after 1 and 2 weeks' pre-treatment respectively, but is less suitable clinically because of its sedative effect. A further series of studies using phenytoin as the inducing agent has shown that, despite adequate enzyme induction and increased misonidazole metabolism, it is impossible to increase the total dose of misonidazole beyond the usually accepted value of 12 g/m 2 because of unacceptable neuropathy (a rate of 50% at a dose of 14 g/m 2 over three weeks). In single doses of above 3.0-4.0 g of misonidazole, severe nausea and vomiting are prominent, so that this side effect is a determining factor in the treatment fractionation. Audiometric studies show no correlation between the incidence of peripheral neuropathy and abnormal audiograms, and have no value in the early prediction of neurotoxicity. (author)

  17. Fisetin Modulates Antioxidant Enzymes and Inflammatory Factors to Inhibit Aflatoxin-B1 Induced Hepatocellular Carcinoma in Rats

    Science.gov (United States)

    Maurya, Brajesh Kumar; Trigun, Surendra Kumar

    2016-01-01

    Fisetin, a known antioxidant, has been found to be cytotoxic against certain cell lines. However, the mechanism by which it inhibits tumor growth in vivo remains unexplored. Recently, we have demonstrated that Aflatoxin-B1 (AFB1) induced hepatocarcinogenesis is associated with activation of oxidative stress-inflammatory pathway in rat liver. The present paper describes the effect of in vivo treatment with 20 mg/kg b.w. Fisetin on antioxidant enzymes vis-a-vis oxidative stress level and on the profile of certain proinflammatory cytokines in the hepatocellular carcinoma (HCC) induced by two doses of 1 mg/kg b.w. AFB1 i.p. in rats. The reduced levels of most of the antioxidant enzymes, coinciding with the enhanced level of reactive oxygen species in the HCC liver, were observed to regain their normal profiles due to Fisetin treatment. Also, Fisetin treatment could normalize the enhanced expression of TNFα and IL1α, the two proinflammatory cytokines, reported to be involved in HCC pathogenesis. These observations were consistent with the regression of neoplastic lesion and declined GST-pi (placental type glutathione-S-transferase) level, a HCC marker, in the liver of the Fisetin treated HCC rats. The findings suggest that Fisetin attenuates oxidative stress-inflammatory pathway of AFB1 induced hepatocarcinogenesis. PMID:26682000

  18. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    Science.gov (United States)

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  19. Radiation-induced heterogeneity of chymotrypsin of mus musculus. On the characterization of structurally and functionally in vitro modified enzyme forms

    International Nuclear Information System (INIS)

    Amneus, H.

    1976-01-01

    The distribution of in vitro induced 60 Co-γ (structural heterogeneity of mouse chymotrypsin has been studied in terms of molecular weight, catalytic activity and net charge distribution. It was found that the enzyme stucture, with retained molecular weight, could partly accumulate structural changes subsequently not leading to modification of catalytic properties. Loss of petide fragments (0 < Mw (lt 6000) the enzyme showed native function but also modified as well as total loss of function. Further loss of peptide fragments results in modified function and total loss of function. These results indicate the capability of the enzyme to accumulate in vitro changes partly without a total loss of function. (author)

  20. Influence of Piper betle on hepatic marker enzymes and tissue antioxidant status in D-galactosamine-induced hepatotoxic rats.

    Science.gov (United States)

    Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan

    2008-01-01

    D-galactosamine is a well-established hepatotoxicant that induces a diffuse type of liver injury closely resembling human viral hepatitis. D-galactosamine by its property of generating free radicals causes severe damage to the membrane and affects almost all organs of the human body. The leaves of Piper betle L., a commonly used masticatory in Asian countries, possess several biological properties. Our aim is to investigate the in vivo antioxidant potential of P. betle leaf-extract against oxidative stress induced by D-galactosamine intoxication in male albino Wistar rats. Toxicity was induced by an intraperitoneal injection of D-galactosamine, 400 mg/kg body weight (BW) for 21 days. Rats were treated with P. betle extract (200 mg/kg BW) via intragastric intubations. We assessed the activities of liver marker enzymes (aspartate amino-transferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase) and levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, superoxide dismutase, catalase, glutathione peroxidase, vitamin C, vitamin E, and reduced glutathione. The extract significantly improved the status of antioxidants and decreased TBARS, hydroperoxides, and liver marker enzymes when compared with the D-galactosamine treated group, demonstrating its hepatoprotective and antioxidant properties.

  1. The role of biotransformation in dietary (anti)carcinogenesis

    NARCIS (Netherlands)

    Iersel, M.L.P.S. van; Verhagen, H.; Bladeren, P.J. van

    1999-01-01

    The fact that dietary compounds influence the susceptibility of human beings to cancer, is widely accepted. One of the possible mechanisms that is responsible for these (anti)carcinogenic effects is that dietary constituents may modulate biotransformation enzymes, thereby affecting the

  2. Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Leeuw, Marina de [Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105 (Israel); Roiz, Levava [The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100 (Israel); Smirnoff, Patricia; Schwartz, Betty [The Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem (Israel); Shoseyov, Oded [The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100 (Israel); Almog, Orna, E-mail: almogo@bgu.ac.il [Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105 (Israel)

    2007-08-01

    Native ACTIBIND was successfully crystallized and it was shown that the interaction between ACTIBIND and actin is in a molar ratio of 1:2, with a binding constant of 16.17 × 10{sup 4} M{sup −1}. ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 × 10{sup 4} M{sup −1}. Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 × 0.5 × 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3{sub 1}21 space group, with unit-cell parameters a = 78, b = 78, c = 104 Å.

  3. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  4. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    Science.gov (United States)

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  5. Curcumin Induces Nrf2 Nuclear Translocation and Prevents Glomerular Hypertension, Hyperfiltration, Oxidant Stress, and the Decrease in Antioxidant Enzymes in 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    Edilia Tapia

    2012-01-01

    Full Text Available Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1 control, (2 5/6NX, (3 5/6NX +CUR, and (4 CUR (n=8–10. Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes.

  6. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice

    International Nuclear Information System (INIS)

    Dinkova-Kostova, Albena T.; Jenkins, Stephanie N.; Wehage, Scott L.; Huso, David L.; Benedict, Andrea L.; Stephenson, Katherine K.; Fahey, Jed W.; Liu Hua; Liby, Karen T.; Honda, Tadashi; Gribble, Gordon W.; Sporn, Michael B.; Talalay, Paul

    2008-01-01

    Inducible phase 2 enzymes constitute a primary line of cellular defense. The oleanane dicyanotriterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile (TP-225) is a very potent inducer of these systems. Topical application of TP-225 to SKH-1 hairless mice increases the levels of NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) and protects against UV radiation-induced dermal thickening. Daily topical treatments of 10 nmol of TP-225 to the backs of mice that were previously subjected to low-level chronic UVB radiation (30 mJ/cm 2 /session, twice a week for 17 weeks), led to 50% reduction in multiplicity of skin tumors. In addition, the total tumor burden of squamous cell carcinomas was reduced by 5.5-fold. The identification of new agents for protection against UV radiation-induced skin cancer and understanding of their mechanism(s) of action is especially important in view of the fact that human skin cancers represent a significant source of increasing morbidity and mortality

  7. Fisetin Modulates Antioxidant Enzymes and Inflammatory Factors to Inhibit Aflatoxin-B1 Induced Hepatocellular Carcinoma in Rats

    Directory of Open Access Journals (Sweden)

    Brajesh Kumar Maurya

    2016-01-01

    Full Text Available Fisetin, a known antioxidant, has been found to be cytotoxic against certain cell lines. However, the mechanism by which it inhibits tumor growth in vivo remains unexplored. Recently, we have demonstrated that Aflatoxin-B1 (AFB1 induced hepatocarcinogenesis is associated with activation of oxidative stress-inflammatory pathway in rat liver. The present paper describes the effect of in vivo treatment with 20 mg/kg b.w. Fisetin on antioxidant enzymes vis-a-vis oxidative stress level and on the profile of certain proinflammatory cytokines in the hepatocellular carcinoma (HCC induced by two doses of 1 mg/kg b.w. AFB1 i.p. in rats. The reduced levels of most of the antioxidant enzymes, coinciding with the enhanced level of reactive oxygen species in the HCC liver, were observed to regain their normal profiles due to Fisetin treatment. Also, Fisetin treatment could normalize the enhanced expression of TNFα and IL1α, the two proinflammatory cytokines, reported to be involved in HCC pathogenesis. These observations were consistent with the regression of neoplastic lesion and declined GST-pi (placental type glutathione-S-transferase level, a HCC marker, in the liver of the Fisetin treated HCC rats. The findings suggest that Fisetin attenuates oxidative stress-inflammatory pathway of AFB1 induced hepatocarcinogenesis.

  8. Gemfibrozil modulates cytochrome P450 and peroxisome proliferation-inducible enzymes in the liver of the yellow European eel (Anguilla anguilla).

    Science.gov (United States)

    Lyssimachou, Angeliki; Thibaut, Rémi; Gisbert, Enric; Porte, Cinta

    2014-01-01

    The human lipid regulator gemfibrozil (GEM) has been shown to induce peroxisome proliferation in rodents leading to hepatocarcinogenesis. Since GEM is found at biological active concentrations in the aquatic environment, the present study investigates the effects of this drug on the yellow European eel (Anguilla anguilla). Eels were injected with different concentrations of GEM (0.1 to 200 μg/g) and sampled 24- and 96-h post-injection. GEM was shown to inhibit CYP1A, CYP3A and CYP2K-like catalytic activities 24-h post-injection, but at 96-h post-injection, only CYP1A was significantly altered in fish injected with the highest GEM dose. On the contrary, GEM had little effect on the phase II enzymes examined (UDP-glucuronyltransferase and glutathione-S-transferase). Peroxisome proliferation inducible enzymes (liver peroxisomal acyl-CoA oxidase and catalase) were very weakly induced. No evidence of a significant effect on the endocrine system of eels was observed in terms of plasmatic steroid levels or testosterone esterification in the liver.

  9. Salivary alpha-amylase: More than an enzyme Investigating confounders of stress-induced and basal amylase activity

    OpenAIRE

    Strahler, Jana

    2010-01-01

    Summary: Salivary alpha-amylase: More than an enzyme - Investigating confounders of stress-induced and basal amylase activity (Dipl.-Psych. Jana Strahler) The hypothalamus-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS) are two of the major systems playing a role in the adaptation of organisms to developmental changes that threaten homeostasis. The HPA system involves the secretion of glucocorticoids, including cortisol, into the circulatory system. Numerous studies hav...

  10. Effects of experimentally-induced maternal hypothyroidism on crucial offspring rat brain enzyme activities.

    Science.gov (United States)

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Stolakis, Vasileios; Tsagianni, Anastasia; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos

    2014-06-01

    Hypothyroidism is known to exert significant structural and functional changes to the developing central nervous system, and can lead to the establishment of serious mental retardation and neurological problems. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil-induced experimental hypothyroidism on crucial brain enzyme activities of Wistar rat offspring, at two time-points of their lives: at birth (day-1) and at 21 days of age (end of lactation). Under all studied experimental conditions, offspring brain acetylcholinesterase (AChE) activity was found to be significantly decreased due to maternal hypothyroidism, in contrast to the two studied adenosinetriphosphatase (Na(+),K(+)-ATPase and Mg(2+)-ATPase) activities that were only found to be significantly altered right after birth (increased and decreased, respectively, following an exposure to gestational maternal hypothyroidism) and were restored to control levels by the end of lactation. As our findings regarding the pattern of effects that maternal hypothyroidism has on the above-mentioned crucial offspring brain enzyme activities are compared to those reported in the literature, several differences are revealed that could be attributed to both the mode of the experimental simulation approach followed as well as to the time-frames examined. These findings could provide the basis for a debate on the need of a more consistent experimental approach to hypothyroidism during neurodevelopment as well as for a further evaluation of the herein presented and discussed neurochemical (and, ultimately, neurodevelopmental) effects of experimentally-induced maternal hypothyroidism, in a brain region-specific manner. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Orthodontic forces induce the cytoprotective enzyme heme oxygenase-1 in rats

    Directory of Open Access Journals (Sweden)

    Christiaan M. Suttorp

    2016-07-01

    Full Text Available Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL, and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalization. Heme oxygenase-1 (HO-1 forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Ni-Ti 10 cN coil spring. The contralateral side served as control. After 6, 12, 72, 96 and 120 hrs rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of multinuclear osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in the mononuclear cell population within the PDL at both the apposition- and resorption side. Shortly after appliance placement HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 hours. Some osteoclasts were HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of cytoprotective enzymes as HO-1 in the PDL determines the level of hyalinization and, subsequently, fast and slow tooth movers during orthodontic treatment.

  12. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Chhangani, Deepak; Joshi, Vibhuti; Mishra, Ribhav; Yamanaka, Koji; Mishra, Amit

    2017-05-01

    Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Effects of Arctium lappa aqueous extract on lipid profile and hepatic enzyme levels of sucrose-induced metabolic syndrome in female rats

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    Full Text Available ABSTRACT Arctium lappa is known to have antioxidant and antidiabetic effects in traditional medicine. Objectives: The aim of this paper was to study the effects of A. lappa root extract (AE on lipid profile and hepatic enzyme levels in sucrose-induced metabolic syndrome (MS in female rats. The study used 40 adult female Wistar rats weighing 150 g-250 g randomly divided into five groups: control, metabolic syndrome (MS, metabolic syndrome+AE at 50,100, 200 mg/kg. MS was induced by administering 50% sucrose in drinking water for 6 weeks. AE was intra-peritoneally administered daily at doses of 50,100, and 200 mg/kg for two sequential weeks at the end of the fourth week in metabolic syndrome rats. Twenty-four hours after the last administration of AE, blood was collected and centrifuged, and then the serum was used for the measurement of lipid profile and hepatic enzyme. Serum glucose, insulin, fasting insulin resistance index, body weight, water intake, lipid profile, and hepatic enzymes were significantly increased although food intake was decreased in MS rats compared to the control rats. The lipids and liver enzymes were reduced by AE extracts in the MS group. This study showed that the A. lappa root aqueous extract exhibits a hypolipidemic activity of hyperlipidemic rats. This activity is practically that of a triple-impact antioxidant, hypolipidemic, and hepatoprotective.

  14. Antimutagenic effect of isocyanates and related compounds in escherichia coli

    International Nuclear Information System (INIS)

    Kawazoe, Yutaka; Kato, Masanari

    1982-01-01

    Isocyanates and isothiocyanates have been suggested to inactivate enzymes involved in the metabolic activation of chemical carcinogens and the repair of DNA damage. These compounds decrease the mutability of a tester strain of Escherichia coli B under UV irradiation. This paper deals with the antimutagenicity of acylating agents, including isocyanates and isothiocyanates, and some anti-oxidants which are suspected to be anticarcinogenic. The results can be summarized as follows. (1) The antimutagenic effect observed in the present study operates on UV-induced mutagenesis but not on X-ray-induced mutagenesis. (2) This effect operates only on the wild-type strain, H/r30R, but not on Hs30R deficient in the excision repair system. (3) This effect may function through giving the irradiated cells a greater chance to carry out excision repair by prolonging the lag-period before entry into the S-phase. (4) The carbamoylating ability of isocyanates and isothiocyanates may be responsible for the antimutagenicity, but other type of reactivities may also be involved. These antimutagens also participate in inactivating enzymes relevant to the metabolic activation of mutagens, resulting in a decrease in the frequency of chemically induced mutagenesis. (author)

  15. Brassinosteroid-induced CO{sub 2} assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Chen, Zhi Xiang [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054 (United States); Yu, Jing Quan, E-mail: jqyu@zju.edu.cn [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture of China, Yuhangtang Road 866, Hangzhou 310058 (China)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  16. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    Directory of Open Access Journals (Sweden)

    Naina Mohamed Pakkir Maideen

    2012-06-01

    Full Text Available Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC against N-nitrosodiethylamine (DEN, 200mg/kg induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusions: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels.

  17. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  18. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-01-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  19. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity.

    Science.gov (United States)

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2015-12-01

    This study aimed to evaluate the protective effects of curcumin on angiotensin-converting enzyme (ACE) gene expression, oxidative stress and anti-oxidant status in thioacetamide (TAA)-induced hepatotoxicity in rats. Total 32 albino Wistar rats (male, 200-250 g) were divided into six groups (n=8). Group 1: untreated controls; Group 2: received TAA (200 mg/kg body weight (b.w.); i.p.) for 12 weeks; Group 3: received curcumin (75 mg/kg b.w.) for 24 weeks; Group 4: received TAA (200 mg/kg b.w.; i.p.) for 12 weeks+curcumin (75 mg/kg b.w.) for 12 weeks. A significantly higher ACE gene expression was observed in TAA-induced groups as compared with control, indicating more synthesis of ACE proteins. Treatment with curcumin suppressed ACE expression in TAA liver and reversed the toxicity produced. TAA treatment results in higher lipid peroxidation and lower GSH, SOD and CAT than the normal, and this produces oxidative stress in the liver. Cirrhotic conditions were confirmed by serum enzymes (ALT, AST and ALP) as well as histopathological observations. Curcumin treatment reduced oxidative stress in animals by scavenging reactive oxygen species, protecting the anti-oxidant enzymes from being denatured and reducing the oxidative stress marker lipid peroxidation. Curcumin treatment restores hepatocytes, damaged by TAA, and protects liver tissue approaching cirrhosis. © The Author(s) 2014.

  20. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    Science.gov (United States)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  2. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  3. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    Science.gov (United States)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  4. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    Science.gov (United States)

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  5. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    Science.gov (United States)

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  8. Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase.

    Directory of Open Access Journals (Sweden)

    José M Alvarez-Suarez

    Full Text Available BACKGROUND AND AIM: Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. METHODS/PRINCIPAL FINDINGS: Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. CONCLUSIONS: Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in

  9. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    Science.gov (United States)

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a

  10. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  11. Utilization of enzyme supplemented Telfairia occidentalis stalk ...

    African Journals Online (AJOL)

    An eight (8) week feeding trial was carried out to assess the use of enzyme natuzyme supplemented Telfairia occidentalis stalk extract as growth inducer in the practical diet for Oreochromis niloticus fingerlings. Five isonitrogenous (35% crude protein) diets at 0 ml of stalk extract and enzyme (TRT 1), 15 ml (TRT 2) and 30 ...

  12. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    International Nuclear Information System (INIS)

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S.

    2010-01-01

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels in a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.

  13. THE EFFECT OF GREEN TEA LEAF EXTRACT ON SPATIAL MEMORY FUNCTION AND SUPEROXYDE DISMUTASE ENZYME ACTIVITY IN MICE WITH D-GALACTOSE INDUCED DIMENTIA

    Directory of Open Access Journals (Sweden)

    Ainun Rahmasari Gumay

    2017-04-01

    Full Text Available Background: Oxidative stress and inflammation play an important role in pathogenesis of brain aging and neurodegenerative diseases such as Alzheimer. Green tea has been shown to have antioxidant, anti-inflammatory, anticancer, and neuroprotective activity. Objectives: to determine the effect of green tea extract on spatial memory function and superoxide dismutase enzyme activity in mice with D-galactose induced dementia Methods: An experimental study using "post test only control group design". Twenty male BALB/c Mice aged 6-8 weeks were divided into 4 groups. Negative control group (NG was induced by subcutaneous injection of D-galactose (150 mg/kg BW once daily for 6 weeks. GT-90, GT-270, GT-540 were induced by D-galactose and orally administered with 90, 270, and 540 mg/kg BW of green tea extract once daily for 6 weeks. The spatial memory functions were assessed using Morris water maze and SOD enzyme activities were evaluated using ELISA. One-way Anova and Kruskal-Wallis were used for statistical analysis.  Results: mean percentage of latency time in the GT-90 (35.29 (SD= 2.69%, GT-270 (35.28 (SD= 2.62%, and GT-540 (35.62 (SD=5.05% were significantly higher compared to that of NG (20.38 (SD = 3.21%, p <0.05. SOD enzyme activity in the GT-270 (0.78 (SD = 0.07 U/ml was significantly higher compared to that of NG (0.51 (SD = 0.01 U ml, p= 0.004. Conclusion: Green tea extract may improve spatial memory function and the activity of superoxide dismutase enzyme in mice with D-galactose induced dementia.

  14. Mutagenic and epigenetic influence of caffeine on the frequencies of UV-induced ouabain-resistant Chinese hamster cells

    International Nuclear Information System (INIS)

    Chang, Chia-Cheng; Philipps, C.; Trosko, J.E.; Hart, R.W.

    1977-01-01

    Caffeine, given as a post-treatment to UV-irradiated Chinese hamster cells in vitro, modified the frequency of induced mutations at the ouabain resistance locus. Mutation frequencies were increased when caffeine was added only for the DNA repair and mutation fixation period. When caffeine was added after the DNA repair and mutation fixation period, or immediately after DNA damage and for the entire repair and selection period, mutation frequencies were reduced. A hypothesis, given to explain both results, is that caffeine, by blocking a constitutive 'error-free' postreplication repair process, allows an 'error-prone' DNA repair process to produce many mutations. Moreover, caffeine, possibly by modifying C-AMP metabolism, causes a repression of induced mutations which, in effect, explains its anti-mutagenic and anti-carcinogenic properties

  15. Fluorometric Assessment Of Lysosomal Enzymes In Garlic Oil ...

    African Journals Online (AJOL)

    The effect of Garlic oil on Lysosomal enzymes in streptozotocin-induced diabetic rats were investigated fluorometrically. The serum lysosomal enzymes assayed include β-glucuronidase, N-acetylglucosaminidase (NAG) β-D-galactosidase and α-D-galactosidase. The results of the study in nMole-4Mu/hr/ml show that ...

  16. Terminalia pallida fruit ethanolic extract ameliorates lipids, lipoproteins, lipid metabolism marker enzymes and paraoxonase in isoproterenol-induced myocardial infarcted rats

    Directory of Open Access Journals (Sweden)

    Althaf Hussain Shaik

    2018-03-01

    Full Text Available The present study aimed to evaluate the effect of Terminalia pallida fruit ethanolic extract (TpFE on lipids, lipoproteins, lipid metabolism marker enzymes and paraoxonase (PON in isoproterenol (ISO-induced myocardial infarcted rats. PON is an excellent serum antioxidant enzyme which involves in the protection of low density lipoprotein cholesterol (LDL-C from the process of oxidation for the prevention of cardiovascular diseases. ISO caused a significant increase in the concentration of total cholesterol, triglycerides, LDL-C, very low density lipoprotein cholesterol and lipid peroxidation whereas significant decrease in the concentration of high density lipoprotein cholesterol. ISO administration also significantly decreased the activities of lecithin cholesterol acyl transferase, PON and lipoprotein lipase whereas significantly increased the activity of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Oral pretreatment of TpFE at doses 100, 300 and 500 mg/kg body weight (bw and gallic acid (15 mg/kg bw for 30 days challenged with concurrent injection of ISO (85 mg/kg bw on 29th and 30th day significantly attenuated these alterations and restored the levels of lipids, lipoproteins and the activities of lipid metabolizing enzymes. Also TpFE significantly elevated the serum antioxidant enzyme PON. This is the first report revealed that pretreatment with TPFE ameliorated lipid metabolic marker enzymes and increased the antioxidant PON in ISO treated male albino Wistar rats. Keywords: Terminalia pallida fruit, Gallic acid, Isoproterenol, Lipid metabolism marker enzymes, Paraoxonase, Myocardial infarction

  17. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action

    International Nuclear Information System (INIS)

    Chilampalli, Chandeshwari; Guillermo, Ruth; Zhang, Xiaoying; Kaushik, Radhey S; Young, Alan; Zeman, David; Hildreth, Michael B; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-01-01

    Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm 2 , 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr 705 ), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various

  18. Evaluation of liver marker enzymes and biochemical indices of ...

    African Journals Online (AJOL)

    Liver marker enzymes, total protein, amylase and glucose were evaluated in alloxan-induced diabetic wistar rats treated with aqueous extract of Pennisetum purpureum. The liver marker enzymes evaluated were alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Sixteen wistar rats were grouped into ...

  19. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes.

  20. Activity of the Respiratory Chain Enzymes of Blood Leucocytes’ Mitochondria Under the Conditions of Toxic Hepatitis Induced Against the Background Alimentary Deprivation of Protein

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2015-12-01

    Full Text Available Full functioning of the leucocytes’ energy supply system is one of the essential factors for the immune surveillance system effective work. The pivotal enzymes of the leucocytes’ energy biotransformation system are NADH-ubiquitin reductase, a marker of the Complex I of respiratory chain activity, and succinate dehydrogenase, key enzyme of the Complex II of respiratory chain. The aim of research – to study the NADH-ubiquitin reductase and succinate dehydrogenase activity of the blood leucocytes’ mitochondria under the conditions of toxic hepatitis induced against the background alimentary deprivation of protein. It is shown, that under the conditions of acetaminophen-induced hepatitis a reduction of the NADH-ubiquitin reductase enzymatic activity is observed on the background activation of the succinate-dependent way of the mitochondrial oxidation. Conclusion was made that alimentary deprivation or protein is a factor, aggravating the misbalance of the energy biotransformation system in the leucocytes of rats with toxic hepatitis. Established activity changes of the leucocytes’ mitochondria respiratory chain key enzymes may be considered as one of the mechanisms, directed on the maintenance of leucocytes energy supply on a level, sufficient for their functioning. Research results may be used for the biochemical rationale of the therapeutic approaches to the elimination and correction of the leucocytes’ energy metabolism disturbances consequences under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  1. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    Science.gov (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  2. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mutiu Idowu Kazeem

    2013-01-01

    Full Text Available This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg diabetic rats significantly reduced (P<0.05 the fasting blood glucose compared to control groups. There was significant increase (P<0.05 in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase in the liver of the rats treated with it and significantly reduced (P<0.05 the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  3. [Effect of Jinlida on changes in expression of skeletal muscle lipid transport enzymes in fat-induced insulin resistance ApoE -/- mice].

    Science.gov (United States)

    Jin, Xin; Zhang, Hui-xin; Zhang, Yan-fen; Cui, Wen-wen; Bi, Yao; He, Qi-long; Zhou, Sheng-shan

    2015-03-01

    To study the effect of Jinlida on changes in expression of skeletal muscle lipid transport enzymes in fat-induced insulin resistance ApoE -/- mice. Eight male C57BL/6J mice were selected in the normal group (NF), 40 male ApoE -/- mice were fed for 16 weeks, divided into the model group (HF), the rosiglitazone group ( LGLT), the Jinlida low-dose group (JLDL), the Jinlida medium-dose group (JLDM), the Jinlida high-dose group (JLDH) and then orally given drugs for 8 weeks. The organization free fatty acids, BCA protein concentration determination methods were used to determine the skeletal muscle FFA content. The Real-time fluorescent quantitative reverse transcription PCR ( RT-PCR) and Western blot method were adopted to determine mRNA and protein expressions of mice fatty acids transposition enzyme (FAT/CD36), carnitine palm acyltransferase 1 (CPT1), peroxide proliferators-activated receptor α( PPAR α). Jinlida could decrease fasting blood glucose (FBG), cholesterol (TC), triglyceride (TG), free fatty acid (FFA) and fasting insulin (FIns) and raise insulin sensitive index (ISI) in mice to varying degrees. It could also up-regulate mRNA and protein expressions of CPT1 and PPARα, and down-regulate mRNA and protein levels of FAT/CD36. Jinlida can improve fat-induced insulin resistance ApoE -/- in mice by adjusting the changes in expression of skeletal muscle lipid transport enzymes.

  4. Butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lin [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Department of Pharmacology, University of Nantong, Nantong (China); Chen, Yeru; Wu, Deqi; Shou, Jiafeng [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Shengcun [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Ye, Jie [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun, E-mail: xjwang@zju.edu.cn [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2015-11-01

    Butylated hydroxyanisole (BHA) is widely used as an antioxidant and preservative in food, food packaging and medicines. Its chemopreventive properties are attributing to its ability to activate the transcription factor NF-E2 p45-related factor 2 (Nrf2), which directs central genetic programs of detoxification and protection against oxidative stress. This study was to investigate the histological changes of Nrf2 and its regulated phase II enzymes Nqo1, AKR1B8, and Ho-1 in wild-type (WT) and Nrf2{sup −/−} mice induced by BHA. The mice were given a 200 mg/kg oral dose of BHA daily for three days. Immunohistochemistry revealed that, in the liver from WT mice, BHA increased Nqo1 staining in hepatocytes, predominately in the pericentral region. In contrast, the induction of AKR1B8 appeared mostly in hepatocytes in the periportal region. The basal and inducible Ho-1 was located almost exclusively in Kupffer cells. In the small intestine from WT mice, the inducible expression patterns of Nqo1 and AKR1B8 were nearly identical to that of Nrf2, with more intense staining in the villus than that the crypt. Conversely, Keap1 was more highly expressed in the crypt, where the proliferative cells reside. Our study demonstrates that BHA elicited differential expression patterns of phase II-detoxifying enzymes in the liver and small intestine from WT but not Nrf2{sup −/−} mice, demonstrating a cell type specific response to BHA in vivo. - Highlights: • Histological view of basal and inducible Nrf2 and its targets in vivo • Induction of detoxification enzymes by BHA is cell-type dependent. • BHA induces the expression of HO-1 in Kupffer cells.

  5. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  6. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  7. Skeletal muscle injury induced by a pneumatic tourniquet: an enzyme- and immunohistochemical study in rabbits.

    Science.gov (United States)

    Pedowitz, R A; Fridén, J; Thornell, L E

    1992-03-01

    The pathophysiology of skeletal muscle injury induced by compression beneath pneumatic tourniquets is poorly understood. Tourniquet hemostasis was induced in rabbit hindlimbs for 2 hr with a cuff inflation pressure of either 125 mm Hg (n = 5) or 350 mm Hg (n = 5). Skeletal muscle biopsies, taken 2 days later from tissue beneath and distal to the tourniquet, were frozen and analyzed using enzyme- and immunohistochemical techniques. In the 350 mm Hg tourniquet group, four of 10 thigh muscle samples demonstrated significant regional necrosis (mean 37.3% of the total cross-sectional area). Regional necrosis was not observed in thigh muscles of the 125 mm Hg tourniquet group or in any of the ischemic leg muscles. A topographic pattern of necrosis consistent with the arterial distribution of skeletal muscle suggested pathogenic events during the reperfusion period, such as granulocyte-mediated superoxide radical formation. Extremely large and rounded fibers (histochemically identified as Type IIB fibers) were observed in compressed thigh muscles, indicating differential fiber sensitivity to tourniquet compression and ischemia. The present study demonstrated significant skeletal muscle necrosis after a 2 hr tourniquet applied at a clinically relevant cuff inflation pressure. Recent studies of systemic changes associated with limb "ischemia" should be reassessed in consideration of the confounding effects of tissue compression induced beneath pneumatic tourniquets.

  8. Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance.

    Directory of Open Access Journals (Sweden)

    Alexander G Bulakhov

    Full Text Available Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO displaying a synergism with cellulases.Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL, and eglIV, encoding LPMO (formerly endoglucanase IV from Trichoderma reesei (TrLPMO, were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3 varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples. The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10-43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1.The enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable

  9. Induction of drug-metabolizing enzymes: mechanisms and consequences

    Energy Technology Data Exchange (ETDEWEB)

    Okey, A.B.; Roberts, E.A.; Harper, P.A.; Denison, M.S.

    1986-04-01

    The activity of many enzymes that carry out biotransformation of drugs and environmental chemicals can be substantially increased by prior exposure of humans or animals to a wide variety of foreign chemicals. Increased enzyme activity is due to true enzyme induction mediated by increased synthesis of mRNAs which code for specific drug-metabolizing enzymes. Several species of cytochrome P-450 are inducible as are certain conjugating enzymes such as glutathione S-transferases, glucuronosyl transferases, and epoxide hydrolases. Induction of drug-metabolizing enzymes has been shown in several instances to alter the efficacy of some therapeutic agents. Induction of various species of cytochrome P-450 also is known to increase the rate at which potentially toxic reactive metabolic intermediates are formed from drugs or environmental chemicals. Overall, however, induction of drug-metabolizing enzymes appears to be a beneficial adaptive response for organisms living in a ''chemically-hostile'' world.48 references.

  10. Promoting effects of phenobarbital on the enzyme-altered foci induced by intrahepatic γ-ray-irradiation in the rat liver

    International Nuclear Information System (INIS)

    Ida, Katsuya; Nakamura, Satoshi; Muro, Hiroyuki; Takai, Michikatsu; Kaneko, Masao

    1995-01-01

    Radiation-induced carcinogenesis of the rat liver using iridium-192 seeds as an intrahepatic radioactive source was studied by enzyme histochemical means. Rats were divided into six groups according to various combinations of one or two iridium-192 or stainless steel seeds and whether they were given a diet containing 0.05% phenobarbital (PB) or a basal diet (BD). Each group were sacrificed at 20, 40, and 60 weeks after intrahepatic insertion of the iridium-192 or stainless steel seeds. γ-Glutamyl transpeptidase (GGT), glucose-6-phosphatase (G6Pase), and adenosine triphosphatase (ATPase) were stained in the liver tissues, and GGT-positive foci were quantified. Liver neoplasm was not evident, but enzyme-altered foci (EAF) were induced by γ-ray irradiation. At every point (20, 40, and 60 weeks) after the insertion of the seeds, the GGT-positive area was larger in the rats given PB than those given BD. Moreover, despite the iridium-192 radioactivity decay, EAF developed continuously in the rats given PB, and persisted in those given BD from 40 to 60 weeks after insertion. These results indicated that phenobarbital promotes the development of EAF initiated by irradiation, as it promotes the process of chemical carcinogenesis in the rat liver. (author)

  11. Inducible secretion of phytate-degrading enzymes from bacteria ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-02-04

    Feb 4, 2015 ... Key words: Bacillus sp., phytase activities, soil bacteria, Bacillus broth, Bacillus broth. INTRODUCTION ... Penicillium) enzymes conquered many applications in ... U/(g×h)] than in (SSF) Solid State Fermentation [1.2. U/(g×h)] ... mM (from Loba Chemie Pvt. Ltd, Mumbai), and liquid nitrogen (from. Air liquid ...

