Sample records for anticancer therapeutics targeting

  1. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam


    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor targeting strategy that relies on engineering mesenchymal stem cells (MSCs) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Further, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUClung of PTX (1.5 µ than PTX solution and nanoparticles (0.2 and 0.1 µ tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Copyright ©2018, American Association for Cancer Research.

  2. Design and In vitro Validation of Multivalent Dendrimer Methotrexates as a Folate-targeting Anticancer Therapeutic (United States)

    Thomas, Thommey P.; Joice, Melvin; Sumit, Madhuresh; Silpe, Justin E.; Kotlyar, Alina; Bharathi, Sophia; Kukowska-Latallo, Jolanta; Baker, James R.; Choi, Seok Ki


    Design of cancer-targeting nanotherapeutics relies on a pair of two functionally orthogonal molecules, one serving as a cancer cell-specific targeting ligand, and the other as a therapeutic cytotoxic agent. The present study investigates the validity of an alternative simplified strategy where a dual-acting molecule which bears both targeting and cytotoxic activity is conjugated to the nanoparticle as cancer-targeting nanotherapeutics. Herein we demonstrate that methotrexate is applicable for this dual-acting strategy due to its reasonable affinity to folic acid receptor (FAR) as a tumor biomarker, and cytotoxic inhibitory activity of cytosolic dihydrofolate reductase. This article describes design of new methotrexate-conjugated poly(amidoamine) (PAMAM) dendrimers, each carrying multiple copies of methotrexate attached through a stable amide linker. We evaluated their dual biological activities by performing surface plasmon resonance spectroscopy, a cell-free enzyme assay and cell-based experiments in FAR-overexpressing cells. This study identifies the combination of an optimal linker framework and multivalency as the two key design elements that contribute to achieving potent dual activity. PMID:23621534

  3. Targeting L-type amino acid transporter 1 for anticancer therapy: clinical impact from diagnostics to therapeutics. (United States)

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun


    L-type amino acid transporter 1 (LAT1) is one of the amino acid transporters. It is overexpressed in various types of cancer cells, while it is produced restrictedly in normal tissues. We discuss its characteristics in cancer cells compared with normal cells. We also mention the current applications to target LAT1 for anticancer therapy focusing on prognostic biomarkers, radio-labeled tumor imaging reagents, amino acid-stapled prodrugs, LAT1-mediated enhanced transport of anticancer drugs and LAT1 inhibitors. LAT1 can be a versatile target to promisingly develop transporter-based drugs with enhanced drug delivery potential for anticancer therapy.

  4. Role of SNARE proteins in tumourigenesis and their potential as targets for novel anti-cancer therapeutics. (United States)

    Meng, Jianghui; Wang, Jiafu


    The function of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in cellular trafficking, membrane fusion and vesicle release in synaptic nerve terminals is well characterised. Recent studies suggest that SNAREs are also important in the control of tumourigenesis through the regulation of multiple signalling and transportation pathways. The majority of published studies investigated the effects of knockdown/knockout or overexpression of particular SNAREs on the normal function of cells as well as their dysfunction in tumourigenesis promotion. SNAREs are involved in the regulation of cancer cell invasion, chemo-resistance, the transportation of autocrine and paracrine factors, autophagy, apoptosis and the phosphorylation of kinases essential for cancer cell biogenesis. This evidence highlights SNAREs as potential targets for novel cancer therapy. This is the first review to summarise the expression and role of SNAREs in cancer biology at the cellular level, their interaction with non-SNARE proteins and modulation of cellular signalling cascades. Finally, a strategy is proposed for developing novel anti-cancer therapeutics using targeted delivery of a SNARE-inactivating protease into malignant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells. (United States)

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon


    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs.

  6. A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Yu Zhang


    Full Text Available Junko H Ohyashiki1, Ryoko Hamamura2, Chiaki Kobayashi2, Yu Zhang2, Kazuma Ohyashiki21Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan; 2First Department of Internal Medicine, Tokyo Medical University, Tokyo, JapanAbstract: There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene® identified a secreted protein acidic and rich in cysteine (SPARC gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects.Keywords: network biology, adult T cell leukemia, bortezomib, SPARC

  7. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang


    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  8. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    Yang, Danbo; Yu, Lei; Van, Sang


    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  9. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Danbo [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Yu, Lei, E-mail: [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States); Van, Sang [Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)


    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  10. Early clinical development of targeted anticancer agents

    NARCIS (Netherlands)

    van Brummelen, E.M.J.


    Van Brummelen studied the safety and preliminary signs of efficacy of several novel targeted anticancer agents in phase I trials. In her thesis, she reports the results of trials with the immunotherapies pembrolizumab and cergutuzumab-amunaleukin, and with combinations of inhibitors of the MEK and

  11. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. (United States)

    Islam, Nazar Ul; Amin, Raza; Shahid, Muhammad; Amin, Muhammad; Zaib, Sumera; Iqbal, Jamshed


    Phytotherapeutics exhibit diverse pharmacological effects that are based on the combined action of a mixture of phytoconstituents. In this study, Prunus domestica gum-loaded, stabilized gold and silver nanoparticles (Au/Ag-NPs) were evaluated for their prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory, and analgesic properties. Au/Ag-NPs were biosynthesized and characterized with UV-Vis, FTIR, SEM, EDX, and XRD techniques. The effect of gum and metal ion concentration, reaction temperature, and time on the synthetic stability of nanoparticles was studied along with their post-synthetic stability against varying pH and salt concentrations, long-term storage and extremes of temperature. Nanoparticles were tested for anticancer (HeLa cervical cancer cells), antibacterial (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), urease inhibition (jack-bean urease), anti-inflammatory (carrageenan-induced paw edema), and antinociceptive (abdominal constriction response) activities. The nanoparticles were mostly spherical with an average particle size between 7 and 30 nm (Au-NPs) and 5-30 nm (Ag-NPs). Au/Ag-NPs maintained their colloidal stability and nanoscale characteristics against variations in physicochemical factors. Au/Ag-NPs have potent anticancer potential (IC 50  = 2.14 ± 0.15 μg/mL and 3.45 ± 0.23 μg/mL). Au/Ag-NPs selectively suppressed the growth of S. aureus (10.5 ± 0.6 mm, 19.7 ± 0.4 mm), E. coli (10 ± 0.4 mm, 14.4 ± 0.7 mm), and P. aeruginosa (8.2 ± 0.3 mm, 13.1 ± 0.2 mm), as well as showed preferential inhibition against jack-bean urease (19.2 ± 0.86%, 21.5 ± 1.17%). At doses of 40 and 80 mg/kg, Au-NPs significantly ameliorated the increase in paw edema during the 1st h (P < 0.05, P < 0.01) and 2-5 h (P < 0.001) of carrageenan-induced inflammation compared to the 200 and 400 mg/kg doses of P. domestica gum (P < 0.05, P < 0.001). At similar doses, Au-NPs also

  12. Understanding Resistance to Targeted Anticancer Therapies

    NARCIS (Netherlands)

    Sun, C.


    Cancer therapeutic regimens are gradually changing from using relatively unspecific cytotoxic agents to selective, pathway-centered approaches. The mechanistic rationale of targeted approaches is to destruct the tumor by blocking aberrant cell signaling, crucial for tumor maintenance and growth, but

  13. Biodegradable polymers for targeted delivery of anti-cancer drugs. (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid


    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  14. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza


    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  15. Magnetic polymer nanospheres for anticancer drug targeting

    International Nuclear Information System (INIS)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J; Muckova, M


    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  16. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application

    Directory of Open Access Journals (Sweden)

    Ana M. L. Seca


    Full Text Available Cancer is a multistage process resulting in an uncontrolled and abrupt division of cells and is one of the leading causes of mortality. The cases reported and the predictions for the near future are unthinkable. Food and Drug Administration data showed that 40% of the approved molecules are natural compounds or inspired by them, from which, 74% are used in anticancer therapy. In fact, natural products are viewed as more biologically friendly, that is less toxic to normal cells. In this review, the most recent and successful cases of secondary metabolites, including alkaloid, diterpene, triterpene and polyphenolic type compounds, with great anticancer potential are discussed. Focusing on the ones that are in clinical trial development or already used in anticancer therapy, therefore successful cases such as paclitaxel and homoharringtonine (in clinical use, curcumin and ingenol mebutate (in clinical trials will be addressed. Each compound’s natural source, the most important steps in their discovery, their therapeutic targets, as well as the main structural modifications that can improve anticancer properties will be discussed in order to show the role of plants as a source of effective and safe anticancer drugs.

  17. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu


    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  18. Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L.-F.; Ralph, S.J.; Neužil, Jiří


    Roč. 15, č. 12 (2011), s. 2951-2974 ISSN 1523-0864 R&D Projects: GA AV ČR(CZ) KAN200520703 Institutional research plan: CEZ:AV0Z50520701 Keywords : Targets for anticancer drugs * mitochondrial electron transport chain * mitocans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.456, year: 2011

  19. Anticancer Efficacy of Photodynamic Therapy with Lung Cancer-Targeted Nanoparticles. (United States)

    Chang, Ji-Eun; Cho, Hyun-Jong; Jheon, Sanghoon


    Photodynamic therapy (PDT) is a non-invasive and non-surgical method representing an attractive alternative choice for lung cancer treatment. Photosensitizers selectively accumulate in tumor tissue and lead to tumor cell death in the presence of oxygen and the proper wavelength of light. To increase the therapeutic effect of PDT, we developed both photosensitizer- and anticancer agent-loaded lung cancer-targeted nanoparticles. Both enhanced permeability and retention (EPR) effect-based passive targeting and hyaluronic-acid-CD44 interaction-based active targeting were applied. CD44 is a well-known hyaluronic acid receptor that is often introduced as a biomarker of non-small cell lung cancer. In addition, a combination of PDT and chemotherapy is adopted in the present study. This combination concept may increase anticancer therapeutic effects and reduce adverse reactions. We chose hypocrellin B (HB) as a novel photosensitizer in this study. It has been reported that HB causes higher anticancer efficacy of PDT compared to hematoporphyrin derivatives 1 . Paclitaxel was selected as the anticancer drug since it has proven to be a potential treatment for lung cancer 2 . The antitumor efficacies of photosensitizer (HB) solution, photosensitizer encapsulated hyaluronic acid-ceramide nanoparticles (HB-NPs), and both photosensitizer- and anticancer agent (paclitaxel)-encapsulated hyaluronic acid-ceramide nanoparticles (HB-P-NPs) after PDT were compared both in vitro and in vivo. The in vitro phototoxicity in A549 (human lung adenocarcinoma) cells and the in vivo antitumor efficacy in A549 tumor-bearing mice were evaluated. The HB-P-NP treatment group showed the most effective anticancer effect after PDT. In conclusion, the HB-P-NPs prepared in the present study represent a potential and novel photosensitizer delivery system in treating lung cancer with PDT.

  20. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

    Energy Technology Data Exchange (ETDEWEB)

    Milacic, Marija; Haw, Robin, E-mail:; Rothfels, Karen; Wu, Guanming [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada); Croft, David; Hermjakob, Henning [European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD (United Kingdom); D’Eustachio, Peter [Department of Biochemistry, NYU School of Medicine, New York, NY 10016 (United States); Stein, Lincoln [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada)


    Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.

  1. Annotating cancer variants and anti-cancer therapeutics in reactome. (United States)

    Milacic, Marija; Haw, Robin; Rothfels, Karen; Wu, Guanming; Croft, David; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln


    Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of "cancer" pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.

  2. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

    International Nuclear Information System (INIS)

    Milacic, Marija; Haw, Robin; Rothfels, Karen; Wu, Guanming; Croft, David; Hermjakob, Henning; D’Eustachio, Peter; Stein, Lincoln


    Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics

  3. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    International Nuclear Information System (INIS)

    Fulda, Simone


    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  4. Mitochondrially targeted anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Biasutto, L.; Dong, L.A.; Zoratti, M.; Neužil, Jiří


    Roč. 10, č. 6 (2010), s. 670-681 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrial targeting * pro-oxidant effect * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.238, year: 2010

  5. Targeting mitosis for anti-cancer therapy. (United States)

    Sudakin, Valery; Yen, Timothy J


    Basic research that has focused on achieving a mechanistic understanding of mitosis has provided unprecedented molecular and biochemical insights into this highly complex phase of the cell cycle. The discovery process has uncovered an ever-expanding list of novel proteins that orchestrate and coordinate spindle formation and chromosome dynamics during mitosis. That many of these proteins appear to function solely in mitosis makes them ideal targets for the development of mitosis-specific cancer drugs. The clinical successes seen with anti-microtubule drugs such as taxanes and the vinca alkaloids have also encouraged the development of drugs that specifically target mitosis. Drugs that selectively inhibit mitotic kinesins involved in spindle and kinetochore functions, as well as kinases that regulate these activities, are currently in various stages of clinical trials. Our increased understanding of mitosis has also revealed that this process is targeted by inhibitors of farnesyl transferase, histone deacetylase, and Hsp90. Although these drugs were originally designed to block cell proliferation by inhibiting signaling pathways and altering gene expression, it is clear now that these drugs can also directly interfere with the mitotic process. The increased attention to mitosis as a chemotherapeutic target has also raised an important issue regarding the cellular determinants that specify drug sensitivity. One likely contribution is the mitotic checkpoint, a failsafe mechanism that delays mitotic exit so that cells whose chromosomes are not properly attached to the spindle have extra time to correct their errors. As the biochemical activity of the mitotic checkpoint is finite, cells cannot indefinitely sustain the delay, as in cases where cells are treated with anti-mitotic drugs. When the mitotic checkpoint activity is eventually lost, cells will exit mitosis and become aneuploid. While many of the aneuploid cells may die because of massive chromosome imbalance

  6. Therapeutic targets in liver fibrosis. (United States)

    Fallowfield, Jonathan A


    Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points.

  7. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim


    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  8. Therapeutic target for protozoal diseases (United States)

    Rathore, Dharmendar [Blacksburg, VA; Jani, Dewal [Blacksburg, VA; Nagarkatti, Rana [Blacksburg, VA


    A novel Fasciclin Related Adhesive Protein (FRAP) from Plasmodium and related parasites is provided as a target for therapeutic intervention in diseases caused by the parasites. FRAP has been shown to play a critical role in adhesion to, or invasion into, host cells by the parasite. Furthermore, FRAP catalyzes the neutralization of heme by the parasite, by promoting its polymerization into hemozoin. This invention provides methods and compositions for therapies based on the administration of protein, DNA or cell-based vaccines and/or antibodies based on FRAP, or antigenic epitopes of FRAP, either alone or in combination with other parasite antigens. Methods for the development of compounds that inhibit the catalytic activity of FRAP, and diagnostic and laboratory methods utilizing FRAP are also provided.

  9. Therapeutic Strategies to Enhance the Anticancer Efficacy of Histone Deacetylase Inhibitors

    Directory of Open Access Journals (Sweden)

    Claudia P. Miller


    Full Text Available Histone acetylation is a posttranslational modification that plays a role in regulating gene expression. More recently, other nonhistone proteins have been identified to be acetylated which can regulate their function, stability, localization, or interaction with other molecules. Modulating acetylation with histone deacetylase inhibitors (HDACi has been validated to have anticancer effects in preclinical and clinical cancer models. This has led to development and approval of the first HDACi, vorinostat, for the treatment of cutaneous T cell lymphoma. However, to date, targeting acetylation with HDACi as a monotherapy has shown modest activity against other cancers. To improve their efficacy, HDACi have been paired with other antitumor agents. Here, we discuss several combination therapies, highlighting various epigenetic drugs, ROS-generating agents, proteasome inhibitors, and DNA-damaging compounds that together may provide a therapeutic advantage over single-agent strategies.

  10. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment (United States)

    Eka Putra, Gusti Ngurah Putu; Huang, Leaf; Hsu, Yih-Chih


    The knowledge of manipulating size of biomaterials encapsulated drug into nano-scale particles has been researched and developed in treating cancer. Cancer is the second worldwide cause of death, therefore it is critical to treat cancers challenging with therapeutic modality of various mechanisms. Our preliminary investigation has studied cisplatin encapsulated into lipid-based nanoparticle and examined the therapeutic effect on xenografted animal model. We used mice with tumor volume ranging from 195 to 214 mm3 and then few mice were grouped into three groups including: control (PBS), lipid platinum chloride (LPC) nanoparticles and CDDP (cis-diamminedichloroplatinum(II) at dose of 3mg cisplatin /kg body weight. The effect of the treatment was observed for 12 days post-injection. It showed that LPC NPs demonstrated a better therapeutic effect compared to CDDP at same 3mg cisplatin/kg drug dose of tumor size reduction, 96.6% and 11.1% respectively. In addition, mouse body weight loss of LPC, CDDP and PBS treated group are 12.1%, 24.3% and 1.4%. It means that by compared to CDDP group, LPC group demonstrated less side effect as not much reduction of body weight have found. Our findings have shown to be a potential modality to further investigate as a feasible cancer therapy modality.

  11. Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties

    Directory of Open Access Journals (Sweden)

    Koji Kawakami


    Full Text Available Despite the progress of the bioinformatics approach to characterize cell-surface antigens and receptors on tumor cells, it remains difficult to generate novel cancer vaccines or neutralizing monoclonal antibody therapeutics. Among targeted cancer therapeutics, biologicals with targetable antibodies or ligands conjugated or fused to toxins or chemicals for direct cell-killing ability have been developed over the last 2 decades. These conjugated or fused chimeric proteins are termed immunotoxins or cytotoxic agents. Two agents, DAB389IL-2 (ONTAKTM targeting the interleukin-2 receptor and CD33-calicheamicin (Mylotarg®, have been approved by the FDA for cutaneous T-cell lymphoma (CTCL and relapsed acute myeloid leukemia (AML, respectively. Such targetable agents, including RFB4(dsFv-PE38 (BL22, IL13-PE38QQR, and Tf-CRM107, are being tested in clinical trials. Several agents using unique technology such as a cleavable adapter or immunoliposomes with antibodies are also in the preclinical stage. This review summarizes the generation, mechanism, and development of these agents. In addition, possible future directions of this therapeutic approach are discussed.

  12. Mitosis-targeted anti-cancer therapies: where they stand. (United States)

    Chan, K-S; Koh, C-G; Li, H-Y


    The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors, the unpredictable complexities of the human body's response to these drugs still herald the biggest challenge towards clinical success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic anticancer strategies.

  13. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy

    International Nuclear Information System (INIS)

    Krause, Mechthild; Zips, Daniel; Thames, Howard D.; Kummermehr, Johann; Baumann, Michael


    The combination of molecular-targeted agents with irradiation is a highly promising avenue for cancer research and patient care. Molecular-targeted agents are in themselves not curative in solid tumours, whereas radiotherapy is highly efficient in eradicating tumour stem cells. Recurrences after high-dose radiotherapy are caused by only one or few surviving tumour stem cells. Thus, even if a novel agent has the potential to kill only few tumour stem cells, or if it interferes in mechanisms of radioresistance of tumours, combination with radiotherapy may lead to an important improvement in local tumour control and survival. To evaluate the effects of novel agents combined with radiotherapy, it is therefore necessary to use experimental endpoints which reflect the killing of tumour stem cells, in particular tumour control assays. Such endpoints often do not correlate with volume-based parameters of tumour response such as tumour regression and growth delay. This calls for radiotherapy specific research strategies in the preclinical testing of novel anti-cancer drugs, which in many aspects are different from research approaches for medical oncology

  14. Dermatologic adverse events associated with chemotherapy and targeted anticancer therapy

    Directory of Open Access Journals (Sweden)

    Maria Kowalska


    Full Text Available Chemotherapeutic agents and drugs used for targeted tumor therapy often cause undesirable side effects of the skin which typically are toxic cutaneous reactions (toxicity grade 1 to 4. The first group of drugs that cause toxicities affecting the skin are inhibitors of epidermal growth factor receptor (EGFR. They cause a variety of skin changes (PRIDE syndrome, which are mainly manifested by papulopustular rash, also referred to as acneiform rash, occurring in 44–74% of patients. Another drug which causes cutaneous toxicities is inhibitor of CTLA4 (cytotoxic T lymphocyte-associated protein 4, which is represented by ipilimumab, used in the treatment of metastatic melanoma. The most common dermatological adverse event, observed in 40–64% of patients receiving ipilimumab, is generalized maculopapular rash with pruritus and dry skin, and in some cases vitiligo is also observed. BRAF and MEK inhibitors introduced for the treatment of advanced melanoma also cause skin rashes. BRAF inhibitors also affecting the proliferation of keratinocytes stimulate hypertrophic changes and cause the whole spectrum of lesions from benign and keratoacanthoma to squamous cell carcinoma. A hedgehog pathway inhibitor (vismodegib is used for the treatment of metastatic basal cell carcinoma. The most common adverse events it causes are reversible alopecia and dysgeusia, but it can also cause the development of keratoacanthoma and squamous cell carcinoma. Among the most common side effects of chemotherapy and targeted therapy are toxic changes within the hands and feet (hand-foot skin reaction – HFSR that early manifest as a neurological symptoms (numbness, paresthesia, and skin symptoms (erythematous swelling changes, blisters, hyperkeratosis occur later. Anti-cancer drugs can also cause serious skin diseases such as Stevens-Johnson syndrome (SJS, toxic epidermal necrolysis (TEN and DRESS (drug rash with eosinophilia and systemic symptoms, whose course and prognosis

  15. Polymeric micelles in anticancer therapy : Targeting, imaging and triggered release

    NARCIS (Netherlands)

    Oerlemans, Chris; Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.


    Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use

  16. BAD: a good therapeutic target?

    International Nuclear Information System (INIS)

    Motoyama, Andrea B; Hynes, Nancy E


    The major goal in cancer treatment is the eradication of tumor cells. Under stress conditions, normal cells undergo apoptosis; this property is fortunately conserved in some tumor cells, leading to their death as a result of chemotherapeutic and/or radiation-induced stress. Many malignant cells, however, have developed ways to subvert apoptosis, a characteristic that constitutes a major clinical problem. Gilmore et al. recently described the ability of ZD1839, a small-molecule inhibitor of the epidermal growth factor receptor (EGFR), to induce apoptosis of mammary cells that are dependent upon growth factors for survival. Furthermore, they showed that the major effector of the EGFR-targeted therapy is BAD, a widely expressed BCL-2 family member. These results are promising in light of the role of the EGFR in breast cancer development

  17. Alopecia in patients treated with molecularly targeted anticancer therapies. (United States)

    Belum, V R; Marulanda, K; Ensslin, C; Gorcey, L; Parikh, T; Wu, S; Busam, K J; Gerber, P A; Lacouture, M E


    The introduction of molecularly targeted anticancer therapies presents new challenges, among which dermatologic adverse events are noteworthy. Alopecia in particular is frequently reported, but the true incidence is not known. We sought to ascertain the incidence and risk of developing alopecia during treatment with approved inhibitors of oncogenic pathways and molecules [anaplastic lymphoma kinase, breakpoint cluster region-abelson, B-rapidly accelerated fibrosarcoma, Bruton's tyrosine kinase, cytotoxic T-lymphocyte antigen-4, epidermal growth factor receptor, human epidermal growth factor receptor-2, Janus kinase, MAPK/ERK (extracellular signal-regulated kinase) Kinase, mammalian target of rapamycin, smoothened, vascular endothelial growth factor, vascular endothelial growth factor receptor, platelet derived growth factor receptor; proteasomes; CD20, CD30, CD52]. Electronic database (PubMed, Web of Science) and ASCO meeting abstract searches were conducted to identify clinical trials reporting alopecia. Meta-analysis was conducted utilizing fixed- or random-effects models. The calculated overall incidence of all-grade alopecia was 14.7% [95% confidence interval (CI) 12.6% to 17.2%]-lowest with bortezomib, 2.2% (95% CI 0.4% to 10.9%), and highest with vismodegib, 56.9% (95% CI 50.5% to 63.1%). There was an increased risk of all-grade alopecia [relative risk (RR), 7.9 (95% CI 6.2-10.09, P ≤ 0.01)] compared with placebo, but when compared with chemotherapy, the risk was lower [RR, 0.32 (95% CI 0.2-0.55, P ≤ 0.01)]. Targeted therapies are associated with an increased risk of alopecia. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email:

  18. Therapeutic targeting of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Marcello eMaugeri-Saccà


    Full Text Available Recent breakthroughs in translational oncology are opening new perspectives for the treatment of cancer. The advent of targeted therapies has provided the proof-of-concept to selectively turn-off deregulated oncogenic proteins, while the identification and validation of predictive biomarkers of response has allowed to improve, at least in some cases, their performance. Moreover, a subpopulation of tumor-propagating cells has been identified from many solid and hematological tumors. These cells share functional properties of normal stem cells, and are commonly referred to as cancer stem cells (CSCs. It is emerging that CSCs are defended against broadly-used anticancer agents by means of different, partly interconnected, mechanisms. However, CSCs rely on specific pathways involved in self-renewal that can be pharmacologically antagonized by experimental molecular targeted agents, some of which have recently entered early phases of clinical development. Here, we discuss the spectrum of pharmacological strategies under clinical or preclinical development for CSCs targeting.

  19. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. (United States)

    Shuvalov, Oleg; Petukhov, Alexey; Daks, Alexandra; Fedorova, Olga; Vasileva, Elena; Barlev, Nickolai A


    Cancer-related metabolism has recently emerged as one of the "hallmarks of cancer". It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors - methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets.

