WorldWideScience

Sample records for anticancer therapeutics targeting

  1. Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Chelsea Jenkins

    2012-01-01

    Full Text Available The Fanconi Anemia (FA pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs. The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

  2. Therapeutic aptamers: developmental potential as anticancer drugs

    OpenAIRE

    Lee, Ji Won; Kim, Hyun Jung; Heo, Kyun

    2015-01-01

    Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a seco...

  3. 'Smartening' anticancer therapeutic nanosystems using biomolecules.

    Science.gov (United States)

    Núñez-Lozano, Rebeca; Cano, Manuel; Pimentel, Belén; de la Cueva-Méndez, Guillermo

    2015-12-01

    To be effective, anticancer agents must induce cell killing in a selective manner, something that is proving difficult to achieve. Drug delivery systems could help to solve problems associated with the lack of selectivity of classical chemotherapeutic agents. However, to realize this, such systems must overcome multiple physiological barriers. For instance, they must evade surveillance by the immune system, attach selectively to target cells, and gain access to their interior. Furthermore, there they must escape endosomal entrapment, and release their cargoes in a controlled manner, without affecting their functionality. Here we review recent efforts aiming at using biomolecules to confer these abilities to bare nanoparticles, to transform them into smart anticancer therapeutic nanosystems. PMID:26277646

  4. Conventional anticancer therapeutics and telomere maintenance mechanisms.

    Science.gov (United States)

    Uziel, Orit; Lahav, Meir

    2014-01-01

    The telomere-telomerase system has a unique role in the biology of cancer. Telomere maintenance, mostly affected by the up regulation of telomerase activity, is a prerequisite for perpetuation of malignant cells. This fundamental biologic feature defines telomere maintenance as an attractive therapeutic target for most types of cancer. This review summarizes some critical aspects of telomere biology with special emphasis on the connection to anticancer therapy. In particular, the effects on the telomere - telomerase system of conventional anticancer treatments, including various cytotoxic drugs, targeted biological agents and radiotherapy, and their possible combination with telomerase-directed therapy are discussed. Several potential problems, including side effects and complications inherent to perturbations of telomere biology in normal cells, are also highlighted. In spite of significant progress in this field, there are still several issues that have to be addressed and ultimately resolved in order to obtain a better characterization of the pros and cons of telomerase-directed therapies and, consequently, their clinical relevance. PMID:24975606

  5. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa.

    Science.gov (United States)

    Wang, Che; Chen, Yin-Wang; Zhang, Liang; Gong, Xian-Ge; Zhou, Yang; Shang, De-Jing

    2016-07-01

    We have previously reported that temporin-1CEa, a cationic antimicrobial peptide, exerts preferential cytotoxicity toward cancer cells. However, the exact molecular mechanism for this cancer-selectivity is still largely unknown. Here, we found that the negatively charged phosphatidylserine (PS) expressed on cancer cell surface serves as a target for temporin-1CEa. Our results indicate that human A375 melanoma cells express 50-fold more PS than non-cancerous HaCaT cells. The expression of cell surface PS in various cancer cell lines closely correlated with their ability to be recognized, bound and killed by temporin-1CEa. Additionally, the cytotoxicity of temporin-1CEa against A375 cells can be ameliorated by annexin V, which binds to cell surface PS with high affinity. Moreover, the data of isothermal titration calorimetry assay further confirmed a direct binding of temporin-1CEa to PS, at a ratio of 1:5 (temporin-1CEa:PS). Interestingly, the circular dichroism spectra analysis using artificial biomembrane revealed that PS not only provides electrostatic attractive sites for temporin-1CEa but also confers the membrane-bound temporin-1CEa to form α-helical structure, therefore, enhances the affinity and membrane disrupting ability of temporin-1CEa. In summary, these findings suggested that the melanoma cells expressed PS may serve as a promising target for temporin-1CEa or other cationic anticancer peptides. PMID:26596643

  6. A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2008-10-01

    Full Text Available Junko H Ohyashiki1, Ryoko Hamamura2, Chiaki Kobayashi2, Yu Zhang2, Kazuma Ohyashiki21Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan; 2First Department of Internal Medicine, Tokyo Medical University, Tokyo, JapanAbstract: There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene® identified a secreted protein acidic and rich in cysteine (SPARC gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects.Keywords: network biology, adult T cell leukemia, bortezomib, SPARC

  7. Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic self-monitoring.

    Science.gov (United States)

    Tian, Jiangwei; Luo, Yingping; Huang, Liwei; Feng, Yaqiang; Ju, Huangxian; Yu, Bo-Yang

    2016-06-15

    This work reports a graphene oxide-based nanovehicle with conjugation of pegylated folate for targeted delivery of anticancer drugs and fluorescein-labeled peptide for therapeutic self-monitoring in vitro and in vivo. The nanovehicle could absorb hydrophobic and aromatic drug molecules with high loading capacity and efficiency of more than 1.7mgmg(-1) and 90%, respectively. MTT and flow cytometric assays demonstrated that the drug-loaded nanovehicle could specifically transport and release the drugs into the folate receptor high-expressed cancer cells, which ensured a high therapeutic efficiency to cancer cells and prevented the injury to normal cells. Moreover, confocal fluorescence imaging confirmed that the drug-induced cancer cell death could be visualized with the light-up fluorescence of fluorescein activated by caspase-3. The targeted delivery of drug and self-evaluation of therapeutic efficacy were further successfully realized by living imaging in tumor-bearing mice, which broaden the applications of this theranostic system in vivo and may offer new opportunities for precise cancer treatment. PMID:26890827

  8. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  9. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  10. Anticancer Agents Targeted to Sirtuins

    Directory of Open Access Journals (Sweden)

    Tomohiro Kozako

    2014-12-01

    Full Text Available Sirtuins are nicotinamide adenine dinucleotide+-dependent deacetylases of which there are seven isoforms (SIRT1–7. Sirtuin activity is linked to gene expression, lifespan extension, neurodegeneration, and age-related disorders. Numerous studies have suggested that sirtuins could be of great significance with regard to both antiaging and tumorigenesis, depending on its targets in specific signaling pathways or in specific cancers. Recent studies have identified small chemical compounds that modulate sirtuins, and these modulators have enabled a greater understanding of the biological function and molecular mechanisms of sirtuins. This review highlights the possibility of sirtuins, especially SIRT1 and SIRT2, for cancer therapy targets, and focuses on the therapeutic potential of sirtuin modulators both in cancer prevention and treatment.

  11. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    Science.gov (United States)

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings. PMID:22328057

  12. Anticancer Agents Targeted to Sirtuins

    OpenAIRE

    Tomohiro Kozako; Takayoshi Suzuki; Makoto Yoshimitsu; Naomichi Arima; Shin-ichiro Honda; Shinji Soeda

    2014-01-01

    Sirtuins are nicotinamide adenine dinucleotide+-dependent deacetylases of which there are seven isoforms (SIRT1–7). Sirtuin activity is linked to gene expression, lifespan extension, neurodegeneration, and age-related disorders. Numerous studies have suggested that sirtuins could be of great significance with regard to both antiaging and tumorigenesis, depending on its targets in specific signaling pathways or in specific cancers. Recent studies have identified small chemical compounds that m...

  13. Molecularly targeted therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Full text: It is generally agreed that current focus of nuclear medicine development should be on molecular imaging and therapy. Though, the widespread use of the terminology 'molecular imaging' is quite recent, nuclear medicine has used molecular imaging techniques for more than 20 years ago. A variety of radiopharmaceuticals have been introduced for the internal therapy of malignant and inflammatory lesions in nuclear medicine. In the field of bio/medical imaging, nuclear medicine is one of the disciplines which has the privilege of organized and well developed chemistry/ pharmacy section; radio-chemistry/radiopharmacy. Fundamental principles have been developed more than 40 years ago and advanced research is going well into postgenomic era. The genomic revolution and dramatically increased insight in the molecular mechanisms underlying pathology have led to paradigm shift in drug development. Likewise does in the nuclear medicine. Here, the author will present current clinical and pre-clinical therapeutic radiopharmaceuticals based on molecular targets such as membrane-bound receptors, enzymes, nucleic acids, sodium iodide symporter, etc, in correlation with fundamentals of radiopharmacy. (author)

  14. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  15. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  16. Therapeutic Targeting of Telomerase.

    Science.gov (United States)

    Jäger, Kathrin; Walter, Michael

    2016-01-01

    Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and

  17. Therapeutic Targeting of Telomerase

    Science.gov (United States)

    Jäger, Kathrin; Walter, Michael

    2016-01-01

    Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and

  18. Therapeutic Targeting of Telomerase

    Directory of Open Access Journals (Sweden)

    Kathrin Jäger

    2016-07-01

    Full Text Available Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT, which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination

  19. 靶向性抗癌治疗的纳米技术%Nanotechnology for targeted anticancer therapies

    Institute of Scientific and Technical Information of China (English)

    罗育林

    2005-01-01

    Although many anticancer therapies are used in clinic, few are tolerable for their side effects from killing of normal cells. Seeking measures to target anticancer agents to tumors or at least tumor-located organs has been one of the major tasks for researchers. Nanotechnology is greatly helpful for fulfilling this task. There are several ways to direct therapeutic agents carried by nanoparticles to tumor sites. This article focuses on the mechanisms,advantages and disadvantages of different targeting manners, understanding of which may be benefitial to researchers to develop specific targeted anticancer therapy.

  20. Polymer anticancer drugs with peptide targeting

    Czech Academy of Sciences Publication Activity Database

    Studenovský, Martin; Pola, Robert; Pechar, Michal; Ulbrich, Karel; Hovorka, Ondřej

    Long Beach : Controlled Release Society, 2007, 771/1-771/2. [Annual Meeting and Exposition of the Controlled Release Society /34./. Long Beach (US), 07.07.2007-11.07.2007] R&D Projects: GA ČR GA204/05/2255 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : angiogenesis * anticancer agents * conjugates * HPMA copolymers Subject RIV: CE - Biochemistry http://www.controlledreleasesociety.org/meeting/program/pdfs/ProgramBook.pdf

  1. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

    International Nuclear Information System (INIS)

    Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics

  2. Sphingolipid metabolism enzymes as targets for anticancer therapy

    NARCIS (Netherlands)

    Kok, JW; Sietsma, H

    2004-01-01

    Treatment with anti-cancer agents in most cases ultimately results in apoptotic cell death of the target tumour cells. Unfortunately, tumour cells can develop multidrug resistance, e.g., by a reduced propensity to engage in apoptosis by which they become insensitive to multiple chemotherapeutics. Ce

  3. Therapeutic targets in liver fibrosis.

    Science.gov (United States)

    Fallowfield, Jonathan A

    2011-05-01

    Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points. PMID:21233278

  4. Mitochondrially targeted anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Biasutto, L.; Dong, L.A.; Zoratti, M.; Neužil, Jiří

    2010-01-01

    Roč. 10, č. 6 (2010), s. 670-681. ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrial target ing * pro-oxidant effect * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.238, year: 2010

  5. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  6. Therapeutic Strategies to Enhance the Anticancer Efficacy of Histone Deacetylase Inhibitors

    Directory of Open Access Journals (Sweden)

    Claudia P. Miller

    2011-01-01

    Full Text Available Histone acetylation is a posttranslational modification that plays a role in regulating gene expression. More recently, other nonhistone proteins have been identified to be acetylated which can regulate their function, stability, localization, or interaction with other molecules. Modulating acetylation with histone deacetylase inhibitors (HDACi has been validated to have anticancer effects in preclinical and clinical cancer models. This has led to development and approval of the first HDACi, vorinostat, for the treatment of cutaneous T cell lymphoma. However, to date, targeting acetylation with HDACi as a monotherapy has shown modest activity against other cancers. To improve their efficacy, HDACi have been paired with other antitumor agents. Here, we discuss several combination therapies, highlighting various epigenetic drugs, ROS-generating agents, proteasome inhibitors, and DNA-damaging compounds that together may provide a therapeutic advantage over single-agent strategies.

  7. Therapeutic targeting of replicative immortality.

    Science.gov (United States)

    Yaswen, Paul; MacKenzie, Karen L; Keith, W Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-12-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  8. The potential therapeutic targets for cervical cancer

    Directory of Open Access Journals (Sweden)

    L Priyanka Dwarampudi

    2013-01-01

    Full Text Available In case of invasive cervical carcinoma several molecular events were reported and these molecular events resulting in multiple genetic abnormalities. In order to control these tumors multiple molecular therapeutic targets are needed with different molecular mechanisms. Unfortunately, these molecular targets were in early stages of development. Because of less degree of success of conventional therapeutics for late stages of cervical cancer and lowering of prognosis of patients there is an increase in interest for the development of potential therapeutic targets for cervical cancer. This review article emphasizes the current molecular targeted agents; with special attention to estrogen receptors for human papilloma virus infected cervical cancer.

  9. PEPTIDE TARGETING OF PLATINUM ANTI-CANCER DRUGS

    OpenAIRE

    Ndinguri, Margaret W.; Solipuram, Rajasree; Gambrell, Robert P.; Aggarwal, Sita; Hansel, William; Hammer, Robert P.

    2009-01-01

    Besides various side effects caused by platinum anticancer drugs, they are not efficiently absorbed by the tumor cells. Two Pt-peptide conjugates; cyclic mPeg-CNGRC-Pt (7) and cyclic mPeg-CNGRC-Pten (8) bearing the Asn-Gly-Arg (NGR) targeting sequence, a malonoyl linker and low molecular weight miniPEG groups have been synthesized. The platinum ligand was attached to the peptide via the carboxylic end of the malonate group at the end of the peptide. The pegylated peptide is non toxic and high...

  10. Telomere and telomerase as targets for anti-cancer and regeneration therapies

    Institute of Scientific and Technical Information of China (English)

    Yi-hsin HSU; Jing-jer LIN

    2005-01-01

    Telomerase is a ribonucleoprotein that directs the synthesis of telomeric sequence.It is detected in majority of malignant tumors, but not in most normal somatic cells.Because telomerase plays a critical role in cell immortality and tumor formation, it has been one of the targets for anti-cancer and regeneration drug development. In this review, we will discuss therapeutic approaches based mainly on small molecules that have been developed to inhibit telomerase activity, modulate telomerase expression, and telomerase directed gene therapy.

  11. Pathogenesis and new therapeutic targets

    OpenAIRE

    Mertens, Michael

    2010-01-01

    Acute lung injury and its pronounced form, acute respiratory distress syndrome, are life-threatening diseases with 190,000 patients and 74,500 deaths per year in the United States. Until now there have been no therapeutic approaches to lower morbidity and mortality, except for ventilation with small tidal volumes. This partially results from a lack of understanding of the underlying mechanism of ventilator induced acute lung injury on the alveolar and alveolar capillary level. In addition, ph...

  12. Lymphatic Targeting of Nanosystems for Anticancer Drug Therapy.

    Science.gov (United States)

    Abellan-Pose, Raquel; Csaba, Noemi; Alonso, Maria Jose

    2016-01-01

    The lymphatic system represents a major route of dissemination in metastatic cancer. Given the lack of selectivity of conventional chemotherapy to prevent lymphatic metastasis, in the last years there has been a growing interest in the development of nanocarriers showing lymphotropic characteristics. The goal of this lymphotargeting strategy is to facilitate the delivery of anticancer drugs to the lymph node-resident cancer cells, thereby enhancing the effectiveness of the anti-cancer therapies. This article focuses on the nanosystems described so far for the active or passive targeting of oncological drugs to the lymphatic circulation. To understand the design and performance of these nanosystems, we will discuss first the physiology of the lymphatic system and how physiopathological changes associated to tumor growth influence the biodistribution of nanocarriers. Second, we provide evidence on how the tailoring of the physicochemical characteristics of nanosystems, i.e. particle size, surface charge and hydrophilicity, allows the modulation of their access to the lymphatic circulation. Finally, we provide an overview of the relationship between the biodistribution and antimetastatic activity of the nanocarriers loaded with oncological drugs, and illustrate the most promising active targeting approaches investigated so far. PMID:26675222

  13. The potential therapeutic targets for cervical cancer

    OpenAIRE

    L Priyanka Dwarampudi; Gowthamarajan, K.; Shanmugam, R; Madhuri, K.; Nilani, P.; M N Satish Kumar

    2013-01-01

    In case of invasive cervical carcinoma several molecular events were reported and these molecular events resulting in multiple genetic abnormalities. In order to control these tumors multiple molecular therapeutic targets are needed with different molecular mechanisms. Unfortunately, these molecular targets were in early stages of development. Because of less degree of success of conventional therapeutics for late stages of cervical cancer and lowering of prognosis of patients there is an inc...

  14. Therapeutic targeting of Janus kinases

    OpenAIRE

    Pesu, Marko; Laurence, Arian; Kishore, Nandini; Zwillich, Sam; Chan, Gary; O’Shea, John J.

    2008-01-01

    Cytokines play pivotal roles in immunity and inflammation, and targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to effect intracellular signaling. These structurally unique protein kinases play essential and specific roles in immune cell development and function. One JAK, JAK3, has particularly selective functions. Mutations of this kinase underlie severe combined immunodeficie...

  15. Conotoxins: Molecular and Therapeutic Targets

    Science.gov (United States)

    Lewis, Richard J.

    Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.

  16. BAD: a good therapeutic target?

    International Nuclear Information System (INIS)

    The major goal in cancer treatment is the eradication of tumor cells. Under stress conditions, normal cells undergo apoptosis; this property is fortunately conserved in some tumor cells, leading to their death as a result of chemotherapeutic and/or radiation-induced stress. Many malignant cells, however, have developed ways to subvert apoptosis, a characteristic that constitutes a major clinical problem. Gilmore et al. recently described the ability of ZD1839, a small-molecule inhibitor of the epidermal growth factor receptor (EGFR), to induce apoptosis of mammary cells that are dependent upon growth factors for survival. Furthermore, they showed that the major effector of the EGFR-targeted therapy is BAD, a widely expressed BCL-2 family member. These results are promising in light of the role of the EGFR in breast cancer development

  17. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

    Science.gov (United States)

    Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang

    2016-08-10

    In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. PMID:27238442

  18. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    Science.gov (United States)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  19. Strategies to Optimize Molecularly Targeted Anti-Cancer Agent Combinations

    Directory of Open Access Journals (Sweden)

    Ayse Erdogan

    2015-12-01

    Full Text Available Cytotoxic agents which are used in cancer chemotherapy reduced several times the number of neoplastic cells but not fully. Therefore, usage of and ldquo;targeted therapeutics" which were developed with much more rational approach is increasing markedly in patients with solid cancer. Targeted therapeutics due to selective targets aims cancer cells with specific molecular defect thereby, kils the cancer cells, which makes it possible to continue normal cells in a healthy environment. The rapid emergence of hundreds of new agents that modulates ever-growing list of the cancer-specific molecular targets promise great hope for cancer patients. Evaluation of the target agent individually, in combination with standard therapy and other target agents bring about important development challenges. As possible combinations of drugs number is unlimited, the identification of the most promising combinations and giving priority to assessing their strategies are very important.In this article important elements of the development strategy of the target agent combinations will be considered. Difficulties in this kind of combinations of rational pre-clinical and clinical evaluation and possible approaches to overcome these challenges will be discussed. [Archives Medical Review Journal 2015; 24(4.000: 432-451

  20. Heat-Shock Protein 90-Targeted Nano Anticancer Therapy.

    Science.gov (United States)

    Rochani, Ankit K; Ravindran Girija, Aswathy; Borah, Ankita; Maekawa, Toru; Sakthi Kumar, D

    2016-04-01

    Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy. PMID:26886301

  1. Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties

    Directory of Open Access Journals (Sweden)

    Koji Kawakami

    2006-01-01

    Full Text Available Despite the progress of the bioinformatics approach to characterize cell-surface antigens and receptors on tumor cells, it remains difficult to generate novel cancer vaccines or neutralizing monoclonal antibody therapeutics. Among targeted cancer therapeutics, biologicals with targetable antibodies or ligands conjugated or fused to toxins or chemicals for direct cell-killing ability have been developed over the last 2 decades. These conjugated or fused chimeric proteins are termed immunotoxins or cytotoxic agents. Two agents, DAB389IL-2 (ONTAKTM targeting the interleukin-2 receptor and CD33-calicheamicin (Mylotarg®, have been approved by the FDA for cutaneous T-cell lymphoma (CTCL and relapsed acute myeloid leukemia (AML, respectively. Such targetable agents, including RFB4(dsFv-PE38 (BL22, IL13-PE38QQR, and Tf-CRM107, are being tested in clinical trials. Several agents using unique technology such as a cleavable adapter or immunoliposomes with antibodies are also in the preclinical stage. This review summarizes the generation, mechanism, and development of these agents. In addition, possible future directions of this therapeutic approach are discussed.

  2. Targeting protein-protein interactions as an anticancer strategy

    OpenAIRE

    Ivanov, Andrei A.; Khuri, Fadlo R.; Fu, Haian

    2013-01-01

    The emergence and convergence of cancer genomics, targeted therapies, and network oncology have significantly expanded the landscape of protein-protein interaction (PPI) networks in cancer for therapeutic discovery. Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintaining characteristics of cancer essential for cell transformation. Such cancer enabling PPIs have become promising ...

  3. Polymeric micelles in anticancer therapy : targeting, imaging and triggered release

    NARCIS (Netherlands)

    Oerlemans, Chris; Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J Frank W; Hennink, Wim E

    2010-01-01

    Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use

  4. Quercetin nanocomposite as novel anticancer therapeutic: improved efficiency and reduced toxicity.

    Science.gov (United States)

    Cirillo, Giuseppe; Vittorio, Orazio; Hampel, Silke; Iemma, Francesca; Parchi, Paolo; Cecchini, Marco; Puoci, Francesco; Picci, Nevio

    2013-06-14

    A three-functional nanocomposite was prepared by radical polymerization of methacrylic acid around carbon nanotubes in the presence of Quercetin as biologically active molecule and proposed as new anticancer therapeutic. The so-obtained hybrid material was characterized by FT-IR, Raman, SEM, TEM analyses, while the functionalization degree of 2.33 mg of Quercetin per g of composite was assessed by Folin-Ciocalteu test. Antioxidant test (DPPH and ABTS) showed that the covalent coupling did not interfere with the antioxidant properties of the flavonoid, while the anticancer activity was greatly enhanced with a recorded IC50 value much lower than free Quercetin. Cell viability tests on healthy cells demonstrated no-toxicity of the conjugate. PMID:23602995

  5. Metformin and prostate cancer stem cells: a novel therapeutic target.

    Science.gov (United States)

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies. PMID:26215782

  6. Targeted Tumor Therapy with "Magnetic Drug Targeting": Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone

    Science.gov (United States)

    Alexiou, Ch.; Schmid, R.; Jurgons, R.; Bergemann, Ch.; Arnold, W.; Parak, F.G.

    The difference between success or failure of chemotherapy depends not only on the drug itself but also on how it is delivered to its target. Biocompatible ferrofluids (FF) are paramagnetic nanoparticles, that may be used as a delivery system for anticancer agents in locoregional tumor therapy, called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment (tumor) using an external magnetic field, which is focused on the area of the tumor. Through this form of target directed drug application, one attempts to concentrate a pharmacological agent at its site of action in order to minimize unwanted side effects in the organism and to increase its locoregional effectiveness. Tumor bearing rabbits (VX2 squamous cell carcinoma) in the area of the hind limb, were treated by a single intra-arterial injection (A. femoralis) of mitoxantrone bound ferrofluids (FF-MTX), while focusing an external magnetic field (1.7 Tesla) onto the tumor for 60 minutes. Complete tumor remissions could be achieved in these animals in a dose related manner (20% and 50% of the systemic dose of mitoxantrone), without any negative side effects, like e.g. leucocytopenia, alopecia or gastrointestinal disorders. The strong and specific therapeutic efficacy in tumor treatment with mitoxantrone bound ferrofluids may indicate that this system could be used as a delivery system for anticancer agents, like radionuclids, cancer-specific antibodies, anti-angiogenetic factors, genes etc.

  7. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    Science.gov (United States)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-01-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics. PMID:27476814

  8. Sphingosine kinase-1--a potential therapeutic target in cancer.

    Science.gov (United States)

    Cuvillier, Olivier

    2007-02-01

    Sphingolipid metabolites play critical functions in the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation and cell survival. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites. Sphingosine kinase-1 is a crucial regulator of this two-pan balance, because it produces the prosurvival sphingosine 1-phosphate, and reduces the content of both ceramide and sphingosine, the proapoptotic sphingolipids. Sphingosine kinase-1 controls the levels of sphingolipids having opposite effects on cell survival/death, its gene was found to be of oncogenic nature, its mRNA is overexpressed in many solid tumors, its overexpression protects cells from apoptosis and its activity is decreased during anticancer treatments. Therefore, sphingosine kinase-1 appears to be a target of interest for therapeutic manipulation via its pharmacological inhibition. Strategies to kill tumor cells by increasing their ceramide and/or sphingosine content while blocking sphingosine 1-phosphate generation should have a favorable therapeutic index. PMID:17159597

  9. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  10. ADAM10 as a target for anti-cancer therapy.

    Science.gov (United States)

    Moss, Marcia L; Stoeck, Alexander; Yan, Wenbo; Dempsey, Peter J

    2008-02-01

    There is a great unmet medical need in the area of cancer treatment. A potential therapeutic target for intervention in cancer is ADAM10. ADAM10 is a disintegrin-metalloproteinase that processes membrane bound proteins from the cell surface to yield soluble forms. Pharmaceutical companies are actively seeking out inhibitors of ADAM10 for treatments in cancer as the enzyme is known to release the ErbB receptor, HER2/ErbB2 from the cell membrane, an event that is necessary for HER2 positive tumor cells to proliferate. ADAM10 is also capable of processing betacellulin indicating that an inhibitor could be used against EGFR/ErbB1 and/or HER4/ErbB4 receptor positive tumor cells that are betacellulin-dependent. ADAM10 is the principle sheddase for several other molecules associated with cancer proliferation, differentiation, adhesion and migration such as Notch, E-cadherin, CD44 and L1 adhesion molecule indicating that targeting ADAM10 with specific inhibitors could be beneficial. PMID:18289051

  11. Gli as a novel therapeutic target in malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Malignant pleural mesothelioma (MPM is a highly aggressive tumor with poor prognosis. Current treatment is rarely curative, thus novel meaningful therapies are urgently needed. Inhibition of Hedgehog (Hh signaling at the cell membrane level in several cancers has shown anti-cancer activity in recent clinical studies. Evidence of Hh-independent Gli activation suggests Gli as a more potent therapeutic target. The current study is aimed to evaluate the potential of Gli as a therapeutic target to treat MPM. The expression profiles of Gli factors and other Hh signaling components were characterized in 46 MPM patient tissue samples by RT-PCR and immunohistochemistry. Cultured cell lines were employed to investigate the requirement of Gli activation in tumor cell growth by inhibiting Gli through siRNA or a novel small molecule Gli inhibitor (Gli-I. A xenograft model was used to evaluate Gli-I in vivo. In addition, a side by side comparison between Gli and Smoothened (Smo inhibition was conducted in vitro using siRNA and small molecule inhibitors. Our study reported aberrant Gli1 and Gli2 activation in a large majority of tissues. Inhibition of Gli by siRNAs or Gli-I suppressed cell growth dramatically both in vitro and in vivo. Inhibition of Gli exhibited better cytotoxicity than that of Smo by siRNA and small molecule inhibitors vismodegib and cyclopamine. Combination of Gli-I and pemetrexed, as well as Gli-I and vismodegib demonstrated synergistic effects in suppression of MPM proliferation in vitro. In summary, Gli activation plays a critical role in MPM. Inhibition of Gli function holds strong potential to become a novel, clinically effective approach to treat MPM.

  12. Reinforcing targeted therapeutics with phenotypic stability factors.

    Science.gov (United States)

    Yaswen, Paul

    2014-01-01

    Deregulated cell cycle progression can often be traced to intrinsic defects in specific regulatory proteins in cancer cells. Knowledge of these primary defects has led to targeted approaches that exploit the defects and spare normal cells. However, the success of such targeted approaches is still hit-or-miss. Genetic and epigenetic variability inherent in most tumors often results in phenotypic heterogeneity that, in turn, results in de novo or acquired resistance to therapeutic agents. The ability of cells to compensate and adapt to the inhibition of a specific cell cycle mediator is not remarkable. What is novel and of great potential importance is that the ability of cells to exhibit such adaptability varies markedly. "Phenotypic stability factors" that restrict the ability of cells to undergo epithelial-mesenchymal transitions (EMT) may dictate the success or failure of targeted therapies by interfering with compensatory changes such as deregulation of CDK2 activity. Identification of existing and new agents that induce and maintain phenotypic stability factors will inform and enable synergistic approaches to the eradication of even the most aggressive tumors. PMID:25483053

  13. RasGRPs are targets of the anti-cancer agent ingenol-3-angelate.

    Directory of Open Access Journals (Sweden)

    Xiaohua Song

    Full Text Available Ingenol-3-angelate (I3A is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A's effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP's C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin's lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.

  14. Importins and exportins as therapeutic targets in cancer.

    Science.gov (United States)

    Mahipal, Amit; Malafa, Mokenge

    2016-08-01

    The nuclear transport proteins, importins and exportins (karyopherin-β proteins), may play an important role in cancer by transporting key mediators of oncogenesis across the nuclear membrane in cancer cells. During nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators during the processing of these proteins, aberrant cellular growth signaling and inactivation of apoptosis can occur, both critical to growth and development of tumors. Karyopherin-β proteins bind to these cargo proteins and RanGTP for active transport across the nuclear membrane through the nuclear pore complex. Importins and exportins are overexpressed in multiple tumors including melanoma, pancreatic, breast, colon, gastric, prostate, esophageal, lung cancer, and lymphomas. Furthermore, some of the karyopherin-β proteins such as exportin-1 have been implicated in drug resistance in cancer. Importin and exportin inhibitors are being considered as therapeutic targets against cancer and have shown preclinical anticancer activity. Moreover, synergistic activity has been observed with various chemotherapeutic and targeted agents. However, clinical development of the exportin-1 inhibitor leptomycin B was stopped due to adverse events, including vomiting, anorexia, and dehydration. Selinexor, a selective nuclear export inhibitor, is being tested in multiple clinical trials both as a single agent and in combination with chemotherapy. Selinexor has demonstrated clinical activity in multiple cancers, especially acute myelogenous leukemia and multiple myeloma. The roles of other importin and exportin inhibitors still need to be investigated clinically. Targeting the key mediators of nucleocytoplasmic transport in cancer cells represents a novel strategy in cancer intervention with the potential to significantly affect outcomes. PMID:27113410

  15. Liquid biopsy and therapeutic response: Circulating tumor cell cultures for evaluation of anticancer treatment

    Science.gov (United States)

    Khoo, Bee Luan; Grenci, Gianluca; Jing, Tengyang; Lim, Ying Bena; Lee, Soo Chin; Thiery, Jean Paul; Han, Jongyoon; Lim, Chwee Teck

    2016-01-01

    The lack of a robust anticancer drug screening system to monitor patients during treatment delays realization of personalized treatment. We demonstrate an efficient approach to evaluate drug response using patient-derived circulating tumor cell (CTC) cultures obtained from liquid biopsy. Custom microfabricated tapered microwells were integrated with microfluidics to allow robust formation of CTC clusters without pre-enrichment and subsequent drug screening in situ. Rapid feedback after 2 weeks promotes immediate intervention upon detection of drug resistance or tolerance. The procedure was clinically validated with blood samples (n = 73) from 55 patients with early-stage, newly diagnosed, locally advanced, or refractory metastatic breast cancer. Twenty-four of these samples were used for drug evaluation. Cluster formation potential correlated inversely with increased drug concentration and therapeutic treatment. This new and robust liquid biopsy technique can potentially evaluate patient prognosis with CTC clusters during treatment and provide a noninvasive and inexpensive assessment that can guide drug discovery development or therapeutic choices for personalized treatment.

  16. Targeting HCV Entry For Development of Therapeutics

    Directory of Open Access Journals (Sweden)

    Jeffrey F. McKelvy

    2010-08-01

    Full Text Available Recent progress in defining the molecular mechanisms of Hepatitis C Virus (HCV entry affords the opportunity to exploit new viral and host targets for therapeutic intervention. Entry inhibitors would limit the expansion of the infected cell reservoir, and would complement the many replication inhibitors now under development. The current model for the pathway of entry involves the initial docking of the virus onto the cell surface through interactions of virion envelope and associated low density lipoproteins (LDL with cell surface glycosaminoglycans and lipoprotein receptors, followed by more specific utilization with other hepatocyte membrane proteins: Scavenger Receptor Class B type 1 (SR-BI, CD81, Claudin 1 (CLDN1 and Occludin (OCLN. The use of blockers of these interactions, e.g. specific antibodies, suggests that inhibition of any one step in the entry pathway can inhibit infection. Despite this knowledge base, the tools for compound screening, HCV pseudoparticles (HCVpp and cell culture virus (HCVcc, and the ability to adapt them to industrial use are only recently available and as a result drug discovery initiatives are in their infancy. Several therapies aiming at modulating the virus envelope to prevent host cell binding are in early clinical testing. The first test case for blocking a cellular co-receptor is an SR-BI modulator. ITX 5061, an orally active small molecule, targets SR-BI and has shown potent antiviral activity against HCVpp and HCVcc. ITX 5061 has exhibited good safety in previous clinical studies, and is being evaluated in the clinic in chronic HCV patients and patients undergoing liver transplantation. Entry inhibitors promise to be valuable players in the future development of curative therapy against HCV.

  17. Ascaris lumbricoides: an overview of therapeutic targets.

    Science.gov (United States)

    Hagel, Isabel; Giusti, Tatiana

    2010-10-01

    A. lumbricoides is the largest of the common nematode parasites of man and has been associated with intestinal pathology, respiratory symptoms and malnutrition in children from endemic areas. Current anthelmintic treatments have proven to be safe. However, a reduced efficacy of single dose drugs has been reported. In veterinary practice, anthelmintic drug resistance is an irreversible problem. Thus, research and development of sensitive tools for early detection of drug resistance as well as new anthelmintic approaches are urgently needed. In this review, we summarized data providing information about current drug therapy against A. lumbricoides and other intestinal helminths, new drugs in experimental trials, future drugs perspectives and the identification of immunogenic parasite molecules that may be suitable vaccine targets. In addition to the WHO recommended drugs (albendazole, mebendazole, levamisole, and pyrantel pamoate), new anthelmintic alternatives such as tribendimidine and Nitazoxanide have proved to be safe and effective against A. lumbricoides and other soil-transmitted helminthiases in human trials. Also, some new drugs for veterinary use, monepantel and cyclooctadepsipeptides (e.g., PF1022A), will probably expand future drug spectrum for human treatments. The development of genomic technology has provided a great amount of available nematode DNA sequences, coupled with new gene function data that may lead to the identification of new drug targets through efficient mining of nematode genomic databases. On the other hand, the identification of nematode antigens involved in different parasite vital functions as well as immunomodulatory molecules in animals and humans may contribute to future studies of new therapeutic approaches. PMID:20701574

  18. Targeting and Therapeutic Peptides in Nanomedicine for Atherosclerosis

    OpenAIRE

    Chung, Eun Ji

    2016-01-01

    Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality, and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo. In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis are provided, including peptides designed for cellular targets such as ...

  19. GPR35 as a novel therapeutic target

    Directory of Open Access Journals (Sweden)

    GraemeMilligan

    2011-11-01

    Full Text Available G protein-coupled receptors (GPCRs remain the best studied class of cell surface receptors and the most tractable family of proteins for novel small molecule drug discovery. Despite this, a considerable number of GPCRs remain poorly characterised and in a significant number of cases, endogenous ligand(s that activate them remain undefined or of questionable physiological relevance. GPR35 was initially discovered over a decade ago but has remained an ‘orphan’ receptor. Recent publications have highlighted novel ligands, both endogenously produced and synthetic, which demonstrate significant potency at this receptor. Furthermore, evidence is accumulating which highlights potential roles for GPR35 in disease and therefore, efforts to characterise GPR35 more fully and develop it as a novel therapeutic target in conditions that range from diabetes, hypertension to asthma are increasing. Recently identified ligands have shown marked species selective properties, indicating major challenges for future drug development. As we begin to understand these issues, the continuing efforts to identify novel agonist and antagonist ligands for GPR35 will help to decipher its true physiological relevance; translating multiple assay systems in vitro, to animal disease systems in vivo and finally to man.

  20. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

    Science.gov (United States)

    Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

    2016-07-29

    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents. PMID:26193174

  1. Diabetic retinopathy and inflammation: Novel therapeutic targets

    Directory of Open Access Journals (Sweden)

    Sampathkumar Rangasamy

    2012-01-01

    Full Text Available Most anti-vascular endothelial growth factor (VEGF therapies in diabetic macular edema are not as robust as in proliferative diabetic retinopathy. Although the VEGF appears to be a good target in diabetic macular edema, the anti-VEGF therapies appear to be of transient benefit as the edema recurs within a few weeks, and repeated injections are necessary. There is new evidence that indicates ′retinal inflammation′ as an important player in the pathogenesis of diabetic retinopathy. There are common sets of inflammatory cytokines that are upregulated in both the serum and vitreous and aqueous samples, in subjects with diabetic retinopathy, and these cytokines can have multiple interactions to impact the pathogenesis of the disease. The key inflammatory events involved in the blood retinal barrier (BRB alteration appear to be: (1 Increased expression of endothelial adhesion molecules such as ICAM1, VCAM1, PECAM-1, and P-selectin, (2 adhesion of leukocytes to the endothelium, (3 release of inflammatory chemokines, cytokines, and vascular permeability factors, (4 alteration of adherens and tight junctional proteins between the endothelial cells, and (5 infiltration of leukocytes into the neuro-retina, resulting in the alteration of the blood retinal barrier (diapedesis. VEGF inhibition itself may not achieve neutralization of other inflammatory molecules involved in the inflammatory cascade of the breakdown of the BRB. It is possible that the novel selective inhibitors of the inflammatory cascade (like angiopoietin-2, TNFα, and chemokines may be useful therapeutic agents in the treatment of diabetic macular edema (DME, either alone or in combination with the anti-VEGF drugs.

  2. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  3. Probing the Small-Molecule Inhibition of an Anticancer Therapeutic Protein-Protein Interaction Using a Solid-State Nanopore.

    Science.gov (United States)

    Kwak, Dong-Kyu; Chae, Hongsik; Lee, Mi-Kyung; Ha, Ji-Hyang; Goyal, Gaurav; Kim, Min Jun; Kim, Ki-Bum; Chi, Seung-Wook

    2016-05-01

    Nanopore sensing is an emerging technology for the single-molecule-based detection of various biomolecules. In this study, we probed the anticancer therapeutic p53 transactivation domain (p53TAD)/MDM2 interaction and its inhibition with a small-molecule MDM2 antagonist, Nutlin-3, using low-noise solid-state nanopores. Although the translocation of positively charged MDM2 through a nanopore was detected at the applied negative voltage, this MDM2 translocation was almost completely blocked upon formation of the MDM2/GST-p53TAD complex owing to charge conversion. In combination with NMR data, the nanopore measurements showed that the addition of Nutlin-3 rescued MDM2 translocation, indicating that Nutlin-3 disrupted the MDM2/GST-p53TAD complex, thereby releasing MDM2. Taken together, our results reveal that solid-state nanopores can be a valuable platform for the ultrasensitive, picomole-scale screening of small-molecule drugs against protein-protein interaction (PPI) targets. PMID:27038437

  4. HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor.

    Science.gov (United States)

    Calce, Enrica; Monfregola, Luca; Saviano, Michele; De Luca, Stefania

    2015-01-01

    HER2 receptor, for its involvement in tumorigenesis, has been largely studied as topic in cancer research. In particular, the employment of trastuzumab (Herceptin), a humanized anti-HER2 antibody, showed several clinical benefits in the therapy against the breast cancer. Moreover, for its accessible extracellular domain, this receptor is considered an ideal target to deliver anticancer drugs for the receptormediated anticancer therapy. By now, monoclonal antibody and its fragments, affibody, and some peptides have been employed as targeting agents in order to deliver various drugs to HER2 positive tumor cells. In particular, the ability to perform a fast and reliable screening of a large number of peptide molecules would make possible the selection of highly specific compounds to the receptor target. In this regard, the availability of preparing a simplified synthetic model which is a good mimetic of the receptor target and can be used in a reliable screening method of ligands would be of a strategic importance for the development of selective HER2-targeting peptide molecules. Herein, we illustrate the importance of HER2-targeted anticancer therapies. We also report on a synthetic and effective mimetic of the receptor, which revealed to be a useful tool for the selection of specific HER2 ligands. PMID:25994863

  5. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...

  6. Cell Targeting in Anti-Cancer Gene Therapy

    OpenAIRE

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene th...

  7. Targeted alpha anticancer therapies: update and future prospects

    Directory of Open Access Journals (Sweden)

    Allen BJ

    2014-11-01

    Full Text Available Barry J Allen,1,2 Chen-Yu Huang,3 Raymond A Clarke2 1Faculty of Physics, University of Sydney, Sydney, NSW, Australia; 2Faculty of Medicine, Ingham Institute, University of Western Sydney, Liverpool, NSW, Australia; 3Central Clinical School, University of Sydney, Sydney, NSW, AustraliaAbstract: Targeted alpha therapy (TAT is an emerging option for local and systemic cancer treatment. Preclinical research and clinical trials show that alpha-emitting radionuclides can kill targeted cancer cells while sparing normal cells, thus reducing toxicity. 223RaCl2 (Xofigo® is the first alpha emitting radioisotope to gain registration in the US for palliative therapy of prostate cancer bone metastases by indirect physiological targeting. The alpha emitting radioisotopes 211At, 213Bi, 225Ac and 227Th are being used to label targeting vectors such as monoclonal antibodies for specific cancer therapy indications. In this review, safety and tolerance aspects are considered with respect to microdosimetry, specific energy, Monte Carlo model calculations, biodosimetry, equivalent dose and mutagenesis. The clinical efficacy of TAT for solid tumors may also be enhanced by its capacity for tumor anti-vascular (TAVAT effects. This review emphasizes key aspects of TAT research with respect to the PAI2-uPAR complex and the monoclonal antibodies bevacizumab, C595 and J591. Clinical trial outcomes are reviewed for neuroendocrine tumors, leukemia, glioma, melanoma, non-Hodgkins lymphoma, and prostate bone metastases. Recommendations and future directions are proposed.Keywords: biodosimetry, microdosimetry, mutagenesis, PAI2, bevacizumab, C595, J591, tumors, cancer, metastases

  8. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    Science.gov (United States)

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-20

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided. PMID:26567482

  9. Supramolecular approach for target transport of photodynamic anticancer agents

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Kaplánek, R.; Bříza, T.; Králová, Jarmila; Martásek, P.; Král, V.

    2012-01-01

    Roč. 24, č. 2 (2012), s. 106-116. ISSN 1061-0278 R&D Projects: GA MŠk(CZ) LC06077; GA MŠk(CZ) 1M0520; GA ČR(CZ) GAP303/11/1291; GA ČR GA203/09/1311 Grant ostatní: MŠMT(CZ) MSM0021620806 Institutional research plan: CEZ:AV0Z50520514 Keywords : photodynamic therapy * photosensitisers * targeted transport * combination therapy * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.546, year: 2012

  10. Tumor Interstitial Fluid Pressure as an Early-Response Marker for Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Stephane Ferretti

    2009-09-01

    Full Text Available Solid tumors have a raised interstitial fluid pressure (IFP due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days or later (6 or 7 days lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P ≤ .005 correlated with late changes in tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  11. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  12. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  13. Application of CellDesigner to the Selection of Anticancer Drug Targets: Test Case using P53

    OpenAIRE

    Isea, Raul; Hoebeke, Johan; Mayo, Rafael; Alvarez, Fernando; Holmes, David S.

    2013-01-01

    Cancer is a disease involving many genes, consequently it has been difficult to design anticancer drugs that are efficacious over a broad range of cancers. The robustness of cellular responses to gene knockout and the need to reduce undesirable side effects also contribute to the problem of effective anti-cancer drug design. To promote the successful selection of drug targets, each potential target should be subjected to a systems biology scrutiny to locate effective and specific targets whil...

  14. The Potential of Minipigs in the Development of Anticancer Therapeutics: Species Comparison and Examples of Special Applications.

    Science.gov (United States)

    Mahl, Andreas; Dincer, Zuhal; Heining, Peter

    2016-04-01

    Minipigs are increasingly being used as an alternative to dog or monkey in nonclinical safety testing of pharmaceuticals since they share similar anatomical and physiological characteristics to humans. Integrative assessment of pharmacodynamic and pharmacokinetic data sets of drug candidates fromin silico,in vitro, andin vivoinvestigations form the basis for selecting the most relevant nonrodent species for toxicology studies. Developing anticancer therapeutics represents a special challenge for species selection due to their effects on multiple organ systems. The toxicological profile of anticancer drugs can be associated with steep dose-response curves, especially due to dose-limiting toxicity on the alimentary, hematopoietic, and immune systems. Selection of an appropriate species for toxicology studies is of importance to avoid an inappropriately low (without benefit for the late-stage cancer patient) or high clinical starting dose (with a risk of unexpected adverse reactions). Although the minipig has been the preferred species to develop drugs applied topically, it is only rarely used in anticancer drug development compared to dog and monkey. In this context, we discuss the potential of minipigs in anticancer drug development with examples of programs for oral and dermal administration, intravascular application in drug-eluting stents, and local chemotherapy (chemoembolization). PMID:26698323

  15. Gastrointestinal stromal tumor and its targeted therapeutics

    Institute of Scientific and Technical Information of China (English)

    Jheri Dupart; Wei Zhang; Jonathan C. Trent

    2011-01-01

    Over the past 60 years, investigators of basic science, pathology, and clinical medicine have studied gastrointestinal stromal tumor (GIST) and made minor advances in patient care. Recent discoveries have led to an understanding of the biological rote of KIT and platelet-derived growth factor receptor-α in GIST and the development of the tyrosine kinase inhibitor imatinib mesylate (Gleevec, formerly STI-571), one of the most exciting examples of targeted therapy to date. The success of targeted therapy in GIST has lead to new developments in our understanding of the medical and surgical management of the disease. Intense study of GIST may lead to new paradigms in the management of cancer.