  12. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  13. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  14. Ethosuximide: liver enzyme induction and D-glucaric acid excretion.

    Science.gov (United States)

    Gilbert, J C; Scott, A K; Galloway, D B; Petrie, J C

    1974-06-01

    1 A study has been carried out to determine if ethosuximide induces liver enzymes. 2 Ethosuximide did not affect the urinary excretion of D-glucaric acid by healthy adult subjects nor was the mean daily D-glucaric acid excretion of three epileptic children on long term ethosuximide therapy different from that of three matched controls. 3 Ethosuximide (10 mg/kg or 50 mg/kg daily) did not influence D-glucaric acid excretion or liver microsomal protein and cytochrome P450 contents of guinea pigs but at a dose of 100 mg/kg daily in rats it increased liver microsomal protein and cytochrome P450 without altering D-glucaric acid excretion. 4 These results suggest that at anticonvulsant doses ethosuximide is unlikely to induce liver enzymes. The precise relationship between D-glucaric acid excretion and liver enzyme induction remains in doubt.

  15. Hesperetin induces melanin production in adult human epidermal melanocytes.

    Science.gov (United States)

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p melanin production in human melanocyte cultures could be reproduced on human skin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Radiation sterilization of enzyme hybrids with biodegradable polymers

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio

    2002-01-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60 Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification

  17. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  18. Reversal of statin-induced memory dysfunction by co-enzyme Q10: a case report

    Directory of Open Access Journals (Sweden)

    Okeahialam BN

    2015-11-01

    Full Text Available Basil N Okeahialam Cardiology Sub-Unit 1, Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria Abstract: Statins are useful in the armamentarium of the clinician dealing with dyslipidemia, which increases cardiovascular morbi-mortality in hypertensive and diabetic patients among others. Dyslipidemia commonly exists as a comorbidity factor in the development of atherosclerotic cardiovascular disease. Use of statins is however associated with side effects which at times are so disabling as to interfere with activities of daily living. There are various ways of dealing with this, including use of more water-soluble varieties, intermittent dosing, or use of statin alternatives. Of late, use of co-enzyme Q10 has become acceptable for the muscle side effects. Only one report of any benefit on the rarely reported memory side effect was encountered by the author in the search of English medical literature. This is a report of a documented case of a Nigerian woman with history of statin intolerance in this case, memory dysfunction despite persisting dyslipidemia comorbidity. Her memory dysfunction side effect which interfered with activities of daily living and background muscle pain cleared when coenzyme Q10 was administered alongside low dose statin. Her lipid profile normalized and has remained normal. It is being recommended for use when statin side effects (muscle- and memory-related impair quality of life and leave patient at dyslipidemia-induced cardiovascular morbi-mortality. Keywords: statin, memory dysfunction, co-enzyme Q10, improvement

  19. Identification of genetic factors associated with susceptibility to angiotensin-converting enzyme inhibitors-induced cough.

    Science.gov (United States)

    Grilo, Antonio; Sáez-Rosas, María P; Santos-Morano, Juan; Sánchez, Elena; Moreno-Rey, Concha; Real, Luis M; Ramírez-Lorca, Reposo; Sáez, María E

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) are the first selected drugs for hypertensive patients because of its protective properties against heart and kidney diseases. Persistent cough is a common adverse reaction associated with ACEi, which can bind to the treatment cessation, but its etiology remains an unresolved issue. The most accepted mechanism is that the inhibition of ACEi increases kinins levels, resulting in the activation of proinflammatory mechanisms and nitric oxide generation. However, relatively little is known about the genetic susceptibility to ACEi-induced cough in hypertensive patients. We carried out a monogenic association analysis of 39 polymorphisms and haplotypes in genes encoding key proteins related to ACEi activity with the occurrence of ACEi-induced cough. We also carried out a digenic association analysis and investigated the existence of epistatic interactions between the analyzed polymorphisms using a logistic regression procedure. Finally, we investigated the predictive value of the identified associations for ACEi-induced cough. We found that genetic polymorphisms in MME [rs2016848, P=0.002, odds ratio (OR)=1.795], BDKRB2 (rs8012552, P=0.012, OR=1.609), PTGER3 (rs11209716, P=0.002, OR=0.565), and ACE (rs4344) genes are associated with ACEi-related cough. For the latter, the effect is sex specific, having a protective effect in males (P=0.027, OR=0.560) and increasing the risk in females (P=0.031, OR=1.847). In addition, genetic interactions between peptidases involved in kinins levels (CPN1 and XPNPEP1) and proteins related to prostaglandin metabolism (PTGIS and PTGIR) strongly modify the risk of ACEi-induced cough presentation (0.102≤OR≤0.384 for protective combinations and 2.732≤OR≤7.216 for risk combinations). These results are consistent with the hypothesis that the mechanism of cough is related to the accumulation of bradykinin, substance P, and prostaglandins.

  20. Quantitative measurement of ultraviolet-induced damage in cellular DNA by an enzyme immunodot assay

    International Nuclear Information System (INIS)

    Wakizaka, A.; Nishizawa, Y.; Aiba, N.; Okuhara, E.; Takahashi, S.

    1989-01-01

    A simple enzyme immunoassay procedure was developed for the quantitative determination of 254-nm uv-induced DNA damage in cells. With the use of specific antibodies to uv-irradiated DNA and horseradish peroxidase-conjugated antibody to rabbit IgG, the extent of damaged DNA in uv-irradiated rat spleen mononuclear cells was quantitatively measurable. Through the use of this method, the amount of damaged DNA present in 2 X 10(5) cells irradiated at a dose of 75 J/m2 was estimated to be 7 ng equivalents of the standard uv-irradiated DNA. In addition, when the cells, irradiated at 750 J/m2, were incubated for 1 h, the antigenic activity of DNA decreased by 40%, suggesting that a repair of the damaged sites in DNA had proceeded to some extent in the cells

  1. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  2. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  3. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    OpenAIRE

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125?mg/kg, 250?mg/kg, and 500?mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500?mg/kg body weight of free and bound polyphenols from Z. officin...

  4. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  5. Effect of enzyme-induced pulmonary emphysema in Syrian hamsters on the deposition and retention of inhaled particles

    International Nuclear Information System (INIS)

    Hahn, F.F.; Hobbs, C.H.

    1974-01-01

    Experimental emphysema was induced in Syrian hamsters by intratracheal injection of elastase or by inhaled papain aerosols. Control hamsters were injected with saline or exposed to enzyme diluent aerosols. After 3 weeks, all groups were simultaneously exposed to an aerosol of relatively insoluble 137 Cs in fused clay particles with an activity median aerodynamic diameter of 1.4 to 1.6 and a geometric standard deviation of 1.6. The initial pulmonary deposition of particles (measured 3 hours after inhalation) was significantly lower in treated hamsters, 45 percent of controls with elastase and 65 percent with papain aerosols. The effect of both enzyme treatments on the retention of particles was similar in spite of the fact that the pulmonary lesions were not the same. Elastase I.T. caused a diffuse destruction and enlargement of alveoli with a loss of pulmonary elastic recoil. Papain aerosols caused a focal destruction and enlargement of alveoli with no loss of elastic recoil. The common feature of both lesions was an increased number of alveolar macrophages which may account for the early increased clearance of particles. The prolonged retention of particles may be due to focal accumulations of macrophages in distal alveoli. (U.S.)

  6. Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes inmice

    International Nuclear Information System (INIS)

    Kleiner, Heather E.; Xia, Xiaojun; Sonoda, Junichiro; Zhang, Jun; Pontius, Elizabeth; Abey, Jane; Evans, Ronald M.; Moore, David D.; DiGiovanni, John

    2008-01-01

    Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug-metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often is a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full-length mCAR, a Gal4-mCAR ligand-binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10, Cyp3a11, and GSTa in CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(-/-) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have

  7. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    Science.gov (United States)

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  8. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Muhsain, Siti Nur Fadzilah, E-mail: sitinurfadzilah077@ppinang.uitm.edu.my [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Faculty of Pharmacy, University Teknologi Mara (Malaysia); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  9. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    International Nuclear Information System (INIS)

    Muhsain, Siti Nur Fadzilah; Lang, Matti A.; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  10. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Directory of Open Access Journals (Sweden)

    Thai Q Tran

    2017-11-01

    Full Text Available Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  11. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Science.gov (United States)

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  12. Immobilization of enzymes by radiation

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Yoshida, M.; Asano, M.; Himei, M.; Tamura, M.; Hayashi, K.

    1979-01-01

    Immobilization of various enzymes was performed by radiation-induced polymerization of glass-forming monomers at low temperatures. Alpha-amylase and glucoamylase were effectively immobilized in hydrophilic polymer carrier such as poly(2-hydroxyethyl methacrylate) and also in rather hydrophobic carrier such as poly(tetraethylene-glycol diacrylate). Immobilized human hemoglobin underwent the reversible oxygenation concomitantly with change of oxygen concentration outside of the matrices. (author)

  13. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, M.P.; Vaheri, M.E.O.; Kaupinen, V.S.

    1979-01-01

    Production and release of cellulolytic enzymes by T. reesei QM 9414 were studied under induced and non-induced conditions and glycerol, respectively, as the only C source. There was a base level of cell debris-bound hydrolytic activity against filter paper and p-nitrophenyl glycoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper- and CMC-hydrolyzing enzymes, which were actively released even in the early stages of cultivation. Beta-Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.

  14. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2010-01-01

    Full Text Available Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  15. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    Science.gov (United States)

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels.

    Science.gov (United States)

    Khalil, Md Ibrahim; Tanvir, E M; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  17. Developmental and hormone-induced changes of mitochondrial electron transport chain enzyme activities during the last instar larval development of maize stem borer, Chilo partellus (Lepidoptera: Crambidae).

    Science.gov (United States)

    VenkatRao, V; Chaitanya, R K; Naresh Kumar, D; Bramhaiah, M; Dutta-Gupta, A

    2016-12-01

    The energy demand for structural remodelling in holometabolous insects is met by cellular mitochondria. Developmental and hormone-induced changes in the mitochondrial respiratory activity during insect metamorphosis are not well documented. The present study investigates activities of enzymes of mitochondrial electron transport chain (ETC) namely, NADH:ubiquinone oxidoreductase or complex I, Succinate: ubiquinone oxidoreductase or complex II, Ubiquinol:ferricytochrome c oxidoreductase or complex III, cytochrome c oxidase or complex IV and F 1 F 0 ATPase (ATPase), during Chilo partellus development. Further, the effect of juvenile hormone (JH) analog, methoprene, and brain and corpora-allata-corpora-cardiaca (CC-CA) homogenates that represent neurohormones, on the ETC enzyme activities was monitored. The enzymatic activities increased from penultimate to last larval stage and thereafter declined during pupal development with an exception of ATPase which showed high enzyme activity during last larval and pupal stages compared to the penultimate stage. JH analog, methoprene differentially modulated ETC enzyme activities. It stimulated complex I and IV enzyme activities, but did not alter the activities of complex II, III and ATPase. On the other hand, brain homogenate declined the ATPase activity while the injected CC-CA homogenate stimulated complex I and IV enzyme activities. Cumulatively, the present study is the first to show that mitochondrial ETC enzyme system is under hormone control, particularly of JH and neurohormones during insect development. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals.

    Science.gov (United States)

    Smina, T P; Nitha, B; Devasagayam, T P A; Janardhanan, K K

    2017-01-01

    Ganoderma lucidum total triterpenes were evaluated for its apoptosis-inducing and anti-cancer activities. Cytotoxicity and pro-apoptotic effect of total triterpenes were evaluated in human breast adenocarcinoma (MCF-7) cell line using MTT assay and DNA fragmentation analysis. Total triterpenes induced apoptosis in MCF-7 cells by down-regulating the levels of cyclin D1, Bcl-2, Bcl-xL and also by up-regulating the levels of Bax and caspase-9. Anti-carcinogenicity of total triterpenes was analysed using dimethyl benz [a] anthracene (DMBA) induced skin papilloma and mammary adenocarcinoma in Swiss albino mice and Wistar rats respectively. Topical application of 5mg, 10mg and 20mg total triterpenes reduced the incidence of skin papilloma by 62.5, 37.5 and 12.5% respectively. Incidence of the mammary tumour was also reduced significantly by 33.33, 66.67 and 16.67% in 10, 50 and 100mg/kg b.wt. total triterpenes treated animals respectively. Total triterpenes were also found to reduce the average number of tumours per animal and extended the tumour latency period in both the models. The results indicate the potential cytotoxicity and anti-cancerous activity of total triterpenes, there by opens up a path to the development of a safe and successive chemo preventive agent of natural origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

    Directory of Open Access Journals (Sweden)

    Jordan Chapman

    2018-06-01

    Full Text Available Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user.

  20. Evaluation of the sensor properties of the pH-static enzyme sensor

    NARCIS (Netherlands)

    van der Schoot, B.H.; van der Schoot, Bart H.; Bergveld, Piet

    1990-01-01

    The pH-static enzyme sensor consists of a chemical sensor-actuator system covered with a thin enzyme-entrapping membrane. By the electrochemical generation of protons or hydroxyl ions, pH changes induced by the conversion of a substrate by the enzymatic reaction are compensated. The pH inside the

  1. Radiation effects on testes. XI. Studies on glycogen and its metabolizing enzymes following radiation-induced atrophy

    International Nuclear Information System (INIS)

    Gupta, G.S.; Bawa, S.R.

    1977-01-01

    Effect of radiation on enzymes of carbohydrate metabolism has been studied. It is observed that hexokinase of testis is highly sensitive to radiation damage. Reduced hexokinase activity seems to be related to those parts of the testis (spermatocytes and spermatids) which depend upon glucose for their functioning. Radiation-induced atrophic testis is rich in glycogen content. The observations on the inhibition of gluocose-6-phosphatase and phosphorylase may explain the higher levels of the polysaccharide although a possibility of enhanced glycogenesis due to the activation of glycogen synthetase has also been suggested. The presence of glucose-6-phosphate isomerase and glycogen in atrophied testis in 11-month-treated rats indicate the higher glycolytic activity with hyperplastic testicular interstitium. The results suggest that the accumulated glycogen is acting as a reserve substrate in nongerminal cells

  2. Biosynthesis of cellulolytic enzymes by Tricothecium roseum with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... good inducer for extracellular cellulolytic enzyme production by the fungus. Key words: Tricothecium ... feasible for the conversion of cellulose into fermentable sugars and fuel ... Biomass of the culture was dried at 70°C in an ...

  3. Proteomic analyses for profiling regulated proteins/enzymes by Fucus vesiculosus fucoidan in B16 melanoma cells: A combination of enzyme kinetics functional study.

    Science.gov (United States)

    Wang, Zhi-Jiang; Zheng, Li; Yang, Jun-Mo; Kang, Yani; Park, Yong-Doo

    2018-06-01

    Fucoidans are complex sulfated polysaccharides that have a wide range of biological activities. Previously, we reported the various effects of Fucus vesiculosus fucoidan on tyrosinase and B16 melanoma cells. In this study, to identify fucoidan-targeted proteins in B16 melanoma cells, we performed a proteomics study and integrated enzyme kinetics. We detected 19 candidate proteins dysregulated by fucoidan treatment. Among the probed proteins, the enzyme kinetics of two candidate enzymes, namely lactate dehydrogenase (LDH) as an upregulated protein and superoxide dismutase (SOD) as a downregulated enzyme, were determined. The enzyme kinetics results showed that Fucus vesiculosus fucoidan significantly inhibited LDH catalytic function while it did not affect SOD activity even at a high dose, while only slightly decreased activity (up to 10%) at a low dose. Based on our previous and present observations, fucoidan could inhibit B16 melanoma cells growth via regulating proteins/enzymes expression levels such as LDH and SOD known as cell survival biomarkers. Interestingly, both expression level and enzyme catalytic activity of LDH were regulated by fucoidan, which could directly induce the apoptotic effect on B16 melanoma cells along with SOD downregulation. This study highlights how combining proteomics with enzyme kinetics can yield valuable insights into fucoidan targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  5. Posterior vitreous detachment induced by nattokinase (subtilisin NAT): a novel enzyme for pharmacologic vitreolysis.

    Science.gov (United States)

    Takano, Akiomi; Hirata, Akira; Ogasawara, Kazuya; Sagara, Nina; Inomata, Yasuya; Kawaji, Takahiro; Tanihara, Hidenobu

    2006-05-01

    To investigate the effects of intravitreal injection of nattokinase (subtilisin NAT), a serine protease that is produced by Bacillus subtilis (natto), for induction of posterior vitreous detachment (PVD). Different doses of nattokinase (1, 0.1, or 0.01 fibrin-degradation units [FU]) or physiologic saline as a control were injected into the vitreous cavity of rabbit eyes. Scanning electron microscopy was used to observe the retinal surfaces of four rabbit eyes per concentration. Histologic alterations were assessed by light microscopy, using four eyes from each group. Electroretinography (ERG) was performed to observe retinal function, ranging from 1 hour to 1 week after the nattokinase (1 or 0.1 FU) or saline solution administration, using four eyes from each group at each time point. Also, findings in all rabbits were monitored by slit lamp examination and by indirect ophthalmoscopy with a 20-D lens. Scanning electron microscopy showed smooth retinal surfaces, indicating the occurrence of PVD at 30 minutes after intervention in all the experimental eyes injected with 0.1 or 1.0 FU nattokinase, but none of the control eyes. Light microscopy and ERG analysis showed no critical change even after the use of 0.1 FU nattokinase, an amount sufficient to induce PVD. However, toxicity in the forms of preretinal hemorrhage and ERG changes was noted with the higher dose (1 FU) of nattokinase. The results suggested that nattokinase is a useful enzyme for pharmacologic vitreolysis because of its efficacy in inducing PVD.

  6. Fat storage-inducing transmembrane (FIT or FITM proteins are related to lipid phosphatase/phosphotransferase enzymes

    Directory of Open Access Journals (Sweden)

    Matthew J Hayes

    2017-12-01

    Full Text Available Fat storage-inducing transmembrane (FIT or FITM proteins have been implicated in the partitioning of triacylglycerol to lipid droplets and the budding of lipid droplets from the ER. At the molecular level, the sole relevant interaction is that FITMs directly bind to triacyglycerol and diacylglycerol, but how they function at the molecular level is not known. Saccharomyces cerevisiae has two FITM homologues: Scs3p and Yft2p. Scs3p was initially identified because deletion leads to inositol auxotrophy, with an unusual sensitivity to addition of choline. This strongly suggests a role for Scs3p in phospholipid biosynthesis. Looking at the FITM family as widely as possible, we found that FITMs are widespread throughout eukaryotes, indicating presence in the last eukaryotic common ancestor. Protein alignments also showed that FITM sequences contain the active site of lipid phosphatase/phosphotransferase (LPT enzymes. This large family transfers phosphate-containing headgroups either between lipids or in exchange for water. We confirmed the prediction that FITMs are related to LPTs by showing that single amino-acid substitutions in the presumptive catalytic site prevented their ability to rescue growth of the mutants on low inositol/high choline media when over-expressed. The substitutions also prevented rescue of other phenotypes associated with loss of FITM in yeast, including mistargeting of Opi1p, defective ER morphology, and aberrant lipid droplet budding. These results suggest that Scs3p, Yft2p and FITMs in general are LPT enzymes involved in an as yet unknown critical step in phospholipid metabolism.

  7. Vitamin C in human health and disease is still a mystery ? An overview

    Directory of Open Access Journals (Sweden)

    Naidu K Akhilender

    2003-08-01

    Full Text Available Abstract Ascorbic acid is one of the important water soluble vitamins. It is essential for collagen, carnitine and neurotransmitters biosynthesis. Most plants and animals synthesize ascorbic acid for their own requirement. However, apes and humans can not synthesize ascorbic acid due to lack of an enzyme gulonolactone oxidase. Hence, ascorbic acid has to be supplemented mainly through fruits, vegetables and tablets. The current US recommended daily allowance (RDA for ascorbic acid ranges between 100–120 mg/per day for adults. Many health benefits have been attributed to ascorbic acid such as antioxidant, anti-atherogenic, anti-carcinogenic, immunomodulator and prevents cold etc. However, lately the health benefits of ascorbic acid has been the subject of debate and controversies viz., Danger of mega doses of ascorbic acid? Does ascorbic acid act as a antioxidant or pro-oxidant ? Does ascorbic acid cause cancer or may interfere with cancer therapy? However, the Panel on dietary antioxidants and related compounds stated that the in vivo data do not clearly show a relationship between excess ascorbic acid intake and kidney stone formation, pro-oxidant effects, excess iron absorption. A number of clinical and epidemiological studies on anti-carcinogenic effects of ascorbic acid in humans did not show any conclusive beneficial effects on various types of cancer except gastric cancer. Recently, a few derivatives of ascorbic acid were tested on cancer cells, among them ascorbic acid esters showed promising anticancer activity compared to ascorbic acid. Ascorbyl stearate was found to inhibit proliferation of human cancer cells by interfering with cell cycle progression, induced apoptosis by modulation of signal transduction pathways. However, more mechanistic and human in vivo studies are needed to understand and elucidate the molecular mechanism underlying the anti-carcinogenic property of ascorbic acid. Thus, though ascorbic acid was discovered in

  8. Mining the enzymes involved in the detoxification of reactive oxygen species (ROS) in sugarcane.

    Science.gov (United States)

    Kurama, Eiko E; Fenille, Roseli C; Rosa, Vicente E; Rosa, Daniel D; Ulian, Eugenio C

    2002-07-01

    Summary Adopting the sequencing of expressed sequence tags (ESTs) of a sugarcane database derived from libraries induced and not induced by pathogens, we identified EST clusters homologous to genes corresponding to enzymes involved in the detoxification of reactive oxygen species. The predicted amino acids of these enzymes are superoxide dismutases (SODs), glutathione-S-transferase (GST), glutathione peroxidase (GPX), and catalases. Three MnSOD mitochondrial precursors and 10 CuZnSOD were identified in sugarcane: the MnSOD mitochondrial precursor is 96% similar to the maize MnSOD mitochondrial precursor and, of the 10 CuZnSOD identified, seven were 98% identical to maize cytosolic CuZnSOD4 and one was 67% identical to putative peroxisomal CuZnSOD from Arabidopsis. Three homologues to class Phi GST were 87-88% identical to GST III from maize. Five GPX homologues were identified: three were homologous to cytosolic GPX from barley, one was 88% identical to phospholipid hydroperoxide glutathione peroxidase (PHGPX) from rice, and the last was 71% identical to GPX from A. thaliana. Three enzymes similar to maize catalase were identified in sugarcane: two were similar to catalase isozyme 3 and catalase chain 3 from maize, which are mitochondrial, and one was similar to catalase isozyme 1 from maize, whose location is peroxisomal subcellular. All enzymes were induced in all sugarcane libraries (flower, seed, root, callus, leaves) and also in the pathogen-induced libraries, except for CuZnSOD whose cDNA was detected in none of the libraries induced by pathogens (Acetobacter diazotroficans and Herbaspirillum rubrisubalbicans). The expression of the enzymes SOD, GST, GPX, and catalases involved in the detoxification was examined using reverse transcriptase-polymerase chain reaction in cDNA from leaves of sugarcane under biotic stress conditions, inoculated with Puccinia melanocephala, the causal agent of sugarcane rust disease.

  9. Construction of a photoactivatable profluorescent enzyme via propinquity labeling.

    Science.gov (United States)

    Lee, Hsien-Ming; Xu, Weichen; Lawrence, David S

    2011-03-02

    A strategy for the construction of a profluorescent caged enzyme is described. An active site-directed peptide-based affinity label was designed, synthesized, and employed to covalently label a nonactive site residue in the cAMP-dependent protein kinase. The modified kinase displays minimal catalytic activity and low fluorescence. Photolysis results in partial cleavage of the enzyme-bound affinity label, restoration of enzymatic activity (60-80%) and a strong fluorescent response (10-20 fold). The caged kinase displays analogous behavior in living cells, inducing a light-dependent loss of stress fibers that is characteristic of cAMP action. This strategy furnishes molecularly engineered enzymes that can be remotely controlled in time, space, and total activity.

  10. Biochemistry students' ideas about how an enzyme interacts with a substrate.

    Science.gov (United States)

    Linenberger, Kimberly J; Bretz, Stacey Lowery

    2015-01-01

    Enzyme-substrate interactions are a fundamental concept of biochemistry that is built upon throughout multiple biochemistry courses. Central to understanding enzyme-substrate interactions is specific knowledge of exactly how an enzyme and substrate interact. Within this narrower topic, students must understand the various binding sites on an enzyme and be able to reason from simplistic lock and key or induced fit models to the more complex energetics model of transition state theory. Learning to understand these many facets of enzyme-substrate interactions and reasoning from multiple models present challenges where students incorrectly make connections between concepts or make no connection at all. This study investigated biochemistry students' understanding of enzyme-substrate interactions through the use of clinical interviews and a national administration (N = 707) of the Enzyme-Substrate Interactions Concept Inventory. Findings include misconceptions regarding the nature of enzyme-substrate interactions, naïve ideas about the active site, a lack of energetically driven interactions, and an incomplete understanding of the specificity pocket. © 2015 by the International Union of Biochemistry and Molecular Biology.

  11. Potent health effects of pomegranate

    Science.gov (United States)

    Zarfeshany, Aida; Asgary, Sedigheh; Javanmard, Shaghayegh Haghjoo

    2014-01-01

    Accumulating data clearly claimed that Punica granatum L. (pomegranate) has several health benefits. Pomegranates can help prevent or treat various disease risk factors including high blood pressure, high cholesterol, oxidative stress, hyperglycemia, and inflammatory activities. It is demonstrated that certain components of pomegranate such as polyphenols have potential antioxidant, anti-inflammatory, and anticarcinogenic effects. The antioxidant potential of pomegranate juice is more than that of red wine and green tea, which is induced through ellagitannins and hydrosable tannins. Pomegranate juice can reduce macrophage oxidative stress, free radicals, and lipid peroxidation. Moreover, pomegranate fruit extract prevents cell growth and induces apoptosis, which can lead to its anticarcinogenic effects. In addition, promoter inhibition of some inflammatory markers and their production are blocked via ellagitannins. In this article, we highlight different studies on the therapeutic effects of pomegranate and their suggested mechanisms of actions. PMID:24800189

  12. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Khalil

    2015-01-01

    Full Text Available The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO- induced myocardial infarction (MI in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI, triglycerides (TG, total cholesterol (TC, lipid peroxidation (LPO products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40 were pretreated orally with Tualang honey (3 g/kg/day for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB, lactate dehydrogenase (LDH, and aspartate transaminase (AST, cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO products (TBARS and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST. Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  13. Effect of peat extract on the hydrolytic enzymes of Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, M; Gunasekaran, M

    1988-08-01

    Peat, a partially decomposed plant material rich in minerals and lignocellulose was tested as a substrate for the growth and production of hydrolytic enzymes viz. cellulase, cellobiase and xylanase in Phanerochaete chrysosporium. Three types of peat extracts such as cold, hot water and autoclaved were prepared and tested. Among them, autoclaved extract supported the maximal growth. The intracellular enzyme activities peaked on the fifth day after inoculation irrespective of the media and enzyme tested. Addition of cellobiose and lactose in the medium induced the production of cellulase, xylanase and to a lesser extent cellobiase. Addition of glucose and sucrose to the media resulted in the suppression of all the extracellular enzymes tested. 18 refs., 5 figs.

  14. Cigarette smoke–induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD

    Science.gov (United States)

    Dove, Rosamund E.; Leong-Smith, Pheneatia; Roos-Engstrand, Ester; Pourazar, Jamshid; Shah, Mittal; Behndig, Annelie F.; Mudway, Ian S.; Blomberg, Anders

    2015-01-01

    Background Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. Methods Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). Results Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. Conclusions We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke–induced increase in intra-cellular antioxidant enzyme activities only within the smokers with

  15. Beneficial effects of co-enzyme Q10 and rosiglitazone in fructose-induced metabolic syndrome in rats

    Directory of Open Access Journals (Sweden)

    Suzan M. Mansour

    2013-06-01

    Full Text Available Increased fructose consumption is strongly associated with metabolic syndrome (MS. This study was performed to elucidate the role of co-enzyme Q10 (CoQ and/or rosiglitazone (Rosi in fructose induced MS. Four groups of rats (n = 8–10 were fed on fructose-enriched diet (FED for 16 weeks. One served as FED-control while the remaining groups were treated with CoQ (10 mg/kg/day, Rosi (4 mg/kg/day or their combination during the last 6 weeks. Another group was fed on normal laboratory chow (normal control. At the end of the experiment, blood samples were collected for estimation of markers related to MS. In addition, histological examination of liver, kidney and pancreas samples was done. Induction of the MS was associated with increased body weight gain (34% coupled with elevated levels of blood glucose (48%, insulin (86%, insulin resistance (270%, uric acid (69%, urea (155%, creatinine (129% and blood lipids with different degrees. Fructose-induced MS also reduced plasma catalase (62% and glutathione peroxidase (89% activities parallel to increased serum leptin and tumor necrosis factor-alpha (TNF-α levels. These changes were coupled by marked histological changes in the examined tissues. Treatment with CoQ or Rosi attenuated most of MS-induced changes. Besides, the combination of both agents further reduced blood glucose, total cholesterol, triglycerides and urea levels, as well as, normalized serum levels of leptin and TNF-α. In addition, combined therapy of both agents elevated HDL-cholesterol level and glutathione peroxidase activity. In conclusion, the present study proves the benefits of co-supplementation of CoQ and Rosi in a fructose-induced model of insulin resistance.

  16. Influence of Tribulus terrestris on testicular enzyme in fresh water ornamental fish Poecilia latipinna.

    Science.gov (United States)

    Kavitha, P; Subramanian, P

    2011-12-01

    The influence of Tribulus terrestris on the activities of testicular enzyme in Poecilia latipinna was assessed in lieu of reproductive manipulation. Different concentrations of (100, 150, 200, 250, and 300 mg) Tribulus terrestris extract and of a control were tested for testicular activity of enzymes in Poecilia latipinna for 2 months. The testis and liver were homogenized separately in 0.1 mol/l potassium phosphate buffer (0.1 mol/l, pH 7.2). The crude homogenate was centrifuged, and supernatant obtained was used as an enzyme extract for determination of activities. The activities of testicular functional enzyme ALP, ACP, SDH, LDH, and G6PDH levels were changed to different extent in treated groups compared with that of the control. The total body weight and testis weight were increased with the Tribulus terrestris-treated fish (Poecilia latipinna). These results suggest that Tribulus terrestris induced the testicular enzyme activity that may aid in the male reproductive functions. It is discernible from the present study that Tribulus terrestris has the inducing effect on reproductive system of Poecilia latipinna.

  17. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    International Nuclear Information System (INIS)

    Han, Peng; Kang, Jin-He; Li, Hua-Liang; Hu, Su-Xian; Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian; Li, Wen-Gang; Chen, Qing-Xi

    2009-01-01

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  18. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Peng; Kang, Jin-He; Li, Hua-Liang [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Hu, Su-Xian [First Hospital Attached to Fujian Medical University, Xiamen 361004 (China); Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Li, Wen-Gang [First Hospital Attached to Fujian Medical University, Xiamen 361004 (China); Chen, Qing-Xi [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005 (China)

    2009-07-24

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  19. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin, E-mail: kexinliu@dlmedu.edu.cn

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  20. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    International Nuclear Information System (INIS)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin

    2015-01-01

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  1. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  2. Studies on entrapping of enzymes and drugs in matrices by radiation-induced polymerization at low temperatures and their capabilities

    International Nuclear Information System (INIS)

    Yoshida, Masaru

    1980-03-01

    The author has studied a immobilization method for enzymes and drugs by means of radiation-induced polymerization at low temperatures in a supercooled state using glass-forming monomers. The proposed technique using glass-forming monomer has features as follows. (1) Inactivation of the bio-component by heat and radiation is almost eliminated due to the low temperature treatment. (2) Moulding or shaping of the mixture of monomer and bio-component in difference forms and sizes of polymerized composite is easy due to high viscosity of the supercooled monomer. (3) The carrier matrix may be selected from a wide range of hydrophilic and hydrophobic vinyl monomers and polymers. (4) No impurities such as a polymerization catalyst are introduced in the system. (5) A bio-component can be easily distributed in high stability, either concentrated on surface of the monomer or homogeneously within the monomer, due to large viscosity of the monomer. Furthermore, the author attempted practical usage of the technique in such as enzyme fixation for long continuous or repeated application (PART I) and controlled slow release of medicine in efficient and durable without secondary reaction (PART II). (author)

  3. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes.

    Science.gov (United States)

    Djajadi, Demi T; Jensen, Mads M; Oliveira, Marlene; Jensen, Anders; Thygesen, Lisbeth G; Pinelo, Manuel; Glasius, Marianne; Jørgensen, Henning; Meyer, Anne S

    2018-01-01

    Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover ( Zea mays subsp. mays L.), Miscanthus  ×  giganteus stalks (MS) and wheat straw ( Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R 0 ) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.

  4. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  5. Influence of the complexity of radiation-induced DNA damage on enzyme recognition

    International Nuclear Information System (INIS)

    Palmer, Philip

    2002-01-01

    Ionising radiation is unique in inducing DNA clustered damage together with the simple isolated lesions. Understanding how these complex lesions are recognised and repaired by the cell is key to understanding the health risks associated with radiation exposure. This study focuses on whether ionising radiation-induced complex single-strand breaks (SSB) are recognised by DNA-PK and PARP, and whether the complexity of DSB influence their ligation by either DNA ligase lV/XRCC4 (LX) complex or T4 DNA ligase. Plasmid DNA, irradiated in aqueous solution using sparsely ionising γ-rays and densely ionising α-particles produce different yields of complex DNA damages, used as substrates for in vitro DNA-PK and PARP activity assays. The activity of DNA-PK to phosphorylate a peptide was determined using HF19 cell nuclear extracts as a source of DNA-PK. PARP ADP-ribosylation activity was determined using purified PARP enzyme. The activation of DNA-PK and PARP by irradiated DNA is due to SSB and not the low yield of DSB (linear plasmid DNA <10%). A ∼2 fold increase in DNA-PK activation and a ∼3-fold reduction in PARP activity seen on increasing the ionising density of the radiation (proportion of complex damage) are proposed to reflect changes in the complexity of SSB and may relate to damage signalling. Complex DSB synthesised as double-stranded oligonucleotides, with a 2 bp 5'-overhang, and containing modified lesions, 8-oxoguanine and abasic sites, at known positions relative to the termini were used as substrates for in vitro ligation by DNA ligase IV/XRCC4 or T4 ligase. The presence of a modified lesion 2 or 3 bp but not 4 bp from the 3'-termini and 2 or 6 bp from the 5'-termini caused a drastic reduction in the extent of ligation. Therefore, the presence of modified lesions near to the termini of a DSB may compromise their rejoining by non-homologous end-joining (NHEJ) involving the LX complex. (author)

  6. Disruption of thyroid hormone homeostasis in Ugt1a-deficient Gunn rats by microsomal enzyme inducers is not due to enhanced thyroxine glucuronidation

    International Nuclear Information System (INIS)

    Richardson, Terrilyn A.; Klaassen, Curtis D.