  20. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent. (United States)

    Park, Sanga; Kwon, Byeongsu; Yang, Wonseok; Han, Eunji; Yoo, Wooyoung; Kwon, Byoung-Mog; Lee, Dongwon


    Cancer cells are under oxidative stress due to a large production of reactive oxygen species (ROS), which involve in cell proliferation and cancer promotion and progression. On the other hand, ROS promotes cell death, depending on the rate of ROS production and the activity of antioxidant systems. Recently, "oxidation therapy" has arisen as a promising anticancer strategy, which can be achieved by inducing the generation of cytotoxic level of ROS or inhibiting the antioxidant systems in tumor cells. Here, we report oxidative stress amplifying nanoplatforms as novel anticancer therapeutics, which are able not only to suppress antioxidant but also to generate ROS simultaneously in acidic tumor microenvironments. The oxidative stress amplifying nanoplatforms are composed of dual pH-sensitive PBCAE copolymer, polymeric prodrug of BCA (benzoyloxycinnamaldehyde) and heme oxygenase-1 (HO-1) inhibiting zinc protoporphyrin (ZnPP). PBCAE was designed to incorporate ROS-generating BCA in its backbone via acid-cleavable acetal linkages and self-assemble to form micelles that encapsulate ZnPP. In vitro proof-of-concept studies revealed that ZnPP encapsulated in PBCAE micelles suppressed HO-1 to make cancer cells more vulnerable to BCA-induced ROS, leading to enhanced apoptotic cell death. In addition, ZnPP-loaded PBCAE micelles significantly suppressed the tumor growth in human cancer xenograft mouse models. We believe that oxidative stress amplifying micellar nanoparticles have a great potential as novel redox anticancer therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Liver as a target for oligonucleotide therapeutics. (United States)

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin


    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  2. Mechanistic Insight of Probiotics Derived Anticancer Pharmaceuticals: A Road Forward for Cancer Therapeutics. (United States)

    Kumar, Raman; Dhanda, Suman


    Probiotics are living organisms that confer health benefits when administered in adequate amounts. Probiotics are continuously being explored for their different health beneficiary activities. Anticancer activity is one of the most important benefits both from a preventive and therapeutic point of view. Though not many studies have been conducted to date in this area, a number suggest using laboratory animal models and different cell lines that there may be a mechanistic basis for the anticancer effects of probiotics and require more scientific justification and clinical trials. Most studies of probiotics are conducted for colon cancer associated with inflammatory bowel disease. Studies are also being extended to other types of cancer in different cell lines. This review summarizes studied probiotics considered for treatment of colon cancer and some other cancers (in cancer cell lines) and also proposed mechanism how probiotics are inhibiting cancer growth along with some challenges and future perspectives.

  3. Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles (United States)

    Stimphil, Emmanuel; Nagesetti, Abhignyan; Guduru, Rakesh; Stewart, Tiffanie; Rodzinski, Alexandra; Liang, Ping; Khizroev, Sakhrat


    In regard to cancer therapy, magnetoelectric nanoparticles (MENs) have proven to be in a class of its own when compared to any other nanoparticle type. Like conventional magnetic nanoparticles, they can be used for externally controlled drug delivery via application of a magnetic field gradient and image-guided delivery. However, unlike conventional nanoparticles, due to the presence of a non-zero magnetoelectric effect, MENs provide a unique mix of important properties to address key challenges in modern cancer therapy: (i) a targeting mechanism driven by a physical force rather than antibody matching, (ii) a high-specificity delivery to enhance the cellular uptake of therapeutic drugs across the cancer cell membranes only, while sparing normal cells, (iii) an externally controlled mechanism to release drugs on demand, and (iv) a capability for image guided precision medicine. These properties separate MEN-based targeted delivery from traditional biotechnology approaches and lay a foundation for the complementary approach of technobiology. The biotechnology approach stems from the underlying biology and exploits bioinformatics to find the right therapy. In contrast, the technobiology approach is geared towards using the physics of molecular-level interactions between cells and nanoparticles to treat cancer at the most fundamental level and thus can be extended to all the cancers. This paper gives an overview of the current state of the art and presents an ab initio model to describe the underlying mechanisms of cancer treatment with MENs from the perspective of basic physics.

  4. Molecular targets and anti-cancer potential of escin. (United States)

    Cheong, Dorothy H J; Arfuso, Frank; Sethi, Gautam; Wang, Lingzhi; Hui, Kam Man; Kumar, Alan Prem; Tran, Thai


    Escin is a mixture of triterpenoid saponins extracted from the horse chestnut tree, Aesculus hippocastanum. Its potent anti-inflammatory and anti-odematous properties makes it a choice of therapy against chronic venous insufficiency and odema. More recently, escin is being actively investigated for its potential activity against diverse cancers. It exhibits anti-cancer effects in many cancer cell models including lung adenocarcinoma, hepatocellular carcinoma and leukemia. Escin also attenuates tumor growth and metastases in various in vivo models. Importantly, escin augments the effects of existing chemotherapeutic drugs, thereby supporting the role of escin as an adjunct or alternative anti-cancer therapy. The beneficial effects of escin can be attributed to its inhibition of proliferation and induction of cell cycle arrest. By regulating transcription factors/growth factors mediated oncogenic pathways, escin also potentially mitigates chronic inflammatory processes that are linked to cancer survival and resistance. This review provides a comprehensive overview of the current knowledge of escin and its potential as an anti-cancer therapy through its anti-proliferative, pro-apoptotic, and anti-inflammatory effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A modular platform for targeted RNAi therapeutics (United States)

    Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan


    Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.

  6. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. (United States)

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold


    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  7. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nevine M.Y. Elsayed


    Full Text Available Apoptosis is a chief regulator of cellular homeostasis. Impairment of apoptotic machinery is a main characteristic of several diseases such as cancer, where the evasion of apoptosis is a cardinal hallmark of cancer. Apoptosis is regulated by contribution of pro- and anti- apoptotic proteins, where caspases are the main executioners of the apoptotic machinery. IAP (inhibitors of apoptosis proteins is a family of endogenous inhibitors of apoptosis, which perform their function through interference with the function of caspases. Smac (second mitochondria-derived activator of caspases is endogenous inhibitor of IAPs, thus it is one of the major proapoptotic endogenous proteins. Thus, the development of Smac mimetics has evolved as an approach for anticancer therapy. Several Smac mimetic agents have been introduced to clinical trial such as birinapanet 12. Herein, the history of development of Smac mimetics along with the recent development in this field is briefly discussed.

  8. Potential effects of gamma irradiation on the stability and therapeutic activity of anticancer drug, doxorubicin

    Directory of Open Access Journals (Sweden)

    Fatmah M. Alshammari


    Full Text Available Cancer therapy has progressed dramatically in recent years. In order to decrease the dose and side effects of the anticancer drug, the therapeutic options for patients with cancer include increasingly complex combinations of chemotherapy and radiotherapy. This combination may cause overlapping interaction between the two types of treatment and affect the stability of the anticancer drug. In this study, the effect of gamma irradiation on the stability and therapeutic activity of one anticancer drug (Doxorubicin was studied. For this purpose, doxorubicin drug characterized by two methods, at first, in-vitro study, before and after drug irradiation with different doses of gamma rays (2, 5, 20, 100 GY which achieved through measuring the dielectric relaxation and absorption spectrum of drug solution. Secondly, in-vivo studies, where the unirradiated and the drug, which later exposed to gamma rays, were injected respectively into 6 groups of mice (3 mice in each group. The dielectric relaxation and absorption spectrum were studded for hemoglobin of the injected mice. The results for the in-vitro study indicate that the values of dielectric parameters show unnoticeable change for drug molecules before and after irradiation as compared with the control. The results for in-vivo study indicated an increase in the values of relaxation time and Cole- Cole parameter, that may as a result of changes in the conformational structure in hemoglobin molecules which may affect their properties and hence RBC's physiological functions. The absorption spectra of hemoglobin molecules show an increase in the amplitude of the characteristic bands with irradiation dose indicate an increase of the oxygen binding capacity with hemoglobin. It was concluded that combination between the drugs and gamma irradiation can be used as a powerful conjunction that may give us the benefit chemo and radiotherapy treatment.

  9. Centrosome – a promising anti-cancer target

    Directory of Open Access Journals (Sweden)

    Rivera-Rivera Y


    Full Text Available Yainyrette Rivera-Rivera, Harold I Saavedra Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico Abstract: The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase, ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition, functional (abnormal microtubule nucleation and disorganized spindles, and numerical (centrosome amplification [CA] centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research. Keywords: centrosomes, cell cycle, mitosis, CA, CIN, cancer therapy

  10. Tumor Evolution as a Therapeutic Target. (United States)

    Amirouchene-Angelozzi, Nabil; Swanton, Charles; Bardelli, Alberto


    Recent technological advances in the field of molecular diagnostics (including blood-based tumor genotyping) allow the measurement of clonal evolution in patients with cancer, thus adding a new dimension to precision medicine: time. The translation of this new knowledge into clinical benefit implies rethinking therapeutic strategies. In essence, it means considering as a target not only individual oncogenes but also the evolving nature of human tumors. Here, we analyze the limitations of targeted therapies and propose approaches for treatment within an evolutionary framework. Significance: Precision cancer medicine relies on the possibility to match, in daily medical practice, detailed genomic profiles of a patient's disease with a portfolio of drugs targeted against tumor-specific alterations. Clinical blockade of oncogenes is effective but only transiently; an approach to monitor clonal evolution in patients and develop therapies that also evolve over time may result in improved therapeutic control and survival outcomes. Cancer Discov; 7(8); 1-13. ©2017 AACR. ©2017 American Association for Cancer Research.

  11. Therapeutic Innovations for Targeting Childhood Neuroblastoma: Implications of the Neurokinin-1 Receptor System. (United States)

    Berger, Michael; VON Schweinitz, Dietrich


    Neuroblastoma is the most common solid extracranial malignant tumor in children. Despite recent advances in the treatment of this heterogenous tumor with surgery and chemotherapy, the prognosis in advanced stages remains poor. Interestingly, neuroblastoma is one of the few solid tumors, to date, in which an effect for targeted immunotherapy has been proven in controlled clinical trials, giving hope for further advances in the treatment of this and other tumors by targeted therapy. A large array of novel therapeutic options for targeted therapy of neuroblastoma is on the horizon. To this repεrtoirε, the neurokinin-1 receptor (NK1R) system was recently added. The present article explores the most recent developments in targeting neuroblastoma cells via the NK1R and how this new knowledge could be helpful to create new anticancer therapies agains neuroblastoma and other cancers. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Advancements in therapeutically-targeting orphan GPCRs

    Directory of Open Access Journals (Sweden)

    Jennifer eStockert


    Full Text Available G-protein coupled receptors (GPCRs are popular biological targets for drug discovery and development. To date there are more than 140 orphan GPCRs, i.e. receptors whose endogenous ligands are unknown. Traditionally orphan GPCRs have been difficult to study and the development of therapeutic compounds targeting these receptors has been extremely slow although these GPCRs are considered important targets based on their distribution and behavioral phenotype revealed by animals lacking the receptor. Recent advances in several methods used to study orphan receptors, including protein crystallography and homology modeling are likely to be useful in the identification of therapeutics targeting these receptors. In the past 13 years, over a dozen different Class A GPCRs have been crystallized; this trend is exciting, since homology modeling of GPCRs has previously been limited by the availability of solved structures. As the number of solved GPCR structures continues to grow so does the number of templates that can be used to generate increasingly accurate models of phylogenetically-related orphan GPCRs. The availability of solved structures along with the advances in using multiple templates to build models (in combination with molecular dynamics simulations that reveal structural information not provided by crystallographic data and methods for modeling hard-to-predict flexible loop regions have improved the quality of GPCR homology models. This, in turn, has improved the success rates of virtual ligand screens that use homology models to identify potential receptor binding compounds. Experimental testing of the predicted hits and validation using traditional GPCR pharmacological approaches can be used to drive ligand-based efforts to probe orphan receptor biology as well as to define the chemotypes and chemical scaffolds important for binding. As a result of these advances, orphan GPCRs are emerging from relative obscurity as a new class of drug

  13. Epigenetics and Therapeutic Targets Mediating Neuroprotection (United States)

    Qureshi, Irfan A.; Mehler, Mark F.


    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  14. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano


    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  15. Metformin and Anti-Cancer Therapeutics: Hopes for a More Enhanced Armamentarium Against Human Neoplasias? (United States)

    Christodoulou, Maria-Ioanna; Scorilas, Andreas


    Metformin, a natural product from Galega officinalis, is an oral drug, now in the forefront of the therapeutic management of type-2 diabetes mellitus. A series of clinical observations of the last decades, support that metformin may contribute to lowering the risk of cancer development in diabetic patients, and also to improvement of response-to-therapy and survival in individuals with certain types of malignancies. Moreover, several preclinical in vitro and in vivo data indicate that metformin indeed exerts anti-proliferative capacities upon tumor cells mediated through a variety of mechanisms. Interestingly, metformin has been shown to act in synergy with certain anti-cancer agents and also to overcome chemo- and/or radio-resistance of various types of tumors, providing a hopeful rationale for novel therapeutic strategies against cancer development and progression. However, this remains an issue of controversy, since significant contradictions exist among the available data. Limitations of preclinical studies and caveats of epidemiological works, together with significant variances among the several types of cancer and the fact that the mode of metformin's action is largely unknown, make longitudinal surveys urgently needed. Now, a plethora of large clinical trials are active worldwide, aiming at determining the effect of metformin in the prevention or prognosis of a variety of human cancers. If encouraging results arise, metformin will be an attractive candidate adjuvant in the management of human neoplasias, due to its safety, tolerability and low-cost, expected to mitigate adverse effects and no-response parameters of current anti-cancer therapeutics, thus improving the quality of life and survival of cancer patients. Copyright© Bentham Science Publishers; For any queries, please email at

  16. Mining the Genome for Therapeutic Targets. (United States)

    Florez, Jose C


    Current pharmacological options for type 2 diabetes do not cure the disease. Despite the availability of multiple drug classes that modulate glycemia effectively and minimize long-term complications, these agents do not reverse pathogenesis, and in practice they are not selected to correct the molecular profile specific to the patient. Pharmaceutical companies find drug development programs increasingly costly and burdensome, and many promising compounds fail before launch to market. Human genetics can help advance the therapeutic enterprise. Genomic discovery that is agnostic to preexisting knowledge has uncovered dozens of loci that influence glycemic dysregulation. Physiological investigation has begun to define disease subtypes, clarifying heterogeneity and suggesting molecular pathways for intervention. Convincing genetic associations have paved the way for the identification of effector transcripts that underlie the phenotype, and genetic or experimental proof of gain or loss of function in select cases has clarified the direction of effect to guide therapeutic development. Genetic studies can also examine off-target effects and furnish causal inference. As this information is curated and made widely available to all stakeholders, it is hoped that it will enhance therapeutic development pipelines by accelerating efficiency, maximizing cost-effectiveness, and raising ultimate success rates. © 2017 by the American Diabetes Association.

  17. Enhancer-associated RNAs as therapeutic targets. (United States)

    Léveillé, Nicolas; Melo, Carlos A; Agami, Reuven


    Regulation of gene expression involves a variety of mechanisms driven by a complex regulatory network of factors. Control of transcription is an important step in gene expression regulation, which integrates the function of cis-acting and trans-acting elements. Among cis-regulatory elements, enhancer RNA (eRNA)-producing domains recently emerged as widespread and potent regulators of transcription and cell fate decision. Thus, manipulation of eRNA levels becomes a novel and appealing avenue for the design of new therapeutic treatments. In this review, we focus on eRNA-producing domains. We describe mechanisms involved in their cell-type specific selection and activation as well as their epigenetic features. In addition, we present their function and the growing evidences of their deregulation in human diseases. Finally, we discuss eRNAs as potential therapeutic targets. As key factors in the control of transcription, eRNAs appear to possess a great potential for the establishment of new therapy options. However, thorough testing as well as providing the genetic toolbox to target eRNAs will be needed to fully assess the practical and clinical possibilities.

  18. New Therapeutic Targets in Soft Tissue Sarcoma (United States)

    Demicco, Elizabeth G; Maki, Robert G; Lev, Dina C.; Lazar, Alexander J


    Soft tissue sarcomas are an uncommon and diverse group of more than 50 mesenchymal malignancies. The pathogenesis of many of these is poorly understood, but others have begun to reveal the secrets of their inner workings. With considerable effort over recent years, soft tissue sarcomas have increasingly been classified on the basis of underlying molecular alterations. In turn, this has allowed the development and application of targeted agents in several specific, molecularly defined, sarcoma subtypes. This review will focus the rationale for targeted therapy in sarcoma, with emphasis on the relevance of specific molecular factors and pathways in both translocation-associated sarcomas and in genetically complex tumors. In addition, we will address some of the early successes in sarcoma targeted therapy as well as a few challenges and disappointments in this field. Finally we will discuss several possible opportunities represented by poorly understood, but potentially promising new therapeutic targets, as well as several novel biologic agents currently in preclinical and early phase I/II trials. This will provide the reader with context for understanding the current state this field and a sense of where it may be headed in the coming years. PMID:22498582

  19. Mitosis as an anti-cancer drug target. (United States)

    Salmela, Anna-Leena; Kallio, Marko J


    Suppression of cell proliferation by targeting mitosis is one potential cancer intervention. A number of existing chemotherapy drugs disrupt mitosis by targeting microtubule dynamics. While efficacious, these drugs have limitations, i.e. neuropathy, unpredictability and development of resistance. In order to overcome these issues, a great deal of effort has been spent exploring novel mitotic targets including Polo-like kinase 1, Aurora kinases, Mps1, Cenp-E and KSP/Eg5. Here we summarize the latest developments in the discovery and clinical evaluation of new mitotic drug targets.

  20. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. (United States)

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam


    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed.

  1. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs

    International Nuclear Information System (INIS)

    Ashley, Neil; Poulton, Joanna


    The anthracyclines, such as doxorubicin (DXR), are potent anti-cancer drugs but they are limited by their clinical toxicity. The mechanisms involved remain poorly understood partly because of the difficulty in determining sub-cellular drug localisation. Using a novel method utilising the fluorescent DNA dye PicoGreen, we found that anthracyclines intercalated not only into nuclear DNA but also mitochondrial DNA (mtDNA). Intercalation of mtDNA by anthracyclines may thus contribute to the marked mitochondrial toxicity associated with these drugs. By contrast, ethidium bromide intercalated exclusively into mtDNA, without interacting with nuclear DNA, thereby explaining why mtDNA is the main target for ethidium. By exploiting PicoGreen quenching we also developed a novel assay for quantification of mtDNA levels by flow-cytometry, an approach which should be useful for studies of mitochondrial dysfunction. In summary our PicoGreen assay should be useful to study drug/DNA interactions within live cells, and facilitate therapeutic drug monitoring and kinetic studies in cancer patients.

  2. Gli as a novel therapeutic target in malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Malignant pleural mesothelioma (MPM is a highly aggressive tumor with poor prognosis. Current treatment is rarely curative, thus novel meaningful therapies are urgently needed. Inhibition of Hedgehog (Hh signaling at the cell membrane level in several cancers has shown anti-cancer activity in recent clinical studies. Evidence of Hh-independent Gli activation suggests Gli as a more potent therapeutic target. The current study is aimed to evaluate the potential of Gli as a therapeutic target to treat MPM. The expression profiles of Gli factors and other Hh signaling components were characterized in 46 MPM patient tissue samples by RT-PCR and immunohistochemistry. Cultured cell lines were employed to investigate the requirement of Gli activation in tumor cell growth by inhibiting Gli through siRNA or a novel small molecule Gli inhibitor (Gli-I. A xenograft model was used to evaluate Gli-I in vivo. In addition, a side by side comparison between Gli and Smoothened (Smo inhibition was conducted in vitro using siRNA and small molecule inhibitors. Our study reported aberrant Gli1 and Gli2 activation in a large majority of tissues. Inhibition of Gli by siRNAs or Gli-I suppressed cell growth dramatically both in vitro and in vivo. Inhibition of Gli exhibited better cytotoxicity than that of Smo by siRNA and small molecule inhibitors vismodegib and cyclopamine. Combination of Gli-I and pemetrexed, as well as Gli-I and vismodegib demonstrated synergistic effects in suppression of MPM proliferation in vitro. In summary, Gli activation plays a critical role in MPM. Inhibition of Gli function holds strong potential to become a novel, clinically effective approach to treat MPM.

  3. Integrins as Therapeutic Targets: Successes and Cancers

    Directory of Open Access Journals (Sweden)

    Sabine Raab-Westphal


    Full Text Available Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.

  4. ENOX2 target for the anticancer isoflavone ME-143. (United States)

    Morré, D James; Korty, Theodore; Meadows, Christiaan; Ades, Laura M C; Morré, Dorothy M


    ME-143 (NV-143), a synthetic isoflavone under clinical evaluation for efficacy in the management of ovarian and other forms of human cancer, blocked the activity of a cancer-specific and growth-related cell surface ECTO-NOX protein with both oxidative (hydroquinone) and protein disulfide-thiol interchange activity designated ENOX2 (tNOX) and inhibited the growth of cultured cancer cells with EC50s in the range of 20-50 nM. Purified recombinant ENOX2 also bound ME-143 with a Kd of 43 (40-50) nM. Both the oxidative and protein disulfide-thiol interchange activities of ENOX proteins that alternate to generate a complex set of oscillations with a period length of 22 min compared to 24 min for the constitutive counterpart ENOX1 (CNOX) that characterizes ENOX proteins responded to ME-143. Oxidation of NADH or reduced coenzyme Q10 was rapidly blocked. In contrast, the protein disulfide-thiol interchange activity measured from the cleavage of dithiodipyridine (EC50 of ca. 50 nM) was inhibited progressively over an interval of 60 min that spanned three cycles of activity. Inhibition of the latter paralleled the inhibition of cell enlargement and the consequent inability of inhibited cells to initiate traverse of the cell cycle. Activities of constitutive ENOX1 (CNOX) forms of either cancer or noncancer cells were unaffected by ME-143 over the range of concentrations inhibiting ENOX2. Taken together, the findings show that ME-143 binds to ENOX2 with an affinity 4 to 10 times greater than that reported previously for the related anticancer isoflavone, phenoxodiol.

  5. Ascaris lumbricoides: an overview of therapeutic targets. (United States)

    Hagel, Isabel; Giusti, Tatiana


    A. lumbricoides is the largest of the common nematode parasites of man and has been associated with intestinal pathology, respiratory symptoms and malnutrition in children from endemic areas. Current anthelmintic treatments have proven to be safe. However, a reduced efficacy of single dose drugs has been reported. In veterinary practice, anthelmintic drug resistance is an irreversible problem. Thus, research and development of sensitive tools for early detection of drug resistance as well as new anthelmintic approaches are urgently needed. In this review, we summarized data providing information about current drug therapy against A. lumbricoides and other intestinal helminths, new drugs in experimental trials, future drugs perspectives and the identification of immunogenic parasite molecules that may be suitable vaccine targets. In addition to the WHO recommended drugs (albendazole, mebendazole, levamisole, and pyrantel pamoate), new anthelmintic alternatives such as tribendimidine and Nitazoxanide have proved to be safe and effective against A. lumbricoides and other soil-transmitted helminthiases in human trials. Also, some new drugs for veterinary use, monepantel and cyclooctadepsipeptides (e.g., PF1022A), will probably expand future drug spectrum for human treatments. The development of genomic technology has provided a great amount of available nematode DNA sequences, coupled with new gene function data that may lead to the identification of new drug targets through efficient mining of nematode genomic databases. On the other hand, the identification of nematode antigens involved in different parasite vital functions as well as immunomodulatory molecules in animals and humans may contribute to future studies of new therapeutic approaches.

  6. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian


    interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...

  7. Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of Zanthoxylum armatum DC. (United States)

    Singh, Thangjam Davis; Meitei, Heikrujam Thoihen; Sharma, Adhikarimayum Lakhikumar; Robinson, Asem; Singh, Lisam Shanjukumar; Singh, Thiyam Ramsing


    Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE) induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin). This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP) cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK) pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK), p38 and c-Jun N-terminal kinase (JNK). Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

  8. Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of Zanthoxylum armatum DC

    Directory of Open Access Journals (Sweden)

    Thangjam Davis Singh


    Full Text Available BACKGROUND: Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin. This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. RESULTS: ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK, p38 and c-Jun N-ter-minal kinase (JNK. Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. CONCLUSION: Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

  9. Targeted alpha anticancer therapies: update and future prospects

    Directory of Open Access Journals (Sweden)

    Allen BJ


    Full Text Available Barry J Allen,1,2 Chen-Yu Huang,3 Raymond A Clarke2 1Faculty of Physics, University of Sydney, Sydney, NSW, Australia; 2Faculty of Medicine, Ingham Institute, University of Western Sydney, Liverpool, NSW, Australia; 3Central Clinical School, University of Sydney, Sydney, NSW, AustraliaAbstract: Targeted alpha therapy (TAT is an emerging option for local and systemic cancer treatment. Preclinical research and clinical trials show that alpha-emitting radionuclides can kill targeted cancer cells while sparing normal cells, thus reducing toxicity. 223RaCl2 (Xofigo® is the first alpha emitting radioisotope to gain registration in the US for palliative therapy of prostate cancer bone metastases by indirect physiological targeting. The alpha emitting radioisotopes 211At, 213Bi, 225Ac and 227Th are being used to label targeting vectors such as monoclonal antibodies for specific cancer therapy indications. In this review, safety and tolerance aspects are considered with respect to microdosimetry, specific energy, Monte Carlo model calculations, biodosimetry, equivalent dose and mutagenesis. The clinical efficacy of TAT for solid tumors may also be enhanced by its capacity for tumor anti-vascular (TAVAT effects. This review emphasizes key aspects of TAT research with respect to the PAI2-uPAR complex and the monoclonal antibodies bevacizumab, C595 and J591. Clinical trial outcomes are reviewed for neuroendocrine tumors, leukemia, glioma, melanoma, non-Hodgkins lymphoma, and prostate bone metastases. Recommendations and future directions are proposed.Keywords: biodosimetry, microdosimetry, mutagenesis, PAI2, bevacizumab, C595, J591, tumors, cancer, metastases

  10. Supramolecular approach for target transport of photodynamic anticancer agents

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Kaplánek, R.; Bříza, T.; Králová, Jarmila; Martásek, P.; Král, V.