  16. Antibody therapeutics targeting ion channels:are we there yet?

    Institute of Scientific and Technical Information of China (English)

    Han SUN; Min LI

    2013-01-01

    The combination of technological advances,genomic sequences and market success is catalyzing rapid development of antibodybased therapeutics.Cell surface receptors and ion channel proteins are well known drug targets,but the latter has seen less success.The availability of crystal structures,better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases.

  17. Antibody therapeutics targeting ion channels: are we there yet?

    Science.gov (United States)

    Sun, Han; Li, Min

    2013-01-01

    The combination of technological advances, genomic sequences and market success is catalyzing rapid development of antibody-based therapeutics. Cell surface receptors and ion channel proteins are well known drug targets, but the latter has seen less success. The availability of crystal structures, better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases. PMID:23381110

  18. Targeting of microRNAs for therapeutics

    DEFF Research Database (Denmark)

    Stenvang, Jan; Lindow, Morten; Kauppinen, Sakari

    miRNAs (microRNAs) comprise a class of small endogenous non-coding RNAs that post-transcriptionally repress gene expression by base-pairing with their target mRNAs. Recent evidence has shown that miRNAs play important roles in a wide variety of human diseases, such as viral infections, cancer and...

  19. Novel therapeutic targets for erectile dysfunction.

    Science.gov (United States)

    Williams, Steve K; Melman, Arnold

    2012-01-01

    Erectile dysfunction (ED) is a neurovascular phenomenon modulated by hormonal, local biochemical, and biomechanical/structural factors of the penis. The success of the orally active phosphodiesterase inhibitors for the treatment of ED has boosted research activities into the physiology of the erectile mechanism. Peripheral intracellular signal transduction in the penis as well as central brain and spinal cord pathways controlling penile erection have been investigated and are now better understood. The results of this ongoing research have provided the basis for the development and introduction of several novel therapeutic modalities into the management of ED. Many novel pharmacotherapeutic approaches under development including the use of melanocortins and Rho-kinase inhibitors as well as the introduction of gene therapy and tissue engineering have demonstrated efficacy in animal as well as early human trials. This review describes the major new and evolving pharmacological advances in the field of oral pharmacotherapy for the treatment of male ED. PMID:22154078

  20. The prince and the pauper. A tale of anticancer targeted agents.

    Science.gov (United States)

    Dueñas-González, Alfonso; García-López, Patricia; Herrera, Luis Alonso; Medina-Franco, Jose Luis; González-Fierro, Aurora; Candelaria, Myrna

    2008-01-01

    Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited

  1. The prince and the pauper. A tale of anticancer targeted agents

    Directory of Open Access Journals (Sweden)

    González-Fierro Aurora

    2008-10-01

    Full Text Available Abstract Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials

  2. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  3. New Therapeutic Targets for Mood Disorders

    Directory of Open Access Journals (Sweden)

    Rodrigo Machado-Vieira

    2010-01-01

    Full Text Available Existing pharmacological treatments for bipolar disorder (BPD and major depressive disorder (MDD are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1 glycogen synthase kinase-3 (GSK-3 and protein kinase C (PKC, (2 the purinergic system, (3 histone deacetylases (HDACs, (4 the melatonergic system, (5 the tachykinin neuropeptides system, (6 the glutamatergic system, and (7 oxidative stress and bioenergetics. The paper reviews data on new compounds that have shown antimanic or antidepressant effects in subjects with mood disorders, or similar effects in preclinical animal models. Overall, an improved understanding of the neurobiological underpinnings of mood disorders is critical in order to develop targeted treatments that are more effective, act more rapidly, and are better tolerated than currently available therapies.

  4. Potential new therapeutic targets for pathological pruritus.

    Science.gov (United States)

    Kuraishi, Yasushi

    2013-01-01

    Very few approved medications are indicated for the treatment of pruritus, and drug development for pruritic diseases is awaited. During the past two decades, progress has been made in understanding the molecular basis of the physiology and pathophysiology of pruritus. Newly identified potential targets for pathological pruritus include receptors (histamine H4 receptor, leukotriene B4 receptors, interleukin-31 receptor A, bombesin BB2 receptor, toll-like receptor 3, α-adrenoceptor, and opioid μ- and κ-receptors), channels (transient receptor potential (TRP) V3 and TRPA1 channels), and enzymes (histidine decarboxylase, sphingomyelin glucosylceramide deacylase, 5-lipoxygenase, leukotriene A4 hydrolase, and autotaxin). The development of specific, effective blockers and agonists/antagonists of these targets is awaited. PMID:23902965

  5. GPCRs as potential therapeutic targets in preeclampsia

    OpenAIRE

    McGuane, JT; Conrad, KP

    2012-01-01

    Preeclampsia is an important obstetric complication that arises in 5% of women after the 20th week of gestation, for which there is no specific therapy and no cure. Although much of the recent investigation in this field has focused on soluble forms of the angiogenic membrane receptor tyrosine kinase Flt1 and the transforming growth factor β co-receptor Endoglin, there is significant clinical potential for several GPCR targets and their agonists or antagonists in preeclampsia. In this review,...

  6. New Therapeutic Targets for Mood Disorders

    OpenAIRE

    Rodrigo Machado-Vieira; Giacomo Salvadore; Nancy DiazGranados; Lobna Ibrahim; David Latov; Cristina Wheeler-Castillo; Jacqueline Baumann; Henter, Ioline D.; Carlos A. Zarate

    2010-01-01

    Existing pharmacological treatments for bipolar disorder (BPD) and major depressive disorder (MDD) are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1) glycogen synthase kinase-3 (GSK-3) and protein kinase C (PKC), (2) the purinergic system, (3) histone deacetylases (HDACs), (4) the melatonergic system, (5) the tachykinin neuropepti...

  7. Utility of network integrity methods in therapeutic target identification.

    Science.gov (United States)

    Peng, Qian; Schork, Nicholas J

    2014-01-01

    Analysis of the biological gene networks involved in a disease may lead to the identification of therapeutic targets. Such analysis requires exploring network properties, in particular the importance of individual network nodes (i.e., genes). There are many measures that consider the importance of nodes in a network and some may shed light on the biological significance and potential optimality of a gene or set of genes as therapeutic targets. This has been shown to be the case in cancer therapy. A dilemma exists, however, in finding the best therapeutic targets based on network analysis since the optimal targets should be nodes that are highly influential in, but not toxic to, the functioning of the entire network. In addition, cancer therapeutics targeting a single gene often result in relapse since compensatory, feedback and redundancy loops in the network may offset the activity associated with the targeted gene. Thus, multiple genes reflecting parallel functional cascades in a network should be targeted simultaneously, but require the identification of such targets. We propose a methodology that exploits centrality statistics characterizing the importance of nodes within a gene network that is constructed from the gene expression patterns in that network. We consider centrality measures based on both graph theory and spectral graph theory. We also consider the origins of a network topology, and show how different available representations yield different node importance results. We apply our techniques to tumor gene expression data and suggest that the identification of optimal therapeutic targets involving particular genes, pathways and sub-networks based on an analysis of the nodes in that network is possible and can facilitate individualized cancer treatments. The proposed methods also have the potential to identify candidate cancer therapeutic targets that are not thought to be oncogenes but nonetheless play important roles in the functioning of a cancer

  8. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Simon A. Young

    2012-01-01

    Full Text Available Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

  9. Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moien; Parhamifar, Ladan; Ahmadvand, Davoud;

    2012-01-01

    Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and...... intracellular drug release processes can be optimized through modifications of the drug carrier physicochemical properties, which include hydrodynamic size, shape, composition and surface characteristics. Through such modifications together with understanding of macrophage cell biology, targeting may be aimed...... at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.Copyright © 2012 S. Karger AG, Basel...

  10. Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells.

    Science.gov (United States)

    Justilien, Verline; Fields, Alan P

    2015-02-01

    The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. Aberrant activation of Hh signaling is implicated in multiple aspects of transformation, including the maintenance of the cancer stem cell (CSC) phenotype. Preclinical studies indicate that CSCs from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics block many aspects of transformation attributed to CSCs, including drug resistance, relapse, and metastasis. However, to date, Hh inhibitors, specifically those targeting Smoothened [such as vismodegib, BMS-833923, saridegib (IPI-926), sonidegib/erismodegib (LDE225), PF-04449913, LY2940680, LEQ 506, and TAK-441], have demonstrated good efficacy as monotherapy in patients with basal cell carcinoma and medulloblastoma, but have shown limited activity in other tumor types. This lack of success is likely due to many factors, including a lack of patient stratification in early trials, cross-talk between Hh and other oncogenic signaling pathways that can modulate therapeutic response, and a limited knowledge of Hh pathway activation mechanisms in CSCs from most tumor types. Here, we discuss Hh signaling mechanisms in the context of human cancer, particularly in the maintenance of the CSC phenotype, and consider new therapeutic strategies that hold the potential to expand considerably the scope and therapeutic efficacy of Hh-directed anticancer therapy. PMID:25646180

  11. Is Estrogen a Therapeutic Target for Glaucoma?

    Science.gov (United States)

    Dewundara, Samantha S; Wiggs, Janey L; Sullivan, David A; Pasquale, Louis R

    2016-01-01

    endothelial nitric oxide synthase, a gene receptive to estrogen regulation, are associated with glaucoma. The study concluded that increasing evidence suggests that lifetime exposure to estrogen may alter the pathogenesis of glaucoma. Estrogen exposure may have a neuroprotective effect on the progression of POAG but further studies need to confirm this finding. The role of sex-specific preventive and therapeutic treatment may be on the horizon. PMID:26959139

  12. RhoC a new target for therapeutic vaccination against metastatic cancer

    DEFF Research Database (Denmark)

    Wenandy, L.; Sorensen, R.B.; Straten, P.T.;

    2008-01-01

    Most cancer deaths are due to the development of metastases. Increased expression of RhoC is linked to enhanced metastatic potential in multiple cancers. Consequently, the RhoC protein is an attractive target for drug design. The clinical application of immunotherapy against cancer is rapidly...... moving forward in multiple areas, including the adoptive transfer of anti-tumor-reactive T cells and the use of "therapeutic" vaccines. The over-expression of RhoC in cancer and the fact that immune escape by down regulation or loss of expression of this protein would reduce the morbidity and mortality...... of cancer makes RhoC a very attractive target for anti-cancer immunotherapy. Herein, we describe an HLA-A3 restricted epitope from RhoC, which is recognized by cytotoxic T cells. Moreover, RhoC-specific T cells show cytotoxic potential against HLA-matched cancer cells of different origin. Thus, Rho...

  13. Factor XI as a Therapeutic Target.

    Science.gov (United States)

    Gailani, David; Gruber, Andras

    2016-07-01

    Factor XIa is a plasma serine protease that contributes to thrombin generation primarily through proteolytic activation of factor IX. Traditionally considered part of the intrinsic pathway of coagulation, several lines of evidence now suggest that factor XIa serves as an interface between the vitamin-K-dependent thrombin generation mechanism and the proinflammatory kallikrein-kinin system, allowing the 2 systems to influence each other. Work with animal models and results from epidemiological surveys of human populations support a role for factor XIa in thromboembolic disease. These data and the clinical observation that deficiency of factor XI, the zymogen of factor XIa, produces a relatively mild bleeding disorder suggest that drugs targeting factor XI or XIa could produce an antithrombotic effect while leaving hemostasis largely intact. Results of a recent trial comparing antisense-induced factor XI reduction to standard-dose low molecular-weight heparin as prophylaxis for venous thrombosis during knee replacement are encouraging in this regard. Here, we discuss recent findings on the biochemistry, physiology, and pathology of factor XI as they relate to thromboembolic disease. PMID:27174099

  14. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic. PMID:23267123

  15. Non-coding RNAs as therapeutic targets in hepatocellular cancer.

    Science.gov (United States)

    Braconi, Chiara; Patel, Tushar

    2012-11-01

    Hepatocellular carcinoma (HCC) is a common malignancy that affects a large number of patients worldwide, with an increasing incidence in the United States and Europe. The therapies that are currently available for patients with inoperable HCC have limited benefits. Although molecular targeted therapies against selected cell signaling pathways have shown some promising results, their impact has been minimal. There is a need to identify and explore other targets for the development of novel therapeutics. Several non-protein coding RNAs (ncRNA) have recently been implicated in hepatocarcinogenesis and tumor progression. These ncRNA genes represent promising targets for cancer. However, therapeutic targeting of ncRNA genes has not been employed for HCC. The use of antisense oligonucleotides and viral vector delivery approaches have been shown to be feasible approaches to modulate ncRNA expression. HCC is an optimal cancer to evaluate novel RNA based therapeutic approaches because of the potential of effective delivery and uptake of therapeutic agents to the liver. In this review, we discuss selected ncRNA that could function as potential targets in HCC treatment and outline approaches to target ncRNA expression. Future challenges include the need to achieve site-specific targeting with acceptable safety and efficacy. PMID:22873215

  16. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  17. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    Science.gov (United States)

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs. PMID:27263934

  18. ENaCs and ASICs as therapeutic targets

    OpenAIRE

    Qadri, Yawar J.; Rooj, Arun K.; Fuller, Catherine M.

    2012-01-01

    The epithelial Na+ channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in ma...

  19. Critical questions in development of targeted nanoparticle therapeutics

    OpenAIRE

    Korsmeyer, Richard

    2016-01-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is ‘Engineer Better Medicines’. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places...

  20. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria.

    Science.gov (United States)

    Dörsam, Bastian; Fahrer, Jörg

    2016-02-01

    The endogenous disulfide α-lipoic acid (LA) is an essential mitochondrial co-factor. In addition, LA and its reduced counterpart dihydro lipoic acid form a potent redox couple with antioxidative functions, for which it is used as dietary supplement and therapeutic. Recently, it has gained attention due to its cytotoxic effects in cancer cells, which is the key aspect of this review. We initially recapitulate the dietary occurrence, gastrointestinal absorption and pharmacokinetics of LA, illustrating its diverse antioxidative mechanisms. We then focus on its mode of action in cancer cells, in which it triggers primarily the mitochondrial pathway of apoptosis, whereas non-transformed primary cells are hardly affected. Furthermore, LA impairs oncogenic signaling and displays anti-metastatic potential. Novel LA derivatives such as CPI-613, which target mitochondrial energy metabolism, are described and recent pre-clinical studies are presented, which demonstrate that LA and its derivatives exert antitumor activity in vivo. Finally, we highlight clinical studies currently performed with the LA analog CPI-613. In summary, LA and its derivatives are promising candidates to complement the arsenal of established anticancer drugs due to their mitochondria-targeted mode of action and non-genotoxic properties. PMID:26604131

  1. Elements toward novel therapeutic targeting of the adrenergic system.

    Science.gov (United States)

    Ghanemi, Abdelaziz; Hu, Xintian

    2015-02-01

    Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological properties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different examples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neurosciences with pharmacology. PMID:25481798

  2. A Current Review of Targeted Therapeutics for Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Susana M. Campos

    2010-01-01

    Full Text Available Difficult to detect, ovarian cancer typically presents at an advanced stage. Significant progress has been achieved in the treatment of ovarian cancer with therapeutics focused on DNA replication or cell division. However, despite sensitivity to induction chemotherapy the majority of patients will develop recurrent disease. Conventional agents for recurrent disease offer little in terms of long-term responses. Various targeted therapeutics have been explored in the management of ovarian cancer. These include monoclonal antibodies to epidermal growth factor receptors, small molecule tyrosine kinase inhibitors, monoclonal antibodies directed at the vascular endothelial growth factor (bevacizumab, and the small tyrosine kinase inhibitors that target the vascular endothelial growth factor receptor. Recently, several other agents have come forth as potential therapeutic agents in the management of ovarian cancer. These include monoclonal antibodies to the folate receptor, triple angiokinase inhibitors, PARP inhibitors, aurora kinase inhibitors, inhibitors of the Hedgehog pathway, folate receptor antagonists, and MTOR inhibitors.

  3. Myostatin as a therapeutic target in Amyotrophic lateral sclerosis.

    Science.gov (United States)

    Walsh, Frank S; Rutkowski, Julia Lynn

    2012-11-01

    Amyotrophic Lateral Sclerosis is a devastating neurological disease that is inevitably fatal after 3-5years duration. Treatment options are minimal and as such new therapeutic modalities are required. In this review, we discuss the role of the myostatin pathway as a modulator of skeletal muscle mass and therapeutic approaches using biological based therapies. Both monoclonal antibodies to myostatin and a soluble receptor decoy to its high affinity receptor have been used in clinical trials of neuromuscular diseases and while there have been efficacy signals with the latter approach there have also been safety issues. Our approach is to target the high affinity receptor-binding site on myostatin and to develop a next generation set of therapeutic reagents built on a novel protein scaffold. This is the natural single domain VNAR found in sharks which is extremely versatile and has the ability to develop products with superior properties compared to existing therapeutics. PMID:22841860

  4. Adenosine and its receptors as therapeutic targets: An overview

    OpenAIRE

    Sachdeva, Sakshi; Gupta, Monika

    2012-01-01

    The main goal of the authors is to present an overview of adenosine and its receptors, which are G-protein coupled receptors. The four known adenosine receptor subtypes are discussed along with the therapeutic potential indicating that these receptors can serve as targets for various dreadful diseases.

  5. AMPA Receptors as Therapeutic Targets for Neurological Disorders.

    Science.gov (United States)

    Lee, Kevin; Goodman, Lucy; Fourie, Chantelle; Schenk, Susan; Leitch, Beulah; Montgomery, Johanna M

    2016-01-01

    Almost every neurological disease directly or indirectly affects synapse function in the brain. However, these diseases alter synapses through different mechanisms, ultimately resulting in altered synaptic transmission and/or plasticity. Glutamate is the major neurotransmitter that mediates excitatory synaptic transmission in the brain through activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors. These receptors have therefore been identified as a target for the development of therapeutic treatments for neurological disorders including epilepsy, neurodegenerative diseases, autism, and drug addiction. The fact that AMPA receptors play a dominant role throughout the brain raises the significant challenge of selectively targeting only those regions affected by disease, and clinical trials have raised doubt regarding the feasibility of specifically targeting AMPA receptors for new therapeutic options. Benzamide compounds that act as positive allosteric AMPA receptor modulators, known as AMPAkines, can act on specific brain regions and were initially proposed to revolutionize the treatment of cognitive deficits associated with neurological disorders. Their therapeutic potential has since declined due to inconsistent results in clinical trials. However, recent advances in basic biomedical research are significantly increasing our knowledge of AMPA receptor structure, binding sites, and interactions with auxiliary proteins. In particular, the large complex of postsynaptic proteins that interact with AMPA receptor subunits have been shown to control AMPA receptor insertion, location, pharmacology, synaptic transmission, and plasticity. These proteins are now being considered as alternative therapeutic target sites for modulating AMPA receptors in neurological disorders. PMID:26920691

  6. Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting.

    Science.gov (United States)

    Cuvillier, Olivier; Ader, Isabelle; Bouquerel, Pierre; Brizuela, Leyre; Malavaud, Bernard; Mazerolles, Catherine; Rischmann, Pascal

    2010-06-01

    Sphingolipid metabolites are critical to the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation, cell survival and angiogenesis. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites. Sphingosine kinase-1 is a crucial regulator of this two-pan balance, because its produces the pro-survival and pro-angiogenic sphingosine 1-phosphate and decreases the amount of both ceramide and sphingosine, the pro-apoptotic sphingolipids. Moreover, its gene is oncogenic, its mRNA is overproduced in several solid tumors, its overexpression protects cells from apoptosis, and its activity is down-regulated by anti-cancer treatments. Therefore, the sphingosine kinase-1/sphingosine 1-phosphate signaling pathway appears to be a target of interest for therapeutic manipulation. PMID:20302564

  7. EGFR-Targeted Therapeutics: Focus on SCCHN and NSCLC

    Directory of Open Access Journals (Sweden)

    Martin Sattler

    2008-01-01

    Full Text Available Cancers of the head and neck and of the lung are associated with high morbidity and mortality rates that have remained relatively unchanged for more than 3 decades, despite advances in radiation therapies and chemotherapies over the same time. It is generally believed that the efficacy of standard therapy regimens has reached a plateau for these cancers. The discovery of specific aberrant molecular signaling pathways in solid tumors has afforded promising new directions for newer “targeted” cancer therapeutics. Among these, the epidermal growth factor receptor (EGFR shows promise as a therapeutic target. Clinical studies have demonstrated that this targeted approach provides clinically meaningful benefit. This article reviews EGFR-targeted therapies in use and in development, with a focus on the role of EGFR in the pathophysiology of head and neck and lung cancer, and new concepts being investigated to improve outcomes with these agents.

  8. Breast cancer stem cells, EMT and therapeutic targets

    International Nuclear Information System (INIS)

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements

  9. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  10. Individualization of anticancer therapy; molecular targets of novel drugs in oncology

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2012-11-01

    Full Text Available Deregulation of cellular signal transduction, caused by gene mutations, has been recognized as a basic factor of cancer initiation, promotion and progression. Thus, the ability to control the activity of overstimulated signal molecules by the use of appropriate inhibitors became the idea of targeted cancer therapy, which has provided an effective tool to normalize the molecular disorders in malignant cells and to treat certain types of cancer. The molecularly targeted drugs are divided into two major pharmaceutical classes: monoclonal antibodies and small-molecule kinase inhibitors. This review presents a summary of their characteristics, analyzing their chemical structures, specified molecular targets, mechanisms of action and indications for use. Also the molecules subjected to preclinical trials or phase I, II and III clinical trials evaluating their efficiency and safety are presented. Moreover, the article discusses further perspectives for development of targeted therapies focusing on three major directions: systematic searching and discovery of new targets that are oncogenic drivers, improving the pharmacological properties of currently known drugs, and developing strategies to overcome drug resistance. Finally, the role of proper pharmacodiagnostics as a key to rational anticancer therapy has been emphasized since the verification of reliable predictive biomarkers is a basis of individualized medicine in oncology. 

  11. Antitumor efficacy of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126

    International Nuclear Information System (INIS)

    Purpose: The present report reviews the preclinical data on combined chemotherapy/vascular targeting agent treatments. Basic principles are illustrated in studies evaluating the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) when combined with the anticancer drug cisplatin in experimental rodent (KHT sarcoma) and human renal (Caki-1) tumor models. Methods and Materials: C3H/HeJ and NCR/nu-nu mice bearing i.m. tumors were injected i.p. with ZD6126 (0-150 mg/kg) or cisplatin (0-20 mg/kg) either alone or in combination. Tumor response to treatment was assessed by clonogenic cell survival. Results: Treatment with ZD6126 was found to damage existing neovasculature, leading to a rapid vascular shutdown. Histologic evaluation showed dose-dependent morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. ZD6126 doses that led to pathophysiologic effects also enhanced the tumor cell killing of cisplatin when administered either 24 h before or 1-24 h after chemotherapy. In both tumor models, the administration of a 150 mg/kg dose of ZD6126 1 h after a range of doses of cisplatin resulted in an increase in tumor cell kill 10-500-fold greater than that seen with chemotherapy alone. In contrast, the inclusion of the antivascular agent did not increase bone marrow stem cell toxicity associated with this anticancer drug. Conclusion: The results obtained in the KHT and Caki-1 tumor models indicate that ZD6126 effectively enhanced the antitumor effects of cisplatin therapy. These findings are representative of the marked enhancements generally observed when vascular targeting agents are combined with chemotherapy in solid tumor therapy

  12. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Shashwat S; Chen, D.-H. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: chendh@mail.ncku.edu.tw

    2008-07-02

    A novel magnetic nanocarrier (CD-GAMNPs) was fabricated for targeted anticancer drug delivery by grafting cyclodextrin (CD) onto gum arabic modified magnetic nanoparticles (GAMNPs) using hexamethylene diisocyanate (HMDI) as a linker. Analyses by transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the product had a mean diameter of 17.1 nm and a mean hydrodynamic diameter of 44.1 nm. The CD grafting was confirmed by Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) indicated that the amount of CD grafted on the GAMNPs was 16.8 mg g{sup -1}. The study on the loading of anticancer drug all-trans-retinoic acid (retinoic acid) revealed that the newly fabricated magnetic nanocarrier possessed a considerably higher adsorption capability as compared to GAMNPs due to the special hydrophobic cavity structure of CD, which could act as a host-guest complex with retinoic acid. Furthermore, it was found that the complexation of CD-GAMNPs with retinoic acid was exothermic and the presence of a surfactant (sodium dodecyl sulfate) led to the decrease in the inclusion of retinoic acid because the linear structure of sodium dodecyl sulfate made it easier to enter the cavity of CD as compared to less linear retinoic acid. In addition, the in vitro release profile of retinoic acid from CD-GAMNPs was characterized by an initial fast release followed by a delayed release phase.

  13. Toward discovering new anti-cancer agents targeting topoisomerase IIα: a facile screening strategy adaptable to high throughput platform.

    Directory of Open Access Journals (Sweden)

    Yu-Shih Lin

    Full Text Available Topoisomerases are a family of vital enzymes capable of resolving topological problems in DNA during various genetic processes. Topoisomerase poisons, blocking reunion of cleaved DNA strands and stabilizing enzyme-mediated DNA cleavage complex, are clinically important antineoplastic and anti-microbial agents. However, the rapid rise of drug resistance that impedes the therapeutic efficacy of these life-saving drugs makes the discovering of new lead compounds ever more urgent. We report here a facile high throughput screening system for agents targeting human topoisomerase IIα (Top2α. The assay is based on the measurement of fluorescence anisotropy of a 29 bp fluorophore-labeled oligonucleotide duplex. Since drug-stabilized Top2α-bound DNA has a higher anisotropy compared with free DNA, this assay can work if one can use a dissociating agent to specifically disrupt the enzyme/DNA binary complexes but not the drug-stabilized ternary complexes. Here we demonstrate that NaClO4, a chaotropic agent, serves a critical role in our screening method to differentiate the drug-stabilized enzyme/DNA complexes from those that are not. With this strategy we screened a chemical library of 100,000 compounds and obtained 54 positive hits. We characterized three of them on this list and demonstrated their effects on the Top2α-mediated reactions. Our results suggest that this new screening strategy can be useful in discovering additional candidates of anti-cancer agents.

  14. RAS GTPase AS THE DRUG TARGET FOR ANTI-CANCER DESIGNING OF DRUG FROM TEMPLATE

    Directory of Open Access Journals (Sweden)

    A.S. Krishnapriya and P.K. Krishnan Namboori*

    2013-11-01

    Full Text Available Ras proteins in association with GTP and GDP act as a bio-molecular switch for signaling cell growth, cell survival and signal transduction. The presence of mutated Ras proteins is found to vary in different cancer types and the highest occurrence of about 90% is observed in pancreatic cancer. The Ras GTPase binding site is mainly involved in signal cell proliferation. Hence, this binding site has been considered as a major target. At the same time, targeting a specific protein and designing the drug molecule with respect to that is practically of no use as the target proteins are fast mutating. In this scenario, designing the template from the hot spot of proteins and fitting the template for all the target protein molecules seem to be a promising technique. The templates are initially screened on the basis of pharmacokinetic and pharmacodynamic requirements. Six templates are found to be satisfying conditions like IC50, lipophilic efficiency, ligand efficiency etc. and their efficiencies are compared with standard reference molecules. The computed enrichment factors support these templates to be leads for effective anti-cancer drugs subject to further in vitro and in vivo evaluation.

  15. Intracellular delivery of NF-κB small interfering RNA for modulating therapeutic activities of classical anti-cancer drugs in human cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Anthony Stanislaus

    2013-12-01

    Full Text Available Cervical cancer is the second most common cancer and fourth leading cause of cancer-related deaths among women. Advanced stage of the disease is treated with radiation therapy and chemotherapy with poor therapeutic outcome and adverse side effects. NFκB, a well-known transcription factor in the control of immunity and inflammation, has recently emerged as a key regulator of cell survival through induction of antiapoptotic genes. Many human cancers, including cervical carcinoma, constitutively express NF-κB and a blockade in expression of its subunit proteins through targeted knockdown of the gene transcripts with small interfering RNAs (siRNA could be an attractive approach in order to sensitize the cancer cells towards the widely used anti-cancer drugs. However, the inefficiency of the naked siRNA to cross the plasma membrane and its sensitiveness to nuclease-mediated degradation are the major challenges limiting the siRNA technology in therapeutic intervention. pH-sensitive carbonate apatite has been established as an efficient nano-carrier for intracellular delivery of siRNA, due to its strong electrostatic interaction with the siRNA, the desirable size distribution of the resulting siRNA complex for effective endocytosis and the ability of the endocytosed siRNA to be released from the degradable particles and escape the endosomes, thus leading to the effective knockdown of the target gene of cyclin B1 or ABCB1. Here, we report that carbonate apatite-facilitated delivery of the siRNA targeting NF-κB1 and NF-κB2 gene transcripts in HeLa, a human cervical adenocar- cinoma cell line expressing NF-κB, led to a synergistic effect in enhancement of chemosensitivity to doxorubicin, but apparently not to cisplatin or paclitaxel.

  16. Quadruplex-targeting anticancer drug BRACO-19 voltammetric and AFM characterization

    International Nuclear Information System (INIS)

    The quadruplex-targeting anticancer drug BRACO-19 adsorption and redox behaviour were investigated by atomic force microscopy (AFM) on a highly oriented pyrolytic graphite surface and by cyclic, differential pulse and square-wave voltammetry at a glassy carbon electrode. The AFM and voltammetric results demonstrated that the BRACO-19 orientation and strong adsorption, with the acridine aromatic core parallel or perpendicular to the carbon electrode surface depending on solution pH, directly influences the peak potentials and redox behaviour. BRACO-19 oxidation was a complex, pH-dependent, four-step electrode process. The first oxidation step was reversible, the second, third and fourth oxidation steps irreversible, and an electroactive irreversibly oxidized BRACO-19 oxidation product was formed. BRACO-19 reduction occurred in two irreversible, pH-independent steps. The proposed redox mechanisms are related to the pyrrolidine and acridine moieties

  17. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics.

    Science.gov (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J

    2016-04-01

    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. PMID:26988439

  18. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  19. Autophagy as a new therapeutic target in Duchenne muscular dystrophy

    OpenAIRE

    Palma, C.; F. Morisi; Cheli, S; S. Pambianco; Cappello, V; Vezzoli, M; Rovere-Querini, P; Moggio, M; Ripolone, M.; Francolini, M; Sandri, M.; Clementi, E

    2012-01-01

    A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a mo...

  20. Therapeutic Targeting of Hyaluronan in the Tumor Stroma

    OpenAIRE

    H. Michael Shepard; Frost, Gregory I.; Thompson, Curtis B.; Ping Jiang; Xiaoming Li; Anne Kultti

    2012-01-01

    The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associat...

  1. Macrophages associated with tumors as potential targets and therapeutic intermediates

    OpenAIRE

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-01-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In th...

  2. Targeting Mitochondria as Therapeutic Strategy for Metabolic Disorders

    OpenAIRE

    Daniela Sorriento; Antonietta Valeria Pascale; Rosa Finelli; Anna Lisa Carillo; Roberto Annunziata; Bruno Trimarco; Guido Iaccarino

    2014-01-01

    Mitochondria are critical regulator of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders. Defects in oxidative phosphorylation, ROS production, or mtDNA mutations are the main causes of mitochondrial dysfunction in many pathological conditions such as IR/diabetes, metabolic syndrome, cardiovascular diseases, and cancer. Thus, targeting mitochondria has been proposed as therapeutic approach for these conditions, leading to the development of small mol...

  3. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    OpenAIRE

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2012-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newe...

  4. Functions of astrocytes and their potential as therapeutic targets

    OpenAIRE

    Kimelberg, Harold K.; NEDERGAARD, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the s...

  5. Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo

    Science.gov (United States)

    Liu, Jinjian; Deng, Hongzhang; Liu, Qiang; Chu, Liping; Zhang, Yumin; Yang, Cuihong; Zhao, Xuefei; Huang, Pingsheng; Deng, Liandong; Dong, Anjie; Liu, Jianfeng

    2015-02-01

    The key to developing more nanocarriers for the delivery of drugs in clinical applications is to consider the route of the carrier from the administration site to the target tissue and to look for a simple design to complete this whole journey. We synthesized the amphiphilic copolymer cRGDfK-poly(ethylene glycol)-b-poly(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate) (cRGD-PETM) to construct multifunctional micelles. These micelles combined enhanced drug-loading efficiency with tumor-targeting properties, visual detection and controllable intracellular drug release, resulting in an improved chemotherapeutic effect in vivo. Doxorubicin (DOX) was encapsulated within the cRGD-PETM micelles as a model drug (termed as cRGD-PETM/DOX Ms). The size and morphology of the micelles were characterized systematically. As a result of the hydrophobic interaction and the π-π conjugation between the DOX molecules and the PTTMA copolymers, the cRGD-PETM/DOX Ms showed an excellent drug-loading capacity. The results of in vitro drug-release studies indicated that the cumulative release of DOX from cRGD-PETM/DOX Ms at pH 5.0 was twice that at pH 7.4. The results of fluorescent microscopic analysis showed that the cRGD-PETM/DOX Ms could be internalized by 4T1 and HepG2 cells via receptor-mediated endocytosis with rapid intracellular drug release, which resulted in increased cytotoxicity compared with free DOX. Ex vivo imaging studies showed that the cRGD-PETM/DOX Ms improved the accumulation and retention of the drug in tumor tissues. Studies of the in vivo anticancer effects showed that the cRGD-PETM/DOX Ms had a significantly higher therapeutic efficacy with lower side-effects than free DOX and PETM/DOX Ms. These results show that the multifunctional cRGD-PETM/DOX Ms have great potential as vehicles for the delivery of hydrophobic anticancer drugs.

  6. Critical questions in development of targeted nanoparticle therapeutics.

    Science.gov (United States)

    Korsmeyer, Richard

    2016-06-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is 'Engineer Better Medicines'. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that the

  7. Critical questions in development of targeted nanoparticle therapeutics

    Science.gov (United States)

    Korsmeyer, Richard

    2016-01-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is ‘Engineer Better Medicines’. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that

  8. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Oishi, Xin Wei Wang

    2011-01-01

    Full Text Available The cancer stem cell (CSC hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (ICC. It is believed that hepatic progenitor cells (HPCs could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC.Here we provide a brief

  9. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Hammad Shafiq

    2015-12-01

    Full Text Available Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

  10. Mesothelin as a Potential Therapeutic Target in Human Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Liping Yu, Mingqian Feng, Heungnam Kim, Yen Phung, David E. Kleiner, Gregory J. Gores, Min Qian, Xin Wei Wang, Mitchell Ho

    2010-01-01

    Full Text Available Background: Hepatocellular carcinoma (HCC and cholangiocarcinoma (CCA are the two most common primary liver cancers, yet there have been no significant advances in effective therapeutics. Mesothelin has been reported as a new therapeutic target in various types of cancer. Here, we investigated the expression of mesothelin in liver cancer and its potential role as a novel therapeutic target for immunotherapy.Methods: HCC and CCA specimens were examined by immunohistochemistry for mesothelin expression. Protein expression was assessed by immunoblotting and flow cytometry. The SS1P immunotoxin targeting mesothelin was evaluated in the well-established CCA cell lines HuCCT1, HuH-28, KMBC, KMCH, Mz-ChA-1 and OZ.Results: We showed strong immunochemical mesothelin staining in 33% of the surgically resected CCA specimens and 3 of 6 CCA cell lines (OZ, KMBC and KMCH. No mesothelin staining was found in HCC or normal liver tissue. Mesothelin was primarily localized to the cellular plasma membrane and the mature form (molecular weight, ~40 kDa was expressed at a high level in CCA tissues. Moreover, 22% of CCA specimens had a high mesothelin expression level which was comparable to the CCA cell line models. Interestingly, SS1P showed very high and specific growth inhibition when added to mesothelin-expressing CCA cells with IC50 values ranging from 0.5 to 11 ng/mL.Conclusions: Mesothelin is overexpressed in one-third of CCA tissues. SS1P targeting mesothelin reveals a remarkable single agent activity against CCA in vitro. These findings indicate a potential for SS1P in the immunotherapeutic treatment of CCA.

  11. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  12. Clinical development of cancer therapeutics that target metabolism.

    Science.gov (United States)

    Clem, B F; O'Neal, J; Klarer, A C; Telang, S; Chesney, J

    2016-06-01

    Glucose and glutamine metabolism in cancer cells are markedly elevated relative to non-transformed normal cells. This metabolic reprogramming enables the production of adenosine triphosphate and the anabolic precursors needed for survival, growth and motility. The recent observations that mutant oncogenic proteins and the loss of tumor suppressors activate key metabolic enzymes suggest that selective inhibition of these enzymes may yield effective cancer therapeutics with acceptable toxicities. In support of this concept, pre-clinical studies of small molecule antagonists of several metabolic enzymes in tumor-bearing mice have demonstrated reasonable therapeutic indices. We will review the rationale for targeting metabolic enzymes as a strategy to treat cancer and will detail the results of several recent clinical trials of metabolic inhibitors in advanced cancer patients. PMID:26428335

  13. Toll-like receptors as therapeutic targets in cystic fibrosis.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2008-12-01

    Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective\\/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results\\/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.

  14. Human neutrophil elastase: mediator and therapeutic target in atherosclerosis.

    Science.gov (United States)

    Henriksen, Peter A; Sallenave, Jean-Michel

    2008-01-01

    Human neutrophil elastase (HNE) is present within atherosclerotic plaques where it contributes to matrix degradation and weakening of the vessel wall associated with the complications of aneurysm formation and plaque rupture. It is joined by other extracellular proteases in these actions but the broad range of substrates and potency of HNE coupled with the potential for rapid increases in HNE activity associated with neutrophil degranulation in acute coronary syndromes single this disruptive protease out as therapeutic target in atherosclerotic disease. This review summarises the role of HNE in neutrophil-mediated endothelial injury and the evidence for HNE as a mediator of atherosclerotic plaque development. The therapeutic potential of HNE neutralising antiproteases, alpha-1-antitrypsin and elafin, in atherosclerosis, is discussed. PMID:18289916

  15. Neuropeptide Receptors: Novel Targets for HIV/AIDS Therapeutics

    Directory of Open Access Journals (Sweden)

    Donald R. Branch

    2011-03-01

    Full Text Available The vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypepetide (VPAC receptors are important for many physiologic functions, including glucose homeostasis, neuroprotection, memory, gut function, modulation of the immune system and circadian function. In addition, VPAC receptors have been shown to function in vitro to modulate the infection of HIV by a signal transduction pathway that appears to regulate viral integration. In this article, the affects of VPAC stimulation on HIV infection will be reviewed and approaches for the development of HIV/AIDS therapeutics that target these receptors will be described. Novel HIV/AIDS therapeutics are urgently required to stem the continued spread of this disease, particularly in underdeveloped countries. Drug design to inhibit signaling through VPAC1 and stimulate signaling through VPAC2 could lead to alternative therapies for the treatment and/or prevention of HIV/AIDS.

  16. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics.

    Science.gov (United States)

    Sparrow, Janet R

    2016-04-26

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  17. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems.

    Science.gov (United States)

    Pan, Qixia; Lv, Yao; Williams, Gareth R; Tao, Lei; Yang, Huihui; Li, Heyu; Zhu, Limin

    2016-10-20

    In this work, we report a targeted drug delivery system built by functionalizing graphene oxide (GO) with carboxymethyl chitosan (CMC), fluorescein isothiocyanate and lactobionic acid (LA). Analogous systems without LA were prepared as controls. Doxorubicin (DOX) was loaded onto the composites through adsorption. The release behavior from both the LA-functionalized and the LA-free material is markedly pH sensitive. The modified GOs have high biocompatibility with the liver cancer cell line SMMC-7721, but can induce cell death after 24h incubation if loaded with DOX. Tests with shorter (2h) incubation times were undertaken to investigate the selectivity of the GO composites: under these conditions, neither DOX-loaded system was found to be toxic to the non-cancerous L929 cell line, but the LA-containing composite showed the ability to selectively induce cell death in cancerous (SMMC-7721) cells while the LA-free analogue was inactive here also. These findings show that the modified GO materials are strong potential candidates for targeted anticancer drug delivery systems. PMID:27474628

  18. Caleosin-based nanoscale oil bodies for targeted delivery of hydrophobic anticancer drugs

    International Nuclear Information System (INIS)

    Nanoscale artificial oil bodies (NOBs) could be assembled from plant oil, phospholipids (PLs), and oleosin (Ole) as previously reported. NOBs have a lipid-based structure that contains a central oil space enclosed by a monolayer of Ole-bound PLs. As an oil structural protein, Ole functions to maintain the integrity of NOBs. Like Ole, caleosin (Cal) is a plant oil-associated protein. In this study, we investigated the feasibility of NOBs assembled by Cal for targeted delivery of drugs. Cal was first fused with anti-HER2/neu affibody (ZH2), and the resulting fusion gene (Cal–ZH2) was then expressed in Escherichia coli. Consequently, NOBs assembled with the fusion protein were selectively internalized by HER2/neu-positive tumor cells. The internalization efficiency could reach as high as 90%. Furthermore, a hydrophobic anticancer drug, Camptothecin (CPT), was encapsulated into Cal-based NOBs. These CPT-loaded NOBs had a size around 200 nm and were resistant to hemolysis. Release of CPT from NOBs at the non-permissive condition followed a sustained and prolonged profile. After administration of the CPT formulation, Cal–ZH2-displayed NOBs exhibited a strong antitumor activity toward HER2/neu-positive cells both in vitro and in vivo. The result indicates the potential of Cal-based NOBs for targeted delivery of hydrophobic drugs.

  19. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    Institute of Scientific and Technical Information of China (English)

    Alex Matter

    2015-01-01

    This review starts with a brief history of drug discovery&development, and the place of Asia in this worldwide effort discussed. hTe conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. hTe importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. hTe most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. hTe factors to consider before starting a new drug discovery&development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials.

  20. Exosomal miRNAs as cancer biomarkers and therapeutic targets.

    Science.gov (United States)

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  1. Breast cancer stem cells, EMT and therapeutic targets.

    Science.gov (United States)

    Kotiyal, Srishti; Bhattacharya, Susinjan

    2014-10-10

    A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo "epithelial to mesenchymal transition" (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements. PMID:25261721

  2. Neuroimmunotherapies Targeting T Cells: From Pathophysiology to Therapeutic Applications.

    Science.gov (United States)

    Bittner, Stefan; Wiendl, Heinz

    2016-01-01

    Therapeutic options for multiple sclerosis (MS) have significantly increased over the last few years. T lymphocytes are considered to play a central role in initiating and perpetuating the pathological immune response. Currently approved therapies for MS target T lymphocytes, either in an unspecific manner or directly by interference with specific T-cell pathways. While the concept of "T-cell-specific therapy" implies specificity and selectivity, currently approved approaches come from a general shaping of the immune system towards anti-inflammatory immune responses by non-T-cell-selective immune suppression or immune modulation (e.g., interferons-immune modulation approach) to a depletion of immune cell populations involving T cells (e.g., anti-CD52, alemtuzumab-immune selective depletion approach), or a selective inhibition of distinct molecular pathways in order to sequester leucocytes (e.g., natalizumab-leukocyte sequestration approach). This review will highlight the rationale and results of different T-cell-directed therapeutic approaches coming from basic animal experiments to clinical trials. We will first discuss the pathophysiological rationale for targeting T lymphocytes in MS leading to currently approved treatments acting on T lymphocytes. Furthermore, we will disuss previous promising concepts that have failed to show efficacy in clinical trials or were halted as a result of unexpected adverse events. Learning from the discrepancies between expectations and failures in practical outcomes helps to optimize future research approaches and clinical study designs. As our current view of MS pathogenesis and patient needs is rapidly evolving, novel therapeutic approaches targeting T lymphocytes will also be discussed, including specific molecular interventions such as cytokine-directed treatments or strategies enhancing immunoregulatory mechanisms. Based on clinical experience and novel pathophysiological approaches, T-cell-based strategies will remain a

  3. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.

    Science.gov (United States)

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M; Radovic-Moreno, Aleksandar F; Farokhzad, Omid C

    2012-04-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  4. Exosomal miRNAs as cancer biomarkers and therapeutic targets

    OpenAIRE

    Arron Thind; Clive Wilson

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analy...

  5. Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India.

    Science.gov (United States)

    Painuli, Sakshi; Kumar, Navin

    2016-03-01

    Radioprotective agents are substances those reduce the effects of radiation in healthy tissues while maintaining the sensitivity to radiation damage in tumor cells. Due to increased awareness about radioactive substances and their fatal effects on human health, radioprotective agents are now the topic of vivid research. Scavenging of free radicals is the most common mechanism in oncogenesis that plays an important role in protecting tissues from lethal effect of radiation exposure therefore radioprotectors are also good anti-cancer agents. There are numerous studies indicating plant-based therapeutics against cancer and radioprotection. Such plants could be further explored for developing them as promising natural radioprotectors with anti-cancer properties. This review systematically presents information on plants having radioprotective and anti-cancer properties. PMID:27240731

  6. Classification of current anticancer immunotherapies

    Science.gov (United States)

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  7. Cancer Stem Cells: Biological Functions and Therapeutically Targeting

    Directory of Open Access Journals (Sweden)

    Marius Eugen Ciurea

    2014-05-01

    Full Text Available Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.

  8. The GABAA Receptor as a Therapeutic Target for Neurodevelopmental Disorders.

    Science.gov (United States)

    Braat, Sien; Kooy, R Frank

    2015-06-01

    Intellectual disability, autism spectrum disorder, and epilepsy are prime examples of neurodevelopmental disorders that collectively affect a significant percentage of the world population. Recent technological breakthroughs allowed the elucidation of the genetic causes of many of these disorders. As neurodevelopmental disorders are genetically heterogeneous, the development of rational therapy is extremely challenging. Fortunately, many causative genes are interconnected and cluster in specific cellular pathways. Targeting a common node in such a network would allow us to interfere with a series of related neurodevelopmental disorders at once. Here, we argue that the GABAergic system is disturbed in many neurodevelopmental disorders, including fragile X syndrome, Rett syndrome, and Dravet syndrome, and is a key candidate target for therapeutic intervention. Many drugs that modulate the GABAergic system have already been tested in animal models with encouraging outcomes and are readily available for clinical trials. PMID:26050032

  9. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar

    2013-01-01

    Full Text Available PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

  10. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins

    Science.gov (United States)

    Kurylowicz, Alina

    2016-01-01

    Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs), enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed. PMID:27104517

  11. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available BACKGROUND: There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral. METHODS AND FINDING: The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%. CONCLUSIONS: This is the first report to describe a new concept of a narrowly-dispersed combined

  12. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands.