    2010-01-01

    Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) are thought to increase glucuronidation of thyroxine (T 4 ), thus reducing serum T 4 , and subsequently increasing thyroid stimulating hormone (TSH). Ugt1a1 and Ugt1a6 mediate T 4 glucuronidation. Therefore, this experiment determined the involvement of Ugt1a enzymes in increased T 4 glucuronidation, decreased serum T 4 , and increased TSH after MEI treatment. Male Wistar and Ugt1a-deficient Wistar (Gunn) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum T 4 , triiodothyronine (T 3 ), and TSH concentrations, hepatic T 4 /T 3 glucuronidation, and thyroid histology and follicular cell proliferation were investigated. PCN, 3-MC, and PCB treatments decreased serum T 4 , whereas serum T 3 was maintained in both Gunn and Wistar rats (except for PCB treatment). TSH was increased in Wistar and Gunn rats after PCN (130 and 277%) or PCB treatment (72 and 60%). T 4 glucuronidation in Wistar rats was increased after PCN (298%), 3-MC (85%), and PCB (450%), but was extremely low in Gunn rats, and unchanged after MEI. T 3 glucuronidation was increased after PCN (121%) or PCB (58%) in Wistar rats, but only PCN increased T 3 glucuronidation in Gunn rats (43%). PCN treatment induced thyroid morphological changes and increased follicular cell proliferation in both strains. These data demonstrate that T 4 glucuronidation cannot be increased in Ugt1a-deficient Gunn rats. Thus, the decrease in serum T 4 , increase in TSH, and increase in thyroid cell proliferation after MEI are not dependent on increased T 4 glucuronidation, and cannot be attributed to Ugt1a enzymes.

  7. Concomitant production of detergent compatible enzymes by Bacillus flexus XJU-1.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-01-01

    A soil screened Bacillus flexus XJU-1 was induced to simultaneously produce alkaline amylase, alkaline lipase and alkaline protease at their optimum levels on a common medium under submerged fermentation. The basal cultivation medium consisted of 0.5% casein, 0.5% starch and 0.5% cottonseed oil as an inducer for protease, amylase, and lipase, respectively. The casein also served as nitrogen source for all 3 enzymes. The starch was also found to act as carbon source additive for both lipase and protease. Maximum enzyme production occurred on fermentation medium with 1.5% casein, 1.5% soluble starch, 2% cottonseed oil, 2% inoculum size, initial pH of 11.0, incubation temperature of 37 °C and 1% soybean meal as a nitrogen source supplement. The analysis of time course study showed that 24 h was optimum incubation time for amylase whereas 48 h was the best time for both lipase and protease. After optimization, a 3.36-, 18.64-, and 27.33-fold increase in protease, amylase and lipase, respectively was recorded. The lipase was produced in higher amounts (37.72 U/mL) than amylase and protease about 1.27 and 5.85 times, respectively. As the 3 enzymes are used in detergent formulations, the bacterium can be commercially exploited to secrete the alkaline enzymes for use in detergent industry. This is the first report for concomitant production of 3 alkaline enzymes by a bacterium.

  8. Identification of two Nereis virens [Annelida: Polychaeta] cytochrome P450 enzymes and induction by xenobiotics

    DEFF Research Database (Denmark)

    Rewitz, Kim; Kjellerup, C; Jørgensen, A

    2004-01-01

    Nereis virens. These are the first CYP sequences reported in annelids. The deduced amino acid sequences both share highest identities to mammalian CYP4F enzymes (61% and 58%), indicating membership of the CYP4 family (accordingly, referred to as CYP41 and CYP42, respectively). The CYP42 gene expression...... was significantly higher in vehicle controls (corn oil) compared to untreated controls. Clofibrate increased the expression of the CYP42 genes. The induction by clofibrate and corn oil indicates regulatory similarities to vertebrate CYP4 enzymes, which are primarily involved in the metabolism of endogenous...... compounds such as fatty acids. Crude oil and benz(a)anthracene significantly induced CYP42 gene expression 2.6-fold, and because CYP enzymes often are induced by their own substrates, this induction may indicate involvement of N. virens CYP4 enzymes in the detoxification of environmental contaminants...

  9. A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage

    International Nuclear Information System (INIS)

    Batschauer, A.

    1993-01-01

    Photolyases are thought to be critical components of the defense of plants against damage to DNA by solar ultraviolet light, but nothing is known about their molecular or enzymatic nature. The molecular cloning of a photolyase from mustard (Sinapis alba) described here is intended to increase the knowledge about this important repair mechanism in plant species at a molecular level. The gene encodes a polypeptide of 501 amino acids with a predicted molecular mass of 57 kDa. There is a strong sequence similarity to bacterial and yeast photolyases, with a close relationship to enzymes with a deazaflavin chromophor. The plant photolyase is shown to be functional in Escherichia coli which also indicates conservation of photolyases during evolution. It is demonstrated that photolyase expression in plants is light induced, thus providing good evidence for the adaptation of plants to their environment in order to diminish the harmful effects of sunlight. (author)

  10. Potent health effects of pomegranate

    Directory of Open Access Journals (Sweden)

    Aida Zarfeshany

    2014-01-01

    Full Text Available Accumulating data clearly claimed that Punica granatum L. (pomegranate has several health benefits. Pomegranates can help prevent or treat various disease risk factors including high blood pressure, high cholesterol, oxidative stress, hyperglycemia, and inflammatory activities. It is demonstrated that certain components of pomegranate such as polyphenols have potential antioxidant, anti-inflammatory, and anticarcinogenic effects. The antioxidant potential of pomegranate juice is more than that of red wine and green tea, which is induced through ellagitannins and hydrosable tannins. Pomegranate juice can reduce macrophage oxidative stress, free radicals, and lipid peroxidation. Moreover, pomegranate fruit extract prevents cell growth and induces apoptosis, which can lead to its anticarcinogenic effects. In addition, promoter inhibition of some inflammatory markers and their production are blocked via ellagitannins. In this article, we highlight different studies on the therapeutic effects of pomegranate and their suggested mechanisms of actions.

  11. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes

    International Nuclear Information System (INIS)

    Parkinson, Andrew; Mudra, Daniel R.; Johnson, Cory; Dwyer, Anne; Carroll, Kathleen M.

    2004-01-01

    We have measured cytochrome P450 (CYP) activity in nearly 150 samples of human liver microsomes and 64 samples of cryopreserved human hepatocytes, and we have performed induction studies in over 90 preparations of cultured human hepatocytes. We have analyzed these data to examine whether the expression of CYP enzyme activity in liver microsomes and isolated hepatocytes or the inducibility of CYP enzymes in cultured hepatocytes is influenced by the gender, age, or ethnicity of the donor (the latter being limited to Caucasians, African Americans, and Hispanics due to a paucity of livers from Asian donors). In human liver microsomes, there were no statistically significant differences (P > 0.05) in CYP activity as a function of age, gender, or ethnicity with one exception. 7-Ethoxyresorufin O-dealkylase (CYP1A2) activity was greater in males than females, which is consistent with clinical observation. Liver microsomal testosterone 6β-hydroxylase (CYP3A4) activity was slightly greater in females than males, but the difference was not significant. However, in cryopreserved human hepatocytes, the gender difference in CYP3A4 activity (females = twice males) did reach statistical significance, which supports the clinical observation that females metabolize certain CYP3A4 substrates faster than do males. Compared with those from Caucasians and African Americans, liver microsomes from Hispanics had about twice the average activity of CYP2A6, CYP2B6, and CYP2C8 and half the activity of CYP1A2, although this apparent ethnic difference may be a consequence of the relatively low number of Hispanic donors. Primary cultures of hepatocytes were treated with β-naphthoflavone, an inducer of CYP1A2, phenobarbital or rifampin, both of which induce CYP2B6, CYP2C9, CYP2C19, and CYP3A4, albeit it to different extents. Induction of these CYP enzymes in freshly cultured hepatocytes did not appear to be influenced by the gender or age of the donor. Furthermore, CYP3A4 induction in

  12. Demonstration of de novo synthesis of enzymes by density labelling with stable isotopes

    International Nuclear Information System (INIS)

    Huebner, G.; Hirschberg, K.

    1977-01-01

    The technique of in vivo density labelling of proteins with H 2 18 O and 2 H 2 O has been used to investigate hormonal regulation and developmental expression of enzymes in plant cells. Buoyant density data obtained from isopycnic equilibrium centrifugation demonstrated that the cytokinine-induced nitrate reductase activity and the gibberellic acid-induced phosphatase activity in isolated embryos of Agrostemma githago are activities of enzymes synthesized de novo. The increase in alanine-specific aminopeptidase in germinating A. githago seeds is not due to de novo synthesis but to the release of preformed enzyme. On the basis of this result it is possible to apply the enzyme aminopeptidase as an internal density standard in equilibrium centrifugation. Density labelling experiments on proteins in pea cotyledons have been used to study the change in the activity of acid phosphatase, alanine-specific aminopeptidase, and peroxidase during germination. The activities of these enzymes increase in cotyledons of Pisum sativum. Density labelling by 18 O and 2 H demonstrates de novo synthesis of these three enzymes. The differential time course of enzyme induction shows the advantage of using H 2 18 O as labelling substance in cases when the enzyme was synthesized immediately at the beginning of germination. At this stage of development the amino-acid pool available for synthesis is formed principally by means of hydrolysis of storage proteins. The incorporation of 2 H into the new proteins takes place in a measurable amount at a stage of growth in which the amino acids are also synthesized de novo. The enzyme acid phosphatase of pea cotyledons was chosen to demonstrate the possibility of using the density labelling technique to detect protein turnover. (author)

  13. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    Science.gov (United States)

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The development, characterization, and application of biomimetic nanoscale enzyme immobilization

    Science.gov (United States)

    Haase, Nicholas R.

    The utilization of enzymes is of interest for applications such as biosensors and biofuel cells. Immobilizing enzymes provides a means to develop these applications. Previous immobilization efforts have been accomplished by exposing surfaces on which silica-forming molecules are present to solutions containing an enzyme and a silica precursor. This approach leads to the enzyme being entrapped in a matrix three orders of magnitude larger than the enzyme itself, resulting in low retention of enzyme activity. The research herein introduces a method for the immobilization of enzymes during the layer-by-layer buildup of Si-O and Ti-O coatings which are nanoscale in thickness. This approach is an application of a peptide-induced mineral deposition method developed in the Sandhage and Kroger groups, and it involves the alternating exposure of a surface to solutions containing the peptide protamine and then an aqueous precursor solution of silicon- or titanium-oxide at near-neutral pH. A method has been developed that enables in situ immobilization of enzymes in the protamine/mineral oxide coatings. Depending on the layer and mineral (silica or titania) within which the enzyme is incorporated, the resulting multilayer biocatalytic hybrid materials retain 20 -- 100% of the enzyme activity. Analyses of kinetic properties of the immobilized enzyme, coupled with characterization of physical properties of the mineral-bearing layers (thickness, porosity, pore size distribution), indicates that the catalytic activities of the enzymes immobilized in the different layers are largely determined by substrate diffusion. The enzyme was also found to be substantially stabilized against heat-induced denaturation and largely protected from proteolytic attack. These functional coatings are then developed for use as antimicrobial materials. Glucose oxidase, which catalyzes production of the cytotoxic agent hydrogen peroxide, was immobilized with silver nanoparticles, can release

  15. Flavonoids as modulators of metabolic enzymes and drug transporters.

    Science.gov (United States)

    Miron, Anca; Aprotosoaie, Ana Clara; Trifan, Adriana; Xiao, Jianbo

    2017-06-01

    Flavonoids, natural compounds found in plants and in plant-derived foods and beverages, have been extensively studied with regard to their capacity to modulate metabolic enzymes and drug transporters. In vitro, flavonoids predominantly inhibit the major phase I drug-metabolizing enzyme CYP450 3A4 and the enzymes responsible for the bioactivation of procarcinogens (CYP1 enzymes) and upregulate the enzymes involved in carcinogen detoxification (UDP-glucuronosyltransferases, glutathione S-transferases (GSTs)). Flavonoids have been reported to inhibit ATP-binding cassette (ABC) transporters (multidrug resistance (MDR)-associated proteins, breast cancer-resistance protein) that contribute to the development of MDR. P-glycoprotein, an ABC transporter that limits drug bioavailability and also induces MDR, was differently modulated by flavonoids. Flavonoids and their phase II metabolites (sulfates, glucuronides) inhibit organic anion transporters involved in the tubular uptake of nephrotoxic compounds. In vivo studies have partially confirmed in vitro findings, suggesting that the mechanisms underlying the modulatory effects of flavonoids are complex and difficult to predict in vivo. Data summarized in this review strongly support the view that flavonoids are promising candidates for the enhancement of oral drug bioavailability, chemoprevention, and reversal of MDR. © 2017 New York Academy of Sciences.

  16. Production of xylan-degrading enzymes by a Trichoderma harzianum strain

    Directory of Open Access Journals (Sweden)

    Cacais André O.Guerreiro

    2001-01-01

    Full Text Available Trichoderma harzianum strain 4 produced extracellular xylan-degrading enzymes, namely beta-xylanase, beta-xylosidase and alpha-arabinofuranosidase, when grown in liquid medium cultures containing oat spelt xylan as inducer. Cellulase activity was not detected. The pattern of xylan-degrading enzymes induction was influenced by the form of xylan present in the medium. They were detected in different incubation periods. Electrophoretic separation of the proteins from liquid culture filtrates by SDS-PAGE showed a variety of bands with high and low molecular weights.

  17. Chemopreventive effect of myrtenal on bacterial enzyme activity and the development of 1,2-dimethyl hydrazine-induced aberrant crypt foci in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Lokesh Kumar Booupathy

    2016-01-01

    Full Text Available Colon cancer remains as a serious health problem around the world despite advances in diagnosis and treatment. Dietary fibers are considered to reduce the risk of colon cancer as they are converted to short chain fatty acids by the presence of anaerobic bacteria in the intestine, but imbalanced diet and high fat consumption may promote tumor formation at different sites, including the large bowel via increased bacterial enzymes activity. The present study was conducted to characterize the inhibitory action of myrtenal on bacterial enzymes and aberrant crypt foci (ACF. Experimental colon carcinogenesis induced by 1,2-dimethylhydrazine is histologically, morphologically, and anatomically similar to human colonic epithelial neoplasm. Discrete microscopic mucosal lesions such as ACF and malignant tumors function as important biomarkers in the diagnosis of colon cancer. Methylene blue staining was carried out to visualize the impact of 1,2-dimethylhydrazine and myrtenal. Myrtenal-treated animals showed decreased levels of bacterial enzymes such as β-glucuronidase, β-glucosidase, and mucinase. Characteristic changes in the colon were noticed by inhibiting ACF formation in the colon. In conclusion, treatment with myrtenal provided altered pathophysiological condition in colon cancer-bearing animals with evidence of decreased crypt multiplicity and tumor progression.

  18. Protective effects of lemongrass (Cymbopogon citratus STAPF) essential oil on DNA damage and carcinogenesis in female Balb/C mice.

    Science.gov (United States)

    Bidinotto, Lucas T; Costa, Celso A R A; Salvadori, Daisy M F; Costa, Mirtes; Rodrigues, Maria A M; Barbisan, Luís F

    2011-08-01

    This study investigated the protective effect of oral treatment with lemongrass (Cymbopogon citratus STAPF) essential oil (LGEO) on leukocyte DNA damage induced by N-methyl-N-nitrosurea (MNU). Also, the anticarcinogenic activity of LGEO was investigated in a multi-organ carcinogenesis bioassay induced by 7,12-dimethylbenz(a)antracene, 1,2-dimethylhydrazine and N-butyl-N-(4-hydroxibuthyl)nitrosamine in Balb/C female Balb/c mice (DDB-initiated mice). In the short-term study, the animals were allocated into three groups: vehicle group (negative control), MNU group (positive control) and LGEO 500 mg kg⁻¹ (five times per week for 5 weeks) plus MNU group (test group). Blood samples were collected to analyze leukocyte DNA damage by comet assay 4 h after each MNU application at the end of weeks 3 and 5. The LGEO 500 mg kg⁻¹ treated group showed significantly lower (P lemongrass essential oil provided protective action against MNU-induced DNA damage and a potential anticarcinogenic activity against mammary carcinogenesis in DDB-initiated female Balb/C mice. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  20. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery

    DEFF Research Database (Denmark)

    Leick, Lotte; Plomgaard, Peter S.; Grønløkke, L.

    2010-01-01

    exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery....... The mRNA expression of carnitine-palmitoyltransferase (CPT)I, CD36, 3-hydroxyacyl-CoA-dehydrogenase (HAD), cytochrome (Cyt)c, aminolevulinate-delta-synthase (ALAS)1 and GLUT4 was 100-200% higher at 10-24 h of recovery from exercise than in a control trial. Exercise induced a 100-300% increase...... in peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, citrate synthase (CS), CPTI, CD36, HAD and ALAS1 mRNA contents at 10-24 h of recovery relative to before exercise. No protein changes were detected in Cytc, ALAS1 or GLUT4. This shows that mRNA expression of several training...

  1. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    2010-03-01

    Full Text Available Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure.IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold.These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  2. Human hair follicle benzo(a)pyrene and benzo(a)pyrene 7, 8-diol metabolism: effect of exposure to a coal tar-containing shampoo

    Energy Technology Data Exchange (ETDEWEB)

    Merk, H.F.; Mukhtar, H.; Kaufmann, I.; Das, M.; Bickers, D.R.

    1987-01-01

    Hair follicles are a readily available source of human epithelial tissue and offer an excellent system with which to study carcinogen metabolism in human populations. In this study hair follicles were employed to measure the metabolism of benzo(a)pyrene (BP), benzo(a)pyrene - 7,8-diol (BP 7,8-diol) and the enzyme mediated binding of /sup 3/H-BP to DNA. The effect of human exposure to a crude coal tar (CCT) - containing shampoo, a preparation rich in polycyclic aromatic hydrocarbons (PAHs on these parameters was also evaluated. It was found that aryl hydrocarbon hydroxylase (AHH) activity increased after use of the shampoo and enhancement of enzyme-mediated binding of BP to DNA was detected in most subjects. Hair follicles were shown to convert BP to several metabolic species and BP, 7,8-diol was also metabolised. Clotrimazole, a known inhibitor of the metabolism of BP was found to inhibit AHH and the metabolism of BP and BP 7,8-diol in human hair follicles, as were other imidazole compounds. The studies show that hair follicles represent an accessible tissue suitable for assessing the extent of PAH carcinogen metabolism in human subjects. Furthermore enzyme activity critical to cancer induction by PAHs was shown to be inducible following the use of a CCT-containing shampoo. Imidazole compounds were shown to be possible effective anti-carcinogens in human populations. 29 refs.

  3. Effect of degradation of xylan constituent in Mitsumata (Edgeworthia papyrifera Sieb. et Zucc. ) bast on its pulping by pectinolytic enzymes form Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroyuki; Matsuo, Ryukichi; Kobayashi, Yoshinari

    1988-01-01

    Pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by the crude enzyme from a bacterium Erwinia carotovora FERM P-7576, was more effective by a stepwise treatment at pH 6.5 and subsequently at pH 9.5 and eluted greater amount of xylose constituent than a constant pH treatment at pH 9.5 where only the maceration enzymes, endo-pectate lyase and endo-pectin lyase, among the crude enzyme are operative. The crude enzymes obtained from the cultivation of this bacterial strain on mitsumata bast fibers were more effective for the stepwise pH pulping method than those from the cultivation on soluble pectin. Xylanase activity in the mitsumata bast-induced enzyme at pH 6.5 was twice as high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, however, independent on the inducing materials. Purified exo-type xylanase prepared from the crude enzyme acted comparably to the entire crude enzyme in the first step of the combination pulping, but the xylanase per se showed no maceration activity. These results suggests that the degradation of xylan constituent within the bast fibers effects the acceleration of the subsequent enzymatic pulping by the pectinolytic maceration enzymes. The maceration mechanism involving xylan degradation was also discussed.

  4. Chronic ethanol feeding modulates the synthesis of digestive enzymes

    International Nuclear Information System (INIS)

    Ponnappa, B.C.; Hoek, J.B.; Rubin, E.

    1987-01-01

    The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of 3 H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding induced an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas

  5. Cellulase enzyme production during continuous culture growth of Sporotrichum (Chrysosporium) thermophile

    Energy Technology Data Exchange (ETDEWEB)

    Cossar, D; Canevascini, G

    1986-07-01

    The cellulolytic fungus Sporotrichum (Chrysosporium) thermophile produces an extracellular cellobiose dehydrogenase during batch culture on cellulose or cellobiose. In chemostat culture at pH 5.6 on cellobiose this enzyme was produced in parallel with endo-cellulase. At pH 5.0 in continuous or fed-batch culture such a pattern was not evident. At constant growth rate in a chemostat with varying pH, activity of these enzymes was found to be poorly correlated. Thus the induction of cellobiose dehydrogenase shows a dependence on pH and cellobiose concentration which is different to that for endo-cellulase. The natural inducer of these enzymes and the role of cellubiose dehydrogenase remain to be elucidated.

  6. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  7. Enzymatic Extraction of Hydroxycinnamic Acids from Coffee Pulp

    Directory of Open Access Journals (Sweden)

    Ernesto Favela-Torres

    2011-01-01

    Full Text Available Ferulic, caffeic, p-coumaric and chlorogenic acids are classified as hydroxycinnamic acids, presenting anticarcinogenic, anti-inflammatory and antioxidant properties. In this work, enzymatic extraction has been studied in order to extract high value-added products like hydroxycinnamic acids from coffee pulp. A commercial pectinase and enzyme extract produced by Rhizomucor pusillus strain 23aIV in solid-state fermentation using olive oil or coffee pulp (CP as an inducer of the feruloyl esterase activity were evaluated separately and mixed. The total content (covalently linked and free of ferulic, caffeic, p-coumaric and chlorogenic acids was 5276 mg per kg of coffee pulp. Distribution was as follows (in %: chlorogenic acid 58.7, caffeic acid 37.6, ferulic acid 2.1 and p-coumaric acid 1.5. Most of the hydroxycinnamic acids were covalently bound to the cell wall (in %: p-coumaric acid 97.2, caffeic acid 94.4, chlorogenic acid 76.9 and ferulic acid 73.4. The content of covalently linked hydroxycinnamic acid was used to calculate the enzyme extraction yield. The maximum carbon dioxide rate for the solid-state fermentation using olive oil as an inducer was higher and it was reached in a short cultivation time. Nevertheless, the feruloyl esterase (FAE activity (units per mg of protein obtained in the fermentation using CP as an inducer was 31.8 % higher in comparison with that obtained in the fermentation using olive oil as the inducer. To our knowledge, this is the first report indicating the composition of both esterified and free ferulic, caffeic, p-coumaric and chlorogenic acids in coffee pulp. The highest yield of extraction of hydroxycinnamic acids was obtained by mixing the produced enzyme extract using coffee pulp as an inducer and a commercial pectinase. Extraction yields were as follows (in %: chlorogenic acid 54.4, ferulic acid 19.8, p-coumaric acid 7.2 and caffeic acid 2.3. An important increase in the added value of coffee pulp was mainly

  8. Effect of long term selenium yeast intervention on activity and gene expression of antioxidant and xenbiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) Pilot Study

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Krath, Britta; Overvad, Kim

    2008-01-01

    Numerous mechanisms have been proposed to explain the anti-carcinogenic effects of Se, among them altered carcinogen metabolism. We investigated the effect of Se supplementation on activities of glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST...

  9. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma.

    Science.gov (United States)

    Yahagi, Naoya; Shimano, Hitoshi; Hasegawa, Kiyoshi; Ohashi, Kenichi; Matsuzaka, Takashi; Najima, Yuho; Sekiya, Motohiro; Tomita, Sachiko; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Nagai, Ryozo; Ishibashi, Shun; Kadowaki, Takashi; Makuuchi, Masatoshi; Ohnishi, Shin; Osuga, Jun-ichi; Yamada, Nobuhiro

    2005-06-01

    Hepatocellular carcinoma is a very common neoplastic disease in countries where hepatitis viruses B and/or C are prevalent. Small hepatocellular carcinoma lesions detected by ultrasonography at an early stage are often hyperechoic because they are composed of well-differentiated cancer cells that are rich in triglyceride droplets. The triglyceride content of hepatocytes depends in part on the rate of lipogenesis. Key lipogenic enzymes, such as fatty acid synthase, are co-ordinately regulated at the transcriptional level. We therefore examined the mRNA expression of lipogenic enzymes in human hepatocellular carcinoma samples from 10 patients who had undergone surgical resection. All of the samples exhibited marked elevation of expression of mRNA for lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase, compared with surrounding non-cancerous liver tissue. In contrast, the changes in mRNA expression of SREBP-1, a transcription factor that regulates a battery of lipogenic enzymes, did not show a consistent trend. In some cases where SREBP-1 was elevated, the main contributing isoform was SREBP-1c rather than SREBP-1a. Thus, lipogenic enzymes are markedly induced in hepatocellular carcinomas, and in some cases SREBP-1c is involved in this activation.

  10. A saponin-detoxifying enzyme mediates suppression of plant defences

    Science.gov (United States)

    Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.

    2002-08-01

    Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.

  11. Inhibition of Neoplastic Transformation and Chemically-Induced Skin Hyperplasia in Mice by Traditional Chinese Medicinal Formula Si-Wu-Tang

    Directory of Open Access Journals (Sweden)

    Mandy M. Liu

    2017-03-01

    Full Text Available Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT, comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women’s diseases. In our previous studies, the antioxidant Nrf2 pathways were strongly induced by SWT in vitro and in vivo. Since Nrf2 activation has been associated with anticarcinogenic effects, the purpose of this study is to evaluate SWT’s activity of cancer prevention. In the Ames test, SWT demonstrated an antimutagenic activity against mutagenicity induced by the chemical carcinogen 7,12-dimethylbenz(aanthracene (DMBA. In JB6 P+ cells, a non-cancerous murine epidermal model for studying tumor promotion, SWT inhibited epidermal growth factor (EGF-induced neoplastic transformation. The luciferase reporter gene assays demonstrated that SWT suppressed EGF-induced AP-1 and TNF-α-induced NF-κB activation, which are essential factors involved in skin carcinogenesis. In a DMBA-induced skin hyperplasia assay in ‘Sensitivity to Carcinogenesis’ (SENCAR mice, both topical and oral SWT inhibited DMBA-induced epidermal hyperplasia, expression of the proliferation marker Proliferating cell nuclear antigen (PCNA, and H-ras mutations. These findings demonstrate, for the first time, that SWT prevents tumor promoter and chemical-induced carcinogenesis in vitro and in vivo, partly by inhibiting DNA damage and blocking the activation of AP-1 and NF-κB.

  12. Effect of asoka on the intracellular glutathione levels and skin tumour promotion in mice.

    Science.gov (United States)

    Varghese, C D; Nair, S C; Panikkar, B; Panikkar, K R

    1993-04-15

    The bark of Saraka asoca (asoka) is commonly used to treat various diseases by the Indian system of medicine and in Sri Lanka. Further purification and chemical analysis of the active compound from the bark extract of asoka showed that (-)-epicatechin was responsible for the observed antitumour/anticarcinogenic activity. Papilloma formation in mice initiated with 7,12-dimethylbenz[a]anthracene (DMBA) and promoted using croton oil was inhibited by the topical application of 100 mg/kg body weight (b.w.) of (-)-epicatechin isolated from asoka bark extract. Oral administration of the same dose restricted the growth of s.c. injected 20 methylcholanthrene (MCA) induced soil tissue fibrosarcomas significantly in mice. Elevations of almost 2-4-fold in the intracellular reduced glutathione and related enzymes viz., glutathione reductase and glutathione S-transferase of sarcoma-180 tumour cells were noted in the presence of 1 microgram/ml of (-)-epicatechin, further highlighting its antiproliferative effect.

  13. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    International Nuclear Information System (INIS)

    Han Suxia; He Guangming; Wang Tao; Chen Lei; Ning Yunye; Luo Feng; An Jin; Yang Ting; Dong Jiajia; Liao Zenglin; Xu Dan; Wen Fuqiang

    2010-01-01

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  14. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    Science.gov (United States)

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  15. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Mahmoud Balbaa

    2016-01-01

    Full Text Available The black cumin (Nigella sativa “NS” or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  16. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  17. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  18. Cyclopentenone prostaglandins as potential inducers of phase II detoxification enzymes. 15-deoxy-delta(12,14)-prostaglandin j2-induced expression of glutathione S-transferases.

    Science.gov (United States)

    Kawamoto, Y; Nakamura, Y; Naito, Y; Torii, Y; Kumagai, T; Osawa, T; Ohigashi, H; Satoh, K; Imagawa, M; Uchida, K

    2000-04-14

    Exposure of cells to a wide variety of chemoprotective compounds confers resistance to a broad set of carcinogens. For a subset of the chemoprotective compounds, protection is generated by an increase in the abundance of protective enzymes, such as glutathione S-transferases (GSTs). In the present study, we developed a cell culture system that potently responds to phenolic antioxidants and found that antitumor prostaglandins (PGs) are potential inducers of GSTs. We screened primary hepatocytes and multiple cell lines for inducing GST activity upon incubation with the phenolic antioxidant (tert-butylhydroquinone) and found that rat liver epithelial RL34 cells most potently responded. Based on an extensive screening of diverse chemical agents on the induction of GST activity in RL34 cells, the J2 series of PGs, 15-deoxy-Delta(12,14)-prostaglandin J2 (15-deoxy-Delta(12,14)-PGJ2) in particular, were found to be potential inducers of GST. Enhanced gene expression of Class pi GST isozyme (GSTP1) by 15-deoxy-Delta(12,14)-PGJ2 was evident as a drastic elevation of the mRNA level. Hence, we examined the molecular mechanism underlying the 15-deoxy-Delta(12, 14)-PGJ2-induced GSTP1 gene expression. From functional analysis of various deletion mutant genes, we found that the 15-deoxy-Delta(12, 14)-PGJ2 reponse element was localized in a region containing a GSTP1 enhancer I (GPEI) that consists of two imperfect phorbol 12-O-tetradecanoylphorbol-13-acetate response elements. When the GPEI was combined with the minimum GSTP1 promoter, the element indeed showed an enhancer activity in response to 15-deoxy-Delta(12, 14)-PGJ2. Point mutations of either of the two imperfect 12-O-tetradecanoylphorbol-13-acetate response elements in GPEI completely abolished the enhancer activity. Gel mobility shift assays demonstrated that 15-deoxy-Delta(12,14)-PGJ2 specifically stimulated the binding of nuclear proteins including the transcription factor c-Jun, but not Nrf2, to GPEI. These results

  19. Attenuation of stress induced memory deficits by nonsteroidal anti-inflammatory drugs (NSAIDs) in rats: Role of antioxidant enzymes.

    Science.gov (United States)

    Emad, Shaista; Qadeer, Sara; Sadaf, Sana; Batool, Zehra; Haider, Saida; Perveen, Tahira

    2017-04-01

    Repeated stress paradigms have been shown to cause devastating alterations on memory functions. Stress is linked with inflammation. Psychological and certain physical stressors could lead to neuroinflammation. Inflammatory process may occur by release of mediators and stimulate the production of prostaglandins through cyclooxygenase (COX). Treatment with COX inhibitors, which restrain prostaglandin production, has enhanced memory in a number of neuroinflammatory states showing a potential function for raised prostaglandins in these memory shortfalls. In the present study, potential therapeutic effects of indomethacin and diclofenac sodium on memory in both unrestraint and restraint rats were observed. Two components, long term memory and short term memory were examined by Morris water maze (MWM) and elevated plus maze (EPM) respectively. The present study also demonstrated the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on lipid peroxidation (LPO) and activities of antioxidant enzymes along with the activity of acetylcholinesterase (AChE). Results of MWM and EPM showed significant effects of drugs in both unrestraint and restraint rats as escape latency and transfer latency, in respective behavioral models were decreased as compared to that of control. This study also showed NSAIDs administration decreased LPO and increased antioxidant enzymes activity and decreased AChE activity in rats exposed to repeated stress. In conclusion this study suggests a therapeutic potential of indomethacin and diclofenac against repeated stress-induced memory deficits. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  20. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    Science.gov (United States)

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  1. Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S

    DEFF Research Database (Denmark)

    Nielsen, Per H.; Oxenbøll, Karen; Wenzel, Henrik

    2007-01-01

    of environmental impact are usually fermentation processes due to electricity and ingredient consumption. Enzyme production has been the subject of significant optimisation during the past decades by implementation of e.g. gene modified production strains, and the provided environmental data are only...... and use of hazardous chemicals. The present paper provides a methodological framework for analysing environmental impacts of enzyme products and environmental data for five characteristic enzyme products. Methods. Life cycle assessment is used as an analytical tool and modelling of enzyme production...... for five representative enzyme products produced by Novozymes in Denmark have been determined, and a basis for further assessments of more of Novozymes' enzyme products has been established. Environmental impacts induced by producing the considered enzyme products vary by a factor 10 or more depending...

  2. Changes in Hypoxia-Inducible Factor-1 (HIF-1) and Regulatory Prolyl Hydroxylase (PHD) Enzymes Following Hypoxic-Ischemic Injury in the Neonatal Rat.