    Roč. 24, č. 2 (2012), s. 106-116 ISSN 1061-0278 R&D Projects: GA MŠk(CZ) LC06077; GA MŠk(CZ) 1M0520; GA ČR(CZ) GAP303/11/1291; GA ČR GA203/09/1311 Institutional research plan: CEZ:AV0Z50520514 Keywords : photodynamic therapy * photosensitisers * targeted transport * combination therapy * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.546, year: 2012

  11. Targeting epigenetic processes in photodynamic therapy-induced anticancer immunity

    Directory of Open Access Journals (Sweden)

    Malgorzata eWachowska


    Full Text Available Photodynamic therapy (PDT of cancer is an approved therapeutic procedure that generates oxidative stress leading to cell death of tumour and stromal cells. Cell death resulting from oxidative damage to intracellular components leads to the release of damage-associated molecular patterns (DAMPs that trigger robust inflammatory response and creates local conditions for effective sampling of tumour-associated antigens (TAA by antigen presenting cells. The latter can trigger development of TAA-specific adaptive immune response. However, due to a number of mechanisms, including epigenetic regulation of TAA expression, tumour cells evade immune recognition. Therefore, numerous approaches are being developed to combine PDT with immunotherapies to allow development of systemic immunity. In this review we describe immunoregulatory mechanisms of epigenetic treatments that were shown to restore the expression of epigenetically silenced or down-regulated major histocompatibility complex (MHC molecules as well as TAA. We also discuss the results of our recent studies showing that epigenetic treatments based on administration of methyltransferase inhibitors in combination with photodynamic therapy can release effective mechanisms leading to development of antitumour immunity and potentiated antitumour effects.

  12. Cancer metabolism as a therapeutic target. (United States)

    Batra, Surabhi; Adekola, Kehinde U A; Rosen, Steven T; Shanmugam, Mala


    Cancer is now recognized to be a disease arising from both genetic and metabolic abnormalities. In the mid-1900s, Otto Warburg described the phenomenon of elevated glucose consumption and aerobic glycolysis, and the dependence of cancer cells on this phenomenon for proliferation and growth. The Warburg effect has formed the basis of such diagnostic and prognostic imaging modalities as positron emission tomography (PET); however, we have not yet capitalized on this phenomenon for therapy. Several mechanisms have now been shown to contribute to the Warburg effect.Ongoing studies are attempting to understand the reasons that tumor cells engage in aerobic glycolysis in lieu of oxidative phosphorylation, and the advantages that accrue to them as a result. In this review, we discuss known benefits to tumor cells from this metabolic switch, and we highlight key enzymes that play a role in aerobic glycolysis. We also describe novel therapeutic options targeting glucose metabolism and the importance of continuing to understand the metabolic plasticity of cancer.

  13. Tyrosine kinase, aurora kinase and leucine aminopeptidase as attractive drug targets in anticancer therapy - characterisation of their inhibitors. (United States)

    Ziemska, Joanna; Solecka, Jolanta

    Cancers are the leading cause of deaths all over the world. Available anticancer agents used in clinics exhibit low therapeutic index and usually high toxicity. Wide spreading drug resistance of cancer cells induce a demanding need to search for new drug targets. Currently, many on-going studies on novel compounds with potent anticancer activity, high selectivity as well as new modes of action are conducted. In this work, we describe in details three enzyme groups, which are at present of extensive interest to medical researchers and pharmaceutical companies. These include receptor tyrosine kinases (e.g. EGFR enzymes) and non-receptor tyrosine kinases (Src enzymes), type A, B and C Aurora kinases and aminopeptidases, especially leucine aminopeptidase. We discuss classification of these enzymes, biochemistry as well as their role in the cell cycle under normal conditions and during cancerogenesis. Further on, the work describes enzyme inhibitors that are under in vitro, preclinical, clinical studies as well as drugs available on the market. Both, chemical structures of discovered inhibitors and the role of chemical moieties in novel drug design are discussed. Described enzymes play essential role in cell cycle, especially in mitosis (Aurora kinases), cell differentiation, growth and apoptosis (tyrosine kinases) as well as G1/S transition (leucine aminopeptidase). In cancer cells, they are overexpressed and only their inhibition may stop tumor progression. This review presents the clinical outcomes of selected inhibitors and argues the safety of drug usage in human volunteers. Clinical studies of EGFR and Src kinase inhibitors in different tumors clearly show the need for molecular selection of patients (to those with mutations in genes coding EGFR and Src) to achieve positive clinical response. Current data indicates the great necessity for new anticancer treatment and actions to limit off-target activity.

  14. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer. (United States)

    Parker, James P; Ude, Ziga; Marmion, Celine J


    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.

  15. Tumor Interstitial Fluid Pressure as an Early-Response Marker for Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Stephane Ferretti


    Full Text Available Solid tumors have a raised interstitial fluid pressure (IFP due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days or later (6 or 7 days lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P ≤ .005 correlated with late changes in tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  16. Identifying unexpected therapeutic targets via chemical-protein interactome.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Drug medications inevitably affect not only their intended protein targets but also other proteins as well. In this study we examined the hypothesis that drugs that share the same therapeutic effect also share a common therapeutic mechanism by targeting not only known drug targets, but also by interacting unexpectedly on the same cryptic targets. By constructing and mining an Alzheimer's disease (AD drug-oriented chemical-protein interactome (CPI using a matrix of 10 drug molecules known to treat AD towards 401 human protein pockets, we found that such cryptic targets exist. We recovered from CPI the only validated therapeutic target of AD, acetylcholinesterase (ACHE, and highlighted several other putative targets. For example, we discovered that estrogen receptor (ER and histone deacetylase (HDAC, which have recently been identified as two new therapeutic targets of AD, might already have been targeted by the marketed AD drugs. We further established that the CPI profile of a drug can reflect its interacting character towards multi-protein sets, and that drugs with the same therapeutic attribute will share a similar interacting profile. These findings indicate that the CPI could represent the landscape of chemical-protein interactions and uncover "behind-the-scenes" aspects of the therapeutic mechanisms of existing drugs, providing testable hypotheses of the key nodes for network pharmacology or brand new drug targets for one-target pharmacology paradigm.

  17. Autoimmune diseases: MIF as a therapeutic target

    NARCIS (Netherlands)

    Greven, Dorothee; Leng, Lin; Bucala, Richard


    Areas covered in this review: Our aim is to discuss MIF-directed therapies as a novel therapeutic approach. The review covers literature from the past 10 years. What the reader will gain: MIF inhibition has been shown to be efficacious in many experimental and pre-clinical studies of autoimmune

  18. Development of a mouse model for testing therapeutic agents: the anticancer effect of dienogest on endometrial neoplasms. (United States)

    Saito, Fumitaka; Tashiro, Hironori; Yamaguchi, Munekage; Honda, Ritsuo; Ohba, Takashi; Suzuki, Akira; Katabuchi, Hidetaka


    As the number of younger women with endometrial carcinoma has increased, fertility-sparing treatments have received more attention. Although there have been several reports on conservative treatments with progestins for endometrial carcinoma, only medroxyprogesterone acetate (MPA) is available in Japan. Dienogest has been developed as a fourth-generation progestin for treating endometriosis. Because of its high progesterone activity, its antitumor activity has attracted attention. In this study, we investigated the anticancer effect of dienogest on endometrial neoplasms using mouse model of endometrial carcinoma. Pten(loxP/loxP) mice were injected with MPA or dienogest subcutaneously to evaluate the anticancer effect against endometrial neoplasms that developed in the mice. One week after injections, histopathological analyzes were performed. Endometrial neoplasms were found in one of the eight (12.5%) mice from each group treated with either dienogest or MPA. In contrast, they were found in seven of eight (87.5%) mice not treated with progestins. Each progestin treatment showed anticancer activity against endometrial neoplasms that developed in the mice compared to those without treatment. Dienogest and MPA showed potent anticancer activity against endometrial neoplasms in our mouse model. The present study demonstrated that dienogest might be a useful therapeutic agent for human endometrial neoplasms.

  19. Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. (United States)

    Sadighian, Somayeh; Rostamizadeh, Kobra; Hosseini-Monfared, Hassan; Hamidi, Mehrdad


    The present study reports the successful synthesis of core-shell nanostructures composed of magnetite nanoparticles (Fe3O4-NPs) conjugated to the anticancer drug doxorubicin, intended for dual targeting of the drug to the tumor sites via a combination of the magnetic attraction and the pH-sensitive cleavage of the drug-particle linkages along with a longer circulation time and reduced side effects. To improve the carrier biocompatibility, the prepared nanocarrier was, finally coated by chitosan. FT-IR analysis confirmed the synthesis of functionalized Fe3O4-NPs, doxorubicin-conjugated Fe3O4-NPs, and chitosan-coated nanocarriers. Scanning electron microscopy (SEM) indicated the formation of spherical nanostructures with the final average particle size of around 50 nm. The vibrating sample magnetometer (VSM) analysis showed that the saturation magnetization value (Ms) of carrier was 6 emu/g. The drug release behavior from the nanocarriers was investigated both in acidic and neutral buffered solutions (pH values of 5.3 and 7.4, respectively) and showed two-fold increase in the extent of drug release at pH 5.3 compared to pH 7.4 during 7 days. The results showed that the dual-targeting nanocarriers responded successfully to the external magnetic field and pH. From the results obtained, it can be concluded that this methodology can be used to target and improve therapeutic efficacy of the anticancer drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Targeting the endocannabinoid system : future therapeutic strategies

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Elezgarai, Izaskun; Rico-Barrio, Irantzu; Zarandona, Iratxe; Etxebarria, Nestor; Usobiaga, Aresatz


    The endocannabinoid system (ECS) is involved in many physiological regulation pathways in the human body, which makes this system the target of many drugs and therapies. In this review, we highlight the latest studies regarding the role of the ECS and the drugs that target it, with a particular

  1. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung


    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  2. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung


    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  3. Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib-zinc(II) phthalocyanine conjugates. (United States)

    Zhang, Feng-Ling; Huang, Qi; Liu, Jian-Yong; Huang, Ming-Dong; Xue, Jin-Ping


    Targeted photodynamic therapy is a new promising therapeutic strategy to overcome growing problems in contemporary medicine, such as drug toxicity and drug resistance. A series of erlotinib-zinc(II) phthalocyanine conjugates were designed and synthesized. Compared with unsubstituted zinc(II) phthalocyanine, these conjugates can successfully target EGFR-overexpressing cancer cells owing to the presence of the small molecular-target-based anticancer agent erlotinib. All conjugates were found to be essentially non-cytotoxic in the absence of light (up to 50 μM), but upon illumination, they show significantly high photo-cytotoxicity toward HepG2 cells, with IC50 values as low as 9.61-91.77 nM under a rather low light dose (λ=670 nm, 1.5 J cm(-2) ). Structure-activity relationships for these conjugates were assessed by determining their photophysical/photochemical properties, cellular uptake, and in vitro photodynamic activities. The results show that these conjugates are highly promising antitumor agents for molecular-target-based photodynamic therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cdt1 is differentially targeted for degradation by anticancer chemotherapeutic drugs.

    Directory of Open Access Journals (Sweden)

    Athanasia Stathopoulou

    Full Text Available BACKGROUND: Maintenance of genome integrity is crucial for the propagation of the genetic information. Cdt1 is a major component of the pre-replicative complex, which controls once per cell cycle DNA replication. Upon DNA damage, Cdt1 is rapidly targeted for degradation. This targeting has been suggested to safeguard genomic integrity and prevent re-replication while DNA repair is in progress. Cdt1 is deregulated in tumor specimens, while its aberrant expression is linked with aneuploidy and promotes tumorigenesis in animal models. The induction of lesions in DNA is a common mechanism by which many cytotoxic anticancer agents operate, leading to cell cycle arrest and apoptosis. METHODOLOGY/PRINCIPAL FINDING: In the present study we examine the ability of several anticancer drugs to target Cdt1 for degradation. We show that treatment of HeLa and HepG2 cells with MMS, Cisplatin and Doxorubicin lead to rapid proteolysis of Cdt1, whereas treatment with 5-Fluorouracil and Tamoxifen leave Cdt1 expression unaffected. Etoposide affects Cdt1 stability in HepG2 cells and not in HeLa cells. RNAi experiments suggest that Cdt1 proteolysis in response to MMS depends on the presence of the sliding clamp PCNA. CONCLUSION/SIGNIFICANCE: Our data suggest that treatment of tumor cells with commonly used chemotherapeutic agents induces differential responses with respect to Cdt1 proteolysis. Information on specific cellular targets in response to distinct anticancer chemotherapeutic drugs in different cancer cell types may contribute to the optimization of the efficacy of chemotherapy.

  5. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. (United States)

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A


    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail:; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)


    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  7. Therapeutic Approaches to Target Cancer Stem Cells

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Leon, Kalet


    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC

  8. Anticancer Drugs Induced Severe Adverse Cutaneous Drug Reactions: An Updated Review on the Risks Associated with Anticancer Targeted Therapy or Immunotherapies

    Directory of Open Access Journals (Sweden)

    Chau Yee Ng


    Full Text Available Cutaneous adverse drug reactions are commonly seen in patients with anticancer drug treatment. Anticancer drugs, including chemotherapy, target therapy, and recent immunotherapy causing skin reactions ranging from mild skin rash to life-threatening severe cutaneous adverse reactions (SCARs, such as Stevens-Johnson syndrome (SJS and toxic epidermal necrosis (TEN with increase morbidity and mortality while they are receiving cancer treatments, have been proposed to be a result of direct skin toxicity or drug hypersensitivity reactions (these are proposed mechanism, not definite. Differentiating SCARs from other more commonly seen reactions with a better outcome help prevent discontinuation of therapy and inappropriate use of systemic immunosuppressants for presumable allergic reactions, of which will affect the clinical outcome. In this article, we have reviewed published articles from 1950 to August 2017 for SJS/TEN associated with anticancer drugs, including chemotherapy, targeted therapy, and immunotherapy. We aimed to provide an overview of SJS/TEN associated with anticancer drugs to increase clinician recognition and accelerate future studies on the pathomechanism and managements.

  9. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα

    Directory of Open Access Journals (Sweden)

    Alam S


    Full Text Available Sarfaraz Alam, Feroz KhanMetabolic and Structural Biology Department, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, IndiaAbstract: Due to the high mortality rate in India, the identification of novel molecules is important in the development of novel and potent anticancer drugs. Xanthones are natural constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated heterocycles with a variety of biological activities along with an anticancer effect. To explore the anticancer compounds from xanthone derivatives, a quantitative structure activity relationship (QSAR model was developed by the multiple linear regression method. The structure–activity relationship represented by the QSAR model yielded a high activity–descriptors relationship accuracy (84% referred by regression coefficient (r2=0.84 and a high activity prediction accuracy (82%. Five molecular descriptors – dielectric energy, group count (hydroxyl, LogP (the logarithm of the partition coefficient between n-octanol and water, shape index basic (order 3, and the solvent-accessible surface area – were significantly correlated with anticancer activity. Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. A molecular docking study was also carried out to predict the molecular interaction between proposed compounds and deoxyribonucleic acid (DNA topoisomerase IIα. The pharmacokinetics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also calculated, and later an appraisal of synthetic accessibility of organic compounds was carried out. The strategy used in this study may provide understanding in designing novel DNA topoisomerase IIα inhibitors, as well as for other cancer targets.Keywords: drug likeness, ADMET, regression model, HeLa cell line

  10. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics.

    NARCIS (Netherlands)

    Mujić-Delić, A.; de Wit, R.H.; Verkaar, F.; Smit, M.J.


    G-protein-coupled receptors (GPCRs) represent a major therapeutic target class. A large proportion of marketed drugs exert their effect through modulation of GPCR function, and GPCRs have been successfully targeted with small molecules. Yet, the number of small new molecular entities targeting GPCRs

  11. Targeting of microRNAs for therapeutics

    DEFF Research Database (Denmark)

    Stenvang, Jan; Lindow, Morten; Kauppinen, Sakari


    miRNAs (microRNAs) comprise a class of small endogenous non-coding RNAs that post-transcriptionally repress gene expression by base-pairing with their target mRNAs. Recent evidence has shown that miRNAs play important roles in a wide variety of human diseases, such as viral infections, cancer...

  12. GOLGA2/GM130, cis-Golgi matrix protein, is a novel target of anticancer gene therapy. (United States)

    Chang, Seung-Hee; Hong, Seong-Ho; Jiang, Hu-Lin; Minai-Tehrani, Arash; Yu, Kyeong-Nam; Lee, Jae-Ho; Kim, Ji-Eun; Shin, Ji-Young; Kang, Bitna; Park, Sungjin; Han, Kiwon; Chae, Chanhee; Cho, Myung-Haing


    Achievement of long-term survival of patients with lung cancer treated with conventional chemotherapy is still difficult for treatment of metastatic and advanced tumors. Despite recent progress in investigational therapies, survival rates are still disappointingly low and novel adjuvant and systemic therapies are urgently needed. A recently elucidated secretory pathway is attracting considerable interest as a promising anticancer target. The cis-Golgi matrix protein, GOLGA2/GM130, plays an important role in glycosylation and transport of protein in the secretory pathway. In this study, the effects of short hairpin RNA (shRNA) constructs targeting GOLGA2/GM130 (shGOLGA2) on autophagy and lung cancer growth were evaluated in vitro and in vivo. Downregulation of GOLGA2/GM130 led to induction of autophagy and inhibition of glycosylation in A549 cells and in the lungs of K-ras(LA1) mice. Furthermore, downregulation of GOLGA2/GM130 decreased angiogenesis and cancer cell invasion in vitro and suppressed tumorigenesis in lung cancer mice model. The tumor specificity of sequence targeting GOLGA2/GM130 was also demonstrated. Taken together, these results suggest that induction of autophagy by shGOLGA2 may induce cell death rather than cell survival. Therefore, downregulation of GOLGA2/GM130 may be a potential therapeutic option for lung cancer.

  13. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy

    Directory of Open Access Journals (Sweden)

    Dong Hoon eSuh


    Full Text Available Mitochondrial outer membrane permeabilization (MOMP is the ultimate step in dozens of lethal apoptotic signal transduction pathways which converge on mitochondria. One of the representative systems proposed to be responsible for the MOMP is the mitochondrial permeability transition pore (MPTP. Although the molecular composition of the MPTP is not clearly understood, the MPTP attracts much interest as a promising target for resolving two conundrums regarding cancer treatment: tumor selectivity and resistance to treatment. The regulation of the MPTP is closely related to metabolic reprogramming in cancer cells including mitochondrial alterations. Restoration of deregulated apoptotic machinery in cancer cells by tumor-specific modulation of the MPTP could therefore be a promising anti-cancer strategy. Currently, a number of MPTP-targeting agents are under pre-clinical and clinical studies. Here, we reviewed the structure and regulation of the MPTP as well as the current status of the development of promising MPTP-targeting drugs.

  14. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells (United States)

    Kim, Sang-Woo; Lee, Yeon Kyung; Lee, Jong Yeon; Hong, Jeong Hee; Khang, Dongwoo


    Although activating apoptosis in cancer cells by targeting the mitochondria is an effective strategy for cancer therapy, insufficient targeting of the mitochondria in cancer cells restricts the availability in clinical treatment. Here, we report on a polyethylene glycol-coated carbon nanotube (CNT)-ABT737 nanodrug that improves the mitochondrial targeting of lung cancer cells. The polyethylene glycol-coated CNT-ABT737 nanodrug internalized into the early endosomes via macropinocytosis and clathrin-mediated endocytosis in advance of early endosomal escape and delivered into the mitochondria. Cytosol release of the nanodrug led to apoptosis of lung cancer cells by abruption of the mitochondrial membrane potential, inducing Bcl-2-mediated apoptosis and generating intracellular reactive oxygen species. As such, this study provides an effective strategy for increasing the anti-lung cancer efficacy by increasing mitochondria accumulation rate of cytosol released anticancer nanodrugs.

  15. New Therapeutic Targets for Mood Disorders

    Directory of Open Access Journals (Sweden)

    Rodrigo Machado-Vieira


    Full Text Available Existing pharmacological treatments for bipolar disorder (BPD and major depressive disorder (MDD are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1 glycogen synthase kinase-3 (GSK-3 and protein kinase C (PKC, (2 the purinergic system, (3 histone deacetylases (HDACs, (4 the melatonergic system, (5 the tachykinin neuropeptides system, (6 the glutamatergic system, and (7 oxidative stress and bioenergetics. The paper reviews data on new compounds that have shown antimanic or antidepressant effects in subjects with mood disorders, or similar effects in preclinical animal models. Overall, an improved understanding of the neurobiological underpinnings of mood disorders is critical in order to develop targeted treatments that are more effective, act more rapidly, and are better tolerated than currently available therapies.

  16. Pathways and therapeutic targets in melanoma (United States)

    Shtivelman, Emma; Davies, Michael A.; Hwu, Patrick; Yang, James; Lotem, Michal; Oren, Moshe; Flaherty, Keith T.; Fisher, David E.


    This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other “omics”) scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy. PMID:24743024

  17. Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moien; Parhamifar, Ladan; Ahmadvand, Davoud


    Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and in...... at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.Copyright © 2012 S. Karger AG, Basel...

  18. Novel Therapeutic Target for the Treatment of Lupus (United States)


    AWARD NUMBER: W81XWH-12-1-0205 TITLE: Novel Therapeutic Target for the Treatment of Lupus PRINCIPAL INVESTIGATOR: Lisa Laury-Kleintop...SUBTITLE 5a. CONTRACT NUMBER Novel Therapeutic Target for the Treatment of Lupus 5b. GRANT NUMBER W81XWH-12-1-0205 5c. PROGRAM ELEMENT NUMBER 6...Systemic lupus erythematosus, autoantibodies. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 7 19a. NAME OF

  19. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Simon A. Young


    Full Text Available Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

  20. Neutrophils: potential therapeutic targets in tularemia?

    Directory of Open Access Journals (Sweden)

    Lee-Ann H Allen


    Full Text Available The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.

  1. Therapeutic Potential of Targeting the Ghrelin Pathway. (United States)

    Colldén, Gustav; Tschöp, Matthias H; Müller, Timo D


    Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems' metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.

  2. Therapeutic targeting of cancer cell metabolism. (United States)

    Dang, Chi V; Hamaker, Max; Sun, Peng; Le, Anne; Gao, Ping


    In 1927, Otto Warburg and coworkers reported the increased uptake of glucose and production of lactate by tumors in vivo as compared with normal tissues. This phenomenon, now known as the Warburg effect, was recapitulated in vitro with cancer tissue slices exhibiting excessive lactate production even with adequate oxygen. Warburg's in vivo studies of tumors further suggest that the dependency of tumors in vivo on glucose could be exploited for therapy, because reduction of arterial glucose by half resulted in a four-fold reduction in tumor fermentation. Recent work in cancer metabolism indicates that the Warburg effect or aerobic glycolysis contributes to redox balance and lipid synthesis, but glycolysis is insufficient to sustain a growing and dividing cancer cell. In this regard, glutamine, which contributes its carbons to the tricarboxylic acid (TCA) cycle, has been re-discovered as an essential bioenergetic and anabolic substrate for many cancer cell types. Could alterations in cancer metabolism be exploited for therapy? Here, we address this question by reviewing current concepts of normal metabolism and altered metabolism in cancer cells with specific emphasis on molecular targets involved directly in glycolysis or glutamine metabolism.

  3. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. (United States)

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui


    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S


    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  5. RhoC a new target for therapeutic vaccination against metastatic cancer

    DEFF Research Database (Denmark)

    Wenandy, L.; Sorensen, R.B.; Straten, P.T.


    moving forward in multiple areas, including the adoptive transfer of anti-tumor-reactive T cells and the use of "therapeutic" vaccines. The over-expression of RhoC in cancer and the fact that immune escape by down regulation or loss of expression of this protein would reduce the morbidity and mortality......Most cancer deaths are due to the development of metastases. Increased expression of RhoC is linked to enhanced metastatic potential in multiple cancers. Consequently, the RhoC protein is an attractive target for drug design. The clinical application of immunotherapy against cancer is rapidly...... of cancer makes RhoC a very attractive target for anti-cancer immunotherapy. Herein, we describe an HLA-A3 restricted epitope from RhoC, which is recognized by cytotoxic T cells. Moreover, RhoC-specific T cells show cytotoxic potential against HLA-matched cancer cells of different origin. Thus, RhoC may...

  6. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery

    International Nuclear Information System (INIS)

    Banerjee, Shashwat S; Chen, D.-H.


    A novel magnetic nanocarrier (CD-GAMNPs) was fabricated for targeted anticancer drug delivery by grafting cyclodextrin (CD) onto gum arabic modified magnetic nanoparticles (GAMNPs) using hexamethylene diisocyanate (HMDI) as a linker. Analyses by transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the product had a mean diameter of 17.1 nm and a mean hydrodynamic diameter of 44.1 nm. The CD grafting was confirmed by Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) indicated that the amount of CD grafted on the GAMNPs was 16.8 mg g -1 . The study on the loading of anticancer drug all-trans-retinoic acid (retinoic acid) revealed that the newly fabricated magnetic nanocarrier possessed a considerably higher adsorption capability as compared to GAMNPs due to the special hydrophobic cavity structure of CD, which could act as a host-guest complex with retinoic acid. Furthermore, it was found that the complexation of CD-GAMNPs with retinoic acid was exothermic and the presence of a surfactant (sodium dodecyl sulfate) led to the decrease in the inclusion of retinoic acid because the linear structure of sodium dodecyl sulfate made it easier to enter the cavity of CD as compared to less linear retinoic acid. In addition, the in vitro release profile of retinoic acid from CD-GAMNPs was characterized by an initial fast release followed by a delayed release phase

  7. Mammalian target of rapamycin as a therapeutic target in osteoporosis. (United States)

    Shen, Gengyang; Ren, Hui; Qiu, Ting; Zhang, Zhida; Zhao, Wenhua; Yu, Xiang; Huang, Jinjing; Tang, Jingjing; Liang, De; Yao, Zhensong; Yang, Zhidong; Jiang, Xiaobing


    The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy. © 2017 Wiley Periodicals, Inc.