    Science.gov (United States)

    Zhang, Yang; Zheng, Wei; Luo, Qun; Zhao, Yao; Zhang, Erlong; Liu, Suyan; Wang, Fuyi

    2015-08-01

    We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules. PMID:26106875

  13. EphB4 as a therapeutic target in mesothelioma

    International Nuclear Information System (INIS)

    Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted

  14. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    Science.gov (United States)

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors. PMID:27086601

  15. New Marine Derived Anticancer Therapeutics ─ A Journey from the Sea to Clinical Trials

    Directory of Open Access Journals (Sweden)

    J. Jimeno

    2004-02-01

    Full Text Available Abstract: Nature has been instrumental as a source for therapeutics. Despite the fact that we live in an oceanic planet, a number of technical factors have historically hampered the evolution of a marine-based chamanic medicine. With the implementation of scuba diving tools and the development of sophisticated instruments for the isolation and elucidation of structures of natural products from marine organisms, major advances have been made in the discovery of marine derived therapeutics. The availability of ARA-C, a nucleoside analog that is a basic component in the treatment of acute myeloid leukemia, and its fluorinated analog Gemcitabine, an important therapeutic tool in the treatment of pancreatic cancer and in non small cell lung cancer, is a solid proof and validation of the potential of this approach. As a result of our discovery and developmental program, three innovative compounds with novel mechanisms of action: ET-743, AplidinR and Kahalalide F, have been shown to display a positive therapeutic index and activity in resistant solid tumors that supports the ongoing clinical phase III/II trials. ET-743 represents the first active agent against sarcomas developed in the past 25 years and has demonstrated a therapeutic potential in pretreated ovarian cancer. Several chemical entities are under advanced preclinical testing and additional candidates for clinical development are emerging, including compounds hitting a specific target. Moreover, the development of a given marine candidate implies the collaboration of an interdisciplinary team special focused on supply, formulation, pharmacogenetics and preclinical toxicology.

  16. Carcinoma-Associated Fibroblasts Are a Promising Therapeutic Target

    Energy Technology Data Exchange (ETDEWEB)

    Togo, Shinsaku, E-mail: shinsaku@juntendo.ac.jp [Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Polanska, Urszula M. [CR-UK Stromal-Tumour Interaction Group, Paterson Institute for Cancer Research, The University of Manchester, Wilmslow Road, Manchester M20 4BX (United Kingdom); Horimoto, Yoshiya [Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Atopy Research Centre, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Department of Breast Oncology, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Orimo, Akira, E-mail: shinsaku@juntendo.ac.jp [CR-UK Stromal-Tumour Interaction Group, Paterson Institute for Cancer Research, The University of Manchester, Wilmslow Road, Manchester M20 4BX (United Kingdom); Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Atopy Research Centre, Juntendo University School of Medicine, Tokyo 113-8412 (Japan)

    2013-01-31

    Human carcinomas frequently exhibit significant stromal reactions such as the so-called “desmoplastic stroma” or “reactive stroma”, which is characterised by the existence of large numbers of stromal cells and extracellular matrix proteins. Carcinoma-associated fibroblasts (CAFs), which are rich in activated fibroblast populations exemplified by myofibroblasts, are among the predominant cell types present within the tumour-associated stroma. Increased numbers of stromal myofibroblasts are often associated with high-grade malignancies with poor prognoses in humans. CAF myofibroblasts possess abilities to promote primary tumour development, growth and progression by stimulating the processes of neoangiogenesis as well as tumour cell proliferation, survival, migration and invasion. Moreover, it has been demonstrated that CAFs serve as a niche supporting the metastatic colonisation of disseminated carcinoma cells in distant organs. Their contribution to primary and secondary malignancies makes these fibroblasts a potential therapeutic target and they also appear to be relevant to the development of drug resistance and tumour recurrence. This review summarises our current knowledge of tumour-promoting CAFs and discusses the therapeutic feasibility of targeting these cells as well as disrupting heterotypic interactions with other cell types in tumours that may improve the efficacy of current anti-tumour therapies.

  17. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  18. Therapeutic anticancer efficacy of a synthetic diazonamide analog in the absence of overt toxicity.

    Science.gov (United States)

    Williams, Noelle S; Burgett, Anthony W G; Atkins, Ashley S; Wang, Xiaodong; Harran, Patrick G; McKnight, Steven L

    2007-02-13

    Blocking cell division through the inhibition of mitosis is one of the most successful clinical strategies for the treatment of cancer. Taxanes and vinca alkaloids are in widespread use and have demonstrated substantive therapeutic efficacy. Both classes of compounds bind directly to tubulin, a structural component of the mitotic spindle. The ubiquitous utilization of tubulin in cell division in both cancerous and normal cells, however, tempers the broad spectrum of activity of currently used antimitotics by significant toxicities in normal dividing tissue. Moreover, peripheral nerve cells that rely on microtubules to shuttle cargo along axonal processes are also damaged by tubulin-binding drugs. Thus, neutropenia and peripheral neuropathy are the most frequently cited dose-limiting toxicities of this class of chemotherapeutics. Here we report the preclinical assessment of AB-5, a structural and functional analog of the natural product diazonamide A. AB-5, like taxanes and vinca alkaloids, blocks cell division during mitosis. However, AB-5 works not by binding tubulin but rather through inhibition of a newly discovered role for ornithine-delta-aminotransferase in mitosis. We hereby report that, unlike other antimitotics, AB-5 is extremely well tolerated by mice when administered under conditions where the drug cures xenografted tumors as effectively as taxanes and vinca alkaloids. AB-5-treated mice show no weight loss, no change in overall physical appearance, and no evidence of neutropenia. These observations raise the possibility that AB-5 may have clinical utility for cancer therapy under conditions largely devoid of chemotherapeutic toxicity and suggest that further preclinical evaluation of AB-5 is warranted. PMID:17287337

  19. Assessing the therapeutic efficacy of VEGFR-1-targeted polymer drug conjugates in mouse tumor models.

    Science.gov (United States)

    Shamay, Yosi; Golan, Moran; Tyomkin, Dalia; David, Ayelet

    2016-05-10

    Polymer-drug conjugates that can actively target the tumor vasculature have emerged as an attractive technology for improving the therapeutic efficacy of cytotoxic drugs. We have recently provided, for the first time, in vivo evidence showing the significant advantage of the E-selectin-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin conjugate, P-(Esbp)-DOX, in inhibiting primary tumor growth and preventing the formation and development of cancer metastases. Here, we describe the design of a vascular endothelial growth factor receptor (VEGFR)-1-targeted HPMA copolymer-DOX conjugate (P-(F56)-DOX) that can actively and simultaneously target different cell types in the tumor microenvironment, such as endothelial cells (ECs), bone marrow-derived cells and many human cancer cells of diverse tumor origin. The VEGFR-1-targeted copolymer was tested for its binding, internalization and in vitro cytotoxicity in ECs (bEnd.3 and cEND cells) and cancer cells (B16-F10, 3LL and HT29). The in vivo anti-cancer activity of P-(F56)-DOX was then tested in two tumor-bearing mice (TBM) models (i.e., primary Lewis lung carcinoma (3LL) tumors and B16-F10 melanoma pulmonary metastases), relative to that of the E-selectin-targeted system (P-(Esbp)-DOX) that solely targets ECs. Our results indicate that the binding and internalization profiles of the VEGFR-1-targeted copolymer were superior towards ECs as compared to cancer cells and correlated well to the level of VEGFR-1 expression in cells. Accordingly, the VEGFR-1-targeted copolymer (P-(F56)-DOX) was more toxic towards bEnd.3 cells than to cancer cells, and exhibited significantly higher cytotoxicity than did the non-targeted control copolymer. P-(F56)-DOX inhibited 3LL tumor growth and significantly prolonged the survival of mice with B16-F10 pulmonary metastases. When compared to a system that actively targets only tumor vascular ECs, P-(F56)-DOX and P-(Esbp)-DOX exhibited comparable efficacy in slowing the

  20. BONE TUMOR ENVIRONMENT AS POTENTIAL THERAPEUTIC TARGET IN EWING SARCOMA

    Directory of Open Access Journals (Sweden)

    Françoise eREDINI

    2015-12-01

    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  1. Frizzled-7 as a Potential Therapeutic Target in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Koji Ueno

    2008-07-01

    Full Text Available We investigated whether one of the Wnt receptors, frizzled-7 (FZD7, functions in the canonical Wnt signaling pathway of colorectal cancer (CRC cells harboring an APC or CTNNB1 mutation and may be a potential therapeutic target for sporadic CRCs. The expression level of FZD gene family members in colon cancer cells and primary CRC tissues were determined by real-time PCR. Activation of the Wnt signaling pathway was evaluated by TOPflash assay. The expression level of Wnt target genes was determined by real-time polymerase chain reaction and/or Western blot analysis. Cell growth and cell invasion were assessed by MTS and matrigel assays, respectively. Among 10 FZD gene family members, FZD7 mRNA was predominantly expressed in six colon cancer cell lines with APC or CTNNB1 mutation. These six cell lines were transfected with FZD7 cDNA together with a TOPflash reporter plasmid, resulting in a 1.5- to 24.3-fold increase of Tcf transcriptional activity. The mRNA expression levels of seven known Wnt target genes were also increased by 1.5- to 3.4-fold after transfection of FZD7 cDNA into HCT-116 cells. The six cell lines were then cotransfected with FZD7-siRNA and a TOPflash reporter plasmid, which reduced Tcf transcriptional activity to 20% to 80%. FZD7-siRNA was shown to significantly decrease cell viability and in vitro invasion activity after transfection into HCT-116 cells. Our present data demonstrated that FZD7 activates the canonical Wnt pathway in colon cancer cells despite the presence of APC or CTNNB1 mutation and that FZD7-siRNA may be used as a therapeutic reagent for CRCs.

  2. RPS2: a novel therapeutic target in prostate cancer

    Directory of Open Access Journals (Sweden)

    Stearns Mark E

    2009-01-01

    Full Text Available Abstract Background A number of studies have previously shown that the over expression of different ribosomal proteins might play an important role in cancer (i.e. S3a, L10, L16. We have previously reported that RPS2, a 33 Kda ribosomal protein was over expressed in malignant prostate cancer cell lines and in archived tumor specimens. Thus, RPS2 or other aberrantly over-expressed ribosomal proteins might promote cancer and be excellent therapeutic targets for treatment of the disease. Methods Western blotting and RT-PCR have been used to measure and compare the levels of expression of RPS2 in a variety of malignant prostate cancer cell lines, plus normal and benign cells lines. We have developed a 'ribozyme-like' DNAZYM-1P '10–23' motif oligonucleotide and examined whether it targets RPS2 in different cell lines by RT-PCR and Western blots. Growth and apoptosis assays were carried out to measure whether DNAZYM-1P 'knock-down' of RPS2 influenced cell proliferation or survival. We have also developed a SCID mouse tumor model with PC-3ML cells to determine whether DNAZYM-1P targeting of RPS2 compromised tumor growth and mouse survival rates in vivo. Results Western blots showed that PC-3ML, LNCaP, CPTX-1532, and pBABE-cmyc stably transfected IBC-10a cells all over-expressed RPS2, whereas IBC-10a parent, NPTX-1532, and BPH-1 cells or mouse NIH-3T3 cells expressed barely detectable levels of RPS2. RT-PCR assays showed that DNAZYM-1P, which targeted RPS2, 'knocked-down' RPS2 expression in the malignant cells (i.e. PC-3ML cells in vitro. The DNAZYM-1P also inhibited cell growth and induced apoptosis in the malignant prostate cells, but had little effect on the normal IBC-10a or NPTX-1532 cell lines. Finally, SCID mouse tumor modeling studies showed that DNAZYM-1P blocked tumor growth and metastasis by PC-3ML cells and eventually eradicated tumors following localized or systemic i.v. delivery. Mouse survival studies revealed that there was a dosage

  3. DNA G-quadruplex and its potential as anticancer drug target

    Science.gov (United States)

    Buket, ONEL; Clement, LIN; DanZhou, YANG

    2016-01-01

    G-quadruplex secondary structures are four-stranded globular nucleic acid structures form in the specific DNA and RNA G-rich sequences with biological significance such as human telomeres, oncogene-promoter regions, replication initiation sites, and 5′ and 3′-untranslated (UTR) regions. The non-canonical G-quadruplex secondary structures can readily form under physiologically relevant ionic conditions and are considered to be new molecular target for cancer therapeutics. This review discusses the essential progress in our lab related to the structures and functions of biologically relevant DNA G-quadruplexes in human gene promoters and telomeres, and the opportunities presented for the development of G-quadruplex-targeted small- molecule drugs.

  4. Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Macrez, Richard; Ortega, Maria C; Bardou, Isabelle; Mehra, Anupriya; Fournier, Antoine; Van der Pol, Susanne M A; Haelewyn, Benoit; Maubert, Eric; Lesept, Flavie; Chevilley, Arnaud; de Castro, Fernando; De Vries, Helga E; Vivien, Denis; Clemente, Diego; Docagne, Fabian

    2016-09-01

    Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor. PMID:27435092

  5. Mast cells: new therapeutic target in helminth immune modulation.

    Science.gov (United States)

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders. PMID:26577605

  6. Targeting NF-κB in glioblastoma: A therapeutic approach.

    Science.gov (United States)

    Friedmann-Morvinski, Dinorah; Narasimamurthy, Rajesh; Xia, Yifeng; Myskiw, Chad; Soda, Yasushi; Verma, Inder M

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of intracranial tumor. We have established a lentivirus-induced mouse model of malignant gliomas, which faithfully captures the pathophysiology and molecular signature of mesenchymal human GBM. RNA-Seq analysis of these tumors revealed high nuclear factor κB (NF-κB) activation showing enrichment of known NF-κB target genes. Inhibition of NF-κB by either depletion of IκB kinase 2 (IKK2), expression of a IκBαM super repressor, or using a NEMO (NF-κB essential modifier)-binding domain (NBD) peptide in tumor-derived cell lines attenuated tumor proliferation and prolonged mouse survival. Timp1, one of the NF-κB target genes significantly up-regulated in GBM, was identified to play a role in tumor proliferation and growth. Inhibition of NF-κB activity or silencing of Timp1 resulted in slower tumor growth in both mouse and human GBM models. Our results suggest that inhibition of NF-κB activity or targeting of inducible NF-κB genes is an attractive therapeutic approach for GBM. PMID:26824076

  7. Self-Targeted, Shape-Assisted, and Controlled-Release Self-Delivery Nanodrug for Synergistic Targeting/Anticancer Effect of Cytoplasm and Nucleus of Cancer Cells.

    Science.gov (United States)

    Li, Yang; Lin, Jinyan; Huang, Yu; Li, Yanxiu; Yang, Xiangrui; Wu, Hongjie; Wu, Shichao; Xie, Liya; Dai, Lizong; Hou, Zhenqing

    2015-11-25

    We constructed 10-hydroxycamptothecin (CPT) "nanodrugs" with functionalization of lipid-PEG-methotrexate (MTX) to prepare high-drug-loaded, and sustained/controlled-release MTX-PEG-CPT nanorods (NRs), in which MTX drug itself can serve as a specific "targeting ligand". The self-targeted nanodrug can codeliver both CPT and MTX drugs with distinct anticancer mechanisms. Furthermore, MTX-PEG-CPT NRs significantly reduced burst release, improved blood circulation and tumor accumulation, enhanced cellular uptake, and synergistically increased anticancer effect against tumor cells compared with MTX-PEG-CPT nanospheres (NSs) and either both free drugs or individual free drug. Therefore, the synergistic targeting/therapeuticy nano-multi-drug codelivery assisted by shape design may advantageously offer a promising new strategy for nanomedicine. PMID:26529185

  8. Novel Microtubule-Targeting 7-Deazahypoxanthines Derived from Marine Alkaloid Rigidins with Potent in Vitro and in Vivo Anticancer Activities.

    Science.gov (United States)

    Medellin, Derek C; Zhou, Qiong; Scott, Robert; Hill, R Matthew; Frail, Sarah K; Dasari, Ramesh; Ontiveros, Steven J; Pelly, Stephen C; van Otterlo, Willem A L; Betancourt, Tania; Shuster, Charles B; Hamel, Ernest; Bai, Ruoli; LaBarbera, Daniel V; Rogelj, Snezna; Frolova, Liliya V; Kornienko, Alexander

    2016-01-14

    Docking studies of tubulin-targeting C2-substituted 7-deazahypoxanthine analogues of marine alkaloid rigidins led to the design and synthesis of compounds containing linear C2-substituents. The C2-alkynyl analogue was found to have double- to single-digit nanomolar antiproliferative IC50 values and showed statistically significant tumor size reduction in a colon cancer mouse model at nontoxic concentrations. These results provide impetus and further guidance for the development of these rigidin analogues as anticancer agents. PMID:26641132

  9. Human synthetic lethal inference as potential anti-cancer target gene detection

    OpenAIRE

    Solé Ricard V; Munteanu Andreea; Conde-Pueyo Nuria; Rodríguez-Caso Carlos

    2009-01-01

    Abstract Background Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since exi...

  10. Autophagy as a Therapeutic Target in Cardiovascular Disease

    Science.gov (United States)

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  11. Molecular markers as therapeutic targets in lung cancer

    Institute of Scientific and Technical Information of China (English)

    Hsin-Hui Tseng; Biao He

    2013-01-01

    Lung cancer is responsible for 29% of cancer deaths in the United States and has very low 5-year survival rates of approximately 11% in men and 15% in women.Although the early diagnosis of lung cancer may increase the survival rate with adequate treatment,advanced lung cancers are often metastasized and receive limited benefit from therapeutic regimens.As conventional treatments for lung cancer reach their limitations,researchers have attempted to discover novel drug therapies aimed at specific targets contributing to the progression of tumorigenesis.Recent advances in systems biology have enabled the molecular biology of lung carcinogenesis to be elucidated.Our understanding of the physiologic processes of tumor development provide a means to design more effective and specific drugs with less toxicity,thereby accelerating the delivery of new drug therapies to the patient's bedside.

  12. Autophagy: A new therapeutic target for liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatic fibrosis is a wound-healing response to liverinjury and the result of imbalance of extracellular matrix(ECM) accumulation and degradation. The relentless production and progressive accumulation of ECM canlead to end-stage liver disease. Although significantprogress has been achieved in elucidating the mechanismsof fibrogenesis, effective anti-fibrotic strategiesare still lacking. Autophagy is an intracellular process ofself-digestion of defective organelles to provide materialrecycling or energy for cell survival. Autophagy hasbeen implicated in the pathophysiology of many humandisorders including hepatic fibrosis. However, the exactrelationships between autophagy and hepatic fibrosisare not totally clear and need further investigations.A new therapeutic target for liver fibrosis could bedeveloped with a better understanding of autophagy.

  13. Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease.

    Science.gov (United States)

    Briasoulis, Alexandros; Tousoulis, Dimitris; Papageorgiou, Nikolaos; Kampoli, Anna-Maria; Androulakis, Emmanuel; Antoniades, Charalambos; Tsiamis, Eleftherios; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Matrix metalloproteinases (MMPs), are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are regulated at the level of transcription, of activation of the pro-MMP precursor zymogens and of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases; TIMPs). Alteration in the regulation of MMP activity is implicated in atherosclerotic plaque development, coronary artery disease and heart failure. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and left ventricular remodelling after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinase activity have been demonstrated during atherosclerotic lesion progression, MMPs represent a potential target for therapeutic intervention aimed at modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. This review discusses pharmacological approaches to MMP inhibition. PMID:22519451

  14. PTP1B: a new therapeutic target for Rett syndrome.

    Science.gov (United States)

    Tautz, Lutz

    2015-08-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is characterized by successive loss of acquired cognitive, social, and motor skills and development of autistic behavior. RTT affects approximately 1 in 10,000 live female births and is the second most common cause of severe mental retardation in females, after Down syndrome. Currently, there is no cure or effective therapy for RTT. Approved treatment regimens are presently limited to supportive management of specific physical and mental disabilities. In this issue, Krishnan and colleagues reveal that the protein tyrosine phosphatase PTP1B is upregulated in patients with RTT and in murine models and provide strong evidence that targeting PTP1B has potential as a viable therapeutic strategy for the treatment of RTT. PMID:26214520

  15. Hippocampal Area CA2: An Overlooked but Promising Therapeutic Target.

    Science.gov (United States)

    Chevaleyre, Vivien; Piskorowski, Rebecca A

    2016-08-01

    While the hippocampus has long been recognized as a brain structure specialized in mapping 'space' in rodents, human studies and now recent data from rodents have shown that its function extends well beyond spatial coding. Recently, an overlooked area of the hippocampus, CA2, has emerged as a critical region for social memory. This area is also uniquely altered during several pathologies such as schizophrenia and age-related dementia. Because of its singular connectivity, we propose that area CA2 resides at the interface between emotional brain activity and higher cognitive function. Furthermore, because of the unique expression of multiple neuromodulator receptors in area CA2, we posit that this region may represent a fruitful therapeutic target for diseases where social dysfunction occurs. PMID:27372610

  16. Macrophages associated with tumors as potential targets and therapeutic intermediates.

    Science.gov (United States)

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-04-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mϕ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs. PMID:24827844

  17. Autophagy: A new therapeutic target for liver fibrosis.

    Science.gov (United States)

    Mao, Yu-Qing; Fan, Xiao-Ming

    2015-08-01

    Hepatic fibrosis is a wound-healing response to liver injury and the result of imbalance of extracellular matrix (ECM) accumulation and degradation. The relentless production and progressive accumulation of ECM can lead to end-stage liver disease. Although significant progress has been achieved in elucidating the mechanisms of fibrogenesis, effective anti-fibrotic strategies are still lacking. Autophagy is an intracellular process of self-digestion of defective organelles to provide material recycling or energy for cell survival. Autophagy has been implicated in the pathophysiology of many human disorders including hepatic fibrosis. However, the exact relationships between autophagy and hepatic fibrosis are not totally clear and need further investigations. A new therapeutic target for liver fibrosis could be developed with a better understanding of autophagy. PMID:26261688

  18. Inflammation as a Therapeutic Target for Diabetic Neuropathies.

    Science.gov (United States)

    Pop-Busui, Rodica; Ang, Lynn; Holmes, Crystal; Gallagher, Katherine; Feldman, Eva L

    2016-03-01

    Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na(+)/K(+)-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs. PMID:26897744

  19. Leptin, ghrelin, and endocannabinoids: potential therapeutic targets in anorexia nervosa.

    Science.gov (United States)

    Støving, René Klinkby; Andries, Alin; Brixen, Kim; Flyvbjerg, Allan; Hørder, Kirsten; Frystyk, Jan

    2009-04-01

    Anorexia nervosa (AN) has the highest mortality rate between psychiatric disorders, and evidence for managing it is still very limited. So far, pharmacological treatment has focused on a narrow range of drugs and only a few controlled studies have been performed. Furthermore, the studies have been of short duration and included a limited number of subjects, often heterogenic with regard to stage and acute nutritive status. Thus, novel approaches are urgently needed. Body weight homeostasis is tightly regulated throughout life. With the discovery of orexigenic and anorectic signals, an array of new molecular targets to control eating behavior has emerged. This review focuses on recent advances in three important signal systems: leptin, ghrelin, and endocannabinoids toward the identification of potential therapeutical breakthroughs in AN. Our review of the current literature shows that leptin may have therapeutic potentials in promoting restoration of menstrual cycles in weight restored patients, reducing motor restlessness in severely hyperactive patients, and preventing osteoporosis in chronic patients. Ghrelin and endocannabinoids exert orexigenic effects which may facilitate nutritional restoration. Leptin and endocannabinoids may exert antidepressive and anxiolytic effects. Finally, monitoring serum concentration of leptin may be useful in order to prevent refeeding syndrome. PMID:18926548

  20. Modeling of hyaluronic acid containing anti-cancer drugs-loaded polylactic-co-glycolic acid bioconjugates for targeted delivery to cancer cells

    Science.gov (United States)

    Gul-e-Saba, Adulphakdee, A.; Madthing, A.; Zafar, M. N.; Abdullah, M. A.

    2012-09-01

    Molecular modeling of hyaluronan (HA), polylactic-co-glycolic acid (PLGA), polyethylene glycol-bis-amine (PEG-bis-amine), Curcumin, Cisplatin and the conjugate HA-PEG-PLGA containing Curcumin/Cisplatin were performed using Discovery Studio 2.5 to better understand issues and constraints related to targeted delivery of potent anticancer drugs to cancer cells. HA, a versatile biopolymer is a ligand of cancer cell receptor, CD44 that can be particularly useful in a receptor-mediated cellular uptake of drug-incorporated nanoparticles. Biocompatible and biodegradable polymers, PLGA and PEG, serve as polymeric micelles for controlled-release of drug. Curcumin as a natural anticancer agent has poor solubility that limits its use in drug therapeutics, while platinum-based Cisplatin exhibits systemic cytotoxicity. These can be overcome via drug delivery in polymeric biocompatible vehicles. The PLGA-PEG-HA conjugate shows the total measurement of 105 bond length with average bond length of 1.274163 Å. The conjugation between PEG and HA occurs at C8-O1 atoms and can be manipulated to improve properties.

  1. Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Gottschalk

    2015-10-01

    Full Text Available Systemic Lupus Erythematosus (SLE, lupus is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues including skin, kidneys and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B and T lymphocyte activation, and, with the single exception of an agent known as Belimumab which targets the B cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immuno-suppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and

  2. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.

    Science.gov (United States)

    Guo, Jing; Liu, Hui; Zheng, Jie

    2016-01-01

    Synthetic lethality (SL) is a type of genetic interaction between two genes such that simultaneous perturbations of the two genes result in cell death or a dramatic decrease of cell viability, while a perturbation of either gene alone is not lethal. SL reflects the biologically endogenous difference between cancer cells and normal cells, and thus the inhibition of SL partners of genes with cancer-specific mutations could selectively kill cancer cells but spare normal cells. Therefore, SL is emerging as a promising anticancer strategy that could potentially overcome the drawbacks of traditional chemotherapies by reducing severe side effects. Researchers have developed experimental technologies and computational prediction methods to identify SL gene pairs on human and a few model species. However, there has not been a comprehensive database dedicated to collecting SL pairs and related knowledge. In this paper, we propose a comprehensive database, SynLethDB (http://histone.sce.ntu.edu.sg/SynLethDB/), which contains SL pairs collected from biochemical assays, other related databases, computational predictions and text mining results on human and four model species, i.e. mouse, fruit fly, worm and yeast. For each SL pair, a confidence score was calculated by integrating individual scores derived from different evidence sources. We also developed a statistical analysis module to estimate the druggability and sensitivity of cancer cells upon drug treatments targeting human SL partners, based on large-scale genomic data, gene expression profiles and drug sensitivity profiles on more than 1000 cancer cell lines. To help users access and mine the wealth of the data, we developed other practical functionalities, such as search and filtering, orthology search, gene set enrichment analysis. Furthermore, a user-friendly web interface has been implemented to facilitate data analysis and interpretation. With the integrated data sets and analytics functionalities, SynLethDB would

  3. Aptamers as targeting delivery devices or anti-cancer drugs for fighting tumors.

    Science.gov (United States)

    Scaggiante, Bruna; Dapas, Barbara; Farra, Rossella; Grassi, Mario; Pozzato, Gabriele; Giansante, Carlo; Fiotti, Nicola; Tamai, Elisa; Tonon, Federica; Grassi, Gabriele

    2013-06-01

    Aptamer researches applied to the treatment of human cancers have increased since their discovery in 1990. This is due to different factors including: 1) the technical possibility to select, by SELEX-based procedures, specific aptamers targeting virtually any given molecule, 2) the aptamer favorable bio-activity in vivo, 3) the low production costs and 4) the ease synthesis and storage for the marketing. In the field of cancer treatments, aptamers have been studied as tumor-specific agents driving drugs into cancer cells; additionally they have been used as anti-neoplastic agents, able to inhibit tumor cell growth and dissemination when administered alone or in combination with conventional anti-neoplastic drugs. Aptamers are gaining an increased interest for pharmaceutical companies and some of them are under clinical evaluation trials. In this review we update the findings about the use of aptamers as "escort" molecules able to drive drugs into the cells and as antineoplastic drugs. Current anti-neoplastic treatments suffer from the intrinsic toxicity related to the un-specific targeting of both normal and tumorigenic proliferating cells. The aptamers could be useful to improve: 1) the selective targeting of molecules essential for the viability and expansion of tumor cells and/or the selective driving of chemotherapies into tumor cells, thus resulting in higher effectiveness and lower systemic side-effects compared to conventional anti-neoplastic drugs alone and 2) to improve the therapeutic index of currently used chemotherapies. Even if some problems related to the in vivo stability and pharmacokinetic/dynamics of aptamers remain to be improved, their potential use in the treatment of different human cancers is getting closer and closer to a practical therapeutic use. PMID:23687927

  4. Estrogen receptor beta is a novel therapeutic target for photoaging.

    Science.gov (United States)

    Chang, Ken C N; Wang, Yihe; Oh, Inn Gyung; Jenkins, Susan; Freedman, Leonard P; Thompson, Catherine C; Chung, Jin Ho; Nagpal, Sunil

    2010-05-01

    One of the many harmful factors faced by the skin is solar UV radiation, which damages skin by inducing chronic low-grade inflammation through increased expression of proinflammatory cytokines, metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). Estrogen receptors (ERs) alpha and beta are ligand-dependent transcription factors that are expressed in skin, and an ERbeta agonist has previously shown efficacy in vivo in models of pain and inflammation. Because ERbeta does not carry the breast and uterine proliferation liabilities of ERalpha, we decided to explore the possibility of using ERbeta as a target for photoaging. We show that ERbeta-selective compounds suppressed the expression of cytokines and MMPs in activated keratinocytes and fibroblast-based in vitro models of photoaging. Furthermore, in activated dermal fibroblasts, ERbeta-selective compounds also inhibited COX-2. These activities of ERbeta ligands in skin cells correlated with the expression levels of ERbeta and showed reversal by treatment with a potent synthetic ER antagonist. Furthermore, the pharmacology of ERbeta-selective compound was observed in wild-type but not in skin cells obtained from ERbeta knockout mice. Finally, we demonstrate that a synthetic ERbeta agonist inhibited UV-induced photodamage and skin wrinkle formation in a murine model of photoaging. Therefore, the potential of an ERbeta ligand to regulate multiple pathways underlying the cause of photoaging suggests ERbeta to be a novel therapeutic target for the prevention and treatment of photoaging. PMID:20110405

  5. SALL4 is a novel therapeutic target in intrahepatic cholangiocarcinoma

    Science.gov (United States)

    Deng, Gang; Zhu, Lei; Huang, Feizhou; Nie, Wanpin; Huang, Wei; Xu, Hongbo; Zheng, Shaopeng; Yi, Zhongjie; Wan, Tao

    2015-01-01

    Intrahepatic cholangiocarcinoma (ICC) is the most common and deadly disease of the biliary tree due to its poor prognosis. Sal-like protein 4 (SALL4), a stem cell marker, has been identified as a potential target for aggressive hepatocellular carcinoma (HCC). In our study, 175 ICC cases with an average age of 55 years were included, and 53% (93/175) were male. And 28 adjacent non-tumor tissues were also collected. The SALL4-positive immunoreactivity was detected in a total of 102 ICC cases (58%), whereas all 28 adjacent tissues showed negative staining. Univariate analysis, showed that the SALL4-positive ICC cases had significantly more frequent lymph nodal metastasis (P = 0.0460), vascular invasion (P < 0.0001), and nerve invasion (P < 0.0001). Furthermore, the strong SALL4-positive cases (n = 7, 5 months) had shorter overall survival, when compared to moderate SALL4-positive (n = 46, 9 months) or SALL4-negative cases (n = 73, 7 months), respectively. Our data also suggest that SALL4 may be involved in the regulation of epithelial-mesenchymal transition (EMT) in ICC. Those results for the first time indicate an oncogenic role of SALL4 in ICC. Therefore, SALL4 may serve as a promising therapeutic target for ICC. PMID:26317546

  6. Therapeutic Targeting of Hyaluronan in the Tumor Stroma

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: akultti@halozyme.com [Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States); Li, Xiaoming; Jiang, Ping; Thompson, Curtis B. [Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States); Frost, Gregory I. [Department of General and Administrative, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States); Shepard, H. Michael [Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States)

    2012-09-06

    The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associated with a negative disease prognosis. Hyaluronan interacts with other extracellular molecules as well as cellular receptors to form a complex interaction network influencing physicochemical properties, signal transduction, and biological behavior of cancer cells. In preclinical animal models, enzymatic removal of hyaluronan is associated with remodeling of the tumor stroma, reduction of tumor interstitial fluid pressure, expansion of tumor blood vessels and facilitated delivery of chemotherapy. This leads to inhibition of tumor growth and increased survival. Current evidence shows that abnormal accumulation of hyaluronan may be an important stromal target for cancer therapy. In this review we highlight the role of hyaluronan and hyaluronan-mediated interactions in cancer, and discuss historical and recent data on hyaluronidase-based therapies and the effect of hyaluronan removal on tumor growth.

  7. Transcription Inhibition as a Therapeutic Target for Cancer

    International Nuclear Information System (INIS)

    During tumorigenesis the transformed cells lose their normal growth control mechanisms and become dependent on oncogenes' products and pathways for survival. Treatments tailored to block the expression or function of transforming genes have shown efficacy in eliminating neoplastic cells. The mRNAs of many oncogenes, as well as regulators of other key processes such as cell proliferation, angiogenesis, and apoptosis, typically have shorter half-lives. Agents that impede mRNA synthesis are expected to selectively hinder the expression of these genes and, therefore, be detrimental to neoplastic cells that are physiologically dependent on them. In addition to exploiting the tumor cells' dependency on short-lived transcripts, RNA-directed agents also take advantage of the differential sensitivity between transformed and non-transformed cells, as the cytotoxic effects of inhibiting RNA synthesis have not been seen in non-transformed cells. The abrogation of the formation of oncotranscripts provides a new concept in cancer therapeutics and numerous agents have been developed which are able to target transcription. The focus of this review is to give an overview of transcription and the different inhibitory strategies that target various aspects of the transcriptional process

  8. Therapeutic Targeting of Hyaluronan in the Tumor Stroma

    International Nuclear Information System (INIS)

    The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associated with a negative disease prognosis. Hyaluronan interacts with other extracellular molecules as well as cellular receptors to form a complex interaction network influencing physicochemical properties, signal transduction, and biological behavior of cancer cells. In preclinical animal models, enzymatic removal of hyaluronan is associated with remodeling of the tumor stroma, reduction of tumor interstitial fluid pressure, expansion of tumor blood vessels and facilitated delivery of chemotherapy. This leads to inhibition of tumor growth and increased survival. Current evidence shows that abnormal accumulation of hyaluronan may be an important stromal target for cancer therapy. In this review we highlight the role of hyaluronan and hyaluronan-mediated interactions in cancer, and discuss historical and recent data on hyaluronidase-based therapies and the effect of hyaluronan removal on tumor growth

  9. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.

    Science.gov (United States)

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R

    2016-09-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website. PMID:26762467

  10. Towards targeting anticancer drugs: ruthenium(ii)-arene complexes with biologically active naphthoquinone-derived ligand systems.

    Science.gov (United States)

    Kubanik, Mario; Kandioller, Wolfgang; Kim, Kunwoo; Anderson, Robert F; Klapproth, Erik; Jakupec, Michael A; Roller, Alexander; Söhnel, Tilo; Keppler, Bernhard K; Hartinger, Christian G

    2016-08-16

    Anticancer active metal complexes with biologically active ligands have the potential to interact with more than one biological target, which could help to overcome acquired and/or intrinsic resistance of tumors to small molecule drugs. In this paper we present the preparation of 2-hydroxy-[1,4]-naphthoquinone-derived ligands and their coordination to a Ru(II)(η(6)-p-cymene)Cl moiety. The synthesis of oxime derivatives resulted in the surprising formation of nitroso-naphthalene complexes, as confirmed by X-ray diffraction analysis. The compounds were shown to be stable in aqueous solution but reacted with glutathione and ascorbic acid rather than undergoing reduction. One-electron reduction with pulse radiolysis revealed different behavior for the naphthoquinone and nitroso-naphthalene complexes, which was also observed in in vitro anticancer assays. PMID:27214822

  11. Molecular and Pharmacologic Properties of the Anticancer Quinolone Derivative Vosaroxin: A New Therapeutic Agent for Acute Myeloid Leukemia.

    Science.gov (United States)

    Jamieson, Gene C; Fox, Judith A; Poi, Ming; Strickland, Stephen A

    2016-09-01

    Vosaroxin is a first-in-class anticancer quinolone derivative that targets topoisomerase II and induces site-selective double-strand breaks in DNA, leading to tumor cell apoptosis. Vosaroxin has chemical and pharmacologic characteristics distinct from other topoisomerase II inhibitors due to its quinolone scaffold. The efficacy and safety of vosaroxin in combination with cytarabine were evaluated in patients with relapsed/refractory acute myeloid leukemia (AML) in a phase III, randomized, multicenter, double-blind, placebo-controlled study (VALOR). In this study, the addition of vosaroxin produced a 1.4-month improvement in median overall survival (OS; 7.5 months with vosaroxin/cytarabine vs. 6.1 months with placebo/cytarabine; hazard ratio [HR] 0.87, 95 % confidence interval [CI] 0.73-1.02; unstratified log-rank p [Formula: see text] 0.061; stratified log-rank p [Formula: see text]0.024), with the greatest OS benefit observed in patients ≥60 years of age (7.1 vs. 5.0 months; HR 0.75, 95 % CI 0.62-0.92; p [Formula: see text]0.003) and patients with early relapse (6.7 vs. 5.2 months; HR 0.77, 95 % CI 0.59-1.00; p [Formula: see text] 0.039), two AML patient groups that typically have poor prognosis. Here we review the chemical and pharmacologic properties of vosaroxin, how these properties are distinct from those of currently available topoisomerase II inhibitors, how they may contribute to the efficacy and safety profile observed in the VALOR trial, and the status of clinical development of vosaroxin for treatment of AML. PMID:27484675

  12. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF. PMID:26121236

  13. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  14. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    International Nuclear Information System (INIS)

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM

  15. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    Science.gov (United States)

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD? PMID:23711791

  16. [50 years of hepatology - from therapeutic nihilism to targeted therapies].

    Science.gov (United States)

    Manns, Michael P

    2013-04-01

    Over the past 50 years significant progress has been made in the whole field of hepatology. Part of this is translation of basic research (biochemistry, immunology, virology, molecular biology and others) into clinical hepatology. This enabled us to understand more about the pathogenesis of liver diseases and led to the discovery of the five major hepatotropic viruses, the identification of hepatocellular autoantigens, and to the development of specific therapies for chronic hepatitis B, C and D. In addition, the molecular basis of most genetic liver diseases has been identified. Significant progress was made in the development of medical therapies for various liver diseases with different underlying etiologies. Surgery significantly contributed to the progress in the management of liver diseases; examples are laparoscopic cholecystectomy and the development of liver transplantation. A multimodal therapeutic algorithm has been established for the therapy of hepatocelluar carcinoma (HCC); with Sorafenib "targeted therapy" has entered the area of HCC. The progress made over the last 50 years not only led to an aetiological differentiation of acute and chronic liver diseases but also to specific therapies based on the identification and understanding of the underlying etiology. PMID:23585265

  17. SOCS3: A novel therapeutic target for cardioprotection.

    Science.gov (United States)

    Yasukawa, Hideo; Nagata, Takanobu; Oba, Toyoharu; Imaizumi, Tsutomu

    2012-10-01

    The suppressors of cytokine signaling (SOCS) family of proteins are cytokine-inducible inhibitors of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) signaling pathways. Among the family, SOCS1 and SOCS3 potently suppress cytokine actions by inhibiting JAK kinase activities. The generation of mice lacking individual SOCS genes has been instrumental in defining the role of individual SOCS proteins in specific cytokine pathways in vivo; SOCS1 is an essential negative regulator of interferon-γ (IFNγ) and SOCS3 is an essential negative regulator of leukemia inhibitory factor (LIF). JAK-STAT3 activating cytokines have exhibited cardioprotective roles in the heart. The cardiac-specific deletion of SOCS3 enhances the activation of cardioprotective signaling pathways, inhibits myocardial apoptosis and fibrosis and results in the inhibition of left ventricular remodeling after myocardial infarction (MI). We propose that myocardial SOCS3 is a key determinant of left ventricular remodeling after MI, and SOCS3 may serve as a novel therapeutic target to prevent left ventricular remodeling after MI. In this review, we discuss the signaling pathways mediated by JAK-STAT and SOCS proteins and their roles in the development of myocardial injury under stress (e.g., pressure overload, viral infection and ischemia). PMID:24058778

  18. Purinergic receptors as potential therapeutic targets in Alzheimer's disease.

    Science.gov (United States)

    Woods, Lucas T; Ajit, Deepa; Camden, Jean M; Erb, Laurie; Weisman, Gary A

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26519903

  19. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers

    Directory of Open Access Journals (Sweden)

    Nam Ho Jeoung

    2015-06-01

    Full Text Available Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4 and pyruvate dehydrogenase phosphatases (PDP1 and 2. PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.

  20. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  1. Myofibrillogenesis regulator 1 (MR-1 is a novel biomarker and potential therapeutic target for human ovarian cancer

    Directory of Open Access Journals (Sweden)

    Feng Jingjing

    2011-06-01

    Full Text Available Abstract Background Myofibrillogenesis regulator 1 (MR-1 is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients. Methods Reverse-transcription polymerase chain reaction (PCR and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated. Results MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer. Conclusions MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early

  2. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    Science.gov (United States)

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. PMID:27150260

  3. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    Science.gov (United States)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  4. "Siglec"ting the allergic response for therapeutic targeting.

    Science.gov (United States)

    Bochner, Bruce S

    2016-06-01

    As a physician-scientist, I have pursued research related to translational immunology with the goal of improving our ability to diagnose and treat allergic, immunologic and other diseases involving eosinophils, basophils and mast cells. We have tried to delineate novel mechanisms of human disease, working whenever possible with primary human cells and tissues, attempting to identify targets that might be amenable to the development of new therapies. As a general strategy, we have compared eosinophils, basophils, mast cells and neutrophils to look for pathways in inflammation that were unique to distinct subsets of these cells. In doing so, the concepts of glycobiology did not enter my mind until we began noticing some intriguing functional differences involving selectins and their ligands among these cell types. One simple observation, that neutrophils were coated with a glycan that allowed them to interact with an endothelial adhesion molecule while eosinophils lacked this structure, pried open the glyco-door for me. Fruitful collaborations with card-carrying glycobiologists soon followed that have forever positively influenced our science, and have enhanced our hypotheses, experimental design, research opportunities and discoveries. Within a few years, we helped to discover Siglec-8, an I-type lectin expressed only on human eosinophils, basophils, mast cells. This receptor, together with its closest mouse counterpart Siglec-F, has been the primary focus of our work now for over a decade. If not for those in the fields of glycobiology and glycoimmunology, my lab would not have made much progress toward the goal of leveraging Siglec-8 for therapeutic purposes. PMID:26911285

  5. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R

    2012-03-01

    therapeutic target in CML.

  6. MYC as therapeutic target in leukemia and lymphoma

    Directory of Open Access Journals (Sweden)

    Cortiguera MG

    2015-07-01

    Full Text Available Maria G Cortiguera,1 Ana Batlle-López,1,2 Marta Albajar,1,2 M Dolores Delgado,1,3 Javier León1,3 1Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC, CSIC-University of Cantabria, 2Department of Hemathology, Hospital Universitario Marqués de Valdecilla, 3Department of Molecular Biology, University of Cantabria, Santander, Spain Abstract: MYC is a transcription factor that is involved in the expression of many genes. Deregulated MYC is found in about half of human tumors, being more prevalent in hematological neoplasms. Deregulation mechanisms include chromosomal translocation (particularly in lymphoma, amplification, and hyperactivation of MYC transcription. Here we review MYC involvement in the major types of leukemia and lymphoma. MYC rearrangements appear in all Burkitt lymphomas and are common in other lymphoma types, whereas in acute lymphoblastic leukemia, acute myeloid leukemia, lymphoproliferative, and myeloproferative diseases, they are less frequent. However, MYC overexpression is present in all types of hematological malignancies and often correlates with a worse prognosis. Data in leukemia-derived cells and in animal models of lymphomagenesis and leukemogenesis suggest that MYC would be a good therapeutic target. Several MYC-directed therapies have been assayed in preclinical settings and even in clinical trials. First, peptides and small molecules that interrupt the MYC–MAX interaction impair MYC-mediated tumorogenesis in several mouse models of solid tumors, although not yet in lymphoma and leukemia models. Second, there are a number of small molecules inhibiting the interaction of MYC–MAX heterodimers with DNA, still in the preclinical research phase. Third, inhibitors of MYC expression via the inhibition of BRD4 (a reader of acetylated histones have been shown to control the growth of MYC-transformed leukemia and lymphoma cells and are being used in clinic trials. Finally, we review a number of promising MYC

  7. Could B7-H4 serve as a target to activate anti-cancer immunity?

    Science.gov (United States)

    Wang, Lijuan; Heng, Xueyuan; Lu, Yong; Cai, Zhen; Yi, Qing; Che, Fengyuan

    2016-09-01

    It has been over 13years since the identification of B7-H4, the co-stimulatory molecule of B7 family members. While B7-H4 mRNA is widely distributed protein expression seems to be limited on tissues. Various cytokines and inflammatory mediators induce the expression of B7-H4. However, the specific regulatory mechanisms of B7-H4 remain to be defined. Recently, it has been shown that B7-H4 executes an inhibitory function in the T-cell response via reduced expansion, cell cycle arrest, decreased cytokine secretion and induced apoptosis of activated T-cells. Furthermore, B7-H4 suppresses the function of antigen presenting cells (APCs) and promotes the proliferation and development of regulatory T-cells (Treg). Moreover, a growing body of literature demonstrates that various cancers express B7-H4 and that the expression levels of B7-H4 correlate with cancer size, histological type, pathologic stage, grade, infiltration, lymph node metastasis, cancer progression, recurrence and death. The over-expression of B7-H4 in cancer may be related to an increased resistance to immune responses. The aim of this review is to supply an overview of the advances in the regulation and function of B7-H4. Additionally, many studies have suggested that B7-H4 is a molecular target for therapeutic intervention in cancer and that targeting B7-H4 may have promising potential for improving the efficacy of immunotherapy for cancer patients. PMID:27258187

  8. Translational approaches targeting the p53 pathway for anti-cancer therapy

    OpenAIRE

    Essmann, Frank; Schulze-Osthoff, Klaus

    2012-01-01

    The p53 tumour suppressor blocks cancer development by triggering apoptosis or cellular senescence in response to oncogenic stress or DNA damage. Consequently, the p53 signalling pathway is virtually always inactivated in human cancer cells. This unifying feature has commenced tremendous efforts to develop p53-based anti-cancer therapies. Different strategies exist that are adapted to the mechanisms of p53 inactivation. In p53-mutated tumours, delivery of wild-type p53 by adenovirus-based gen...