    Science.gov (United States)

    Chu, Hannah X; Jones, Nicole M

    2016-03-01

    Hypoxia leads to activation of many cellular adaptive processes which are regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 consists of HIF-1α and HIF-1ß subunits and levels of HIF-1α protein are regulated by HIF prolyl-hydroxylase enzymes (PHD1, 2, 3). The aim of the current study was to investigate the expression of HIF-1α and PHDs at various time points after hypoxia-ischemia (HI), using a neonatal rat model of HI brain injury. Sprague-Dawley rat pups (postnatal day 7) were anaesthetized and underwent right carotid artery occlusion and were then exposed to 6 % oxygen for 2.5 h at 37 °C. HI injured animals demonstrated a significant reduction in the size of the ipsilateral hemisphere, compared to sham controls. Protein analysis using western blotting and enzyme-linked immunosorbent assay showed that 24 h after HI, there was a significant increase in PHD3 protein and an increase of HIF-1α compared to controls. At the 72 h time point, there was a reduction in PHD3 protein, which appeared to relate to cellular loss. There were no changes in PHD1 or PHD2 protein levels after HI when compared to age-matched controls. Further studies are necessary to establish roles for the HIF-1 regulatory enzyme PHD3 in brain injury processes.

  3. Induced proteins in human melanomas by γ-ray

    International Nuclear Information System (INIS)

    Ohnishi, T.; Ihara, M.; Utsumi, H.

    1992-01-01

    When cells are exposed to environmental stresses such as heat, chemicals, radiation, the cells respond to them by synthesizing a characteristic group of proteins, called stress proteins. There are many famous stress proteins: heat shock proteins and metallothionein. Treated cells have a protective mechanism against these environmental stresses. SOS responses in Escherichia coli are most famous. As the mechanisms, when cells are exposed by many kinds of DNA damage agents, various enzymes are induced after the cleavage of repressor protein LexA by activated RecA enzyme. Thereafter, induced proteins act for DNA repair and mutagenesis. In mammalian cells there are many reports about inducible genes such as O 6 -methylguanine methyltransferase gene. This gene was also inducible by alkylating agents. The difference of radiation sensitivities may be reflected by the contents of repair enzymes(s) or the induced proteins. Therefore, this study aims on the differences in inducible proteins between radiosensitive cells and control cells. Since it was hypothesized that induced proteins concerning to DNA damage repair or the proteins to recognize the damage may exist in the nuclei, induced proteins in nuclei of γ-ray irradiated cells were analyzed. (author). 5 refs., 1 tab

  4. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  5. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis.

    Science.gov (United States)

    Sahu, Binod B; Baumbach, Jordan L; Singh, Prashant; Srivastava, Subodh K; Yi, Xiaoping; Bhattacharyya, Madan K

    2017-01-01

    Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.

  6. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    , established by the secondary displacements. The core floodings were conducted on various cores of the same type to check the reproducibility of the experiments. Flooding carbonates and aged Berea sandstone cores, waterflooded to residual oil saturation, with Greenzyme added to the water phase gave an additional recovery of between 3 and 11 % OOIP. One experiment on aged sandstone core and two on carbonate cores performed with one of the esterase enzymes also showed a reduction in residual oil in the same ranges as that observed for Greenzyme. From a capillary desaturation point of view, the reduction in interfacial tension obtained by adding Greenzyme is not sufficient to induce mobilization of residual oil. Further, a reduction in residual oil saturation was found after flooding with one of the esterase enzymes, which did not affect the oil-water interfacial tension.

  7. Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insights into distal effects induced by the mutations.

    Directory of Open Access Journals (Sweden)

    Elena Papaleo

    Full Text Available Networks and clusters of intramolecular interactions, as well as their "communication" across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme.

  8. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  9. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  10. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Nesreen E.M. Mohammed

    2016-11-01

    Conclusion: Amlodipine, lisinopril or allopurinol can protect against acetaminophen-induced hepatotoxicity, showing mechanistic roles of calcium channels, angiotensin converting enzyme and xanthine oxidase enzyme in the pathogenesis of hepatotoxicity induced by acetaminophen.

  11. Exploiting Unique Structural and Functional Properties of Malarial Glycolytic Enzymes for Antimalarial Drug Development

    Directory of Open Access Journals (Sweden)

    Asrar Alam

    2014-01-01

    Full Text Available Metabolic enzymes have been known to carry out a variety of functions besides their normal housekeeping roles known as “moonlighting functions.” These functionalities arise from structural changes induced by posttranslational modifications and/or binding of interacting proteins. Glycolysis is the sole source of energy generation for malaria parasite Plasmodium falciparum, hence a potential pathway for therapeutic intervention. Crystal structures of several P. falciparum glycolytic enzymes have been solved, revealing that they exhibit unique structural differences from the respective host enzymes, which could be exploited for their selective targeting. In addition, these enzymes carry out many parasite-specific functions, which could be of potential interest to control parasite development and transmission. This review focuses on the moonlighting functions of P. falciparum glycolytic enzymes and unique structural differences and functional features of the parasite enzymes, which could be exploited for therapeutic and transmission blocking interventions against malaria.

  12. Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation.

    Science.gov (United States)

    Mecawi, André S; Araujo, Iracema G; Rocha, Fábio F; Coimbra, Terezila M; Antunes-Rodrigues, José; Reis, Luís C

    2010-01-12

    We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.

  13. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  14. Inhibiting ROS-TFEB-Dependent Autophagy Enhances Salidroside-Induced Apoptosis in Human Chondrosarcoma Cells.

    Science.gov (United States)

    Zeng, Wei; Xiao, Tao; Cai, Anlie; Cai, Weiliang; Liu, Huanhuan; Liu, Jingling; Li, Jie; Tan, Miduo; Xie, Li; Liu, Ying; Yang, Xiangcheng; Long, Yi

    2017-01-01

    Autophagy modulation has been considered a potential therapeutic strategy for human chondrosarcoma, and a previous study indicated that salidroside exhibits significant anti-carcinogenic activity. However, the ability of salidroside to induce autophagy and its role in human chondrosarcoma cell death remains unclear. We exposed SW1353 cells to different concentrations of salidroside (0.5, 1 and 2 mM) for 24 h. RT-PCR, Western-blotting, Immunocytofluorescence, and Luciferase Reporter Assays were used to evaluate whether salidroside activated the TFEB-dependent autophagy. We show that salidroside induced significant apoptosis in the human chondrosarcoma cell line SW1353. In addition, we demonstrate that salidroside-induced an autophagic response in SW1353 cells, as evidenced by the upregulation of LC3-II and downregulation of P62. Moreover, pharmacological or genetic blocking of autophagy enhanced salidroside -induced apoptosis, indicating the cytoprotective role of autophagy in salidroside-treated SW1353 cells. Salidroside also induced TFEB (Ser142) dephosphorylation, subsequently to activated TFEB nuclear translocation and increase of TFEB reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes. Importantly, we found that salidroside triggered the generation of ROS in SW1353 cells. Furthermore, NAC, a ROS scavenger, abrogated the effects of salidroside on TFEB-dependent autophagy. These data demonstrate that salidroside increased TFEB-dependent autophagy by activating ROS signaling pathways in human chondrosarcoma cells. These data also suggest that blocking ROS-TFEB-dependent autophagy to enhance the activity of salidroside warrants further attention in treatment of human chondrosarcoma cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  16. Micropropagation effect on the anti-carcinogenic activitiy of polyphenolics from Mexican oregano (Poliomintha glabrescens Gray) in human colon cancer cells HT-29.

    Science.gov (United States)

    García-Pérez, Enrique; Noratto, Giuliana D; García-Lara, Silverio; Gutiérrez-Uribe, Janet A; Mertens-Talcott, Susanne U

    2013-06-01

    Phenolic extracts obtained from spices are known to have anti-carcinogenic activities but little is known about the effect of micropropagation on these beneficial effects. The main objective of this study was to evaluate the cytotoxic activity of flavonoid-enriched extracts (FEE) from the leaves of wild (WT), in vitro (IN), and ex vitro (EX) grown oregano plants in colon cancer cells HT-29 and the non-cancer cells CCD-18Co. Cell proliferation of HT-29 cells was reduced to 50 % by WT, IN, and EX at concentrations of 4.01, 1.32, and 4.84 mg of gallic acid equivalents (GAE)/L, respectively. In contrast, in CCD-18Co cells, higher concentrations were required for the same cytotoxic effect. At 6 mg GAE/L, WT and IN reduced the production of reactive oxygen species (ROS) of lipopolysaccharides (LPS)-stimulated control cells to 59.89 and 59.43 %, respectively, and EX to 73.89 %. The mRNA of Caspase-3 was increased 1.53-fold when cells were treated with 4 mg GAE/L of IN extract, and tumor necrosis factor receptor superfamily, member 6 (FAS), and BCL2-associated X protein (BAX) mRNA increased 2.55 and 1.53 fold, respectively. Results on protein expression corroborated the apoptotic effects with a significant decrease of B-cell lymphoma 2 (BCL2) expression for all treatments but more remarkable for EX that also showed the most intense signal of BAX. Overall, FEE extracts derived from micropropagation had increased pro-apoptotic effects, however extracts from the in vitro plants produced more efficacy at the transcriptional level while extracts from the ex vitro plant were superior at the traductional level.

  17. Angiotensin-converting enzyme inhibition in diabetic nephropathy

    DEFF Research Database (Denmark)

    Parving, H H; Rossing, P; Hommel, E

    1995-01-01

    The aim of our prospective study was to evaluate putative progression promoters, kidney function, and prognosis during long-term treatment with angiotensin-converting enzyme inhibition in insulin-dependent diabetes mellitus patients suffering from diabetic nephropathy. Eighteen consecutive......, albuminuria (geometric mean +/- antilog SE) 982 +/- 1.2 micrograms/min, and GFR 98 +/- 5 mL/min/1.73 m2. Angiotensin-converting enzyme inhibition induced a significant reduction during the whole treatment period of blood pressure (137/85 +/- 3/1 mm Hg; P ....01), and the rate of decline in GFR was 4.4 +/- 0.7 mL/min/yr, in contrast to previous reports of 10 to 14 mL/min/yr (natural history). Univariate analysis revealed a significant correlation between the rate of decline in GFR and mean arterial blood pressure (r = 0.58, P = 0.01), albuminuria (r = 0.67, P

  18. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  19. Andrographia paniculata a Miracle Herbs for cancer treatment: In ...

    African Journals Online (AJOL)

    It is extensively used as home remedy for various diseases in Indian traditional system ... Aim: In our present work, extracts of these ayurvedic plants were tested for their ... and anticarcinogenic properties against Aflatoxin B1 induced toxicity. ... (CA), sister chromatid exchanges (SCEs) and cell growth kinetics (RI) both in the ...

  20. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice

    International Nuclear Information System (INIS)

    Koiram, P.R.; Veerapur, V.P.; Mazhuvancherry, U.K.; Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, I.K.

    2007-01-01

    The effect of mononuclear copper (II) complex of curcumin in 1:1 stoichiometry (hereafter referred to as complex) administered 30 mim before γ-irradiation (4.5 Gy) on alterations in antioxidant and Thiobarbituric acid reactive substances (TBARS) levels in livers was studied in comparison to curcumin at a dose of 50 mg/kg. The different antioxidants like glutathione (GSH), glutathione-S-transferase (GST), catalase, superoxide dismuatase (SOD), TBARS and total thiols were estimated in the liver homogenates excised at different time intervals (1, 2 and 4 h) post irradiation using colorimetric methods. There was a radiation-induced decrease in the levels of all the studied enzymes at 1 h post irradiation, while an increase was observed at later time points. Both curcumin and complex treatment in sham-irradiated mice decreased the levels of GSH and total thiols, whereas there was an increase in the levels of catalase, GST and SOD compared to normal control. Under the influence of irradiation, both curcumin and complex treatment protected the decline in the levels of GSH, GST, SOD, catalase and total thiols, and inhibited radiation-induced lipid peroxidation. Further, the complex was found to be more effective in protecting the enzymes at 1 h post irradiation compared to curcumin treated group. This may be due to the higher rate constants of the complex compared to curcumin for their reactions with various free radicals. (author)

  1. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes of anti-oxidant enzymes levels in the livers of Swiss albino mice

    Energy Technology Data Exchange (ETDEWEB)

    Koiram, P R; Veerapur, V P; Mazhuvancherry, U K [Manipal Coll. of Pharmaceutical Sciences, Manipal (India); Kunwar, A; Mishra, B; Barik, A; Priyadarsini, I K [Bhabha Atomic Research Center, Mumbai (India)

    2007-05-15

    The effect of mononuclear copper (II) complex of curcumin in 1:1 stoichiometry (hereafter referred to as complex) administered 30 mim before {gamma}-irradiation (4.5 Gy) on alterations in antioxidant and Thiobarbituric acid reactive substances (TBARS) levels in livers was studied in comparison to curcumin at a dose of 50 mg/kg. The different antioxidants like glutathione (GSH), glutathione-S-transferase (GST), catalase, superoxide dismuatase (SOD), TBARS and total thiols were estimated in the liver homogenates excised at different time intervals (1, 2 and 4 h) post irradiation using colorimetric methods. There was a radiation-induced decrease in the levels of all the studied enzymes at 1 h post irradiation, while an increase was observed at later time points. Both curcumin and complex treatment in sham-irradiated mice decreased the levels of GSH and total thiols, whereas there was an increase in the levels of catalase, GST and SOD compared to normal control. Under the influence of irradiation, both curcumin and complex treatment protected the decline in the levels of GSH, GST, SOD, catalase and total thiols, and inhibited radiation-induced lipid peroxidation. Further, the complex was found to be more effective in protecting the enzymes at 1 h post irradiation compared to curcumin treated group. This may be due to the higher rate constants of the complex compared to curcumin for their reactions with various free radicals. (author)

  2. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  3. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  4. Induction of phenolics, lignin and key defense enzymes in eggplant ...

    African Journals Online (AJOL)

    Elicitors are capable of mimicking the perception of a pathogen by a plant, thereby triggering induction of a sophisticated defense response in plants. In this study, we investigated an induced resistance in eggplant in respect to cell wall strengthening and defense enzyme activation affected by four elicitors such as, chitosan ...

  5. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    Science.gov (United States)

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  7. Strategies for protection and experiments on repair of irradiated sulfhydryl enzymes

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1991-01-01

    The investigation of sulfur-containing biomolecules, especially of sulfhydryl proteins, is of particular interest in radiation biology. Sulfhydryl enzymes are useful objects for studying both structural and functional changes caused by radiation. In this context oxidation of enzyme sulfhydryl, inactivation (continuing in the post-irradiation phase), subunit cross-linking, enzyme aggregation, fragmentation, unfolding etc. may be mentioned. For their studies the authors used primarily malate synthase (MS), an enzyme with essential sulfhydryl, which was X-irradiated in aqueous solution in the absence or presence of a variety of additives (thiols, antioxienzymes, typical radical scavengers, inorganic salts, buffer components, substrates, products, substrate and product analogues). Radiation-induced effects were registered during irradiation, after stop of irradiation, and in the post-radiation (p.r.) phase 30 or 60 h p.r. using, e.g., small-angle X-ray scattering (SAXS), polyacrylamide gel electrophoreses (PAGEs), and activity measurements. Repair experiments were initiated by p.r. addition of dithiothreitol (DTT). For comparison, some of the experiments were also carried out with two additional sulfhydryl enzymes (glyceraldehyde-3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH)) and two disulfide containing proteins (ribonuclease A, serum albumin). 9 refs., 6 figs

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  9. Chemopreventive efficacy of ginger ( Zingiber officinale ) in ...

    African Journals Online (AJOL)

    Ginger (Zingiber officinale Rosco) is widely used in foods as a spice all around the world. It has been reported to have antioxidant and anticarcinogenic properties. We investigated the effect of ginger in ethionine induced rat hepatocarcinogenesis. Male Wistar rats were divided into 5 groups: group 1 and 2 served as ...

  10. The Presence of Biomarker Enzymes of Selected Scleractinian Corals of Palk Bay, Southeast Coast of India

    Science.gov (United States)

    Anithajothi, R.; Duraikannu, K.; Umagowsalya, G.; Ramakritinan, C. M.

    2014-01-01

    The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen. PMID:25215288

  11. The Presence of Biomarker Enzymes of Selected Scleractinian Corals of Palk Bay, Southeast Coast of India

    Directory of Open Access Journals (Sweden)

    R. Anithajothi

    2014-01-01

    Full Text Available The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO and peroxidases (POD and free radical scavenging enzymes (super oxide dismutase (SOD, catalase (CAT and glutathione peroxidase (Gpx in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.

  12. The presence of biomarker enzymes of selected Scleractinian corals of Palk Bay, southeast coast of India.

    Science.gov (United States)

    Anithajothi, R; Duraikannu, K; Umagowsalya, G; Ramakritinan, C M

    2014-01-01

    The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.

  13. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    International Nuclear Information System (INIS)

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-01-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity

  14. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be safe...

  15. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  16. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  17. Milk fat globule membrane isolate induces apoptosis in HT-29 human colon cancer cells.

    Science.gov (United States)

    Zanabria, Romina; Tellez, Angela M; Griffiths, Mansel; Corredig, Milena

    2013-02-01

    A native milk fat globule membrane (MFGM) isolate obtained from raw milk was assessed for its anticarcinogenic capacity using a colon cancer cell line (HT-29). To prevent microbial contamination and eliminate the presence of lipopolysaccharide (LPS) in the milk used for MFGM isolation, the milk was obtained from the mammary glands of cows using a catheter. Cell proliferation assays demonstrated a reduction of exponentially growing cancer cells of up to 53%, expressed as DNA synthesis (BrdU test), after 72 h stimulation with 100 μg of MFGM protein per mL. Using a similar MFGM concentration, the sulforhodamine B assay resulted in 57% reduction of cell density after 48 h incubation. This bioactivity was comparable to that of known anticancer drugs, 0.1 mM melphalan and 20 μM C2-ceramide, which achieved a cell division reduction of 25 and 40%, respectively, under the same experimental conditions. The toxic effect of the MFGM extracts on HT-29 cells was confirmed by the significant reduction in lactate dehydrogenase enzyme (LDH) by the residual viable cells. An increase of caspase-3 activity (up to 26%) led to the conclusion that MFGM has an apoptotic effect on HT-29 cancer cells.

  18. Tricyclic sesquiterpene copaene prevents H2O2-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hasan Turkez

    2014-02-01

    Full Text Available Aim: Copaene (COP, a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and anticarcinogenic features. But, very little information is known about the effects of COP on oxidative stress induced neurotoxicity. Method: We used hydrogen peroxide (H2O2 exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of COP in H2O2-induced toxicity in rat cerebral cortex cell cultures for the first time. For this purpose, methyl thiazolyl tetrazolium (MTT and lactate dehydrogenase (LDH release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC and total oxidative stress (TOS parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG levels, the single cell gel electrophoresis (SCGE or comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Result: The results of this study showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage increased in the H2O2 alone treated cultures. But pre-treatment of COP suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. Conclusion: It is proposed that COP as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative diseases. [J Intercult Ethnopharmacol 2014; 3(1.000: 21-28

  19. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  20. Hypovolemic Shock Caused by Angiotensin-Converting Enzyme Inhibitor-Induced Visceral Angioedema: A Case Series and A Simple Method to Diagnose this Complication in the Emergency Department.

    Science.gov (United States)

    Myslinski, Joseph; Heiser, Andrew; Kinney, Ashley

    2018-03-01

    Visceral angioedema is a rarely reported side effect of angiotensin-converting-enzyme inhibitors (ACEI). Because signs and symptoms tend to be nonspecific, the diagnosis is difficult to make, especially in the emergency department (ED). We describe 2 patients presenting with signs of hypovolemic shock, in which the diagnosis of ACEI-induced visceral angioedema was made in the ED. We surmise that patients with abdominal pain, who present with hypovolemic shock and are taking medications that can predispose to angioedema, may have this complication if their hemoglobin level is elevated compared with their previous levels. An abdominal computed tomography scan, if it does not identify any other significant etiology, will increase the probability that ACEI-induced visceral angioedema is the diagnosis when there is nonspecific bowel wall thickening or edema. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Identification of ACEI-induced visceral angioedema in the ED will avoid prolonged admissions, unnecessary procedures, and future recurrences. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Polyphosphonate induced coacervation of chitosan: Encapsulation of proteins/enzymes and their biosensing

    International Nuclear Information System (INIS)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Chen, Yu; Tang, Yawen; Lu, Tianhong

    2013-01-01

    Graphical abstract: Based on the coacervation of chitosan via the ionotropic crosslinking interaction, proteins/enzymes can be encapsulated in situ into chitosan matrix. -- Highlights: •The ionotropic crosslinking interactions result in the coacervation of chitosan. •A phosphonate-assisted encapsulation of proteins in chitosan matrix is introduced. •The encapsulated proteins retain their bioactivity. •The encapsulation method can be used to fabricate various chitosan-based biosensors. -- Abstract: Based on the polyphosphonate-assisted coacervation of chitosan, a simple and versatile procedure for the encapsulation of proteins/enzymes in chitosan–carbon nanotubes (CNTs) composites matrix was developed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrum (EDS) mapping demonstrated the hemoglobin (Hb) uniformly distributed into chitosan–CNTs composites matrix. Raman measurements indicated the CNTs in composites matrix retained the electronic and structural integrities of the pristine CNTs. Fourier transform infrared (FT-IR), ultraviolet–visible (UV–vis) and circular dichroism (CD) spectroscopy displayed the encapsulated Hb preserved their near-native structure, indicating the polyphosphonate–chitosan–CNTs composites possessed excellent biocompatibility for the encapsulation of proteins/enzymes. Electrochemical measurements indicated the encapsulated Hb could directly exchange electron with the substrate electrode. Moreover, the modified electrode showed excellent bioelectrocatalytic activity for the reduction of hydrogen peroxide. Under optimum experimental conditions, the fabricated electrochemical sensor displayed the fast response (less than 3 s), wide linear range (7.0 × 10 −7 to 2.0 × 10 −3 M) and low detection limit (4.0 × 10 −7 M) for the determination of hydrogen peroxide. This newly developed protocol was simple and mild and would certainly

  2. Polyphosphonate induced coacervation of chitosan: Encapsulation of proteins/enzymes and their biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Chen, Yu, E-mail: ndchenyu@yahoo.cn; Tang, Yawen; Lu, Tianhong

    2013-05-07

    Graphical abstract: Based on the coacervation of chitosan via the ionotropic crosslinking interaction, proteins/enzymes can be encapsulated in situ into chitosan matrix. -- Highlights: •The ionotropic crosslinking interactions result in the coacervation of chitosan. •A phosphonate-assisted encapsulation of proteins in chitosan matrix is introduced. •The encapsulated proteins retain their bioactivity. •The encapsulation method can be used to fabricate various chitosan-based biosensors. -- Abstract: Based on the polyphosphonate-assisted coacervation of chitosan, a simple and versatile procedure for the encapsulation of proteins/enzymes in chitosan–carbon nanotubes (CNTs) composites matrix was developed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrum (EDS) mapping demonstrated the hemoglobin (Hb) uniformly distributed into chitosan–CNTs composites matrix. Raman measurements indicated the CNTs in composites matrix retained the electronic and structural integrities of the pristine CNTs. Fourier transform infrared (FT-IR), ultraviolet–visible (UV–vis) and circular dichroism (CD) spectroscopy displayed the encapsulated Hb preserved their near-native structure, indicating the polyphosphonate–chitosan–CNTs composites possessed excellent biocompatibility for the encapsulation of proteins/enzymes. Electrochemical measurements indicated the encapsulated Hb could directly exchange electron with the substrate electrode. Moreover, the modified electrode showed excellent bioelectrocatalytic activity for the reduction of hydrogen peroxide. Under optimum experimental conditions, the fabricated electrochemical sensor displayed the fast response (less than 3 s), wide linear range (7.0 × 10{sup −7} to 2.0 × 10{sup −3} M) and low detection limit (4.0 × 10{sup −7} M) for the determination of hydrogen peroxide. This newly developed protocol was simple and mild and

  3. Thermostable amylolytic enzymes from a cellulolytic fungus Myceliophthora thermophila D14 (ATCC 48 104)

    Energy Technology Data Exchange (ETDEWEB)

    Sadhukhan, R K; Manna, S; Roy, S K; Chakrabarty, S L [Bose Research Inst., Calcutta (India). Dept. of Microbiology

    1990-09-01

    The production of amylolytic enzymes by a thermophilic cellulolytic fungus, Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45deg C. Among various nitrogenous compounds used, NaNO{sub 3} and KNO{sub 3} were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50deg C-60deg C) and displayed activity optima at 60deg C and pH 5.6. (orig.).

  4. [Coffee in Cancer Chemoprevention].

    Science.gov (United States)

    Neuwirthová, J; Gál, B; Smilek, P; Urbánková, P

    Coffee consumption is associated with a reduced risk of several diseases including cancer. Its chemopreventive effect has been studied in vitro, in animal models, and more recently in humans. Several modes of action have been proposed, namely, inhibition of oxidative stress and damage, activation of metabolizing liver enzymes involved in carcinogen detoxification processes, and anti-inflammatory effects. The antioxidant activity of coffee relies partly on its chlorogenic acid content and is increased during the roasting process. Maximum antioxidant activity is observed for medium-roasted coffee. The roasting process leads to the formation of several components, e.g., melanoidins, which have antioxidant and anti-inflammatory properties. Coffee also contains two specific diterpenes, cafestol and kahweol, which have anticarcinogenic properties. Roasted coffee is a complex mixture of various chemicals. Previous studies have reported that the chemopreventive components present in coffee induce apoptosis, inhibit growth and metastasis of tumor cells, and elicit antiangiogenic effects. A meta-analysis of epidemiological studies showed that coffee consumption is associated with a lower risk of developing various malignant tumors. This review summarizes the molecular mechanisms and the experimental and epidemiological evidence supporting the chemopreventive effect of coffee.Key words: coffee - chemoprevention - antioxidative enzyme - detoxification enzyme - anti-inflammatory effect The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 11. 9. 2016Accepted: 24. 11. 2016.

  5. Oxidative stress and the antioxidant enzyme system in the developing brain

    Directory of Open Access Journals (Sweden)

    So-Yeon Shim

    2013-03-01

    Full Text Available Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide (O2&#8226;-, hydroxyl radical (OH&#8226;, and hydrogen peroxide (H2O2. Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx, is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

  6. Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces Phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Perocco, Paolo [Department of Experimental Pathology, Cancerology Section, viale Filopanti 22, I-40126, University of Bologna, Bologna (Italy); Bronzetti, Giorgio [Institute of Biology and Agricultural Biotechnology - CNR Research Area, via Moruzzi, I-56124 Pisa (Italy); Canistro, Donatella; Sapone, Andrea; Affatato, Alessandra; Pozzetti, Laura; Broccoli, Massimiliano [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Valgimigli, Luca [Department of Organic Chemistry ' A. Mangini' , Viale Risorgimento 4, I-40127, Alma-Mater Studiorum, University of Bologna, Bologna (Italy); Pedulli, Gian Franco [Department of Organic Chemistry ' A. Mangini' , Viale Risorgimento 4, I-40127, Alma-Mater Studiorum, University of Bologna, Bologna (Italy); Iori, Renato [C.R.A - Research Institute for Industrial Crops, via di Corticella 133, I-40129 Bologna (Italy); Barillari, Jessica [Institute of Biology and Agricultural Biotechnology - CNR Research Area, via Moruzzi, I-56124 Pisa (Italy)]|[C.R.A - Research Institute for Industrial Crops, via di Corticella 133, I-40129 Bologna (Italy); Sblendorio, Valeriana [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Legator, Marvin S. [Department of Preventive Medicine and Community Health, Division of Environmental Toxicology, The University of Texas Medical Branch at Galveston, 700 Harborside Drive, Galveston, TX 77555-1110 (United States); Paolini, Moreno [Department of Pharmacology, Molecular Toxicology Unit, via Irnerio 48, I-40126, University of Bologna, Bologna (Italy); Abdel-Rahman, Sherif Z. [Department of Preventive Medicine and Community Health, Division of Environmental Toxicology, The University of Texas Medical Branch at Galveston, 700 Harborside Drive, Galveston, TX 77555-1110 (United States)]. E-mail: sabdelra@utmb.edu

    2006-03-20

    Epidemiological and animal studies linking high fruit and vegetable consumption to lower cancer risk have strengthened the belief that long-term administration of isolated naturally occurring dietary constituents could reduce the risk of cancer. In recent years, metabolites derived from phytoalexins, such as glucoraphanin found in broccoli and other cruciferous vegetables (Brassicaceae), have gained much attention as potential cancer chemopreventive agents. The protective effect of these micronutrients is assumed to be due to the inhibition of Phase-I carcinogen-bioactivating enzymes and/or induction of Phase-II detoxifying enzymes, an assumption that still remains uncertain. The protective effect of glucoraphanin is thought to be due to sulforaphane, an isothiocyanate metabolite produced from glucoraphanin by myrosinase. Here we show, in rat liver, that while glucoraphanin slightly induces Phase-II enzymes, it powerfully boosts Phase-I enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), nitrosamines and olefins. Induction of the cytochrome P450 (CYP) isoforms CYP1A1/2, CYP3A1/2 and CYP2E1 was confirmed by Western immunoblotting. CYP induction was paralleled by an increase in the corresponding mRNA levels. Concomitant with this Phase-I induction, we also found that glucoraphanin generated large amount of various reactive radical species, as determined by electron paramagnetic resonance (EPR) spectrometry coupled to a radical-probe technique. This suggests that long-term uncontrolled administration of glucoraphanin could actually pose a potential health hazard.

  7. Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces Phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver

    International Nuclear Information System (INIS)

    Perocco, Paolo; Bronzetti, Giorgio; Canistro, Donatella; Valgimigli, Luca; Sapone, Andrea; Affatato, Alessandra; Pedulli, Gian Franco; Pozzetti, Laura; Broccoli, Massimiliano; Iori, Renato; Barillari, Jessica; Sblendorio, Valeriana; Legator, Marvin S.; Paolini, Moreno; Abdel-Rahman, Sherif Z.

    2006-01-01

    Epidemiological and animal studies linking high fruit and vegetable consumption to lower cancer risk have strengthened the belief that long-term administration of isolated naturally occurring dietary constituents could reduce the risk of cancer. In recent years, metabolites derived from phytoalexins, such as glucoraphanin found in broccoli and other cruciferous vegetables (Brassicaceae), have gained much attention as potential cancer chemopreventive agents. The protective effect of these micronutrients is assumed to be due to the inhibition of Phase-I carcinogen-bioactivating enzymes and/or induction of Phase-II detoxifying enzymes, an assumption that still remains uncertain. The protective effect of glucoraphanin is thought to be due to sulforaphane, an isothiocyanate metabolite produced from glucoraphanin by myrosinase. Here we show, in rat liver, that while glucoraphanin slightly induces Phase-II enzymes, it powerfully boosts Phase-I enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), nitrosamines and olefins. Induction of the cytochrome P450 (CYP) isoforms CYP1A1/2, CYP3A1/2 and CYP2E1 was confirmed by Western immunoblotting. CYP induction was paralleled by an increase in the corresponding mRNA levels. Concomitant with this Phase-I induction, we also found that glucoraphanin generated large amount of various reactive radical species, as determined by electron paramagnetic resonance (EPR) spectrometry coupled to a radical-probe technique. This suggests that long-term uncontrolled administration of glucoraphanin could actually pose a potential health hazard

  8. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2018-06-01

    Full Text Available Shanxi aged vinegar (SAV is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.. The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.

  9. Unusual Growth Phase and Oxygen Tension Regulation of Oxidative Stress Protection Enzymes, Catalase and Superoxide Dismutase, in the Phytopathogen Xanthomonas oryzae pv. oryzae

    OpenAIRE

    Chamnongpol, S.; Mongkolsuk, S.; Vattanaviboon, P.; Fuangthong, M.

    1995-01-01

    The enzymes catalase and superoxide dismutase play major roles in protecting phytopathogenic bacteria from oxidative stress. In Xanthomonas species, these enzymes are regulated by both growth phase and oxygen tension. The highest enzyme levels were detected within 1 h of growth. Continued growth resulted in a decline of both enzyme activities. High oxygen tension was an inducing signal for both enzyme activities. An 80,000-Da monofunctional catalase and a manganese superoxide dismutase were t...

  10. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ndangili, Peter M. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Waryo, Tesfaye T., E-mail: twaryo@uwc.ac.z [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Muchindu, Munkombwe; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Ngila, Catherine J. [School of Chemistry, University of KwaZulu-Natal, P. Bag X541001 Westville, Durban 4000 (South Africa); Iwuoha, Emmanuel I. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa)

    2010-05-30

    The formation of nanofibrillar polyaniline-polyvinyl sulfonate (Pani-PVS) composite by electropolymerization of aniline in the presence of ferrocenium hexafluorophophate (FcPF{sub 6}) and its application in mediated-enzyme biosensor using the horseradish peroxidase/hydrogen peroxide (HRP/H{sub 2}O{sub 2}) enzyme-substrate system is reported. The electropolymerization was carried out at glassy carbon electrodes (GCE) and screen printed carbon electrodes (SPCE) in a strongly acidic medium (HCl). Scanning electron microscopy (SEM) images showed that 100 nm diameter nanofibrils were formed on the SPCE in contrast to the 800-1000 nm cauliflower-shaped clusters which were formed in the absence of FcPF{sub 6}. A model biosensor (GCE//Pani-PVS/BSA/HRP/Glu), consisting of horseradish peroxidase (HRP) immobilized by drop coating atop the GCE//Pani-PVS in the presence of bovine serum albumin (BSA) and glutaraldehyde (glu) in the enzyme layer casting solution, exhibited voltammetric responses characteristic of a mediated-enzyme system. The biosensor response to H{sub 2}O{sub 2} was very fast (5 s) and it exhibited a detection limit of 30 muM (3sigma) and a linearity of up to 2 mM (R{sup 2} = 0.998). The relatively high apparent Michaelis-Menten constant value (K{sub M}{sup app}=1.7mM) of the sensor indicated that the immobilized enzyme was in a biocompatible microenvironment. The freshly prepared biosensor was successfully applied in the determination of the H{sub 2}O{sub 2} content of a commercial tooth whitening gel with a very good recovery rate (97%).