  8. Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer

    Directory of Open Access Journals (Sweden)

    Sheikh Tasnim Jahan


    Full Text Available In nanomedicine, targeted therapeutic nanoparticle (NP is a virtual outcome of nanotechnology taking the advantage of cancer propagation pattern. Tying up all elements such as therapeutic or imaging agent, targeting ligand, and cross-linking agent with the NPs is the key concept to deliver the payload selectively where it intends to reach. The microenvironment of tumor tissues in lymphatic vessels can also help targeted NPs to achieve their anticipated accumulation depending on the formulation objectives. This review accumulates the application of poly(lactic-co-glycolic acid (PLGA and polyethylene glycol (PEG based NP systems, with a specific perspective in cancer. Nowadays, PLGA, PEG, or their combinations are the mostly used polymers to serve the purpose of targeted therapeutic NPs. Their unique physicochemical properties along with their biological activities are also discussed. Depending on the biological effects from parameters associated with existing NPs, several advantages and limitations have been explored in teaming up all the essential facts to give birth to targeted therapeutic NPs. Therefore, the current article will provide a comprehensive review of various approaches to fabricate a targeted system to achieve appropriate physicochemical properties. Based on such findings, researchers can realize the benefits and challenges for the next generation of delivery systems.

  9. Metallodrugs in targeted cancer therapeutics. Aiming at chemoresistance-related patterns and immunosuppressive tumor networks (United States)

    Salifoglou, Athanasios; Petanidis, Savvas; Kioseoglou, Efrosini


    Tumor cell chemoresistance is a major challenge in cancer therapeutics. Major select metal-based drugs are potent anticancer agents yet they exhibit undesirable side-effects and are effective against only a few types of cancers. A need, therefore, arises for new metallodrugs with an improved spectrum of efficacy and lower toxicity. Development of anticancer drugs based on antitumor metals is currently a very active field, with considerable efforts having been made toward elucidating the mechanisms of immune action of complex metalloforms and optimizing their immunoregulatory bioactivity through appropriate structural modification. In that respect, comprehending the molecular factors involved in drug resistance and immune response may help us develop new strategies toward more promising chemotherapies, reducing the rate of relapse and overcoming chemoresistance. In this review, a) molecular immune-related mechanisms in the tumor microenvironment, leading to decreased drug sensitivity, along with b) strategies for reversing drug resistance and targeting immunosuppressive tumor networks, while concurrently optimizing the design of complex metalloforms bearing anti-tumor activity, are discussed in an effort to identify and overcome underlying mechanisms of chemoresistance to both standard chemotherapeutic agents and targeted molecular therapies. Copyright© Bentham Science Publishers; For any queries, please email at

  10. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Josephine S. Modica-Napolitano


    Full Text Available Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy.

  11. Targeting Histone Deacetylases in Malignant Melanoma: A Future Therapeutic Agent or Just Great Expectations? (United States)

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Dimitroulis, Dimitrios; Spartalis, Eleftherios; Margonis, Georgios-Antonios; Schizas, Dimitrios; Deskou, Irini; Doula, Chrysoula; Magkouti, Eleni; Andreatos, Nikolaos; Antoniou, Efstathios A; Nonni, Afroditi; Kontzoglou, Konstantinos; Mantas, Dimitrios


    Malignant melanoma is the most aggressive type of skin cancer, with increasing frequency and mortality. Melanoma is characterized by rapid proliferation and metastases. Malignant transformation of normal melanocytes is associated with imbalance between oncogenes' action and tumor suppressor genes. Mutations or inactivation of these genes plays an important role in the pathogenesis of malignant melanoma. Many target-specific agents improved progression-free survival but unfortunately metastatic melanoma remains incurable, so new therapeutic strategies are needed. The balance of histones' acetylation affects cell cycle progression, differentiation and apoptosis. Histone deacetylases (HDAC) are associated with different types of cancer. Histone deacetylase inhibitors (HDACI) are enzymes that inhibit the action of HDAC, resulting in block of tumor cell proliferation. A small number of these enzymes has been studied regarding their anticancer effects in melanoma. The purpose of this article was to review the therapeutic effect of HDACI against malignant melanoma, enlightening the molecular mechanisms of their action. The MEDLINE database was used. The keywords/ phrases were; HDACI, melanoma, targeted therapies for melanoma. Our final conclusions were based on studies that didn't refer solely to melanoma due to their wider experimental data. Thirty-two articles were selected from the total number of the search's results. Only English articles published until March 2017 were used. Molecules, such as valproid acid (VPA), LBH589, LAQ824 (dacinostat), vorinostat, tubacin, sirtinol and tx-527, suberoyl bis-hydroxamic acid (SBHA), depsipeptide and Trichostatin A (TSA) have shown promising antineoplastic effects against melanoma. HDACI represent a promising agent for targeted therapy. More trials are required. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. (United States)

    Ghanghoria, Raksha; Kesharwani, Prashant; Tekade, Rakesh K; Jain, Narendra K


    Cancer is a prime healthcare problem that is significantly responsible for universal mortality. Despite distinguished advancements in medical field, chemotherapy is still the mainstay for the treatment of cancers. During chemotherapy, approximately 90% of the administered dose goes to normal tissues, with mere 2-5% precisely reaching the cancerous tissues. Subsequently, the resultant side effects and associated complications lead to dose reduction or even discontinuance of the therapy. Tumor directed therapy therefore, represents a fascinating approach to augment the therapeutic potential of anticancer bioactives as well as overcomes its side effects. The selective overexpression of LHRH receptors on human tumors compared to normal tissues makes them a suitable marker for diagnostics, molecular probes and targeted therapeutics. These understanding enabled the rational to conjugate LHRH with various cytotoxic drugs (doxorubicin, DOX; camptothecin etc.), cytotoxic genes [small interfering RNA (siRNA), micro RNA (miRNA)], as well as therapeutic nanocarriers (nanoparticles, liposomes or dendrimers) to facilitate their tumor specific delivery. LHRH conjugation enhances their delivery via LHRH receptor mediated endocytosis. Numerous cytotoxic analogs of LHRH were developed over the past two decades to target various types of cancers. The potency of LHRH compound were reported to be as high as 5,00-10,00 folds compared to parent molecules. The objective of this review article is to discuss reports on various LHRH analogs with special emphasis on their prospective application in the medical field. The article also focuses on the attributes that must be taken into account while designing a LHRH therapeutics with special account to the biochemistry and applications of these conjugates. The record on various cytotoxic analogs of LHRH are also discussed. It is anticipated that the knowledge of therapeutic and toxicological aspects of LHRH compounds will facilitate the

  13. Mitochondria: A Novel Therapeutic Target in Diabetic Nephropathy. (United States)

    Yang, Shikun; Han, Yachun; Liu, Jun; Song, Panai; Xu, Xiaoxuan; Zhao, Li; Hu, Chun; Xiao, Li; Liu, Fuyou; Zhang, Hao; Sun, Lin


    Diabetic nephropathy (DN) is an important diabetic microvascular complication, and it is becoming the leading cause of end-stage renal disease worldwide. Unfortunately, there are no effective therapies to treat established DN. Therefore, new therapeutic targets are urgently required. Accumulating studies indicate that mitochondrial dysfunction is central to the pathogenesis of DN, and therapies targeted mitochondria might effectively delay the progression of DN. A structured search of previously research literature about mitochondrial structure and function, mitochondrial DNA, mitochondrial biogenesis, mitochondrial dynamics change, mitophagy, mitochondrial ROS, mitochondrial apoptosis and therapies targeted mitochondria has been performed in several databases. 176 papers were included in this review, the results from these papers indicated that mitochondrial dysfunction is a pivotal issue for the development of DN, such as elevated oxidative stress induced by disorders of the mitochondrial respiratory chain complex and mitochondrial dynamic disorders, mutation of mitochondrial DNA, mitochondrial abnormal biogenesis, mitochondrial excessive fission, mitochondrial ROS overproduction. In addition, several therapeutic agents targeting the mitochondria (e.g mitochondrial ROS modulators, mitochondrial fragmentation inhibitors and mitochondrial biogenesis activators) have shown perfect therapeutic effect and security for DN. The finding of this review has further confirmed the vital role of mitochondrial dysfunction in the progression of DN, management strategies for recovering the normal mitochondrial function will offer potential novel therapeutic targets for DN. Copyright© Bentham Science Publishers; For any queries, please email at

  14. The pig as a large preclinical model for therapeutic human anti-cancer vaccine development

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon


    Development of therapeutic cancer vaccines has largely been based on rodent models and the majority failed to establish therapeutic responses in clinical trials. We therefore used pigs as a large animal model for human cancer vaccine development due to the large similarity between the porcine...

  15. Glypican-3 antibodies: a new therapeutic target for liver cancer


    Ho, Mingqian Feng, Mitchell


    Glypican-3 (GPC3) is an emerging therapeutic target in hepatocellular carcinoma (HCC), even though the biological function of GPC3 remains elusive. Currently human (MDX-1414 and HN3) and humanized mouse (GC33 and YP7) antibodies that target GPC3 for HCC treatment are under different stages of preclinical or clinical development. Humanized mouse antibody GC33 is being evaluated in a phase II clinical trial. Human antibodies MDX-1414 and HN3 are under different stages of preclinical evaluation....

  16. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta


    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  17. Peptide deformylase: a new target in antibacterial, antimalarial and anticancer drug discovery. (United States)

    Sangshetti, Jaiprakash N; Khan, Firoz A Kalam; Shinde, Devanand B


    Peptide deformylase (PDF) is a class of metalloenzyme responsible for catalyzing the removal of the N-formyl group from N-terminal methionine following translation. PDF inhibitors are moving into new phase of drug development. Initially, PDF was considered as an important target in antibacterial drug discovery; however genome database searches have revealed PDF-like sequences in parasites (P. falciparum) and human, widening the utility of this target in antimalarial and anticancer drug discovery along with antibacterial. Using structural and mechanistic information together with high throughput screening, several types of chemical classes of PDF inhibitors with improved efficacy and specificity have been identified. Various drugs like, GSK-1322322 (Phase II), BB-83698 (Phase I), and LBM-415 (Phase I) have entered into clinical developments. Developments in the field have prompted us to review the current aspects of PDFs, especially their structures, different classes of PDF inhibitors, and molecular modeling studies. In nut shell, this review enlightens PDF as a versatile target along with its inhibitors and future perspectives of different PDF inhibitors.

  18. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database. (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P S; Agarwal, Subhash M


    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC(50)/ED(50)/EC(50)/GI(50)), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients' Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI(50) data.

  19. Hepatitis B core protein as a therapeutic target. (United States)

    Mak, Lung-Yi; Wong, Danny Ka-Ho; Seto, Wai-Kay; Lai, Ching-Lung; Yuen, Man Fung


    Chronic hepatitis B virus (HBV) infection is difficult to cure, due to the presence of covalently-closed-circular DNA and virus-mediated blunting of host immune response. Existing therapies with nucleos(t)ide analogue or pegylated-interferon are not sufficient to achieve a high rate of HBV surface antigen seroclearance, a more desirable treatment outcome. Novel therapeutic agents targeting alternative viral replication steps are being developed. In this review, we will discuss the hepatitis B core antigen (HBcAg) as a therapeutic target. Areas covered: The basic structure and fundamental functions of HBcAg including nucleocapsid assembly, pre-genomic RNA encapsidation, reverse transcription, virion formation, cccDNA amplification, immune response regulation, and HBx protein interaction will be reviewed. Most of these are identified as therapeutic targets and tested in in vitro and in vivo studies, although clinical trials are scanty. Among the different components, the core protein allosteric modulators (CpAM) have been most widely investigated and appear promising in clinical trials. Expert opinion: The multiple and essential functions of HBcAg for HBV life cycle are important and attractive targets for HBV therapeutic interventions. Controlled trials involving CpAM are awaited. Apart from CpAM, drugs directed against different functions of HBcAg may be further explored to maximize the chance of cure.

  20. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma (United States)


    experiments using rat model of human Mesothelioma should also provide leads into the immuno-preventive and immuno- therapeutic approaches to treatments ...experiments involving injection of rat Mesothelioma cells and treatments of the resulting tumors. These experiments will begin as soon as we have...Targets of Mesothelioma PRINCIPAL INVESTIGATOR: Harvey Pass, M.D. CONTRACTING ORGANIZATION: New York University School of Medicine

  1. Cancer therapeutic target genes identified on chromosome 20q

    Directory of Open Access Journals (Sweden)

    Editorial Office


    , Snijders and Mao described that and “when the selection pressure is removed, amplifications are not maintained and eventually disappear. Thus, amplifications focus on those genes that are important for tumor development,” they said. Their analysis showed that, as tumorous cells progress toward malignancy, the DNA copy number plays a major role in the mechanism of increased expression levels for the 18-gene signature on chromosome 20q. “Strong associations between the DNA copy number and gene expression were observed in the majority of tumor types,” the researchers said. “For example, the RAE1 expression was found to be significantly associated with DNA copy number in 20 tumor types,” the study reported. “Elevated DNA copy numbers of MMP9 and SULF2 were associated with increased gene expressions in only two and seven tumor types, respectively,” it added. With their integrated multi-omics analysis of genes on chromosome 20q, Snijders and Mao believed that the 18-gene signature could become new molecular targets for cancer therapy. “Gene ontology analysis revealed significant enrichment of cell cycle and mitosis-related biological processes in our 18-gene, suggesting that a cluster of functionally related genes localize to chromosome 20q,” they said. The identification of good targets such as theirs is a critical step for the development of targeted therapies for cancer treatment, according to the researchers. Microarray and next generation sequencing technologies have become invaluable tools in cataloging genomic abnormalities in human cancers and identifying new potential therapeutic targets, in addition to the availability of large cancer genomic data sets which allows for unbiased approaches to identify genes that are important in tumor progression, the research study noted. “Here, we aggregated available cancer databases to identify cancer driver genes across tumor types by combining gene transcript and DNA copy number across chromosome 20q to

  2. Trastuzumab Sensitizes Ovarian Cancer Cells to EGFR-targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Wilken Jason A


    Full Text Available Abstract Background Early studies have demonstrated comparable levels of HER2/ErbB2 expression in both breast and ovarian cancer. Trastuzumab (Herceptin, a therapeutic monoclonal antibody directed against HER2, is FDA-approved for the treatment of both early and late stage breast cancer. However, clinical studies of trastuzumab in epithelial ovarian cancer (EOC patients have not met the same level of success. Surprisingly, however, no reports have examined either the basis for primary trastuzumab resistance in ovarian cancer or potential ways of salvaging trastuzumab as a potential ovarian cancer therapeutic. Methods An in vitro model of primary trastuzumab-resistant ovarian cancer was created by long-term culture of HER2-positive ovarian carcinoma-derived cell lines with trastuzumab. Trastuzumab treated vs. untreated parental cells were compared for HER receptor expression, trastuzumab sensitivity, and sensitivity to other HER-targeted therapeutics. Results In contrast to widely held assumptions, here we show that ovarian cancer cells that are not growth inhibited by trastuzumab are still responsive to trastuzumab. Specifically, we show that responsiveness to alternative HER-targeted inhibitors, such as gefitinib and cetuximab, is dramatically potentiated by long-term trastuzumab treatment of ovarian cancer cells. HER2-positive ovarian carcinoma-derived cells are, therefore, not "unresponsive" to trastuzumab as previously assumed, even when they not growth inhibited by this drug. Conclusions Given the recent success of EGFR-targeted therapeutics for the treatment of other solid tumors, and the well-established safety profile of trastuzumab, results presented here provide a rationale for re-evaluation of trastuzumab as an experimental ovarian cancer therapeutic, either in concert with, or perhaps as a "primer" for EGFR-targeted therapeutics.

  3. Identification of functional peptides from natural and synthetic products on their anticancer activities by tumor targeting. (United States)

    Ko, Joshua K; Auyeung, Kathy K


    Cancer cells can express specific membrane proteins, which act as biomarkers for chemotherapeutic targeting. Functional peptides possess unique properties that will ensure efficacy, selectivity, specificity and low toxicity when used as therapeutic agents. Therapeutic peptides have been derived in treatment of cancers through improvement of cellular uptake, drug targeting and vaccine development. Peptides from natural source have been used for chemoprevention and therapy of various cancers. These include peptides derived from food, marine products, venom components and other animal constituents. Besides, chemically- and recombinantly-synthesized peptides have also been produced and extensively studied in contemporary applications. Improvement of tumor targeting is essential for chemotherapeutic development. This can be achieved through enhancement of intracellular delivery and/or increased specific binding affinity to cancer cells by pore-forming and cytotoxic peptides. Cytotoxic peptides such as the Bcl-2 family members can induce receptor-specific binding to tumor cells and promote apoptosis by targeting lipid membranes. This approach has some limitations in targeting, penetration and localization within tumors. Cell-penetrating peptides (CPPs) belong to a new class of tumor-targeting peptides that can facilitate internalization of tumor markers and/or chemotherapeutic drugs. In order to overcome the problem of serum instability in classical CPPs (e.g. Tat), newer classes of CPPs has been recently introduced. Nevertheless, some cyclized CPPs can further enhance cellular uptake and binding selectivity when compared to activities of their linear counterpart, especially when treating chemoresistant tumors. This review compiles the use of effective tumor-targeting peptides including novel CPPs that represents new therapeutic strategies for the treatment of cancers.

  4. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun


    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  5. Discovery and development of anticancer agents from marine sponges: perspectives based on a chemistry-experimental therapeutics collaborative program. (United States)

    Valeriote, Frederick A; Tenney, Karen; Media, Joseph; Pietraszkiewicz, Halina; Edelstein, Matthew; Johnson, Tyler A; Amagata, Taro; Crews, Phillip


    A collaborative program was initiated in 1990 between the natural product chemistry laboratory of Dr. Phillip Crews at the University of California Santa Cruz and the experimental therapeutics laboratory of Dr. Fred Valeriote at the Henry Ford Hospital in Detroit. The program focused on the discovery and development of anticancer drugs from sponge extracts. A novel in vitro disk diffusion, solid tumor selective assay was used to examine 2,036 extracts from 683 individual sponges. The bioassay-directed fractionation discovery component led to the identification of active pure compounds from many of these sponges. In most cases, pure compound was prepared in sufficient quantities to both chemically identify the active compound(s) as well as pursue one or more of the biological development components. The latter included IC50, clonogenic survival-concentration exposure, maximum tolerated dose, pharmacokinetics and therapeutic assessment studies. Solid tumor selective compounds included fascaplysin and 10-bromofascaplysin (Fascaplysinopsis), neoamphimedine, 5-methoxyneoamphimedine and alpkinidine (Xestospongia), makaluvamine C and makaluvamine H (Zyzzya), psymberin (Psammocinia and Ircinia), and ethylplakortide Z and ethyldidehydroplakortide Z (Plakortis). These compounds or analogs thereof continue to have therapeutic potential.

  6. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery. (United States)

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin


    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail:


    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  8. Breast cancer stem cells, EMT and therapeutic targets

    International Nuclear Information System (INIS)

    Kotiyal, Srishti; Bhattacharya, Susinjan


    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements

  9. The dual kinase complex FAK-Src as a promising therapeutic target in cancer (United States)

    Bolós, Victoria; Gasent, Joan Manuel; López-Tarruella, Sara; Grande, Enrique


    Focal adhesion kinase (FAK) and steroid receptor coactivator (Src) are intracellular (nonreceptor) tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel agents, to abrogate treatment associated resistances, will also be reviewed. PMID:20616959

  10. Strategies to Target Matrix Metalloproteinases as Therapeutic Approach in Cancer. (United States)

    Piperigkou, Zoi; Manou, Dimitra; Karamanou, Konstantina; Theocharis, Achilleas D


    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are capable of degrading numerous extracellular matrix (ECM) components thus participating in physiological and pathological processes. Apart from the remodeling of ECM, they affect cell-cell and cell-matrix interactions and are implicated in the development and progression of various diseases such as cancer. Numerous studies have demonstrated that MMPs evoke epithelial to mesenchymal transition (EMT) of cancer cells and affect their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Various studies have suggested MMPs as suitable targets for treatment of malignancies, and several MMP inhibitors (MMPIs) have been developed. Although initial trials have failed to establish MMPIs as anticancer agents due to lack of specificity and side effects, new MMPIs have been developed with improved action that are currently being investigated. Furthermore, novel strategies that target MMPs for improving drug delivery and regulating their activity in tumors are presented. This review summarizes the implication of MMPs in cancer progression and discusses the advancements in their targeting.

  11. The Epigenome as a therapeutic target for Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Shane V Hegarty


    Full Text Available Parkinson's disease (PD is a common, progressive neurodegenerative disease characterised by degeneration of nigrostriatal dopaminergic neurons, aggregation of α-synuclein and motor symptoms. Current dopamine-replacement strategies provide symptomatic relief, however their effectiveness wear off over time and their prolonged use leads to disabling side-effects in PD patients. There is therefore a critical need to develop new drugs and drug targets to protect dopaminergic neurons and their axons from degeneration in PD. Over recent years, there has been robust evidence generated showing that epigenetic dysregulation occurs in PD patients, and that epigenetic modulation is a promising therapeutic approach for PD. This article first discusses the present evidence implicating global, and dopaminergic neuron-specific, alterations in the methylome in PD, and the therapeutic potential of pharmacologically targeting the methylome. It then focuses on another mechanism of epigenetic regulation, histone acetylation, and describes how the histone acetyltransferase (HAT and histone deacetylase (HDAC enzymes that mediate this process are attractive therapeutic targets for PD. It discusses the use of activators and/or inhibitors of HDACs and HATs in models of PD, and how these approaches for the selective modulation of histone acetylation elicit neuroprotective effects. Finally, it outlines the potential of employing small molecule epigenetic modulators as neuroprotective therapies for PD, and the future research that will be required to determine and realise this therapeutic potential.

  12. Therapeutic targeting strategies using endogenous cells and proteins. (United States)

    Parayath, Neha N; Amiji, Mansoor M


    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Hammad Shafiq


    Full Text Available Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

  14. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa (United States)

    Shafiq, Hammad; Ahmad, Asif; Masud, Tariq; Kaleem, Muhammad


    Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies. PMID:25859300

  15. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands. (United States)

    Zhang, Yang; Zheng, Wei; Luo, Qun; Zhao, Yao; Zhang, Erlong; Liu, Suyan; Wang, Fuyi


    We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules.

  16. Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic Acid-multiwalled carbon nanotube conjugate. (United States)

    Das, Manasmita; Datir, Satyajit R; Singh, Raman Preet; Jain, Sanyog


    The present study reports the design, synthesis, and biological evaluation of a novel, intravenously injectable, theranostic prodrug based on multiwalled carbon nanotubes (MWCNTs) concomitantly decorated with a fluorochrome (Alexa-fluor, AF488/647), radionucleide (Technitium-99m), tumor-targeting module (folic acid, FA), and anticancer agent (methotrexate, MTX). Specifically, MTX was conjugated to MWCNTs via a serum-stable yet intracellularly hydrolyzable ester linkage to ensure minimum drug loss in circulation. Cell uptake studies corroborated the selective internalization of AF-FA-MTX-MWCNTs (1) by folate receptor (FR) positive human lung (A549) and breast (MCF 7) cancer cells through FR mediated endocytosis. Lysosomal trafficking of 1 enabled the conjugate to exert higher anticancer activity as compared to its nontargeted counterpart that was mainly restricted to cytoplasm. Tumor-specific accumulation of 1 in Ehlrich Ascites Tumor (EAT) xenografted mice was almost 19 and 8.6 times higher than free MTX and FA-deprived MWCNTs. Subsequently, the conjugate 1 was shown to arrest tumor growth more effectively in chemically breast tumor induced rats, when compared to either free MTX or nontargeted controls. Interestingly, the anticancer activities of the ester-linked CNT-MTX conjugates (including the one deprived of FA) were significantly higher than their amide-linked counterpart, suggesting that cleavability of linkers between drug and multifunctional nanotubes critically influence their therapeutic performance. The results were also supported by in silico docking and ligand similarity analysis. Toxicity studies in mice confirmed that all CNT-MTX conjugates were devoid of any perceivable hepatotoxicity, cardiotoxicity, and nephrotoxicity. Overall, the delivery property of MWCNTs, high tumor binding avidity of FA, optical detectability of AF fluorochromes, and radio-traceability of (99m)Tc could be successfully integrated and partitioned on a single CNT-platform to

  17. Chemical proteomics reveals HSP70 1A as a target for the anticancer diterpene oridonin in Jurkat cells. (United States)

    Dal Piaz, Fabrizio; Cotugno, Roberta; Lepore, Laura; Vassallo, Antonio; Malafronte, Nicola; Lauro, Gianluigi; Bifulco, Giuseppe; Belisario, Maria Antonietta; De Tommasi, Nunziatina


    Oridonin, an ent-kaurane diterpene isolated from well known Chinese medicinal plant Isodon rubescens, has been shown to have multiple biological activities. Among them, the anticancer activity has been repeatedly reported by many research groups. The chemopreventive and antitumor effects of oridonin have been related to its ability to interfere with several pathways which are involved in cell proliferation, cell cycle arrest, apoptosis and/or autophagy. Despite the number of studies performed on this diterpene, the molecular mechanism underlying its cellular activity remains to be elucidated. Hence, we tried to mine target protein(s) of oridonin by employing a mass spectrometry-based chemical proteomics approach, providing evidences that oridonin is able to directly bind the multifunctional, stress-inducible heat shock protein 70 1A (HSP70 1A). Oridonin/HSP70 complex formation was confirmed in leukemia-derived Jurkat cells. The characterization of HSP70 inhibition by oridonin was performed using chemical and biological approaches. Moreover, the binding site of oridonin on the chaperone was identified by a mass-based approach combined with Molecular Dynamics simulations. Although natural products showed high efficiency and several of these agents have now entered in clinical trials, information concerning the mechanisms of action at a molecular level of many of them is very poor or completely missed. Nevertheless, the identification of the molecular target of a drug candidate has several advantages. The most significant is the ability to set up target-based assays and to allow structure-activity relationship studies to guide medicinal chemistry efforts towards lead optimization. The knowledge of drug targets can also facilitate the identification of potential toxicities or side effects, if there is any precedent of toxicities for the identified target. Achieving this in an effective, unbiased and efficient manner subsists as a significant challenge for the new era

  18. Smac Mimetics to Therapeutically Target IAP Proteins in Cancer. (United States)

    Fulda, S


    Inhibitor of Apoptosis (IAP) proteins are overexpressed in a variety of human cancers. Therefore, they are considered as promising targets for the design of therapeutic strategies. Smac mimetics mimic the endogenous mitochondrial protein Smac that antagonizes IAP proteins upon its release into the cytosol. Multiple preclinical studies have documented the ability of Smac mimetics to either directly induce cell death of cancer cells or to prime them to agents that trigger cell death. At present, several Smac mimetics are being evaluated in early clinical trials. The current review provides an overview on the potential of Smac mimetics as cancer therapeutics to target IAP proteins for cancer therapy. © 2017 Elsevier Inc. All rights reserved.