  9. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:26626257

  10. THE TRPV1 RECEPTOR: TARGET OF TOXICANTS AND THERAPEUTICS

    Science.gov (United States)

    Understanding the structural and functional complexities of the TRPV1 is essential to the therapeutic modulation of inflammation and pain. Because of its central role in initiating inflammatory processes and integrating painful stimuli, there is an understandable interest...

  11. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery. PMID:21133071

  12. Periostin: a promising target of therapeutical intervention for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ding Weihong

    2011-06-01

    RNA-Periostin LNCap cells growed slowly in vitro and in vivo. The tissues of xenografts as PCa were verificated by HE staining. Additionally, the weak positive Periostin expressed tumor cells could be seen in the tissues of 6 xenografts from the group of down-regulated Periostin LNCap cells which had a significant decrease of the amount of Periostin compared to the other two group. Furthermore, our results demonstrated that sliencing Periostin could inhibit migration of LNCap cells in vitro. Conclusions Our data indicates that Periostin as an up-regulated protein in PCa may be a promising target of therapeutical intervention for PCa in future.

  13. Localized sequence-specific release of a chemopreventive agent and an anticancer drug in a time-controllable manner to enhance therapeutic efficacy.

    Science.gov (United States)

    Pan, Wen-Yu; Lin, Kun-Ju; Huang, Chieh-Cheng; Chiang, Wei-Lun; Lin, Yu-Jung; Lin, Wei-Chih; Chuang, Er-Yuan; Chang, Yen; Sung, Hsing-Wen

    2016-09-01

    Combination chemotherapy with multiple drugs commonly requires several injections on various schedules, and the probability that the drug molecules reach the diseased tissues at the proper time and effective therapeutic concentrations is very low. This work elucidates an injectable co-delivery system that is based on cationic liposomes that are adsorbed on anionic hollow microspheres (Lipos-HMs) via electrostatic interaction, from which the localized sequence-specific release of a chemopreventive agent (1,25(OH)2D3) and an anticancer drug (doxorubicin; DOX) can be thermally driven in a time-controllable manner by an externally applied high-frequency magnetic field (HFMF). Lipos-HMs can greatly promote the accumulation of reactive oxygen species (ROS) in tumor cells by reducing their cytoplasmic expression of an antioxidant enzyme (superoxide dismutase) by 1,25(OH)2D3, increasing the susceptibility of cancer cells to the cytotoxic action of DOX. In nude mice that bear xenograft tumors, treatment with Lipos-HMs under exposure to HFMF effectively inhibits tumor growth and is the most effective therapeutic intervention among all the investigated. These empirical results demonstrate that the synergistic anticancer effects of sequential release of 1,25(OH)2D3 and DOX from the Lipos-HMs may have potential for maximizing DOX cytotoxicity, supporting more effective cancer treatment. PMID:27294541

  14. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent.

    Science.gov (United States)

    Tavakolifard, Sara; Biazar, Esmaeil; Pourshamsian, Khalil; Moslemin, Mohammad H

    2016-08-01

    Single-wall carbon nanotubes (SWCNT) represent a novel nanomaterial applied in various nanotechnology fields because of their surface chemistry properties and high drug cargo capacity. In this study, SWCNT are pre-functionalized covalently with paclitaxel (PTX) - an anticancer drug, and folic acid (FA), as a targeting agent for many tumors. The samples are investigated and evaluated by different analyses such as Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), absorption spectroscopic measurements (UV-Visible), elemental analysis, and cell analyses with cancer cell line cultures. The results show good conjugation of the targeting molecule and the anticancer drug on the surface of the carbon nanotubes (CNT). This work demonstrates that the SWCNT-PTX-FA system is a potentially useful system for the targeted delivery of anticancer drugs. PMID:25783856

  15. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Kim Se-Kwon

    2013-01-01

    Full Text Available Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow.

  16. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer

    OpenAIRE

    Steffen, Jamin D.; Tholey, Renee M.; Langelier, Marie-France; Planck, Jamie L.; Schiewer, Matthew J.; Lal, Shruti; Bildzukewicz, Nikolai A.; Yeo, Charles J.; Knudsen, Karen E.; Brody, Jonathan R; Pascal, John M.

    2013-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs raising important questions concerning long-term off-target effects. Her...

  17. Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies.

    Science.gov (United States)

    Islam, Mohammad K; Jackson, Paul Jm; Rahman, Khondaker M; Thurston, David E

    2016-07-01

    Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade. PMID:27442231

  18. Galectins as therapeutic targets for hematological malignancies: a hopeful sweetness.

    Science.gov (United States)

    Pena, Camilo; Mirandola, Leonardo; Figueroa, Jose A; Hosiriluck, Nattamol; Suvorava, Natallia; Trotter, Kayley; Reidy, Adair; Rakhshanda, Rahman; Payne, Drew; Jenkins, Marjorie; Grizzi, Fabio; Littlefield, Lauren; Chiriva-Internati, Maurizio; Cobos, Everardo

    2014-09-01

    Galectins are family of galactose-binding proteins known to play critical roles in inflammation and neoplastic progression. Galectins facilitate the growth and survival of neoplastic cells by regulating their cross-talk with the extracellular microenvironment and hampering anti-neoplastic immunity. Here, we review the role of galectins in the biology of hematological malignancies and their promise as potential therapeutic agents in these diseases. PMID:25405162

  19. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications†

    OpenAIRE

    Xu, Chenjie; Sun, Shouheng

    2009-01-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, pr...

  20. Antioxidants Meet Molecular Targets for Cancer Prevention and Therapeutics

    OpenAIRE

    Ahmad, Nihal; Mukhtar, Hasan

    2013-01-01

    A fine balance between oxidants and antioxidants is required for the normal functioning of living systems. A deregulation of this balance has been implicated in many adverse effects and diseases, including cancer. Extensive research has been done in the area of cancer prevention and therapeutics by a wide range of antioxidants, especially naturally occurring and diet-based agents. However, additional efforts are still needed toward clinical development of the most promising antioxidant agents...

  1. Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies.

    OpenAIRE

    Gauthier, Chantal; Rozec, Bertrand; Manoury, Boris; Balligand, Jean-Luc

    2011-01-01

    Catecholamines play a key role in the regulation of cardiovascular function, classically through ß(1/2)-adrenoreceptors (AR) activation. After ß(3)-AR cloning in the late 1980s, convincing evidence for ß(3)-AR expression and function in cardiovascular tissues recently initiated a reexamination of their involvement in the pathophysiology of cardiovascular diseases. Their upregulation in diseased cardiovascular tissues and resistance to desensitization suggest they may be attractive therapeutic...

  2. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    OpenAIRE

    Cockle, J V; Picton, S; Levesley, J.; Ilett, E; Carcaboso, A M; Short, S.(Queen Mary University of London, School of Physics and Astronomy, London, United Kingdom); Steel, L P; Melcher, A.; Lawler, S. E.; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previousl...

  3. Reverse cholesterol transport: a potential therapeutic target for atherosclerosis

    OpenAIRE

    Ying ZHAO

    2011-01-01

    Atherosclerosis is the major cause of death in the Western society due to the development of acute clinical events such as myocardial infarction and cerebral stroke. Currently, lowering plasma LDL cholesterol (LDL-C) levels using statins, inhibitors of de-novo cholesterol synthesis, is the main therapeutic strategy to prevent the progression of atherosclerosis. The remaining high incidence of cardiovascular disease indicates a clear need for new therapies. Numerous epidemiological studies hav...

  4. MicroRNA as therapeutic targets for treatment of depression

    OpenAIRE

    Hansen KF; Obrietan K

    2013-01-01

    Katelin F Hansen, Karl Obrietan Department of Neuroscience, Ohio State University, Columbus, OH, USA Abstract: Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gaine...

  5. Molecular markers as therapeutic targets in lung cancer

    OpenAIRE

    Hsin-Hui Tseng; Biao He

    2013-01-01

    Lung cancer is responsible for 29% of cancer deaths in the United States and has very low 5-year survival rates of approximately 11% in men and 15% in women. Although the early diagnosis of lung cancer may increase the survival rate with adequate treatment, advanced lung cancers are often metastasized and receive limited benefit from therapeutic regimens. As conventional treatments for lung cancer reach their limitations, researchers have attempted to discover novel drug therapies aimed at sp...

  6. ROCK as a Therapeutic Target of Diabetic Retinopathy

    OpenAIRE

    Tatsuro Ishibashi; Yasuaki Hata; Ryoichi Arita

    2010-01-01

    The increasing global prevalence of diabetes is a critical problem for public health. In particular, diabetic retinopathy, a prevalent ocular complication of diabetes mellitus, causes severe vision loss in working population. A better understanding of the pathogenesis and the development of new pharmacologic treatments are needed. This paper describes the relevance between Rho/ROCK pathway and the pathogenesis of diabetic retinopathy from its early to late stages. Moreover, the therapeutic po...

  7. The therapeutic value of targeting inflammation in gastrointestinal cancers

    OpenAIRE

    Sun, Beicheng; Karin, Michael

    2014-01-01

    Inflammation has been implicated in the initiation and progression of gastrointestinal (GI) cancers. Inflammation also plays important roles in subverting immune tolerance, escape from immune surveillance, and conferring resistance to chemotherapeutic agents. Targeting key regulators and mediators of inflammation represents an attractive strategy for GI cancer prevention and treatment. However, the targeting of inflammation in GI cancer is not straight-forward and sometimes inflammation may c...

  8. Non-Coding RNAs as Therapeutic Targets in Hepatocellular Cancer

    OpenAIRE

    Braconi, Chiara; Patel, Tushar

    2012-01-01

    Hepatocellular carcinoma (HCC) is a common malignancy that affects a large number of patients worldwide, with an increasing incidence in the United States and Europe. The therapies that are currently available for patients with inoperable HCC have limited benefits. Although molecular targeted therapies against selected cell signaling pathways have shown some promising results, their impact has been minimal. There is a need to identify and explore other targets for the development of novel the...

  9. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications

    Science.gov (United States)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M.; Paik, Pradip

    2016-03-01

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (˜279 and ˜480 ng μg-1, respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ˜96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  10. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications.

    Science.gov (United States)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M; Paik, Pradip

    2016-03-29

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg(-1), respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to 'cellular scenescence' and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery. PMID:26891479

  11. Targeting histone deacetylases: A novel therapeutic strategy for atrial fibrillation.

    Science.gov (United States)

    Lkhagva, Baigalmaa; Kao, Yu-Hsun; Chen, Yao-Chang; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2016-06-15

    Atrial fibrillation (AF) is a common cardiac arrhythmia associated with high mortality and morbidity. Current treatments of AF have limited efficacy and considerable side effects. Histone deacetylases (HDACs) play critical roles in the pathophysiology of cardiovascular diseases and contribute to the genesis of AF. Therefore, HDAC inhibition may prove a novel therapeutic strategy for AF through upstream therapy and modifications of AF electrical and structural remodeling. In this review, we provide an update of the knowledge of the effects of HDACs and HDAC inhibitors on AF, and dissect potential underlying mechanisms. PMID:27089819

  12. Tumor angiogenesis--a new therapeutic target in gliomas

    DEFF Research Database (Denmark)

    Lund, E L; Spang-Thomsen, M; Skovgaard-Poulsen, H; Kristjansen, P E

    1998-01-01

    Tumor growth is critically dependent on angiogenesis, which is sprouting of new vessels from pre-existing vasculature. This process is regulated by inducers and inhibitors released from tumor cells, endothelial cells, and macrophages. Brain tumors, especially glioblastoma multiforme, have...... significant angiogenic activity primarily by the expression of the angiogenic factor VEGF Anti-angiogenic therapy represents a new promising therapeutic modality in solid tumors. Several agents are currently under evaluation in clinical trials. The present review describes the principal inducers and...... inhibitors of angiogenesis in tumors and summarizes what is known about their mechanisms of action in relation to CNS tumors. Potential areas for clinical use are also discussed....

  13. Is tau a suitable therapeutical target in tauopathies?

    Institute of Scientific and Technical Information of China (English)

    Elena; Gomez; de; Barreda; Jesús; Avila

    2010-01-01

    Tau is an intracellular protein,found mainly in neurons,but it can also be found in the extracellular space in pathological situations.Here we discuss whether intracellular tau,in aggregated form or modified by phosphorylation,could be toxic inside a neuron.On the other hand,it has been proposed that extracellular tau could be toxic.In this review,we address the question if the elimination of tau would be a possible therapeutic method to avoid tauopathy disorder and we suggest ways to eliminate intracellular and extracellular tau as treatment.

  14. The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications.

    Science.gov (United States)

    Lan, Xi; Wang, Wenzhu; Li, Qiang; Wang, Jian

    2016-04-01

    Pinocembrin is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown anti-inflammatory and neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these pharmaceutical characteristics, pinocembrin has potential as a drug to treat ischemic stroke and other clinical conditions. In this review, we summarize its pharmacologic characteristics and discuss its mechanisms of action and potential therapeutic applications. PMID:25744566

  15. Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer

    OpenAIRE

    Jiang, Quan; Zheng, Shilong; Wang, Guangdi

    2013-01-01

    Despite our deepening understanding of the mechanisms of resistance and intensive efforts to develop therapeutic solutions to combat resistance, de novo and acquired tamoxifen resistance remains a clinical challenge, and few effective regimens exist to treat tamoxifen-resistant breast cancer. The complexity of tamoxifen resistance calls for diverse therapeutic approaches. This review presents several therapeutic strategies and lead compounds targeting the estrogen receptor signaling pathways ...

  16. Emerging therapeutic targets and strategies in Crohn's disease.

    Science.gov (United States)

    Furfaro, Federica; Fiorino, Gionata; Allocca, Mariangela; Gilardi, Daniela; Danese, Silvio

    2016-06-01

    Crohn's disease (CD) is an immune-mediated inflammatory bowel disease, in which inflammation is driven by a complex interaction between the microbiota, immune cells, genes and mediators. New mechanisms of action and several cytokines have been identified as factors involved in the inflammatory process in CD, and many new molecules have been developed to treat this complex disease. New agents have been developed that target leukocyte trafficking, block or adhesion molecules for example, as well as the development of antibodies against classic inflammatory cytokines or therapies directed against IL-12/23 and Janus kinases. The development of selective mechanisms of action and targeting of different cytokines or inflammatory mediators for each patient presents the biggest challenge for the future in CD therapy. Such agents are currently at different phases of development. We aim to review the current literature data on a targeted approach in CD, which could be promising alternative approach for CD patients in the near future. PMID:26766496

  17. Therapeutic approaches targeting intestinal microflora in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Akira Andoh; Yoshihide Fujiyama

    2006-01-01

    Inflammatory bowel diseases, ulcerative colitis, and Crohn's disease, are chronic intestinal disorders of unknown etiology in which in genetically susceptible individuals, the mucosal immune system shows an aberrant response towards commensal bacteria.The gastrointestinal tract has developed ingenious mechanisms to coexist with its autologous microflora,but rapidly responds to invading pathogens and then returns to homeostasis with its commensal bacteria after the pathogenic infection is cleared. In case of disruption of this tightly-regulated homeostasis, chronic intestinal inflammation may be induced. Previous studies showed that some commensal bacteria are detrimental while others have either no influence or have a protective action. In addition, each host has a genetically determined response to detrimental and protective bacterial species. These suggest that therapeutic manipulation of imbalance of microflora can influence health and disease. This review focuses on new insights into the role of commensal bacteria in gut health and disease, and presents recent findings in innate and adaptive immune interactions. Therapeutic approaches to modulate balance of intestinal microflora and their potential mechanisms of action are also discussed.

  18. Tumor Progression Locus 2 (Tpl2 Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    Directory of Open Access Journals (Sweden)

    Hye Won Lee

    2015-02-01

    Full Text Available Tumor progression locus 2 (Tpl2 is a mitogen-activated protein kinase (MAPK kinase kinase (MAP3K that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.

  19. Bone biology, signaling pathways, and therapeutic targets for osteoporosis.

    Science.gov (United States)

    Iñiguez-Ariza, Nicole M; Clarke, Bart L

    2015-10-01

    Major advances have occurred recently in the treatment of osteoporosis in recent years. Most patients are currently treated with bisphosphonates, denosumab, raloxifene, or teriparatide, and in some countries, strontium ranelate. Strontium ranelate and calcitonin have recently had their use restricted due to cardiovascular concerns and malignancy, respectively. The available agents have generally provided excellent options that effectively reduce fracture risk. New targets are being sought based on appreciation of the bone biology and signaling pathways involved in bone formation and resorption. These agents will directly target these signaling pathways, and further expand the options available for treatment of osteoporosis. PMID:26255682

  20. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015).

    Science.gov (United States)

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  1. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches.

    Directory of Open Access Journals (Sweden)

    Mohammad S Jamal

    Full Text Available Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone is a naphthoquinone derivative from the roots of plant Plumbago zeylanica and belongs to one of the largest and diverse groups of plant metabolites. The anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin exerts inhibitory effects on multiple cancer-signaling proteins, however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. The present study is the first attempt to provide structural insights into the binding mode of plumbagin to five cancer signaling proteins viz. PI3Kγ, AKT1/PKBα, Bcl-2, NF-κB, and Stat3 using molecular docking and (unbinding simulation analysis. We validated plumbagin docking to these targets with previously known important residues. The study also identified and characterized various novel interacting residues of these targets which mediate the binding of plumbagin. Moreover, the exact modes of inhibition when multiple mode of inhibition existed was also shown. Results indicated that the engaging of these important interacting residues in plumbagin binding leads to inhibition of these cancer-signaling proteins which are key players in the pathogenesis of cancer and thereby ceases the progression of the disease.

  2. Targeted drug delivery to magnetic implants for therapeutic applications

    International Nuclear Information System (INIS)

    A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject

  3. Therapeutic strategies targeting B-cells in multiple sclerosis.

    Science.gov (United States)

    Milo, Ron

    2016-07-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T-cells. Increasing evidence, however, suggests the fundamental role of B-cells in the pathogenesis of the disease. Recent strategies targeting B-cells in MS have demonstrated impressive and sometimes surprising results: B-cell depletion by monoclonal antibodies targeting the B-cell surface antigen CD20 (e.g. rituximab, ocrelizumab, ofatumumab) was shown to exert profound anti-inflammatory effect in MS with favorable risk-benefit ratio, with ocrelizumab demonstrating efficacy in both relapsing-remitting (RR) and primary-progressive (PP) MS in phase III clinical trials. Depletion of CD52 expressing T- and B-cells and monocytes by alemtuzumab resulted in impressive and durable suppression of disease activity in RRMS patients. On the other hand, strategies targeting B-cell cytokines such as atacicept resulted in increased disease activity. As our understanding of the biology of B-cells in MS is increasing, new compounds that target B-cells continue to be developed which promise to further expand the armamentarium of MS therapies and allow for more individualized therapy for patients with this complex disease. PMID:26970489

  4. Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer.

    Science.gov (United States)

    Brinkman, Ashley M; Chen, Guojun; Wang, Yidan; Hedman, Curtis J; Sherer, Nathan M; Havighurst, Thomas C; Gong, Shaoqin; Xu, Wei

    2016-09-01

    Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer for which there is no available targeted therapy. TNBC cases contribute disproportionately to breast cancer-related mortality, thus the need for novel and effective therapeutic methods is urgent. We have previously shown that a National Cancer Institute (NCI) investigational drug aminoflavone (AF) exhibits strong growth inhibitory effects in TNBC cells. However, in vivo pulmonary toxicity resulted in withdrawal or termination of several human clinical trials for AF. Herein we report the in vivo efficacy of a nanoformulation of AF that enhances the therapeutic index of AF in TNBC. We engineered a unique unimolecular micelle nanoparticle (NP) loaded with AF and conjugated with GE11, a 12 amino acid peptide targeting epidermal growth factor receptor (EGFR), since EGFR amplification is frequently observed in TNBC tumors. These unimolecular micelles possessed excellent stability and preferentially released drug payload at endosomal pH levels rather than blood pH levels. Use of the GE11 targeting peptide resulted in enhanced cellular uptake and strong growth inhibitory effects in TNBC cells. Further, AF-loaded, GE11-conjugated (targeted) unimolecular micelle NPs significantly inhibit orthotopic TNBC tumor growth in a xenograft model, compared to treatment with AF-loaded, GE11-lacking (non-targeted) unimolecular micelle NPs or free AF. Interestingly, the animals treated with AF-loaded, targeted NPs had the highest plasma and tumor level of AF among different treatment groups yet exhibited no increase in plasma aspartate aminotransferase (AST) activity level or observable tissue damage at the time of sacrifice. Together, these results highlight AF-loaded, EGFR-targeted unimolecular micelle NPs as an effective therapeutic option for EGFR-overexpressing TNBC. PMID:27267625

  5. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications.

    Science.gov (United States)

    Xu, Chenjie; Sun, Shouheng

    2009-08-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, proteins, peptides or antibodies, these NPs can be well-dispersed in biological solutions and used for drug delivery, magnetic separation, magnetic resonance imaging contrast enhancement and magnetic fluid hyperthermia. This Perspective reviews the common syntheses and controlled surface functionalization of monodisperse Fe(3)O(4)-based superparamagnetic NPs. It further outlines the exciting application potentials of these NPs in magnetic resonance imaging and drug delivery. PMID:20449070

  6. Overview of Nrf2 as Therapeutic Target in Epilepsy

    Directory of Open Access Journals (Sweden)

    Liliana Carmona-Aparicio

    2015-08-01

    Full Text Available Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2, which plays a central role in the regulation of antioxidant response elements (ARE and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  7. Alzheimer’s disease: Risk factors and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-09-01

    Full Text Available Alzheimer’s disease (AD, a neurodegenerative disorder, has been determined as an outcome of genetic as well as behavioral conditions. The complete understanding of its generation and progress is yet to be understood. However, there has been a significant progress in the diagnosis and identification of the associated risk factors of AD. Several of the risk factors were found connected with cholesterol. Scientists are mainly focusing on the reduction of amyloid β and stabilization of tau protein towards the development of its drugs. To modulate amyloid β, the key components of cholesterol metabolism have been attractive targets and the enzymes involved in the phosphorylation of tau have been tried to stabilize tau protein. This review article briefly highlights the symptoms, risk factors, and drug targets of AD.

  8. Alzheimer’s disease:Risk factors and therapeutic targets

    Institute of Scientific and Technical Information of China (English)

    Laxman Pokhrel

    2015-01-01

    Alzheimer’s disease (AD), a neurodegenerative disorder, has been determined as an outcome of genetic as well as behavioral conditions. The complete understanding of its generation and progress is yet to be understood. However, there has been a significant progress in the diagnosis and identification of the associated risk factors of AD. Several of the risk factors were found connected with cholesterol. Scientists are mainly focusing on the reduction of amyloid β and stabilization of tau protein towards the development of its drugs. To modulate amyloid β, the key components of cholesterol metabolism have been attractive targets and the enzymes involved in the phosphorylation of tau have been tried to stabilize tau protein. This review article briefly highlights the symptoms, risk factors, and drug targets of AD.

  9. Mesenchymal Migration as a Therapeutic Target in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Jessie Zhong

    2010-01-01

    Full Text Available Extensive infiltration of the surrounding healthy brain tissue is a cardinal feature of glioblastomas, highly lethal brain tumors. Deep infiltration by the glioblastoma cells renders complete surgical excision difficult and contemporary adjuvant therapies have had little impact on long-term survival. Thus, deep infiltration and resistance to irradiation and chemotherapy remain a major cause of patient mortality. Modern therapies specifically targeted to this unique aspect of glioblastoma cell biology hold significant promise to substantially improve survival rates for glioblastoma patients. In the present paper, we focus on the role of adhesion signaling molecules and the actin cytoskeleton in the mesenchymal mode of motility that characterizes invading glioblastoma cells. We then review current approaches to targeting these elements of the glioblastoma cell migration machinery and discuss other aspects of cell migration that may improve the treatment of infiltrating glioblastoma.

  10. Nucleic Acid Aptamers for Target Validation and Therapeutic Applications

    OpenAIRE

    Pendergrast, P. Shannon; Marsh, H Nicholas; Grate, Dilara; Healy, Judith M.; Stanton, Martin

    2005-01-01

    In the simplest view, aptamers can be thought of as nucleic acid analogs to antibodies. They are able to bind specifically to proteins, and, in many cases, that binding leads to a modulation of protein activity. New aptamers are rapidly generated through the SELEX (Systematic Evolution of Ligands by Exponential enrichment) process and have a very high target affinity and specificity (picomoles to nanomoles). Furthermore, aptamers composed of modified nucleotides have a long in vivo half-life ...

  11. Novel HIV-1 Therapeutics through Targeting Altered Host Cell Pathways

    OpenAIRE

    Coley, William; Kehn-Hall, Kylene; Van Duyne, Rachel; KASHANCHI, FATAH

    2009-01-01

    The emergence of drug-resistant human immunodeficiency virus type I (HIV-1) strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse-transcriptase, viral protease, or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 repli...

  12. MicroRNAs as potential therapeutic targets in kidney disease

    OpenAIRE

    Gomez, Ivan G.; Grafals, Monica; Portilla, Didier; Duffield, Jeremy S.

    2013-01-01

    One cornerstone of Chronic Kidney Disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. We will...

  13. Contemporary Therapeutic Approaches Targeting Bone Complications in Prostate Cancer

    OpenAIRE

    Lee, Richard J.; Saylor, Philip J.; Smith, Matthew R.

    2010-01-01

    Skeletal complications are major causes of morbidity in patients with prostate cancer. Despite the osteoblastic appearance of prostate cancer bone metastases, elevated serum and urinary markers of bone resorption are indicative of high osteoclast activity. Increased osteoclast activity is independently associated with subsequent skeletal complications, disease progression, and death. Osteoclast-targeted therapies aim to reduce the risk for disease-related skeletal complications, bone metastas...

  14. Enhanced targeted anticancer effects and inhibition of tumor metastasis by the TMTP1 compound peptide TMTP1-TAT-NBD.

    Science.gov (United States)

    Liu, Ronghua; Xi, Ling; Luo, Danfeng; Ma, Xiangyi; Yang, Wanhua; Xi, Yandong; Wang, Hongyan; Qian, Ming; Fan, Liangsheng; Xia, Xi; Li, Kezheng; Wang, Daowen; Zhou, Jianfeng; Meng, Li; Wang, Shixuan; Ma, Ding

    2012-08-10

    Micromolecular agents that block tumor development and metastasis hold great promise as cancer-targeted therapies. Tumor molecular targeted peptide 1 (TMTP1) was previously shown to target primary tumors and metastatic foci specifically. In this study, a group of composite peptides were incorporated to TMPT1. The NF-κB essential modulator-binding domain (NBD), and the trans-activator of transcription (TAT) peptide, were synthesized to enhance the targeted anti-tumor effects of TMTP1. TMTP1-NBD did not exhibit strong affinity to tumor cells as we had expected. Conjugating TAT with TMTP1-NBD ameliorated the poor hydrophilicity and negative charge of TMTP1-NBD. Therefore TMTP1-TAT-NBD displayed strong affinity and anti-tumor effects as we expected in vivo and in vitro. Interestingly cytoplasmic glycogen accumulation as well as apoptosis was observed in TMTP1-TAT-NBD treated PC-3M-1E8 cells. The downstream signaling pathways including AKT, GSK-3β, IκBα and NF-κB activity were verified to decrease by TMTP1-TAT-NBD. The pharmacokinetics and distribution of TMTP1-TAT-NBD in MDA-MB-231 tumor-bearing mice model provided some evidence for safety of the composite peptide, which showed the fluorescence of the peptide peaked in the tumor 6h after injection, with little fluorescence detected in normal organs except for very weak fluorescence in kidney. In conclusion, TMTP1-TAT-NBD may be a promising targeted anti-tumor agent for primary tumor and metastatic foci, which enhances the anticancer effects through inhibiting the AKT/GSK-3β/NF-κB pathway comparing with TMTP1. PMID:22580115

  15. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  16. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics.

    Science.gov (United States)

    Ubaldi, Massimo; Cannella, Nazzareno; Ciccocioppo, Roberto

    2016-01-01

    Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory. PMID:26822362

  17. Therapeutic antibodies: market considerations, disease targets and bioprocessing.

    Science.gov (United States)

    Elvin, John G; Couston, Ruairidh G; van der Walle, Christopher F

    2013-01-01

    Antibodies are well established in mainstream clinical practice and present an exciting area for collaborative research and development in industry and academia alike. In this review, we will provide an overview of the current market and an outlook to 2015, focussing on whole antibody molecules while acknowledging the next generation scaffolds containing variable fragments. The market will be discussed in the context of disease targets, particularly in the areas of oncology and immune disorders which generate the greatest revenue by a wide margin. Emerging targets include central nervous system disorders which will also stimulate new delivery strategies. It is becoming increasingly apparent that a better understanding of bioprocessing is required in order to optimize the steps involved in the preparation of a protein prior to formulation. The latter is outside the scope of this review and nor is it our intention to discuss protein delivery and pharmacokinetics. The challenges that lie ahead include the discovery of new disease targets and the development of robust bioprocessing operations. PMID:22227342

  18. MicroRNAs: a novel therapeutic target for schizophrenia.

    LENUS (Irish Health Repository)

    Bravo, Javier A

    2011-01-01

    Schizophrenia is one of the most disabling psychiatric conditions. Current treatments target monoamine receptors but this approach does not address the full complexity of the disorder. Here we explore the possibility of developing new anti-psychotics by targeting microRNAs (miRNAs), single stranded RNA molecules, 21-23 nucleotides in length that are not translated into proteins and regulate gene expression. The present review reveals that research involving schizophrenia and miRNA is very recent (the earliest report from 2007) and miRNAs add a significant layer of complexity to the pathophysiology of the disorder. However, miRNAs offer an exciting potential not only to understand the underlying mechanisms of schizophrenia, but also for the future development of antipsychotics, as the human miRNA system provides a rich and diverse opportunity for pharmacological targeting. However, technology is still developing in order to produce effective strategies to modulate specific and localized changes in miRNA, particularly in relation to the central nervous system and schizophrenia.

  19. Molecular target based combinational therapeutic approaches in thyroid cancer

    Directory of Open Access Journals (Sweden)

    Rajoria Shilpi

    2012-05-01

    Full Text Available Abstract Background Thyroid cancer, as with other types of cancer, is dependent on angiogenesis for its continued growth and development. Interestingly, estrogen has been shown to contribute to thyroid cancer aggressiveness in vitro, which is in full support of the observed increased incidence of thyroid cancer in women over men. Provided that estrogen has been observed to contribute to increased angiogenesis of estrogen responsive breast cancer, it is conceivable to speculate that estrogen also contributes to angiogenesis of estrogen responsive thyroid cancer. Methods In this study, three human thyroid cancer cells (B-CPAP, CGTH-W-1, ML-1 were treated with estrogen alone or estrogen and anti-estrogens (fulvestrant and 3,3′-diindolylmethane, a natural dietary compound for 24 hours. The cell culture media was then added to human umbilical vein endothelial cell (HUVECs and assayed for angiogenesis associated events. Vascular endothelial growth factor (VEGF levels were also quantified in the conditioned media so as to evaluate if it is a key player involved in these observations. Results Conditioned medium from estrogen treated thyroid cancer cells enhanced phenotypical changes (proliferation, migration and tubulogenesis of endothelial cells typically observed during angiogenesis. These phenotypic changes observed in HUVECs were determined to be modulated by estrogen induced secretion of VEGF by the cancer cells. Lastly, we show that VEGF secretion was inhibited by the anti-estrogens, fulvestrant and 3,3′-diindolylmethane, which resulted in diminished angiogenesis associated events in HUVECs. Conclusion Our data establishes estrogen as being a key regulator of VEGF secretion/expression in thyroid cells which enhances the process of angiogenesis in thyroid cancer. These findings also suggest the clinical utility of anti-estrogens as anti-angiogenic compounds to be used as a therapeutic means to treat thyroid cancer. We also observed that 3,3

  20. V-ATPase as an effective therapeutic target for sarcomas

    International Nuclear Information System (INIS)

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity

  1. V-ATPase as an effective therapeutic target for sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Perut, Francesca, E-mail: francesca.perut@ior.it [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Hosogi, Shigekuni [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kusuzaki, Katsuyuki [Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Baldini, Nicola [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy)

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  2. Cardiovascular disorders in anorexia nervosa and potential therapeutic targets.

    Science.gov (United States)

    Di Cola, Giovanni; Jacoangeli, Francesca; Jacoangeli, Fabrizio; Lombardo, Mauro; Iellamo, Ferdinando

    2014-10-01

    Anorexia nervosa (AN) is an eating disorder in which a distorted self-perception of body image and an excessive fear of gaining weight result in extreme restrictions in eating habits. AN may be divided into two types: a "binge-eating/purging type" during which the individual regularly engages in overeating and then purging behavior, and a "restricting type", in which she does not. AN is a serious medical problem in young people in Western societies. It is widely reported that patients with AN exhibit an enhanced mortality rate as compared with age-matched healthy subjects, which has been mainly ascribed to cardiac complications. At least one-third of all deaths in patients with anorexia nervosa are estimated to be due to cardiac causes, mainly sudden death. Cardiovascular complications of AN can be present in up to 80% of cases, and among them alterations in cardiac electrical activity, structure and hemodynamics have been reported as causes of morbidity and mortality. The objective of this brief review is to summarize current knowledge on the main cardiovascular complications of AN, their underlying mechanisms and the possible therapeutic approaches. PMID:25056404

  3. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    Science.gov (United States)

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. PMID:26303886

  4. Therapeutic Targets in Sepsis: Past, Present, and Future.

    Science.gov (United States)

    Seeley, Eric J; Bernard, Gordon R

    2016-06-01

    Antibiotics and fluids have been standard treatment for sepsis since World War II. Many molecular mediators of septic shock have since been identified. In models of sepsis, blocking these mediators improved organ injury and decreased mortality. Clinical trials, however, have failed. The absence of new therapies has been vexing to clinicians, clinical researchers, basic scientists, and the pharmaceutical industry. This article examines the evolution of sepsis therapy and theorizes about why so many well-reasoned therapies have not worked in human trials. We review new molecular targets for sepsis and examine trial designs that might lead to successful treatments for sepsis. PMID:27229636

  5. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology.

    Science.gov (United States)

    Lee, Jae Young; Biemond, Melissa; Petratos, Steven

    2015-12-01

    Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS. PMID:26619755

  6. Cannabidiol in Humans—The Quest for Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Stéphane Potvin

    2012-05-01

    Full Text Available Cannabidiol (CBD, a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word “cannabidiol”. Both monotherapy and combination studies (e.g., CBD + ∆9-THC were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies, schizophrenia and bipolar mania (four studies, social anxiety disorder (two studies, neuropathic and cancer pain (two studies, cancer anorexia (one study, Huntington’s disease (one study, insomnia (one study, and epilepsy (one study. Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150–600 mg/d may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed.

  7. Cannabidiol in humans-the quest for therapeutic targets.

    Science.gov (United States)

    Zhornitsky, Simon; Potvin, Stéphane

    2012-01-01

    Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word "cannabidiol". Both monotherapy and combination studies (e.g., CBD + ∆9-THC) were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies), schizophrenia and bipolar mania (four studies), social anxiety disorder (two studies), neuropathic and cancer pain (two studies), cancer anorexia (one study), Huntington's disease (one study), insomnia (one study), and epilepsy (one study). Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150-600 mg/d) may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed. PMID:24281562

  8. Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis.

    Science.gov (United States)

    Xu, Suowen; Liu, Zhiping; Liu, Peiqing

    2014-03-15

    Physiological concentrations of nitric oxide (NO) and carbon monoxide (CO) have multiple protective effects in the cardiovascular system. Recent studies have implicated hydrogen sulfide (H2S) as a new member of vasculoprotective gasotransmitter family, behaving similarly to NO and CO. H2S has been demonstrated to inhibit multiple key aspects of atherosclerosis, including atherogenic modification of LDL, monocytes adhesion to the endothelial cells, macrophage-derived foam cell formation and inflammation, smooth muscle cell proliferation, neointimal hyperplasia, vascular calcification, and thrombogenesis. H2S also decreases plasma homocysteine levels in experimental animal models. In the human body, H2S production is predominantly catalyzed by cystathionine-β-synthase (CBS) and cystathionine γ-lyase (CSE). CSE is the primary H2S-producing enzyme in the vasculature. Growing evidence suggests that atherosclerosis is associated with vascular CSE/H2S deficiency and that H2S supplementation by exogenous H2S donors (such as NaHS and GYY4137) attenuates, and H2S synthesis suppression by inhibitors (such as D, L-propargylglycine) aggravates the development of atherosclerotic plaques. However, it remains elusive whether CSE deficiency plays a causative role in atherosclerosis. A recent study (Circulation. 2013; 127: 2523-2534) demonstrates that decreased endogenous H2S production by CSE genetic deletion accelerates atherosclerosis in athero-prone ApoE-/- mice, pinpointing that endogenously produced H2S by CSE activation may be of benefit in the prevention and treatment of atherosclerosis. This study will facilitate the development of H2S-based pharmaceuticals with therapeutic applications in atherosclerosis-related cardiovascular diseases. PMID:24491853

  9. MOGAT2: A New Therapeutic Target for Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Muhua Yang

    2015-08-01

    Full Text Available Metabolic syndrome is an ever-increasing health problem among the world’s population. It is a group of intertwined maladies that includes obesity, hypertriglyceridemia, hypertension, nonalcoholic fatty liver disease (NAFLD, and diabetes mellitus type II (T2D. There is a direct correlation between high triacylglycerol (triglyceride; TAG level and severity of metabolic syndrome. Thus, controlling the synthesis of TAG will have a great impact on overall systemic lipid metabolism and thus metabolic syndrome progression. The Acyl-CoA: monoacylglycerolacyltransferase (MGAT family has three members (MGAT1, -2, and -3 that catalyze the first step in TAG production, conversion of monoacylglycerol (MAG to diacylglycerol (DAG. TAG is then directly synthesized from DAG by a Acyl-CoA: diacylglycerolacyltransferase (DGAT. The conversion of MAG → DAG → TAG is the major pathway for the production of TAG in the small intestine, and produces TAG to a lesser extent in the liver. Transgenic and pharmacological studies in mice have demonstrated the beneficial effects of MGAT inhibition as a therapy for treating several metabolic diseases, including obesity, insulin resistance, T2D, and NAFLD. In this review, the significance of several properties of MGAT physiology, including tissue expression pattern and its relationship to overall TAG metabolism, enzymatic biochemical properties and their effects on drug discovery, and finally what is the current knowledge about MGAT small molecule inhibitors and their efficacy will be discussed. Overall, this review highlights the therapeutic potential of inhibiting MGAT for lowering TAG synthesis and whether this avenue of drug discovery warrants further clinical investigation.

  10. Endocannabinoid signaling in female reproductive events: a potential therapeutic target?

    Science.gov (United States)

    Maccarrone, Mauro

    2015-01-01

    Nearly 30 years after the discovery in 1964 of the psychoactive ingredient of cannabis (Cannabis sativa), Δ(9)-tetrahydrocannabinol, its endogenous counterparts were discovered and collectively termed endocannabinoids (eCBs): N-arachidonoylethanolamine (anandamide) in 1992 and 2-arachidonoylglycerol in 1995. Since then, intense research has identified additional eCBs and an ensemble of proteins that bind, synthesize and degrade them, the so-called eCB system. Altogether, these new compounds have been recognized as key mediators of several aspects of human pathophysiology, and in particular of female fertility. Here, the main features of the eCB system are presented, in order to put in a better perspective the relevance of eCB signaling in virtually all steps of human reproduction and to highlight emerging hopes that elements of this system might indeed become novel targets to combat fertility problems. PMID:26126134

  11. Skp2 is a promising therapeutic target in breast cancer

    Directory of Open Access Journals (Sweden)

    Zhiwei eWang

    2012-01-01

    Full Text Available Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, Her2, PI3K/Akt, BRCA1 and BRCA2. Emerging evidence has shown that the F-box protein Skp2 (S-phase kinase associated protein 2 also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural chemopreventive agents as targeted approach for the prevention and/or treatment of breast cancer.

  12. IGF-1R as an anti-cancer target-trials and tribulations

    Institute of Scientific and Technical Information of China (English)

    Helen X.Chen; Elad Sharon

    2013-01-01

    Type Ⅰ insulin-like growth factor receptor (IGF-1R) has long been recognized for its role in tumorigenesis and growth,but only recently have the tools for targeting the IGF pathway become available.More than 10 IGF/IGF-1R inhibitors have entered clinical trials,and these belong to three main classes:(1)monoclonal antibodies against IGF-1R,(2) monoclonal antibodies against IGF-1R ligands (IGF-1 and IGF-2),and (3) IGF-1R tyrosine kinase inhibitors.These IGF-1R-targeting agents share common effects on IGF-1R signaling but differ in mechanisms of action,spectrum of target inhibition,and pharmacological features.Clinical activity of IGF-1R inhibitors has been demonstrated with sustained responses in a small number of patients with select tumor types,such as Ewing sarcoma and thymoma.However,many large clinical trials involving patients with adult tumors,including non-small cell lung cancer,breast cancer,and pancreatic cancer,failed to show clinical benefit in the overall patient population.Possible reasons for failure include the complexity of the IGF-1R/insulin receptor system and parallel growth and survival pathways,as well as a lack of patient selection markers.While IGF-1R remains a valid target for selected tumor types,identification of predictive markers and rational combinations will be critical to success in future development.

  13. Targeting nicotine addiction: the possibility of a therapeutic vaccine

    Directory of Open Access Journals (Sweden)

    Escobar-Chávez JJ

    2011-04-01

    Full Text Available José Juan Escobar-Chávez1, Clara Luisa Domínguez-Delgado2, Isabel Marlen Rodríguez-Cruz21Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México; 2División de Estudios de Posgrado (Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, MéxicoAbstract: Cigarette smoking is the primary cause of lung cancer, cardiovascular diseases, reproductive disorders, and delayed wound healing all over the world. The goals of smoking cessation are both to reduce health risks and to improve quality of life. The development of novel and more effective medications for smoking cessation is crucial in the treatment of nicotine dependence. Currently, first-line smoking cessation therapies include nicotine replacement products and bupropion. The partial nicotinic receptor agonist, varenicline, has recently been approved by the US Food and Drug Administration (FDA for smoking cessation. Clonidine and nortriptyline have demonstrated some efficacy, but side effects may limit their use to second-line treatment products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine D3 receptor antagonists. Nicotine vaccines are among newer products seeking approval from the FDA. Antidrug vaccines are irreversible, provide protection over years and need booster injections far beyond the critical phase of acute withdrawal symptoms. Interacting with the drug in the blood rather than with a receptor in the brain, the vaccines are free of side effects due to central interaction. For drugs like nicotine, which interacts with different types of receptors in many organs, this is a further advantage. Three anti-nicotine vaccines are today in an advanced stage of clinical evaluation. Results

  14. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    Science.gov (United States)

    Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto

    2016-06-01

    In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87

  15. Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets?

    Science.gov (United States)

    Serafini, Gianluca; Hayley, Shawn; Pompili, Maurizio; Dwivedi, Yogesh; Brahmachari, Goutam; Girardi, Paolo; Amore, Mario

    2014-01-01

    Major depression is one of the leading causes of disability and psychosocial impairment worldwide. Although many advances have been made in the neurobiology of this complex disorder, the pathophysiological mechanisms are still unclear. Among the proposed theories, impaired neuroplasticity and hippocampal neurogenesis have received considerable attention. The possible association between hippocampal neurogenesis, neurotrophic factors, major depression, and antidepressant responses was critically analyzed using a comprehensive search of articles/book chapters in English language between 1980 and 2014. One common emerging theme was that chronic stress and major depression are associated with structural brain changes such as a loss of dendritic spines and synapses, as well as reduced dendritic arborisation, together with diminished glial cells in the hippocampus. Both central monoamines and neurotrophic factors were associated with a modulation of hippocampal progenitor proliferation and cell survival. Accordingly, antidepressants are generally suggested to reverse stress-induced structural changes augmenting dendritic arborisation and synaptogenesis. Such antidepressant consequences are supposed to stem from their stimulatory effects on neurotrophic factors, and possibly modulation of glial cells. Of course, accumulating evidence also suggested that glutamatergic systems are implicated in not only basic neuroplastic processes, but also in the core features of depression. Hence, it is critical that antidepressant strategies focus on links between the various neurotransmitter systems, neurotrophic processes of hippocampal neurogenesis, and neurotrophic factors with regards to depressive symptomology. The identification of novel alternative antidepressant medications that target these systems is discussed in this review. PMID:25470403

  16. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cristina Hernández

    2016-01-01

    Full Text Available Diabetic retinopathy (DR is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF, the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.