  11. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor

    International Nuclear Information System (INIS)

    Ndangili, Peter M.; Waryo, Tesfaye T.; Muchindu, Munkombwe; Baker, Priscilla G.L.; Ngila, Catherine J.; Iwuoha, Emmanuel I.

    2010-01-01

    The formation of nanofibrillar polyaniline-polyvinyl sulfonate (Pani-PVS) composite by electropolymerization of aniline in the presence of ferrocenium hexafluorophophate (FcPF 6 ) and its application in mediated-enzyme biosensor using the horseradish peroxidase/hydrogen peroxide (HRP/H 2 O 2 ) enzyme-substrate system is reported. The electropolymerization was carried out at glassy carbon electrodes (GCE) and screen printed carbon electrodes (SPCE) in a strongly acidic medium (HCl). Scanning electron microscopy (SEM) images showed that 100 nm diameter nanofibrils were formed on the SPCE in contrast to the 800-1000 nm cauliflower-shaped clusters which were formed in the absence of FcPF 6 . A model biosensor (GCE//Pani-PVS/BSA/HRP/Glu), consisting of horseradish peroxidase (HRP) immobilized by drop coating atop the GCE//Pani-PVS in the presence of bovine serum albumin (BSA) and glutaraldehyde (glu) in the enzyme layer casting solution, exhibited voltammetric responses characteristic of a mediated-enzyme system. The biosensor response to H 2 O 2 was very fast (5 s) and it exhibited a detection limit of 30 μM (3σ) and a linearity of up to 2 mM (R 2 = 0.998). The relatively high apparent Michaelis-Menten constant value (K M app =1.7mM) of the sensor indicated that the immobilized enzyme was in a biocompatible microenvironment. The freshly prepared biosensor was successfully applied in the determination of the H 2 O 2 content of a commercial tooth whitening gel with a very good recovery rate (97%).

  12. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    2015-07-01

    Full Text Available Interleukin-6 (IL-6 has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD in wild-type (WT and IL-6-deficient (IL-6−/− mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6. Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1 and signal transducer and activator of transcription-3 (STAT3, increased AMP kinase phosphorylation (p-AMPK, and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1. The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β, FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  13. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna

    DEFF Research Database (Denmark)

    Ørsted, Michael; Roslev, Peter

    2015-01-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, we investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl...... or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2Cr2O7, or the herbicide formulation Roundup®. Toxicant induced changes in hydrolytic enzyme activity were compared to changes in mobility (ISO 6341). The results...... showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna, and fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup® resulted in loss of whole body enzyme activity, and release of cell...

  14. Ubiquitin-activating enzyme is necessary for 17β-estradiol-induced breast cancer cell proliferation and migration.

    Science.gov (United States)

    Pesiri, Valeria; Totta, Pierangela; Marino, Maria; Acconcia, Filippo

    2014-08-01

    The sex steroid hormone 17β-estradiol (E2) regulates breast cancer (BC) cell proliferation and migration through the activation of a plethora of signal transduction cascades (e.g., PI3K/AKT activation) starting after E2 binding to the estrogen receptor alpha (ERα). The activity of the ubiquitin (Ub)-system modulates many physiological processes (e.g., cell proliferation and migration), and recently, a specific inhibitor (Pyr-41) of the Ub-activating enzyme (E1), which works as the activator of the Ub-based signaling, has been identified to prevent the functions of the Ub-system. Here, by using Pyr-41, we studied the involvement of the Ub-system in E2-induced signaling to proliferation and migration of BC cells. Our data indicate that E1 activity is involved in the E2:ERα signaling important for cell proliferation and migration through the modulation of the E2-evoked activation of the PI3K/AKT and the p38/MAPK pathways. These discoveries indicate a new molecular circuitry that can be further explored to define new opportunities for BC treatment. © 2014 International Union of Biochemistry and Molecular Biology.

  15. Endoglucanase enzyme protein engineering by site-directed mutagenesis to improve the enzymatic properties and its expression in yeast

    Directory of Open Access Journals (Sweden)

    Farnaz Nikzad Jamnani

    2013-11-01

    Full Text Available Introduction: Fossil fuel is an expensive and finite energy source. Therefore, the use of renewable energy and biofuels production has been taken into consideration. One of the most suitable raw materials for biofuels is cellulosic compounds. Only microorganisms that contain cellulose enzymes can decompose cellulose and fungus of Trichodermareesei is the most important producer of this enzyme. Methods: In this study the nucleotide sequence of endoglucanase II, which is the starter of attack to cellulose chains, synthesized from amino acid sequence of this enzyme in fungus T.reesei and based on codon usage in the host; yeast Pichiapastoris. To produce optimized enzyme and to decrease the production time and enzyme price, protein engineering will be used. There are some methods to improve the enzymatic properties like site-directed mutagenesis in which amino-acid replacement occur. In this study two mutations were induced in endoglucanase enzyme gene by PCR in which free syctein positions 169 and 393 were switched to valine and histidine respectively. Then this gene was inserted into the pPinka expression vector and cloned in Escherichia coli. The recombinant plasmids were transferred into P.pastoris competent cells with electroporation, recombinant yeasts were cultured in BMMY medium and induced with methanol. Results: The sequencing of gene proved the induction of the two mutations and the presence of recombinant enzyme was confirmed by dinitrosalicilic acid method and SDS-PAGE. Conclusion: Examination of biochemical properties revealed that the two mutations simultaneously decreased catalytic power, thermal stability and increased the affinity of enzyme and substrate.

  16. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  17. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  18. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    International Nuclear Information System (INIS)

    Oboh, G.; Rocha, J.B.T.

    2006-03-01

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher ( 2+ induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  19. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    International Nuclear Information System (INIS)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-01-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1α and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1α protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1α expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1α and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions

  20. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.

    Science.gov (United States)

    Sant' Ana, Carolina D; Ticli, Fabio K; Oliveira, Leandro L; Giglio, Jose R; Rechia, Carem G V; Fuly, André L; Selistre de Araújo, Heloisa S; Franco, João J; Stabeli, Rodrigo G; Soares, Andreimar M; Sampaio, Suely V

    2008-11-01

    A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.

  2. Angiotensin converting enzyme (ACE) gene expression in experimentally induced liver cirrhosis in rats.

    Science.gov (United States)

    Shahid, Syed Muhammad; Fatima, Syeda Nuzhat; Mahboob, Tabassum

    2013-09-01

    Angiotensin converting enzyme (ACE) is a key player of Renin Angiotensin System (RAS), involved in conversion of active product, angiotensin-II. Alterations in RAS have been implicated in the pathophysiology of various diseases involving heart, kidney, lung and liver. This study is designed to investigate the association of ACE gene expression in induction of liver cirrhosis in rats. Total 12 male albino Wistar rats were selected and divided in two groups. Control group received 0.9% NaCl, where as Test group received thioacidamide (TAA), dissolved in 0.9%NaCl, injected intraperitoneally at a dosage of 200mg/Kg of body weight, twice a week for 12 weeks. The rats were decapitated and blood sample was collected at the end of experimental period and used for liver functions, enzyme activity, antioxidant enzymes and lipid peroxidation estimations. Genomic DNA was isolated from excised tissue determine the ACE genotypes using specific primers. The ACE gene expression in liver tissue was assessed using the quantitative RT-PCR method. The activity of ALT, total and direct bilirubin, SOD and CAT levels were significantly high (pACE gene expression after 12 weeks TAA treatment in cirrhotic rats was significantly increased (pACE gene expression. The finding of major up-regulation of ACE in the experimental rat liver provides further insight into the complexities of the RAS and its regulation in liver injury. The development of specific modulators of ACE activity and function, in future, will help determine the role of ACE and its genetic variants in the pathophysiology of liver disease.

  3. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  4. D-arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the L-fucose-D-arabinose pathway enzymes.

    Science.gov (United States)

    Elsinghorst, E A; Mortlock, R P

    1988-12-01

    D-Arabinose is degraded by Escherichia coli B via some of the L-fucose pathway enzymes and a D-ribulokinase which is distinct from the L-fuculokinase of the L-fucose pathway. We found that L-fucose and D-arabinose acted as the apparent inducers of the enzymes needed for their degradation. These enzymes, including D-ribulokinase, appeared to be coordinately regulated, and mutants which constitutively synthesized the L-fucose enzymes also constitutively synthesized D-ribulokinase. In contrast to D-arabinose-positive mutants of E. coli K-12, in which L-fuculose-1-phosphate and D-ribulose-1-phosphate act as inducers of the L-fucose pathway, we found that these intermediates did not act as inducers in E. coli B. To further characterize the E. coli B system, some of the L-fucose-D-arabinose genes were mapped by using bacteriophage P1 transduction. A transposon Tn10 insertion near the E. coli B L-fucose regulon was used in two- and three-factor reciprocal crosses. The gene encoding D-ribulokinase, designated darK, was found to map within the L-fucose regulon, and the partial gene order was found to be Tn10-fucA-darK-fucI-fucK-thyA.

  5. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S.T.; Dragsted, L.O.

    1999-01-01

    1. Gavage administration of the natural flavonoids tangeretin, chrysin, apigenin, naringenin, genistein and quercetin for 2 consecutive weeks to the female rat resulted in differential effects on selected phase 1 and 2 enzymes in liver, colon and heart as well as antioxidant enzymes in red brood......) significantly protected against, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP)-induced oxidative stress. Hepatic PhIP-DNA adduct formation was not affected by any of the administered flavonoids, whereas PhIP-DNA adduct formation in colon was slightly, but significantly, inhibited by quercetin......, genistein, tangeretin and BNF. 5. The observed effects of chrysin, quercetin and genistein on antioxidant enzymes, concurrently with a protection against oxidative stress, suggest a feedback mechanism on the antioxidant enzymes triggered by the flavonoid antioxidants. 6. Despite the use of high flavonoid...

  6. A study comparing the efficacy of antimicrobial agents versus enzyme (P-gp) inducers in the treatment of 2,4,6 trinitrobenzenesulfonic acid-induced colitis in rats.

    Science.gov (United States)

    Toklu, H Z; Kabasakal, L; Imeryuz, N; Kan, B; Celikel, C; Cetinel, S; Orun, O; Yuksel, M; Dulger, G A

    2013-08-01

    The intestinal microflora is an important cofactor in the pathogenesis of intestinal inflammation; and the epithelial cell barrier function is critical in providing protection against the stimulation of mucosal immune system by the microflora. In the present study, therapeutic role of the antibacterial drugs rifampicin and ciprofloxacine were investigated in comparison to spironolactone, an enzyme inducer, in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis of the rats. Drugs were administered for 14 days following induction of colitis. All drug treatments ameliorated the clinical hallmarks of colitis as determined by body weight loss and assessment of diarrhea, colon length, and histology. Oxidative damage and neutrophil infiltration as well as nuclear factor κB (NF-κB) and tumor necrosis factor α (TNF-α) expressions that were increased during colitis, were decreased significantly. Rifampicin and ciprofloxacin were probably effective due to their antibacterial and immunomodulating properties. The multidrug resistence gene (MDR1) and its product p-glycoprotein (P-gp) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). In the present study, findings of the P-gp expression were inconclusive but regarding previous studies, it can be suggested that the beneficial effects of rifampicin and spironolactone may be partly due to their action as a P-gp ligand. Spironolactone has been reported to supress the transcription of proinflamatory cytokines that are considered to be of importance in immunoinflammatory diseases. It is also a powerful pregnane X receptor (PXR) inducer; thus, inhibition of the expression of NF-κB and TNF-α, and amelioration of inflammation by spironolactone suggest that this may have been through the activation of PXR. However, our findings regarding PXR expression were inconclusive. Activation of PXR by spironolactone probably also contributed to the induction of P-gp, resulting in extrusion of noxious substances

  7. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  8. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats

    Directory of Open Access Journals (Sweden)

    Talha Jawaid

    2015-01-01

    Full Text Available The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.], perindopril (0.1 mg/kg b.w., [i.p.], enalapril (0.1 mg/kg b.w., [i.p.], and ramipril (0.1 mg/kg b.w., [i.p.] were administered in different group of animals for 5 days. On 5 th day, scopolamine (1 mg/kg b.w., i.p. was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM test and pole climbing test (PCT. Biochemical estimations like glutathione (GSH, malondialdehyde (MDA, and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril.

  9. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers

  10. Purification and Physico-Chemical Properties of Milk Clotting Enzyme Produced by Mucor Lamprosporus Comparable with Calf Rennet

    International Nuclear Information System (INIS)

    Moussa, L.A.; El-Fouly, M.Z.; El-Kabbany, H.; Kamel, Z.M.; Moubasher, M.H.

    1999-01-01

    Fractional precipitation of the crude enzyme produced by Mucor Lamprosporus fungus using 70% ammonium sulfate gave the highest MCA at 40 degree. Further purification of the partially purified enzyme was achieved by using Sephadex G-100 and rechromatographed on DEAE Sephadex A-50 and gave 22.5 fold then the crude enzyme with 301% enzyme recovery. Addition of NaCl to the skim milk caused pronounced decline in MCA of the enzyme while addition of 160 ppm of NaCl increased the MCA from 26.6 su/ml to 200 su/ml. The optimum temperature of the skin milk which induced the maximum activity of the purified enzyme in skim milk was found to be 40 degree while preheating the enzyme at 50 degree for 10 min caused a complete inhibition. Mild acidic condition did not affect the activity of the purified enzyme which remained almost stable till pH 6.0 while at pH 7.0 or more, the enzyme completely lost its clotting activity. The present data also showed that Mucor Lamprosporus rennin like enzyme exhibited higher activity than calf rennet

  11. Inhibition of RecBCD enzyme by antineoplastic DNA alkylating agents.

    Science.gov (United States)

    Dziegielewska, Barbara; Beerman, Terry A; Bianco, Piero R

    2006-09-01

    To understand how bulky adducts might perturb DNA helicase function, three distinct DNA-binding agents were used to determine the effects of DNA alkylation on a DNA helicase. Adozelesin, ecteinascidin 743 (Et743) and hedamycin each possess unique structures and sequence selectivity. They bind to double-stranded DNA and alkylate one strand of the duplex in cis, adding adducts that alter the structure of DNA significantly. The results show that Et743 was the most potent inhibitor of DNA unwinding, followed by adozelesin and hedamycin. Et743 significantly inhibited unwinding, enhanced degradation of DNA, and completely eliminated the ability of the translocating RecBCD enzyme to recognize and respond to the recombination hotspot chi. Unwinding of adozelesin-modified DNA was accompanied by the appearance of unwinding intermediates, consistent with enzyme entrapment or stalling. Further, adozelesin also induced "apparent" chi fragment formation. The combination of enzyme sequestering and pseudo-chi modification of RecBCD, results in biphasic time-courses of DNA unwinding. Hedamycin also reduced RecBCD activity, albeit at increased concentrations of drug relative to either adozelesin or Et743. Remarkably, the hedamycin modification resulted in constitutive activation of the bottom-strand nuclease activity of the enzyme, while leaving the ability of the translocating enzyme to recognize and respond to chi largely intact. Finally, the results show that DNA alkylation does not significantly perturb the allosteric interaction that activates the enzyme for ATP hydrolysis, as the efficiency of ATP utilization for DNA unwinding is affected only marginally. These results taken together present a unique response of RecBCD enzyme to bulky DNA adducts. We correlate these effects with the recently determined crystal structure of the RecBCD holoenzyme bound to DNA.

  12. Modulatory role of Co-enzyme Q10 on methionine and choline deficient diet-induced non-alcoholic steatohepatitis (NASH) in albino rats.

    Science.gov (United States)

    Saleh, Dalia O; Ahmed, Rania F; Amin, Mohamed M

    2017-03-01

    The present study aimed to evaluate the hepato-protective and neuro-protective activity of Co-enzyme Q10 (CoQ10) on non-alcoholic steatohepatitis (NASH) in albino rats induced by methionine and choline-deficient (MCD) diet. Rats were fed an MCD diet for 8 weeks to induce non-alcoholic steatohepatitis. CoQ10 (10 mg/(kg·day) -1 ) was orally administered for 2 consecutive weeks. Twenty-four hours after the last dose of the drug, the behavioral test, namely the activity cage test, was performed and the activity counts were recorded. Serum alanine transaminase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total/direct bilirubin, and albumin were valued to assess liver function. Moreover, hepatic cytokines interleukin-6 as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells were determined. In addition, brain biomarkers, viz ammonia, nitric oxide, and brain-derived neurotrophic factor (BDNF), were measured as they are reliable indices to assess brain damage. Histopathological and immunohistochemical examination of brain proliferating cell nuclear antigen in brain and liver tissues were also evaluated. Results revealed that MCD-induced NASH showed impairment in the liver functions with an increase in the liver inflammatory markers. Moreover, NASH resulted in pronounced brain dysfunction as evidenced by hyper-locomotor activity, a decrease in the BDNF level, as well as an increase in the brain nitric oxide and ammonia contents. Oral treatment of MCD-diet-fed rats with CoQ10 for 14 days showed a marked improvement in all the assigned parameters. Finally, it can be concluded that CoQ10 has a hepatoprotective and neuroprotective role in MCD-diet-induced NASH in rats.

  13. Crude Flavonoid Extract of Medicinal Herb Zingibar officinale Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Elkady, Ayman I; Abu-Zinadah, Osama A; Hussein, Rania Abd El Hamid

    2017-07-05

    There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against an HCC cell line, HepG2. CFEZO significantly inhibited proliferation and induced apoptosis in HepG2 cells. Typical apoptotic morphological and biochemical changes, including cell shrinkage and detachment, nuclear condensation and fragmentation, DNA degradation, and comet tail formation, were observed after treatments with CFEZO. The apoptogenic activity of CFEZO involved induction of ROS, depletion of GSH, disruption of the mitochondrial membrane potential, activation of caspase 3/9, and an increase in the Bax/Bcl-2 ratio. CFEZO treatments induced upregulation of p53 and p21 expression and downregulation of cyclin D1 and cyclin-dependent kinase-4 expression, which were accompanied by G2/M phase arrest. These findings suggest that CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of HCC.

  14. Synthesis of magnetic thermosensitive microcontainers for enzyme immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianzhi; Zhao, Guanghui, E-mail: zhaogh@lzu.edu.cn; Wang, Xinyu, E-mail: wangxy08@lzu.cn; Peng, Xiaomen; Li, Yanfeng, E-mail: liyf@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering (China)

    2015-05-15

    We present a new approach for the fabrication of magnetic thermoresponsive polymer microcapsules with mobile magnetic spherical cores. The microcontainers form fried-egg-like structures with a polymer shell layer of 50 nm due to the existence of hollow cavities. The microcontainers undergo a temperature-induced volume phase transition upon changing the temperature and present an impressive magnetic response. The magnetic saturation of these smart microcontainers (42 emu/g) is high enough to meet most requirements of bioapplications. To further investigate the potential application of these smart microcontainers in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. The adsorption/release of the lipase from the microcontainers can be controlled by the environmental temperature and magnetic force, thus, offering new potential applications such as in controlled drug delivery, bioseparation, and catalysis.

  15. Synthesis of magnetic thermosensitive microcontainers for enzyme immobilization

    International Nuclear Information System (INIS)

    Wang, Jianzhi; Zhao, Guanghui; Wang, Xinyu; Peng, Xiaomen; Li, Yanfeng

    2015-01-01

    We present a new approach for the fabrication of magnetic thermoresponsive polymer microcapsules with mobile magnetic spherical cores. The microcontainers form fried-egg-like structures with a polymer shell layer of 50 nm due to the existence of hollow cavities. The microcontainers undergo a temperature-induced volume phase transition upon changing the temperature and present an impressive magnetic response. The magnetic saturation of these smart microcontainers (42 emu/g) is high enough to meet most requirements of bioapplications. To further investigate the potential application of these smart microcontainers in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. The adsorption/release of the lipase from the microcontainers can be controlled by the environmental temperature and magnetic force, thus, offering new potential applications such as in controlled drug delivery, bioseparation, and catalysis

  16. Study of antioxidant enzymes superoxide dismutase and glutathione peroxidase levels in tobacco chewers and smokers: A pilot study

    Directory of Open Access Journals (Sweden)

    Chundru Venkata Naga Sirisha

    2013-01-01

    Conclusions: The present study gave us an insight about the relationship between antioxidant enzyme activity, oxidative stress and tobacco. The altered antioxidant enzyme levels observed in this study will act as a predictor for pre potentially malignant lesions. Therefore an early intervention of tobacco habit and its related oxidative stress would prevent the development of tobacco induced lesions.

  17. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    Science.gov (United States)

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Gamma radiation induced alterations in the ultrastructure of pancreatic islet, metabolism and enzymes in wistar rat

    Energy Technology Data Exchange (ETDEWEB)

    Daoo, J.V.; Suryawanshi, S.A. [Inst. of Science, Bombay (India)

    1992-07-01

    Effects of gamma irradiation (600 rads) on the ultrastructure of pancreatic islet, metabolism and some enzymes in wistar rat, are reported. Electron microscopic observations of endocrine pancreas revealed prominent changes in beta cells while alpha and delta cells were not much affected. Irradiation also inflicted hyperglycemia, increase in liver and muscle glycogen and decrease in insulin level. It has also increased the activity of enzymes but failed to produce significant changes in protein, lipid and mineral metabolism. (auth0008.

  19. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  20. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    Science.gov (United States)

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  1. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  2. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  3. Gene expression and enzyme activities of carbonic anhydrase and glutaminase in rat kidneys induced by chronic systemic hypoxia

    Directory of Open Access Journals (Sweden)

    Andi N.K. Syarifin

    2015-11-01

    Full Text Available Background: Hypoxia can cause acidosis. Kidney plays an essential role in maintaining acid-base balance, which involves the activities of carbonic anhydrase (CA and glutaminase (GLS. This study is aimed to determine the expression and activities of the CA9 and GLS1 enzymes in relation to hypoxia inducible factor-1α (HIF-1α, a transcription factor protein which is a marker of hypoxia.Methods: This study was an in vivo experimental study with coupled paralel design. used 25 male Sprague-Dawley rats weighing 150-200 g. Rats were divided into 5 groups: the control group (normoxic condition and 4 treatment groups. The latter were kept in a hypoxic chamber (10% O2: 90% N2 for 1, 3, 5 and 7 days. All rats were euthanized after treatment, kidneys excised, tissues homogenized and investigated for gene expression of CA9, GLS1 and HIF-1α. On protein level, total enzymatic activities of CA and GLS and protein of HIF-1α were also investigated. Data were analyzed statistically using ANOVA for significance, and as its alternative, used Mann-Whitney and Kruskal-Wallis test.Results: Results showed that HIF-1α mRNA increased during hypoxia, but not HIF-1α protein. It seemed that acidosis occurs in kidney tissue, indicated by increased CA9 and GLS1 mRNA expression and specific activity of total CA and GLS1. Expression of CA9 and GLS1 mRNA both showed strong positive correlation with HIF-1α mRNA, but not with HIF-1α protein.Conclusion: It is suggested that during chronic systemic hypoxia, gene expression of CA9 and GLS1 and their enzyme activities were increased as a response to acidosis and related with the expression of HIF-1α mRNA.

  4. Yinchenhao Decoction Ameliorates Alpha-Naphthylisothiocyanate Induced Intrahepatic Cholestasis in Rats by Regulating Phase II Metabolic Enzymes and Transporters

    Directory of Open Access Journals (Sweden)

    Ya-Xiong Yi

    2018-05-01

    Full Text Available Yinchenhao Decoction (YCHD, a famous traditional Chinese formula, has been used for treating cholestasis for 1000s of years. The cholagogic effect of YCHD has been widely reported, but its pharmacodynamic material and underlying therapeutic mechanism remain unclear. By using ultra-high-performance liquid chromatography (UHPLC-quadrupole time-of-flight mass spectrometry, 11 original active components and eight phase II metabolites were detected in rats after oral administration of YCHD, including three new phase II metabolites. And it indicated that phase II metabolism was one of the major metabolic pathway for most active components in YCHD, which was similar to the metabolism process of bilirubin. It arouses our curiosity that whether the metabolism process of YCHD has any relationship with its cholagogic effects. So, a new method for simultaneous quantitation of eight active components and four phase II metabolites of rhein, emodin, genipin, and capillarisin has been developed and applied for their pharmacokinetic study in both normal and alpha-naphthylisothiocyanate (ANIT-induced intrahepatic cholestasis rats. The results indicated the pharmacokinetic behaviors of most components of YCHD were inhibited, which was hypothesized to be related to different levels of metabolic enzymes and transporters in rat liver. So dynamic changes of intrahepatic enzyme expression in cholestasis and YCHD treated rats have been monitored by an UHPLC-tandem mass spectrometry method. The results showed expression levels of UDP-glucuronosyltransferase 1-1 (UGT1A1, organic anion-transporting polypeptide 1A4 (OATP1A4, multidrug resistance-associated protein 2 (MRP2, multidrug resistance protein 1, sodium-dependent taurocholate cotransporter, and organic anion-transporting polypeptide 1A2 were significantly inhibited in cholestasis rats, which would account for reducing the drug absorption and the metabolic process of YCHD in cholestatic rats. A high dose (12 g/kg of

  5. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  6. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  7. Enzyme entrapment in polyaniline films observed via fluorescence anisotropy and antiquenching

    Science.gov (United States)

    Nemzer, Louis R.; McCaffrey, Marisa; Epstein, Arthur J.

    2014-05-01

    The facile entrapment of oxidoreductase enzymes within polyaniline polymer films by inducing hydrophobic collapse using phosphate buffered saline (PBS) has been shown to be a cost-effective method for fabricating organic biosensors. Here, we use fluorescence anisotropy measurements to verify enzyme immobilization and subsequent electron donation to the polymer matrix, both prerequisites for an effective biosensor. Specifically, we measure a three order of magnitude decrease in the ratio of the fluorescence to rotational lifetimes. In addition, the observed fluorescence antiquenching supports the previously proposed model that the polymer chain assumes a severely coiled conformation when exposed to PBS. These results help to empirically reinforce the theoretical basis previously laid out for this biosensing platform.

  8. The renneting of milk : a kinetic study of the enzymic and aggregation reactions

    NARCIS (Netherlands)

    Hooydonk, van A.C.M.

    1987-01-01

    The rennet-induced clotting of milk was studied under various conditions. The kinetics of the enzymic and aggregation reactions was analysed separately and, where possible, related to the physico-chemical properties of the casein micelle and its environment.

    The effects of important

  9. Growth and enzyme production by three Penicillium species on monosaccharides

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Krogh, Astrid Mørkeberg; Krogh, Kristian Bertel Rømer

    2004-01-01

    The growth and preference for utilisation of various sugar by the Penicillium species Penicillium pinophilum IBT 4186, Penicillium persicinum IBT 13226 and Penicillium brasilianum IBT 20888 was studied in batch cultivations using various monosaccharides as carbon source, either alone or in mixtur...... producing beta-glucosidase and endoglucanases. Xylose did not repress the enzyme production and it induced the production of endoxylanases and beta-xylosidases....

  10. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Apple, F. S.; Sjödin, B.

    1996-01-01

    (P anaerobic capacity in the trained muscle. The present study demonstrates that intermittent sprint cycle training that induces an enhanced capacity for anaerobic energy generation also improves......The effect of intermittent sprint cycle training on the level of muscle antioxidant enzyme protection was investigated. Resting muscle biopsies, obtained before and after 6 wk of training and 3, 24, and 72 h after the final session of an additional 1 wk of more frequent training, were analyzed...... for activities of the antioxidant enzymes glutathione peroxidase (GPX), glutathione reductase (GR), and superoxide dismutase (SOD). Activities of several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, no change in GPX, GR, or SOD...

  12. The Effect of EDTA and Citric acid on Soil Enzymes Activity, Substrate Induced Respiration and Pb Availability in a Contaminated Soil

    Directory of Open Access Journals (Sweden)

    seyed sajjad hosseini

    2017-03-01

    Full Text Available Introduction: Application of EDTA may increase the heavy metal availability and phytoextraction efficiency in contaminated soils. In spite of that, it might also have some adverse effects on soil biological properties. Metals as freeions are considered to be severely toxic, whereas the complexed form of these metalswith organic compounds or Fe/Mn oxides may be less available to soil microbes. However, apart from this fact, some of these compounds like EDTA and EDTA-metal complexes have low bio- chemo- and photo-degradablity and high solubility in their own characteristics andable to cause toxicity in soil environment. So more attentions have been paid to use of low molecular weight organic acids (LMWOAs such as Citric acid because of having less unfavorable effects to the environment. Citric acid increases heavy metals solubility in soils and it also improves soil microbial activity indirectly. Soil enzymes activity is a good indicator of soil quality, and it is more suitable for monitoring the soil quality compared to physical or chemical indicators. The aims of this research were to evaluate the changes of dehydrogenase, urease and alkaline phosphomonoesterase activities, substrate-induced respiration (SIR and Pb availability after EDTA and citric acid addition into a contaminated soil with PbCl2. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in greenhouse condition. The soil samples collected from surface horizon (0-20 cm of the Typic haplocalsids, located in Mashhad, Iran. Soil samples were artificially contaminated with PbCl2 (500 mg Pb per kg of soil and incubated for one months in 70 % of water holding capacity at room temperature. The experimental treatments included control, 3 and 5 mmol EDTA (EDTA3 and EDTA5 and Citric acid (CA3 and CA5 per kg of soil. Soil enzymes activity, substrate-induced respiration and Pb availability of soil samples were

  13. The in vitro synthesis of β-galactosidase induced in a subcellular structure of Escherichia coli (1961)

    International Nuclear Information System (INIS)

    Nisman, B.; Kayser, A.; Demailly, J.; Genin, C.

    1961-01-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P 1 ). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of β-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [fr

  14. CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review

    Directory of Open Access Journals (Sweden)

    Margret I Moré

    2018-02-01

    Full Text Available Several properties of the probiotic medicinal yeast Saccharomyces boulardii CNCM I-745 contribute to its efficacy to prevent or treat diarrhoea. Besides immunologic effects, pathogen-binding and anti-toxin effects, as well as positive effects on the microbiota, S boulardii CNCM I-745 also has pronounced effects on digestive enzymes of the brush border membrane, known as trophic effects. The latter are the focus of this review. Literature has been reviewed after searching Medline and PMC databases. All relevant non-clinical and clinical studies are summarized. S. boulardii CNCM I-745 synthesizes and secretes polyamines, which have a role in cell proliferation and differentiation. The administration of polyamines or S. boulardii CNCM I-745 enhances the expression of intestinal digestive enzymes as well as nutrient uptake transporters. The signalling mechanisms leading to enzyme activation are not fully understood. However, polyamines have direct nucleic acid–binding capacity with regulatory impact. S. boulardii CNCM I-745 induces signalling via the mitogen-activated protein kinase pathway. In addition, effects on the phosphatidylinositol-3 kinase (PI3K pathway have been reported. As an additional direct effect, S. boulardii CNCM I-745 secretes certain enzymes, which enhance nutrient acquisition for the yeast and the host. The increased availability of digestive enzymes seems to be one of the mechanisms by which S. boulardii CNCM I-745 counteracts diarrhoea; however, also people with certain enzyme deficiencies may profit from its administration. More studies are needed to fully understand the mechanisms of trophic activation by the probiotic yeast.

  15. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  16. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax

    International Nuclear Information System (INIS)

    Kma, L.; Gao, F.; Fish, B.L.; Moulder, J.E.; Jacobs, E.R.; Medhora, M.

    2012-01-01

    Our long-term goal is to use angiotensin converting enzyme (ACE) inhibitors to mitigate the increase in lung collagen synthesis that is induced by irradiation to the lung, which could result from accidental exposure or radiological terrorism. Rats (WAG/RijCmcr) were given a single dose of 13 Gy (dose rate of 1.43 Gy/min) of X-irradiation to the thorax. Three structurally-different ACE inhibitors, captopril, enalapril and fosinopril were provided in drinking water beginning 1 week after irradiation. Rats that survived acute pneumonitis (at 6-12 weeks) were evaluated monthly for synthesis of lung collagen. Other endpoints included breathing rate, wet to dry lung weight ratio, and analysis of lung structure. Treatment with captopril (145-207 mg/m 2 /day) or enalapril (19-28 mg/m 2 /day), but not fosinopril (19-28 mg/m 2 /day), decreased morbidity from acute pneumonitis. Lung collagen in the surviving irradiated rats was increased over that of controls by 7 months after irradiation. This increase in collagen synthesis was not observed in rats treated with any of the three ACE inhibitors. Analysis of the lung morphology at 7 months supports the efficacy of ACE inhibitors against radiation-induced fibrosis. The effectiveness of fosinopril against fibrosis, but not against acute pneumonitis, suggests that pulmonary fibrosis may not be a simple consequence of injury during acute pneumonitis. In summary, three structurally-different ACE inhibitors mitigate the increase in collagen synthesis 7 months following irradiation of the whole thorax and do so, even when therapy is started one week after irradiation. (author)

  17. Effects of Bidens pilosa L. var. radiata SCHERFF treated with enzyme on histamine-induced contraction of guinea pig ileum and on histamine release from mast cells.

    Science.gov (United States)

    Matsumoto, Takayuki; Horiuchi, Masako; Kamata, Katsuo; Seyama, Yoshiyuki

    2009-06-01

    The medical mechanism against type I allergies is to block the release or production of chemical mediators from mast cells or to block the H(1)-receptor signaling. We previously reported that the anti-allergic action of the dry powder from Bidens pilosa L. var. radiata SCHERFF treated with the enzyme cellulosine (eMMBP) was dependent on the inhibition of histamine release from mast cells. Here, we investigate that the effect of fractions in eMMBP on the histamine-induced contraction in guinea pig ileum and on the release of histamine in rat peritoneal mast cells. The histamine-induced contraction in guinea pig ileum is dose-dependently inhibited by ketotifen, an antagonist of H(1)-receptor. Fractions contained caffeic acid, caffeoylquinic acid and fractions contained flavonoids such as hyperin and isoquercitrin in eMMBP inhibit histamine release from mast cells, but only flavonoids such as hyperin, isoquercitrin and rutin suppress the histamine-induced contraction in guinea pig ileum. Moreover, the histamine-induced contraction was not affected by caffeic acid, however, such contraction was significantly inhibited by rutin. These results suggest that the primary antagonists of H(1)- receptor are different from the components in eMMBP that inhibit histamine release, and that these components participate in the anti-allergic activity of eMMBP.