  19. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics. (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J


    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. Copyright © 2016. Published by Elsevier Ltd.

  20. ROCK as a therapeutic target for ischemic stroke. (United States)

    Sladojevic, Nikola; Yu, Brian; Liao, James K


    Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.

  1. Podoplanin - an emerging cancer biomarker and therapeutic target. (United States)

    Krishnan, Harini; Rayes, Julie; Miyashita, Tomoyuki; Ishii, Genichiro; Retzbach, Edward P; Sheehan, Stephanie A; Takemoto, Ai; Chang, Yao-Wen; Yoneda, Kazue; Asai, Jun; Jensen, Lasse; Chalise, Lushun; Natsume, Atsushi; Goldberg, Gary S


    Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts (CAFs), and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition (EMT), migration, invasion, metastasis, and inflammation. Antibodies, CAR-T cells, biologics, and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer including glioma, squamous cell carcinoma, mesothelioma, and melanoma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    Directory of Open Access Journals (Sweden)

    Antoine Taly


    Full Text Available Ligand-gated ion channels (LGIC play a central role in inter-cellular communication. This key function has two consequences: (i these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted.

  3. Current and Emerging Therapeutic Targets for Metastatic Renal Cell Carcinoma. (United States)

    Zarrabi, Kevin; Wu, Shenhong


    The treatment of advanced renal cell carcinoma has evolved dramatically over recent years. In this review, we will summarize current and emerging therapies based on molecular targets and provide insight into treatment strategy for metastatic renal cell carcinoma. We have witnessed a paradigm shift in the therapeutic landscape as treatment was formerly reliant on cytokine-based agents which have now been replaced with therapies targeting angiogenesis, mammalian target of rapamycin pathways, and immune responses. These dramatic changes are primarily due to our improved understanding of the underlying mutations and molecular mechanisms leading to tumorigenesis and progression. We now have targeted agents in the form of small-molecule tyrosine kinase inhibitors, monoclonal antibodies, and mTOR inhibitors. Moreover, immunotherapy-targeting checkpoints of T-lymphocyte activity has provided increased overall survival and a new class of agents with potential to radically change the treatment options. With these agents and their combination, durable responses are increasingly seen even though treatment resistance remains a huge challenge. New treatment strategies are rapidly developing and the therapeutic landscape is expected for further evolution.

  4. Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Andrea Mattarei


    Full Text Available Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific “homing” properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a “targeting pro-drug.” Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3 has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic ring system and the triphenylphosphonium (TPP lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them—a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system—proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.

  5. Comparing the Suitability of Autodock, Gold and Glide for the Docking and Predicting the Possible Targets of Ru(II-Based Complexes as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi


    Full Text Available In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II such as the rapta-based complexes formulated as [Ru(η6-p-cymeneL2(pta] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.

  6. [Gap junctions: A new therapeutic target in major depressive disorder?]. (United States)

    Sarrouilhe, D; Dejean, C


    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Increased Anticancer Efficacy of Intravesical Mitomycin C Therapy when Combined with a PCNA Targeting Peptide

    Directory of Open Access Journals (Sweden)

    Odrun A. Gederaas


    Full Text Available Non–muscle-invasive bladder cancers (NMIBCs are tumors confined to the mucosa or the mucosa/submucosa. An important challenge in treatment of NMIBC is both high recurrence and high progression rates. Consequently, more efficacious intravesical treatment regimes are in demand. Inhibition of the cell’s DNA repair systems is a new promising strategy to improve cancer therapy, and proliferating cell nuclear antigen (PCNA is a new promising target. PCNA is an essential scaffold protein in multiple cellular processes including DNA replication and repair. More than 200 proteins, many involved in stress responses, interact with PCNA through the AlkB homologue 2 PCNA-interacting motif (APIM, including several proteins directly or indirectly involved in repair of DNA interstrand crosslinks (ICLs. In this study, we targeted PCNA with a novel peptide drug containing the APIM sequence, ATX-101, to inhibit repair of the DNA damage introduced by the chemotherapeutics. A bladder cancer cell panel and two different orthotopic models of bladder cancer in rats, the AY-27 implantation model and the dietary BBN induction model, were applied. ATX-101 increased the anticancer efficacy of the ICL-inducing drug mitomycin C (MMC, as well as bleomycin and gemcitabine in all bladder cancer cell lines tested. Furthermore, we found that ATX-101 given intravesically in combination with MMC penetrated the bladder wall and further reduced the tumor growth in both the slow growing endogenously induced and the rapidly growing transplanted tumors. These results suggest that ATX-101 has the potential to improve the efficacy of current MMC treatment in NMIBC.

  8. Molecular predictors of therapeutic response to specific anti-cancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.


    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  9. PIM kinases as therapeutic targets against advanced melanoma (United States)

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina


    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  10. Targeting cancer cell mitochondria as a therapeutic approach: recent updates. (United States)

    Cui, Qingbin; Wen, Shijun; Huang, Peng


    Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.

  11. S100-alarmins: potential therapeutic targets for arthritis. (United States)

    Austermann, Judith; Zenker, Stefanie; Roth, Johannes


    In arthritis, inflammatory processes are triggered by numerous factors that are released from joint tissues, promoting joint destruction and pathological progression. During inflammation, a novel family of pro-inflammatory molecules called alarmins is released, amplifying inflammation and joint damage. Areas covered: With regard to the role of the alarmins S100A8 and S100A9 in the pathogenesis of arthritis, recent advances and the future prospects in terms of therapeutic implications are considered. Expert opinion: There is still an urgent need for novel treatment strategies addressing the local mechanisms of joint inflammation and tissue destruction, offering promising therapeutic alternatives. S100A8 and S100A9, which are the most up-regulated alarmins during arthritis, are endogenous triggers of inflammation, defining these proteins as promising targets for local suppression of arthritis. In murine models, the blockade of S100A8/S100A9 ameliorates inflammatory processes, including arthritis, and there are several lines of evidence that S100-alarmins may already be targeted in therapeutic approaches in man.

  12. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. (United States)

    Bugde, Piyush; Biswas, Riya; Merien, Fabrice; Lu, Jun; Liu, Dong-Xu; Chen, Mingwei; Zhou, Shufeng; Li, Yan


    Most disseminated cancers remain fatal despite the availability of a variety of conventional and novel treatments including surgery, chemotherapy, radiotherapy, immunotherapy, and biologically targeted therapy. A major factor responsible for the failure of chemotherapy in the treatment of cancer is the development of multidrug resistance (MDR). The overexpression of various ABC transporters in cancer cells can efficiently remove the anticancer drug from the cell, thus causing the drug to lose its effect. Areas covered: In this review, we summarised the ongoing research related to the mechanism, function, and regulation of ABC transporters. We integrated our current knowledge at different levels from molecular biology to clinical trials. We also discussed potential therapeutic strategies of targeting ABC transporters to reverse MDR in cancer cells. Expert opinion: Involvement of various ABC transporters to cancer MDR lays the foundation for developing tailored therapies that can overcome MDR. An ideal MDR reversal agent should have broad-spectrum ABC-transporter inhibitory activity, be potent, have good pharmacokinetics, have no trans-stimulation effects, and have low or no toxicity. Alternatively, nanotechnology-based drug delivery systems containing both the cytotoxic drug and reversing agent may represent a useful approach to reversing MDR with minimal off-target toxicity.

  13. Targeting the Wnt Pathway in Cancer: A Review of Novel Therapeutics. (United States)

    Tabatabai, Roya; Linhares, Yuliya; Bolos, David; Mita, Monica; Mita, Alain


    Wnt signaling is an evolutionarily conserved pathway that controls cell-to-cell interactions during embryogenesis. In adults, Wnt signaling plays a role in tissue homeostasis in almost every organ system. Aberrations within this pathway are implicated in a spectrum of human diseases. A variety of perturbations have been described in both solid and hematologic malignancies, lending way to Wnt signaling as a target for anti-cancer therapy. Of particular interest is the role of Wnt signaling in the development and maintenance of cancer stem cells, a rare population of cells that are able to maintain a tumor via self-renewal and thought to be more resistant to chemotherapy than bulk tumor cells. The ability to eradicate cancer stem cells may decrease the risk of cancer relapse and metastasis. A number of therapeutic agents specifically targeting the Wnt pathway have entered clinical trials, either as monotherapy or in combination with chemotherapy. We will provide an overview of agents that have been developed to target the Wnt pathways and a summary of pre-clinical and clinical trials.

  14. GOLGA2/GM130, cis-Golgi Matrix Protein, is a Novel Target of Anticancer Gene Therapy


    Chang, Seung-Hee; Hong, Seong-Ho; Jiang, Hu-Lin; Minai-Tehrani, Arash; Yu, Kyeong-Nam; Lee, Jae-Ho; Kim, Ji-Eun; Shin, Ji-Young; Kang, Bitna; Park, Sungjin; Han, Kiwon; Chae, Chanhee; Cho, Myung-Haing


    Achievement of long-term survival of patients with lung cancer treated with conventional chemotherapy is still difficult for treatment of metastatic and advanced tumors. Despite recent progress in investigational therapies, survival rates are still disappointingly low and novel adjuvant and systemic therapies are urgently needed. A recently elucidated secretory pathway is attracting considerable interest as a promising anticancer target. The cis-Golgi matrix protein, GOLGA2/GM130, plays an im...

  15. Neuropeptide Receptors: Novel Targets for HIV/AIDS Therapeutics

    Directory of Open Access Journals (Sweden)

    Donald R. Branch


    Full Text Available The vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypepetide (VPAC receptors are important for many physiologic functions, including glucose homeostasis, neuroprotection, memory, gut function, modulation of the immune system and circadian function. In addition, VPAC receptors have been shown to function in vitro to modulate the infection of HIV by a signal transduction pathway that appears to regulate viral integration. In this article, the affects of VPAC stimulation on HIV infection will be reviewed and approaches for the development of HIV/AIDS therapeutics that target these receptors will be described. Novel HIV/AIDS therapeutics are urgently required to stem the continued spread of this disease, particularly in underdeveloped countries. Drug design to inhibit signaling through VPAC1 and stimulate signaling through VPAC2 could lead to alternative therapies for the treatment and/or prevention of HIV/AIDS.

  16. Autophagy as a Therapeutic Target in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Yuki Tanaka


    Full Text Available Diabetic nephropathy is a serious complication of diabetes mellitus, and its prevalence has been increasing worldwide. Therefore, there is an urgent need to identify a new therapeutic target to prevent diabetic nephropathy. Autophagy is a major catabolic pathway involved in degrading and recycling macromolecules and damaged organelles to maintain intracellular homeostasis. The study of autophagy in mammalian systems is advancing rapidly and has revealed that it is involved in the pathogenesis of various metabolic or age-related diseases. The functional role of autophagy in the kidneys is also currently under intense investigation although, until recently, evidence showing the involvement of autophagy in the pathogenesis of diabetic nephropathy has been limited. We provide a systematic review of autophagy and discuss the therapeutic potential of autophagy in diabetic nephropathy to help future investigations in this field.

  17. Therapeutic targeting of cancers with loss of PTEN function (United States)

    Dillon, Lloye M.; Miller, Todd W.


    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is one of the most frequently disrupted tumor suppressors in cancer. The lipid phosphatase activity of PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway to repress tumor cell growth and survival. In the nucleus, PTEN promotes chromosome stability and DNA repair. Consequently, loss of PTEN function increases genomic instability. PTEN deficiency is caused by inherited germline mutations, somatic mutations, epigenetic and transcriptional silencing, post-translational modifications, and protein-protein interactions. Given the high frequency of PTEN deficiency across cancer subtypes, therapeutic approaches that exploit PTEN loss-of-function could provide effective treatment strategies. Herein, we discuss therapeutic strategies aimed at cancers with loss of PTEN function, and the challenges involved in treating patients afflicted with such cancers. We review preclinical and clinical findings, and highlight novel strategies under development to target PTEN-deficient cancers. PMID:24387334

  18. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics. (United States)

    Sparrow, Janet R


    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation.

  19. Toll-like receptors as therapeutic targets in cystic fibrosis.

    LENUS (Irish Health Repository)

    Greene, Catherine M


    Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective\\/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results\\/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.

  20. An update on anticancer drug development and delivery targeting carbonic anhydrase IX

    Directory of Open Access Journals (Sweden)

    Justina Kazokaitė


    Full Text Available The expression of carbonic anhydrase (CA IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors.

  1. Rising Prices of Targeted Oral Anticancer Medications and Associated Financial Burden on Medicare Beneficiaries. (United States)

    Shih, Ya-Chen Tina; Xu, Ying; Liu, Lei; Smieliauskas, Fabrice


    Purpose The high cost of oncology drugs threatens the affordability of cancer care. Previous research identified drivers of price growth of targeted oral anticancer medications (TOAMs) in private insurance plans and projected the impact of closing the coverage gap in Medicare Part D in 2020. This study examined trends in TOAM prices and patient out-of-pocket (OOP) payments in Medicare Part D and estimated the actual effects on patient OOP payments of partial filling of the coverage gap by 2012. Methods Using SEER linked to Medicare Part D, 2007 to 2012, we identified patients who take TOAMs via National Drug Codes in Part D claims. We calculated total drug costs (prices) and OOP payments per patient per month and compared their rates of inflation with general health care prices. Results The study cohort included 42,111 patients who received TOAMs between 2007 and 2012. Although the general prescription drug consumer price index grew at 3% per year over 2007 to 2012, mean TOAM prices increased by nearly 12% per year, reaching $7,719 per patient per month in 2012. Prices increased over time for newly and previously launched TOAMs. Mean patient OOP payments dropped by 4% per year over the study period, with a 40% drop among patients with a high financial burden in 2011, when the coverage gap began to close. Conclusion Rising TOAM prices threaten the financial relief patients have begun to experience under closure of the coverage gap in Medicare Part D. Policymakers should explore methods of harnessing the surge of novel TOAMs to increase price competition for Medicare beneficiaries.

  2. MicroRNAs as Therapeutic Targets for Alzheimer's Disease. (United States)

    Di Meco, Antonio; Praticò, Domenico


    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. With increasing longevity and the absence of a cure, AD has become not only a major health problem but also a heavy social and economic burden worldwide. Given this public health challenge, and that the current approved therapy for AD is limited to symptomatic treatment (i.e., cholinesterase inhibitors and NMDA receptor antagonists), exploration of new molecular pathways as novel therapeutic targets remains an attractive option for disease modifying drug development. microRNAs (miRNAs) are short non-coding RNA that control gene expression at the post-translational level by inhibiting translation of specific mRNAs or degrading them. Dysregulation of several miRNAs has been described in AD brains. Interestingly, their molecular targets are pathways that are well-established functional players in the onset and development of AD pathogenesis. Today several molecular tools have been developed to modulate miRNA levels in vitro and in vivo. These scientific advancements are affording us for the first time with the real possibility of targeting in vivo these dysregulated miRNAs as a novel therapeutic approach against AD.

  3. Advances in sarcoma gene mutations and therapeutic targets. (United States)

    Gao, Peng; Seebacher, Nicole A; Hornicek, Francis; Guo, Zheng; Duan, Zhenfeng


    Sarcomas are rare and complex malignancies that have been associated with a poor prognostic outcome. Over the last few decades, traditional treatment with surgery and/or chemotherapy has not significantly improved outcomes for most types of sarcomas. In recent years, there have been significant advances in the understanding of specific gene mutations that are important in driving the pathogenesis and progression of sarcomas. Identification of these new gene mutations, using next-generation sequencing and advanced molecular techniques, has revealed a range of potential therapeutic targets. This, in turn, may lead to the development of novel agents targeted to different sarcoma subtypes. In this review, we highlight the advances made in identifying sarcoma gene mutations, including those of p53, RB, PI3K and IDH genes, as well as novel therapeutic strategies aimed at utilizing these mutant genes. In addition, we discuss a number of preclinical studies and ongoing early clinical trials in sarcoma targeting therapies, as well as gene editing technology, which may provide a better choice for sarcoma patient management. Published by Elsevier Ltd.

  4. Opioid withdrawal syndrome: emerging concepts and novel therapeutic targets. (United States)

    Rehni, Ashish K; Jaggi, Amteshwar S; Singh, Nirmal


    Opioid withdrawal syndrome is a debilitating manifestation of opioid dependence and responds poorly to the available clinical therapies. Studies from various in vivo and in vitro animal models of opioid withdrawal syndrome have led to understanding of its pathobiology which includes complex interrelated pathways leading to adenylyl cyclase superactivation based central excitation. Advancements in the elucidation of opioid withdrawal syndrome mechanisms have revealed a number of key targets that have been hypothesized to modulate clinical status. The present review discusses the neurobiology of opioid withdrawal syndrome and its therapeutic target recptors like calcitonin gene related peptide receptors (CGRP), N-methyl-D-aspartate (NMDA) receptors, gamma aminobutyric acid receptors (GABA), G-proteingated inwardly rectifying potassium (GIRK) channels and calcium channels. The present review further details the potential role of second messengers like calcium (Ca2+) / calmodulin-dependent protein kinase (CaMKII), nitric oxide synthase, cytokines, arachidonic acid metabolites, corticotropin releasing factor, fos and src kinases in causing opioid withdrawal syndrome. The exploitation of these targets may provide effective therapeutic agents for the management of opioid dependence-induced abstinence syndrome.

  5. Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases. (United States)

    Tse-Dinh, Y-C


    DNA topoisomerases are ubiquitous enzymes needed to overcome topological problems encountered during DNA replication, transcription, recombination and maintenance of genomic stability. They have proved to be valuable targets for therapy, in part because some anti-topoisomerase agents act as poisons. Bacterial DNA gyrase and topoisomerase IV (type IIA topoisomerases) are targets of fluoroquinolones while human topoisomerase I (a type IB topoisomerase) and topoisomerase II are targets of various anticancer drugs. Bacterial type IA topoisomerase share little sequence homology to type IB or type IIA topoisomerases, but all topoisomerases have the potential of having the covalent phosphotyrosine DNA cleavage intermediate trapped by drug action. Recent studies have demonstrated that stabilization of the covalent complex formed by bacterial topoisomerase I and cleaved DNA can lead to bacterial cell death, supporting bacterial topoisomerase I as a promising target for the development of novel antibiotics. For current antibacterial therapy, the prevalence of fluoroquinolone-resistant bacterial pathogens has become a major public health concern, and efforts are directed towards identifying novel inhibitors of bacterial type IIA topoisomerases that are not affected by fluoroquinolone resistant mutations on the gyrase or topoisomerase IV genes. For anti-viral therapy, poxviruses encode their own type IB topoisomerases; these enzymes differ in drug sensitivity from human topoisomerase I. To confront potential threat of small pox as a weapon in terrorist attacks, vaccinia virus topoisomerase I has been targeted for discovery of anti-viral agents. These new developments of DNA topoisomerases as targets of novel therapeutic agents being reviewed here represent excellent opportunities for drug discovery in the treatment of infectious diseases.

  6. New Marine Derived Anticancer Therapeutics ─ A Journey from the Sea to Clinical Trials

    Directory of Open Access Journals (Sweden)

    J. Jimeno


    Full Text Available Abstract: Nature has been instrumental as a source for therapeutics. Despite the fact that we live in an oceanic planet, a number of technical factors have historically hampered the evolution of a marine-based chamanic medicine. With the implementation of scuba diving tools and the development of sophisticated instruments for the isolation and elucidation of structures of natural products from marine organisms, major advances have been made in the discovery of marine derived therapeutics. The availability of ARA-C, a nucleoside analog that is a basic component in the treatment of acute myeloid leukemia, and its fluorinated analog Gemcitabine, an important therapeutic tool in the treatment of pancreatic cancer and in non small cell lung cancer, is a solid proof and validation of the potential of this approach. As a result of our discovery and developmental program, three innovative compounds with novel mechanisms of action: ET-743, AplidinR and Kahalalide F, have been shown to display a positive therapeutic index and activity in resistant solid tumors that supports the ongoing clinical phase III/II trials. ET-743 represents the first active agent against sarcomas developed in the past 25 years and has demonstrated a therapeutic potential in pretreated ovarian cancer. Several chemical entities are under advanced preclinical testing and additional candidates for clinical development are emerging, including compounds hitting a specific target. Moreover, the development of a given marine candidate implies the collaboration of an interdisciplinary team special focused on supply, formulation, pharmacogenetics and preclinical toxicology.

  7. Characterizing and optimizing human anticancer drug targets based on topological properties in the context of biological pathways. (United States)

    Zhang, Jian; Wang, Yan; Shang, Desi; Yu, Fulong; Liu, Wei; Zhang, Yan; Feng, Chenchen; Wang, Qiuyu; Xu, Yanjun; Liu, Yuejuan; Bai, Xuefeng; Li, Xuecang; Li, Chunquan


    One of the challenging problems in drug discovery is to identify the novel targets for drugs. Most of the traditional methods for drug targets optimization focused on identifying the particular families of "druggable targets", but ignored their topological properties based on the biological pathways. In this study, we characterized the topological properties of human anticancer drug targets (ADTs) in the context of biological pathways. We found that the ADTs tended to present the following seven topological properties: influence the number of the pathways related to cancer, be localized at the start or end of the pathways, interact with cancer related genes, exhibit higher connectivity, vulnerability, betweenness, and closeness than other genes. We first ranked ADTs based on their topological property values respectively, then fused them into one global-rank using the joint cumulative distribution of an N-dimensional order statistic to optimize human ADTs. We applied the optimization method to 13 anticancer drugs, respectively. Results demonstrated that over 70% of known ADTs were ranked in the top 20%. Furthermore, the performance for mercaptopurine was significant: 6 known targets (ADSL, GMPR2, GMPR, HPRT1, AMPD3, AMPD2) were ranked in the top 15 and other four out of the top 15 (MAT2A, CDKN1A, AREG, JUN) have the potentialities to become new targets for cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar


    Full Text Available PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

  9. Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease. (United States)

    Kamat, Pradip K; Kalani, Anuradha; Kyles, Philip; Tyagi, Suresh C; Tyagi, Neetu


    The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.

  10. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins

    Directory of Open Access Journals (Sweden)

    Alina Kurylowicz


    Full Text Available Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs, enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed.