  17. Adhesion receptors as therapeutic targets for circulating tumor cells

    Directory of Open Access Journals (Sweden)

    MichaelR.King

    2012-07-01

    Full Text Available Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic “seeds”, circulating tumor cells (CTCs are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation.

  18. Mitochondrial Respiration - An Important Therapeutic Target in Melanoma

    Science.gov (United States)

    Barbi de Moura, Michelle; Vincent, Garret; Fayewicz, Shelley L.; Bateman, Nicholas W.; Hood, Brian L.; Sun, Mai; Suhan, Joseph; Duensing, Stefan; Yin, Yan; Sander, Cindy; Kirkwood, John M.; Becker, Dorothea; Conrads, Thomas P.; Van Houten, Bennett; Moschos, Stergios J.

    2012-01-01

    The importance of mitochondria as oxygen sensors as well as producers of ATP and reactive oxygen species (ROS) has recently become a focal point of cancer research. However, in the case of melanoma, little information is available to what extent cellular bioenergetics processes contribute to the progression of the disease and related to it, whether oxidative phosphorylation (OXPHOS) has a prominent role in advanced melanoma. In this study we demonstrate that compared to melanocytes, metastatic melanoma cells have elevated levels of OXPHOS. Furthermore, treating metastatic melanoma cells with the drug, Elesclomol, which induces cancer cell apoptosis through oxidative stress, we document by way of stable isotope labeling with amino acids in cell culture (SILAC) that proteins participating in OXPHOS are downregulated. We also provide evidence that melanoma cells with high levels of glycolysis are more resistant to Elesclomol. We further show that Elesclomol upregulates hypoxia inducible factor 1-α (HIF-1α), and that prolonged exposure of melanoma cells to this drug leads to selection of melanoma cells with high levels of glycolysis. Taken together, our findings suggest that molecular targeting of OXPHOS may have efficacy for advanced melanoma. PMID:22912665

  19. Mitochondrial respiration--an important therapeutic target in melanoma.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available The importance of mitochondria as oxygen sensors as well as producers of ATP and reactive oxygen species (ROS has recently become a focal point of cancer research. However, in the case of melanoma, little information is available to what extent cellular bioenergetics processes contribute to the progression of the disease and related to it, whether oxidative phosphorylation (OXPHOS has a prominent role in advanced melanoma. In this study we demonstrate that compared to melanocytes, metastatic melanoma cells have elevated levels of OXPHOS. Furthermore, treating metastatic melanoma cells with the drug, Elesclomol, which induces cancer cell apoptosis through oxidative stress, we document by way of stable isotope labeling with amino acids in cell culture (SILAC that proteins participating in OXPHOS are downregulated. We also provide evidence that melanoma cells with high levels of glycolysis are more resistant to Elesclomol. We further show that Elesclomol upregulates hypoxia inducible factor 1-α (HIF-1α, and that prolonged exposure of melanoma cells to this drug leads to selection of melanoma cells with high levels of glycolysis. Taken together, our findings suggest that molecular targeting of OXPHOS may have efficacy for advanced melanoma.

  20. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    Science.gov (United States)

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  1. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    LUIZ HENRIQUE CÉSAR VASCONCELOS

    2016-03-01

    Full Text Available Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus and Web of Science to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  2. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag+ to Ag0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of AgNPs

  3. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  4. Therapeutic challenges for systemic sclerosis: facts and future targets.

    Science.gov (United States)

    Cerinic Matucci, M; Del Rosso, Angela; Federico, Perfetto; Livi, Riccardo; Fiori, Ginevra; Bartoli, Francesca; Blagojevic, Jelena; Tempestini, Alessio; Pignone, Alberto

    2007-09-01

    Pulmonary arterial hypertension (PAH) is an important cause of death in systemic sclerosis (SSc), despite the improvement of therapies. An early diagnosis and the use of drugs interfering with the main pathogenic pathways of PAH is pivotal for the improvement of prognosis in primary PAH and PAH secondary to autoimmune rheumatic diseases, mainly SSc. Lately, new specific therapies have been developed targeting prostacyclin, endothelin, and nitric oxide pathways, the major pathogenic pathways leading to endothelial dysfunction in PAH. Epoprostenol improved life expectancy of patients with primary and secondary PAH, but its continuous intravenous administration requires experienced centers. More stable analogues of prostacyclin, administrated by intravenous (iloprost, treprostinil), subcutaneous, inhalatory (treprostinil, iloprost), and oral route (Beraprost) have shown efficacy in PAH. Bosentan, the first oral endothelin receptor antagonist (with affinity for endothelin A and B receptors) improves exercise function and survival in PAH, both primary and secondary to autoimmune rheumatic diseases. This is confirmed also for Sitaxsentan and Ambrisentan, selective A receptor antagonists. Because of its short half-life and systemic side effects, short-term NO inhalation is used only in short-term management of PAH in critically ill adults. Inhibitors of NO degradation, such as sildenafil, a phosphodiesterase (PDE) type 5 inhibitor, improved functional and hemodynamic parameters without significant side effects. Vardenafil and taladafil, longer-acting PDE inhibitors, also have vascular pulmonary selectivity. All these drugs may be used in combination, to maximize their clinical benefit not only in patients unresponsive to single drugs, but also potentially as initial therapy of PAH. PMID:17911460

  5. Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design

    OpenAIRE

    Li, Mi; Laco, Gary S.; Jaskolski, Mariusz; Rozycki, Jan; Alexandratos, Jerry; Wlodawer, Alexander; Gustchina, Alla

    2005-01-01

    The successful development of a number of HIV-1 protease (PR) inhibitors for the treatment of AIDS has validated the utilization of retroviral PRs as drug targets and necessitated their detailed structural study. Here we report the structure of a complex of human T cell leukemia virus type 1 (HTLV-1) PR with a substrate-based inhibitor bound in subsites P5 through P5′. Although HTLV-1 PR exhibits an overall fold similar to other retroviral PRs, significant structural differences are present i...

  6. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents

    OpenAIRE

    Michael G. Morash; Douglas, Susan E.; Anna Robotham; Ridley, Christina M.; Gallant, Jeffrey W.; Soanes, Kelly H.

    2011-01-01

    SUMMARY The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. ...

  7. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents

    OpenAIRE

    Morash, Michael G.; Douglas, Susan E.; Anna Robotham; Ridley, Christina M.; Gallant, Jeffrey W.; Soanes, Kelly H.

    2011-01-01

    SUMMARY The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of actio...

  8. N-α-PGP and PGP, potential biomarkers and therapeutic targets for COPD

    OpenAIRE

    Gaggar Amit; Dransfield Mark; Parker Suzanne; Noerager Brett; Jackson Patricia L; O'Reilly Philip; Blalock J Edwin

    2009-01-01

    Abstract Background Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder for which new diagnostic and therapeutic approaches are required. Hallmarks of COPD are matrix destruction and neutrophilic airway inflammation in the lung. We have previously described two tri-peptides, N-α-PGP and PGP, which are collagen fragments and neutrophil chemoattractants. In this study, we investigate if N-α-PGP and PGP are biomarkers and potential therapeutic targets for COPD. Methods ...

  9. Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design.

    Science.gov (United States)

    Hargrove, Tatiana Y; Friggeri, Laura; Wawrzak, Zdzislaw; Sivakumaran, Suneethi; Yazlovitskaya, Eugenia M; Hiebert, Scott W; Guengerich, F Peter; Waterman, Michael R; Lepesheva, Galina I

    2016-08-01

    Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors. PMID:27313059

  10. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety.

    Science.gov (United States)

    Kim, Sungwon; Park, Kyong Mi; Ko, Jin Young; Kwon, Ick Chan; Cho, Hyeon Geun; Kang, Dongmin; Yu, In Tag; Kim, Kwangmeyung; Na, Kun

    2008-05-01

    Recent researches to develop nano-carrier systems in anti-cancer drug delivery have focused on more complicated design to improve therapeutic efficacy and to reduce side effects. Although such efforts have great impact to biomedical science and engineering, the complexity has been a huddle because of clinical and economic problems. In order to overcome the problems, a simplest strategy to fabricate nano-carriers to deliver doxorubicin (DOX) was proposed in the present study. Two significant subjects (i) formation of nanoparticles loading and releasing DOX and (ii) binding specificity of them to cells, were examined. Folic acid (FA) was directly coupled with pullulan (Pul) backbone by ester linkage (FA/Pul conjugate) and the degree of substitution (DS) was varied, which were confirmed by 1H NMR and UV spectrophotometry. Light scattering results revealed that the nanogels possessed two major size distributions around 70 and 270 nm in an aqueous solution. Their critical aggregation concentrations (CACs) were less than 10 microg/mL, which are lower than general critical micelle concentrations (CMCs) of low-molecular-weight surfactants. Transmission electron microscopy (TEM) images showed well-dispersed nanogel morphology in a dried state. Depending on the DS, the nanogels showed different DOX-loading and releasing profiles. The DOX release rate from FA8/Pul (with the highest DS) for 24h was slower than that from FA4/or FA6/Pul, indicating that the FA worked as a hydrophobic moiety for drug holding. Cellular uptake of the nanogels (KB cells) was also monitored by confocal microscopy. All nanogels were internalized regardless of the DS of FA. Based on the results, the objectives of this study, to suggest a new method overcoming the complications in the drug carrier design, were successfully verified. PMID:18164602

  11. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents.

    Science.gov (United States)

    Xiong, Kai; Chen, Yu; Ouyang, Cheng; Guan, Rui-Lin; Ji, Liang-Nian; Chao, Hui

    2016-06-01

    Four cyclometalated iridium(III) complexes [Ir(dfppy)2(L)](+) (dfppy = 2-(2,4-difluorophenyl)pyridine, L = 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine, Ir1; 6-(isoquinolin-1-yl)-1,3,5-triazine-2,4-diamine, Ir2; 6-(quinolin-2-yl)-1,3,5-triazine-2,4-diamine, Ir3; 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine, Ir4) have been synthesized and characterized. Distinct from cisplatin, Ir1-Ir4 could specifically target mitochondria and induced apoptosis against various cancer cell lines, especially for cisplatin resistant cells. ICP-MS results indicated that Ir1-Ir4 were taken up via different mechanism for cancer cells and normal cells, which resulted in their high selectivity. The structure-activity relationship and signaling pathways were also discussed. PMID:27039888

  12. uPAR as anti-cancer target: evaluation of biomarker potential, histological localization, and antibody-based therapy

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Sørensen, Tine Thurison; Christensen, Ib J; Hoyer-Hansen, Gunilla

    2011-01-01

    action of several proteolytic systems in generation of a high proteolytic potential required for tissue remodeling processes. uPAR is additionally cleaved by uPA on the cell surface, liberating domain I, resulting in abrogated pericellular proteolysis. The expression of both uPAR and uPA is significantly...... hepatic fibrinolysis using mouse monoclonal antibodies (mAbs) against mouse uPA or uPAR. These reagents will target uPA and uPAR in both stromal cells and cancer cells, and their therapeutic potential can now be assessed in syngenic mouse cancer models....

  13. Clearing the fog of anticancer patents from 1993-2013: through an in-depth technology landscape & target analysis from pioneer research institutes and universities worldwide.

    Directory of Open Access Journals (Sweden)

    Ajay Dara

    Full Text Available BACKGROUND: In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR: India's largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. METHODOLOGY/PRINCIPAL FINDINGS: The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. CONCLUSIONS/SIGNIFICANCE: The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade

  14. Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics

    Science.gov (United States)

    MEENACH, SAMANTHA A.; TSORAS, ALEXANDRA N.; McGARRY, RONALD C.; MANSOUR, HEIDI M.; HILT, J. ZACH; ANDERSON, KIMBERLY W.

    2016-01-01

    Three-dimensional (3D) lung multicellular spheroids (MCS) in liquid-covered culture (LCC) and air-interface culture (AIC) conditions have both been developed for the evaluation of aerosol anticancer therapeutics in solution and aerosols, respectively. The MCS were formed by seeding lung cancer cells on top of collagen where they formed spheroids due to the prevalence of cell-to-cell interactions. LCC MCS were exposed to paclitaxel (PTX) in media whereas AIC MCS were exposed to dry powder PEGylated phospholipid aerosol microparticles containing paclitaxel. The difference in viability for 2D versus 3D culture for both LCC and AIC was evaluated along with the effects of the particles on lung epithelium via transepithelial electrical resistance (TEER) measurements. For LCC and AIC conditions, the 3D spheroids were more resistant to treatment with higher IC50 values for A549 and H358 cell lines. TEER results initially indicated a decrease in resistance upon drug or particle exposure, however, these values increased over the course of several days indicating the ability of the cells to recover. Overall, these studies offer a comprehensive in vitro evaluation of aerosol particles used in the treatment of lung cancer while introducing a new method for culturing lung cancer MCS in both LCC and AIC conditions. PMID:26846376

  15. Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets

    OpenAIRE

    McConnell, Jeanette R.; McAlpine, Shelli R.

    2013-01-01

    The heat shock proteins are essential players in the development of cancer and they are prime therapeutic targets. Targeting multiple hsps in dual therapies decreases the likelihood of drug resistance compared to utilizing mono-therapies. Further, employing an hsp inhibitor in combination with another therapy has proven clinically successful. Examples of efficacious strategies include the inhibition of hsp27, which prevents protein aggregation, controlling hsp40’s role as an ATPase modulator,...

  16. Development of a new anti-cancer agent for targeted radionuclide therapy: β- radiolabeled RAFT-RGD

    International Nuclear Information System (INIS)

    β-emitters radiolabeled RAFT-RGD as new agents for internal targeted radiotherapy. The αvβ3 integrin is known to play an important role in tumor-induced angiogenesis, tumor proliferation, survival and metastasis. Because of its overexpression on neo-endothelial cells such as those present in growing tumors, as well as on tumor cells of various origins, αvβ3 integrin is an attractive molecular target for diagnosis and therapy of the rapidly growing and metastatic tumors. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin αvβ3 in vitro and in vivo. RAFT-RGD has been used for tumor imaging and drug targeting. This study is the first to evaluate the therapeutic potential of the β-emitters radiolabeled tetrameric RGD peptide RAFT-RGD in a Nude mouse model of αvβ3 -expressing tumors. An injection of 37 MBq of 90Y-RAFT-RGD or 177Lu-RAFT-RGD in mice with αvβ3 -positive tumors caused a significant growth delay as compared with mice treated with 37 MBq of 90Y-RAFT-RAD or 177Lu-RAFT-RAD or untreated mice. In comparison, an injection of 30 MBq of 90Y-RAFT-RGD had no efficacy for the treatment of αvβ3 -negative tumors. 90Y-RAFT-RGD and 177Lu-RAFT-RGD are potent αvβ3 -expressing tumor targeting agents for internal targeted radiotherapy. (author)

  17. Molecular Targets in Alzheimer’s Disease: From Pathogenesis to Therapeutics

    Directory of Open Access Journals (Sweden)

    Xuan Cheng

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  18. CD27 Agonism Plus PD-1 Blockade Recapitulates CD4+ T-cell Help in Therapeutic Anticancer Vaccination.

    Science.gov (United States)

    Ahrends, Tomasz; Bąbała, Nikolina; Xiao, Yanling; Yagita, Hideo; van Eenennaam, Hans; Borst, Jannie

    2016-05-15

    While showing promise, vaccination strategies to treat cancer require further optimization. Likely barriers to efficacy involve cancer-associated immunosuppression and peripheral tolerance, which limit the generation of effective vaccine-specific cytotoxic T lymphocytes (CTL). Because CD4(+) T cells improve CTL responsiveness, next-generation vaccines include helper epitopes. Here, we demonstrate in mice how CD4(+) T-cell help optimizes the CTL response to a clinically relevant DNA vaccine engineered to combat human papillomavirus-expressing tumors. Inclusion of tumor-unrelated helper epitopes greatly increased CTL priming, effector, and memory T-cell programming. CD4(+) T-cell help optimized the CTL response in all these aspects via CD27/CD70 costimulation. Notably, administration of an agonistic CD27 antibody could largely replace helper epitopes in promoting primary and memory CTL responses, acting directly on CD8(+) T cells. CD27 agonism improved efficacy of the vaccine without helper epitopes, more so than combined PD-1 and CTLA-4 blockade. Combining CD27 agonism with CTLA-4 blockade improved vaccine-induced CTL priming and tumor infiltration, but only combination with PD-1 blockade was effective at eradicating tumors, thereby fully recapitulating the effect of CD4(+) T-cell help on vaccine efficacy. PD-1 blockade alone did not affect CTL priming or tumor infiltration, so these results implied that it cooperated with CD4(+) T-cell help by alleviating immune suppression against CTL in the tumor. Helper epitope inclusion or CD27 agonism did not stimulate regulatory T cells, and vaccine efficacy was also improved by CD27 agonism in the presence of CD4(+) T-cell help. Our findings provide a preclinical rationale to apply CD27 agonist antibodies, either alone or combined with PD-1 blockade, to improve the therapeutic efficacy of cancer vaccines and immunotherapy generally. Cancer Res; 76(10); 2921-31. ©2016 AACR. PMID:27020860

  19. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets.

    Directory of Open Access Journals (Sweden)

    John W Whitaker

    Full Text Available Identifying novel therapeutic targets for the treatment of disease is challenging. To this end, we developed a genome-wide approach of candidate gene prioritization. We independently collocated sets of genes that were implicated in rheumatoid arthritis (RA pathogenicity through three genome-wide assays: (i genome-wide association studies (GWAS, (ii differentially expression in RA fibroblast-like synoviocytes (FLS, and (iii differentially methylation in RA FLS. Integrated analysis of these complementary data sets identified a significant enrichment of multi-evidence genes (MEGs within pathways relating to RA pathogenicity. One MEG is Engulfment and Cell Motility Protein-1 (ELMO1, a gene not previously considered as a therapeutic target in RA FLS. We demonstrated in RA FLS that ELMO1 is: (i expressed, (ii promotes cell migration and invasion, and (iii regulates Rac1 activity. Thus, we created links between ELMO1 and RA pathogenicity, which in turn validates ELMO1 as a potential RA therapeutic target. This study illustrated the power of MEG-based approaches for therapeutic target identification.

  20. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets.

    Science.gov (United States)

    Whitaker, John W; Boyle, David L; Bartok, Beatrix; Ball, Scott T; Gay, Steffen; Wang, Wei; Firestein, Gary S

    2015-01-01

    Identifying novel therapeutic targets for the treatment of disease is challenging. To this end, we developed a genome-wide approach of candidate gene prioritization. We independently collocated sets of genes that were implicated in rheumatoid arthritis (RA) pathogenicity through three genome-wide assays: (i) genome-wide association studies (GWAS), (ii) differentially expression in RA fibroblast-like synoviocytes (FLS), and (iii) differentially methylation in RA FLS. Integrated analysis of these complementary data sets identified a significant enrichment of multi-evidence genes (MEGs) within pathways relating to RA pathogenicity. One MEG is Engulfment and Cell Motility Protein-1 (ELMO1), a gene not previously considered as a therapeutic target in RA FLS. We demonstrated in RA FLS that ELMO1 is: (i) expressed, (ii) promotes cell migration and invasion, and (iii) regulates Rac1 activity. Thus, we created links between ELMO1 and RA pathogenicity, which in turn validates ELMO1 as a potential RA therapeutic target. This study illustrated the power of MEG-based approaches for therapeutic target identification. PMID:25901943

  1. Insights into orphan nuclear receptors as prognostic markers and novel therapeutic targets for breast cancer

    OpenAIRE

    Reidun eAesoy; Colin D Clyne; Ashwini eChand

    2015-01-01

    The roles of orphan nuclear receptors in breast cancer development and progression are not well understood. In this review, we correlate orphan nuclear receptor expression in breast cancer tumour subtypes with patient outcomes and provide an overview of functional evidence that identifies candidate orphan nuclear receptors as prognostic markers or as therapeutic targets in breast cancer.

  2. Toxicities of anticancer drugs and its management

    Directory of Open Access Journals (Sweden)

    Ambili Remesh

    2012-02-01

    Full Text Available One of the characteristics that distinguish anticancer agents from other drugs is the frequency and severity of side effects at therapeutic doses. Most cytotoxic drugs target rapidly multiplying cells and the putative targets are the nucleic acids and their precursors, which are rapidly synthesised during cell division. Many solid tumours have a lower growth fraction than the normal bone marrow, gastro intestinal lining, reticuloendothelial system and gonads. Drugs affect these tissues in a dose dependant manner and there is individual susceptibility also. So toxicities are more frequently associated with these tissues. The side effects may be acute or chronic, self-limited, permanent, mild or potentially life threatening. Management of these side effects is of utmost importance because they affect the treatment, tolerability and overall quality of life. This paper gives an overview of different toxicities of anticancer drugs and its management. [Int J Basic Clin Pharmacol 2012; 1(1.000: 2-12

  3. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Science.gov (United States)

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  4. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention.

    Science.gov (United States)

    Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D

    2016-02-01

    There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. PMID:26332138

  5. Combined analgesics in (headache pain therapy: shotgun approach or precise multi-target therapeutics?

    Directory of Open Access Journals (Sweden)

    Fiebich Bernd L

    2011-03-01

    Full Text Available Abstract Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix" are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA, paracetamol (acetaminophen and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden

  6. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  7. Identification of the YES1 Kinase as a Therapeutic Target in Basal-Like Breast Cancers.

    Science.gov (United States)

    Bilal, Erhan; Alexe, Gabriela; Yao, Ming; Cong, Lei; Kulkarni, Atul; Ginjala, Vasudeva; Toppmeyer, Deborah; Ganesan, Shridar; Bhanot, Gyan

    2010-10-01

    Normal cellular behavior can be described as a complex, regulated network of interaction between genes and proteins. Targeted cancer therapies aim to neutralize specific proteins that are necessary for the cancer cell to remain viable in vivo. Ideally, the proteins targeted should be such that their downregulation has a major impact on the survival/fitness of the tumor cells and, at the same time, has a smaller effect on normal cells. It is difficult to use standard analysis methods on gene or protein expression levels to identify these targets because the level thresholds for tumorigenic behavior are different for different genes/proteins. We have developed a novel methodology to identify therapeutic targets by using a new paradigm called "gene centrality." The main idea is that, in addition to being overexpressed, good therapeutic targets should have a high degree of connectivity in the tumor network because one expects that suppression of its expression would affect many other genes. We propose a mathematical quantity called "centrality," which measures the degree of connectivity of genes in a network in which each edge is weighted by the expression level of the target gene. Using our method, we found that several SRC proto-oncogenes LYN, YES1, HCK, FYN, and LCK have high centrality in identifiable subsets of basal-like and HER2+ breast cancers. To experimentally validate the clinical value of this finding, we evaluated the effect of YES1 knockdown in basal-like breast cancer cell lines that overexpress this gene. We found that YES1 downregulation has a significant effect on the survival of these cell lines. Our results identify YES1 as a target for therapeutics in a subset of basal-like breast cancers. PMID:21779430

  8. Identification of the YES1 Kinase as a Therapeutic Target in Basal-Like Breast Cancers

    Science.gov (United States)

    Bilal, Erhan; Alexe, Gabriela; Yao, Ming; Cong, Lei; Kulkarni, Atul; Ginjala, Vasudeva; Toppmeyer, Deborah; Ganesan, Shridar; Bhanot, Gyan

    2010-01-01

    Normal cellular behavior can be described as a complex, regulated network of interaction between genes and proteins. Targeted cancer therapies aim to neutralize specific proteins that are necessary for the cancer cell to remain viable in vivo. Ideally, the proteins targeted should be such that their downregulation has a major impact on the survival/fitness of the tumor cells and, at the same time, has a smaller effect on normal cells. It is difficult to use standard analysis methods on gene or protein expression levels to identify these targets because the level thresholds for tumorigenic behavior are different for different genes/proteins. We have developed a novel methodology to identify therapeutic targets by using a new paradigm called “gene centrality.” The main idea is that, in addition to being overexpressed, good therapeutic targets should have a high degree of connectivity in the tumor network because one expects that suppression of its expression would affect many other genes. We propose a mathematical quantity called “centrality,” which measures the degree of connectivity of genes in a network in which each edge is weighted by the expression level of the target gene. Using our method, we found that several SRC proto-oncogenes LYN, YES1, HCK, FYN, and LCK have high centrality in identifiable subsets of basal-like and HER2+ breast cancers. To experimentally validate the clinical value of this finding, we evaluated the effect of YES1 knockdown in basal-like breast cancer cell lines that overexpress this gene. We found that YES1 downregulation has a significant effect on the survival of these cell lines. Our results identify YES1 as a target for therapeutics in a subset of basal-like breast cancers. PMID:21779430

  9. A trial of anticancer drug injection into cervical metastatic lymph nodes. Focus on therapeutic response when combined with 60Co external radiation

    International Nuclear Information System (INIS)

    Control of metastatic lymph nodes, especially enlarged nodes with adhesion, is extremely difficult. We treated metastatic lymph nodes with adhesion by intranodal injection (INI) of anticancer agents and obtained prolonged control of metastasis. Sixteen patients with a total of 23 metastatic lymph nodes with adhesion that were not indicated for surgical removal were studied. INI of peplomycin (14.0±10.4 mg), CDDP (10.0±0 mg), CBDCA (60.0±37.3 mg), methotrexate (28.5±27.1 mg), and 5-FU (311.1±194.9 mg) was given to all, 1, 10, 7, and 8 patients, respectively. External radiation with cobalt 60 (2 Gy/time, 42.8±9.7 Gy) was given to all but 3 patients. The results obtained were as follows: Except for one patient in whom the therapeutic responses could not be evaluated, all subjects had remission of swollen lymph nodes. The remission rates ranged from 99.6% to 14.3% (average, 51.3±27.8%). In three patients, metastatic lymph nodes became small enough to be surgically removed without recurrence. Of the remaining 13 patients, 11 had no re-enlargement for at least 3 months after the end of INI. Three patients are still alive (observation periods, 57, 6, and 6 months). Eleven patients died of uncontrolled primary lesions, distant metastases, or metastatic lymph nodes despite treatment with INI and radiation. The remaining two patients died of cardiovascular disease and pneumonia. Of the 13 patients who died, 6 (37.5% of all patients) survived for 10 months or more from the start of INI, and the remaining 7 survived for about 5 months. The mean duration of survival was 11.8±13.9 months. Finally, INI controlled metastatic lymph nodes although the therapeutic response was unclear in one patient and could not be evaluated in another. In conclusion, INI is an useful treatment for large metastatic lymph nodes that adhere to surrounding tissue and cannot undergo lymphectomy. (author)

  10. Aurora kinases as druggable targets in pediatric leukemia: heterogeneity in target modulation activities and cytotoxicity by diverse novel therapeutic agents.

    Directory of Open Access Journals (Sweden)

    Aarthi Jayanthan

    Full Text Available Leukemia is the most common pediatric malignancy, constituting more than 30% of all childhood cancers. Although cure rates have improved greatly, approximately one in five children relapse and poor survival rates post relapse remain a challenge. Given this, more effective and innovative therapeutic strategies are needed in order to improve prognosis. Aurora kinases, a family of serine/threonine kinases essential for the regulation of several mitotic processes, have been identified as potential targets for cancer therapeutics. Elevated expression of Aurora kinases has been demonstrated in several malignancies and is associated with aberrant mitotic activity, aneuploidy and alterations in chromosomal structure and genome instability. Based on this rationale, a number of small molecule inhibitors have been formulated and advanced to human studies in the recent past. A comparative analysis of these agents in cytotoxicity and target modulation analyses against a panel of leukemia cells provides novel insights into the unique mechanisms and codependent activity pathways involved in targeting Aurora kinases, constituting a distinctive preclinical experimental framework to identify appropriate agents and combinations in future clinical studies.

  11. Microtubule-binding agents: a dynamic field of cancer therapeutics

    OpenAIRE

    Dumontet, Charles; Jordan, Mary Ann

    2010-01-01

    International audience Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agen...

  12. The p53 network as therapeutic target in gastroenteropancreatic neuroendocrine neoplasms.

    Science.gov (United States)

    Briest, Franziska; Grabowski, Patricia

    2015-05-01

    Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are heterogeneous and especially the midgut tumors currently lack effective therapy options. Actionable driver mutations as therapeutic targets are rare. Subtype specific data concerning regulatory mechanisms or epigenetic aberrations are necessary for novel clinical trials. Although the p53 protein itself is rarely mutated in GEP-NENs, epigenetic and regulatory aberrations interfere with the p53 network activity and might function as s target for novel therapeutic approaches. In this review we analyze the current knowledge about the p53 network in GEP-NENs and discuss three possible strategies that include recovering p53 function, enforcing apoptosis by genotoxic stress induction and restoring silenced gene function, based on in vitro, in vivo and clinical data. PMID:25837868

  13. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    Science.gov (United States)

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. PMID:27095262

  14. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma.

    Science.gov (United States)

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Takagi, Satoshi

    2016-05-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA. PMID:26685984

  15. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Science.gov (United States)

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  16. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xing-miao CHEN; Han-sen CHEN; Ming-jing XU; Jian-gang SHEN

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases.Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply,but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury,which are mediated by free radicals.As an important component of free radicals,reactive nitrogen species (RNS),including nitric oxide (NO) and peroxynitrite (ONO0ˉ),play important roles in the process of cerebral ischemia-reperfusion injury.Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOOˉ) in ischemic brain,which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage.There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage.Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury.Herein,we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONO0ˉ to treat ischemic stroke.We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemiareperfusion injury.

  17. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells.

    Directory of Open Access Journals (Sweden)

    Bishoy eFaltas

    2012-07-01

    Full Text Available The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and micro-fluidics have led to the development of several devices for in-vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators and in-vivo photoacoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs. Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a local disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.

  18. Female resistance to pneumonia identifies lung macrophage nitric oxide synthase-3 as a therapeutic target

    DEFF Research Database (Denmark)

    Yang, Zhiping; Huang, Yuh-Chin T; Koziel, Henry;

    2014-01-01

    ). Epidemiologic data show decreased hospitalization for pneumonia in women receiving estrogen or statins (known to activate NOS3). Pharmacologic targeting of NOS3 with statins or another small-molecule compound (AVE3085) enhanced macrophage bacterial killing, improved bacterial clearance, and increased host...... survival in both primary and secondary (post-influenza) pneumonia. The data identify a novel mechanism for host defense via NOS3 and suggest a potential therapeutic strategy to reduce secondary bacterial pneumonia after influenza....

  19. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models

    OpenAIRE

    Duffield, Jeremy S.; Grafals, Monica; Portilla, Didier

    2012-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-...

  20. DD-07A KINOME RNA INTERFERENCE SCREEN IDENTIFIES NOVEL THERAPEUTIC TARGETS FOR GLIOBLASTOMA

    OpenAIRE

    Pham, Lily; Liang, Yanping; Guo, Sujuan; Murphy, Susan; Sheng, Zhi

    2014-01-01

    Glioblastoma (GBM) is the most common primary central nervous system tumor. Despite aggressive therapies such as surgical resection, chemo- and radiotherapies, the life expectancy and survival rates for GBM patients are still low. There is an urgent need for more effective therapies. We here hypothesized that certain kinases that are essential for GBM cell survival and thereby the better therapeutic targets for GBM remain to be defined. To identify these kinases, we designed and performed a d...

  1. HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention

    OpenAIRE

    Blair, Wade S.; Pickford, Chris; Irving, Stephen L.; Brown, David G.; Anderson, Marie; Bazin, Richard; Cao, Joan; Ciaramella, Giuseppe; Isaacson, Jason; Jackson, Lynn; Hunt, Rachael; Kjerrstrom, Anne; Nieman, James A.; Patick, Amy K.; Perros, Manos

    2010-01-01

    Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, a...

  2. Targeting the Glutamatergic System to Develop Novel, Improved Therapeutics for Mood Disorders

    OpenAIRE

    Sanacora, Gerard; Zarate, Carlos A.; Krystal, John; Manji, Husseini K.

    2008-01-01

    Mood disorders are common, chronic, recurrent mental illnesses that affect the lives of millions of individuals worldwide. To date, the monoaminergic systems (serotonergic, noradrenergic and dopaminergic) in the brain have received the greatest attention in neurobiological studies of mood disorders, and most therapeutics target these systems. However, there is growing evidence that the glutamatergic system is central to the neurobiology and treatment of these disorders. Here, we review data s...

  3. From DNA to Targeted Therapeutics: Bringing Synthetic Biology to the Clinic

    OpenAIRE

    Chen, Yvonne Y; Smolke, Christina D.

    2011-01-01

    Synthetic biology aims to make biological engineering more scalable and predictable, lowering the cost and facilitating the translation of synthetic biological systems to practical applications. Increasingly sophisticated, rationally designed synthetic systems that are capable of complex functions pave the way to translational applications, including disease diagnostics and targeted therapeutics. Here, we provide an overview of recent developments in synthetic biology in the context of transl...

  4. Integrative Omics Analysis of Rheumatoid Arthritis Identifies Non-Obvious Therapeutic Targets

    OpenAIRE

    Whitaker, John W.; Boyle, David L.; Bartok, Beatrix; Ball, Scott T.; Gay, Steffen; Wang, Wei; Firestein, Gary S.

    2015-01-01

    Identifying novel therapeutic targets for the treatment of disease is challenging. To this end, we developed a genome-wide approach of candidate gene prioritization. We independently collocated sets of genes that were implicated in rheumatoid arthritis (RA) pathogenicity through three genome-wide assays: (i) genome-wide association studies (GWAS), (ii) differentially expression in RA fibroblast-like synoviocytes (FLS), and (iii) differentially methylation in RA FLS. Integrated analysis of the...

  5. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets

    OpenAIRE

    Whitaker, John W.; Boyle, David L.; Bartok, Beatrix; Ball, Scott T.; Gay, Steffen; Wang, Wei; Firestein, Gary S.

    2015-01-01

    Identifying novel therapeutic targets for the treatment of disease is challenging. To this end, we developed a genome-wide approach of candidate gene prioritization. We independently collocated sets of genes that were implicated in rheumatoid arthritis (RA) pathogenicity through three genome-wide assays: (i) genome-wide association studies (GWAS), (ii) differentially expression in RA fibroblast-like synoviocytes (FLS), and (iii) differentially methylation in RA FLS. Integrated analysis of the...

  6. Glycolysis in the African Trypanosome: Targeting Enzymes and Their Subcellular Compartments for Therapeutic Development

    OpenAIRE

    James C. Morris; Morris, Meredith T.; Dodson, Heidi C.; Coley, April F.

    2011-01-01

    Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validat...

  7. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics

    OpenAIRE

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K.; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-01-01

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brai...

  8. Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease.

    OpenAIRE

    Hall, A.; Burke, N; Dongworth, R.; Hausenloy, D.

    2014-01-01

    Mitochondria are no longer considered to be solely the static powerhouses of the cell. While they are undoubtedly essential to sustaining life and meeting the energy requirements of the cell through oxidative phosphorylation, they are now regarded as highly dynamic organelles with multiple funtions, playing key roles in cell survival and death. In this review, we discuss the emerging role of mitochondrial fusion and fission proteins, as novel therapeutic targets for treating a wide range of c...

  9. Mitochondrial Oxidative Damage in Aging and Alzheimer's Disease: Implications for Mitochondrially Targeted Antioxidant Therapeutics

    OpenAIRE

    Reddy, P. Hemachandra

    2006-01-01

    The overall aim of this article is to review current therapeutic strategies for treating AD, with a focus on mitochondrially targeted antioxidant treatments. Recent advances in molecular, cellular, and animal model studies of AD have revealed that amyloid precursor protein derivatives, including amyloid beta (Aβ) monomers and oligomers, are likely key factors in tau hyperphosphorylation, mitochondrial oxidative damage, inflammatory changes, and synaptic failure in the brain tissue of AD patie...

  10. Targeting leukemic fusion proteins with small interfering RNAs: recent advances and therapeutic potentials

    Institute of Scientific and Technical Information of China (English)

    Maria THOMAS; Johann GREIL; Olaf HEIDENREICH

    2006-01-01

    RNA interference has become an indispensable research tool to study gene functions in a wide variety of organisms.Because of their high efficacy and specificity,RNA interference-based approaches may also translate into new therapeutic strategies to treat human diseases.In particular,oncogenes such as leukemic fusion proteins,which arise from chromosomal translocations,are promising targets for such gene silencing approaches,because they are exclusively expressed in precancerous and cancerous tissues,and because they are frequently indispensable for maintaining the malignant phenotype.This review summarizes recent developments in targeting leukemia-specific genes and discusses problems and approaches for possible clinical applications.

  11. HIV-1 TAT and IMMUNE DYSREGULATION in AIDS PATHOGENESIS: a THERAPEUTIC TARGET.

    Science.gov (United States)

    Chiozzini, Chiara; Toschi, Elena

    2016-01-01

    The HIV-1 transactivator Tat protein plays a key role in AIDS pathogenesis. Besides the Tat role as activator of HIV-1 transcription, it exerts several important functions on infected and uninfected cells. In fact, HIV-1 Tat is released by infected cells and is taken up by neighboring cells. In this way it regulates expression of viral and cellular genes and it modulates several cellular pathways leading to HIV-1 infection spreading and immune dysregulation. So far, Tat protein and the cellular pathways targeted by Tat may represent potential targets for new anti-HIV therapeutic approaches and vaccine development against AIDS. PMID:26302810

  12. Hypoxia-Inducible Factors: Mediators of Cancer Progression; Prognostic and Therapeutic Targets in Soft Tissue Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Sadri, Navid; Zhang, Paul J., E-mail: pjz@mail.med.upenn.edu [Anatomic Pathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, 6th Floor Founders Building, Philadelphia, PA 19104 (United States)

    2013-04-02

    Soft-tissue sarcomas remain aggressive tumors that result in death in greater than a third of patients due to either loco-regional recurrence or distant metastasis. Surgical resection remains the main choice of treatment for soft tissue sarcomas with pre- and/or post-operational radiation and neoadjuvant chemotherapy employed in more advanced stage disease. However, in recent decades, there has been little progress in the average five-year survival for the majority of patients with high-grade soft tissue sarcomas, highlighting the need for improved targeted therapeutic agents. Clinical and preclinical studies demonstrate that tumor hypoxia and up-regulation of hypoxia-inducible factors (HIFs) is associated with decreased survival, increased metastasis, and resistance to therapy in soft tissue sarcomas. HIF-mediated gene expression regulates many critical aspects of tumor biology, including cell survival, metabolic programming, angiogenesis, metastasis, and therapy resistance. In this review, we discuss HIFs and HIF-mediated genes as potential prognostic markers and therapeutic targets in sarcomas. Many pharmacological agents targeting hypoxia-related pathways are in development that may hold therapeutic potential for treating both primary and metastatic sarcomas that demonstrate increased HIF expression.

  13. Drugging PI3K in cancer: refining targets and therapeutic strategies.

    Science.gov (United States)

    Yap, Timothy A; Bjerke, Lynn; Clarke, Paul A; Workman, Paul

    2015-08-01

    The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling routes in human cancers, making it a rational and important target for innovative anticancer drug development and precision medicine. The three main classes of PI3K inhibitors currently in clinical testing comprise dual pan-Class I PI3K/mTOR inhibitors, pan-Class I PI3K inhibitors lacking significant mTOR activity and isoform-selective PI3K inhibitors. A major step forward in recent years is the progression of over 30 small molecule PI3K inhibitors into clinical trials and the first regulatory approval of the PI3Kδ inhibitor idelalisib for multiple B-cell malignancies. This review article focuses on the progress made in the discovery and development of novel PI3K inhibitors, with an emphasis on antitumour activity and tolerability profiles for agents that have entered clinical trials. We also discuss the key issues of drug resistance, patient selection approaches and rational targeted combinations. Finally, we envision the future development and use of PI3K inhibitors for the treatment of patients with a range of malignancies. PMID:26117819

  14. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    Science.gov (United States)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  15. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Idit Dotan

    Full Text Available The incidence of papillary thyroid carcinoma (PTC has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.Thyroid Stimulating Hormone Receptor (TSHR was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with

  16. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells

    Science.gov (United States)

    Paliouras, Miltiadis; Mitmaker, Elliot J.; Trifiro, Mark A.

    2016-01-01

    Background The incidence of papillary thyroid carcinoma (PTC) has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid) act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches. Methods Thyroid Stimulating Hormone Receptor (TSHR) was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin) were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm) was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining. Results TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls. Conclusion A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam

  17. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  18. Recent Advancements in Targeted Delivery of Therapeutic Molecules in Neurodegenerative Disease - Spinocerebellar Ataxia - Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Satya Prakash

    2008-01-01

    Full Text Available Drug discovery and its methodologies have been very effective in terms of treating cancers and immunological disorders but have not been able to stop genetic diseases as most of the drugs target at the protein level. They merely mitigate the symptoms of the disease. Spinocerebellar ataxia is a neurological genetic disorder that is caused by the formation of an abnormal protein. There have been several reports on ataxic drug development but actual clinical treatment is yet to be achieved. Oligonucleotide therapy called sequence specific siRNA mediated gene silencing has evolved with promising results. This approach emphasizes on suppressing the expression of the diseased gene at mRNA level. However, there is a limitation in delivery of siRNA to the target site. Several methods have been developed over the last decade to enhance the target specific delivery of DNA, siRNA, protein and small drug molecules for therapeutic purpose with less or no side effects. This review discusses the latest upcoming technologies in the field that focus on a number of nonviral nanocarriers for targeted delivery. In this review, we explore the promise and potential of novel therapeutics with interest on ataxia therapy.

  19. Anticancer Compound Plumbagin and Its Molecular Targets: A Structural Insight into the Inhibitory Mechanisms Using Computational Approaches

    OpenAIRE

    Mohammad S Jamal; Shadma Parveen; Mohd A Beg; Mohd Suhail; Chaudhary, Adeel G. A.; Damanhouri, Ghazi A.; Abuzenadah, Adel M; Mohd Rehan

    2014-01-01

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naphthoquinone derivative from the roots of plant Plumbago zeylanica and belongs to one of the largest and diverse groups of plant metabolites. The anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin exerts inhibitory effects on multiple cancer-signaling proteins, however, the binding mode and the molecular interactions have not yet been elucidated for most of...

  20. Optimization of a cationic liposome-based gene delivery system for the application of miR-145 in anticancer therapeutics.

    Science.gov (United States)

    Tao, Jin; Ding, Wei-Feng; Che, Xiao-Hang; Chen, Yi-Chen; Chen, Fang; Chen, Xiao-Dong; Ye, Xiao-Lei; Xiong, Su-Bin

    2016-05-01

    further research into the use of miR‑145 in anticancer therapeutics. PMID:26986502

  1. Radiolabelled multifunctional nanoparticles for targeted diagnostic and therapeutic applications in oncology

    International Nuclear Information System (INIS)

    Nanoparticles, liposomes in particular, have gained great attention as easily engineerable nanoscale systems with distinct properties, offering an ideal platform for a variety of diagnostic and therapeutic applications. The aim of this PhD thesis was the design, synthesis as well as the in vitro and in vivo evaluation of several radiolabelled multifunctional liposomal nanoparticles for the targeted imaging of tumour cells and tumour-induced angiogenesis. Radiolabelling methods for different radionuclides were developed and the liposomes were functionalised with polyethylene glycol (PEG) to improve the pharmacokinetic profile. Targeting sequences such as the tripeptide Arg-Gly-Asp (RGD), the neuropeptide substance P (SP), the somatostatin analogue tyrosine-3-octreotide (TOC), and the vasoactive intestinal peptide (VIP) were tested for their applicability as tools for the targeted delivery of imaging agents. Finally, by the combination of two targeting sequences, namely RGD and SP, on one liposome multireceptor-targeting (hybrid-targeting) was investigated. These multifunctional vehicles were also functionalized with imaging labels for the detection and imaging of tumours by single photon emission computed tomography (SPECT), fluorescence microscopy as well as magnetic resonance (MR) imaging. The liposomes developed in this thesis showed multifunctional properties combining several imaging approaches with specific targeting for oncological applications. In vitro behaviour, e.g., receptor binding could be improved, resulting in optimised targeting shown both by the radiolabel and fluorescent label. However, the in vivo properties, especially the tumour targeting characteristics remained suboptimal, revealing the challenges of targeting approaches in nanoscience. Nonetheless, these results brought important insights for the development and optimisation of multifunctional nanocarriers. (author)

  2. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date.

    Science.gov (United States)

    Park, Jae H; Geyer, Mark B; Brentjens, Renier J

    2016-06-30

    Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 has produced impressive results in treating patients with B-cell malignancies. Although these CAR-modified T cells target the same antigen, the designs of CARs vary as well as several key aspects of the clinical trials in which these CARs have been studied. It is unclear whether these differences have any impact on clinical outcome and treatment-related toxicities. Herein, we review clinical results reflecting the investigational use of CD19-targeted CAR T-cell therapeutics in patients with B-cell hematologic malignancies, in light of differences in CAR design and production, and outline the limitations inherent in comparing outcomes between studies. PMID:27207800

  3. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer.

    Science.gov (United States)

    Qu, Q; Zeng, F; Liu, X; Wang, Q J; Deng, F

    2016-01-01

    Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention. PMID:27195673

  4. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    Science.gov (United States)

    Blunt, Matthew D.; Steele, Andrew J.

    2015-01-01

    PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL). However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ) in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms. PMID:26500849

  5. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    Directory of Open Access Journals (Sweden)

    Matthew D. Blunt

    2015-01-01

    Full Text Available PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL. However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms.