  18. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    International Nuclear Information System (INIS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-01-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  19. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-07-01

    Spices have been used as food adjuncts and in folklore for ages. Inhibition of key enzymes (α-amylase and α-glucosidase) involved in the digestion of starch and protection against free radicals and lipid peroxidation in pancreas could be part of the therapeutic approach towards the management of hyperglycemia and dietary phenolics have shown promising potentials. This study investigated and compared the inhibitory properties of aqueous extracts of some tropical spices: Xylopia aethiopica [Dun.] A. Rich (Annonaceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Syzygium aromaticum [L.] Merr. et Perry (Myrtaceae), Piper guineense Schumach. et Thonn (Piperaceae), Aframomum danielli K. Schum (Zingiberaceae) and Aframomum melegueta (Rosc.) K. Schum (Zingiberaceae) against α-amylase, α-glucosidase, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas--in vitro using different spectrophotometric method. Aqueous extract of the spices was prepared and the ability of the spice extracts to inhibit α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in rat pancreas--in vitro was investigated using various spectrophotometric methods. All the spice extracts inhibited α-amylase (IC(50) = 2.81-4.83 mg/mL), α-glucosidase (IC(50) = 2.02-3.52 mg/mL), DPPH radicals (EC(50) = 15.47-17.38 mg/mL) and SNP-induced lipid peroxidation (14.17-94.38%), with the highest α-amylase & α-glucosidase inhibitory actions and DPPH radical scavenging ability exhibited by X. aethiopica, A. danielli and S. aromaticum, respectively. Also, the spices possess high total phenol (0.88-1.3 mg/mL) and flavonoid (0.24-0.52 mg/mL) contents with A. melegueta having the highest total phenolic and flavonoid contents. The inhibitory effects of the spice extracts on α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in pancreas (in vitro) could be attributed to the presence of biologically

  20. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    Science.gov (United States)

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  1. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  2. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  3. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  4. Acute Exercise Induced Mitochondrial H2O2 Production in Mouse Skeletal Muscle: Association with p66Shc and FOXO3a Signaling and Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-01-01

    Full Text Available Exercise induced skeletal muscle phenotype change involves a complex interplay between signaling pathways and downstream regulators. This study aims to investigate the effect of acute exercise on mitochondrial H2O2 production and its association with p66Shc, FOXO3a, and antioxidant enzymes. Male ICR/CD-1 mice were subjected to an acute exercise. Muscle tissues (gastrocnemius and quadriceps femoris were taken after exercise to measure mitochondrial H2O2 content, expression of p66Shc and FOXO3a, and the activity of antioxidant enzymes. The results showed that acute exercise significantly increased mitochondrial H2O2 content and expressions of p66Shc and FOXO3a in a time-dependent manner, with a linear correlation between the increase in H2O2 content and p66Shc or FOXO3a expression. The activity of mitochondrial catalase was slightly reduced in the 90 min exercise group, but it was significantly higher in groups with 120 and 150 min exercise compared to that of 90 min exercise group. The activity of SOD was not significantly affected. The results indicate that acute exercise increases mitochondrial H2O2 production in the skeletal muscle, which is associated with the upregulation of p66Shc and FOXO3a. The association of p66Shc and FOXO3a signaling with exercise induced H2O2 generation may play a role in regulating cellular oxidative stress during acute exercise.

  5. Changes in cytochrome P450 gene expression and enzyme activity induced by xenobiotics in rabbits in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Orsolya Palócz

    2017-06-01

    Full Text Available As considerable inter-species differences exist in xenobiotic metabolism, developing new pharmaceutical therapies for use in different species is fraught with difficulties. For this reason, very few medicines have been registered for use in rabbits, despite their importance in inter alia meat and fur production. We have developed a rapid and sensitive screening system for drug safety in rabbits based on cytochrome P450 enzyme assays, specifically CYP1A1, CYP1A2 and CYP3A6, employing an adaptation of the luciferin-based clinical assay currently used in human drug screening. Short-term (4-h cultured rabbit primary hepatocytes were treated with a cytochrome inducer (phenobarbital and 2 inhibitors (alpha-naphthoflavone and ketoconazole. In parallel, and to provide verification, New Zealand white rabbits were dosed with 80 mg/kg phenobarbital or 40 mg/kg ketoconazole for 3 d. Ketoconazole significantly increased CYP3A6 gene expression and decreased CYP3A6 activity both in vitro and in vivo. CYP1A1 activity was decreased by ketoconazole in vitro and increased in vivo. This is the first report of the inducer effect of ketoconazole on rabbit cytochrome isoenzymes in vivo. Our data support the use of a luciferin-based assay in short-term primary hepatocytes as an appropriate tool for xenobiotic metabolism assays and short-term toxicity testing in rabbits.

  6. Enzyme-driven Bacillus spore coat degradation leading to spore killing.

    Science.gov (United States)

    Mundra, Ruchir V; Mehta, Krunal K; Wu, Xia; Paskaleva, Elena E; Kane, Ravi S; Dordick, Jonathan S

    2014-04-01

    The bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment. However these enzymes are poorly characterized. Nonetheless given the potential for proteases to catalyze coat degradation, we screened 10 commercially available proteases for their ability to degrade the spore coats of B. cereus and B. anthracis. Proteinase K and subtilisin Carlsberg, for B. cereus and B. anthracis spore coats, respectively, led to a morphological change in the otherwise impregnable coat structure, increasing coat permeability towards cortex lytic enzymes such as lysozyme and SleB, thereby initiating germination. Specifically in the presence of lysozyme, proteinase K resulted in 14-fold faster enzyme induced germination and exhibited significantly shorter lag times, than spores without protease pretreatment. Furthermore, the germinated spores were shown to be vulnerable to a lytic enzyme (PlyPH) resulting in effective spore killing. The spore surface in response to proteolytic degradation was probed using scanning electron microscopy (SEM), which provided key insights regarding coat degradation. The extent of coat degradation and spore killing using this enzyme-based pretreatment approach is similar to traditional, yet far harsher, chemical decoating methods that employ detergents and strong denaturants. Thus the enzymatic route reduces the environmental burden of chemically mediated spore killing, and demonstrates that a mild and environmentally benign biocatalytic spore killing is achievable. © 2013 Wiley Periodicals, Inc.

  7. Using heavy-ion mutagenesis technology to select cellulose enzyme vitality of mutants of Aspergillium niger

    International Nuclear Information System (INIS)

    Tang Jiahui; Yang Fumin; Wang Shuyang

    2012-01-01

    In order to improve the cellulose ion beam at 20, 40, 60, 80, 100, 120Gy and 140 enzyme vitality of Aspergillus niger (=AS3.316), heavy Gy doses was used for inducing mutation. Higher cellulose enzyme vitality strains were screened through the primary screening and secondary screening. The result showed that 5 mutants T2-1, T3-1, T5-1, T6-3, T6-4 were selected, and T6-4 had the highest cellulose enzyme activity. The activity of filter paper cellulose enzyme, endo-glucanase, exo-glucanase and 13-glucosidase of T6-4 was 61.3, 116.2, 29.9 U/mL and 35.9 U/mL respectively. Compared with the original A. niger (=AS3.316), the cellulose enzyme activity was increased by 3.5, 3.78, 2.76 and 2.52 times in turn. The activity of cellulose enzyme of the rest mutants sorted from strong to the weak were T6-3T5-1T3-1T2-1. The dose at 120 Gy showed the best mutagenesis effect. Mutants had different degree of changes in the genetic stability, but overall, the performance showed relatively stable

  8. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  9. Arctiin blocks hydrogen peroxide-induced senescence and cell death though microRNA expression changes in human dermal papilla cells

    Directory of Open Access Journals (Sweden)

    Seunghee Bae

    2014-01-01

    Full Text Available BACKGROUND: Accumulating evidence indicates that reactive oxygen species (ROS are an important etiological factor for the induction of dermal papilla cell senescence and hair loss, which is also known alopecia. Arctiin is an active lignin isolated from Arctium lappa and has anti-inflammation, anti-microbial, and anti-carcinogenic effects. In the present study, we found that arctiin exerts anti-oxidative effects on human hair dermal papilla cells (HHDPCs. RESULTS: To better understand the mechanism, we analyzed the level of hydrogen peroxide (H2O2-induced cytotoxicity, cell death, ROS production and senescence after arctiin pretreatment of HHDPCs. The results showed that arctiin pretreatment significantly inhibited the H2O2-induced reduction in cell viability. Moreover, H2O2-induced sub-G1 phase accumulation and G2 cell cycle arrest were also downregulated by arctiin pretreatment. Interestingly, the increase in intracellular ROS mediated by H2O2 was drastically decreased in HHDPCs cultured in the presence of arctiin. This effect was confirmed by senescence associated-beta galactosidase (SA-β-gal assay results; we found that arctiin pretreatment impaired H2O2-induced senescence in HHDPCs. Using microRNA (miRNA microarray and bioinformatic analysis, we showed that this anti-oxidative effect of arctiin in HHDPCs was related with mitogen-activated protein kinase (MAPK and Wnt signaling pathways. CONCLUSIONS: Taken together, our data suggest that arctiin has a protective effect on ROS-induced cell dysfunction in HHDPCs and may therefore be useful for alopecia prevention and treatment strategies.

  10. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism.

    Directory of Open Access Journals (Sweden)

    David Vaughan

    Full Text Available A silencer region (I-allele within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE, is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle.Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER, serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS, were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc.Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09. The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and -3%, respectively. Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon.The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in

  11. Fabrication of Propeller-Shaped Supra-amphiphile for Construction of Enzyme-Responsive Fluorescent Vesicles.

    Science.gov (United States)

    Li, Jie; Liu, Kaerdun; Han, Yuchun; Tang, Ben Zhong; Huang, Jianbin; Yan, Yun

    2016-10-04

    Propeller-shaped molecules have been recognized to display fantastic AIE (aggregation induced emission), but they can hardly self-assemble into nanostructures. Herein, we for the first time report that ionic complexation between a water-soluble tetrapheneyl derivative and an enzyme substrate in aqueous media produces a propeller-shaped supra-amphiphile that self-assembles into enzyme responsive fluorescent vesicles. The supra-amphiphile was fabricated upon complexation between a water-soluble propeller-shaped AIE luminogen TPE-BPA and myristoylcholine chloride (MChCl) in aqueous media. MChCl filled in the intramolecular voids of propeller-shaped TPE-BPA upon supra-amphiphile formation, which endows the supra-amphiphile superior self-assembling ability to the component molecules thus leading to the formation of fluorescent vesicles. Because MChCl is the substrate of cholinesterases, the vesicles dissemble in the presence of cholinesterases, and the fluorescent intensity can be correlated to the level of enzymes. The resulting fluorescent vesicles may be used to recognize the site of Alzheimer's disease, to encapsulate the enzyme inhibitor, and to release the inhibitor at the disease site.

  12. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Franco, Gilson C.N.; Kajiya, Mikihito; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Ernst, Cory W.O.; Boyesen, Janie L.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-01-01

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  13. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Gilson C.N. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Kajiya, Mikihito [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Nakanishi, Tadashi [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Ohta, Kouji [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Rosalen, Pedro L.; Groppo, Francisco C. [Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Ernst, Cory W.O.; Boyesen, Janie L. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Bartlett, John D.; Stashenko, Philip [Department of Cytokine Biology, Forsyth Institute, Cambridge, MA (United States); Taubman, Martin A. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Kawai, Toshihisa, E-mail: tkawai@forsyth.org [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States)

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  14. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... for several batches of hydrolysis, and thereby reduces the overall cost associated with the hydrolysis. Research on this subject has been ongoing for many years and several promising technologies and methods have been developed and demonstrated. But only in a very few cases have these technologies been...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...

  15. Lisosan G, a powder of grain, does not interfere with the drug metabolizing enzymes and has a protective role on carbon tetrachloride-induced hepatotoxicity.

    Science.gov (United States)

    Longo, Vincenzo; Chirulli, Vera; Gervasi, Pier Giovanni; Nencioni, Simona; Pellegrini, Michela

    2007-08-01

    Lisosan G is a powder of grain registered as an alimentary integrator. The treatment of rats for 4 days with 0.5 g Lisosan G/kg had no effect on various drug metabolizing enzymes. Experiments in vitro showed that Lisosan G had radical scavenger activity. A confirmation of the antioxidative property of Lisosan G was also confirmed when it was administered in vivo to carbon tetrachloride (CCl(4))-intoxicated rats. The toxicity caused by CCl(4)-treatment of rats was restored to the control levels when the rats were given Lisosan G for 4 days before CCl(4). Lisosan G thus does not interfere with drug metabolizing system but has antioxidant properties and protects against CCl(4)-induced hepatotoxicity.

  16. 3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    International Nuclear Information System (INIS)

    Collier, Abby C.; Helliwell, Rachel J.A.; Keelan, Jeffrey A.; Paxton, James W.; Mitchell, Murray D.; Tingle, Malcolm D.

    2003-01-01

    The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier

  17. Enzymes of industrial purpose - review of the market of enzyme preparations and prospects for its development

    Directory of Open Access Journals (Sweden)

    A. A. Tolkacheva

    2017-01-01

    Full Text Available Microbial enzyme preparations are increasingly replacing conventional chemical catalysts in a number of industrial processes. Such drugs, in addition to environmental friendliness and high activity, have a number of advantages over enzyme preparations of vegetable and animal origin, namely: the production of microbial enzymes in bioreactors is easily controlled and predictable; excreted microbiological enzymes are more stable than intracellular animals and plant enzymes; the genetic diversity of microorganisms makes it possible to produce enzyme preparations with a wide range of specificity; microbiological enzymes can be synthesized year-round, in contrast to the production of plant enzymes, which is often seasonal. The leaders of the world market of enzymes are proteases and amylases, which account for 25% and 15%, respectively. Over the past five years, the world market for carbohydrases, including mainly amylases, cellulases and xylanases, has been the fastest growing segment of the enzyme market with an aggregate annual growth rate of more than 7.0%. Another major product of the industrial enzyme market, which has a great potential for growth, is lipases. From the point of view of designation, the main part is represented by food and food enzymes. The Russian market continues to be unsaturated - the current supply is not able to meet the needs of the Russian feed and food industry in enzyme preparations. Enzyme preparations of domestic producers are in demand in forage production, while food industrial enterprises prefer imported products. The most significant enterprises in the enzymatic industry in Russia at the moment are Sibbiofarm, AgroSistema, Agroferment. In the light of the Russian policy of increasing food security, the development of the domestic enzyme industry is an extremely topical task.

  18. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  19. Artificial enzyme-powered microfish for water-quality testing.

    Science.gov (United States)

    Orozco, Jahir; García-Gradilla, Victor; D'Agostino, Mattia; Gao, Wei; Cortés, Allan; Wang, Joseph

    2013-01-22

    We present a novel micromotor-based strategy for water-quality testing based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants. The new micromotor toxicity testing concept mimics live-fish water testing and relies on the toxin-induced inhibition of the enzyme catalase, responsible for the biocatalytic bubble propulsion of tubular microengines. The locomotion and survival of the artificial microfish are thus impaired by exposure to a broad range of contaminants, that lead to distinct time-dependent irreversible losses in the catalase activity, and hence of the propulsion behavior. Such use of enzyme-powered biocompatible polymeric (PEDOT)/Au-catalase tubular microengine offers highly sensitive direct optical visualization of changes in the swimming behavior in the presence of common contaminants and hence to a direct real-time assessment of the water quality. Quantitative data on the adverse effects of the various toxins upon the swimming behavior of the enzyme-powered artificial swimmer are obtained by estimating common ecotoxicological parameters, including the EC(50) (exposure concentration causing 50% attenuation of the microfish locomotion) and the swimmer survival time (lifetime expectancy). Such novel use of artificial microfish addresses major standardization and reproducibility problems as well as ethical concerns associated with live-fish toxicity assays and hence offers an attractive alternative to the common use of aquatic organisms for water-quality testing.

  20. Interactions of nitrite with catalase: Enzyme activity and reaction kinetics studies.

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2017-06-01

    Catalase, a heme enzyme, which catalyzes decomposition of hydrogen peroxide to water and molecular oxygen, is one of the main enzymes of the antioxidant defense system of the cell. Nitrite, used as a food preservative has long been regarded as a harmful compound due to its ability to form carcinogenic nitrosamines. Recently, much evidence has been presented that nitrite plays a protective role as a nitric oxide donor under hypoxic conditions. In this work the effect of nitrite on the catalytic reactions of catalase was studied. Catalase was inhibited by nitrite, and this process was pH-dependent. IC 50 values varied from about 1μM at pH5.0 to about 150μM of nitrite at pH7.4. The presence of chloride significantly enhanced nitrite-induced catalase inhibition, in agreement with earlier observations. The kinetics of the reactions of nitrite with ferric catalase, its redox intermediate, Compound I, and catalase inactive form, Compound II, was also studied. Possible mechanisms of nitrite-induced catalase inhibition are analyzed and the biological consequences of the reactions of catalase with nitrite are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  2. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    Science.gov (United States)

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress

    International Nuclear Information System (INIS)

    Odjegba, V. J.; Fasidi, I. O.

    2007-01-01

    Whole plants of Eichhornia crassipes and Pistia stratiotes were exposed to various concentrations (0,0.1, 0.3, 0.5, 1.0, 3.0 and 5.0 mM) of 8 heavy metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn) hydroponically for 21 days. Spectrometric assays for the total activity of catalase, peroxidase, and superoxide dismutase in the leaves were studied. At the end of the experimental period, data referred to metal treated plants were compared to data of untreated ones (control). Heavy metals increased the activity of catalase, peroxidase and superoxide dismutase in both species and there was differential inducement among metals. Overall, Zn had the least inducement of antioxidant enzymes in both species while Hg had the highest inducement. The increase in antioxidant enzymes in relation to the control plants was more in E. crassipes than P. stratiotes. The results showed that E. crassipes tolerated higher metal concentrations in a greater number of metals than P. stratiotes. (author)

  4. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats

    Directory of Open Access Journals (Sweden)

    Balan Rajan

    2015-06-01

    Full Text Available Carvacrol is a main constituent in the essential oils of countless aromatic plants including Origanum Vulgare and Thymus vulgari, which has been assessed for substantial pharmacological properties. In recent years, notable research has been embarked on to establish the biological actions of Carvacrol for its promising use in clinical applications. The present study is an attempt to reveal the protective role of Carvacrol against N-Nitrosodiethylamine (DEN induced hepatic injury in male Wistar albino rats. DEN is an egregious toxin, present in numerous environmental factors, which enhances chemical driven liver damage by inducing oxidative stress and cellular injury. Administration of DEN (200 mg/kg bodyweight, I.P to rats results in elevated marker enzymes (in both serum and tissue. Carvacrol (15 mg/kg body weight suppressed the elevation of marker enzymes (in both serum and tissue and augmented the antioxidants levels. The hoisted activities of Phase I enzymes and inferior activities of Phase II enzymes were observed in DEN-administered animals, whereas Carvacrol treated animals showed improved near normal activity. Histological observations also support the protective role of Carvacrol against DEN induced liver damage. Final outcome from our findings intimate that Carvacrol might be beneficial in attenuating toxin induced liver damage.

  5. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  6. Protective Antioxidant Enzyme Activities are Affected by Drought in Quinoa (Chenopodium Quinoa Willd)

    DEFF Research Database (Denmark)

    Fghire, Rachid; Ali, Oudou Issa; Anaya, Fatima

    2013-01-01

    Changes in water availability are responsible for a variety of biochemical stress responses in plant organisms. Stress induced by this factor may be associated with enhanced reactive oxygen species (ROS) generations, which cause oxidative damage. In the present study we investigated the activities...... increased in all treatments. These results suggest that antioxidant enzymes play important roles in reducing oxidative stress in quinoa plant exposed to drought stress....... of antioxidant enzymes superoxide dismutase (SOD), polyphenoloxydase (PPO), peroxidase (POD) and catalase (CAT), measured at flowering in quinoa, subjected to varying levels of drought stress. Drought levels were 100, 50 and 33% of evapotranspiration (ETc), and rainfed. Compared to full water supply (100%ETc...

  7. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  8. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  11. Effect of Piper betle on cardiac function, marker enzymes, and oxidative stress in isoproterenol-induced cardiotoxicity in rats.

    Science.gov (United States)

    Arya, Dharamvir Singh; Arora, Sachin; Malik, Salma; Nepal, Saroj; Kumari, Santosh; Ojha, Shreesh

    2010-11-01

    The present study was designed to investigate the cardioprotective potential of Piper betle (P. betle) against isoproterenol (ISP)-induced myocardial infarction in rats. Rats were randomly divided into eight groups viz. control, ISP, P. betle (75, 150, and 300 mg/kg) and P. betle (75, 150, and 300 mg/kg) + ISP treated group. P. betle leaf extract (75, 150, or 300 mg/kg) or saline was orally administered for 30 days. ISP (85 mg/kg, s.c.) was administered at an interval of 24 h on the 28(th) and 29(th) day and on day 30 the functional and biochemical parameters were measured. ISP administration showed a significant decrease in systolic, diastolic, mean arterial pressure (SAP, DAP, MAP), heart rate (HR), contractility (+LVdP/dt), and relaxation (-LVdP/dt) and increased left ventricular end-diastolic pressure (LVEDP). ISP also caused significant decrease in myocardial antioxidants; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and myocyte injury marker enzymes; creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH) along with enhanced lipid peroxidation; thiobarbituric acid reacting species (TBARS) in heart. Pre-treatment with P. betle favorably modulated hemodynamic (SAP, DAP, and MAP) and ventricular function parameters (-LVdP/dt and LVEDP). P. betle pre-treatment also restored SOD, CAT, GSH, and GPx, reduced the leakage of CK-MB isoenzyme and LDH along with decreased lipid peroxidation in the heart. Taken together, the biochemical and functional parameters indicate that P. betle 150 and 300 mg/kg has a significant cardioprotective effect against ISP-induced myocardial infarction. Results of the present study suggest the cardioprotective potential of P. betle.

  12. Efficacy of Biodegradable Curcumin Nanoparticles in Delaying Cataract in Diabetic Rat Model

    OpenAIRE

    Grama, Charitra N.; Suryanarayana, Palla; Patil, Madhoosudan A.; Raghu, Ganugula; Balakrishna, Nagalla; Kumar, M. N. V. Ravi; Reddy, Geereddy Bhanuprakash

    2013-01-01

    Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles ...

  13. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  14. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nicholas D., E-mail: nweber@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Aubert, Martine, E-mail: maubert@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Dang, Chung H., E-mail: cdang@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Stone, Daniel, E-mail: dstone2@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Jerome, Keith R., E-mail: kjerome@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Department of Microbiology, University of Washington, Seattle, WA 98195 (United States)

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  15. Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Semorádová, Šárka; Schnablová, Renáta; Witters, E.; Hušák, M.; Valcke, R.

    2006-01-01

    Roč. 50, - (2006), s. 31-41 ISSN 0006-3134 R&D Projects: GA ČR GA206/01/1061; GA ČR GA206/03/0310 Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokinins * antioxidant enzymes * ontogenesis Subject RIV: CE - Biochemistry Impact factor: 1.198, year: 2006

  16. Endocannabinoid Catabolic Enzymes Play Differential Roles in Thermal Homeostasis in Response to Environmental or Immune Challenge.

    Science.gov (United States)

    Nass, Sara R; Long, Jonathan Z; Schlosburg, Joel E; Cravatt, Benjamin F; Lichtman, Aron H; Kinsey, Steven G

    2015-06-01

    Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.

  17. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  18. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  19. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  20. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...... in this work, along with its correlation to viscosity and other process variables. Considerable research work has been conducted through the years to study fungal morphology and its relation to productivity. However, the work reported in the literature lacks relevant industrial data. In this work, a platform...... was developed which was able to produce high enzyme titers in comparison with what has been reported thus far in fed-batch fermentation using a soluble inducer (lactose). Different nitrogen sources were compared, and it was found that soy meal allowed for higher enzyme titers compared to what has been reported...

  1. Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Nagasawa, Hatsumi; Little, J.B.; Okayasu, Ryuichi; Iliakis, G.E.

    1995-01-01

    This investigation was designed to determine whether the cytotoxic effects of different restriction endonucleases are related to the number and type of DNA double-strand breaks (DSBs) they produce. Chinese hamster ovary (CHO) K1 and xrs-5 cells, a radiosensitive mutant of CHO K1, were exposed to restriction endonucleases HaeIII, HinfI, PvuII and BamHI by electroporation. These enzymes represent both blunt and sticky end cutters with differing recognition sequence lengths. The number of DSBs was measured by pulsed-field gel electrophoresis (PFGE). Two forms of PFGE were employed: asymmetric field-inversion gel electrophoresis (AFIGE) for measuring the kinetics of DNA breaks by enzyme digestion and clamped homogeneous gel electrophoresis (CHEF) for examining the size distributions of damaged DNA. The amount of DNA damage induced by exposure to all four restriction enzymes was significantly greater in xrs-5 compared to CHO K1 cells, consistent with the reported DSB repair deficiency in these cells. Since restriction endonucleases produce DSBs alone as opposed to the various types of DNA damage induced by X rays, these results confirm that the repair defect in this mutant involves the rejoining of DSBs. Although the cutting frequency was directly related to the length of the recognition sequence for four restriction enzymes, there was no simple correlation between the cytotoxic effect and the amount of DNA damage produced by each enzyme in either cell line. This finding suggests that the type or nature of the cutting sequence itself may play a role in restriction enzyme-induced cell killing. 32 refs., 6 figs., 3 tabs

  2. The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida

    International Nuclear Information System (INIS)

    Zhang Yan; Shen Guoqing; Yu Yueshu; Zhu Hongling

    2009-01-01

    The hormetic dose-response relationships induced by environmental toxic agents are often characterized by low-dose stimulation and high-dose inhibition. Confirmation of the general phenomenon of hormesis may have significant implications for ecological risk assessment, although the mechanisms that underlie hormesis remain an enigma. In this study, a model-based approach for describing a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of the hormetic effect of cadmium (Cd) on the activity of antioxidant enzymes in the earthworm Eisenia fetida. The results showed that Cd at low concentrations induced an increase in the activity of catalase and superoxide dismutase (SOD), but high concentrations inhibited the enzymes, and this was reflected in an inverted U-shaped curve. The maximum hormetic magnitude of SOD activity was higher than that of catalase. The presence of hormesis induced by cadmium in the earthworm may be related to activation of adaptive pathways. - A model-based approach and careful preliminary experiments are needed for detecting and estimating the hormetic effect.

  3. The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yan [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shen Guoqing, E-mail: gqsh@sjtu.edu.c [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Yu Yueshu; Zhu Hongling [Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2009-11-15

    The hormetic dose-response relationships induced by environmental toxic agents are often characterized by low-dose stimulation and high-dose inhibition. Confirmation of the general phenomenon of hormesis may have significant implications for ecological risk assessment, although the mechanisms that underlie hormesis remain an enigma. In this study, a model-based approach for describing a dose-response relationship incorporating the hormetic effect was applied to the detection and estimation of the hormetic effect of cadmium (Cd) on the activity of antioxidant enzymes in the earthworm Eisenia fetida. The results showed that Cd at low concentrations induced an increase in the activity of catalase and superoxide dismutase (SOD), but high concentrations inhibited the enzymes, and this was reflected in an inverted U-shaped curve. The maximum hormetic magnitude of SOD activity was higher than that of catalase. The presence of hormesis induced by cadmium in the earthworm may be related to activation of adaptive pathways. - A model-based approach and careful preliminary experiments are needed for detecting and estimating the hormetic effect.

  4. Thermal Stabilization of Enzymes Immobilized within Carbon Paste Electrodes.

    Science.gov (United States)

    Wang, J; Liu, J; Cepra, G

    1997-08-01

    In this note we report on the remarkable thermal stabilization of enzymes immobilized in carbon paste electrodes. Amperometric biosensors are shown for the first time to withstand a prolonged high-temperature (>50 °C) stress. Nearly full activity of glucose oxidase is retained over periods of up to 4 months of thermal stress at 60-80 °C. Dramatic improvements in the thermostability are observed for polyphenol oxidase, lactate oxidase, alcohol oxidase, horseradish peroxidase, and amino acid oxidase. Such resistance to heat-induced denaturation is attributed to the conformational rigidity of these biocatalysts within the highly hydrophobic (mineral oil or silicone grease) pasting liquid. While no chemical stabilizer is needed for attaining such protective action, it appears that low humidity (i.e., low water content) is essential for minimizing the protein mobility. Besides their implications for electrochemical biosensors, such observations should lead to a new generation of thermoresistant enzyme reactors based on nonpolar semisolid supports.

  5. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  6. Dicranostiga leptopodu (Maxim.) Fedde extracts attenuated CCl4-induced acute liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function.

    Science.gov (United States)

    Tang, Deping; Wang, Fang; Tang, Jinzhou; Mao, Aihong; Liao, Shiqi; Wang, Qin

    2017-01-01

    Dicranostiga Leptodu (Maxim.) fedde (DLF), a poppy plant, has been reported have many benefits and medicinal properties, including free radicals scavenging and detoxifying. However, the protective effect of DLF extracts against carbon tetrachloride (CCl 4 )-induced damage in mice liver has not been elucidated. Here, we demonstrated that DLF extracts attenuated CCl 4 -induced liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function. In this study, the mice liver damage evoked by CCl 4 was marked by morphology changes, significant rise in lipid peroxidation, as well as alterations of mitochondrial respiratory function. Interestingly, pretreatment with DLF extracts attenuated CCl 4 -induced morphological damage and increasing of lipid peroxidation in mice liver. Additionally, DLF extracts improved mitochondrial function by preventing the disruption of respiratory chain and suppression of mitochondrial Na + K + -ATPase and Ca 2+ -ATPase activity. Furthermore, administration with DLF extracts elevated superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels and maintained the balance of redox status. This results showed that toxic protection effect of DLF extracts on mice liver is mediated by improving mitochondrial respiratory function and keeping the balance of redox status, which suggesting that DLF extracts could be used as potential toxic protection agent for the liver against hepatotoxic agent. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Folding of intestinal brush border enzymes. Evidence that high-mannose glycosylation is an essential early event

    DEFF Research Database (Denmark)

    Danielsen, E M

    1992-01-01

    a posttranslational process. In the presence of fructose, not only the malglycosylated forms but also the electrophoretically normal, high-mannose-glycosylated form of the brush border enzymes were retained in the endoplasmic reticulum and proteolytically degraded. The results obtained demonstrate an intimate...... enzymes. In pulse-labeled mucosal explants, complete synthesis of the polypeptide chains of aminopeptidase N and sucrase-isomaltase required about 2 and 4 min, respectively, whereas maximal antiserum precipitation was acquired with half-times of 4-5 and 8 min, respectively. Fructose, which induces...

  8. A study on some enzymes in rice field fish as biomarkers for pesticide exposure

    International Nuclear Information System (INIS)

    Juzu Hayati Arshad; Mazlina Muhammad; Salmijah Surif; Abdul Manan Mat Jais

    2002-01-01

    A study was carried out on three enzymes in rice field fish which can be used as possible biomarkers for pesticide exposure. The results obtained showed that the activity of the enzyme EROD (ethoxyresorufin-o-deethylase) increased between 1.5-2.2 fold in snakehead or haruan (Channa striata) sampled from the pesticide polluted areas, particularly the recycled areas and only a slight increase in EROD activity in climbing perch or puyu (Anabas testudineus). Increase in the activity of carboxylesterase was also noted. The percentage inhibition of acety1cholinesterase ranges from 18.4%-57.4% and 2.5%-34.2% for Channa striata and Anabas testudineus, respectively. Generally, a higher percentage of acety1cholinesterase inhibition was noted for those fish sampled from the recycled areas. The noted changes in the activity of these enzymes suggest exposure of rice field fish to foreign compounds, possibly pesticides, which are known to induce EROD activity and inhibit acety1cholinesterase activity. Therefore it may be possible to use these enzymes as biomarkers for pesticide exposure. (Author)

  9. Nanoarmored Enzymes for Organic Enzymology: Synthesis and Characterization of Poly(2-Alkyloxazoline)-Enzyme Conjugates.

    Science.gov (United States)

    Leurs, Melanie; Tiller, Joerg C

    2017-01-01

    The properties of enzymes can be altered significantly by modification with polymers. Numerous different methods are known to obtain such polymer-enzyme conjugates (PECs). However, there is no universal method to render enzymes into PECs that are fully soluble in organic solvents. Here, we present a method, which achieves such high degree of modification of proteins that the majority of modified enzymes will be soluble in organic solvents. This is achieved by preparing poly(2-alkyloxazoline)s (POx) with an NH 2 end group and coupling this functional polymer via pyromellitic acid dianhydride onto the amino groups of the respective protein. The resulting PECs are capable of serving as surfactants for unmodified proteins, rendering the whole mixture organosoluble. Depending on the nature of the POx and the molecular weight and the nature of the enzyme, the PECs are soluble in chloroform or even toluene. Another advantage of this method is that the poly(2-alkyloxazoline) can be activated with the coupling agent and used for the enzyme conjugation without further purification. The POx-enzyme conjugates generated by this modification strategy show modulated catalytic activity in both, aqueous and organic, systems. © 2017 Elsevier Inc. All rights reserved.

  10. In vitro enzymatic studies on the nature and repair of x-ray induced lesions in DNA

    International Nuclear Information System (INIS)

    Wallace, S.S.

    1979-01-01

    Areas studied include: purification and properties of enzyme probes for x-ray induced DNA lesions using E. Coli x-ray endonuclease and S. cerevisiae endonuclease E; use of enzymes probes; and use of physical, chemical and enzymatic probes to quantify x-ray-induced lesions in viruses and cells

  11. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling.