  11. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and

  12. MicroRNA as therapeutic targets for treatment of depression

    Directory of Open Access Journals (Sweden)

    Hansen KF


    Full Text Available Katelin F Hansen, Karl Obrietan Department of Neuroscience, Ohio State University, Columbus, OH, USA Abstract: Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment. Keywords: depression, microRNA, miRNA, BDNF, Dicer, serotonin

  13. EphB4 as a therapeutic target in mesothelioma

    International Nuclear Information System (INIS)

    Liu, Ren; Ferguson, Benjamin D; Zhou, Yue; Naga, Kranthi; Salgia, Ravi; Gill, Parkash S; Krasnoperov, Valery


    Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted

  14. Cathepsin D as a Promising Target for the Discovery of Novel Anticancer Agents. (United States)

    Dubey, Vijaya; Luqman, Suaib


    Cathepsin D (CATD), one of the aspartyl endoproteinase involved in different physiological processes and signaling pathways, is accountable for metabolic breakdown of intracellular proteins, the activation of growth factors, hormones, and precursors of enzyme, the processing of antigens, enzyme inhibitors and activators and the regulation of apoptosis. Implication as a Target: Studies have confirmed the role and significance of CATD in an assortment of pathological conditions like Atherosclerosis, Alzheimer, Cancer, Cardiovascular, Huntington and Parkinson diseases. Amalgamated and veiled as inactive proCATD, it undergoes diverse cleavages to attain a desired conformation in an acidic milieu to act as a functionally active protein. In search of new candidate target (s) for cancer, CATD has attracted a wide group of investigators across the globe and is being recognized as a well-defined marker in cancer especially for breast and hormone-dependent cancer. In this review, PubMed, Sci-finder and other search engines were used to gather information on Cathepsin D. The necessary and relevant information was thoroughly studied to make the article appropriate to highlight all the aspects related to Cathepsin D and its role in cancer. Findings & Conclusion: The present review illustrates structural, functional and regulatory aspects of CATD in cancer, its significant role in angiogenesis, metastasis, invasion, apoptosis, cell proliferation, and therapeutic potential besides the benefits of targeting CATD by the natural products in cancer chemoprevention. Copyright© Bentham Science Publishers; For any queries, please email at

  15. Translesion polymerase η is upregulated by cancer therapeutics and confers anticancer drug resistance. (United States)

    Tomicic, Maja T; Aasland, Dorthe; Naumann, Steffen C; Meise, Ruth; Barckhausen, Christina; Kaina, Bernd; Christmann, Markus


    DNA repair processes are a key determinant of the sensitivity of cancer cells to DNA-damaging chemotherapeutics, which may induce certain repair genes as a mechanism to promote resistance. Here, we report the results of a screen for repair genes induced in cancer cells treated with DNA crosslinking agents, which identified the translesion polymerase η (PolH) as a p53-regulated target acting as one defense against interstrand crosslink (ICL)-inducing agents. PolH was induced by fotemustine, mafosfamide, and lomustine in breast cancer, glioma, and melanoma cells in vitro and in vivo, with similar inductions observed in normal cells such as lymphocytes and diploid fibroblasts. PolH contributions to the protection against ICL-inducing agents were evaluated by its siRNA-mediated attenuation in cells, which elevated sensitivity to these drugs in all tumor cell models. Conversely, PolH overexpression protected cancer cells against these drugs. PolH attenuation reduced repair of ICL lesions as measured by host cell reactivation assays and enhanced persistence of γH2AX foci. Moreover, we observed a strong accumulation of PolH in the nucleus of drug-treated cells along with direct binding to damaged DNA. Taken together, our findings implicated PolH in ICL repair as a mechanism of cancer drug resistance and normal tissue protection. ©2014 American Association for Cancer Research.

  16. Endocannabinoid System: A Multi-Facet Therapeutic Target. (United States)

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit


    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors.

  17. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron


    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  18. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. (United States)

    Winkler, Gian C; Barle, Ester Lovsin; Galati, Giuseppe; Kluwe, William M


    There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. (United States)

    Momtaz, Saeideh; Niaz, Kamal; Maqbool, Faheem; Abdollahi, Mohammad; Rastrelli, Luca; Nabavi, Seyed Mohammad


    Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  20. DEPDC5 as a potential therapeutic target for epilepsy. (United States)

    Myers, Kenneth A; Scheffer, Ingrid E


    Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.

  1. New Insights into Pericarditis: Mechanisms of Injury and Therapeutic Targets. (United States)

    Xu, Bo; Harb, Serge C; Cremer, Paul C


    This review article aims to provide a contemporary insight into the pathophysiological mechanisms of and therapeutic targets for pericarditis, drawing distinction between autoinflammatory and autoimmune pericarditis. Recent research has focused on the distinction between autoinflammatory and autoimmune pericarditis. In autoinflammatory pericarditis, viruses can activate the sensor molecule of the inflammasome, which results in downstream release of cytokines, such as interleukin-1, that recruit neutrophils and macrophages to the site of injury. Conversely, in autoimmune pericarditis, a type I interferon signature predominates, and pericardial manifestations coincide with the severity of the underlying systemic autoimmune disease. In addition, autoimmune pericarditis can also develop after cardiac injury syndromes. With either type of pericarditis, imaging can help stage the inflammatory state. Prominent pericardial delayed hyperenhancement on magnetic resonance imaging suggests ongoing inflammation whereas calcium on computed tomography suggests a completed inflammatory cascade. In patients with ongoing pericarditis, treatments that converge on the inflammasome, such as colchicine and anakinra, have proved effective in recurrent autoinflammatory pericarditis, though further clinical trials with anakinra are warranted. An improved understanding of the pathophysiological mechanisms of pericarditis helps unravel effective therapeutic targets for this condition.

  2. The Leloir Pathway of Galactose Metabolism - A Novel Therapeutic Target for Hepatocellular Carcinoma. (United States)

    Tang, Manshu; Etokidem, Enoabasi; Lai, Kent


    Hepatocellular carcinoma (HCC) is one of the most lethal types of cancer worldwide, with poor prognosis and limited treatments. In order to identify novel therapeutic targets that will lead to development of effective therapies with manageable side effects, we tested the hypothesis that knocking-down galactokinase (GALK1) or galactose-1 phosphate uridylyltransferase (GALT) gene expression would control the growth of cultured hepatoma cells. Our results showed small interfering RNA (siRNA) against GALK1 or GALT inhibited the growth of HepG2 cells in culture. Western blot analysis revealed simultaneous down-regulation of multiple players of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) growth signaling pathway, as well as heat-shock protein 90 (HSP90) and poly ADP ribose polymerase (PARP). Reverse transcription-polymerase chain reaction (RT-PCR) data, however, showed no significant mRNA reduction of the encoded genes. Our study thus not only supports GALK1 and GALT as being possible novel targets for treating HCC, but also uncovers new post-transcriptional regulatory mechanisms that link the galactose metabolic pathway to protein expression of the PI3K/AKT pathway in hepatoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. (United States)

    Pobbati, Ajaybabu V; Han, Xiao; Hung, Alvin W; Weiguang, Seetoh; Huda, Nur; Chen, Guo-Ying; Kang, CongBao; Chia, Cheng San Brian; Luo, Xuelian; Hong, Wanjin; Poulsen, Anders


    The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD's co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small-molecule inhibitors. Our X-ray crystallography studies reveal that flufenamic acid, a non-steroidal anti-inflammatory drug (NSAID), binds to the central pocket of TEAD2 YBD. Our biochemical and functional analyses further demonstrate that binding of NSAIDs to TEAD inhibits TEAD-YAP-dependent transcription, cell migration, and proliferation, indicating that the central pocket is important for TEAD function. Therefore, our studies discover a novel way of targeting TEAD transcription factors and set the stage for therapeutic development of specific TEAD-YAP inhibitors against human cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Current and novel therapeutic molecules and targets in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar


    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline, i.e., dementia. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as deposits of β-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, dyshomeostasis of bio-metals, low levels of acetylcholine, etc. AD is not simple to diagnose since there is no single diagnostic test for it. Pharmacotherapy for AD currently provides only symptomatic relief and mostly targets cognitive revival. Computational biology approaches have proved to be reliable tools for the selection of novel targets and therapeutic ligands. Molecular docking is a key tool in computer-assisted drug design and development. Docking has been utilized to perform virtual screening on large libraries of compounds, and propose structural hypotheses of how the ligands bind with the target with lead optimization. Another potential application of docking is optimization stages of the drug-discovery cycle. This review summarizes the known drug targets of AD, in vivo active agents against AD, state-of-the-art docking studies done in AD, and future prospects of the docking with particular emphasis on AD.

  5. Molecular and Therapeutic Targets of Genistein in Alzheimer's Disease. (United States)

    Devi, Kasi Pandima; Shanmuganathan, Balakrishnan; Manayi, Azadeh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad


    Alzheimer's disease (AD) is a devastating brain disorder characterized by an increased level of amyloid-beta (Aβ) peptide deposition and neuronal cell death leading to an impairment of learning and thinking skills. The Aβ deposition is a key factor in senile plaques of the AD brain which cause the elevation of intracellular calcium ions and the production of formidable free radicals, both of which greatly contribute to the AD-associated cascade, leading to unstoppable neuronal loss in the hippocampal region of the brain. Natural products are currently considered as an alternative strategy for the discovery of novel multipotent drugs against AD. They include the naturally occurring dietary soy isoflavone genistein which has been recognized to possess several health-promoting effects. Genistein has been mainly focused because of its potential on amelioration of Aβ-induced impairment and its antioxidant capacity to scavenge the free radicals produced in AD. It can also directly interact with the targeted signaling proteins and stabilize their activity to prevent AD. An improved understanding of the direct interactions between genistein and target proteins would contribute to the further development of AD treatment. This review mainly focuses on molecular targets and the therapeutic effects regulated by genistein, which has the ability to directly target the Aβ peptide and to control its activity involved in intracellular signaling pathways, which otherwise would lead to neuronal death in the hippocampal region of the AD brain.

  6. Garden of therapeutic delights: new targets in rheumatic diseases. (United States)

    Waldburger, Jean M; Firestein, Gary S


    Advances in our understanding of the cellular and molecular mechanisms in rheumatic disease fostered the advent of the targeted therapeutics era. Intense research activity continues to increase the number of potential targets at an accelerated pace. In this review, examples of promising targets and agents that are at various stages of clinical development are described. Cytokine inhibition remains at the forefront with the success of tumor necrosis factor blockers, and biologics that block interleukin-6 (IL-6), IL-17, IL-12, and IL-23 and other cytokines are on the horizon. After the success of rituximab and abatacept, other cell-targeted approaches that inhibit or deplete lymphocytes have moved forward, such as blocking BAFF/BLyS (B-cell activation factor of the tumor necrosis factor family/B-lymphocyte stimulator) and APRIL (a proliferation-inducing ligand) or suppressing T-cell activation with costimulation molecule blockers. Small-molecule inhibitors might eventually challenge the dominance of biologics in the future. In addition to plasma membrane G protein-coupled chemokine receptors, small molecules can be designed to block intracellular enzymes that control signaling pathways. Inhibitors of tyrosine kinases expressed in lymphocytes, such as spleen tyrosine kinase and Janus kinase, are being tested in autoimmune diseases. Inactivation of the more broadly expressed mitogen-activated protein kinases could suppress inflammation driven by macrophages and mesenchymal cells. Targeting tyrosine kinases downstream of growth factor receptors might also reduce fibrosis in conditions like systemic sclerosis. The abundance of potential targets suggests that new and creative ways of evaluating safety and efficacy are needed.

  7. The dual kinase complex FAK-Src as a promising therapeutic target in cancer

    Directory of Open Access Journals (Sweden)

    Victoria Bolós


    Full Text Available Victoria Bolós1,*, Joan Manuel Gasent2,*, Sara López-Tarruella3, Enrique Grande1,#1Pfizer Oncology, Madrid, Spain; 2Hospital Gral. Universitario Marina Alta, Oncology Department, Denia Alicante, 3,#Hospital Clínico San Carlos, Oncology Department, ∗These authors contributed equally to this work, #Center affiliated to the Red Temática de Investigación Cooperativa (RD06/0020/0021. Instituto de Salud Carlos III (ISCIII, Spanish Ministry of Science and InnovationAbstract: Focal adhesion kinase (FAK and steroid receptor coactivator (Src are intracellular (nonreceptor tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel


    Directory of Open Access Journals (Sweden)

    Françoise eREDINI


    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  9. Epigenetic targeting in acute myeloid leukemia: use of flow cytometry in monitoring therapeutic effects. (United States)

    Ryningen, Anita; Bruserud, Øystein


    Flow cytometric techniques have emerged as a powerful tool in hematology allowing fast, sensitive and reproducible multi-parametric analyses at the single cell level of heterogeneous samples. Small subsets of cells can be studied with high degree of accuracy, and a broad and constantly increasing specter of antibodies is available. Flow cytometry has therefore become the method of choice for evaluation of therapeutic effects at single cell level. These methodological approaches can easily be used to study hematological malignancies, and the future use of this strategy in other malignancies will depend on the development of laboratory techniques to prepare suspensions of viable cells also from tumor biopsies. The selection of biological parameters for evaluation of treatment effects should probably be based on (i) molecular markers involved in cancer-associated genetic abnormalities; (ii) other molecular markers showing altered expression in the malignant cells and thought to be involved in leukemogenesis or having a prognostic impact; (ii) functional assays known to reflect biological characteristics that are important in carcinogenesis (e.g. cell cycle distribution, functional evaluation of apoptosis regulation). These molecules will in addition often represent the therapeutic targets when new anticancer drugs are developed. In this review we use treatment of acute myeloid leukemia with histone deacetylase inhibitors as an example. Based on the criteria mentioned above we suggest that the monitoring of therapeutic effects on the cancer cells in these patients should include differentiation status, histone acetylation, cell cycle distribution, pro- and anti-apoptotic signaling balance and intracellular levels of various transcription factors.

  10. Preparation of slow release anticancer drug by means of radiation technique and IT's therapeutic effect on sold tumor of mice

    International Nuclear Information System (INIS)

    Li Ximing; Shen Weiming; Liu Chengjie; Hu Xu


    In order to minimize the toxic effect of chemotherapy of malignant tumors, the authors use a method of radiation induced cast polymerization of hydrophilic monomer at low temperature for immobilization the anticancer drug, 5-Fluorouracil, into the polymer matrix. The anticancer drug-polymer composite called slow release anticancer drug was used for treatment the transplantable squamous cell carcinoma in mice 615 and the transplantable sarcoma (S180) in Kunming mice. There were marked difference between the treated group and the control group. That is the higher inhibition ratio and lower toxic effect were reported

  11. Therapeutic targeting of eosinophil adhesion and accumulation in allergic conjunctivitis

    Directory of Open Access Journals (Sweden)

    Monica eBaiula


    Full Text Available Considerable evidence indicates that eosinophils are important effectors of ocular allergy. Increased worldwide prevalence of allergic eye pathologies has stimulated the identification of novel drug targets, including eosinophils and adhesion molecules.Accumulation of eosinophils in the eye is a key event in the onset and maintenance of allergic inflammation and is mediated by different adhesion molecules. Antihistamines with multiple mechanisms of action can be effective during the early and late phases of allergic conjunctivitis by blocking the interaction between β1 integrins and vascular cell adhesion molecule (VCAM-1. Small molecule antagonists that target key elements in the process of eosinophil recruitment have been identified and reinforce the validity of α4β1 integrin as a therapeutic target.Glucocorticoids are among the most effective drugs for ocular allergy, but their use is limited by adverse effects. Novel dissociated glucocorticoids can prevent eosinophil accumulation and induce apoptosis of eosinophils, making them promising candidates for ophthalmic drugs.This article reviews recent understanding of the role of adhesion molecules in eosinophil recruitment in the inflamed conjunctiva along with effective treatments for allergic conjunctivitis.

  12. Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets. (United States)

    Ononye, S N; Shi, W; Wali, V B; Aktas, B; Jiang, T; Hatzis, C; Pusztai, L


    The functional redundancy of metabolic enzyme expression may present a new strategy for developing targeted therapies in cancer. To satisfy the increased metabolic demand required during neoplastic transformations and proliferation, cancer cells may rely on additional isoforms of a metabolic enzyme to satisfy the increased demand for metabolic precursors, which could subsequently render cancer cells more vulnerable to isoform-specific inhibitors. In this review, we provide a survey of common isoenzyme shifts that have been reported to be important in cancer metabolism and link those to metabolic pathways that currently have drugs in various stages of development. This phenomenon suggests a potentially new therapeutic strategy for the treatment of cancer by identifying shifts in the expression of metabolic isoenzymes between cancer and normal cells. We also delineate other putative metabolic isoenzymes that could be targets for novel targeted therapies for cancer. Changes in isoenzyme expression that occur during neoplastic transformations or in response to environmental pressure in cancer cells may result in isoenzyme diversity that may subsequently render cancer cells more vulnerable to isoform-specific inhibitors due to reliance on a single isoform to perform a vital enzymatic function.

  13. A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer.

    Directory of Open Access Journals (Sweden)

    De-Kuan Chang

    Full Text Available Lung cancer is the leading cause of cancer-related mortality worldwide. The lack of tumor specificity remains a major drawback for effective chemotherapies and results in dose-limiting toxicities. However, a ligand-mediated drug delivery system should be able to render chemotherapy more specific to tumor cells and less toxic to normal tissues. In this study, we isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC cell lines. The targeting phage bound to several NSCLC cell lines but not to normal cells. Both the targeting phage and the synthetic peptide recognized the surgical specimens of NSCLC with a positive rate of 75% (27 of 36 specimens. In severe combined immunodeficiency (SCID mice bearing NSCLC xenografts, the targeting phage specifically bound to tumor masses. The tumor homing ability of the targeting phage was inhibited by the cognate synthetic peptide, but not by a control or a WTY-mutated peptide. When the targeting peptide was coupled to liposomes carrying doxorubicin or vinorelbine, the therapeutic index of the chemotherapeutic agents and the survival rates of mice with human lung cancer xenografts markedly increased. Furthermore, the targeting liposomes increased drug accumulation in tumor tissues by 5.7-fold compared with free drugs and enhanced cancer cell apoptosis resulting from a higher concentration of bioavailable doxorubicin. The current study suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors or it may be used one in the diagnosis of this malignancy.

  14. Monoacylglycerol Lipase Is a Therapeutic Target for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Rongqing Chen


    Full Text Available Alzheimer's disease (AD is the most common cause of dementia among older people. There are no effective medications currently available to prevent and treat AD and halt disease progression. Monoacylglycerol lipase (MAGL is the primary enzyme metabolizing the endocannabinoid 2-arachidonoylglycerol in the brain. We show here that inactivation of MAGL robustly suppressed production and accumulation of β-amyloid (Aβ associated with reduced expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1 in a mouse model of AD. MAGL inhibition also prevented neuroinflammation, decreased neurodegeneration, maintained integrity of hippocampal synaptic structure and function, and improved long-term synaptic plasticity, spatial learning, and memory in AD animals. Although the molecular mechanisms underlying the beneficial effects produced by MAGL inhibition remain to be determined, our results suggest that MAGL, which regulates endocannabinoid and prostaglandin signaling, contributes to pathogenesis and neuropathology of AD, and thus is a promising therapeutic target for the prevention and treatment of AD.

  15. Autophagy as a Therapeutic Target in Cardiovascular Disease (United States)

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.


    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  16. Regulators of innate immunity as novel targets for panviral therapeutics. (United States)

    Es-Saad, Salwa; Tremblay, Nicolas; Baril, Martin; Lamarre, Daniel


    Interferons (IFNs) have long been used as an immunomodulatory therapy for a large array of acute and chronic viral infections. However, IFN therapies have been plagued by severe side effects. The discovery of pathogen recognition receptors (PRR) rejuvenated the interest for immunomodulatory therapies. The successes obtained with Toll-like receptor (TLR) agonists in activating immune cells and as adjuvant for prophylactic vaccines against different viruses paved the way to targeted immunomodulatory therapy. Better characterization of pathogen-induced immune disorders and newly discovered regulators of innate immunity have now the potential to specifically withdraw prevailing subversion mechanisms and to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets (United States)

    Moss, Joe W. E.; Ramji, Dipak P.


    Atherosclerosis, the primary cause of cardiovascular disease (CVD), is a chronic inflammatory disorder in the walls of medium and large arteries. CVD is currently responsible for about one in three global deaths and this is expected to rise in the future due to an increase in the prevalence of obesity and diabetes. Current therapies for atherosclerosis mainly modulate lipid homeostasis and whilst successful at reducing the risk of a CVD-related death, they are associated with considerable residual risk and various side effects. There is therefore a need for alternative therapies aimed at regulating inflammation in order to reduce atherogenesis. This review will highlight the key role cytokines play during disease progression as well as potential therapeutic strategies to target them. PMID:27357616

  18. Cancer stem cell as therapeutic target for melanoma treatment. (United States)

    Alamodi, Abdulhadi A; Eshaq, Abdulaziz M; Hassan, Sofie-Yasmin; Al Hmada, Youssef; El Jamal, Siraj M; Fothan, Ahmed M; Arain, Omair M; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mosaad; Hassan, Mohamed


    Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.

  19. MicroRNA: an Emerging Therapeutic Target and Intervention Tool

    Directory of Open Access Journals (Sweden)

    Decheng Yang


    Full Text Available MicroRNAs (miRNAs are a class of short non-coding RNAs with posttranscriptional regulatory functions. To date, more than 600 human miRNAs have been experimentally identified, and estimated to regulate more than one third of cellular messenger RNAs. Accumulating evidence has linked the dysregulated expression patterns of miRNAs to a variety of diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases and viral infections. MiRNAs provide its particular layer of network for gene regulation, thus possessing the great potential both as a novel class of therapeutic targets and as a powerful intervention tool. In this regard, synthetic RNAs that contain the binding sites of miRNA have been shown to work as a “decoy” or “miRNA sponge” to inhibit the function of specific miRNAs. On the other hand, miRNA expression vectors have been used to restore or overexpress specific miRNAs to achieve a long-term effect. Further, double-stranded miRNA mimetics for transient replacement have been experimentally validated. Endogenous precursor miRNAs have also been used as scaffolds for the induction of RNA interference. This article reviews the recent progress on this emerging technology as a powerful tool for gene regulation studies and particularly as a rationale strategy for design of therapeutics.

  20. Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target? (United States)

    Köhler, Cristiano A.; Carvalho, André F.; Alves, Gilberto S.; McIntyre, Roger S.; Hyphantis, Thomas N.; Cammarota, Martín


    Major depressive disorder (MDD) is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment. PMID:26380121

  1. BCL-2 as a Therapeutic Target in Human Tubulointerstitial Inflammation (United States)

    Ko, Kichul; Wang, Jianing; Perper, Stuart; Jiang, Yulei; Yanez, Denisse; Kaverina, Natalya; Ai, Junting; Liarski, Vladimir M.; Chang, Anthony; Peng, Yahui; Lan, Li; Westmoreland, Susan; Olson, Lisa; Giger, Maryellen L.; Wang, Li Chun; Clark, Marcus R.


    Objective In lupus nephritis (LuN), tubulointerstitial inflammation (TII) is associated with in situ adaptive immune cell networks that amplify local tissue damage. As patients with severe TII often fail conventional therapy and develop renal failure, understanding these in situ mechanisms might reveal new therapeutic targets. We hypothesized that in TII, dysregulated apoptotic regulators maintain local adaptive immunity and drive inflammation. Methods We developed novel computational approaches that, when applied to multicolor confocal images, quantified apoptotic regulator protein expression in selected lymphocyte subsets. This approach was validated using laser capture microdissection (LCM) coupled to qPCR. Furthermore, we explored the consequences of dysregulated apoptotic mediator expression in a murine model of LuN. Results Analyses of renal biopsies from LuN and mixed cellular allograft rejection patients revealed that BCL-2 was frequently expressed in infiltrating lymphocytes while expression of MCL-1 was low. In contrast, the reciprocal pattern of expression was observed in tonsil germinal centers. These results were consistent with RNA expression data obtained using LCM and qPCR. BCL-2 was also highly expressed in tubulointerstitial infiltrates of NZB/W F1 mice. Furthermore, treatment of NZB/W F1 mice with ABT-199, a selective oral inhibitor of BCL-2, prolonged survival and prevented proteinuria and development of TII in a prevention model. Interestingly, glomerular immune complexes were partially ameliorated by ABT-199 and serum anti-dsDNA antibody titers were unaffected. Conclusion These data demonstrate BCL-2 as an attractive therapeutic target in LuN manifesting TII. PMID:27159593

  2. Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma. (United States)

    Tateishi, Kensuke; Iafrate, A John; Ho, Quan; Curry, William T; Batchelor, Tracy T; Flaherty, Keith T; Onozato, Maristela L; Lelic, Nina; Sundaram, Sudhandra; Cahill, Daniel P; Chi, Andrew S; Wakimoto, Hiroaki


    Deregulated Myc drives an oncogenic metabolic state, including pseudohypoxic glycolysis, adapted for the constitutive production of biomolecular precursors to feed rapid tumor cell growth. In glioblastoma, Myc facilitates renewal of the tumor-initiating cell reservoir contributing to tumor maintenance. We investigated whether targeting the Myc-driven metabolic state could be a selectively toxic therapeutic strategy for glioblastoma. The glycolytic dependency of Myc-driven glioblastoma was tested using (13)C metabolic flux analysis, glucose-limiting culture assays, and glycolysis inhibitors, including inhibitors of the NAD(+) salvage enzyme nicotinamide phosphoribosyl-transferase (NAMPT), in MYC and MYCN shRNA knockdown and lentivirus overexpression systems and in patient-derived glioblastoma tumorspheres with and without MYC/MYCN amplification. The in vivo efficacy of glycolyic inhibition was tested using NAMPT inhibitors in MYCN-amplified patient-derived glioblastoma orthotopic xenograft mouse models. Enforced Myc overexpression increased glucose flux and expression of glycolytic enzymes in glioblastoma cells. Myc and N-Myc knockdown and Myc overexpression systems demonstrated that Myc activity determined sensitivity and resistance to inhibition of glycolysis. Small-molecule inhibitors of glycolysis, particularly NAMPT inhibitors, were selectively toxic to MYC/MYCN-amplified patient-derived glioblastoma tumorspheres. NAMPT inhibitors were potently cytotoxic, inducing apoptosis and significantly extended the survival of mice bearing MYCN-amplified patient-derived glioblastoma orthotopic xenografts. Myc activation in glioblastoma generates a dependency on glycolysis and an addiction to metabolites required for glycolysis. Glycolytic inhibition via NAMPT inhibition represents a novel metabolically targeted therapeutic strategy for MYC or MYCN-amplified glioblastoma and potentially other cancers genetically driven by Myc. Clin Cancer Res; 22(17); 4452-65. ©2016 AACR

  3. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus (United States)

    Gottschalk, Timothy A.; Tsantikos, Evelyn; Hibbs, Margaret L.


    Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known

  4. Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Gottschalk


    Full Text Available Systemic Lupus Erythematosus (SLE, lupus is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues including skin, kidneys and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B and T lymphocyte activation, and, with the single exception of an agent known as Belimumab which targets the B cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immuno-suppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and

  5. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy (United States)

    Wilfinger, Nastasia; Austin, Shane; Scheiber-Mojdehkar, Barbara; Berger, Walter; Reipert, Siegfried; Praschberger, Monika; Paur, Jakob; Trondl, Robert; Keppler, Bernhard K.; Zielinski, Christoph C.; Nowikovsky, Karin


    This study identifies BNIP3L as the key regulator of p53-dependent cell death mechanism in colon cancer cells targeted by the novel gallium based anticancer drug, KP46. KP46 specifically accumulated into mitochondria where it caused p53-dependent morphological and functional damage impairing mitochondrial dynamics and bioenergetics. Furthermore, competing with iron for cellular uptake, KP46 lowered the intracellular labile iron pools and intracellular heme. Accordingly, p53 accumulated in the nucleus where it activated its transcriptional target BNIP3L, a BH3 only domain protein with functions in apoptosis and mitophagy. Upregulated BNIP3L sensitized the mitochondrial permeability transition and strongly induced PARKIN-mediated mitochondrial clearance and cellular vacuolization. Downregulation of BNIP3L entirely rescued cell viability caused by exposure of KP46 for 24 hours, confirming that early induced cell death was regulated by BNIP3L. Altogether, targeting BNIP3L in wild-type p53 colon cancer cells is a novel anticancer strategy activating iron depletion signaling and the mitophagy-related cell death pathway. PMID:26517689

  6. Development and application of anticancer fluorescent CdS nanoparticles enriched Lactobacillus bacteria as therapeutic microbots for human breast carcinoma. (United States)

    Raj, Ritu; Das, Surajit


    Applications of probiotic bacteria and nanoparticles (NPs) as therapeutic agents have great importance. This study demonstrates a combinatorial approach of both the probiotic Lactobacillus spp. (Lactobacillus fermentum and Lactobacillus plantarum) with fluorescent cadmium sulfide (CdS) NPs as therapeutic agents to target MCF-7 cancer cells (human breast cancer cells). In this study, facultative anaerobic Lactobacillus was successfully used as a vehicle to transport NPs into MCF-7 cancer cells. The cell viability assay and invasion study along with confocal and field emission scanning electron microscopy (FESEM) confirmed the release of payload (CdS NPs) into cytoplasm without any external stimuli. The biosynthesized CdS NPs of ∼22 nm were characterized by FESEM, transmission electron microscopy (TEM), atomic force microscopy (AFM), and fluorescence spectroscopy. The bacteria-NPs (microbots) interaction was investigated by growth curve studies, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), FESEM, energy dispersive X-ray spectroscopy (EDX), and fluorescence and confocal microscopy. This alternative approach showed an approved and inexpensive delivering mode of specific functional cargos or therapeutic agents into the cancer cells.

  7. STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. (United States)

    Zulkifli, Ahmad A; Tan, Fiona H; Putoczki, Tracy L; Stylli, Stanley S; Luwor, Rodney B


    Several EGFR inhibitors are currently undergoing clinical assessment or are approved for the clinical management of patients with varying tumour types. However, treatment often results in a lack of response in many patients. The majority of patients that initially respond eventually present with tumours that display acquired resistance to the original therapy. A large number of receptor tyrosine and intracellular kinases have been implicated in driving signaling that mediates this tumour resistance to anti-EGFR targeted therapy, and in a few cases these discoveries have led to overall changes in prospective tumour screening and clinical practice (K-RAS in mCRC and EGFR T790M in NSCLC). In this mini-review, we specifically focus on the role of the STAT3 signaling axis in providing both intrinsic and acquired resistance to inhibitors of the EGFR. We also focus on STAT3 pathway targeting in an attempt to overcome resistance to anti-EGFR therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications (United States)


    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  9. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Dimitar B. Nikolov


    Full Text Available The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G and class I fusion (F envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  10. Osteocytic signalling pathways as therapeutic targets for bone fragility. (United States)

    Plotkin, Lilian I; Bellido, Teresita


    Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.

  11. Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. (United States)

    Glickson, Jerry D; Lund-Katz, Sissel; Zhou, Rong; Choi, Hoon; Chen, I-Wei; Li, Hui; Corbin, Ian; Popov, Anatoliy V; Cao, Weiguo; Song, Liping; Qi, Chenze; Marotta, Diane; Nelson, David S; Chen, Juan; Chance, Britton; Zheng, Gang


    Low-density lipoprotein (LDL) provides a highly versatile natural nanoplatform for delivery of optical and MRI contrast agents, photodynamic therapy agents and chemotherapeutic agents to normal and neoplastic cells that over express LDL receptors (LDLR). Extension to other lipoproteins ranging in diameter from approximately 5-10 nm (high density lipoprotein, HDL) to over a micron (chilomicrons) is feasible. Loading of contrast or therapeutic agents has been achieved by covalent attachment to protein side chains, intercalation into the phospholipid monolayer and extraction and reconstitution of the triglyceride/cholesterol ester core. Covalent attachment of folate to the lysine side chain amino groups was used to reroute the LDL from its natural receptor (LDLR) to folate receptors and could be utilized to target other receptors. A semi-synthetic nanoparticle has been constructed by coating magnetite iron oxide nanoparticles (MIONs) with carboxylated cholesterol and overlaying a monolayer ofphospholipid to which Apo A1, Apo E or synthetic amphoteric alpha-helical polypeptides were adsorbed for targeting HDL, LDL or folate receptors, respectively. These particles can be utilized for in situ loading of magnetite into cells for MRI monitored cell tracking or gene therapy.

  12. RNA decay: a novel therapeutic target in bacteria. (United States)

    Eidem, Tess M; Roux, Christelle M; Dunman, Paul M


    The need for novel antibiotics is greater now than perhaps any time since the pre-antibiotic era. Indeed, the recent collapse of most pharmaceutical antibacterial groups, combined with the emergence of hypervirulent and pan-antibiotic-resistant bacteria have, in effect, created a 'perfect storm' that has severely compromised infection treatment options and led to dramatic increases in the incidence and severity of bacterial infections. To put simply, it is imperative that we develop new classes of antibiotics for the therapeutic intervention of bacterial infections. In that regard, RNA degradation is an essential biological process that has not been exploited for antibiotic development. Herein we discuss the factors that govern bacterial RNA degradation, highlight members of this machinery that represent attractive antimicrobial drug development targets and describe the use of high-throughput screening as a means of developing antimicrobials that target these enzymes. Such agents would represent first-in-class antibiotics that would be less apt to inactivation by currently encountered enzymatic antibiotic-resistance determinants. Copyright © 2012 John Wiley & Sons, Ltd.

  13. STXBP1 as a therapeutic target for epileptic encephalopathy. (United States)

    Stamberger, Hannah; Weckhuysen, Sarah; De Jonghe, Peter


    STXBP1 is an essential protein for presynaptic vesicle release. Mutations in STXBP1 have been associated with a series of (epileptic) neurodevelopmental disorders collectively referred to as STXBP1-encephalopathy (STXBP1-E). In this review we hypothesize about the potential of STXBP1 as a therapeutic target in the field of epileptic encephalopathies. Areas covered: A state of the art overview on current understanding of the pathophysiologic mechanism underlying STXBP1-E is presented. Possibilities of different treatment modalities are discussed including unbiased compound screening, specific protein-protein interaction inhibition and gene therapy, consisting either of gene suppletion or upregulation of gene expression. Expert opinion: Current treatment for STXBP1-E is largely limited to seizure control and future therapies will need to target the developmental aspects of the disease as well. Both in vitro- and animal models used to study the pathophysiology of STXBP1-E could be further optimized as a model for compound screening. They should reflect both the hyper excitable state and the psychomotor delay of STXBP1-E. Specific protein-protein interaction and gene therapy are promising future treatment options that need to be investigated further. We suggest a parallel research strategy on basic pathophysiology and compound development with both fields working in close collaboration with the patient/clinical community.

  14. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics. (United States)

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A K M G; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E; Kroeger, Kurt M; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N; Rodriguez, Ron; Lowenstein, Pedro R; Castro, Maria G


    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.

  15. Ashwagandha derived withanone targets TPX2-Aurora A complex: computational and experimental evidence to its anticancer activity.

    Directory of Open Access Journals (Sweden)

    Abhinav Grover

    Full Text Available Cancer is largely marked by genetic instability. Specific inhibition of individual proteins or signalling pathways that regulate genetic stability during cell division thus hold a great potential for cancer therapy. The Aurora A kinase is a Ser/Thr kinase that plays a critical role during mitosis and cytokinesis and is found upregulated in several cancer types. It is functionally regulated by its interactions with TPX2, a candidate oncogene. Aurora A inhibitors have been proposed as anticancer drugs that work by blocking its ATP binding site. This site is common to other kinases and hence these inhibitors lack specificity for Aurora A inhibition in particular, thus advocating the need of some alternative inhibition route. Previously, we identified TPX2 as a cellular target for withanone that selectively kill cancer cells. By computational approach, we found here that withanone binds to TPX2-Aurora A complex. In experiment, withanone treatment to cancer cells indeed resulted in dissociation of TPX2-Aurora A complex and disruption of mitotic spindle apparatus proposing this as a mechanism of the anticancer activity of withanone. From docking analysis, non-formation/disruption of the active TPX2-Aurora A association complex could be discerned. Our MD simulation results suggesting the thermodynamic and structural stability of TPX2-Aurora A in complex with withanone further substantiates the binding. We report a computational rationale of the ability of naturally occurring withanone to alter the kinase signalling pathway in an ATP-independent manner and experimental evidence in which withanone cause inactivation of the TPX2-Aurora A complex. The study demonstrated that TPX2-Aurora A complex is a target of withanone, a potential natural anticancer drug.

  16. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components. (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret


    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  17. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes. (United States)

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D


    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion

  18. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics (United States)

    Luk, Brian Tsengchi

    interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.

  19. Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. (United States)

    Mimeault, Murielle; Batra, Surinder K


    Cutaneous malignant melanoma is the most aggressive form of skin cancer with an extremely poor survival rate for the patients diagnosed with locally invasive and metastatic disease states. Intensive research has led in last few years to an improvement of the early detection and curative treatment of primary cutaneous melanomas that are confined to the skin by tumor surgical resection. However, locally advanced and disseminated melanomas are generally resistant to conventional treatments, including ionizing radiation, systemic chemotherapy, immunotherapy and/or adjuvant stem cell-based therapies, and result in the death of patients. The rapid progression of primary melanomas to locally invasive and/or metastatic disease states remains a major obstacle for an early effective diagnosis and a curative therapeutic intervention for melanoma patients. Importantly, recent advances in the melanoma research have led to the identification of different gene products that are often implicated in the malignant transformation of melanocytic cells into melanoma cells, including melanoma stem/progenitor cells, during melanoma initiation and progression to locally advanced and metastatic disease states. The frequent deregulated genes products encompass the oncogenic B-RafV600E and N-RasQ61R mutants, different receptor tyrosine kinases and developmental pathways such as epidermal growth factor receptor (EGFR), stem cell-like factor (SCF) receptor KIT, hedgehog, Wnt/β-catenin, Notch, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF)/VEGFR receptor. These growth factors can cooperate to activate distinct tumorigenic downstream signaling elements and epithelial-mesenchymal transition (EMT)-associated molecules, including phosphatidylinositol 3'-kinase (PI3K)/Akt/ molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), macrophage inhibitory cytokine-1 (MIC-1), vimentin, snail and twist. Of therapeutic

  20. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs. (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han


    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Lipoprotein Nanoplatform for Targeted Delivery of Diagnostic and Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Jerry D. Glickson


    Full Text Available Low-density lipoprotein (LDL provides a highly versatile natural nanoplatform for delivery of visible or near-infrared fluorescent optical and magnetic resonance imaging (MRI contrast agents and photodynamic therapy and chemotherapeutic agents to normal and neoplastic cells that overexpress low-density lipoprotein receptors (LDLRs. Extension to other lipoproteins ranging in diameter from about 10 nm (high-density lipoprotein [HDL] to over a micron (chylomicrons is feasible. Loading of contrast or therapeutic agents onto or into these particles has been achieved by protein loading (covalent attachment to protein side chains, surface loading (intercalation into the phospholipid monolayer, and core loading (extraction and reconstitution of the triglyceride/cholesterol ester core. Core and surface loading of LDL have been used for delivery of optical imaging agents to tumor cells in vivo and in culture. Surface loading was used for delivery of gadolinium-bis-stearylamide contrast agents for in vivo MRI detection in tumor-bearing mice. Chlorin and phthalocyanine near-infrared photodynamic therapy agents (≤ 400/LDL have been attached by core loading. Protein loading was used to reroute the LDL from its natural receptor (LDLR to folate receptors and could be used to target other receptors. A semisynthetic nanoparticle has been constructed by coating magnetite iron oxide nanoparticles with carboxylated cholesterol and overlaying a monolayer of phospholipid to which apolipoprotein A1 or E was adsorbed for targeting HDL or adsorbing synthetic amphipathic helical peptides ltargeting LDL or folate receptors. These particles can be used for in situ loading of magnetite into cells for MRI-monitored cell tracking or gene expression.

  2. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. (United States)

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A


    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  3. Connexin-Dependent Neuroglial Networking as a New Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mathieu Charvériat


    networking may emerge as new therapeutic targets in neurological and psychiatric disorders.

  4. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra


    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  5. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target (United States)

    Knight, Jason S.; Meng, He; Coit, Patrick; Yalavarthi, Srilakshmi; Sule, Gautam; Gandhi, Alex A.; Grenn, Robert C.; Mazza, Levi F.; Ali, Ramadan A.; Renauer, Paul; Wren, Jonathan D.; Bockenstedt, Paula L.; Wang, Hui; Eitzman, Daniel T.; Sawalha, Amr H.


    Antiphospholipid antibodies, present in one-third of lupus patients, increase the risk of thrombosis. We recently reported a key role for neutrophils — neutrophil extracellular traps (NETs), in particular — in the thrombotic events that define antiphospholipid syndrome (APS). To further elucidate the role of neutrophils in APS, we performed a comprehensive transcriptome analysis of neutrophils isolated from patients with primary APS. Moreover, APS-associated venous thrombosis was modeled by treating mice with IgG prepared from APS patients, followed by partial restriction of blood flow through the inferior vena cava. In patients, APS neutrophils demonstrated a proinflammatory signature with overexpression of genes relevant to IFN signaling, cellular defense, and intercellular adhesion. For in vivo studies, we focused on P-selectin glycoprotein ligand-1 (PSGL-1), a key adhesion molecule overexpressed in APS neutrophils. The introduction of APS IgG (as compared with control IgG) markedly potentiated thrombosis in WT mice, but not PSGL-1–KOs. PSGL-1 deficiency was also associated with reduced leukocyte vessel wall adhesion and NET formation. The thrombosis phenotype was restored in PSGL-1–deficient mice by infusion of WT neutrophils, while an anti–PSGL-1 monoclonal antibody inhibited APS IgG–mediated thrombosis in WT mice. PSGL-1 represents a potential therapeutic target in APS. PMID:28931754

  6. MicroRNA as Therapeutic Targets for Chronic Wound Healing. (United States)

    Mulholland, Eoghan J; Dunne, Nicholas; McCarthy, Helen O


    Wound healing is a highly complex biological process composed of three overlapping phases: inflammation, proliferation, and remodeling. Impairments at any one or more of these stages can lead to compromised healing. MicroRNAs (miRs) are non-coding RNAs that act as post-transcriptional regulators of multiple proteins and associated pathways. Thus, identification of the appropriate miR involved in the different phases of wound healing could reveal an effective third-generation genetic therapy in chronic wound care. Several miRs have been shown to be upregulated or downregulated during the wound healing process. This article examines the biological processes involved in wound healing, the miR involved at each stage, and how expression levels are modulated in the chronic wound environment. Key miRs are highlighted as possible therapeutic targets, either through underexpression or overexpression, and the healing benefits are interrogated. These are prime miR candidates that could be considered as a gene therapy option for patients suffering from chronic wounds. The success of miR as a gene therapy, however, is reliant on the development of an appropriate delivery system that must be designed to overcome both extracellular and intracellular barriers. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. MicroRNA as Therapeutic Targets for Chronic Wound Healing

    Directory of Open Access Journals (Sweden)

    Eoghan J. Mulholland


    Full Text Available Wound healing is a highly complex biological process composed of three overlapping phases: inflammation, proliferation, and remodeling. Impairments at any one or more of these stages can lead to compromised healing. MicroRNAs (miRs are non-coding RNAs that act as post-transcriptional regulators of multiple proteins and associated pathways. Thus, identification of the appropriate miR involved in the different phases of wound healing could reveal an effective third-generation genetic therapy in chronic wound care. Several miRs have been shown to be upregulated or downregulated during the wound healing process. This article examines the biological processes involved in wound healing, the miR involved at each stage, and how expression levels are modulated in the chronic wound environment. Key miRs are highlighted as possible therapeutic targets, either through underexpression or overexpression, and the healing benefits are interrogated. These are prime miR candidates that could be considered as a gene therapy option for patients suffering from chronic wounds. The success of miR as a gene therapy, however, is reliant on the development of an appropriate delivery system that must be designed to overcome both extracellular and intracellular barriers.

  8. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets (United States)

    Hou, Jianglong; Kang, Y. James


    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  9. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail:; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)


    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  10. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Duan, Susu; Morfouace, Marie; Rezinciuc, Svetlana; Shulkin, Barry L.; Shelat, Anang; Zink, Erika E.; Milasta, Sandra; Bajracharya, Resha; Oluwaseum, Ajayi J.; Roussel, Martine F.; Green, Douglas R.; Pasa-Tolic, Ljiljana; Thomas, Paul G.


    Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.

  11. Oxidative Stress and Liver Cancer: Etiology and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Zhanpeng Wang


    Full Text Available Accumulating evidence has indicated that oxidative stress (OS is associated with the development of hepatocellular carcinoma (HCC. However, the mechanisms remain largely unknown. Normally, OS occurs when the body receives any danger signal—from either an internal or external source—and further induces DNA oxidative damage and abnormal protein expression, placing the body into a state of vulnerability to the development of various diseases such as cancer. There are many factors involved in liver carcinogenesis, including hepatitis B virus (HBV and hepatitis C virus (HCV infection, alcohol abuse, and nonalcoholic fatty liver disease (NAFLD. The relationship between OS and HCC has recently been attracting increasing attention. Therefore, elucidation of the impact of OS on the development of liver carcinogenesis is very important for the prevention and treatment of liver cancer. This review focuses mainly on the relationship between OS and the development of HCC from the perspective of cellular and molecular mechanisms and the etiology and therapeutic targets of HCC.

  12. Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets. (United States)

    Hou, Jianglong; Kang, Y James


    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Asparagine endopeptidase is an innovative therapeutic target for neurodegenerative diseases. (United States)

    Zhang, Zhentao; Xie, Manling; Ye, Keqiang


    Asparagine endopeptidase (AEP) is a pH-dependent endolysosomal cysteine protease that cleaves its substrates after asparagine residues. Our most recent study identifies that it possesses the delta-secretase activity, and that it is implicated in numerous neurological diseases such as Alzheimer's disease (AD) and stroke. Accumulating evidence supports that the inhibition of AEP exhibits beneficial effects for treating these devastating diseases. Based on recent evidence, it is clear that AEP cleaves its substrate, such as amyloid precursor protein (APP), tau and SET, and plays a critical role in neuronal cell death in various neurodegenerative diseases and stroke. In this article, the basic biology of AEP, its knockout phenotypes in mouse models, its substrates in neurodegenerative diseases, and its small peptidyl inhibitors and prodrugs are discussed. In addition, we discuss the potential of AEP as a novel therapeutic target for neurodegenerative diseases. AEP plays a unique role in numerous biological processes, depending on both pH and context. Most striking is our most recent finding; that AEP is activated in an age-dependent manner and simultaneously cleaves both APP and tau, thereby unifying both major pathological events in AD. Thus, AEP acts as an innovative trigger for neurodegenerative diseases. Inhibition of AEP will provide a disease-modifying treatment for neurodegenerative diseases including AD.

  14. Emerging therapeutics for advanced thyroid malignancies: rationale and targeted approaches. (United States)

    Harris, Pamela Jo; Bible, Keith C


    Thyroid cancer is an emerging public health concern. In the USA, its incidence has doubled in the past decade, making it the eighth most commonly diagnosed neoplasm in 2010. Despite this alarming increase, most thyroid cancer patients benefit from conventional approaches (surgery, radioiodine, radiotherapy, TSH suppression with levothyroxine) and are often cured. Nevertheless, a minority have aggressive tumors resistant to cytotoxic and other historical therapies; these patients sorely need new treatment options. Herein the biology and molecular characteristics of the common histological types of thyroid cancer are reviewed to provide context for subsequent discussion of recent developments and emerging therapeutics for advanced thyroid cancers. Several kinase inhibitors, especially those targeting VEGFR and/or RET, have already demonstrated promising activity in differentiated and medullary thyroid cancers (DTC, MTC). Although of minimal benefit in DTC and MTC, cytotoxic chemotherapy with anti-microtubule agents and/or anthracyclines in combination with intensity-modulated radiation therapy appears to extend survival for patients with locoregionally confined anaplastic thyroid cancer (ATC), but to have only modest benefit in metastatic ATC. Further discovery and development of novel agents and combinations of agents will be critical to further progress in treating advanced thyroid cancers of all histotypes.

  15. [50 years of hepatology - from therapeutic nihilism to targeted therapies]. (United States)

    Manns, Michael P


    Over the past 50 years significant progress has been made in the whole field of hepatology. Part of this is translation of basic research (biochemistry, immunology, virology, molecular biology and others) into clinical hepatology. This enabled us to understand more about the pathogenesis of liver diseases and led to the discovery of the five major hepatotropic viruses, the identification of hepatocellular autoantigens, and to the development of specific therapies for chronic hepatitis B, C and D. In addition, the molecular basis of most genetic liver diseases has been identified. Significant progress was made in the development of medical therapies for various liver diseases with different underlying etiologies. Surgery significantly contributed to the progress in the management of liver diseases; examples are laparoscopic cholecystectomy and the development of liver transplantation. A multimodal therapeutic algorithm has been established for the therapy of hepatocelluar carcinoma (HCC); with Sorafenib "targeted therapy" has entered the area of HCC. The progress made over the last 50 years not only led to an aetiological differentiation of acute and chronic liver diseases but also to specific therapies based on the identification and understanding of the underlying etiology. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    Heather S. Smallwood


    Full Text Available Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.

  17. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke (United States)

    Liu, Zhongwu; Chopp, Michael


    Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456

  18. The road to toxin-targeted therapeutic antibodies. (United States)

    Kozel, Thomas R


    Once an infection by a toxin-producing bacterium is well established, therapies such as antibiotics that target bacterial growth may have little impact on the ultimate patient outcome. In such cases, toxin-neutralizing antibodies offer an opportunity to block key virulence factors. New work by A. K. Varshney, X. Wang, J. L. Aguilar, M. D. Scharff, and B. C. Fries [mBio 5(3):e01007-14, 2014, doi:10.1128/mBio.01007-14] highlights the role of the antibody isotype in determining the efficacy of toxin-neutralizing antibodies in vivo. Varshney et al. examined the role of antibody isotype for protection in murine models of staphylococcal enterotoxin B (SEB)-induced lethal shock and sepsis produced by SEB-producing Staphylococcus aureus. Murine antibodies of the IgG2a isotype were more protective than antibodies of the IgG1 and IgG2b isotypes that have identical variable regions and binding activity. These results add to the complexity inherent in the selection and optimization of antibodies for anti-infective passive immunization and emphasize the need to use relevant in vivo models to evaluate potential therapeutic monoclonal antibodies. Copyright © 2014 Kozel.

  19. The effectiveness of therapeutic patient education on adherence to oral anti-cancer medicines in adult cancer patients in ambulatory care settings: a systematic review. (United States)

    Arthurs, Gilly; Simpson, Janice; Brown, Andrea; Kyaw, Ohnma; Shyrier, Sharon; Concert, Catherine M


    Adherence to oral cancer medicines is a challenge for adult patients with cancer. Education specifically tailored for an individual patient with cancer may improve adherence. Therapeutic patient education when utilized effectively may maximize health outcomes and positively affect the quality of life of adult patients with cancer. Currently, there are no published systematic reviews specific to the effectiveness of therapeutic patient education on improvement of oral anti-cancer medicines adherence in patients with cancer. To synthesize the best available evidence on the effectiveness of therapeutic patient education on adherence to oral anti-cancer medicines in adult cancer patients 18 years and older in an ambulatory care setting. Types of participants: This review considered studies involving adults of any ethnicity, race or gender, aged 18 years or older who were diagnosed with any form of cancer, receiving oral anti-cancer medicines in an ambulatory care setting. Types of intervention(s): This review considered studies on the use of therapeutic patient education as the additional intervention to routine patient education for promoting oral anti-cancer medicine adherence in adult patients with cancer in an ambulatory care setting. Routine patient education was considered as a comparator. Types of outcomes: The outcome considered was adherence to prescribed oral anti-cancer medicines. Types of studies: This review considered experimental and observational studies. The literature search included published and unpublished studies in the English Language from 1953 through August 2014. A search of PubMed, CINAHL, Excerpta Medica Database, Academic Search Premier, Cochrane Library, PsycINFO, and Health Source: Nursing/Academic Edition was conducted using identified keywords and indexed terms across all included databases. A search for grey literature and electronic hand searching of relevant journals was also performed. Two reviewers independently evaluated the

  20. Myofibrillogenesis regulator 1 (MR-1 is a novel biomarker and potential therapeutic target for human ovarian cancer

    Directory of Open Access Journals (Sweden)

    Feng Jingjing


    Full Text Available Abstract Background Myofibrillogenesis regulator 1 (MR-1 is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients. Methods Reverse-transcription polymerase chain reaction (PCR and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated. Results MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer. Conclusions MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early

  1. Aging of the Immune System. Mechanisms and Therapeutic Targets. (United States)

    Weyand, Cornelia M; Goronzy, Jörg J


    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  2. GABAergic signaling as therapeutic target for Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Giada eCellot


    Full Text Available GABA, the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or NMDA receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as Autism Spectrum Disorders (ASDs are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders.