  6. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models

    Science.gov (United States)

    Duffield, Jeremy S; Grafals, Monica; Portilla, Didier

    2012-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-21, the most comprehensively studied microRNA in the kidney so far. MicroRNA-21 is expressed widely in healthy kidney but studies from knockout mice indicate it is largely inert. Although microRNA-21 is upregulated in many cell compartments including leukocytes, epithelial cells and myofibroblasts, the inert microRNA-21 also appears to become activated, by unclear mechanisms. Mice lacking microRNA-21 are protected from kidney injury and fibrosis in several distinct models of kidney disease, and systemically administered oligonucleotides that specifically bind to the active site in microRNA-21, inhibiting its function, recapitulate the genetic deletion of microRNA-21, suggesting inhibitory oligonucleotides may have therapeutic potential. Recent studies of microRNA-21 targets in kidney indicate that it normally functions to silence metabolic pathways including fatty acid metabolism and pathways that prevent Reactive Oxygen Species generation in peroxisomes and mitochondria in epithelial cells and myofibroblasts. Targeting specific pathogenic microRNAs in a specific manner is feasible in vivo and may be a new therapeutic target in disease of the kidney PMID:25018773

  7. Sensitivity of chronic lymphocytic leukemia cells to small targeted therapeutic molecules: An in vitro comparative study.

    Science.gov (United States)

    Sylvan, Sandra Eketorp; Skribek, Henriette; Norin, Stefan; Muhari, Orsolya; Österborg, Anders; Szekely, Laszlo

    2016-01-01

    New drugs targeting important cellular signaling pathways are currently being developed for chronic lymphocytic leukemia (CLL). It is therefore of interest to analyze their in vitro killing capacity in manufacturer-independent, comparative experiments. We here report on the sensitivity of CLL cells to a panel of emerging targeted therapeutics using high-throughput screening based on an automated fluorescence digital scanning system. Fresh CLL cells from 42 patients with indolent or progressive CLL were cultured for 72 hours on microtiter plates in a unique primary cell culture medium. Antitumor effects of 31 small therapeutic molecules (and, as controls, 29 cytostatic agents) at equimolar concentration were compared in a fluorescence survival assay. In vitro sensitivity to each drug exhibited considerable interpatient variability. The highest mean direct killing was observed for one survivin inhibitor (YM-155), two bcl-2 inhibitors (ABT-199, ABT-737), and one selective CDK inhibitor (dinaciclib). Their killing capacity was, in contrast to most cytostatic agents, similarly high in refractory versus untreated CLL patients and was significantly higher on cells with the 17p deletion/TP53 mutation than on cells with other cytogenetic abnormalities (p = 0.02). Sensitivity of bone marrow and lymph node cells was highly correlated with that of blood cells. Even though direct killing may not be the only therapeutic effector function in vivo, results from this head-to-head comparison may help to identify drugs of particular interest for intensified clinical development. PMID:26325331

  8. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer.

    Science.gov (United States)

    Wang, Yanling; Zhu, Yumin; Wang, Qiong; Hu, Huijun; Li, Zhongwu; Wang, Dongmiao; Zhang, Wei; Qi, Bin; Ye, Jinhai; Wu, Heming; Jiang, Hongbing; Liu, Laikui; Yang, Jianrong; Cheng, Jie

    2016-04-28

    The histone demethylase LSD1 functions as a key pro-oncogene and attractive therapeutic target in human cancer. Here we sought to interrogate the oncogenic roles of LSD1 in OSCC tumorigenesis and therapeutic intervention by integrating chemical-induced OSCC model, genetic and pharmacological loss-of-function approaches. Our data revealed that aberrant LSD1 overexpression in OSCC was significantly associated with tumor aggressiveness and shorter overall survival. Increased abundance of LSD1 was detected along with disease progression in DMBA- or 4NQO-induced OSCC animal models. LSD1 depletion via siRNA-mediated knockdown in OSCC cells resulted in impaired cell proliferation, migration/invasion, tumorsphere formation and reduced xenograft growth while inducing cell apoptosis and enhancing chemosensitivity to 5-FU. Moreover, treatments of LSD1 chemical inhibitors (pargyline and tranylcypromine) induced its protein reduction probably via enhanced protein degradation and produced similar phenotypic changes resembling LSD1 silencing in OSCC cells. Pharmacological inhibition of LSD1 by intraperitoneal delivery of these inhibitors resulted in impaired xenograft overgrowth. Taken together, our data reveal the tumorigenic roles of LSD1 and identified LSD1 as a novel biomarker with diagnostic and prognostic significance, and also establish that targeting LSD1 by chemical inhibitors is a viable therapeutic strategy against OSCC. PMID:26872725

  9. Pathophysiological significance and therapeutic targeting of germinal center kinase in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Matthews, Julie Marie; Bhatt, Shruti; Patricelli, Matthew P; Nomanbhoy, Tyzoon K; Jiang, Xiaoyu; Natkunam, Yasodha; Gentles, Andrew J; Martinez, Ezequiel; Zhu, Daxing; Chapman, Jennifer Rose; Cortizas, Elena; Shyam, Ragini; Chinichian, Shideh; Advani, Ranjana; Tan, Li; Zhang, Jianming; Choi, Hwan Geun; Tibshirani, Robert; Buhrlage, Sara J; Gratzinger, Dita; Verdun, Ramiro; Gray, Nathanael S; Lossos, Izidore S

    2016-07-14

    Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, yet 40% to 50% of patients will eventually succumb to their disease, demonstrating a pressing need for novel therapeutic options. Gene expression profiling has identified messenger RNAs that lead to transformation, but critical events transforming cells are normally executed by kinases. Therefore, we hypothesized that previously unrecognized kinases may contribute to DLBCL pathogenesis. We performed the first comprehensive analysis of global kinase activity in DLBCL, to identify novel therapeutic targets, and discovered that germinal center kinase (GCK) was extensively activated. GCK RNA interference and small molecule inhibition induced cell-cycle arrest and apoptosis in DLBCL cell lines and primary tumors in vitro and decreased the tumor growth rate in vivo, resulting in a significantly extended lifespan of mice bearing DLBCL xenografts. GCK expression was also linked to adverse clinical outcome in a cohort of 151 primary DLBCL patients. These studies demonstrate, for the first time, that GCK is a molecular therapeutic target in DLBCL tumors and that inhibiting GCK may significantly extend DLBCL patient survival. Because the majority of DLBCL tumors (∼80%) exhibit activation of GCK, this therapy may be applicable to most patients. PMID:27151888

  10. The endothelin system as a therapeutic target in cardiovascular disease: great expectations or bleak house?

    Science.gov (United States)

    Kirkby, N S; Hadoke, P W F; Bagnall, A J; Webb, D J

    2008-03-01

    There is considerable evidence that the potent vasoconstrictor endothelin-1 (ET-1) contributes to the pathogenesis of a variety of cardiovascular diseases. As such, pharmacological manipulation of the ET system might represent a promising therapeutic goal. Many clinical trials have assessed the potential of ET receptor antagonists in cardiovascular disease, the most positive of which have resulted in the licensing of the mixed ET receptor antagonist bosentan, and the selective ET(A) receptor antagonists, sitaxsentan and ambrisentan, for the treatment of pulmonary arterial hypertension (PAH). In contrast, despite encouraging data from in vitro and animal studies, outcomes in human heart failure have been disappointing, perhaps illustrating the risk of extrapolating preclinical work to man. Many further potential applications of these compounds, including resistant hypertension, chronic kidney disease, connective tissue disease and sub-arachnoid haemorrhage are currently being investigated in the clinic. Furthermore, experience from previous studies should enable improved trial design and scope remains for development of improved compounds and alternative therapeutic strategies. Although ET-converting enzyme inhibitors may represent one such alternative, there have been relatively few suitable compounds developed, and consequently, clinical experience with these agents remains extremely limited. Recent advances, together with an increased understanding of the biology of the ET system provided by improved experimental tools (including cell-specific transgenic deletion of ET receptors), should allow further targeting of clinical trials to diseases in which ET is involved and allow the therapeutic potential for targeting the ET system in cardiovascular disease to be fully realized. PMID:17965745

  11. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  12. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    Science.gov (United States)

    Pertwee, Roger G

    2012-12-01

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'. PMID:23108552

  13. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  14. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Madharasi VA Pichai; Lynnette R Ferguson

    2012-01-01

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating.There are inconsistencies in response to and side effects in the current conventional medications,failures in adequate drug delivery,and the lack of therapeutics to offer complete remission in the presently available treatments of IBD.This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics.This review examines the arena of the evolving IBD nanomedicine,studied so far in animal andin vitro models,before comprehensive clinical testing in humans.The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy.We analyze the pros and cons of nanotechnology in IBD therapies studied in different models,aimed at different targets and mechanisms of IBD pathogenesis,in an attempt to predict its possible impact in humans.

  15. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis.

    Science.gov (United States)

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-07-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  16. Sjögren's syndrome: from pathogenesis to novel therapeutic targets.

    Science.gov (United States)

    Barone, Francesca; Colafrancesco, Serena

    2016-01-01

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease, characterised by a chronic infiltration of exocrine glands, mainly salivary glands, with the histological features of focal lymphocytic sialoadenitis. Disease spectrum is broad and the occurrence of several extra-glandular manifestations, and in rare cases lymphoma development, is well known. A specific approved treatment for pSS is still lacking and the detection of novel therapeutic biologic target is ongoing. The identification of biological fingerprints seems essential in order to stratify patients both in clinical trials and in real life. Discovery of new components of the inflammatory response will be the key in the future for the identification of novel additional therapeutic options. PMID:27586806

  17. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases.

    Science.gov (United States)

    Pichai, Madharasi V A; Ferguson, Lynnette R

    2012-06-21

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans. PMID:22736912

  18. Network science for the identification of novel therapeutic targets in epilepsy

    Science.gov (United States)

    Scott, Rod C.

    2016-01-01

    The quality of life of children with epilepsy is a function of seizures and associated cognitive and behavioral comorbidities. Current treatments are not successful at stopping seizures in approximately 30% of patients despite the introduction of multiple new antiepileptic drugs over the last decade. In addition, modification of seizures has only a modest impact on the comorbidities. Therefore, novel approaches to identify therapeutic targets that improve seizures and comorbidities are urgently required. The potential of network science as applied to genetic, local neural network, and global brain data is reviewed. Several examples of possible new therapeutic approaches defined using novel network tools are highlighted. Further study to translate the findings into clinical practice is now required. PMID:27239287

  19. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis

    Science.gov (United States)

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  20. Long non-coding RNAs as novel therapeutic targets in cancer.

    Science.gov (United States)

    Lavorgna, Giovanni; Vago, Riccardo; Sarmini, Mohamad; Montorsi, Francesco; Salonia, Andrea; Bellone, Matteo

    2016-08-01

    Thanks to impressive technology advancements, pervasive expression of non-coding RNAs (ncRNAs) has been recently identified in the genome of numerous cancers. Long ncRNAs (lncRNAs) belong to a new class of ncRNAs including tens of thousands different species. A fraction of these molecules shows a striking cancer-enriched expression pattern, suggesting an essential role in tumor cells and, possibly, a utility in therapeutic terms. This review aims at summarizing current knowledge for the identification and validation of lncRNAs as therapeutics targets in tumors. Both in-silico and wet-biology resources are presented in relation to the many challenges that the scientific community still needs to address in terms of lncRNA identification, stratification, patient personalization, drug delivery and toxicity. PMID:27210721

  1. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics.

    Science.gov (United States)

    Alaoui-Jamali, Moulay A; Morand, Grégoire B; da Silva, Sabrina Daniela

    2015-01-01

    Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed. PMID:25699077

  2. The molecular phenotype of endocapillary proliferation: novel therapeutic targets for IgA nephropathy.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Hodgin

    Full Text Available IgA nephropathy (IgAN is a clinically and pathologically heterogeneous disease. Endocapillary proliferation is associated with higher risk of progressive disease, and clinical studies suggest that corticosteroids mitigate this risk. However, corticosteroids are associated with protean cellular effects and significant toxicity. Furthermore the precise mechanism by which they modulate kidney injury in IgAN is not well delineated. To better understand molecular pathways involved in the development of endocapillary proliferation and to identify novel specific therapeutic targets, we evaluated the glomerular transcriptome of microdissected kidney biopsies from 22 patients with IgAN. Endocapillary proliferation was defined according to the Oxford scoring system independently by 3 nephropathologists. We analyzed mRNA expression using microarrays and identified transcripts differentially expressed in patients with endocapillary proliferation compared to IgAN without endocapillary lesions. Next, we employed both transcription factor analysis and in silico drug screening and confirmed that the endocapillary proliferation transcriptome is significantly enriched with pathways that can be impacted by corticosteroids. With this approach we also identified novel therapeutic targets and bioactive small molecules that may be considered for therapeutic trials for the treatment of IgAN, including resveratrol and hydroquinine. In summary, we have defined the distinct molecular profile of a pathologic phenotype associated with progressive renal insufficiency in IgAN. Exploration of the pathways associated with endocapillary proliferation confirms a molecular basis for the clinical effectiveness of corticosteroids in this subgroup of IgAN, and elucidates new therapeutic strategies for IgAN.

  3. ErbB polymorphisms: Insights and implications for response to targeted cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Moulay A Alaoui-Jamali

    2015-02-01

    Full Text Available Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs, polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3 and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary and to acquired (secondary resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  4. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    AtsushiKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  5. Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy.

    Science.gov (United States)

    Nabavi, Seyed Fazel; Barber, Alistair J; Spagnuolo, Carmela; Russo, Gian Luigi; Daglia, Maria; Nabavi, Seyed Mohammad; Sobarzo-Sánchez, Eduardo

    2016-10-01

    Diabetic retinopathy is a microvascular complication of diabetes that is considered one of the leading causes of blindness among adults. More than 4.4 million people suffer from this disorder throughout the world. Growing evidence suggests that oxidative stress plays a crucial role in the pathophysiology of diabetic retinopathy. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, plays an essential protective role in regulating the physiological response to oxidative and electrophilic stress via regulation of multiple genes encoding antioxidant proteins and phase II detoxifying enzymes. Many studies suggest that dozens of natural compounds, including polyphenols, can supress oxidative stress and inflammation through targeting Nrf2 and consequently activating the antioxidant response element-related cytoprotective genes. Therefore, Nrf2 may provide a new therapeutic target for treatment of diabetic retinopathy. In the present article, we will focus on the role of Nrf2 in diabetic retinopathy and the ability of polyphenols to target Nrf2 as a therapeutic strategy. PMID:26926494

  6. Fetal Alcohol Spectrum Disorder (FASD Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    James A. Marrs

    2013-06-01

    Full Text Available Fetal alcohol spectrum disorder (FASD, caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  7. Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy.

    Science.gov (United States)

    Rountree, Ryan B; Mandl, Stefanie J; Nachtwey, James M; Dalpozzo, Katie; Do, Lisa; Lombardo, John R; Schoonmaker, Peter L; Brinkmann, Kay; Dirmeier, Ulrike; Laus, Reiner; Delcayre, Alain

    2011-08-01

    MVA-BN-PRO (BN ImmunoTherapeutics) is a candidate immunotherapy product for the treatment of prostate cancer. It encodes 2 tumor-associated antigens, prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP), and is derived from the highly attenuated modified vaccinia Ankara (MVA) virus stock known as MVA-BN. Past work has shown that the immunogenicity of antigens can be improved by targeting their localization to exosomes, which are small, 50- to 100-nm diameter vesicles secreted by most cell types. Exosome targeting is achieved by fusing the antigen to the C1C2 domain of the lactadherin protein. To test whether exosome targeting would improve the immunogenicity of PSA and PAP, 2 additional versions of MVA-BN-PRO were produced, targeting either PSA (MVA-BN-PSA-C1C2) or PAP (MVA-BN-PAP-C1C2) to exosomes, while leaving the second transgene untargeted. Treatment of mice with MVA-BN-PAP-C1C2 led to a striking increase in the immune response against PAP. Anti-PAP antibody titers developed more rapidly and reached levels that were 10- to 100-fold higher than those for mice treated with MVA-BN-PRO. Furthermore, treatment with MVA-BN-PAP-C1C2 increased the frequency of PAP-specific T cells 5-fold compared with mice treated with MVA-BN-PRO. These improvements translated into a greater frequency of tumor rejection in a PAP-expressing solid tumor model. Likewise, treatment with MVA-BN-PSA-C1C2 increased the antigenicity of PSA compared with treatment with MVA-BN-PRO and resulted in a trend of improved antitumor efficacy in a PSA-expressing tumor model. These experiments confirm that targeting antigen localization to exosomes is a viable approach for improving the therapeutic potential of MVA-BN-PRO in humans. PMID:21670078

  8. A single-dose toxicity study on non-radioactive iodinated hypericin for a targeted anticancer therapy in mice

    Institute of Scientific and Technical Information of China (English)

    Jun-jie LI; Yi-cheng NI; Marlein Miranda CONA; Yuan-bo FENG; Feng CHEN; Guo-zhi ZHANG; Xue-bin FU; Uwe HIMMELREICH; Raymond OYEN; Alfons VERBRUGGEN

    2012-01-01

    Aim: Hypericin (Hyp) and its radio-derivatives have been investigated in animal models with ischemic heart diseases and malignancies for diagnostic and therapeutic purposes.Before radioiodinated Hyp (123I-Hyp or 131I-Hyp) can be considered as a clinically useful drug,vigorous evaluations on its chemotoxicity are necessary.In the present study,we examined the toxicity of a single dose of non-radioactive 127I-Hyp in normal mice for 24 h and 14 d.Methods: Studies were performed on 132 normal mice.127I-Hyp at a clinically relevant dose of 0.1 mg/kg body weight and a 100-times higher dose of 10 mg/kg was intravenously injected into 40 mice.The safety aspects of clinical manifestations,serological biochemistry,and histopathology were assessed.In another 72 mice,127I-Hyp was administered intravenously at assumed values to bracket the value of LD50.The rest 20 mice were used in the control groups.Results: At 24 h and 14 d following the injection of 127I-Hyp at either 0.1 or 10 mg/kg,all mice tolerated well without mortality or any observable treatment-related symptoms.No significant differences were found in blood biochemical parameters between the test and control groups.All organs presented normal appearances upon histopathological inspection.The value of LD50 of 127I-Hyp in mice through intravenous injection was 20.26 mg/kg,with the 95% confidence interval between 18.90 and 21.55 mg/kg.Conclusion: The current study reveals a broad safety range of 127I-Hyp,which not only supports the use of 123I-Hyp or 131I-Hyp in the necrosis targeting theragnostic strategy,but also serves as a valuable reference for exploring other possible applications for iodinated Hyp.

  9. Musashi1 as a potential therapeutic target and diagnostic marker for lung cancer

    OpenAIRE

    Wang, Xiao-Yang; Yu, Huina; Linnoila, R. Ilona; Li, Laodong; Li, Dangyu; Mo, Biwen; Okano, Hideyuki; Luiz O. F. Penalva; Glazer, Robert I.

    2013-01-01

    Lung cancer remains one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 20%. One approach to improving survival is the identification of biomarkers to detect early stage disease. In this study, we investigated the potential of the stem cell and progenitor cell marker, Musashi1 (Msi1), as a diagnostic marker and potential therapeutic target for lung cancer. Functional studies in A549 bronchioalveolar carcinoma and NCI-H520 squamous cell carcino...

  10. Progress in the development of therapeutic antibodies targeting prion proteins and β-amyloid peptides

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Prion diseases and Alzheimer’s disease (AD) are characterized by protein misfolding, and can lead to dementia. However, prion diseases are infectious and transmissible, while AD is not. The similarities and differences between these diseases have led researchers to perform comparative studies. In the last 2 decades, progress has been made in immunotherapy using anti-prion protein and anti-β-amyloid antibodies. In this study, we review new ideas and strategies for therapeutic antibodies targeting prion diseases and AD through conformation dependence.

  11. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation

    Directory of Open Access Journals (Sweden)

    Daisuke Ibi

    2015-11-01

    Full Text Available Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.

  12. Toll-like receptors are potential therapeutic targets in rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    Siamak; Sandoghchian; Shotorbani

    2011-01-01

    Toll-like receptors (TLRs) are found on the membranes of pattern recognition receptors and not only play important roles in activating immune responses but are also involved in the pathogenesis of inflammatory disease, injury and cancer. Furthermore, TLRs are also able to recognize endogenous alarmins released by damaged tissue and necrosis and/or apoptotic cells and are present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands plays an important role in initiating and driving inflammatory diseases. Increasing data suggest a role for TLR signaling in rheumatoid arthritis, which is an autoimmune disease. Although their involvement is not comprehensively understood, the TLRs signaling transducers may provide potential therapeutic targets.

  13. Visceral hypersensitivity and electromechanical dysfunction as therapeutic targets in pediatric functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    John; M; Rosen; Jose; T; Cocjin; Jennifer; V; Schurman; Jennifer; M; Colombo; Craig; A; Friesen

    2014-01-01

    Functional gastrointestinal disorders(FGID) are common clinical syndromes diagnosed in the absence of biochemical,structural,or metabolic abnormalities. They account for significant morbidity and health care expenditures and are identifiable across variable age,geography,and culture. Etiology of abdominal pain associated FGIDs,including functional dyspepsia(FD),remains incompletely understood,but growing evidence implicates the importance of visceral hypersensitivity and electromechanical dysfunction. This manuscript explores data supporting the role of visceral hypersensitivity and electromechanical dysfunction in FD,with focus on pediatric data when available,and provides a summary of potential therapeutic targets.

  14. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease.

    Science.gov (United States)

    Durham, Andrew L; Caramori, Gaetano; Chung, Kian F; Adcock, Ian M

    2016-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway, although the drivers and site of the inflammation differ between diseases. Asthmatics with a neutrophilic airway inflammation are associated with a poor response to corticosteroids, whereas asthmatics with eosinophilic inflammation respond better to corticosteroids. Biologicals targeting the Th2-eosinophil nexus such as anti-interleukin (IL)-4, anti-IL-5, and anti-IL-13 are ineffective in asthma as a whole but are more effective if patients are selected using cellular (eg, eosinophils) or molecular (eg, periostin) biomarkers. This highlights the key role of individual inflammatory mediators in driving the inflammatory response and for accurate disease phenotyping to allow greater understanding of disease and development of patient-oriented antiasthma therapies. In contrast to asthmatic patients, corticosteroids are relatively ineffective in COPD patients. Despite stratification of COPD patients, the results of targeted therapy have proved disappointing with the exception of recent studies using CXC chemokine receptor (CXCR)2 antagonists. Currently, several other novel mediator-targeted drugs are undergoing clinical trials. As with asthma specifically targeted treatments may be of most benefit in specific COPD patient endotypes. The use of novel inflammatory mediator-targeted therapeutic agents in selected patients with asthma or COPD and the detection of markers of responsiveness or nonresponsiveness will allow a link between clinical phenotypes and pathophysiological mechanisms to be delineated reaching the goal of endotyping patients. PMID:26334389

  15. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  16. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma

    OpenAIRE

    Borad, Mitesh J.; Champion, Mia D.; Egan, Jan B.; Liang, Winnie S.; Rafael Fonseca; Bryce, Alan H.; Ann E McCullough; Barrett, Michael T.; Katherine Hunt; Maitray D Patel; Young, Scott W.; Collins, Joseph M.; Silva, Alvin C; Condjella, Rachel M.; Matthew Block

    2014-01-01

    Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among...

  17. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M

    2014-04-01

    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  18. New therapeutic targets in the management of urothelial carcinoma of the bladder

    Directory of Open Access Journals (Sweden)

    Sverrisson EF

    2013-03-01

    Full Text Available Einar F Sverrisson, Patrick N Espiritu, Philippe E SpiessDepartment of Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USAAbstract: Urothelial carcinoma of the bladder, despite the myriad of treatment approaches and our progressively increasing knowledge into its disease processes, remains one of the most clinically challenging problems in modern urological clinical practice. New therapies target biomolecular pathways and cellular mediators responsible for regulating cell growth and metabolism, both of which are frequently overexpressed in malignant urothelial cells, with the intent of inducing cell death by limiting cellular metabolism and growth, creating an immune response, or selectively delivering or activating a cytotoxic agent. These new and novel therapies may offer a potential for reduced toxicity and an encouraging hope for better treatment outcomes, particularly for a disease often refractory or not amenable to the current therapeutic approaches.Keywords: targeted therapy, intravesical agents, systemic therapies

  19. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  20. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    Directory of Open Access Journals (Sweden)

    A. Janus

    2016-01-01

    Full Text Available Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  1. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer.

    Science.gov (United States)

    Borcherding, D C; Tong, W; Hugo, E R; Barnard, D F; Fox, S; LaSance, K; Shaughnessy, E; Ben-Jonathan, N

    2016-06-16

    Patients with advanced breast cancer often fail to respond to treatment, creating a need to develop novel biomarkers and effective therapeutics. Dopamine (DA) is a catecholamine that binds to five G protein-coupled receptors. We discovered expression of DA type-1 receptors (D1Rs) in breast cancer, thereby identifying these receptors as novel therapeutic targets in this disease. Strong to moderate immunoreactive D1R expression was found in 30% of 751 primary breast carcinomas, and was associated with larger tumors, higher tumor grades, node metastasis and shorter patient survival. DA and D1R agonists, signaling through the cGMP/protein kinase G (PKG) pathway, suppressed cell viability, inhibited invasion and induced apoptosis in multiple breast cancer cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in two mouse models with D1R-expressing xenografts by increasing both necrosis and apoptosis. D1R-expressing primary tumors and metastases in mice were detected by fluorescence imaging. In conclusion, D1R overexpression is associated with advanced breast cancer and poor prognosis. Activation of the D1R/cGMP/PKG pathway induces apoptosis in vitro and causes tumor shrinkage in vivo. Fenoldopam, which is FDA (Food and Drug Administration) approved to treat renal hypertension, could be repurposed as a novel therapeutic agent for patients with D1R-expressing tumors. PMID:26477316

  2. Cell to cell spreading of misfolded proteins as a therapeutic target in motor neuron disease.

    Science.gov (United States)

    Pasquali, Livia; Lenzi, Paola; Biagioni, Francesca; Siciliano, Gabriele; Fornai, Francesco

    2014-01-01

    Despite a number of genetic mutations and molecular mechanisms are recognized to participate in amyotrophic lateral sclerosis (ALS), such a devastating neurological disorder still lacks a substantial cure. The present manuscript rather than a general overview of potential therapeutic approaches focuses on novel research findings detailing novel molecular mechanisms which appear to be promising for developing future ALS therapeutics. A special emphasis is given to the abnormal autophagy status and to those autophagy substrates which aggregate in the form of misfolded proteins. In fact, as reviewed in the first part of the manuscript, altered autophagy pathway is present in most genetic mutations responsible for familial ALS. These mutations impair clearance of autophagy substrates, which determines accumulation of giant altered mitochondria and misfolded proteins. Therefore, a considerable piece of the review is dedicated to unconventional processing of misfolded proteins leading to unconventional protein secretions which may underlie a prionoid cellto- cell spreading of ALS neuropathology. The intimate mechanisms regulating these steps are analyzed in order to comprehend which potential therapeutic targets might be considered in future studies. At the same time, negative findings concerning recent trials are explained in light of novel disease mechanisms. In the final part of the review the replacement therapy with focal stem cells implantation is discussed in relationship with toxic mechanisms operating in the intercellular space of the spinal cord and motor-related areas. PMID:24934358

  3. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma.

    Science.gov (United States)

    Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K; Sims, Peter A; Sarkaria, Jann N; Canoll, Peter; White, Forest M

    2016-06-01

    Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry. Oncogenic signals, including phosphorylated ERK MAPK, PI3K, and PDGFR, were found to be increased in the murine tumors relative to brain. Phosphorylation of CDK1 pY15, associated with the G2 arrest checkpoint, was identified as the most differentially phosphorylated site, with a 14-fold increase in phosphorylation in the tumors. To assess the role of this checkpoint as a potential therapeutic target, syngeneic primary cell lines derived from these tumors were treated with MK-1775, an inhibitor of Wee1, the kinase responsible for CDK1 Y15 phosphorylation. MK-1775 treatment led to mitotic catastrophe, as defined by increased DNA damage and cell death by apoptosis. To assess the extensibility of targeting Wee1/CDK1 in GBM, patient-derived xenograft (PDX) cell lines were also treated with MK-1775. Although the response was more heterogeneous, on-target Wee1 inhibition led to decreased CDK1 Y15 phosphorylation and increased DNA damage and apoptosis in each line. These results were also validated in vivo, where single-agent MK-1775 demonstrated an antitumor effect on a flank PDX tumor model, increasing mouse survival by 1.74-fold. This study highlights the ability of unbiased quantitative phosphoproteomics to reveal therapeutic targets in tumor models, and the potential for Wee1 inhibition as a treatment approach in preclinical models of GBM. Mol Cancer Ther; 15(6); 1332-43. ©2016 AACR. PMID:27196784

  4. Nuclear Export as a Novel Therapeutic Target: The CRM1 Connection.

    Science.gov (United States)

    Lu, Chuanwen; Figueroa, Jose A; Liu, Zhongwei; Konala, Venu; Aulakh, Amardeep; Verma, Rashmi; Cobos, Everardo; Chiriva-Internati, Maurizio; Gao, Weimin

    2015-01-01

    The integrity of eukaryotic cellular function depends on molecular and biochemical compartmentalization. The transport of macromolecules between compartments requires specific and energydriven mechanisms. It occurs through a class of transport proteins known as karyopherins, which are divided in three different groups (exportins, importins, and transportins). The ubiquitous exportin Chromosome Region Maintenance 1 (CRM1) is involved in the transport of many proteins and RNA molecules from nucleus to cytoplasm. We have reviewed the available evidence supporting the relevance of CRM1 in the biology of several human neoplasms, its potential role in drug resistance, and its promise as a therapeutic target. Here we discuss different cancer related proteins (tumor suppressor genes, oncogenes, and enzymatic therapeutic targets), their function, and their association with CRM1, as well as agents that specifically inhibit CRM1, their mechanism of action, and their clinical relevance in certain human neoplasms. The directionality of nuclear transport and the specific molecular cargo in question are of paramount importance when examining the effects that CRM1 inhibition may have on cellular pathophysiology. The available data point out the potential role of CRM1-dependent nuclear export of regulatory proteins in the biology of certain human malignancies. Further studies should expand and clarify the importance of this mechanism in the pathobiology of human neoplasia. PMID:26324128

  5. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain

    Directory of Open Access Journals (Sweden)

    Smith TP

    2014-08-01

    Full Text Available Terika P Smith,1 Tami Haymond,1 Sherika N Smith,1 Sarah M Sweitzer1,2 1Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA; 2Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA Abstract: Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain. Keywords: endothelin-1, acute pain, chronic pain, endothelin receptor antagonists

  6. Immune system of the inner ear as a novel therapeutic target for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Takayuki eOkano

    2014-09-01

    Full Text Available Sensorineural hearing loss (SNHL is a common clinical condition resulting from dysfunction in one or more parts in the auditory pathway between the inner ear and auditory cortex. Despite the prevalence of SNHL, little is known about its etiopathology, although several mechanisms have been postulated including ischemia, viral infection or reactivation, and microtrauma. Immune-mediated inner ear disease has been introduced and accepted as one SNHL pathophysiology; it responds to immunosuppressive therapy and is one of the few reversible forms of bilateral SNHL. The concept of immune-mediated inner ear disease is straightforward and comprehensible, but criteria for clinical diagnosis and the precise mechanism of hearing loss have not been determined. Moreover, the therapeutic mechanisms of corticosteroids are unclear, leading to several misconceptions by both clinicians and investigators concerning corticosteroid therapy. This review addresses our current understanding of the immune system in the inner ear and its involvement in the pathophysiology in SNHL. Treatment of SNHL, including immune-mediated inner ear disorder, will be discussed with a focus on the immune mechanism and immunocompetent cells as therapeutic targets. Finally, possible interventions modulating the immune system in the inner ear to repair the tissue organization and improve hearing in patients with SNHL will be discussed. Tissue macrophages in the inner ear appear to be a potential target for modulating the immune response in the inner ear in the pathophysiology of SNHL.

  7. sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer's disease.

    Science.gov (United States)

    Warrier, Sudha; Marimuthu, Raja; Sekhar, Sreeja; Bhuvanalakshmi, G; Arfuso, Frank; Das, Anjan Kumar; Bhonde, Ramesh; Martins, Ralph; Dharmarajan, Arun

    2016-06-01

    The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer's disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer's. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders. PMID:27063405

  8. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a Diverse Therapeutic Target: A Computational Perspective.

    Science.gov (United States)

    Ramesh, M; Vepuri, Suresh B; Oosthuizen, Frasia; Soliman, Mahmoud E

    2016-02-01

    Adenosine monophosphate-activated protein kinase (AMPK) is viewed as a privileged therapeutic target for several diseases such as cancer, diabetes, inflammation, obesity, etc. In addition, AMPK has entered the limelight of current drug discovery with its evolution as a key metabolic regulator. AMPK also plays a key role in the maintenance of cellular energy homeostasis. Structurally, AMPK is a heterotrimeric protein, which consists of three protein subunits (α, β, and γ). The crystal structure of AMPK was solved, and several computational studies including homology modeling, molecular docking, molecular dynamics, and QSAR have been reported in order to explore the structure and function of this diverse therapeutic target. In this review, we present a comprehensive up-to-date overview on the computational and molecular modeling approaches that have been carried out on AMPK in order to understand its structure, function, dynamics, and its drug binding landscape. Information provided in this review would be of great interest to a wide pool of researchers involved in the design of new molecules against various diseases where AMPK plays a predominant role. Graphical Abstract ᅟ. PMID:26541160

  9. The Paramyxovirus Polymerase Complex as a Target for Next-Generation Anti-Paramyxovirus Therapeutics

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2015-05-01

    Full Text Available The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV, as well as the emerging zoonotic Hendra and Nipah viruses. In the United States, RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path towards the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.

  10. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Li, Wen-Lin; Miao, Chao-Yu

    2016-06-01

    Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration. PMID:27018006

  11. Medicinal plants growing in the Judea region: network approach for searching potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arie Budovsky

    2012-09-01

    Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.

  12. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use.

    Science.gov (United States)

    Young, E J; Blouin, A M; Briggs, S B; Sillivan, S E; Lin, L; Cameron, M D; Rumbaugh, G; Miller, C A

    2016-05-01

    Memories associated with drug use increase vulnerability to relapse in substance use disorder (SUD), and there are no pharmacotherapies for the prevention of relapse. Previously, we reported a promising finding that storage of memories associated with methamphetamine (METH), but not memories for fear or food reward, is vulnerable to disruption by actin depolymerization in the basolateral amygdala complex (BLC). However, actin is not a viable therapeutic target because of its numerous functions throughout the body. Here we report the discovery of a viable therapeutic target, nonmuscle myosin IIB (NMIIB), a molecular motor that supports memory by directly driving synaptic actin polymerization. A single intra-BLC treatment with Blebbistatin (Blebb), a small-molecule inhibitor of class II myosin isoforms, including NMIIB, produced a long-lasting disruption of context-induced drug seeking (at least 30 days). Further, postconsolidation genetic knockdown of Myh10, the heavy chain of the most highly expressed NMII in the BLC, was sufficient to produce METH-associated memory loss. Blebb was found to be highly brain penetrant. A single systemic injection of the compound selectively disrupted the storage of METH-associated memory and reversed the accompanying increase in BLC spine density. This effect was specific to METH-associated memory, as it had no effect on an auditory fear memory. The effect was also independent of retrieval, as METH-associated memory was disrupted 24 h after a single systemic injection of Blebb delivered in the home cage. Together, these results argue for the further development of small-molecule inhibitors of NMII as potential therapeutics for the prevention of SUD relapse triggered by drug associations. PMID:26239291

  13. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Ming Tsai

    2016-06-01

    Full Text Available Human gastric cancer (GC is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

  14. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng

    2012-01-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  15. Recent insights into the molecular pathogenesis of Crohn's disease: a review of emerging therapeutic targets.

    Science.gov (United States)

    Manuc, Teodora-Ecaterina M; Manuc, Mircea M; Diculescu, Mircea M

    2016-01-01

    Chronic inflammatory bowel diseases (IBDs) are a subject of great interest in gastroenterology, due to a pathological mechanism that is difficult to explain and an optimal therapeutic approach still undiscovered. Crohn's disease (CD) is one of the main entities in IBD, characterized by clinical polymorphism and great variability in the treatment response. Modern theories on the pathogenesis of CD have proven that gut microbiome and environmental factors lead to an abnormal immune response in a genetically predisposed patient. Genome-wide association studies in patients with CD worldwide revealed several genetic mutations that increase the risk of IBD and that predispose to a more severe course of disease. Gut microbiota is considered a compulsory and an essential part in the pathogenesis of CD. Intestinal dysmicrobism with excessive amounts of different bacterial strains can be found in all patients with IBD. The discovery of Escherichia coli entero-invasive on resection pieces in patients with CD now increases the likelihood of antimicrobial or vaccine-type treatments. Recent studies targeting intestinal immunology and its molecular activation pathways provide new possibilities for therapeutics. In addition to antitumor necrosis factor molecules, which were a breakthrough in IBD, improving mucosal healing and resection-free survival rate, other classes of therapeutic agents come to focus. Leukocyte adhesion inhibitors block the leukocyte homing mechanism and prevent cellular immune response. In addition to anti-integrin antibodies, chemokine receptor antagonists and SMAD7 antisense oligonucleotides have shown encouraging results in clinical trials. Micro-RNAs have demonstrated their role as disease biomarkers but it could also become useful for the treatment of IBD. Moreover, cellular therapy is another therapeutic approach under development, aimed for severe refractory CD. Other experimental treatments include intravenous immunoglobulins, exclusive enteral

  16. HIV capsid is a tractable target for small molecule therapeutic intervention.

    Science.gov (United States)

    Blair, Wade S; Pickford, Chris; Irving, Stephen L; Brown, David G; Anderson, Marie; Bazin, Richard; Cao, Joan; Ciaramella, Giuseppe; Isaacson, Jason; Jackson, Lynn; Hunt, Rachael; Kjerrstrom, Anne; Nieman, James A; Patick, Amy K; Perros, Manos; Scott, Andrew D; Whitby, Kevin; Wu, Hua; Butler, Scott L

    2010-01-01

    Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy. PMID:21170360

  17. Kinesin family members KIF11 and KIF23 as potential therapeutic targets in malignant pleural mesothelioma.

    Science.gov (United States)

    Kato, Tatsuya; Lee, Daiyoon; Wu, Licun; Patel, Priya; Young, Ahn Jin; Wada, Hironobu; Hu, Hsin-Pei; Ujiie, Hideki; Kaji, Mitsuhito; Kano, Satoshi; Matsuge, Shinichi; Domen, Hiromitsu; Kaga, Kichizo; Matsui, Yoshiro; Kanno, Hiromi; Hatanaka, Yutaka; Hatanaka, Kanako C; Matsuno, Yoshihiro; de Perrot, Marc; Yasufuku, Kazuhiro

    2016-08-01

    Malignant pleural mesothelioma (MPM) is a rare and aggressive form of cancer commonly associated with asbestos exposure that stems from the thoracic mesothelium with high mortality rate. Currently, treatment options for MPM are limited, and new molecular targets for treatments are urgently needed. Using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and an RNA interference-based screening, we screened two kinesin family members as potential therapeutic targets for MPM. Following in vitro investigation of the target silencing effects on MPM cells, a total of 53 MPMs were analyzed immunohistochemically with tissue microarray. KIF11 and KIF23 transcripts were found to be overexpressed in the majority of clinical MPM samples as well as human MPM cell lines as determined by quantitative RT-PCR. Gene knockdown in MPM cell lines identified growth inhibition following knockdown of KIF11 and KIF23. High expression of KIF11 (KIF11-H) and KIF23 (KIF23-H) were found in 43.4 and 50.9% of all the MPM cases, respectively. Patients who received curative resection with tumors displaying KIF23-H showed shorter overall survival (P=0.0194). These results provide that inhibition of KIF11 and KIF23 may hold promise for treatment of MPMs, raising the possibility that kinesin-based drug targets may be developed in the future. PMID:27279560

  18. Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways.

    Science.gov (United States)

    Spear, Mark; Guo, Jia; Wu, Yuntao

    2013-11-01

    The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has become manageable. Nevertheless, an effective vaccine is still nowhere in sight, and a cure or a functional cure awaits discovery. Among possible curative therapies, traditional antiretroviral therapy, mostly targeting viral proteins, has been proven ineffective. It is possible that targeting HIV-dependent host cofactors may offer alternatives, both for preventing HIV transmission and for forestalling disease progression. Recently, the actin cytoskeleton and its regulators in blood CD4(+) T cells have emerged as major host cofactors that could be targeted. The novel concept that the cortical actin is a barrier to viral entry and early post-entry migration has led to the nascent model of virus-host interaction at the cortical actin layer. Deciphering the cellular regulatory pathways has manifested exciting prospects for future therapeutics. In this review, we describe the study of HIV interactions with actin cytoskeleton. We also examine potential pharmacological targets that emerge from this interaction. In addition, we briefly discuss several actin pathway-based anti-HIV drugs that are currently in development or testing. PMID:24117829

  19. Identification of CD90 as Putative Cancer Stem Cell Marker and Therapeutic Target in Insulinomas.

    Science.gov (United States)

    Buishand, Floryne O; Arkesteijn, Ger J A; Feenstra, Laurien R; Oorsprong, Claire W D; Mestemaker, Margiet; Starke, Achim; Speel, Ernst-Jan M; Kirpensteijn, Jolle; Mol, Jan A

    2016-06-01

    The long-term prognosis after surgical resection of malignant insulinoma (INS) is poor. Novel adjuvant therapies, specifically targeting cancer stem cells (CSCs), are warranted. Therefore, the goal of this study was to characterize and target putative INS CSCs. Using fluorescence-activated cell sorting, human INS cell line CM and pancreatic carcinoid cell line BON1 were screened for the presence of stem cell-associated markers. CD90, CD166, and GD2 were identified as potential CSC markers. Only CD90(+) INS cells had an increased tumor-initiating potential in athymic nude mice. Anti-CD90 monoclonal antibodies decreased the viability and metastatic potential of injected cells in a zebrafish embryo INS xenograft model. Primary INS stained positive for CD90 by immunohistochemistry, however also intratumoral fibroblasts and vascular endothelium showed positive staining. The results of this study suggest that anti-CD90 monoclonals form a potential novel adjuvant therapeutic modality by targeting either INS cells directly, or by targeting the INS microenvironment. PMID:27049037

  20. Survivin – biology and potential as a therapeutic target in oncology

    Directory of Open Access Journals (Sweden)

    Cheung CHA

    2013-10-01

    Full Text Available Chun Hei Antonio Cheung,1,2 Chien-Chang Huang,3 Fang-Ying Tsai,4 Jane Ying-Chieh Lee,1 Siao Muk Cheng,2 Yung-Chieh Chang,1 Yi-Chun Huang,1 Shang-Hung Chen,5 Jang-Yang Chang3,6 1Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 2Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 3National Institute of Cancer Research, National Health Research Institutes, Tainan, 4South East Asian Health Education Center in Taiwan (SEAHECT, College of Medicine, National Cheng Kung University, Tainan, 5Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Tainan, 6Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China Abstract: Survivin is a member of the inhibitor-of-apoptosis proteins (IAPs family; its overexpression has been widely demonstrated to occur in various types of cancer. Overexpression of survivin also correlates with tumor progression and induces anticancer drug resistance. Interestingly, recent studies reveal that survivin exhibits multiple pro-mitotic and anti-apoptotic functions; the differential functions of survivin seem to be caused by differential subcellular localization, phosphorylation, and acetylation of this molecule. In this review, the complex expression regulations and post-translational modifications of survivin are discussed. This review also discusses how recent discoveries improve our understanding of survivin biology and also create opportunities for developing differential-functioned survivin-targeted therapy. Databases such as PubMed, Scopus® (Elsevier, New York, NY, USA, and SciFinder® (CAS, Columbus, OH, USA were used to search for literature in the preparation of this review. Keywords: survivin, BIRC5, IAP, XIAP, caspase-9, Samc, DIABLO

  1. Targeting Importin-α7 as a Therapeutic Approach against Pandemic Influenza Viruses.

    Science.gov (United States)

    Resa-Infante, Patricia; Paterson, Duncan; Bonet, Jaume; Otte, Anna; Oliva, Baldo; Fodor, Ervin; Gabriel, Gülsah

    2015-09-01

    Viral drug resistance is believed to be less likely to occur if compounds are directed against cellular rather than viral proteins. In this study, we analyzed the feasibility of a crucial viral replication factor, namely, importin-α7, as a cellular drug target to combat pandemic influenza viruses. Surprisingly, only five viral lung-to-lung passages were required to achieve 100% lethality in importin-α7⁻/⁻ mice that otherwise are resistant. Viral escape from importin-α7 requirement was mediated by five mutations in the viral ribonucleoprotein complex and the surface glycoproteins. Moreover, the importin-α7⁻/⁻ mouse-adapted strain became even more virulent for wild-type mice than the parental strain. These studies show that targeting host proteins may still result in viral escape by alternative pathways, eventually giving rise to even more virulent virus strains. Thus, therapeutic intervention strategies should consider a multitarget approach to reduce viral drug resistance. IMPORTANCE Here, we investigated the long-standing hypothesis based on in vitro studies that viral drug resistance occurrence is less likely if compounds are directed against cellular rather than viral proteins. Here, we challenged this hypothesis by analyzing, in an in vivo animal model, the feasibility of targeting the cellular factor importin-α7, which is crucial for human influenza virus replication and pathogenesis, as an efficient antiviral strategy against pandemic influenza viruses. In summary, our studies suggest that resistance against cellular factors is possible in vivo, and the emergence of even more virulent viral escape variants calls for particular caution. Thus, therapeutic intervention strategies should consider a multitarget approach using compounds against viral as well as cellular factors to reduce the risk of viral drug resistance and potentially increased virulence. PMID:26085167

  2. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis.