    Science.gov (United States)

    Fan, Jinqi; Zou, Lili; Cui, Kun; Woo, Kamsang; Du, Huaan; Chen, Shaojie; Ling, Zhiyu; Zhang, Quanjun; Zhang, Bo; Lan, Xianbin; Su, Li; Zrenner, Bernhard; Yin, Yuehui

    2015-01-01

    The purpose of this study was to investigate whether atrial overexpression of angiotensin-converting enzyme 2 (ACE2) by homogeneous transmural atrial gene transfer can reverse atrial remodeling and its mechanisms in a canine atrial-pacing model. Twenty-eight mongrel dogs were randomly divided into four groups: Sham-operated, AF-control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP) and gene therapy with Ad-ACE2 (Ad-ACE2) (n = 7 per subgroup). AF was induced in all dogs except the Sham-operated group by rapid atrial pacing at 450 beats/min for 2 weeks. Ad-EGFP and Ad-ACE2 group then received epicardial gene painting. Three weeks after gene transfer, all animals except the Sham group underwent rapid atrial pacing for another 3 weeks and then invasive electrophysiological, histological and molecular studies. The Ad-ACE2 group showed an increased ACE2 and Angiotensin-(1-7) expression, and decreased Angiotensin II expression in comparison with Ad-EGFP and AF-control group. ACE2 overexpression attenuated rapid atrial pacing-induced increase in activated extracellular signal-regulated kinases and mitogen-activated protein kinases (MAPKs) levels, and decrease in MAPK phosphatase 1(MKP-1) level, resulting in attenuation of atrial fibrosis collagen protein markers and transforming growth factor-β1. Additionally, ACE2 overexpression also modulated the tachypacing-induced up-regulation of connexin 40, down-regulation of connexin 43 and Kv4.2, and significantly decreased the inducibility and duration of AF. ACE2 overexpression could shift the renin-angiotensin system balance towards the protective axis, attenuate cardiac fibrosis remodeling associated with up-regulation of MKP-1 and reduction of MAPKs activities, modulate tachypacing-induced ion channels and connexin remodeling, and subsequently reduce the inducibility and duration of AF.

  12. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  13. MD study of pyrimidine base damage on DNA and its recognition by repair enzyme

    International Nuclear Information System (INIS)

    Pinak, M.

    2000-01-01

    The molecular dynamics (MD) simulation was used on the study of two specific damages of pyrimidine bases of DNA. Pyrimidine bases are major targets either of free radicals induced by ionizing radiation in DNA surrounding environment or UV radiation. Thymine dimer (TD) is UV induced damage, in which two neighboring thymines in one strand are joined by covalent bonds of C(5)-C(5) and C(6)-C(6) atoms of thymines. Thymine glycol (TG) is ionizing radiation induced damage in which the free water radical adds to unsaturated bond C(5)-C(6) of thymine. Both damages are experimentally suggested to be mutagenetic and carcinogenic unless properly repaired by repair enzymes. In the case of MD of TD, there is detected strong kink around the TD site that is not observed in native DNA. In addition there is observed the different value of electrostatic energy at the TD site - negative '-10 kcal/mol', in contrary to nearly neutral value of native thymine site. Structural changes and specific electrostatic energy - seems to be important for proper recognition of TD damaged site, formation of DNA-enzyme complex and thus for subsequent repair of DNA. In the case of TG damaged DNA there is major structural distortion at the TG site, mainly the increased distance between TG and the C5' of adjacent nucleotide. This enlarged gap between the neighboring nucleotides may prevent the insertion of complementary base during replication causing the replication process to stop. In which extend this structural feature together with energy properties of TG contributes to the proper recognition of TG by repair enzyme Endonuclease III is subject of further computational MD study. (author)

  14. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  15. Preventive effect of zinc on nickel-induced oxidative liver injury in rats

    African Journals Online (AJOL)

    MIDOU

    2013-12-18

    Dec 18, 2013 ... induced oxidative liver injury and lipid peroxidation probably due to its antioxidant proprieties. ... enzyme in every enzyme classification (Coyle et al.,. 2002). Others .... control group had a regular histological structure with a.

  16. Rosuvastatin-induced pemphigoid.

    LENUS (Irish Health Repository)

    Murad, Aizuri A

    2012-01-01

    Statins are widely prescribed medications and very well tolerated. Rosuvastatin is another member of this drug used to treat dyslipidaemia. It is a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase. Immunobullous disease is usually idiopathic but can be drug-induced. Both idiopathic and iatrogenic forms share common clinical and immunohistological features. The authors report a case of pemphigoid induced by rosuvastatin, a commonly prescribed medication. To our knowledge, there is limited report on rosuvastatin associated with pemphigoid in the literature.

  17. DICER-ARGONAUTE2 complex in continuous fluorogenic assays of RNA interference enzymes.

    Directory of Open Access Journals (Sweden)

    Mark A Bernard

    Full Text Available Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC have been hindered by lack of methods for continuous monitoring of enzymatic activity. "Quencherless" fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS and hypoxia-inducible factor 1-α subunit (HIF1A. Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (Km=74 nM with substrate inhibition kinetics (Ki=105 nM, demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER bound in the active site of DICER may undergo direct transfer (as AGO2 substrate to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29, suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a

  18. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2014-01-01

    Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion...... and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations...... for the different results. The work confirms that fouling-induced enzyme immobilization is a promising option for enhancing biocatalytic productivity, and highlights the significance of the membrane type and configuration for optimal performance....

  19. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  20. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-01-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 μM Na 2 SeO 3 (selenium) or with 7 μM α-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism

  1. Crosslinked Enzyme Aggregates in Hierarchically-Ordered Mesoporous Silica: A Simple and Effective Method for Enzyme Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Il; Kim, Jungbae; Lee, Jinwoo; Jia, Hongfei; Na, Hyon Bin; Youn, Jongkyu; Kwak, Ja Hun; Dohnalkova, Alice; Grate, Jay W.; Wang, Ping; Hyeon, Taeghwan; Park, Hyun-Gyu; Chang, Ho Nam

    2007-02-01

    alpha-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of alpha-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for two weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.

  2. An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide

    Science.gov (United States)

    Mishra, Surabhi; Imlay, James A.

    2013-01-01

    Summary Obligate anaerobes are periodically exposed to oxygen, and it has been conjectured that on such occasions their low-potential biochemistry will predispose them to rapid ROS formation. We sought to identify scavenging enzymes that might protect the anaerobe Bacteroides thetaiotaomicron from the H2O2 that would be formed. Genetic analysis of eight candidate enzymes revealed that four of these scavenge H2O2 in vivo: rubrerythrins 1 and 2, AhpCF, and catalase E. The rubrerythrins served as key peroxidases under anoxic conditions. However, they quickly lost activity upon aeration, and AhpCF and catalase were induced to compensate. The AhpCF is an NADH peroxidase that effectively degraded low micromolar levels of H2O2, while the catalytic cycle of catalase enabled it to quickly degrade higher concentrations that might arise from exogenous sources. Using a non-scavenging mutant we verified that endogenous H2O2 formation was much higher in aerated B. thetaiotaomicron than in Escherichia coli. Indeed, the OxyR stress response to H2O2 was induced when B. thetaiotaomicron was aerated, and in that circumstance this response was necessary to forestall cell death. Thus aeration is a serious threat for this obligate anaerobe, and to cope it employs a set of defenses that includes a repertoire of complementary scavenging enzymes. PMID:24164536

  3. Radiation-induced enhancement of enzymatic cell lysis of Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Watanabe, H.; Takehisa, M.; Iizuka, H.

    1981-01-01

    The intact cells of M. radiodurans were rendered sensitive to the action of lytic enzyme (P2-2 enzyme) by irradiation. The radiation-induced enhancement of cell lysis with P2-2 enzyme was completely prevented by the addition of t-butanol and irradiation at liquid nitrogen temperature. These results indicate that the enhancement is due to indirect action resulting from OH radicals. Cell lysis by lysozyme was enhanced only when the cells were irradiated under N 2 O. The enhancement of cell lysis with lysozyme was also prevented by adding alcohols. On the other hand, when lipid components in cells were removed by extraction with n-butanol, the radiation-induced enhancement of cell lysis with P2-2 enzyme and lysozyme was not observed. From these results it is concluded that the enhancement of enzymatic cell lysis by irradiation is attributable to alteration in the lipid-rich layer of the cell wall caused by OH radicals

  4. Radiation-induced enhancement of enzymatic cell lysis of Micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H.; Takehisa, M. [Japan Atomic Energy Research Inst., Takasaki, Gunma, Takasaki Radiation Chemistry Research Establishment (Japan); Iizuka, H.

    1981-10-15

    The intact cells of M. radiodurans were rendered sensitive to the action of lytic enzyme (P2-2 enzyme) by irradiation. The radiation-induced enhancement of cell lysis with P2-2 enzyme was completely prevented by the addition of t-butanol and irradiation at liquid nitrogen temperature. These results indicate that the enhancement is due to indirect action resulting from OH radicals. Cell lysis by lysozyme was enhanced only when the cells were irradiated under N{sub 2}O. The enhancement of cell lysis with lysozyme was also prevented by adding alcohols. On the other hand, when lipid components in cells were removed by extraction with n-butanol, the radiation-induced enhancement of cell lysis with P2-2 enzyme and lysozyme was not observed. From these results it is concluded that the enhancement of enzymatic cell lysis by irradiation is attributable to alteration in the lipid-rich layer of the cell wall caused by OH radicals.

  5. Immobilized enzymes and cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucke, C; Wiseman, A

    1981-04-04

    This article reviews the current state of the art of enzyme and cell immobilization and suggests advances which might be made during the 1980's. Current uses of immobilized enzymes include the use of glucoamylase in the production of glucose syrups from starch and glucose isomerase in the production of high fructose corn syrup. Possibilities for future uses of immobilized enzymes and cells include the utilization of whey and the production of ethanol.

  6. Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2.

    Science.gov (United States)

    Tatemoto, K; Nozaki, Y; Tsuda, R; Kaneko, S; Tomura, K; Furuno, M; Ogasawara, H; Edamura, K; Takagi, H; Iwamura, H; Noguchi, M; Naito, T

    2018-05-01

    Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through 2 main pathways, immunoglobulin E-dependent and E-independent activation. In the latter pathway, mast cells are activated by a diverse range of basic molecules (collectively known as basic secretagogues) through Mas-related G protein-coupled receptors (MRGPRs). In addition to the known basic secretagogues, here, we discovered several endogenous protein and enzyme fragments (such as chaperonin-10 fragment) that act as bioactive peptides and induce immunoglobulin E-independent mast cell activation via MRGPRX2 (previously known as MrgX2), leading to the degranulation of mast cells. We discuss the possibility that MRGPRX2 responds various as-yet-unidentified endogenous ligands that have specific characteristics, and propose that MRGPRX2 plays an important role in regulating inflammatory responses to endogenous harmful stimuli, such as protein breakdown products released from damaged or dying cells. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  7. Phase I to II cross-induction of xenobiotic metabolizing enzymes: A feedforward control mechanism for potential hormetic responses

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2009-01-01

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  8. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    Science.gov (United States)

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  9. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation and meat tenderization in beef

    DEFF Research Database (Denmark)

    Li, C.B.; Li, J.; Zhou, G.H.

    2012-01-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine longissimus muscle to low-voltage electrical stimulation (ES, 80 V, 35 s) after dressing and its contribution to meat tenderization at early postmortem time. Proteome analysis showed that ES resulted...... muscles up to 24 h. Immunohistochemistry and transmission electron microscopy further indicated that lysosomal enzymes were released at early postmortem time. ES also induced ultrastructural disruption of sarcomeres. In addition, ES accelerated (P ..., as well as pH decline and more preferred pH/temperature decline mode. Finally, ES accelerated meat tenderization with lower (P time. A possible relationship was suggested between change in phosphorylation level of energy metabolic enzymes and postmortem...

  10. Construction of a Near-Infrared-Activatable Enzyme Platform To Remotely Trigger Intracellular Signal Transduction Using an Upconversion Nanoparticle.

    Science.gov (United States)

    Gao, Hua-De; Thanasekaran, Pounraj; Chiang, Chao-Wei; Hong, Jia-Lin; Liu, Yen-Chun; Chang, Yu-Hsu; Lee, Hsien-Ming

    2015-07-28

    Photoactivatable (caged) bioeffectors provide a way to remotely trigger or disable biochemical pathways in living organisms at a desired time and location with a pulse of light (uncaging), but the phototoxicity of ultraviolet (UV) often limits its application. In this study, we have demonstrated the near-infrared (NIR) photoactivatable enzyme platform using protein kinase A (PKA), an important enzyme in cell biology. We successfully photoactivated PKA using NIR to phosphorylate its substrate, and this induced a downstream cellular response in living cells with high spatiotemporal resolution. In addition, this system allows NIR to selectively activate the caged enzyme immobilized on the nanoparticle surface without activating other caged proteins in the cytosol. This NIR-responsive enzyme-nanoparticle system provides an innovative approach to remote-control proteins and enzymes, which can be used by researchers who need to avoid direct UV irradiation or use UV as a secondary channel to turn on a bioeffector.

  11. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits.

    Science.gov (United States)

    Choi, Su-Lim; Rha, Eugene; Lee, Sang Jun; Kim, Haseong; Kwon, Kilkoang; Jeong, Young-Su; Rhee, Young Ha; Song, Jae Jun; Kim, Hak-Sung; Lee, Seung-Goo

    2014-03-21

    Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.

  12. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S. T.; Daneshvar, B.

    2000-01-01

    to be affected by prior. lycopene exposure. The level of PhIP-DNA adducts in the liver or colon was likewise not affected by lycopene at any dose. Overall, the present study provides evidence that lycopene administered in the diet of young female rats exerts minor modifying effects toward antioxidant and drug......-metabolizing enzymes involved in the protection against oxidative stress and cancer. The fact that these enzymatic activities are induced at all of these very low plasma levels, could be taken to suggest that modulation of antioxidant and drug-metabolizing enzymes map indeed be relevant to humans, which in general...

  13. Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.

    Science.gov (United States)

    Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

    2015-02-01

    Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent

  14. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    DEFF Research Database (Denmark)

    Petersen, Maria Skaalum; Halling, Jónrit; Damkier, Per

    2007-01-01

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1......,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3......A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6beta-hydroxycortisol/cortisol (6beta...

  15. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  16. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  17. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice.

    Science.gov (United States)

    Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan

    2017-10-01

    Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.

  18. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review.

    Science.gov (United States)

    Moré, Margret I; Vandenplas, Yvan

    2018-01-01

    Several properties of the probiotic medicinal yeast Saccharomyces boulardii CNCM I-745 contribute to its efficacy to prevent or treat diarrhoea. Besides immunologic effects, pathogen-binding and anti-toxin effects, as well as positive effects on the microbiota, S boulardii CNCM I-745 also has pronounced effects on digestive enzymes of the brush border membrane, known as trophic effects. The latter are the focus of this review. Literature has been reviewed after searching Medline and PMC databases. All relevant non-clinical and clinical studies are summarized. S. boulardii CNCM I-745 synthesizes and secretes polyamines, which have a role in cell proliferation and differentiation. The administration of polyamines or S. boulardii CNCM I-745 enhances the expression of intestinal digestive enzymes as well as nutrient uptake transporters. The signalling mechanisms leading to enzyme activation are not fully understood. However, polyamines have direct nucleic acid-binding capacity with regulatory impact. S. boulardii CNCM I-745 induces signalling via the mitogen-activated protein kinase pathway. In addition, effects on the phosphatidylinositol-3 kinase (PI3K) pathway have been reported. As an additional direct effect, S. boulardii CNCM I-745 secretes certain enzymes, which enhance nutrient acquisition for the yeast and the host. The increased availability of digestive enzymes seems to be one of the mechanisms by which S. boulardii CNCM I-745 counteracts diarrhoea; however, also people with certain enzyme deficiencies may profit from its administration. More studies are needed to fully understand the mechanisms of trophic activation by the probiotic yeast.

  20. The molecular origin of the thiamin diphosphate-induced spectral bands of ThDP-dependent enzymes

    NARCIS (Netherlands)

    Kovina, M.V.; Kok, A.; Sevostyanova, I.A.; Khailova, L.S.; Belkina, N.V.; Kochetov, G.A.

    2004-01-01

    New and previously published data on a variety of ThDP-dependent enzymes such as baker's yeast transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase from pigeon breast muscle, bovine heart, bovine kidney, Neisseria meningitidis and E. coli show their spectral sensitivity to ThDP

  1. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Variations of some parameters of enzyme induction in chemical workers

    Energy Technology Data Exchange (ETDEWEB)

    Dolara, P. (Univ. of Florence, Italy); Lodovici, M.; Buffoni, F.; Buiatti, E.; Baccetti, S.; Ciofini, O.; Bavazzano, P.; Barchielli, S.; Vannucci, V.

    1982-01-01

    Several parameters related to mono-oxygenase activity were followed in a population of chemical workers and controls. Workers exposed to toluene and xylene had a significant increase of urinary glucaric acid, that was correlated with hippuric acid excretion. On the other hand, workers exposed to pigments showed a marked increase of antipyrine half-life. A dose-related decrease of liver N-demethylase was induced in rats by the administration of a mixture of three of the pigments in use in the plant. Serum gamma-glutamyltranspeptidase was decreased in the workers exposed to pigments, but this variation was not statistically significant. The exposure to different chemicals in the workplace seemed to induce a complicated variation of mono-oxygenase levels, some enzyme being inhibited and others induced in the same group of workers. The sensitivity of these workers to toxic effects of chemicals, carcinogenic compounds and drugs seems to differ markedly from the control population.

  3. EFFECTS OF EARLY ANGIOTENSIN-CONVERTING ENZYME-INHIBITION IN A PIG MODEL OF MYOCARDIAL-ISCHEMIA AND REPERFUSION

    NARCIS (Netherlands)

    VANWIJNGAARDEN, J; TOBE, TJM; WEERSINK, EGL; BEL, KJ; DEGRAEFF, PA; DELANGEN, CDJ; VANGILST, WH; WESSELING, H

    In a blind, randomized study, the effects of perindopril, a nonsulfhydryl-containing angiotensin-converting enzyme (ACE) inhibitor, were compared with those of placebo in a closed-chest pig model of myocardial infraction. In anesthetized pigs, my ocardinal ischemia and reperfusion were induced by

  4. Mitochondrial Enzyme Plays Critical Role in Chemotherapy-Induced Heart Damage | Center for Cancer Research

    Science.gov (United States)

    Doxorubicin (DOX) is an effective drug for treating cancers ranging from leukemia and lymphoma to solid tumors, such as breast cancer. DOX kills dividing cells in two ways: inserting between the base pairs of DNA and trapping a complex of DNA and an enzyme that cuts DNA, topoisomerase 2α, preventing DNA repair. However, DOX also causes congestive heart failure in about 30

  5. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  6. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  8. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.

    Science.gov (United States)

    Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru

    2016-06-01

    Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.

    Science.gov (United States)

    Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2013-07-01

    Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

  10. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    International Nuclear Information System (INIS)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S.

    1991-01-01

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[ 35 S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  11. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    Science.gov (United States)

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  12. Coactivator PGC-1α regulates the fasting inducible xenobiotic-metabolizing enzyme CYP2A5 in mouse primary hepatocytes

    International Nuclear Information System (INIS)

    Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki; Viitala, Pirkko; Lang, Matti A.; Pelkonen, Olavi; Hakkola, Jukka

    2008-01-01

    The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1α and CYP2A5 mRNAs in murine primary hepatocytes. Furthermore, the elevation of the PGC-1α expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1α expression vector demonstrated that PGC-1α is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4α response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1α binds, together with HNF-4α, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1α mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4α. This strongly suggests that PGC-1α is the major factor mediating the fasting response of CYP2A5

  13. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  14. The effects of the continuous administration of N,N-dimethyl-4-phenylazoaniline (DAB) on the activities and the inducibilities of some drug-metabolizing enzymes in rat liver

    DEFF Research Database (Denmark)

    Autrup, Herman; Thurlow, Brenda J.; Warwick, Gerald P.

    1975-01-01

    of dye feeding on some of the enzyme activities in the two major liver lobes and differences were found. (3) The effect of phenobarbital (PB) pretreatment on the DAB-fed rats was studied at 4-week intervals. The activities of DAB-azoreductase and of nitroreductase increased throughout the whole period......-252-azoreductase was not induced by PB or MC, and CO did not inhibit its reduction. Its reduction depended only slightly on NADH. CO caused a greater relative decrease in the activity of DAB-azoreductase in dye-fed animals and also in animals following PB and MC pretreatment, implying a greater role of cytochrome...

  15. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  16. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  17. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Dickinson, D.B.

    1975-01-01

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14 C-hexose to 14 C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14 C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  18. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  19. Milk-derived peptide Val-Pro-Pro (VPP) inhibits obesity-induced adipose inflammation via an angiotensin-converting enzyme (ACE) dependent cascade.

    Science.gov (United States)

    Sawada, Yoko; Sakamoto, Yuri; Toh, Mariko; Ohara, Nozomi; Hatanaka, Yuiko; Naka, Ayano; Kishimoto, Yoshimi; Kondo, Kazuo; Iida, Kaoruko

    2015-12-01

    This study aimed to examine the effects of Val-Pro-Pro (VPP), a food-derived peptide with an angiotensin-converting enzyme (ACE) inhibitory property, on obesity-linked insulin resistance, and adipose inflammation in vivo and in vitro. C57BL/6J mice were fed high-fat high-sucrose diet and VPP (0.1% in water) for 4 months. For in vitro analysis, coculture of 3T3-L1 adipocytes overexpressing either ACE (3T3-ACE) or green fluorescent protein (3T3-GFP) and RAW264 macrophages was conducted with VPP. In diet-induced obese mice, VPP improved insulin sensitivity, concomitant with a significant decrease in tumor necrosis factor α (TNF-α) and IL-1β expression in adipose tissue, with a tendency (p = 0.06) toward decreased CC chemokine ligand 5 expression. Additionally, VPP administration inhibited macrophage accumulation and activation in fat tissues. In vitro, VPP attenuated TNF-α mRNA induced by ACE overexpression in 3T3-L1 adipocytes. TNF-α and IL-1β expression decreased following VPP treatment of RAW264 macrophage and 3T3-ACE adipocyte cocultures, but not in RAW264-3T3-GFP adipocyte cocultures. Our data suggest that VPP inhibits adipose inflammation in the interaction between adipocytes and macrophages, acting as an ACE inhibitor, thereby improving obesity-related insulin resistance. Thus, ingestion of VPP may be a viable protective and therapeutic strategy for insulin resistance and obesity-associated adipose inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  1. Piper sarmentosum Effects on 11β-Hydroxysteroid Dehydrogenase Type 1 Enzyme in Serum and Bone in Rat Model of Glucocorticoid-Induced Osteoporosis.

    Science.gov (United States)

    Mohamad Asri, Siti Fadziyah; Mohd Ramli, Elvy Suhana; Soelaiman, Ima Nirwana; Mat Noh, Muhamad Alfakry; Abdul Rashid, Abdul Hamid; Suhaimi, Farihah

    2016-11-15

    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum ( Ps ) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration ( p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.

  2. DUOX enzyme activity promotes AKT signalling in prostate cancer cells.

    Science.gov (United States)

    Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G

    2012-12-01

    Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.

  3. Polyelectrolyte Complex Optimization for Macrophage Delivery of Redox Enzyme Nanoparticles

    Science.gov (United States)

    Zhao, Yuling; Haney, Matthew J.; Klyachko, Natalia L.; Li, Shu; Booth, Stephanie L.; Higginbotham, Sheila M.; Jones, Jocelyn; Zimmerman, Matthew C.; Mosley, R. Lee; Kabanov, Alexander V.; Gendelman, Howard E.; Batrakova, Elena V.

    2011-01-01

    Background We posit that cell-mediated drug delivery can improve transport of therapeutic enzymes to the brain and decrease inflammation and neurodegeneration induced during Parkinson’s disease. Our prior work demonstrated that macrophages loaded with nanoformulated catalase (“nanozyme”) protect the nigrostriatum in a murine model of Parkinson’s disease. Packaging of catalase into block ionomer complex with a synthetic polyelectrolyte block copolymers protects the enzyme degradation in macrophages. Methods We examined relationships between the composition and structure of block ionomer complexes, their physicochemical characteristics, and loadings, release rates, and catalase activity in bone marrow-derived macrophages. Results Formation of block-ionomer complexes resulted in improved aggregation stability. Block ionomer complexes with ε-polylisine, and poly-L-glutamic acid -poly(ethylene glycol) demonstrated the least cytotoxicity and high loading and release rates, however, did not efficiently protect catalase inside macrophages. Conclusion nanozymes with polyethyleneimine- and poly(L-lysine)10-poly(ethylene glycol) provided the best protection of enzymatic activity for cell-mediated drug delivery. PMID:21182416

  4. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  5. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  6. Transcriptional analysis of disk abalone (Haliotis discus discus) antioxidant enzymes against marine bacteria and virus challenge.

    Science.gov (United States)

    De Zoysa, Mahanama; Whang, Ilson; Nikapitiya, Chamilani; Oh, Chulhong; Choi, Cheol Young; Lee, Jehee

    2011-07-01

    Diverse antioxidant enzymes are essential for marine organisms to overcome oxidative stress as well as for the fine-tuning of immune reactions through activating different signal transduction pathways. This study describes the transcriptional analysis of antioxidant enzymes of disk abalone by challenging with bacteria (Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes) and viral hemorrhagic septicemia virus (VHSV). Upon bacteria and VHSV challenge, Manganese superoxide dismutase (MnSOD), Copper, Zinc superoxide dismutase (CuZnSOD), catalase, thioredoxin peroxidase (TPx), Selenium-dependent glutathione peroxidase (SeGPx), and thioredoxin-2 (TRx-2) expression levels were altered in gills, and hemocytes at different magnitudes. In gills, only MnSOD, catalase, and SeGPx genes were completely upregulated by post-challenge of bacterial and VHSV. Among them, SeGPx demonstrated strong upregulation by 16-fold (bacteria) and 2-fold (VHSV) in gills, and 5-fold (bacteria) and 3.0-fold (VHSV) in hemocytes. None of the genes examined were downregulated (in gills and hemocytes) by bacteria challenge even though CuZnSOD and TPx showed downregulation (completely) in hemocytes by VHSV. In general, abalone hemocytes had lower potential to induce antioxidant enzyme transcripts upon bacteria and VHSV challenge than gills. Based upon these results, we suggest that abalones induce oxidative stress in tissues during the bacteria and VHSV challenge, and the identified response of antioxidant enzymes could be supported for maintaining a low-level of reactive oxygen species (ROS) that may serve as a signal for activating immune reactions against pathogenic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  8. Rat Liver Enzyme Release Depends on Blood Flow-Bearing Physical Forces Acting in Endothelium Glycocalyx rather than on Liver Damage

    Directory of Open Access Journals (Sweden)

    Julieta A. Díaz-Juárez

    2017-01-01

    Full Text Available We have found selective elevation of serum enzyme activities in rats subjected to partial hepatectomy (PH, apparently controlled by hemodynamic flow-bearing physical forces. Here, we assess the involvement of stretch-sensitive calcium channels and calcium mobilization in isolated livers, after chemical modifications of the endothelial glycocalyx and changing perfusion directionality. Inhibiting in vivo protein synthesis, we found that liver enzyme release is influenced by de novo synthesis of endothelial glycocalyx components, and released enzymes are confined into a liver “pool.” Moreover, liver enzyme release depended on extracellular calcium entry possibly mediated by stretch-sensitive calcium channels, and this endothelial-mediated mechanotransduction in liver enzyme release was also evidenced by modifying the glycocalyx carbohydrate components, directionality of perfusing flow rate, and the participation of nitric oxide (NO and malondialdehyde (MDA, leading to modifications in the intracellular distribution of these enzymes mainly as nuclear enrichment of “mitochondrial” enzymes. In conclusion, the flow-induced shear stress may provide fine-tuned control of released hepatic enzymes through mediation by the endothelium glycocalyx, which provides evidence of a biological role of the enzyme release rather to be merely a biomarker for evaluating hepatotoxicity and liver damage, actually positively influencing progression of liver regeneration in mammals.

  9. PHYSIOLOGICAL AND MEDICAL EFFECTS OF PLANT FLAVONOID QUERCETIN

    Directory of Open Access Journals (Sweden)

    Aneta Štochmaľová

    2013-02-01

    Full Text Available Flavonoid compounds in vegetable-based diets bring a significant contribution to the role of fruits and vegetables as health-promoting foods. This review summarizes the available data concerning physiological and therapeutical effect of plan flavonoid quercetin. Quercetin has a number of beneficial influence on health because of their antioxidant, anti-inflammatory, anti-proliferative, anti-carcinogenic and anti-diabetes properties. Effects of quercetin have been explained by its interference with cellular enzymes, receptors, transporters and signal transduction systems. Despite the available data reviewed here, the targets, effects, absorption, metabolism and areas of practical application of quercetin are still poorly understood, therefore further studies in this areas are required.

  10. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation

    International Nuclear Information System (INIS)

    Odessey, R.

    1980-01-01

    The branched-chain 2-oxo-acid dehydrogenase (BCOAD) from mitochondria of several different rat tissues is inactivated by ATP and can be reactivated by incubation in Mg 2+ -containing buffers. Work carried out on the system from skeletal muscle mitochondria has shown that inactivation requires the cleavage of the γ-phosphate group of ATP and that modification is covalent. The non-metabolized ATP analog, p[NH]ppA, can block the inhibitory effect of ATP when added prior to ATP addition, but cannot reverse the inhibition of the inactivated dehydrogenase. These and other data raise the possibility that BCOAD may be regulated by enzyme phosphorylation. This hypothesis is supported by the finding that various procedures which separate the enzyme from its mitochondrial environment (e.g. detergent treatment, ammonium sulfate precipitation and freeze-thawing) do not alter the degree of inhibition induced by ATP in the mitochondrial preincubation. These experiments suggested the feasibility of labelling the enzyme with 32 P and purifying it. (Auth.)

  11. Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

    OpenAIRE

    Khalil, Md. Ibrahim; Tanvir, E. M.; Afroz, Rizwana; Sulaiman, Siti Amrah; Gan, Siew Hua

    2015-01-01

    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey...

  12. Differential roles of phase I and phase II enzymes in 3,4-methylendioxymethamphetamine-induced cytotoxicity.

    NARCIS (Netherlands)

    Antolino Lobo, I.; Meulenbelt, J.; Nijmeijer, S.M.; Scherpenisse, P.; van den Berg, M.; van Duursen, M.B.M.

    2010-01-01

    Metabolism plays an important role in the toxic effects caused by 3,4-methylenedioxymethamphetamine (MDMA). Most research has focused on the involvement of CYP2D6 enzyme in MDMA bioactivation, and less is known about the contribution of other cytochrome P450 (P450) and phase II metabolism. In this

  13. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    Science.gov (United States)

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme microreactor was detected by laser-induced fluorescence. Inhibitor zones electrophoresed through the capillary, passed through the enzyme microreactor, and were observed as negative peaks due to decreased product formation. The goal of this study was to improve peak capacities for inhibitor separations relative to previous work, which combined continuous engagement electrophoretically mediated microanalysis (EMMA) and transient engagement EMMA to study enzyme inhibition. The effects of electric field strength, bead injection time and inhibitor concentrations on peak capacity and peak width were investigated. Peak capacities were increased to ≥20 under optimal conditions of electric field strength and bead injection time for inhibition assays with arsenate and theophylline. Five reversible inhibitors of alkaline phosphatase (theophylline, vanadate, arsenate, L-tryptophan and tungstate) were separated and detected to demonstrate the ability of this technique to analyze complex inhibitor mixtures. PMID:20024913

  14. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  15. In vitro enzyme-mimic activity and in vivo therapeutic potential of HSJ-0017, a novel Mn porphyrin-based antioxidant enzyme mimic.

    Science.gov (United States)

    Li, Bao-qiu; Dong, Xin; Li, Na; Gao, Ji-you; Yuan, Qiang; Fang, Shi-hong; Gong, Xian-chang; Wang, Shu-juan; Wang, Feng-shan

    2014-10-01

    Manganese (III) 5, 10, 15, 20-tetrakis [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, designated HSJ-0017, is a novel antioxidant enzyme mimic. The aim of the present study was to investigate the enzyme-mimic activity and the therapeutic potential of HSJ-0017 in free radical-related diseases. Superoxide dismutase (SOD) mimic activity was measured by the nitroblue tetrazolium chloride monohydrate reduction assay. Catalase (CAT) mimic activity was measured based on the decomposition of hydrogen peroxide. The antitumor, radioprotective and chemoprotective effects of HSJ-0017 were evaluated in H22 or S180 tumor-bearing Kunming mice. The anti-inflammatory and hepatoprotective effects were, respectively, evaluated in histamine-induced edema model and CCl4-induced hepatic damage model in Wistar rats. HSJ-0017 over a concentration range of 0.001-10 µmol/L significantly inhibited the generation of superoxide anion. Significant hydrogen peroxide scavenging activity was observed when the concentration of HSJ-0017 was higher than 0.01 µmol/L. HSJ-0017 at a dose of 3.0 mg/kg exhibited significant antitumor effect on S180 tumor xenografts, whereas no significant antitumor effect was observed in H22 tumor xenografts. HSJ-0017 at a dose of 3.0 mg/kg enhanced the antitumor effects of radiotherapy and chemotherapy, and reduced their toxicity. However, HSJ-0017 counteracted the antitumor effects of radiotherapy when administered simultaneously with radiotherapy. HSJ-0017 showed significant anti-inflammatory and hepatoprotective effects. Our results demonstrate that HSJ-0017 exhibits antioxidant, antitumor, anti-inflammatory, radioprotective, chemoprotective, and hepatoprotective effects. It is a potent dual SOD/CAT mimic. © 2014 by the Society for Experimental Biology and Medicine.

  16. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  17. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  18. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  19. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2010-10-01

    Full Text Available Abstract Background Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs have the ability to induce modifications in the activity of lipoxygenase (LOX and cyclooxygenase (COX enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C that received commercial diet. Results Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA content and the cyclooxygenase enzyme derived 12-HHT (p Conclusions The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.

  20. Controlled Autolysis and Enzyme Release in a Recombinant Lactococcal Strain Expressing the Metalloendopeptidase Enterolysin A

    Science.gov (United States)

    Hickey, Rita M.; Ross, R. Paul; Hill, Colin

    2004-01-01

    This study concerns the exploitation of the lytic enzyme enterolysin A (EntL), produced by Enterococcus faecalis strain DPC5280, to elicit the controlled autolysis of starter lactococci. EntL, a cell wall metalloendopeptidase secreted by some E. faecalis strains, can kill a wide range of gram-positive bacteria, including lactococci. The controlled expression of entL, which encodes EntL, was achieved using a nisin-inducible expression system in a lactococcal host. Zymographic analysis of EntL activity demonstrated that active enzyme is produced by the recombinant lactococcal host. Indeed, expression of EntL resulted in almost complete autolysis of the host strain 2 h after induction with nisin. Model cheese experiments using a starter strain in addition to the inducible enterolysin-producing strain showed a 27-fold increase in activity with respect to the release of lactate dehydrogenase in the strain overexpressing EntL, demonstrating the potential of EntL production in large-scale cheese production systems. Indeed, the observation that a wide range of lactic bacteria are sensitive to EntL suggests that EntL-induced autolysis has potential applications with a variety of lactic acid bacteria and could be a basis for probiotic delivery systems. PMID:15006800

  1. Enzyme-induced aggregation of whey proteins with Bacillus licheniformis protease

    NARCIS (Netherlands)

    Creusot, N.P.

    2006-01-01

    Whey proteins are commonly used as ingredient in food. In relation with the gelation properties of whey proteins, this thesis deals with understanding the mechanism of peptide-induced aggregation of whey protein hydrolysates made with Bacillus licheniformis protease (BLP). The results show that BLP

  2. Contribution to researches in biophysics and biology

    International Nuclear Information System (INIS)

    Luccioni, Catherine

    2000-01-01

    In this accreditation to supervise research, the author indicates its curriculum and scientific works which mainly dealt with the different agents used in chemotherapy. Scientific works addressed anti-carcinogenic pharmacology, applied biophysics, and researches in oncology and radiobiology. Current research projects deal with mechanisms of cellular transformation and the implication of the anti-oxidising metabolism and of nucleotide metabolism in cell radio-sensitivity. Teaching and research supervising activities are also indicated. Several articles are proposed in appendix: Average quality factor and dose equivalent meter based on microdosimetry techniques; Activity of thymidylate synthetase, thymidine kinase and galactokinase in primary and xenografted human colorectal cancers in relation to their chromosomal patterns; Nucleotide metabolism in human gliomas, relation to the chromosomal profile; Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts; Modifications of the antioxidant metabolism during proliferation and differentiation of colon tumours cell lines; Modulation of the antioxidant enzymes, p21 and p53 expression during proliferation and differentiation of human melanoma cell lines; Purine metabolism in 2 human melanoma cell lines, relation with proliferation and differentiation; Radiation-induced changes in nucleotide metabolism of 2 colon cancer cell lines with different radio-sensitivities

  3. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    Science.gov (United States)

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. [Important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of active ingredients of Chinese materia medica].

    Science.gov (United States)

    Bi, Xiaolin; Du, Qiu; Di, Liuqing

    2010-02-01

    Oral drug bioavailability depends on gastrointestinal absorption, intestinal transporters and metabolism enzymes are the important factors in drug gastrointestinal absorption and they can also be induced or inhibited by the active ingredients of Chinese materia medica. This article presents important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of the active ingredients of Chinese materia medica, and points out the importance of research on transport and metabolism of the active ingredients of Chinese materia medica in Chinese extract and Chinese medicinal formulae.

  5. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  6. Cardioprotective effect of Erythrina stricta leaves on isoproterenol-induced myocardial infarction in rat

    Directory of Open Access Journals (Sweden)

    Asokkumar Kuppusamy

    2010-03-01

    Full Text Available The cardioprotective activity of Erythrina stricta leaves against isoproterenol- induced myocardial infarction was studied. Wistar albino rats were pretreated with leaf extract (200 mg/kg daily for 28 days. After treatment, isoproterenol (8.5 mg/kg body weight, orally was injected to rats at an interval of 24 hours for two days to induce myocardial injury. Cardioprotection was investigated by estimating the activities of serum aminotransferase, lactate dehydrogenase and creatinine kinase. Antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and thiobarbituric acid reactive substances were determined. The activities of serum marker enzymes were increased significantly (p<0.05 in isoproterenol-induced rats. E. stricta leaf extract showed a decrease in serum enzyme levels and increase of antioxidant status. The results were confirmed by histopathological evidences. The present study concludes that E. stricta leaf extract has a prophylactic value in myocardial infarction.

  7. Cardioprotective effect of Erythrina stricta leaves on isoproterenol-induced myocardial infarction in rat

    Directory of Open Access Journals (Sweden)

    Divia Chirakkan

    2010-06-01

    Full Text Available The cardioprotective activity of Erythrina stricta leaves against isoproterenol- induced myocardial infarction was studied. Wistar albino rats were pretreated with leaf extract (200 mg/kg daily for 28 days. After treatment, isoproterenol (8.5 mg/kg body weight, orally was injected to rats at an interval of 24 hours for two days to induce myocardial injury. Cardioprotection was investigated by estimating the activities of serum aminotransferase, lactate dehydrogenase and creatinine kinase. Antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and thiobarbituric acid reactive substances were determined. The activities of serum marker enzymes were increased significantly (p<0.05 in isoproterenol-induced rats. E. stricta leaf extract showed a decrease in serum enzyme levels and increase of antioxidant status. The results were confirmed by histopathological evidences. The present study concludes that E. stricta leaf extract has a prophylactic value in myocardial infarction.

  8. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    Science.gov (United States)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  9. Revealing hidden effect of earthworm on C distribution and enzyme activity

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2017-04-01

    Despite its importance for terrestrial nutrient and carbon cycling, the spatial organization and localization of microbial activity in soil and in biopores is poorly understood. We hypothesized that biopores created by earthworm play a critical role in reducing the gap of SOM input and microbial activities between topsoil and subsoil. Accordingly, Carbon (C) allocation by earthworms was related to enzyme distribution along soil profile. For the first time we visualized spatial distribution of enzyme activities (β-glucosidase, chitinase and acid phosphatase) and C allocation (by 14C imaging) in earthworm biopores in topsoil and subsoil. Soil zymography (an in situ method for the analysis of the two-dimensional distribution of enzyme activity in soil) was accompanied with 14C imaging (a method that enables to trace distribution of litter and C in soil profile) to visualize change of enzyme activities along with SOM incorporation by earthworms from topsoil to subsoil. Experiment was set up acquiring rhizoboxes (9×1×50 cm) filled up with fresh soil and 3 earthworms (L. terrestris), which were then layered with 14C-labeled plant-litter of 0.3 MBq on the soil surface. 14C imaging and zymography have been carried out after one month. Activities of all enzymes regardless of their nutrient involvement (C, N, P) were higher in the biopores than in bulk soil, but the differences were larger in topsoil compared to subsoil. Among three enzymes, Phosphatase activity was 4-times higher in the biopore than in the bulk soil. Phosphatase activity was closely associated with edge of burrows and correlate positively with 14C activity. These results emphasized especial contribution of hotspheres such as biopores to C allocation in subsoil - which is limited in C input and nutrients - and in stimulation of microbial and enzymatic activity by input of organic residues, e.g. by earthworms. In conclusion, biopore increased enzymatic mobilization of nutrients (e.g. P) inducing allocation

  10. Assessing cellulolysis in passive treatment systems for mine drainage: a modified enzyme assay.

    Science.gov (United States)

    McDonald, Corina M; Gould, W Douglas; Lindsay, Matthew B J; Blowes, David W; Ptacek, Carol J; Condon, Peter D

    2013-01-01

    A modified cellulase enzyme assay was developed to monitor organic matter degradation in passive treatment systems for mine drainage. This fluorogenic substrate method facilitates assessment of exo-(1,4)-β-D-glucanase, endo-(1,4)-β-D-glucanase, and β-glucosidase, which compose an important cellulase enzyme system. The modified method was developed and refined using samples of organic carbon-amended mine tailings from field experiments where sulfate reduction was induced as a strategy for managing water quality. Sample masses (3 g) and the number of replicates ( ≥ 3) were optimized. Matrix interferences within these metal-rich samples were found to be insignificant. Application of this modified cellulase assay method provided insight into the availability and degradation of organic carbon within the amended tailings. Results of this study indicate that cellulase enzyme assays can be applied to passive treatment systems for mine drainage, which commonly contain elevated concentrations of metals. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver

    International Nuclear Information System (INIS)

    Casalino, Elisabetta; Sblano, Cesare; Calzaretti, Giovanna; Landriscina, Clemente

    2006-01-01

    Acute cadmium intoxication affects glutathione S-transferase (GST) in rat liver. It has been found that 24 h after i.p. cadmium administration to rats, at a dose of 2.5 mg CdCl 2 kg -1 body weight, the activity of this enzyme in liver cytosol increased by 40%. A less stimulatory effect persisted till 48 h and thereafter the enzyme activity normalized. Since, GST isoenzymes belong to different classes in mammalian tissues, we used quantitative immunoassays to verify which family of GST isoenzymes is influenced by this intoxication. Only alpha-class glutathione S-transferase (α-GST) proteins were detected in rat liver cytosol and their level increased by about 25%, 24 h after cadmium treatment. No pi-GST isoforms were found in liver cytosol from either normal or cadmium-treated rats. Co-administration of actinomycin D with cadmium normalized both the protein level and the activity of α-GST, suggesting that some effect occurs on enzyme transcription of these isoenzymes by this metal. On the other hand, it seems unlikely that the stimulatory effect is due to the high level of peroxides caused by lipid peroxidation, since Vitamin E administration strongly reduced the TBARS level, but did not cause any GST activity decrease

  12. Induced and constitutive responses of digestive enzymes to plant toxins in an herbivorous mammal.

    Science.gov (United States)

    Kohl, Kevin D; Dearing, M Denise

    2011-12-15

    Many plants produce plant secondary compounds (PSCs) that bind and inhibit the digestive enzymes of herbivores, thus limiting digestibility for the herbivore. Herbivorous insects employ several physiological responses to overcome the anti-nutritive effects of PSCs. However, studies in vertebrates have not shown such responses, perhaps stemming from the fact that previously studied vertebrates were not herbivorous. The responses of the digestive system to dietary PSCs in populations of Bryant's woodrat (Neotoma bryanti) that vary in their ecological and evolutionary experience with the PSCs in creosote bush (Larrea tridentata) were compared. Individuals from naïve and experienced populations were fed diets with and without added creosote resin. Animals fed diets with creosote resin had higher activities of pancreatic amylase, as well as luminal amylase and chymotrypsin, regardless of prior experience with creosote. The experienced population showed constitutively higher activities of intestinal maltase and sucrase. Additionally, the naïve population produced an aminopeptidase-N enzyme that was less inhibited by creosote resin when feeding on the creosote resin diet, whereas the experienced population constitutively expressed this form of aminopeptidase-N. Thus, the digestive system of an herbivorous vertebrate responds significantly to dietary PSCs, which may be important for allowing herbivorous vertebrates to feed on PSC-rich diets.

  13. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  15. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.

    Science.gov (United States)

    Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A

    2004-03-01

    Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.

  16. Enhanced visible-light-induced photocatalytic activity of α-Fe2O3 adsorbing redox enzymes

    Directory of Open Access Journals (Sweden)

    Kai Kamada

    2015-03-01

    Full Text Available We report fabrication of hybrid photocatalyst composed of an n-type semiconductor (α-Fe2O3 and a redox enzyme (horseradish peroxidase; HRP, and its performance for oxidation of luminol in an aqueous solution. The hybrid photocatalyst is simply formed via physical adsorption of HRP to an α-Fe2O3 sintered body. Under visible light irradiation, the bare α-Fe2O3 with a narrow bandgap photocatalytically oxidizes luminol along with blue emission that can be used as an indicator of the photocatalytic performance. The blue emission is largely strengthened after the adsorption of HRP, demonstrating that the presence of enzyme improves apparent photocatalytic activity of α-Fe2O3. The favorable effect is derived from synergistic oxidation of luminol by the biocatalysts (HRP as well as by the photocatalyst (α-Fe2O3. In this paper, influence of excitation wavelength, adsorption amount of HRP, and reaction temperature on the overall photocatalytic activity are elucidated, and then a reaction mechanism of the proposed novel hybrid photocatalyst is discussed in detail.

  17. Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland

    Science.gov (United States)

    Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.

    2015-12-01

    Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly

  18. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    Science.gov (United States)

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  19. Role of melatonin in embryo fetal development

    OpenAIRE

    Voiculescu, SE; Zygouropoulos, N; Zahiu, CD; Zagrean, AM

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal mela...

  20. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat-induced

  1. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    Science.gov (United States)

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  2. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  3. Studies on the enzymes produced by Basidiomycetes. Part 1. The production of crude enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. S.; Kim, D.H.

    1981-01-01

    Cellulase, protease, and xylanase, formation by the basidiomycetes, Pleurotus ostreatus 301 and Lentinus edodes 3-1 in growth on rice straw medium were studied. Cultural conditions adequate for enzyme production and effects of various materials and inorganic salts added to the rice straw media were investigated. Lentinus edodes 3-1 was an excellent producer of cellulase and xylanase, and Pleurotus ostreatus 301 of protease. The optimum conditions for enzyme production were 30 degrees for cellulase production and at 25 degrees for xylanase and protease production, with 75% moisture content and initial pH of 5.0-6.0. The appropriate incubation times for enzyme production were 30 days and 35 days for Pleurotus ostreatus 301 and Lentinus edodes 3-1, respectively. Among the various materials added, defatted soybean, defatted rape seed, or defatted sesame were all effective in enzyme production but reduced mycelial growth. Rice bran was also effective, particularly at a 30% concentration. The addition of inorganic salts enhanced enzyme production. Among inorganic salts, the optimum concentration of CaCO3 was 5%, and that of CaSO4 was 2%.

  4. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  5. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  6. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  7. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  8. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  9. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis

    International Nuclear Information System (INIS)

    Zhong, Hua; Wang, Ruoxiang; Kelavkar, Uddhav; Wang, Christopher Y; Simons, Jonathan

    2014-01-01

    Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl 2 -treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro 564 /hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme

  10. Exercise-induced oxidative stress and antioxidant enzyme activity in type 2 diabetic patients with and without diastolic dysfunction and hypertension

    Directory of Open Access Journals (Sweden)

    Kostić Nada

    2009-01-01

    increase of GSH-Px activity (47.10±7.37 vs 54.52±11.97 U/g Hb; p<0.01. Conclusion. Elevated enzyme levels are associated with exercise in type 2 diabetic patients. We suggest that it could be a compensatory mechanism to prevent free radical tissue damage. We hypothesize that a physical training programme induces the enhancement of muscular and liver antioxidant enzymes and reduces the oxidative stress.

  11. Role Of Shark Cartilage In Reducing Changes In Gene Expression Of Some Enzymes Induced By N-Nitroso-N-Methyl Urea In Prostate Of Irradiated Rats

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.; YACOUB, S.; IBRAHIM, N.K.

    2009-01-01

    There is overwhelming evidence to indicate that free radicals cause oxidative damage to lipids, proteins and nucleic acids and are involved in the pathogenesis of several diseases. Therefore, antioxidants, which can neutralize free radicals, may be of central importance in the prevention of these diseases. Recent studies demonstrated the role of shark cartilage in protecting cells against reactive oxygen species induced DNA damage and mutagenesis. Reactive oxygen species and other free radicals are known to be the mediators of phenotypic and genotypic changes that lead from mutation to neoplasia. There are some primary antioxidants such as glutathione peroxidase (GSHPx), glutathione-S-transferase (GST-π) and super oxide dismutase (SOD), which protects against cellular and molecular damage caused by the reactive oxygen metabolites (ROMs).In this study, the effect of shark cartilage against the N-nitroso-N-methyl urea + testosterone and/or gamma radiation-induced mutagens and carcinogens in rat prostate were investigated.The data showed significant decrease in gene expression of manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GSHPx1) , enzyme activities of total superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) and non-significant increase in glutathione-S-transferase (GST-π) in N-nitroso-N-methyl urea + testosterone, N-nitroso-N-methyl urea + testosterone + gamma radiation groups as compared to control group.The results revealed that shark cartilage administration afford a significant protective effect against N-nitroso-N-methyl urea + testosterone and/or gamma radiation- induced oxidative injury.

  12. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  13. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  14. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  15. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes.

    Science.gov (United States)

    Mimura, Imari; Tanaka, Tetsuhiro; Wada, Youichiro; Kodama, Tatsuhiko; Nangaku, Masaomi

    2011-01-01

    The hypoxia response regulated primarily by hypoxia-inducible factor (HIF) influences metabolism, cell survival, and angiogenesis to maintain biological homeostasis. In addition to the traditional transcriptional regulation by HIF, recent studies have shown that epigenetic modulation such as histone methylation, acetylation, and DNA methylation could change the regulation of the response to hypoxia. Eukaryotic chromatin is known to be modified by multiple post-translational histone methylation and demethylation, which result in the chromatin conformation change to adapt to hypoxic stimuli. Interestingly, some of the histone demethylase enzymes, which have the Jumonji domain-containing family, require oxygen to function and are induced by hypoxia in an HIF-1-dependent manner. Recent studies have demonstrated that histone modifiers play important roles in the hypoxic environment such as that in cancer cells and that they may become new therapeutic targets for cancer patients. It may lead to finding a new therapy for cancer to clarify a new epigenetic mechanism by HIF and histone demethylase such as JMJD1A (KDM3A) under hypoxia.

  16. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    Science.gov (United States)

    Suttorp, Christiaan M.; Xie, Rui; Lundvig, Ditte M. S.; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C.; Wagener, Frank A. D. T. G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment. PMID:27486402

  17. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats.

    Science.gov (United States)

    Suttorp, Christiaan M; Xie, Rui; Lundvig, Ditte M S; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C; Wagener, Frank A D T G

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, "fast" and "slow" tooth movers during orthodontic treatment.

  18. The inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet B-induced pigmentation via the suppression of endothelin-converting enzyme-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Hachiya, Akira; Kobayashi, Akemi; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori [Kao Biological Science Lab., Ichikai, Tochigi (Japan)

    2001-06-01

    Endothelin-1 (ET-1) has been reported to be expressed in human epidermis at both the gene and protein levels. ET-1 plays a pivotal role in ultraviolet B (UVB)-induced pigmentation due to its accentuated secretion after UVB irradiation and its function as a mitogen and as a melanogen for human melanocytes. We have recently found that endothelin-converting enzyme (ECE)-1{alpha} plays a constitutive role in the secretion of ET-1 by human keratinocytes and that an extract of Sanguisorba officinalis L. inhibits ECE activity in human endothelial cells, which predominantly express ECE-1{alpha}. In this report, to clarify the potential use of this botanical extract as a whitening agent, we examined whether this extract inhibits UVB-induced pigmentation in vivo. When this extract was applied to human keratinocytes after UVB irradiation, secretion of ET-1 by those cells was reduced, and this was accompanied by a concomitant increase in the secretion of inactive precursor Big endothelin-1. When hairless mice were exposed to UVB light and were treated with the extract, it suppressed the induction of ET-1 in the UVB-irradiated epidermis. In the course of UVB-induced pigmentation of brownish guinea pig skin, this extract significantly diminished pigmentation in UVB-exposed areas. These findings indicate that ECE-1{alpha} in keratinocytes plays a pivotal role in the induction of pigmentation following UVB irradiation and that an extract of S. officinalis, which inhibits ET-1 production in human keratinocytes, is a good ingredient for a whitening agent. (author)

  19. The inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet B-induced pigmentation via the suppression of endothelin-converting enzyme-1α

    International Nuclear Information System (INIS)

    Hachiya, Akira; Kobayashi, Akemi; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori

    2001-01-01

    Endothelin-1 (ET-1) has been reported to be expressed in human epidermis at both the gene and protein levels. ET-1 plays a pivotal role in ultraviolet B (UVB)-induced pigmentation due to its accentuated secretion after UVB irradiation and its function as a mitogen and as a melanogen for human melanocytes. We have recently found that endothelin-converting enzyme (ECE)-1α plays a constitutive role in the secretion of ET-1 by human keratinocytes and that an extract of Sanguisorba officinalis L. inhibits ECE activity in human endothelial cells, which predominantly express ECE-1α. In this report, to clarify the potential use of this botanical extract as a whitening agent, we examined whether this extract inhibits UVB-induced pigmentation in vivo. When this extract was applied to human keratinocytes after UVB irradiation, secretion of ET-1 by those cells was reduced, and this was accompanied by a concomitant increase in the secretion of inactive precursor Big endothelin-1. When hairless mice were exposed to UVB light and were treated with the extract, it suppressed the induction of ET-1 in the UVB-irradiated epidermis. In the course of UVB-induced pigmentation of brownish guinea pig skin, this extract significantly diminished pigmentation in UVB-exposed areas. These findings indicate that ECE-1α in keratinocytes plays a pivotal role in the induction of pigmentation following UVB irradiation and that an extract of S. officinalis, which inhibits ET-1 production in human keratinocytes, is a good ingredient for a whitening agent. (author)

  20. Wound-induced expression of horseradish peroxidase.

    Science.gov (United States)

    Kawaoka, A; Kawamoto, T; Ohta, H; Sekine, M; Takano, M; Shinmyo, A

    1994-01-01

    Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the β-glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.

  1. Alterations in Plasma Glucose and Cardiac Antioxidant Enzymes Activity in Streptozotocin-Induced Diabetic Rats: Effects of Trigonella foenum-graecum Extract and Swimming Training.

    Science.gov (United States)

    Haghani, Karimeh; Bakhtiyari, Salar; Doost Mohammadpour, Jafar

    2016-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by chronic hyperglycemia. Trigonella foenum-graecum (fenugreek) and swimming training have previously been reported to have hypoglycemic and antioxidant effects. We aimed to evaluate the effects of swimming training and fenugreek aqueous extract, alone and in combination, on plasma glucose and cardiac antioxidant enzymes activity of streptozotocin-induced diabetes in rats. We divided 70 male Wistar rats equally into 7 groups: diabetic control (DC), healthy control (HC), swimming (S), fenugreek seed extract (1.74 g/kg) (F1), fenugreek seed extract (0.87 g/kg) (F2), swimming + fenugreek seed extract (1.74 g/kg) (SF1), and swimming + fenugreek seed extract (0.87 g/kg) (SF2). We used streptozotocin for the induction of diabetes. Statistical analyses were performed using the statistical program SPSS. We did not detect any significant differences in body weight in the F1, F2, S, SF1 and SF2 groups compared with the DC group (p>0.05). The results also revealed that the hypoglycemic effect of combined swimming and fenugreek was significantly stronger (pswimming could be useful for the treatment of hyperglycemia and cardiac oxidative stress induced by type 1 diabetes mellitus. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  2. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    Science.gov (United States)

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  3. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    Science.gov (United States)

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  4. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells.

    Science.gov (United States)

    Surichan, Somchaiya; Androutsopoulos, Vasilis P; Sifakis, Stavros; Koutala, Eleni; Tsatsakis, Aristidis; Arroo, Randolph R J; Boarder, Michael R

    2012-09-01

    Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1

    Directory of Open Access Journals (Sweden)

    Dong L

    2015-12-01

    Full Text Available Liwei Dong,1 Hongge Wang,1 Jiajing Niu,1 Mingwei Zou,2 Nuoting Wu,1 Debin Yu,1 Ye Wang,1 Zhihua Zou11Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People’s Republic of China; 2Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA Abstract: Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1. Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine, while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells. Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents. Keywords: Echinacoside, MTH1, 8-oxoG, DNA damage, apoptosis, cell cycle arrest

  6. Studies on the effects of radiation on enzyme activity and chromosome in mammals (Mus musuculus)

    International Nuclear Information System (INIS)

    Kim, J.B.; Lee, K.S.; Kim, Y.J.

    1982-01-01

    From the results of many researches in radiation biology, it is well known that the radiation induces gene mutation, aberration of chromosome which is a carrier of genes and the increase or decrease of enzyme activities in living organisms. However, the frequency of chromosomal aberration or the degree of enzyme activities according to the animal's age when they are irradiated with radiation and time pass after irradiation are known a little if any. From these viewpoints, the research on the frequencies of chromosomal aberrations in bone marrow cells and the degree of activities of glucose-6-phosphate dehydrogenase in liver, kidney and brain, and isocitrate dehydrogense in kidney and brain of mouse has been carried out according to the mice age when they are irradiated with 200 rad of whole body irradiation. The chromosomes and enzyme activities were observed at 24 hours, 48 hours and 4 days to 90 days after irradiation. (Author)

  7. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats.

    Science.gov (United States)

    Shodehinde, Sidiqat A; Ademiluyi, Adedayo O; Oboh, Ganiyu; Akindahunsi, Afolabi A

    2015-07-15

    Unripe plantain based-diets are part of folklore remedy for the management of diabetes in tropical Africa; however, with the dearth of information on the rationale behind this practice; this study therefore, sought to investigate the antihyperglycemic effect of traditional unripe plantain products (Amala and Booli) in high fat fed/low dose streptozotocin-induced diabetic rats and to provide a possible rationale for their antidiabetic properties. Diabetes was induced experimentally by high fat fed/low dose streptozotocin-diabetic rats (25mg/kg body wt.) and the diabetic rats were fed diets supplemented with 20-40% Amala and Booli for 14 days. The effect of the diets on the blood glucose level, pancreatic α-amylase, intestinal α-glucosidase and Angiotensin-I converting enzyme (ACE) activities and plasma antioxidant status as well as amylose/amylopectin content of the unripe plantain products were determined. A marked increase in the blood glucose, α-amylase, α-glucosidase and ACE activities with a corresponding decrease in plasma antioxidant status was recorded in diabetic rats. However, these indices were significantly (P < 0.05) reversed after unripe plantain product supplemented diet treatments for 14 days. Also, the amylose/amylopectin ratio of the products is 1:3. This study revealed that unripe plantain products exert antihyperglycemic effects which could be attributed to the inhibition of α-amylase and α-glucosidase activities by their constituent phytochemicals as well as their amylose/amylopectin contents in the diabetic rats, hence, providing the possible rationale behind their antidiabetic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages.

    Science.gov (United States)

    Kim, Mi Jin; Kim, Dae Won; Park, Jung Hwan; Kim, Sang Jin; Lee, Chi Hern; Yong, Ji In; Ryu, Eun Ji; Cho, Su Bin; Yeo, Hyeon Ji; Hyeon, Jiye; Cho, Sung-Woo; Kim, Duk-Soo; Son, Ora; Park, Jinseu; Han, Kyu Hyung; Cho, Yoon Shin; Eum, Won Sik; Choi, Soo Young

    2013-10-01

    Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1-SIRT2 protein. Purified PEP-1-SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H₂O₂)-induced cell death and cytotoxicity. Also, transduced PEP-1-SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1-SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1-SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1-SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1-SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Protective effect of flax seed oil against radiation induced hematological alterations in mammals

    International Nuclear Information System (INIS)

    Sharma, Jyoti; Singh, Ritu; Goyal, P.K.; Singh, Seema

    2014-01-01

    Human beings are exposed to ionizing and non ionizing radiation from natural as well as manmade sources. Ionizing radiations are one of the predominant exogenous factors that have deleterious consequences to human life. Exposure to ionizing radiations damages the hematopoietic, gastrointestinal or central nervous systems, depending on radiation dose. Hence, there is an urgent need to prevent such deleterious effects caused due to ionizing radiations. Chemical protection involves the use of synthetic and natural products against planned radiation exposure. Medicinal plants are rich in antioxidants and their chemical constituents may be the potential source for radioprotective agents. Linum usitatissimum plant (family: Linaceae), source of flaxseed oil (FSO), is well known for its anticarcinogenic, antidiabetic, cardioprotector, antiulcer properties owing to the presence of various phytochemicals. The present study has been focused to find out the preventive action of flaxseed oil against radiation induced hematological and biochemical lesions in mammals. For this purpose, FSO (50μL/animal/day) was orally administered to Swiss albino mice for five days, prior to 6 Gy gamma radiation exposure. The animals were sacrificed on 1 st , 3 rd , 7 th , 15 th and 30 th day after irradiation. Radiation treated control group exhibited significant reduction in erythrocytes count, hemoglobin content, hematocrit value and total WBC count in peripheral blood. In contrast, pretreatment with FSO significantly increased all these blood constituents. Further, the antioxidant parameters such as reduced glutathione, catalase, and superoxide dismutase showed a significant elevation in FSO pretreated group which were reduced in irradiated control group. Similarly, radiation induced increase lipid peroxidation in blood was significantly inhibited after FSO treatment. The present results indicate that the flaxseed oil has the ability to debilitate the radiation induced adverse alterations in

  10. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  11. In vivo assessment of genotoxic, antigenotoxic and anticarcinogenic activities of Solanum lycocarpum fruits glycoalkaloidic extract.

    Directory of Open Access Journals (Sweden)

    Carla Carolina Munari

    Full Text Available The fruits of Solanum lycocarpum, known as wolf-fruit, are used in folk medicine, and because of that we have evaluated both the genotoxic potential of its glycoalkaloidic extract (SL and its influence on the genotoxicity induced by methyl methanesulfonate. Furthermore, the potential blocking effect of SL intake in the initial stage of colon carcinogenesis in Wistar rats was investigated in a short-term (4-week bioassay using aberrant crypt foci (ACF as biomarker. The genotoxic potential was evaluated using the Swiss mice peripheral blood micronucleus test. The animals were treated with different doses of SL (15, 30 and 60 mg/kg b.w. for 14 days, and the peripheral blood samples were collected at 48 h, 7 days and 14 days after starting the treatment. For antigenotoxicity assessment, MMS was administered on the 14th day, and after 24 h the harvesting of bone marrow and liver cells was performed, for the micronucleus and comet assays, respectively. In the ACF assay, male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg b.w., twice a week, during two weeks to induce ACF. The treatment with SL (15, 30 and 60 mg/kg b.w. was given for four weeks during and after carcinogen treatment to investigate the potential beneficial effects of SL on DMH-induced ACF. The results demonstrated that SL was not genotoxic in the mouse micronucleus test. In animals treated with SL and MMS, the frequencies of micronucleus and extensions of DNA damage were significantly reduced in comparison with the animals receiving only MMS. Regarding the ACF assay, SL significantly reduced the frequency of ACF induced by DMH.

  12. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.

    Science.gov (United States)

    Bhattacharya, Abhishek; Pletschke, Brett I

    2014-01-01

    The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Regulation of hydantoin-hydrolyzing enzyme expression in Agrobacterium tumefaciens strain RU-AE01.

    Science.gov (United States)

    Jiwaji, Meesbah; Dorrington, Rosemary Ann

    2009-10-01

    Optically pure D-: amino acids, like D-: hydroxyphenylglycine, are used in the semi-synthetic production of pharmaceuticals. They are synthesized industrially via the biocatalytic hydrolysis of p-hydroxyphenylhydantoin using enzymes derived from Agrobacterium tumefaciens strains. The reaction proceeds via a three-step pathway: (a) the ring-opening cleavage of the hydantoin ring by a D-: hydantoinase (encoded by hyuH), (b) conversion of the resultant D-: N-carbamylamino acid to the corresponding amino acid by a D-: N-carbamoylase (encoded by hyuC), and (c) chemical or enzymatic racemization of the un-reacted hydantoin substrate. While the structure and biochemical properties of these enzymes are well understood, little is known about their origin, their function, and their regulation in the native host. We investigated the mechanisms involved in the regulation of expression of the hydantoinase and N-carbamoylase enzyme activity in A. tumefaciens strain RU-AE01. We present evidence for a complex regulatory network that responds to the growth status of the cells, the presence of inducer, and nitrogen catabolite repression. Deletion analysis and site-directed mutagenesis were used to identify regulatory elements involved in transcriptional regulation of hyuH and hyuC expression. Finally, a comparison between the hyu gene clusters in several Agrobacterium strains provides insight into the function of D-: selective hydantoin-hydrolyzing enzyme systems in Agrobacterium species.

  14. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  15. Co-evolution of enzyme function in the attine ant-fungus symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    Introduction: Fungus-growing ants cultivate specialized fungi in the tribe Leucocoprineae (Lepiotaceae: Basidiomycota) inside their nests. The conspicuous leaf-cutting ants in the genus Atta build huge nests displacing several cubic meters of soil, whereas lower attine genera such as Cyphomyrmex ...... garden. This system can be viewed as ant induced crop optimization similar to human agricultural practices....... have small nests with a fungus garden the size of a table-tennis ball. Only the leaf-cutting ants are specialized on using fresh leaves as substrate for their fungus gardens, whereas the more basal attine genera use substrates such as dry plant material (leaf litter and small twigs) and also insect...... feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide or different efficiencies of enzyme function. Methods: (1.) We made a literature survey...

  16. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    Science.gov (United States)

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  17. Inducible expression of trehalose synthase in Bacillus licheniformis.

    Science.gov (United States)

    Li, Youran; Gu, Zhenghua; Zhang, Liang; Ding, Zhongyang; Shi, Guiyang

    2017-02-01

    Trehalose synthase (TreS) could transform maltose into trehalose via isomerization. It is a crucial enzyme in the process of trehalose enzymatical transformation. In this study, plasmid-based inducible expression systems were constructed to produce Thermomonospora curvata TreS in B. licheniformis. Xylose operons from B. subtilis, B. licheniformis and B. megaterium were introduced to regulate the expression of the gene encoding TreS. It was functionally expressed, and the BlsTs construct yielded the highest enzyme activity (12.1 U/mL). Furthermore, the effect of different cultural conditions on the inducible expression of BlsTs was investigated, and the optimal condition was as follows: 4% maltodextrin, 0.4% soybean powder, 1% xylose added after 10 h of growth and an induction time of 12 h at 37 °C. As a result, the maximal yield reached 24.7 U/mL. This study contributes to the industrial application of B. licheniformis, a GRAS workhorse for enzyme production. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... time was 8 hours. Stepwise addition of methanol was necessary to avoid enzyme inhibition by methanol. In order to minimize the enzyme costs, the influence of enzyme activity loss during reuse of both enzymes was evaluated under two distinct conditions. In the former, the enzymes were recovered...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  19. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  20. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588