    Science.gov (United States)

    Ye, Jiesheng; Wang, Qun; Zhou, Xuefeng; Zhang, Na

    2008-03-20

    This work systematically studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with actarit, a poor water soluble anti-rheumatic drug. The goal of this study was to design passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects such as nephrotoxicity and gastrointestinal disorders commonly associated with oral formulations of actarit. Based on the optimized results of single-factor and orthogonal design, actarit-loaded SLNs were prepared by a modified solvent diffusion-evaporation method. The formulated SLNs were found to be relatively uniform in size (241+/-23 nm) with a negative zeta potential (-17.14+/-1.6 mV). The average drug entrapment efficiency and loading were (50.87+/-0.25)% and (8.48+/-0.14)%, respectively. The actarit-loaded SLNs exhibited a longer mean retention time in vivo (t(1/2(beta)), 9.373 h; MRT, 13.53 h) compared with the actarit 50% propylene glycol solution (t(1/2(ke)), 0.917 h; MRT, 1.323 h) after intravenous injection to New Zealand rabbits. The area under curve of plasma concentration-time (AUC) of actarit-loaded SLNs was 1.88 times greater than that of the actarit in 50% propylene glycol solution. The overall targeting efficiency (TE(C)) of the actarit-loaded SLNs was enhanced from 6.31% to 16.29% in spleen while the renal distribution of actarit was significantly reduced as compared to that of the actarit solution after intravenous administration to mice. These results indicated that injectable actarit-loaded solid lipid nanoparticles were promising passive targeting therapeutic agents for rheumatoid arthritis. PMID:18054182

  3. Organometallic Iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis.

    Science.gov (United States)

    Hearn, Jessica M; Romero-Canelón, Isolda; Qamar, Bushra; Liu, Zhe; Hands-Portman, Ian; Sadler, Peter J

    2013-01-01

    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (Ir(III)) complexes [Ir(Cp(x))(XY)Cl](+/0) (Cp(x) = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cp(x) ring. In comparison, highly potent complex 4 (Cp(x) = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these Ir(III) complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic Ir(III) complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands. PMID:23618382

  4. Evaluation of LMP1 of Epstein-Barr virus as a therapeutic target by its inhibition

    Directory of Open Access Journals (Sweden)

    Wilson Joanna B

    2010-07-01

    Full Text Available Abstract Background The latent membrane protein-1 (LMP1 encoded by Epstein-Barr virus (EBV is an oncoprotein which acts by constitutive activation of various signalling pathways, including NF-κB. In so doing it leads to deregulated cell growth intrinsic to the cancer cell as well as having extrinsic affects upon the tumour microenvironment. These properties and that it is a foreign antigen, lead to the proposition that LMP1 may be a good therapeutic target in the treatment of EBV associated disease. LMP1 is expressed in several EBV-associated malignancies, notably in Hodgkin's lymphoma and nasopharyngeal carcinoma (NPC. However, the viral protein is only detected in approximately 30%-50% of NPC samples, as such its role in carcinogenesis and tumour maintenance can be questioned and thus its relevance as a therapeutic target. Results In order to explore if LMP1 has a continuous function in established tumours, its activity was inhibited through expression of a dominant negative LMP1 mutant in tumour cell lines derived from transgenic mice. LMP1 is the tumour predisposing oncogene in two different series of transgenic mice which separately give rise to either B-cell lymphomas or carcinomas. Inhibition of LMP1 activity in the carcinoma cell lines lead to a reduction in clonagenicity and clone viability in all of the cell lines tested, even those with low or below detection levels of LMP1. Inhibition of LMP1 activity in the transgenic B-cell lines was incompatible with growth and survival of the cells and no clones expressing the dominant negative LMP1 mutant could be established. Conclusions LMP1 continues to provide a tumour cell growth function in cell lines established from LMP1 transgenic mouse tumours, of both B-cell and epithelial cell origin. LMP1 can perform this function, even when expressed at such low levels as to be undetectable, whereby evidence of its expression can only be inferred by its inhibition being detrimental to the growth

  5. Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours

    Directory of Open Access Journals (Sweden)

    Kelleher Fergal C

    2012-02-01

    Full Text Available Abstract Background Ewing sarcoma/PNET is managed with treatment paradigms involving combinations of chemotherapy, surgery, and sometimes radiation. Although the 5-year survival rate of non-metastatic disease approaches 70%, those cases that are metastatic and those that recur have 5-year survival rates of less than 20%. Molecularly targeted treatments offer the potential to further improve treatment outcomes. Methods A PUBMED search was performed from 1997 to 2011. Published literature that included the topic of the Ewing sarcoma/PNET was also referenced. Results Insulin-like growth factor-1 receptor (IGF-1R antagonists have demonstrated modest single agent efficacy in phase I/II clinical trials in Ewing sarcoma/PNET, but have a strong preclinical rationale. Based on in vitro and animal data, treatment using antisense RNA and cDNA oligonucleotides directed at silencing the EWS-FLI chimera that occurs in most Ewing sarcoma/PNET may have potential therapeutic importance. However drug delivery and degradation problems may limit this therapeutic approach. Protein-protein interactions can be targeted by inhibition of RNA helicase A, which binds to EWS/FLI as part of the transcriptional complex. Tumour necrosis factor related apoptosis inducing ligand induction using interferon has been used in preclinical models. Interferons may be incorporated into future chemotherapeutic treatment paradigms. Histone deacetylase inhibitors can restore TGF-β receptor II allowing TFF-β signalling, which appears to inhibit growth of Ewing sarcoma/PNET cell lines in vitro. Immunotherapy using allogeneic natural killer cells has activity in Ewing sarcoma/PNET cell lines and xenograft models. Finally, cyclin dependent kinase inhibitors such as flavopiridol may be clinically efficacious in relapsed Ewing sarcoma/PNET. Conclusion Preclinical evidence exists that targeted therapeutics may be efficacious in the ESFT. IGF-1R antagonists have demonstrated efficacy in phase I

  6. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carli L. Roulston

    2013-04-01

    Full Text Available Oxidative stress caused by an excess of reactive oxygen species (ROS is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation.

  7. Neuromuscular therapeutics by RNA-targeted suppression of ACHE gene expression.

    Science.gov (United States)

    Dori, Amir; Soreq, Hermona

    2006-10-01

    RNA-targeted therapeutics offers inherent advantages over small molecule drugs wherever one out of several splice variant enzymes should be inhibited. Here, we report the use of Monarsen, a 20-mer acetylcholinesterase-targeted antisense agent with three 3'-2'o-methyl-protected nucleotides, for selectively attenuating the stress-induced accumulation of the normally rare, soluble "readthrough" acetylcholinesterase variant AChE-R. Acetylcholine hydrolysis by AChE-R may cause muscle fatigue and moreover, limit the cholinergic anti-inflammatory blockade, yielding inflammation-associated pathology. Specific AChE-R targeting by Monarsen was achieved in cultured cells, experimental animals, and patient volunteers. In rats with experimental autoimmune myasthenia gravis, oral delivery of Monarsen improved muscle action potential in a lower dose regimen (nanomolar versus micromolar), rapid and prolonged manner (up to 72 h versus 2-4 h) as compared with the currently used small molecule anticholinesterases. In central nervous system neurons of both rats and cynomolgus monkeys, systematic Monarsen treatment further suppressed the levels of the proinflammatory cytokines interleukin-1 (IL-1) and IL-6. Toxicology testing and ongoing clinical trials support the notion that Monarsen treatment would offer considerable advantages over conventional cholinesterase inhibitors with respect to dosing, specificity, side effects profile, and duration of efficacy, while raising some open questions regarding its detailed mechanism of action. PMID:17145929

  8. Targeting hepatitis B virus and human papillomavirus induced carcinogenesis: novel patented therapeutics.

    Science.gov (United States)

    Kanwar, Rupinder K; Singh, Neha; Gurudevan, Sneha; Kanwar, Jagat R

    2011-05-01

    Viral infections leading to carcinogenesis tops the risk factors list for the development of human cancer. The decades of research has provided ample scientific evidence that directly links 10-15% of the worldwide incidence of human cancers to the infections with seven human viruses. Moreover, the insights gained into the molecular pathogenetic and immune mechanisms of hepatitis B virus (HBV) and human papillomavirus (HPV) viral transmission to tumour progression, and the identification of their viral surface antigens as well as oncoproteins have provided the scientific community with opportunities to target these virus infections through the development of prophylactic vaccines and antiviral therapeutics. The preventive vaccination programmes targeting HBV and high risk HPV infections, linked to hepatocellular carcinoma (HCC) and cervical cancer respectively have been recently reported to alter age-old cancer patterns on an international scale. In this review, with an emphasis on HBV and HPV mediated carcinogenesis because of the similarities and differences in their global incidence patterns, viral transmission, mortality, molecular pathogenesis and prevention, we focus on the development of recently identified HBV and HPV targeting innovative strategies resulting in several patents and patent applications. PMID:21517743

  9. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells.

    Science.gov (United States)

    Sarisozen, Can; Vural, Imran; Levchenko, Tatyana; Hincal, A Atilla; Torchilin, Vladimir P

    2012-05-01

    The over-expression of the P-glycoprotein (P-gp) in cancer cells is one of the main reasons of the acquired Multidrug Resistance (MDR). Combined treatment of MDR cancer cells with P-gp inhibitors and chemotherapeutic agents could result in reversal of resistance in P-gp-expressing cells. In this study, paclitaxel (PTX) was co-encapsulated in actively targeted (anticancer mAb 2C5-modified) polymeric lipid-core PEG-PE-based micelles with Cyclosporine A (CycA), which is one of the most effective first generation P-gp inhibitors. Cell culture studies performed using MDCKII (parental and MDR1) cell lines to investigate the potential MDR reversal effect of the formulations. The average size of both empty and loaded PEG₂₀₀₀-PE/Vitamin E mixed micelles was found between 10 and 25 nm. Zeta potentials of the formulations were found between -7 and -35 mV. The percentage of PTX in the micelles was found higher than 3% for both formulations and cumulative PTX release of about 70% was demonstrated. P-gp inhibition with CycA caused an increase in the cytotoxicity of PTX. Dual-loaded micelles demonstrated significantly higher cytotoxicity in the resistant MDCKII-MDR1 cells than micelles loaded with PTX alone. Micelle modification with mAb 2C5 results in the highest cytotoxicity against resistant cells, with or without P-gp modulator, probably because of better internalization bypassing the P-gp mechanism. Our results suggest that micelles delivering a combination of P-gp modulator and anticancer drug or micelles loaded with only PTX, but targeted with mAb 2C5 represent a promising approach to overcome drug resistance in cancer cells. PMID:22506922

  10. The Actin Cytoskeleton as a Therapeutic Target for the Prevention of Relapse to Methamphetamine Use.

    Science.gov (United States)

    Young, Erica J; Briggs, Sherri B; Miller, Courtney A

    2015-01-01

    A high rate of relapse is a defining characteristic of substance use disorder for which few treatments are available. Exposure to environmental cues associated with previous drug use can elicit relapse by causing the involuntary retrieval of deeply engrained associative memories that trigger a strong motivation to seek out drugs. Our lab is focused on identifying and disrupting mechanisms that support these powerful consolidated memories, with the goal of developing therapeutics. A particularly promising mechanism is regulation of synaptic dynamics by actin polymerization within dendritic spines. Emerging evidence indicates that memory is supported by structural and functional plasticity dendritic spines, for which actin polymerization is critical, and that prior drug use increases both spine and actin dynamics. Indeed we have found that inhibiting amygdala (AMY) actin polymerization immediately or twenty-four hours prior to testing disrupted methamphetamine (METH)-associated memories, but not food reward or fear memories. Furthermore, METH training increased AMY spine density which was reversed by actin depolymerization treatment. Actin dynamics were also shifted to a more dynamic state by METH training. While promising, actin polymerization inhibitors are not a viable therapeutic, as a multitude of peripheral process (e.g. cardiac function) rely on dynamic actin. For this reason, we have shifted our focus upstream of actin polymerization to nonmuscle myosin II. We and others have demonstrated that myosin IIb imparts a mechanical force that triggers spine actin polymerization in response to synaptic stimulation. Similar to an actin depolymerizing compound, pre-test inhibition of myosin II ATPase activity in the AMY produced a rapid and lasting disruption of drug-seeking behavior. While many questions remain, these findings indicate that myosin II represents a potential therapeutic avenue to target the actin cytoskeleton and disrupt the powerful, extinction

  11. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation.

    Science.gov (United States)

    Dietrich, W Dalton; Bramlett, Helen M

    2016-06-01

    The use of therapeutic hypothermia (TH) and targeted temperature management (TTM) for severe traumatic brain injury (TBI) has been tested in a variety of preclinical and clinical situations. Early preclinical studies showed that mild reductions in brain temperature after moderate to severe TBI improved histopathological outcomes and reduced neurological deficits. Investigative studies have also reported that reductions in post-traumatic temperature attenuated multiple secondary injury mechanisms including excitotoxicity, free radical generation, apoptotic cell death, and inflammation. In addition, while elevations in post-traumatic temperature heightened secondary injury mechanisms, the successful implementation of TTM strategies in injured patients to reduce fever burden appear to be beneficial. While TH has been successfully tested in a number of single institutional clinical TBI studies, larger randomized multicenter trials have failed to demonstrate the benefits of therapeutic hypothermia. The use of TH and TTM for treating TBI continues to evolve and a number of factors including patient selection and the timing of the TH appear to be critical in successful trial design. Based on available data, it is apparent that TH and TTM strategies for treating severely injured patients is an important therapeutic consideration that requires more basic and clinical research. Current research involves the evaluation of alternative cooling strategies including pharmacologically-induced hypothermia and the combination of TH or TTM approaches with more selective neuroprotective or reparative treatments. This manuscript summarizes the preclinical and clinical literature emphasizing the importance of brain temperature in modifying secondary injury mechanisms and in improving traumatic outcomes in severely injured patients. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26746342

  12. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  13. PGC-1{alpha}, A Potential Therapeutic Target for Early Intervention in Parkinson's Disease

    DEFF Research Database (Denmark)

    Zheng, B.; Liao, Z.; Locascio, J.J.; Lesniak, K.A.; Roderick, S.S.; Watt, M.L.; Eklund, Aron Charles; Zhang-James, Y.; Kim, P.D.; Hauser, M.A.; Grünblatt, E.; Moran, L.B.; Mandel, S.A.; Riederer, P.; Miller, R.M.; Federoff, H.J.; Wüllner, U.; Papapetropoulos, S.; Youdim, M.B.; Cantuti-Castelvetri, I.; Young, A.B.; Vance, J.M.; Davis, R.L.; Hedreen, J.C.; Adler, S.H.; Beach, T.G.; Graeber, M.B.; Middleton, F.A.; Rochet, J.C.; Scherzer, C.R.

    2010-01-01

    Parkinson's disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with...... symptomatic Parkinson's and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene...... mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson's disease identifies PGC-1α as a potential therapeutic target for early intervention....

  14. Bromodomain and extra-terminal (BET) family proteins: New therapeutic targets in major diseases

    Indian Academy of Sciences (India)

    Balasundaram Padmanabhan; Shruti Mathur; Manjula Ramu; Shailesh Tripathi

    2016-06-01

    The bromodomains and extra-terminal domain (BET) family proteins recognize acetylated chromatin through their bromodomains (BDs) and helps in regulating gene expression. BDs are chromatin ‘readers’; by interacting with acetylated lysines on the histone tails, they recruit chromatin-regulating proteins on the promoter region to regulate gene expression and repression. Extensive efforts have been employed by the scientific communities worldwide, to identify and develop potential inhibitors of BET family BDs to regulate protein expression by inhibiting acetylated histone (H3/H4) interactions. Several small molecule inhibitors have been reported, which not only have high affinity, but also have high specificity to BET BDs. These developments make BET family proteins to be an important therapeutic targets, for major diseases such as cancer, neurological disorders, obesity and inflammation. Here, we review and discuss the structural biology of BET family BDs and their applications in major diseases.

  15. Therapeutic potential of mGluR5 targeting in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Anil eKumar

    2015-06-01

    Full Text Available Decades of research dedicated towards Alzheimer's disease (AD has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.

  16. Targeting autophagy as a potential therapeutic approach for immune thrombocytopenia therapy.

    Science.gov (United States)

    Shan, Ning-Ning; Dong, Li-Li; Zhang, Xiao-Mei; Liu, Xin; Li, Ying

    2016-04-01

    Autophagy involves the sequestration and lysosomal degradation of various cytoplasmic structures, including damaged organelles and invading microorganisms. Autophagy is not only an essential cell-intrinsic mechanism for protecting against internal and external stress conditions but is also key in the cellular response against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. In recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Immune thrombocytopenia (ITP) is a multifactorial disease characterized by autoimmune responses to self-platelet membrane proteins. Recently, our unpublished original data demonstrated aberrant expression of molecules in the autophagy pathway in ITP patients compared with controls, and we found a close correlation between the pathogenesis of ITP and the autophagy pathway. The potential of targeting the autophagy pathway in ITP as a novel therapeutic approach has been discussed. PMID:26830007

  17. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment.

    Science.gov (United States)

    Cheung, Lydia Wt; Mills, Gordon B

    2016-02-01

    The regulatory subunit of PI3K, p85α (encoded by PIK3R1), binds, stabilizes and inhibits the PI3K p110 catalytic subunit. Functional characterization of PIK3R1 mutations has identified not only hypomorphs with reduced inhibition of p110, but also hypomorphs and dominant negative mutants that disrupt a novel regulatory role of p85α on PTEN or neomorphs that activate unexpected signaling pathways. The diverse phenotypic spectrum of these PIK3R1 driver mutations underscores the need for different treatment strategies targeting tumors harboring these mutations. This article describes the functional consequences of the spectrum of PIK3R1 driver mutations and therapeutic liabilities they may engender. PMID:26807692

  18. Dysfunction of two lysosome degradation pathways of α-synuclein in Parkinson's disease: potential therapeutic targets?

    Institute of Scientific and Technical Information of China (English)

    Tian-Fang Jiang; Sheng-Di Chen

    2012-01-01

    Parkinson's disease (PD) is pathologically characterized by the presence of α-synuclein (α-syn)-positive intracytoplasmic inclusions named Lewy bodies in the dopaminergic neurons of the substantia nigra.A series of morbid consequences are caused by pathologically high amounts or mutant forms of α-syn,such as defects of membrane trafficking and lipid metabolism.In this review,we consider evidence that both point mutation and overexpression of α-syn result in aberrant degradation in neurons and microglia,and this is associated with the autophagy-lysosome pathway and endosomelysosome system,leading directly to pathological intracellular aggregation,abnormal externalization and re-internalization cycling (and,in turn,internalization and re-externalization),and exocytosis.Based on these pathological changes,an increasing number of researchers have focused on these new therapeutic targets,aiming at alleviating the pathological accumulation of α-syn and re-establishing normal degradation.

  19. Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Deguan Lv; Hening Li; Linxi Chen

    2013-01-01

    Apelin is a bioactive peptide discovered recently that has been proved to be an endogenous ligand of the APJ receptor.Apelin and APJ are widely distributed in the central nervous system and peripheral tissues.Researches have confirmed that apelin/APJ involved in a wide range of physiological and pathological functions in the cardiovascular system.Investigations indicated that apelin is a novel critical factor in the development of atherosclerosis (AS).In this review,we discuss the roles of apelin in the vascular smooth muscle cell proliferation,monocytes-endothelial cell adhesion,and angiogenesis that potentially reveals a new cellular mechanism of AS.Considering these roles,apelin and APJ may be novel therapeutic targets of AS.

  20. Biomolecular self-defense and futility of high-specificity therapeutic targeting.

    Science.gov (United States)

    Rosenfeld, Simon

    2011-01-01

    Robustness has been long recognized to be a distinctive property of living entities. While a reasonably wide consensus has been achieved regarding the conceptual meaning of robustness, the biomolecular mechanisms underlying this systemic property are still open to many unresolved questions. The goal of this paper is to provide an overview of existing approaches to characterization of robustness in mathematically sound terms. The concept of robustness is discussed in various contexts including network vulnerability, nonlinear dynamic stability, and self-organization. The second goal is to discuss the implications of biological robustness for individual-target therapeutics and possible strategies for outsmarting drug resistance arising from it. Special attention is paid to the concept of swarm intelligence, a well studied mechanism of self-organization in natural, societal and artificial systems. It is hypothesized that swarm intelligence is the key to understanding the emergent property of chemoresistance. PMID:22272063

  1. p53, SKP2 and DKK3 as MYCN target genes and their potential therapeutic significance

    Directory of Open Access Journals (Sweden)

    LindiChen

    2012-11-01

    Full Text Available Neuroblastoma is the most common extracranial solid tumour of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumour progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2 and DKK3 and strategies that may be employed to target them.

  2. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury.

    Science.gov (United States)

    Shi, Hong; Hu, Xiaoming; Leak, Rehana K; Shi, Yejie; An, Chengrui; Suenaga, Jun; Chen, Jun; Gao, Yanqin

    2015-10-01

    Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients. PMID:25819104

  3. Circulating microRNAs as Biomarkers, Therapeutic Targets, and Signaling Molecules

    Directory of Open Access Journals (Sweden)

    Seena K. Ajit

    2012-03-01

    Full Text Available Small noncoding microRNAs (miRNAs are important regulators of post-transcriptional gene regulation and have altered the prevailing view of a linear relationship between gene and protein expression. Aberrant miRNA expression is an emerging theme for a wide variety of diseases, highlighting the fundamental role played by miRNAs in both physiological and pathological states. The identification of stable miRNAs in bodily fluids paved the way for their use as novel biomarkers amenable to clinical diagnosis in translational medicine. Identification of miRNAs in exosomes that are functional upon delivery to the recipient cells has highlighted a novel method of intercellular communication. Delivery of miRNAs to recipient cells via blood, with functional gene regulatory consequences, opens up novel avenues for target intervention. Exosomes thus offer a novel strategy for delivering drugs or RNA therapeutic agents. Though much work lies ahead, circulating miRNAs are unequivocally ushering in a new era of novel biomarker discovery, intercellular communication mechanisms, and therapeutic intervention strategies.

  4. Lipoprotein-associated phospholipase A2: a novel marker of cardiovascular risk and potential therapeutic target.

    Science.gov (United States)

    Macphee, Colin; Benson, G Martin; Shi, Yi; Zalewski, Andrew

    2005-06-01

    Although the clinical benefit of statins is well established, these agents reduce the risk of cardiovascular events by only 20 - 40%, and the residual risk for high-risk patients is considerable. The recognition of atherosclerosis as an inflammatory disease has opened the door to numerous complementary therapeutic approaches to further reduce risk and the overall burden of cardiovascular disease. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a novel inflammatory marker of cardiovascular risk that is being evaluated as a potential therapeutic target. The biological function of this enzyme in atherosclerosis has been controversial but recent evidence supports its pro-atherogenic role. The enzyme is predominantly bound to low-density lipoprotein cholesterol particles in humans, and its activity produces bioactive lipid mediators that promote inflammatory processes present at every stage of atherogenesis, from atheroma initiation to plaque destabilisation and rupture. Initial clinical studies suggest that the inhibitors of Lp-PLA(2) can block enzyme activity in plasma and within atherosclerotic plaques. However, more studies are needed to determine the potential clinical benefits of inhibiting Lp-PLA(2). PMID:16004595

  5. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Wenbin Wan

    2016-01-01

    Full Text Available Neuropathic pain (NPP is intolerable, persistent, and specific type of long-term pain. It is considered to be a direct consequence of pathological changes affecting the somatosensory system and can be debilitating for affected patients. Despite recent progress and growing interest in understanding the pathogenesis of the disease, NPP still presents a major diagnostic and therapeutic challenge. High mobility group box 1 (HMGB1 mediates inflammatory and immune reactions in nervous system and emerging evidence reveals that HMGB1 plays an essential role in neuroinflammation through receptors such as Toll-like receptors (TLR, receptor for advanced glycation end products (RAGE, C-X-X motif chemokines receptor 4 (CXCR4, and N-methyl-D-aspartate (NMDA receptor. In this review, we present evidence from studies that address the role of HMGB1 in NPP. First, we review studies aimed at determining the role of HMGB1 in NPP and discuss the possible mechanisms underlying HMGB1-mediated NPP progression where receptors for HMGB1 are involved. Then we review studies that address HMGB1 as a potential therapeutic target for NPP.

  6. Innate immune receptors in heart failure: Side effect or potential therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    Katharina; B; Wagner; Stephan; B; Felix; Alexander; Riad

    2014-01-01

    Heart failure(HF) is a leading cause of mortality and morbidity in western countries and occasions major expenses for public health systems. Although optimal medical treatment is widely available according to current guidelines, the prognosis of patients with HF is still poor. Despite the etiology of the disease, increased systemic or cardiac activation of the innate immune system is well documented in several types of HF. In some cases there is evidence of an association between innate immune activation and clinical outcome of patients with this disease. However, the few large trials conducted with the use of anti-inflammatory medication in HF have not revealed its benefits. Thus, greater understanding of the relationship between alteration in the immune system and development and progression of HF is urgently necessary: prior to designing therapeutic interventions that target pathological inflammatory processes in preventing harmful cardiac effects of immune modulatory therapy. In this regard, relatively recently discovered receptors of the innate immune system, i.e., namely toll-like receptors(TLRs) and nodlike receptors(NLRs)-are the focus of intense cardiovascular research. These receptors are main up-stream regulators of cytokine activation. This review will focus on current knowledge of the role of TLRs and NLRs, as well as on downstream cytokine activation, and will discuss potential therapeutic implications.

  7. Functional amyloid signaling via the inflammasome, necrosome, and signalosome: New therapeutic targets in heart failure

    Directory of Open Access Journals (Sweden)

    Traci L Parry

    2015-05-01

    Full Text Available As the most common cause of death and disability globally, heart disease remains an incompletely understood enigma. A growing number of cardiac diseases are being characterized by the presence of misfolded proteins underlying their pathophysiology, including cardiac amyloidosis and dilated cardiomyopathy (DCM. At least nine precursor proteins have been implicated in the development of cardiac amyloidosis, most commonly caused by multiple myeloma (MM light chain disease and disease-causing mutant or wildtype transthyretin (TTR. Similarly aggregates with PSEN1 and COFILIN-2 have been identified in up to 1/3 of idiopathic DCM cases studied indicating the potential predominance of misfolded proteins in heart failure. In this review, we present recent evidence linking misfolded proteins mechanistically with heart failure and present multiple lines of new therapeutic approaches that target the prevention of misfolded proteins in cardiac TTR amyloid disease. These include multiple small molecule pharmacological chaperones now in clinical trials designed specifically to support TTR folding by rational design, such as tafamidis, and chaperones previously developed for other purposes, such as doxycycline and tauroursodeoxycholic acid. Lastly, we present newly discovered non-pathological functional amyloid structures, such as the inflammasome and necrosome signaling complexes, which can be activated directly by amyloid. These may represent future targets to successfully attenuate amyloid-induced proteotoxicity in heart failure as the inflammasome, for example, is being therapeutically inhibited experimentally in autoimmune disease. Together, these studies demonstrate multiple novel points in which new therapies may be used to primarily prevent misfolded proteins or to inhibit their downstream amyloid-mediated effectors, such as the inflammasome, to prevent proteotoxicity in heart failure.

  8. Functional Amyloid Signaling via the Inflammasome, Necrosome, and Signalosome: New Therapeutic Targets in Heart Failure.

    Science.gov (United States)

    Parry, Traci L; Melehani, Jason H; Ranek, Mark J; Willis, Monte S

    2015-01-01

    As the most common cause of death and disability, globally, heart disease remains an incompletely understood enigma. A growing number of cardiac diseases are being characterized by the presence of misfolded proteins underlying their pathophysiology, including cardiac amyloidosis and dilated cardiomyopathy (DCM). At least nine precursor proteins have been implicated in the development of cardiac amyloidosis, most commonly caused by multiple myeloma light chain disease and disease-causing mutant or wildtype transthyretin (TTR). Similarly, aggregates with PSEN1 and COFILIN-2 have been identified in up to one-third of idiopathic DCM cases studied, indicating the potential predominance of misfolded proteins in heart failure. In this review, we present recent evidence linking misfolded proteins mechanistically with heart failure and present multiple lines of new therapeutic approaches that target the prevention of misfolded proteins in cardiac TTR amyloid disease. These include multiple small molecule pharmacological chaperones now in clinical trials designed specifically to support TTR folding by rational design, such as tafamidis, and chaperones previously developed for other purposes, such as doxycycline and tauroursodeoxycholic acid. Last, we present newly discovered non-pathological "functional" amyloid structures, such as the inflammasome and necrosome signaling complexes, which can be activated directly by amyloid. These may represent future targets to successfully attenuate amyloid-induced proteotoxicity in heart failure, as the inflammasome, for example, is being therapeutically inhibited experimentally in autoimmune disease. Together, these studies demonstrate multiple novel points in which new therapies may be used to primarily prevent misfolded proteins or to inhibit their downstream amyloid-mediated effectors, such as the inflammasome, to prevent proteotoxicity in heart failure. PMID:26664897

  9. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer

    Directory of Open Access Journals (Sweden)

    Pan Jian

    2011-12-01

    Full Text Available Abstract Background Treatment failure for breast cancer is frequently due to lymph node metastasis and invasion to neighboring organs. The aim of the present study was to investigate invasion- and metastasis-related genes in breast cancer cells in vitro and in vivo. Identification of new targets will facilitate the developmental pace of new techniques in screening and early diagnosis. Improved abilities to predict progression and metastasis, therapeutic response and toxicity will help to increase survival of breast cancer patients. Methods Differential protein expression in two breast cancer cell lines, one with high and the other with low metastatic potential, was analyzed using two-dimensional liquid phase chromatographic fractionation (Proteome Lab PF 2D system followed by matrix-assisted laser desorption/time-of-flight mass spectrometry (MALDI-TOF/MS. Results Up regulation of α-subunit of ATP synthase was identified in high metastatic cells compared with low metastatic cells. Immunohistochemical analysis of 168 human breast cancer specimens on tissue microarrays revealed a high frequency of ATP synthase α-subunit expression in breast cancer (94.6% compared to normal (21.2% and atypical hyperplasia (23% breast tissues. Levels of ATP synthase expression levels strongly correlated with large tumor size, poor tumor differentiation and advanced tumor stages (P Conclusions Over-expression of ATP synthase α-subunit may be involved in the progression and metastasis of breast cancer, perhaps representing a potential biomarker for diagnosis, prognosis and a therapeutic target for breast cancer. This finding of this study will help us to better understand the molecular mechanism of tumor metastasis and to improve the screening, diagnosis, as well as prognosis and/or prediction of responses to therapy for breast cancer.

  10. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  11. Keap1-Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics

    Institute of Scientific and Technical Information of China (English)

    Ying-Hui Tong; Bo Zhang; Yun Fan; Neng-Ming Lin

    2015-01-01

    Objectives: Drugs for targeted therapy have become a new strategy of adjuvant therapy for treatment of lung cancer.The Keapl (kelch-like ECH-associated protein 1)-Nrf2 (nuclear factor erythroid 2-related factor 2) pathway is recognized to be critical in regulating genes related to the cellular protective response and protecting cells from oxidative damages and toxic insult.Methods: Pubmed, Embase, OVID, and the Cochrane Library databases were searched from the beginning of each database without any limitations to the date of publication.Search terms were "Nrf2" or "Keap1" and "Lung cancer".Results: The upregulation of Nrf2 had been closely related to tumor protection and drug resistance.The aberrant state of Keap 1 or Nrf2 that were frequently found in lung cancer conferred a poor prognosis.Nrf2 could prevent cells from undergoing oncogenesis as a tumor suppressor, while it could also promote cancer progression and resistance to chemotherapeutic drugs as an oncogene,depending on the different stages of tumor progression.Target Nrf2 signaling by specific chemicals showed it could prevent tumor growth or combat chemoresistance.Conclusions: Increasing evidence has demonstrated the dual roles of the Keap1-Nrf2 pathway in tumor initiation and progression.In this paper, we provide a comprehensive overview of the potency of the Keap 1-Nrf2 pathway as an antitumor target, and the current status of Nrf2 activators or inhibitors for therapeutic approaches.Further studies are required to clarify the role of Nrf2 in lung cancer at different tumor stages, in order to maximize the efficacy of Keap1-Nrf2 targeting agents.Copyright 2015, Chinese Medical Association Production.Production and hosting by Elsevier B.V.on behalf of KeAi Communications Co., Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/).

  12. CXCL8 as a Potential Therapeutic Target for HIV-Associated Neurocognitive Disorders.

    Science.gov (United States)

    Mamik, Manmeet K; Ghorpade, Anuja

    2016-01-01

    Chemokine CXCL8 is a low molecular weight neutrophil chemoattractant implicated in various neurodegenerative disorders including Alzheimer's disease and stroke. Increased expression of CXCL8 has been reported in serum, plasma and brain of human immunodeficiency virus (HIV)-1 infected individuals with neurocognitive impairment, indicating its role in neuroinflammation associated with HIV-1 infection of the brain. Since chemokines are critical in eliciting immune responses in the central nervous system (CNS), CXCL8 is of particular importance for being one of the first chemokines described in the brain. Activation of astrocytes and microglia by HIV-1 and virus associated proteins results in production of this chemokine in the brain microenvironment. Consequently, CXCL8 exerts its effect on target cells via Gprotein coupled receptors CXCR1 and CXCR2. Neutrophils are the main target cells for CXCL8; however, microglia and neurons also express CXCR1/CXCR2 and therefore are important targets for CXCL8-mediated crosstalk. The objective of this review is to focus on CXCL8 production, signaling and regulation in neuronal and glial cells in response to HIV-1 infection. We highlight the role of HIV-1 secreted proteins such as trans-activator of transcription, envelope glycoprotein, negative regulatory factor and viral protein r in the regulation of CXCL8. We discuss dual role of CXCL8 in neurodegeneration as well as neuroprotection in the CNS. Thus, targeting CXCL8 through the development of CXCR1/CXCR2-based therapeutic strategies to either selectively agonize or antagonize receptors may be able to selectively promote neuroprotective and anti-inflammatory outcomes, leading to significant clinical applications in many neuroinflammatory CNS diseases, including HIV-associated neurocognitive disorders. PMID:26112047

  13. Pilot Study of a Next-Generation Sequencing-Based Targeted Anticancer Therapy in Refractory Solid Tumors at a Korean Institution

    Science.gov (United States)

    Park, Hyung Soon; Lim, Sun Min; Kim, Sora; Kim, Sangwoo; Kim, Hye Ryun; Kwack, KyuBum; Lee, Min Goo; Kim, Joo-Hang; Moon, Yong Wha

    2016-01-01

    We evaluated the preliminary efficacy and feasibility of a next-generation sequencing (NGS)-based targeted anticancer therapy in refractory solid tumors at a Korean institution. Thirty-six patients with advanced cancer underwent molecular profiling with NGS with the intent of clinical application of available matched targeted agents. Formalin-fixed paraffin-embedded (FFPE) tumors were sequenced using the Comprehensive Cancer Panel (CCP) or FoundationOne in the Clinical Laboratory Improvement Amendments-certified laboratory in the USA. Response evaluations were performed according to RECIST v1.1. Four specimens did not pass the DNA quality test and 32 specimens were successfully sequenced with CCP (n = 31) and FoundationOne (n = 1). Of the 32 sequenced patients, 10 (31.3%) were ≤40 years. Twelve patients (37.5%) had received ≥3 types of prior systemic therapies. Of 24 patients with actionable mutations, five were given genotype-matched drugs corresponding to actionable mutations: everolimus to PIK3CA mutation in parotid carcinosarcoma (partial response) and tracheal squamous cell carcinoma (stable disease; 21% reduction), sorafenib to PDGFRA mutation in auditory canal adenocarcinoma (partial response), sorafenib to BRAF mutation in microcytic adnexal carcinoma (progressive disease), and afatinib to ERBB2 mutation in esophageal adenocarcinoma (progressive disease). Nineteen of 24 patients with actionable mutations could not undergo targeted therapy based on genomic testing because of declining performance status (10/24, 41.7%), stable disease with previous treatment (5/24, 20.8%), and lack of access to targeted medication (4/24, 16.7%). NGS-based targeted therapy may be a good option in selected patients with refractory solid tumors. To pursue this strategy in Korea, lack of access to clinical-grade NGS assays and a limited number of genotype-matched targeted medications needs to be addressed and resolved. PMID:27105424

  14. Recent insights into the molecular pathogenesis of Crohn's disease: a review of emerging therapeutic targets

    Directory of Open Access Journals (Sweden)

    Manuc TE

    2016-03-01

    Full Text Available Teodora-Ecaterina M Manuc,1 Mircea M Manuc,2 Mircea M Diculescu2 1Fundeni Clinical Institute, 2University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania Abstract: Chronic inflammatory bowel diseases (IBDs are a subject of great interest in gastroenterology, due to a pathological mechanism that is difficult to explain and an optimal therapeutic approach still undiscovered. Crohn's disease (CD is one of the main entities in IBD, characterized by clinical polymorphism and great variability in the treatment response. Modern theories on the pathogenesis of CD have proven that gut microbiome and environmental factors lead to an abnormal immune response in a genetically predisposed patient. Genome-wide association studies in patients with CD worldwide revealed several genetic mutations that increase the risk of IBD and that predispose to a more severe course of disease. Gut microbiota is considered a compulsory and an essential part in the pathogenesis of CD. Intestinal dysmicrobism with excessive amounts of different bacterial strains can be found in all patients with IBD. The discovery of Escherichia coli entero-invasive on resection pieces in patients with CD now increases the likelihood of antimicrobial or vaccine-type treatments. Recent studies targeting intestinal immunology and its molecular activation pathways provide new possibilities for therapeutics. In addition to antitumor necrosis factor molecules, which were a breakthrough in IBD, improving mucosal healing and resection-free survival rate, other classes of therapeutic agents come to focus. Leukocyte adhesion inhibitors block the leukocyte homing mechanism and prevent cellular immune response. In addition to anti-integrin antibodies, chemokine receptor antagonists and SMAD7 antisense oligonucleotides have shown encouraging results in clinical trials. Micro-RNAs have demonstrated their role as disease biomarkers but it could also become useful for the treatment of IBD

  15. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T;

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based-nanocarriers in the...

  16. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications.

    Science.gov (United States)

    Jones, Russell G A; Martino, Angela

    2016-06-01

    Therapeutic antibodies provide important tools in the "medicine chest" of today's clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma

  17. Current understanding of BRAF alterations in diagnosis, prognosis and therapeutic targeting in paediatric low grade gliomas

    Directory of Open Access Journals (Sweden)

    Catherine Louise Penman

    2015-03-01

    Full Text Available The mitogen-activated protein kinase (MAPK pathway is known to play a key role in the initiation and maintenance of many tumours as well as normal development. This often occurs through mutation of the genes encoding RAS and RAF proteins which are involved in signal transduction in this pathway. BRAF is one of three RAF kinases which act as downstream effectors of growth factor signalling leading to cell cycle progression, proliferation and survival. Initially reported as a point mutation (V600E in the majority of metastatic melanomas, other alterations in the BRAF gene have now been reported in a variety of human cancers including papillary thyroid cancer, colon carcinomas, hairy cell leukaemia and more recently in gliomas. The identification of oncogenic mutations in the BRAF gene have led to a revolution in the treatment of metastatic melanoma using targeted molecular therapies that affect the MAPK pathway either directly through BRAF inhibition or downstream through inhibition of MEK. This review describes the molecular biology of BRAF in the context of paediatric low grade gliomas, the role of BRAF as a diagnostic marker, the prognostic implications of BRAF and evidence for therapeutic targeting of BRAF.

  18. Therapeutic efficacy by targeting correction of Notch1-induced aberrants in uveal tumors.

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    Full Text Available There is a need for more effective treatments for uveal melanoma. The recombinant oncolytic adenovirus H101 replicates specifically in p53-depleted tumor cells, and has been approved for use by the Chinese State Food and Drug Administration. However, this treatment is associated with subsequent remission. Transfection of uveal melanoma cells with a small interfering RNA against Notch1 (siNotch1 effectively suppressed Notch1 expression, resulting in significant cell growth inhibition when combined with H101 treatment. Combined treatment with siNotch1 and H101 (H101-Notch1-siRNA greatly enhanced apoptosis and cell cycle arrest in vitro as compared to treatment with H101 or siNotch1 alone. For in vivo treatments, the combined treatment of siNotch1 and H101 showed remarkable tumor growth inhibition and prolonged mouse survival in the OCM1 xenograft model. We predict that Notch pathway deregulation could be a feature of uveal melanoma, and could be a therapeutic target, especially if p53 is concurrently targeted.

  19. Histone deacetylase 3 (HDAC3) as a novel therapeutic target in multiple myeloma

    Science.gov (United States)

    Minami, Jiro; Suzuki, Rikio; Mazitschek, Ralph; Gorgun, Gullu; Ghosh, Balaram; Cirstea, Diana; Hu, Yiguo; Mimura, Naoya; Ohguchi, Hiroto; Cottini, Francesca; Jakubikova, Jana; Munshi, Nikhil C.; Haggarty, Stephen J.; Richardson, Paul G.; Hideshima, Teru; Anderson, Kenneth C.

    2014-01-01

    Histone deacetylases (HDACs) represent novel molecular targets for the treatment of various types of cancers, including multiple myeloma (MM). Many HDAC inhibitors have already shown remarkable anti-tumor activities in the preclinical setting; however, their clinical utility is limited due to unfavorable toxicities associated with their broad range HDAC inhibitory effects. Isoform-selective HDAC inhibition may allow for MM cytotoxicity without attendant side effects. In this study, we demonstrated that HDAC3 knockdown and a small molecule HDAC3 inhibitor BG45 trigger significant MM cell growth inhibition via apoptosis, evidenced by caspase and PARP cleavage. Importantly, HDAC3 inhibition downregulates phosphorylation (tyrosine 705 and serine 727) of STAT3. Neither IL-6 nor bone marrow stromal cells overcome this inhibitory effect of HDAC3 inhibition on p-STAT3 and MM cell growth. Moreover, HDAC3 inhibition also triggers hyperacetylation of STAT3, suggesting crosstalk signaling between phosphorylation and acetylation of STAT3. Importantly, inhibition of HDAC3, but not HDAC1 or HDAC2, significantly enhances bortezomib-induced cytotoxicity. Finally, we confirm that BG45 alone and in combination with bortezomib trigger significant tumor growth inhibition in vivo in a murine xenograft model of human MM. Our results indicate that HDAC3 represents a promising therapeutic target, and validate a prototype novel HDAC3 inhibitor BG45 in MM. PMID:23913134

  20. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting.

    Science.gov (United States)

    Theisen, Emily R; Pishas, Kathleen I; Saund, Ranajeet S; Lessnick, Stephen L

    2016-04-01

    Ewing sarcoma is an aggressive primary pediatric bone tumor, often diagnosed in adolescents and young adults. A pathognomonic reciprocal chromosomal translocation results in a fusion gene coding for a protein which derives its N-terminus from a FUS/EWS/TAF15 (FET) protein family member, commonly EWS, and C-terminus containing the DNA-binding domain of an ETS transcription factor, commonly FLI1. Nearly 85% of cases express the EWS-FLI protein which functions as a transcription factor and drives oncogenesis. As the primary genomic lesion and a protein which is not expressed in normal cells, disrupting EWS-FLI function is an attractive therapeutic strategy for Ewing sarcoma. However, transcription factors are notoriously difficult targets for the development of small molecules. Improved understanding of the oncogenic mechanisms employed by EWS-FLI to hijack normal cellular programming has uncovered potential novel approaches to pharmacologically block EWS-FLI function. In this review we examine targeting the chromatin regulatory enzymes recruited to conspire in oncogenesis with a focus on the histone lysine specific demethylase 1 (LSD1). LSD1 inhibitors are being aggressively investigated in acute myeloid leukemia and the results of early clinical trials will help inform the future use of LSD1 inhibitors in sarcoma. High LSD1 expression is observed in Ewing sarcoma patient samples and mechanistic and preclinical data suggest LSD1 inhibition globally disrupts the function of EWS-ETS proteins. PMID:26848860

  1. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  2. Therapeutic Modulation of Apoptosis: Targeting the BCL-2 Family at the Interface of the Mitochondrial Membrane

    Science.gov (United States)

    Nemec, Kathleen N.

    2008-01-01

    A vast portion of human disease results when the process of apoptosis is defective. Disorders resulting from inappropriate cell death range from autoimmune and neurodegenerative conditions to heart disease. Conversely, prevention of apoptosis is the hallmark of cancer and confounds the efficacy of cancer therapeutics. In the search for optimal targets that would enable the control of apoptosis, members of the BCL-2 family of anti- and pro-apoptotic factors have figured prominently. Development of BCL-2 antisense approaches, small molecules, and BH3 peptidomimetics has met with both success and failure. Success-because BCL-2 proteins play essential roles in apoptosis. Failure-because single targets for drug development have limited scope. By examining the activity of the BCL-2 proteins in relation to the mitochondrial landscape and drawing attention to the significant mitochondrial membrane alterations that ensue during apoptosis, we demonstrate the need for a broader based multi-disciplinary approach for the design of novel apoptosis-modulating compounds in the treatment of human disease. PMID:18972587

  3. Lamin B1 Is a Novel Therapeutic Target of Betulinic Acid in Pancreatic Cancer

    Science.gov (United States)

    Li, Lei; Du, Yiqi; Kong, Xiangyu; Li, Zhaoshen; Jia, Zhiliang; Cui, Jiujie; Gao, Jun; Wang, Guokun; Xie, Keping

    2013-01-01

    Purpose Betulinic acid (BA), a naturally occurring pentacyclic triterpenoid, exhibits potent anti-tumor activities, whereas the underlying mechanisms remain unclear. In current study, we sought to determine the role and regulation of lamin B1 expression in human pancreatic cancer pathogenesis and BA-based therapy. Experimental Design We used cDNA microarray to identify BA target genes and used tissue microarray to determine the expression levels of lamin B1 in pancreatic cancer tissues and to define their relationship with the clinicopathologic characteristics of pancreatic cancer. We also used in vitro and in vivo models to determine the biological impacts of altered lamin B1 expression on and mechanisms underlying lamin B1 overexpression in human pancreatic cancer. Results We found that lamin B1 was significantly downregulated by BA treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer and increased lamin B1 expression was directly associated with low grade differentiation, increased incidence of distant metastasis and poor prognosis of pancreatic cancer patients. Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion and tumorigenicity of pancreatic cancer cells. Conclusions Lamin B1 plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of BA treatment. PMID:23857605

  4. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein

    Science.gov (United States)

    Choi, Sunga; Joo, Hee Kyoung

    2016-01-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease. PMID:27231670

  5. New strategies to direct therapeutic targeting of PML to treat cancers

    Directory of Open Access Journals (Sweden)

    KamilWolyniec

    2013-05-01

    Full Text Available The tumor suppressor function of the promyelocytic leukemia (PML protein was first identified as a result of its dysregulation in acute promyelocytic leukemia (APL, however, its importance is now emerging far beyond hematological neoplasms, to an extensive range of malignancies, including solid tumours. In response to stress signals, PML coordinates the regulation of numerous proteins, which activate fundamental cellular processes that suppress tumorigenesis. Importantly, PML itself is the subject of specific post-translational modifications, including ubiquitination, phosphorylation, acetylation and SUMOylation, which in turn control PML activity and stability and ultimately dictate cellular fate. Improved understanding of the regulation of this key tumor suppressor is uncovering potential opportunities for therapeutic intervention. Targeting the key negative regulators of PML in cancer cells such as CK2, BMK1 and E6AP, with specific inhibitors that are becoming available, provides unique and exciting avenues for restoring tumor suppression through the induction of apoptosis and senescence. These approaches could be combined with DNA damaging drugs and cytokines that are known to activate PML. Depending on the cellular context, reactivation or enhancement of tumor suppressive PML functions, or targeted elimination of aberrantly functioning PML, may provide clinical benefit.

  6. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker.

    Science.gov (United States)

    Takawa, Masashi; Masuda, Ken; Kunizaki, Masaki; Daigo, Yataro; Takagi, Katsunori; Iwai, Yukiko; Cho, Hyun-Soo; Toyokawa, Gouji; Yamane, Yuka; Maejima, Kazuhiro; Field, Helen I; Kobayashi, Takaaki; Akasu, Takayuki; Sugiyama, Masanori; Tsuchiya, Eijyu; Atomi, Yutaka; Ponder, Bruce A J; Nakamura, Yusuke; Hamamoto, Ryuji

    2011-07-01

    The emphasis in anticancer drug discovery has always been on finding a drug with great antitumor potential but few side-effects. This can be achieved if the drug is specific for a molecular site found only in tumor cells. Here, we find the enhancer of zeste homolog 2 (EZH2) to be highly overexpressed in lung and other cancers, and show that EZH2 is integral to proliferation in cancer cells. Quantitative real-time PCR analysis revealed higher expression of EZH2 in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P CCD-18Co, which has undetectable EZH2. Because EZH2 expression was scarcely detectable in all normal tissues we examined, EZH2 shows promise as a tumor-specific therapeutic target. Furthermore, as elevated levels of EZH2 are associated with poor prognosis of patients with NSCLC, its overexpression in resected specimens could prove a useful molecular marker, indicating the necessity for a more extensive follow-up in some lung cancer patients after surgical treatment. PMID:21539681

  7. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain

    OpenAIRE

    Liu, Hao-Li; Hua, Mu-Yi; Yang, Hung-Wei; Huang, Chiung-Yin; Chu, Po-Chun; Wu, Jia-Shin; Tseng, I-Chou; Wang, Jiun-Jie; Yen, Tzu-Chen; Chen, Pin-Yuan; Wei, Kuo-Chen

    2010-01-01

    The superparamagnetic properties of magnetic nanoparticles (MNPs) allow them to be guided by an externally positioned magnet and also provide contrast for MRI. However, their therapeutic use in treating CNS pathologies in vivo is limited by insufficient local accumulation and retention resulting from their inability to traverse biological barriers. The combined use of focused ultrasound and magnetic targeting synergistically delivers therapeutic MNPs across the blood–brain barrier to enter th...

  8. Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies.

    Science.gov (United States)

    Chung, Kian Fan

    2016-02-01

    Asthma is a common heterogeneous disease with a complex pathophysiology that carries a significant mortality rate and high morbidity. Current therapies based on inhaled corticosteroids and long-acting β-agonists remain effective in a large proportion of patients with asthma, but ~10% (considered to have 'severe asthma') do not respond to these treatments even at high doses or with the use of oral corticosteroids. Analytical clustering methods have revealed phenotypes that include dependence on high-dose corticosteroid treatment, severe airflow obstruction and recurrent exacerbations associated with an allergic background and late onset of disease. One severe phenotype is eosinophilic inflammation-predominant asthma, with late-onset disease, rhinosinusitis, aspirin sensitivity and exacerbations. Blood and sputum eosinophilia have been used to distinguish patients with high Th2 inflammation and to predict therapeutic response to treatments targeted towards Th2-associated cytokines. New therapies in the form of humanized antibodies against Th2 targets, such as anti-IgE, anti-IL4Rα, anti-IL-5 and anti-IL-13 antibodies, have shown encouraging results in terms of reduction in exacerbations and improvement in airflow in patients with a 'Th2-high' expression profile and blood eosinophilia. Research efforts are now focusing on elucidating the phenotypes underlying the non-Th2-high (or Th2-low) group, which constitutes ~50% of severe asthma cases. There is an increasing need to use biomarkers to indicate the group of patients who will respond to a specifically targeted treatment. The use of improved tools to measure activity of disease, a better definition of severe asthma and the delineation of inflammatory pathways with omics analyses using computational tools, will lead to better-defined phenotypes for specific therapies. PMID:26076339

  9. Use of macrophages to target therapeutic adenovirus to human prostate tumors.

    Science.gov (United States)

    Muthana, Munitta; Giannoudis, Athina; Scott, Simon D; Fang, Hsin-Yu; Coffelt, Seth B; Morrow, Fiona J; Murdoch, Craig; Burton, Julian; Cross, Neil; Burke, Bernard; Mistry, Roshna; Hamdy, Freddie; Brown, Nicola J; Georgopoulos, Lindsay; Hoskin, Peter; Essand, Magnus; Lewis, Claire E; Maitland, Norman J

    2011-03-01

    New therapies are required to target hypoxic areas of tumors as these sites are highly resistant to conventional cancer therapies. Monocytes continuously extravasate from the bloodstream into tumors where they differentiate into macrophages and accumulate in hypoxic areas, thereby opening up the possibility of using these cells as vehicles to deliver gene therapy to these otherwise inaccessible sites. We describe a new cell-based method that selectively targets an oncolytic adenovirus to hypoxic areas of prostate tumors. In this approach, macrophages were cotransduced with a hypoxia-regulated E1A/B construct and an E1A-dependent oncolytic adenovirus, whose proliferation is restricted to prostate tumor cells using prostate-specific promoter elements from the TARP, PSA, and PMSA genes. When such cotransduced cells reach an area of extreme hypoxia, the E1A/B proteins are expressed, thereby activating replication of the adenovirus. The virus is subsequently released by the host macrophage and infects neighboring tumor cells. Following systemic injection into mice bearing subcutaneous or orthotopic prostate tumors, cotransduced macrophages migrated into hypoxic tumor areas, upregulated E1A protein, and released multiple copies of adenovirus. The virus then infected neighboring cells but only proliferated and was cytotoxic in prostate tumor cells, resulting in the marked inhibition of tumor growth and reduction of pulmonary metastases. This novel delivery system employs 3 levels of tumor specificity: the natural "homing" of macrophages to hypoxic tumor areas, hypoxia-induced proliferation of the therapeutic adenovirus in host macrophages, and targeted replication of oncolytic virus in prostate tumor cells. PMID:21233334

  10. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer.

    Science.gov (United States)

    Ahlers, Katelin E; Chakravarti, Bandana; Fisher, Rory A

    2016-05-01

    Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target. PMID:27002730

  11. Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Shirong; Liang, Xiaodong; Zheng, Xiaoliang; Huang, Haixiu; Chen, Xufeng; Wu, Kan; Wang, Bing; Ma, Shenglin

    2014-01-01

    Glyoxalase 1 (Glo1) gene aberrations is associated with tumorigenesis and progression in numerous cancers. In this study, we explored the role of Glo1 genetic amplification and expression in Chinese patients with hepatocellular carcinoma (HCC), and Glo1 genetic amplification as potential therapeutic target for HCC. We used fluorescence in situ hybridization (FISH) analysis and qRT-PCR to examine Glo1 genetic aberrations and Glo1 mRNA expression in paired tumor samples obtained from HCC patients. Glo1 genetic amplification was identified in a subset of HCC patient (6%, 3/50), and up-regulation of Glo1 expression was found in 48% (24/50) of tumor tissues compared with adjacent non-tumorous tissues. Statistic analysis showed that Glo1-upregulation significantly correlated with high serum level of alpha-fetoprotein (AFP). Interfering Glo1 expression with shRNA knocking-down led to significant inhibition of cell growth and induced apoptosis in primarily cultured HCC cells carrying genetic amplified Glo1 gene, while no inhibitory effects on cell proliferation were observed in HCC cells with normal copies of Glo1 gene. Glo1 knockdown also inhibited tumor growth and induced apoptosis in xenograft tumors established from primarily cultured HCC cells with Glo1 gene amplification. In addition, Glo1 knocking-down with shRNA interfering caused cellular accumulation of methylglyoxal, a Glo1 cytotoxic substrate. Our data suggested Glo1 pathway activation is required for cell proliferation and cell survival of HCC cells carrying Glo1 genetic amplification. Intervention of Glo1 activation could be a potential therapeutic option for patients with HCC carrying Glo1 gene amplification. PMID:24966916

  12. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2011-01-01

    Full Text Available MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies against individual membrane-bound MMPs.

  13. Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics

    Directory of Open Access Journals (Sweden)

    Marianela Candolfi

    2012-08-01

    Full Text Available Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM] models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α, their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.

  14. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro

    International Nuclear Information System (INIS)

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage.

  15. Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs.

    Science.gov (United States)

    Bhutia, Yangzom D; Babu, Ellappan; Ramachandran, Sabarish; Ganapathy, Vadivel

    2015-05-01

    Tumor cells have an increased demand for amino acids because of their rapid proliferation rate. In addition to their need in protein synthesis, several amino acids have other roles in supporting cancer growth. There are approximately two-dozen amino acid transporters in humans, and tumor cells must upregulate one or more of these transporters to satisfy their demand for amino acids. If the transporters that specifically serve this purpose in tumor cells are identified, they can be targeted for the development of a brand new class of anticancer drugs; the logical basis of such a strategy would be to starve the tumor cells of an important class of nutrients. To date, four amino acid transporters have been found to be expressed at high levels in cancer: SLC1A5, SLC7A5, SLC7A11, and SLC6A14. Their induction occurs in a cancer type-specific manner with a direct or indirect involvement of the oncogene c-Myc. Further, these transporters are functionally coupled, thus maximizing their ability to promote cancer growth and chemoresistance. Progress has been made in preclinical studies, exploiting these transporters as drug targets in cancer therapy. These transporters also show promise in development of new tumor-imaging probes and in tumor-specific delivery of appropriately designed chemotherapeutic agents. PMID:25855379

  16. 1-Benzyl-2-methyl-3-indolylmethylene barbituric acid derivatives: Anti-cancer agents that target nucleophosmin 1 (NPM1).

    Science.gov (United States)

    Penthala, Narsimha Reddy; Ketkar, Amit; Sekhar, Konjeti R; Freeman, Michael L; Eoff, Robert L; Balusu, Ramesh; Crooks, Peter A

    2015-11-15

    In the present study, we have designed and synthesized a series of 1-benzyl-2-methyl-3-indolylmethylene barbituric acid analogs (7a-7h) and 1-benzyl-2-methyl-3-indolylmethylene thiobarbituric acid analogs (7 i-7 l) as nucleophosmin 1 (NPM1) inhibitors and have evaluated them for their anti-cancer activity against a panel of 60 different human cancer cell lines. Among these analogs 7 i, 7 j, and 7 k demonstrated potent growth inhibitory effects in various cancer cell types with GI50 values <2 μM. Compound 7 k exhibited growth inhibitory effects on a sub-panel of six leukemia cell lines with GI50 values in the range 0.22-0.35 μM. Analog 7 i also exhibited GI50 values <0.35 μM against three of the leukemia cell lines in the sub-panel. Analogs 7 i, 7 j, 7 k and 7 l were also evaluated against the mutant NPM1 expressing OCI-AML3 cell line and compounds 7 k and 7 l were found to cause dose-dependent apoptosis (AP50 = 1.75 μM and 3.3 μM, respectively). Compound 7k also exhibited potent growth inhibition against a wide variety of solid tumor cell lines: that is, A498 renal cancer (GI50 = 0.19 μM), HOP-92 and NCI-H522 lung cancer (GI50 = 0.25 μM), COLO 205 and HCT-116 colon cancer (GI50 = 0.20 and 0.26 μM, respectively), CNS cancer SF-539 (GI50 = 0.22 μM), melanoma MDA-MB-435 (GI50 = 0.22 μM), and breast cancer HS 578T (GI50 = 0.22 μM) cell lines. Molecular docking studies suggest that compounds 7 k and 7 l exert their anti-leukemic activity by binding to a pocket in the central channel of the NPM1 pentameric structure. These results indicate that the small molecule inhibitors 7 i, 7 j, 7 k, and 7 l could be potentially developed into anti-NPM1 drugs for the treatment of a variety of hematologic malignancies and solid tumors. PMID:26602084

  17. Titanium(IV) targets phosphoesters on nucleotides: implications for the mechanism of action of the anticancer drug titanocene dichloride.

    Science.gov (United States)

    Guo, M; Guo, Z; Sadler, P J

    2001-09-01

    Abstract Reactions between the anticancer drug titanocene dichloride (Cp2TiCl2) and various nucleotides and their constituents in aqueous solution or N,N-dimethylformamide (DMF) have been investigated by 1H and 31P NMR spectroscopy and in the solid state by IR spectroscopy. In aqueous solution over the pH* (pH meter reading in D2O) range 2.3-6.5, CMP forms one new species with Ti(IV) bound only to the phosphate group. In acidic media at pH*TMP approximately AMP > CMP. At pH* > 7.0, hydrolysis of Cp2TiCl2 predominated and little reaction with the nucleotides was observed. Binding of deoxyribose 5'-phosphate and 4-nitrophenyl phosphate to Cp2TiCl2(aq) via their phosphate groups was detected by 31P NMR spectroscopy, but no reaction between Cp2TiCl2(aq) and deoxyguanosine, 9-ethylguanine or deoxy-D-ribose was observed in aqueous solution. The nucleoside phosphodiesters 3',5'-cyclic GMP and 2',3'-cyclic CMP did not react with Cp2TiCl2(aq) in aqueous solution; however, in the less polar solvent DMF, 3',5'-cyclic GMP coordination to [Cp2Ti]2+ via its phosphodiester group was readily observed. Binding of titanocene to the phosphodiester group of the dinucleotide GpC was also observed in DMF by 31P NMR. The nucleoside triphosphates ATP and GTP reacted more extensively with Cp2TiCl2(aq) than their monophosphates; complexes with bound phosphate groups were formed in acidic media and to a lesser extent at neutral pH. Cleavage of phosphate bonds in ATP (and GTP) by Cp2TiCl2(aq) to form inorganic phosphate, AMP (or GMP) and ADP (or GDP) was observed in aqueous solutions. In addition, titanocene binding to ATP was not inhibited by Mg(II), but the ternary complex titanocene-ATP-Mg appeared to form. These reactions contrast markedly with those of the drug cisplatin, which binds predominantly to the base nitrogen atoms of nucleotides and only weakly to the phosphate groups. The high affinity of Ti(IV) for phosphate groups may be important for its biological activity. PMID:11681703

  18. Nanoparticles Targeted With NGR Motif Deliver c-myc siRNA and Doxorubicin for Anticancer Therapy

    OpenAIRE

    Chen, Yunching; Wu, Jinzi J.; Huang, Leaf

    2010-01-01

    We have designed a PEGylated LPD (liposome-polycation-DNA) nanoparticle for systemic, specific, and efficient delivery of small interfering RNA (siRNA) into solid tumors in mice by modification with NGR (aspargine–glycine–arginine) peptide, targeting aminopeptidase N (CD13) expressed in the tumor cells or tumor vascular endothelium. LPD-PEG-NGR efficiently delivered siRNA to the cytoplasm and downregulated the target gene in the HT-1080 cells but not CD13− HT-29 cells, whereas nanoparticles c...

  19. Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90.

    OpenAIRE

    Montoir, David; Barillé-Nion, Sophie; Tonnerre, Alain; Juin, Philippe; Duflos, Muriel; Bazin, Marc-Antoine

    2016-01-01

    International audience Hsp90 is an ATP-dependent chaperone known to be overexpressed in many cancers. This way, Hsp90 is an important target for drug discovery. Novobiocin, an aminocoumarin antibiotic, was reported to inhibit Hsp90 targeting C-terminal domain, and showed anti-proliferative properties, leading to the development of new and more active compounds. Consequently, a new set of novobiocin analogs derived from 1,6-naphthyridin-2(1H)-one scaffold was designed, synthesized and evalu...

  20. Glyco-nanoparticles with sheddable saccharide shells: A unique and potent platform for hepatoma-targeting delivery of anticancer drugs

    NARCIS (Netherlands)

    Chen, Wei; Zou, Yan; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2014-01-01

    Reduction-sensitive shell-sheddable glyco-nanoparticles were designed and developed based on poly(ε-caprolactone)-graft-SS-lactobionic acid (PCL-g-SS-LBA) copolymer for efficient hepatoma-targeting delivery of doxorubicin (DOX). PCL-g-SS-LBA was prepared by ring-opening copolymerization of ε-caprola

  1. Identification of cell surface targets for HIV-1 therapeutics using genetic screens

    International Nuclear Information System (INIS)

    Human immunodeficiency virus (HIV) drugs designed to interfere with obligatory utilization of certain host cell factors by virus are less likely to encounter development of resistant strains than drugs directed against viral components. Several cellular genes required for productive infection by HIV were identified by the use of genetic suppressor element (GSE) technology as potential targets for anti-HIV drug development. Fragmented cDNA libraries from various pools of human peripheral blood mononuclear cells (PBMC) were expressed in vitro in human immunodeficiency virus type 1 (HIV-1)-susceptible cell lines and subjected to genetic screens to identify GSEs that interfered with viral replication. After three rounds of selection, more than 15 000 GSEs were sequenced, and the cognate genes were identified. The GSEs that inhibited the virus were derived from a diverse set of genes including cell surface receptors, cytokines, signaling proteins, transcription factors, as well as genes with unknown function. Approximately 2.5% of the identified genes were previously shown to play a role in the HIV-1 life cycle; this finding supports the biological relevance of the assay. GSEs were derived from the following 12 cell surface proteins: CXCR4, CCR4, CCR7, CD11C, CD44, CD47, CD68, CD69, CD74, CSF3R, GABBR1, and TNFR2. Requirement of some of these genes for viral infection was also investigated by using RNA interference (RNAi) technology; accordingly, 10 genes were implicated in early events of the viral life cycle, before viral DNA synthesis. Thus, these cell surface proteins represent novel targets for the development of therapeutics against HIV-1 infection and AIDS

  2. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  3. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  4. Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma.

    Science.gov (United States)

    Amodio, Nicola; Stamato, Maria Angelica; Gullà, Anna Maria; Morelli, Eugenio; Romeo, Enrica; Raimondi, Lavinia; Pitari, Maria Rita; Ferrandino, Ida; Misso, Gabriella; Caraglia, Michele; Perrotta, Ida; Neri, Antonino; Fulciniti, Mariateresa; Rolfo, Christian; Anderson, Kenneth C; Munshi, Nikhil C; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2016-06-01

    Epigenetic abnormalities are common in hematologic malignancies, including multiple myeloma, and their effects can be efficiently counteracted by a class of tumor suppressor miRNAs, named epi-miRNAs. Given the oncogenic role of histone deacetylases (HDAC) in multiple myeloma, we investigated whether their activity could be antagonized by miR-29b, a well-established epi-miRNA. We demonstrated here that miR-29b specifically targets HDAC4 and highlighted that both molecules are involved in a functional loop. In fact, silencing of HDAC4 by shRNAs inhibited multiple myeloma cell survival and migration and triggered apoptosis and autophagy, along with the induction of miR-29b expression by promoter hyperacetylation, leading to the downregulation of prosurvival miR-29b targets (SP1, MCL-1). Moreover, treatment with the pan-HDAC inhibitor SAHA upregulated miR-29b, overcoming the negative control exerted by HDAC4. Importantly, overexpression or inhibition of miR-29b, respectively, potentiated or antagonized SAHA activity on multiple myeloma cells, as also shown in vivo by a strong synergism between miR-29b synthetic mimics and SAHA in a murine xenograft model of human multiple myeloma. Altogether, our results shed light on a novel epigenetic circuitry regulating multiple myeloma cell growth and survival and open new avenues for miR-29b-based epi-therapeutic approaches in the treatment of this malignancy. Mol Cancer Ther; 15(6); 1364-75. ©2016 AACR. PMID:27196750

  5. Heterocyclic chalcone analogues as potential anticancer agents.

    Science.gov (United States)

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  6. Magnetically Targeted Delivery of Therapeutic Agents to Injured Blood Vessels for Prevention of In-Stent Stenosis

    OpenAIRE

    Chorny, Michael; Fishbein, Ilia; Adamo, Richard F.; Forbes, Scott P.; Folchman-Wagner, Zoë; Alferiev, Ivan S.

    2012-01-01

    Magnetic guidance is a physical targeting strategy with the potential to improve the safety and efficacy of a variety of therapeutic agents — including small-molecule pharmaceuticals, proteins, gene vectors, and cells — by enabling their site-specific delivery. The application of magnetic targeting for in-stent restenosis can address the need for safer and more efficient treatment strategies. However, its translation to humans may not be possible without revising the traditional magnetic targ...

  7. [Revision of therapeutic index for targeted treatment in kidney cancer: What if toxicity could predict efficacy?].

    Science.gov (United States)

    Grellety, Thomas; Brugères-Chakiba, Camille; Chaminade, Axel; Roubaud, Guilhem; Ravaud, Alain; Gross-Goupil, Marine

    2014-06-01

    Since 2006, new treatments as targeted therapies (anti angiogenic and mTOR inhibitors) are prescribed in renal cell cancer. Toxicity of these treatments is well known by clinicians. Occurrence of these side effects has been associated with anti tumoral efficacy. High blood pressure, hypothyroïdie and hand foot syndrome were reported to be predictive of anti tumoral response. Fatigue and hyponatremia are still largely discussed. Moreover, non infectious pneumonia, which frequently occurs with mTOR inhibitors, is associated with clinical benefit. The main objective of treatment of advanced kidney cancer, specially renal cell cancer, is obtaining clinical benefit (stabilization and response) with a chronic evolution of the disease. This prolong exposure to drugs, according to their toxicity profile, often contributes to dose reduction, moreover interruption of treatment, potentially associated with a loss of control of disease. Thus, the adverse effects, described hereby, may be considered as « positive events », predicting efficacy, and thus looked for… Moreover, the sequential approach, with new drugs, emphasizes the need of defining the optimal sequence. Thus, because of the lack of molecular biomarkers to date, this predictives secondary effects may help for selecting the therapeutic strategy. PMID:24977449

  8. Sonic Hedgehog Signaling Drives Proliferation of Synoviocytes in Rheumatoid Arthritis: A Possible Novel Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mingxia Wang

    2014-01-01

    Full Text Available Sonic hedgehog (Shh signaling controls many aspects of human development, regulates cell growth and differentiation in adult tissues, and is activated in a number of malignancies. Rheumatoid arthritis (RA is characterized by chronic synovitis and pannus formation associated with activation of fibroblast-like synoviocytes (FLS. We investigated whether Shh signaling plays a role in the proliferation of FLS in RA. Expression of Shh signaling related components (Shh, Ptch1, Smo, and Gli1 in RA synovial tissues was examined by immunohistochemistry (IHC and in FLS by IHC, immunofluorescence (IF, quantitative RT-PCR, and western blotting. Expression of Shh, Smo, and Gli1 in RA synovial tissue was higher than that in control tissue (P<0.05. Cyclopamine (a specific inhibitor of Shh signaling decreased mRNA expression of Shh, Ptch1, Smo, and Gli1 in cultured RA FLS, Shh, and Smo protein expression, and significantly decreased FLS proliferation. Flow cytometry analysis suggested that cyclopamine treatment resulted in cell cycle arrest of FLS in G1 phase. Our data show that Shh signaling is activated in synovium of RA patients in vivo and in cultured FLS form RA patients in vitro, suggesting a role in the proliferation of FLS in RA. It may therefore be a novel therapeutic target in RA.

  9. Cell Cycle Abnormality in Metabolic Syndrome and Nuclear Receptors as an Emerging Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Nakatsuka,Atsuko

    2013-06-01

    Full Text Available In recent years, many researchers have emphasized the importance of metabolic syndrome based on its increasing prevalence and its adverse prognosis due to associated chronic vascular complications. Upstream of a cluster of metabolic and vascular disorders is the accumulation of visceral adipose tissue, which plays a central role in the pathophysiology. In the accumulation of adipose tissues, cell cycle regulation is tightly linked to cellular processes such as proliferation, hypertrophy and apoptosis. In addition, various cell cycle abnormalities have also been observed in other tissues, such as kidneys and the cardiovascular system, and they are critically involved in the progression of disease. Here, we discuss cell cycle abnormalities in metabolic syndrome in various tissues. Furthermore, we describe the role of nuclear receptors in cell growth and survival, and glucose and lipid metabolism in the whole body. Therapeutic strategies for modulating various cell cycles in metabolic disorders by targeting nuclear receptors may overcome obesity and its chronic vascular complications in the future.

  10. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma.

    Directory of Open Access Journals (Sweden)

    Jessica M Stiles

    Full Text Available Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans.

  11. Targeting developmental regulators of zebrafish exocrine pancreas as a therapeutic approach in human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2012-02-01

    Histone deacetylases (HDACs and RNA polymerase III (POLR3 play vital roles in fundamental cellular processes, and deregulation of these enzymes has been implicated in malignant transformation. Hdacs and Polr3 are required for exocrine pancreatic epithelial proliferation during morphogenesis in zebrafish. We aim to test the hypothesis that Hdacs and Polr3 cooperatively control exocrine pancreatic growth, and combined inhibition of HDACs and POLR3 produces enhanced growth suppression in pancreatic cancer. In zebrafish larvae, combination of a Hdac inhibitor (Trichostatin A and an inhibitor of Polr3 (ML-60218 synergistically prohibited the expansion of exocrine pancreas. In human pancreatic adenocarcinoma cells, combination of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA and ML-60218 produced augmented suppression of colony formation and proliferation, and induction of cell cycle arrest and apoptotic cell death. The enhanced cytotoxicity was associated with supra-additive upregulation of the pro-apoptotic regulator BAX and the cyclin-dependent kinase inhibitor p21CDKN1A. tRNAs have been shown to have pro-proliferative and anti-apoptotic roles, and SAHA-stimulated expression of tRNAs was reversed by ML-60218. These findings demonstrate that chemically targeting developmental regulators of exocrine pancreas can be translated into an approach with potential impact on therapeutic response in pancreatic cancer, and suggest that counteracting the pro-malignant side effect of HDAC inhibitors can enhance their anti-tumor activity.

  12. Mer receptor tyrosine kinase is a therapeutic target in pre–B-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Linger, Rachel M. A.; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Cohen, Rebecca A.; Jacobsen, Kristen M.; McGranahan, Amy; Brandão, Luis N.; Winges, Amanda; Sawczyn, Kelly K.; Liang, Xiayuan; Keating, Amy K.; Tan, Aik Choon; Earp, H. Shelton

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre–B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  13. Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Linger, Rachel M A; Lee-Sherick, Alisa B; DeRyckere, Deborah; Cohen, Rebecca A; Jacobsen, Kristen M; McGranahan, Amy; Brandão, Luis N; Winges, Amanda; Sawczyn, Kelly K; Liang, Xiayuan; Keating, Amy K; Tan, Aik Choon; Earp, H Shelton; Graham, Douglas K

    2013-08-29

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre-B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  14. Arginine-Glycine-Aspartate-Binding Integrins as Therapeutic and Diagnostic Targets.

    Science.gov (United States)

    Sun, Cui-Cui; Qu, Xian-Jun; Gao, Zu-Hua

    2016-01-01

    Arginine-glycine-aspartate (RGD)-binding integrins, including αvβ1, αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, and α8β1, recognize the tripeptide motif RGD in their ligands. RGD-binding integrins are involved in various cell functions, including cell proliferation, survival, differentiation, and motility that are critically important to both health and disease. The diagnostic and therapeutic value of some RGD-binding integrin inhibitors are either clinically proven or at different stages of development. In this review, we first summarized the structure and signaling characteristics of RGD-binding integrins. We then discussed the functions of RGD-binding integrins and their association with human disease. Finally, we recapitulated the research efforts and clinical trials of targeting RGD-binding integrins for the diagnosis and treatment of human disease. This comprehensive review of the current advances in RGD-binding integrins could assist scientists and clinicians in gaining a complete understanding of this group of molecules. It can also contribute to the design of new projects to further advance this field of research and to better apply the research results to benefit patients in clinical practice. PMID:24621642

  15. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    International Nuclear Information System (INIS)

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC

  16. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Masato eFujioka

    2014-12-01

    Full Text Available The inner ear was previously assumed to be an immune-privileged organ due to the existence of its tight junction-based blood-labyrinth barrier. However, studies performed during the past decade revealed that the mesenchymal region of the cochlea, including its lateral wall, is a common site of inflammation. Neutrophils do not enter this region, which is consistent with the old dogma; however, bone marrow-derived resident macrophages are always present in the spiral ligament of the lateral wall and are activated in response to various types of insults, including noise exposure, ischemia, mitochondrial damage and surgical stress. Recent studies have also revealed another type of immune cell, called perivascular melanocyte-like macrophages (PVM/Ms, in the stria vascularis. These dedicated antigen-presenting cells also control vascular contraction and permeability. This review discusses a series of reports regarding inflammatory/immune cells in the cochlear lateral wall, the pathways involved in cochlear damage and their potential as therapeutic targets.

  17. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells

    Science.gov (United States)

    Fliedner, Stephanie MJ; Yang, Chunzhang; Thompson, Eli; Abu-Asab, Mones; Hsu, Chang-Mei; Lampert, Gary; Eiden, Lee; Tischler, Arthur S; Wesley, Robert; Zhuang, Zhengping; Lehnert, Hendrik; Pacak, Karel

    2015-01-01

    F1FoATP synthase (ATP synthase) is a ubiquitous enzyme complex in eukaryotes. In general it is localized to the mitochondrial inner membrane and serves as the last step in the mitochondrial oxidative phosphorylation of ADP to ATP, utilizing a proton gradient across the inner mitochondrial membrane built by the complexes of the electron transfer chain. However some cell types, including tumors, carry ATP synthase on the cell surface. It was suggested that cell surface ATP synthase helps tumor cells thriving on glycolysis to survive their high acid generation. Angiostatin, aurovertin, resveratrol, and antibodies against the α and β subunits of ATP synthase were shown to bind and selectively inhibit cell surface ATP synthase, promoting tumor cell death. Here we show that ATP synthase β (ATP5B) is present on the cell surface of mouse pheochromocytoma cells as well as tumor cells of human SDHB-derived paragangliomas (PGLs), while being virtually absent on chromaffin primary cells from bovine adrenal medulla by confocal microscopy. The cell surface location of ATP5B was verified in the tissue of an SDHB-derived PGL by immunoelectron microscopy. Treatment of mouse pheochromocytoma cells with resveratrol as well as ATP5B antibody led to statistically significant proliferation inhibition. Our data suggest that PGLs carry ATP synthase on their surface that promotes cell survival or proliferation. Thus, cell surface ATP synthase may present a novel therapeutic target in treating metastatic or inoperable PGLs. PMID:26101719

  18. Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target.

    Science.gov (United States)

    Naz, Huma; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-05-01

    The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases. PMID:26773169

  19. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Michal Mielcarek

    2013-11-01

    Full Text Available Histone deacetylase (HDAC 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD, a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.

  20. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Scott A Barman

    2009-08-01

    Full Text Available Scott A Barman, Shu Zhu, Richard E WhiteDepartment of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia, USAAbstract: Pulmonary arterial hypertension (PAH is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.Keywords: pulmonary arterial hypertension, Rho-kinase, vasoconstriction, fasudil

  1. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  2. Therapeutic potential of targeting protein for Xklp2 silencing for pancreatic cancer

    International Nuclear Information System (INIS)

    The targeting protein for Xklp2 (TPX2) is a microtubule- and, cell cycle-associated protein who’s overexpression has been reported in various malignancies. In this study, we verified the overexpression of TPX2 in both surgically resected specimens of pancreatic cancer and multiple pancreatic cancer cell lines. Subsequently, we found that TPX2 siRNA effectively suppressed the proliferation of pancreatic cancer cells in culture, and the direct injection of TPX2 siRNA into subcutaneously implanted pancreatic cancer cells in nude mice revealed antiproliferative effects. These results implied a therapeutic potential of TPX2 siRNA in pancreatic cancer. Among 56 angiogenesis-related factors examined using angiogenesis arrays, the average protein levels of insulin-like growth factor-binding protein-3 (IGFBP-3) were significantly higher in TPX2 siRNA-treated tumors than in the Control siRNA-treated tumors. Moreover, we demonstrated that CD34-positive microvessels were significantly reduced in tumors treated with TPX2 siRNA compared to tumors that treated with Control siRNA. The attenuated expression of CD34 in TPX2 siRNA-treated tumors coincided with the overexpression of IGFBP-3. These results indicated that TPX2 has an impact on tumor angiogenesis in pancreatic cancer. The results also implied that the antiangiogenic effect observed in TPX2 siRNA-treated pancreatic cancer cells may be partly explained by the upregulation of IGFBP-3

  3. Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic Target in ALS

    Directory of Open Access Journals (Sweden)

    Susanne Petri

    2012-01-01

    Full Text Available Nrf2 (nuclear erythroid 2-related factor 2 is a basic region leucine-zipper transcription factor which binds to the antioxidant response element (ARE and thereby regulates the expression of a large battery of genes involved in the cellular antioxidant and anti-inflammatory defence as well as mitochondrial protection. As oxidative stress, inflammation and mitochondrial dysfunctions have been identified as important pathomechanisms in amyotrophic lateral sclerosis (ALS, this signaling cascade has gained interest both with respect to ALS pathogenesis and therapy. Nrf2 and Keap1 expressions are reduced in motor neurons in postmortem ALS tissue. Nrf2-activating compounds have shown therapeutic efficacy in the ALS mouse model and other neurodegenerative disease models. Alterations in Nrf2 and Keap1 expression and dysregulation of the Nrf2/ARE signalling program could contribute to the chronic motor neuron degeneration in ALS and other neurodegenerative diseases. Therefore, Nrf2 emerges as a key neuroprotective molecule in neurodegenerative diseases. Our recent studies strongly support that the Nrf2/ARE signalling pathway is an important mediator of neuroprotection and therefore represents a promising target for development of novel therapies against ALS, Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD.

  4. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease

    Directory of Open Access Journals (Sweden)

    Natalie Sampson

    2014-01-01

    Full Text Available Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4-derived hydrogen peroxide (H2O2 supported by concomitant decreases in nitric oxide (NO signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.

  5. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors.

    Science.gov (United States)

    Krampitz, Geoffrey Wayne; George, Benson M; Willingham, Stephen B; Volkmer, Jens-Peter; Weiskopf, Kipp; Jahchan, Nadine; Newman, Aaron M; Sahoo, Debashis; Zemek, Allison J; Yanovsky, Rebecca L; Nguyen, Julia K; Schnorr, Peter J; Mazur, Pawel K; Sage, Julien; Longacre, Teri A; Visser, Brendan C; Poultsides, George A; Norton, Jeffrey A; Weissman, Irving L

    2016-04-19

    Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a "don't eat me" signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90(hi)cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo. PMID:27035983

  6. Quantitative proteomics approach to screening of potential diagnostic and therapeutic targets for laryngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available To discover candidate biomarkers for diagnosis and detection of human laryngeal carcinoma and explore possible mechanisms of this cancer carcinogenesis, two-dimensional strong cation-exchange/reversed-phase nano-scale liquid chromatography/mass spectrometry analysis was used to identify differentially expressed proteins between the laryngeal carcinoma tissue and the adjacent normal tissue. As a result, 281 proteins with significant difference in expression were identified, and four differential proteins, Profilin-1 (PFN1, Nucleolin (NCL, Cytosolic non-specific dipeptidase (CNDP2 and Mimecan (OGN with different subcellular localization were selectively validated. Semiquantitative RT-PCR and Western blotting were performed to detect the expression of the four proteins employing a large collection of human laryngeal carcinoma tissues, and the results validated the differentially expressed proteins identified by the proteomics. Furthermore, we knocked down PFN1 in immortalized human laryngeal squamous cell line Hep-2 cells and then the proliferation and metastasis of these transfected cells were measured. The results showed that PFN1 silencing inhibited the proliferation and affected the migration ability of Hep-2 cells, providing some new insights into the pathogenesis of PFN1 in laryngeal carcinoma. Altogether, our present data first time show that PFN1, NCL, CNDP2 and OGN are novel potential biomarkers for diagnosis and therapeutic targets for laryngeal carcinoma, and PFN1 is involved in the metastasis of laryngeal carcinoma.

  7. Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure

    Directory of Open Access Journals (Sweden)

    Distefano Giuseppe

    2012-09-01

    Full Text Available Abstract It is well known that the natural history of chronic heart failure (CHF,regardless of age and aetiology,is characterized by progressive cardiac dysfunction refractory to conventional cardiokinetic, diuretic and peripheral vasodilator therapy. Several previous studies, both in animals and humans, showed that the key pathogenetic element of CHF negative clinical evolution is constituted by myocardial remodeling. This is a complex pathologic process of ultrastructural rearrangement of the heart induced by various neuro-humoral factors released by cardiac fibrocells in response to biomechanical stress connected to chronic haemodynamic overload. Typical features of myocardial remodeling are represented by cardiomyocytes hypertrophy and apoptosis, extracellular matrix alterations, mesenchymal fibrotic and phlogistic processes and by cardiac gene expression modifications with fetal genetic program reactivation. In the last years, increasing knowledge of subtle molecular and cellular mechanisms involved in myocardial remodeling has led to the discovery of some new potential therapeutic targets capable of inducing its regression. In this paper our attention is focused on the possible use of antiapoptotic and antifibrotic agents, and on the fascinating perspectives offered by the development of myocardial gene therapy and, in particular, by myocardial regenerative therapy.

  8. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Tony eHuynh

    2012-12-01

    Full Text Available Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  9. G protein-coupled receptors as therapeutic targets for multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    Changsheng Du; Xin Xie

    2012-01-01

    G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones,neurotransmitters and environmental stimulants.They are considered as the most successful therapeutic targets for a broad spectrum of diseases.Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS).It is the leading cause of non-traumatic disability in young adults.Great progress has been made over the past few decades in understanding the pathogenesis of MS.Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis,including antigen presentation,cytokine production,T-cell differentiation,T-cell proliferation,T-cell invasion,etc.In this review,we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models,and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations.Hopefully some of these findings will lead to the development of novel therapies for MS in the near future.

  10. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Paula I. Moreira

    2009-12-01

    Full Text Available Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ. Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.

  11. Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity.

    Science.gov (United States)

    Oh, Chang Myung; Park, Sangkyu; Kim, Hail

    2016-04-01

    Serotonin (5-hydroxytryptamine [5-HT]) is a monoamine that has various functions in both neuronal and non-neuronal systems. In the central nervous system, 5-HT regulates mood and feeding behaviors as a neurotransmitter. Thus, there have been many trials aimed at increasing the activity of 5-HT in the central nervous system, and some of the developed methods are already used in the clinical setting as anti-obesity drugs. Unfortunately, some drugs were withdrawn due to the development of unwanted peripheral side effects, such as valvular heart disease and pulmonary hypertension. Recent studies revealed that peripheral 5-HT plays an important role in metabolic regulation in peripheral tissues, where it suppresses adaptive thermogenesis in brown adipose tissue. Inhibition of 5-HT synthesis reduced the weight gain and improved the metabolic dysfunction in a diet-induced obesity mouse model. Genome-wide association studies also revealed genetic associations between the serotonergic system and obesity. Several genetic polymorphisms in tryptophan hydroxylase and 5-HT receptors were shown to have strong associations with obesity. These results support the clinical significance of the peripheral serotonergic system as a therapeutic target for obesity and diabetes. PMID:27126880

  12. KIFC1 is a novel potential therapeutic target for breast cancer.

    Science.gov (United States)

    Li, Yonghe; Lu, Wenyan; Chen, Dongquan; Boohaker, Rebecca J; Zhai, Ling; Padmalayam, Indira; Wennerberg, Krister; Xu, Bo; Zhang, Wei

    2015-01-01

    Kinesin-like protein KIFC1, a normally nonessential kinesin motor, plays a critical role in centrosome clustering in cancer cells and is essential for the survival of cancer cells. Herein, we reported that KIFC1 expression is up-regulated in breast cancer, particularly in estrogen receptor negative, progesterone receptor negative and triple negative breast cancer, and is not associated with epidermal growth factor receptor 2 status. In addition, KIFC1 is highly expressed in all 8 tested human breast cancer cell lines, but is absent in normal human mammary epithelial cells and weakly expressed in 2 human lung fibroblast lines. Moreover, KIFC1 silencing significantly reduced breast cancer cell viability. Finally, we found that PJ34, a potent small molecule inhibitor of poly(ADP-ribose) polymerase, suppressed KIFC1 expression and induced multipolar spindle formation in breast cancer cells, and inhibited cell viability and colony formation within the same concentration range, suggesting that KIFC1 suppression by PJ34 contributes to its anti-breast cancer activity. Together, these results suggest that KIFC1 is a novel promising therapeutic target for breast cancer. PMID:26177331

  13. Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90.

    Science.gov (United States)

    Montoir, David; Barillé-Nion, Sophie; Tonnerre, Alain; Juin, Philippe; Duflos, Muriel; Bazin, Marc-Antoine

    2016-08-25

    Hsp90 is an ATP-dependent chaperone known to be overexpressed in many cancers. This way, Hsp90 is an important target for drug discovery. Novobiocin, an aminocoumarin antibiotic, was reported to inhibit Hsp90 targeting C-terminal domain, and showed anti-proliferative properties, leading to the development of new and more active compounds. Consequently, a new set of novobiocin analogs derived from 1,6-naphthyridin-2(1H)-one scaffold was designed, synthesized and evaluated against two breast cancer cell lines. Subsequently, cell cycle progression and apoptosis were conducted on best candidates, finally Western Blot analysis was performed to measure their ability to induce degradation of Hsp90 client proteins. PMID:27153346

  14. Novel antibody-based therapeutic agents targeting CD70: a potential approach for treating Waldenström's macroglobulinemia.

    Science.gov (United States)

    Law, Che-Leung; McEarchern, Julie A; Grewal, Iqbal S

    2009-03-01

    Targeting leukocyte differentiation antigens is a validated approach to develop therapeutic agents for the treatment of cancer, autoimmunity, and inflammatory diseases. A subset of activation antigens transiently induced on leukocytes is particularly interesting because many of them are absent from normal tissues, including those of most vital organs, and therapeutic agents' targeting of such antigens is expected to impart limited toxicity. One such antigen, CD70, has recently emerged as an attractive potential drug target for the treatment of cancers. Whereas CD70 is only transiently expressed on activation T and B cells and mature dendritic cells, it is found to be aberrantly expressed on a variety of tumor cells, including Waldenström's macroglobulinemia. In this report, we discuss potential antibody-based therapeutic approaches targeting CD70 for tumor elimination where various mechanisms such as antibody effector functions, immune enhancement, blockade of paracrine growth loop, and delivery of cytotoxic payloads can be exploited to achieve efficacy. Indeed, early clinical trials with therapeutic anti-CD70 antibodies are currently in progress, and those for anti-CD70 drug conjugates will soon follow. PMID:19362984

  15. Tuberculosis therapeutics: Engineering of nanomedicinal systems for local delivery of targeted drug cocktails

    Science.gov (United States)

    D'Addio, Suzanne M.

    In this thesis, a multifunctional nanocarrier drug delivery system was investigated and optimized to improve tuberculosis therapy by promoting the intracellular delivery of high payloads of antibiotics. To meet the needs of a patient population which continues to grow by close to 10 million people a year, innovative therapeutics must be formulated by robust and scalable processes. We use Flash NanoPrecipitation for the continuous precipitation of nanocarriers by block copolymer directed assembly, which enables the development of nanocarriers with tunable properties. Stable nanocarriers of Rifampicin and a hydrophobic Rifampicin prodrug have efficacy against tuberculosis in vitro that is equivalent to the soluble Rifampicin. To overcome poor in vivo efficacy of the recently discovered antitubercular drug SQ641, we co-encapsulate SQ641 and Cyclosporine A in a stable aqueous nanocarrier suspension, which enables drug administration and also enhances intracellular accumulation and antitubercular efficacy relative to SQ641 in solution. Since the mannose receptor is involved in the phagocytosis of tuberculosis bacilli, we modify the surface of nanocarriers with mannoside residues to target specific intracellular accumulation in macrophages. The surface density of mannoside terminated polyethylene glycol chains was controlled between 0 and 75% and in vitro cellular association reveals a 9% surface density is optimal for internalization mediated by the mannose receptor. We explore the preparation of large, porous aerosol carrier particles of with tunable deposition characteristics by spray freeze drying with ultrasonic atomization for direct dosing to the lungs. Nanocarriers are loaded at 3 - 50 wt% in mannitol particles with constant size, limited nanocarrier aggregation, and 63% dose delivered to the lungs, as determined by in vitro cascade impaction. There has been a lag in the development of new technologies to facilitate development and commercialization of

  16. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Anthony Sinadinos

    2015-10-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target.Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001, increased muscle strength in vitro (p < 0.001 and in vivo (p = 0.012, and pro-fibrotic molecular signatures. Serum creatine kinase (CK levels were lower (p = 0.025, and reduced cognitive impairment (p = 0.006 and bone structure alterations (p < 0.001 were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0

  17. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  18. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Directory of Open Access Journals (Sweden)

    Kalpna Gupta

    2013-02-01

    Full Text Available Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3 grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve

  19. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the oxygenation

  20. Genetic Interactions of STAT3 and Anticancer Drug Development

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bingliang [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-03-06

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.