  3. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R


    therapeutic target in CML.

  4. Pharmacological effects and potential therapeutic targets of DT-13. (United States)

    Khan, Ghulam Jilany; Rizwan, Mohsin; Abbas, Muhammad; Naveed, Muhammad; Boyang, Yu; Naeem, Muhammad Ahsan; Khan, Sara; Yuan, Shengtao; Baig, Mirza Muhammad Faran Ashraf; Sun, Li


    DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of

  5. MYC as therapeutic target in leukemia and lymphoma

    Directory of Open Access Journals (Sweden)

    Cortiguera MG


    Full Text Available Maria G Cortiguera,1 Ana Batlle-López,1,2 Marta Albajar,1,2 M Dolores Delgado,1,3 Javier León1,3 1Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC, CSIC-University of Cantabria, 2Department of Hemathology, Hospital Universitario Marqués de Valdecilla, 3Department of Molecular Biology, University of Cantabria, Santander, Spain Abstract: MYC is a transcription factor that is involved in the expression of many genes. Deregulated MYC is found in about half of human tumors, being more prevalent in hematological neoplasms. Deregulation mechanisms include chromosomal translocation (particularly in lymphoma, amplification, and hyperactivation of MYC transcription. Here we review MYC involvement in the major types of leukemia and lymphoma. MYC rearrangements appear in all Burkitt lymphomas and are common in other lymphoma types, whereas in acute lymphoblastic leukemia, acute myeloid leukemia, lymphoproliferative, and myeloproferative diseases, they are less frequent. However, MYC overexpression is present in all types of hematological malignancies and often correlates with a worse prognosis. Data in leukemia-derived cells and in animal models of lymphomagenesis and leukemogenesis suggest that MYC would be a good therapeutic target. Several MYC-directed therapies have been assayed in preclinical settings and even in clinical trials. First, peptides and small molecules that interrupt the MYC–MAX interaction impair MYC-mediated tumorogenesis in several mouse models of solid tumors, although not yet in lymphoma and leukemia models. Second, there are a number of small molecules inhibiting the interaction of MYC–MAX heterodimers with DNA, still in the preclinical research phase. Third, inhibitors of MYC expression via the inhibition of BRD4 (a reader of acetylated histones have been shown to control the growth of MYC-transformed leukemia and lymphoma cells and are being used in clinic trials. Finally, we review a number of promising MYC

  6. The Integrin-Regulated Kinase PYK-2: A Therapeutic Target for Prostate Cancer

    National Research Council Canada - National Science Library

    Edlund, Magnus


    ...) . A number of promising therapeutic targets for androgen-independent and metastatic prostate cancers are contained within the signaling cascades downstream of the ECM-binding Integrin molecules...

  7. Immunological monitoring of anticancer vaccines in clinical trials


    Ogi, Chizuru; Aruga, Atsushi


    Therapeutic anticancer vaccines operate by eliciting or enhancing an immune response that specifically targets tumor-associated antigens. Although intense efforts have been made for developing clinically useful anticancer vaccines, only a few Phase III clinical trials testing this immunotherapeutic strategy have achieved their primary endpoint. Here, we report the results of a retrospective research aimed at clarifying the design of previously completed Phase II/III clinical trials testing th...

  8. Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: Subcellular targeting, therapeutic, and imaging potentials. (United States)

    Choi, Yeon Su; Kwon, Kiyoon; Yoon, Kwonhyeok; Huh, Kang Moo; Kang, Han Chang


    Mitochondria-targeting drug carriers have considerable potential because of the presence of many molecular drug targets in the mitochondria and their pivotal roles in cellular viability, metabolism, maintenance, and death. To compare the mitochondria-targeting abilities of triphenylphosphonium (TPP) and pheophorbide a (PhA) in nanoparticles (NPs), this study prepared mitochondria-targeting NPs using mixtures of methoxy poly(ethylene glycol)-(SS-PhA) 2 [mPEG-(SS-PhA) 2 or PPA] and TPP-b-poly(ε-caprolactone)-b-TPP [TPP-b-PCL-b-TPP or TPCL], which were designated PPA n -TPCL 4-n (0≤n≤4) NPs. With increasing TPCL content, the formed PPA n -TPCL 4-n NPs decreased in size from 33nm to 18nm and increased in terms of positive zeta-potentials from -12mV to 33mV. Although the increased TPCL content caused some dark toxicity of the PPA n -TPCL 4-n NPs due to the intrinsic positive character of TPCL, the NPs showed strong light-induced killing effects in tumor cells. In addition, the mitochondrial distribution of the PPA n -TPCL 4-n NPs was analyzed and imaged by flow cytometry and confocal microscopy, respectively. Thus, the PhA-containing NPs specifically targeted the mitochondria, and light stimulation caused PhA-mediated therapeutic effects and imaging functions. Expanding the capabilities of these nanocarriers by incorporating other drugs should enable multiple potential applications (e.g., targeting, therapy, and imaging) for combination and synergistic treatments. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Periostin: a promising target of therapeutical intervention for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ding Weihong


    RNA-Periostin LNCap cells growed slowly in vitro and in vivo. The tissues of xenografts as PCa were verificated by HE staining. Additionally, the weak positive Periostin expressed tumor cells could be seen in the tissues of 6 xenografts from the group of down-regulated Periostin LNCap cells which had a significant decrease of the amount of Periostin compared to the other two group. Furthermore, our results demonstrated that sliencing Periostin could inhibit migration of LNCap cells in vitro. Conclusions Our data indicates that Periostin as an up-regulated protein in PCa may be a promising target of therapeutical intervention for PCa in future.

  10. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis. (United States)

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa


    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Cognition As a Therapeutic Target in the Suicidal Patient Approach

    Directory of Open Access Journals (Sweden)

    Antônio Geraldo da Silva


    Full Text Available The current considerations about completed suicides and suicide attempts in different cultures call the attention of professionals to this serious public health problem. Integrative approaches have shown that the confluence of multiple biological and social factors modulate various psychopathologies and dysfunctional behaviors, such as suicidal behavior. Considering the level of intermediate analysis, personality traits and cognitive functioning are also of great importance for understanding the suicide phenomenon. About cognitive factors, we can group them into cognitive schemas of reality interpretation and underlying cognitive processes. On the other hand, different types of primary cognitive alterations are related to suicidal behavior, especially those resulting from changes in frontostriatal circuits. Among such cognitive mechanisms can be highlighted the attentional bias for environmental cues related to suicide, impulsive behavior, verbal fluency deficits, non-adaptive decision-making, and reduced planning skills. Attentional bias consists in the effect of thoughts and emotions, frequently not conscious, about the perception of environmental stimuli. Suicidal ideation and hopelessness can make the patient unable to find alternative solutions to their problems other than suicide, biasing their attention to environmental cues related to such behavior. Recent research efforts are directed to assess the possible use of attention bias as a therapeutic target in patients presenting suicide behavior. The relationship between impulsivity and suicide has been largely investigated over the last decades, and there is still controversy about the theme. Although there is strong evidence linking impulsivity to suicide attempts. Effective interventions address to reduce impulsivity in clinical populations at higher risk for suicide could help in the prevention. Deficits in problem-solving ability also seem to be distorted in patients who attempt

  12. Chemical profiling of the genome with anti-cancer drugs defines target specificities. (United States)

    Pang, Baoxu; de Jong, Johann; Qiao, Xiaohang; Wessels, Lodewyk F A; Neefjes, Jacques


    Many anticancer drugs induce DNA breaks to eliminate tumor cells. The anthracycline topoisomerase II inhibitors additionally cause histone eviction. Here, we performed genome-wide high-resolution mapping of chemotherapeutic effects of various topoisomerase I and II (TopoI and II) inhibitors and integrated this mapping with established maps of genomic or epigenomic features to show their activities in different genomic regions. The TopoI inhibitor topotecan and the TopoII inhibitor etoposide are similar in inducing DNA damage at transcriptionally active genomic regions. The anthracycline daunorubicin induces DNA breaks and evicts histones from active chromatin, thus quenching local DNA damage responses. Another anthracycline, aclarubicin, has a different genomic specificity and evicts histones from H3K27me3-marked heterochromatin, with consequences for diffuse large B-cell lymphoma cells with elevated levels of H3K27me3. Modifying anthracycline structures may yield compounds with selectivity for different genomic regions and activity for different tumor types.

  13. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. (United States)

    Han, Ting; Goralski, Maria; Gaskill, Nicholas; Capota, Emanuela; Kim, Jiwoong; Ting, Tabitha C; Xie, Yang; Williams, Noelle S; Nijhawan, Deepak


    Indisulam is an aryl sulfonamide drug with selective anticancer activity. Its mechanism of action and the basis for its selectivity have so far been unknown. Here we show that indisulam promotes the recruitment of RBM39 (RNA binding motif protein 39) to the CUL4-DCAF15 E3 ubiquitin ligase, leading to RBM39 polyubiquitination and proteasomal degradation. Mutations in RBM39 that prevent its recruitment to CUL4-DCAF15 increase RBM39 stability and confer resistance to indisulam's cytotoxicity. RBM39 associates with precursor messenger RNA (pre-mRNA) splicing factors, and inactivation of RBM39 by indisulam causes aberrant pre-mRNA splicing. Many cancer cell lines derived from hematopoietic and lymphoid lineages are sensitive to indisulam, and their sensitivity correlates with DCAF15 expression levels. Two other clinically tested sulfonamides, tasisulam and chloroquinoxaline sulfonamide, share the same mechanism of action as indisulam. We propose that DCAF15 expression may be a useful biomarker to guide clinical trials of this class of drugs, which we refer to as SPLAMs (splicing inhibitor sulfonamides). Copyright © 2017, American Association for the Advancement of Science.

  14. Phage Displayed Peptides/Antibodies Recognizing Growth Factors and Their Tyrosine Kinase Receptors as Tools for Anti-Cancer Therapeutics (United States)

    Ronca, Roberto; Benzoni, Patrizia; De Luca, Angela; Crescini, Elisabetta; Dell’Era, Patrizia


    The basic idea of displaying peptides on a phage, introduced by George P. Smith in 1985, was greatly developed and improved by McCafferty and colleagues at the MRC Laboratory of Molecular Biology and, later, by Barbas and colleagues at the Scripps Research Institute. Their approach was dedicated to building a system for the production of antibodies, similar to a naïve B cell repertoire, in order to by-pass the standard hybridoma technology that requires animal immunization. Both groups merged the phage display technology with an antibody library to obtain a huge number of phage variants, each of them carrying a specific antibody ready to bind its target molecule, allowing, later on, rare phage (one in a million) to be isolated by affinity chromatography. Here, we will briefly review the basis of the technology and the therapeutic application of phage-derived bioactive molecules when addressed against key players in tumor development and progression: growth factors and their tyrosine kinase receptors. PMID:22606042

  15. Therapeutic Targets for Management of Periodontitis and Diabetes (United States)

    Sima, Corneliu; Van Dyke, Thomas E.


    The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from n-3 polyunsaturated fatty acids. PMID:26881443

  16. Mitocans: Mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents

    Czech Academy of Sciences Publication Activity Database

    Ralph, S.J.; Low, P.; Dong, L.; Lawen, A.; Neužil, Jiří


    Roč. 1, - (2006), s. 327-346 ISSN 1574-8928 Institutional research plan: CEZ:AV0Z50520514 Keywords : mitocans * vitamin E analogues * mitochondria-based targeting Subject RIV: EB - Genetics ; Molecular Biology

  17. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  18. Cytotoxicity and cell death mechanisms induced by the polyamine-vectorized anti-cancer drug F14512 targeting topoisomerase II. (United States)

    Brel, Viviane; Annereau, Jean-Philippe; Vispé, Stéphane; Kruczynski, Anna; Bailly, Christian; Guilbaud, Nicolas


    The polyamines transport system (PTS) is usually enhanced in cancer cells and can be exploited to deliver anticancer drugs. The spermine-conjugated epipodophyllotoxin derivative F14512 is a topoisomerase II poison that exploits the PTS to target preferentially tumor cells. F14512 has been characterized as a potent anticancer drug candidate and is currently in phase 1 clinical trials. Here we have analyzed the mechanisms of cell death induced by F14512, compared to the parent drug etoposide lacking the polyamine tail. F14512 proved to be >30-fold more cytotoxic than etoposide against A549 non-small cell lung cancer cells and triggers less but unrecoverable DNA damages. The cytotoxic action of F14512 is extremely rapid (within 3 h) and does not lead to a marked accumulation in the S-phase of the cell cycle, unlike etoposide. Interestingly, A549 cells treated with F14512 were less prone to undergo apoptosis (neither caspases-dependent nor caspases-independent pathways) or autophagy but preferentially entered into senescence. Drug-induced senescence was characterized qualitatively and quantitatively by an increased β-galactosidase activity, both by cytochemical staining and by flow cytometry. A morphological analysis by electron microscopy revealed the presence of numerous multi-lamellar and vesicular bodies and large electron-lucent (methuosis-like) vacuoles in F14512-treated cell samples. The mechanism of drug-induced cell death is thus distinct for F14512 compared to etoposide, and this difference may account for their distinct pharmacological profiles and the markedly superior activity of F14512 in vivo. This study suggests that senescence markers should be considered as potential pharmacodynamic biomarkers of F14512 antitumor activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Dose calculation of anticancer drugs

    NARCIS (Netherlands)

    Gao, Bo; Klumpen, Heinz-Josef; Gurney, Howard


    BACKGROUND: Anticancer drugs are characterized by a narrow therapeutic window and significant inter-patient variability in therapeutic and toxic effects. Current body surface area (BSA)-based dosing fails to standardize systemic anticancer drug exposure and other alternative dosing strategies also

  20. Targeted Interventions for Homeless Children at a Therapeutic Nursery (United States)

    Norris-Shortle, Carole; Melley, Alison H.; Kiser, Laurel J.; Levey, Eric; Cosgrove, Kim; Leviton, Audrey


    PACT: Helping Children with Special Needs, an affiliate of the Kennedy Krieger Institute in Baltimore, Maryland, operates a therapeutic nursery that serves families who have at least one child from birth to 3 years of age, and who are living in a Baltimore City homeless shelter. In partnership with the Martin Luther King Early Head Start Program…

  1. Through the Looking Glass: Time-lapse Microscopy and Longitudinal Tracking of Single Cells to Study Anti-cancer Therapeutics. (United States)

    Burke, Russell T; Orth, James D


    The response of single cells to anti-cancer drugs contributes significantly in determining the population response, and therefore is a major contributing factor in the overall outcome. Immunoblotting, flow cytometry and fixed cell experiments are often used to study how cells respond to anti-cancer drugs. These methods are important, but they have several shortcomings. Variability in drug responses between cancer and normal cells, and between cells of different cancer origin, and transient and rare responses are difficult to understand using population averaging assays and without being able to directly track and analyze them longitudinally. The microscope is particularly well suited to image live cells. Advancements in technology enable us to routinely image cells at a resolution that enables not only cell tracking, but also the observation of a variety of cellular responses. We describe an approach in detail that allows for the continuous time-lapse imaging of cells during the drug response for essentially as long as desired, typically up to 96 hr. Using variations of the approach, cells can be monitored for weeks. With the employment of genetically encoded fluorescent biosensors numerous processes, pathways and responses can be followed. We show examples that include tracking and quantification of cell growth and cell cycle progression, chromosome dynamics, DNA damage, and cell death. We also discuss variations of the technique and its flexibility, and highlight some common pitfalls.

  2. Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex. (United States)

    Das, Rabindra Nath; Chevret, Edith; Desplat, Vanessa; Rubio, Sandra; Mergny, Jean-Louis; Guillon, Jean


    G-quadruplexes (G4) are stacked non-canonical nucleic acid structures found in specific G-rich DNA or RNA sequences in the human genome. G4 structures are liable for various biological functions; transcription, translation, cell aging as well as diseases such as cancer. These structures are therefore considered as important targets for the development of anticancer agents. Small organic heterocyclic molecules are well known to target and stabilize G4 structures. In this article, we have designed and synthesized 2,6-di-(4-carbamoyl-2-quinolyl)pyridine derivatives and their ability to stabilize G4-structures have been determined through the FRET melting assay. It has been established that these ligands are selective for G4 over duplexes and show a preference for the parallel conformation. Next, telomerase inhibition ability has been assessed using three cell lines (K562, MyLa and MV-4-11) and telomerase activity is no longer detected at 0.1 μM concentration for the most potent ligand 1c . The most promising G4 ligands were also tested for antiproliferative activity against the two human myeloid leukaemia cell lines, HL60 and K562.

  3. Cutaneous Adverse Events of Targeted Anticancer Therapy: A Review of Common Clinical Manifestations and Management

    Directory of Open Access Journals (Sweden)

    Pei-Han Kao


    The management of these side effects can be categorized into prophylaxis and reactive treatment. Systemic antibiotics and topical corticosteroid could possibly prevent or alleviate symptoms caused by EGFR inhibitors. The prevention of sun exposure is recommended to all patients on targeted therapy, and emollients and lubricants can be used to relieve and improve the hand-foot skin reaction.

  4. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications

    International Nuclear Information System (INIS)

    Amgoth, Chander; Paik, Pradip; Dharmapuri, Gangappa; Kalle, Arunasree M


    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA) 10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg −1 , respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA) 10 -PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC 50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery. (paper)

  5. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. (United States)

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian


    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  6. Galectins as therapeutic targets for hematological malignancies: a hopeful sweetness. (United States)

    Pena, Camilo; Mirandola, Leonardo; Figueroa, Jose A; Hosiriluck, Nattamol; Suvorava, Natallia; Trotter, Kayley; Reidy, Adair; Rakhshanda, Rahman; Payne, Drew; Jenkins, Marjorie; Grizzi, Fabio; Littlefield, Lauren; Chiriva-Internati, Maurizio; Cobos, Everardo


    Galectins are family of galactose-binding proteins known to play critical roles in inflammation and neoplastic progression. Galectins facilitate the growth and survival of neoplastic cells by regulating their cross-talk with the extracellular microenvironment and hampering anti-neoplastic immunity. Here, we review the role of galectins in the biology of hematological malignancies and their promise as potential therapeutic agents in these diseases.

  7. New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window

    International Nuclear Information System (INIS)

    Parrish, J.A.


    Advances in optics technology, synthetic photochemistry, and the science of photobiology make it possible to think beyond phototherapy and photochemotherapy which is dependent on direct photochemical alteration of metabolites or direct phototoxic insult to cells. This report discusses another gender of photomedicine therapy which includes in vivo photoactivation of medicines, photon-dependent drug delivery, and manipulation of host and exposure source to maximize therapeutic index. These therapeutic manipulations are made possible because the skin is highly overperfused and because non-ionizing electromagnetic radiation that enters skin and blood has adequate photon energy to cause electronic excitation. Radiation of 320-800 nm is not very directly phototoxic, is absorbed by a variety of relatively nontoxic photolabile molecules and has an internal dosimetric depth profile. This radiation can therefore be used to activate, deactivate, bind, release or biotransform medications in vivo in skin or other organs. The photochemist, synthetic chemist and photobiologist can collaborate to significantly increase therapeutic possibilities

  8. The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer. (United States)

    Heidegger, Isabel; Massoner, Petra; Sampson, Natalie; Klocker, Helmut


    Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer death in males. In recent years, several new targeting agents have been introduced for the treatment of advanced stages of the disease. However, development of resistance limits the efficacy of new drugs and there is a further need to develop additional novel treatment approaches. One of the most investigated targets in cancer research is the insulin-like growth factor (IGF) axis, whose receptors are overexpressed in several cancer entities including PCa. In preclinical studies in PCa, targeting of the IGF axis receptors showed promising anti-tumor effects. Currently available data on clinical studies do not meet the expectations for this new treatment approach. In this review we provide a summary of preclinical and clinical studies on the IGF axis in PCa including treatment with monoclonal antibodies and tyrosine kinase inhibitors. Moreover, we summarize preliminary results from ongoing studies and discuss limitations and side effects of the substances used. We also address the role of the IGF axis in the biomarkers setting including IGF-binding proteins and genetic variants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Targeting folate metabolism for therapeutic option: A bioinformatics approach. (United States)

    Hande, Sneha; Goswami, Kalyan; Sharma, Richa; Bhoj, Priyanka; Jena, Lingaraj; Reddy, Maryada Venkata Rami


    Lymphatic filariasis, commonly called elephantiasis, poses a burden of estimated level of 5.09 million disability adjusted life year. Limitations of its sole drug, diethylcarbamazine (DEC) drive exploration of effective filarial target. A few plant extracts having polyphenolic ingredients and some synthetic compounds possess potential dihydrofolate reductase (DHFR) inhibitory effect. Here, we postulated a plausible link between folates and polyphenolics based on their common precursor in shikimate metabolism. Considering its implication in structural resemblance based antagonism, we have attempted to validate parasitic DHFR protein as a target. The bioinformatics approach, in the absence of crystal structure of the proposed target, used to authenticate and for virtual docking with suitable tested compounds, showed remarkably lower thermodynamic parameters as opposed to the positive control. A comparative docking analysis between human and Brugia malayi DHFR also showed effective binding parameters with lower inhibition constants of these ligands with parasitic target, but not with human counterpart highlighting safety and efficacy. This study suggests that DHFR could be a valid drug target for lymphatic filariasis, and further reveal that bioinformatics may be an effective tool in reverse pharmacological approach for drug design.

  10. Tumor angiogenesis--a new therapeutic target in gliomas

    DEFF Research Database (Denmark)

    Lund, E L; Spang-Thomsen, M; Skovgaard-Poulsen, H


    Tumor growth is critically dependent on angiogenesis, which is sprouting of new vessels from pre-existing vasculature. This process is regulated by inducers and inhibitors released from tumor cells, endothelial cells, and macrophages. Brain tumors, especially glioblastoma multiforme, have...... significant angiogenic activity primarily by the expression of the angiogenic factor VEGF Anti-angiogenic therapy represents a new promising therapeutic modality in solid tumors. Several agents are currently under evaluation in clinical trials. The present review describes the principal inducers...... and inhibitors of angiogenesis in tumors and summarizes what is known about their mechanisms of action in relation to CNS tumors. Potential areas for clinical use are also discussed....

  11. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt


    better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein......The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...

  12. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    International Nuclear Information System (INIS)

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh


    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC 50 ) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  13. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Esfandyari-Manesh, Mehdi [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Darvishi, Behrad [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ishkuh, Fatemeh Azizi [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahmoradi, Elnaz [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh, E-mail: [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)


    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC{sub 50}) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  14. Molecular pathways and therapeutic targets in lung cancer (United States)

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi


    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  15. HER3 as a Therapeutic Target in Cancer. (United States)

    Karachaliou, Niki; Lazzari, Chiara; Verlicchi, Alberto; Sosa, Aaron E; Rosell, Rafael


    Targeting members of the human epidermal growth factor receptor family, especially EGFR and HER2, has been an established strategy for the treatment of tumors with abnormally activated receptors due to overexpression, mutation, ligand-dependent receptor dimerization and ligand-independent activation. Less attention has been paid to the oncogenic activity of HER3, although there is growing evidence that it mediates resistance to EGFR and HER2 pathway directed therapies. The main caveat for the development of effective HER3 targeted therapies is the absence of a strong enzymatic activity to target, as well as the limited potential for single-agent activity. In this review, we highlight the role of HER3 in cancer and, more specifically, in lung cancer. The basis for HER3 involvement in HER2 resistance and EGFR inhibition is discussed, as well as current pharmacologic strategies to combat HER3 inhibition.

  16. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. (United States)

    Taratula, Oleh; Garbuzenko, Olga B; Chen, Alex M; Minko, Tamara


    A tumor targeted mesoporous silica nanoparticles (MSN)-based drug delivery system (DDS) was developed for inhalation treatment of lung cancer. The system was capable of effectively delivering inside cancer cells anticancer drugs (doxorubicin and cisplatin) combined with two types of siRNA targeted to MRP1 and BCL2 mRNA for suppression of pump and nonpump cellular resistance in non-small cell lung carcinoma, respectively. Targeting of MSN to cancer cells was achieved by the conjugation of LHRH peptide on the surface of MSN via poly(ethylene glycol) spacer. The delivered anticancer drugs and siRNA preserved their specific activity leading to the cell death induction and inhibition of targeted mRNA. Suppression of cellular resistance by siRNA effectively delivered inside cancer cells and substantially enhanced the cytotoxicity of anticancer drugs. Local delivery of MSN by inhalation led to the preferential accumulation of nanoparticles in the mouse lungs, prevented the escape of MSN into the systemic circulation, and limited their accumulation in other organs. The experimental data confirm that the developed DDS satisfies the major prerequisites for effective treatment of non-small cell lung carcinoma. Therefore, the proposed cancer-targeted MSN-based system for complex delivery of drugs and siRNA has high potential in the effective treatment of lung cancer.

  17. Targeted drug delivery to magnetic implants for therapeutic applications

    International Nuclear Information System (INIS)

    Yellen, Benjamin B.; Forbes, Zachary G.; Halverson, Derek S.; Fridman, Gregory; Barbee, Kenneth A.; Chorny, Michael; Levy, Robert; Friedman, Gary


    A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject

  18. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. (United States)

    Banerjee, Swagata; Veale, Emma B; Phelan, Caroline M; Murphy, Samantha A; Tocci, Gillian M; Gillespie, Lisa J; Frimannsson, Daniel O; Kelly, John M; Gunnlaugsson, Thorfinnur


    The development of functional 1,8-naphthalimide derivatives as DNA targeting, anticancer and cellular imaging agents is a fast growing area and has resulted in several such derivatives entering into clinical trials. This review gives an overview of the many discoveries and the progression of the use of 1,8-naphthalimides as such agents and their applications to date; focusing mainly on mono-, bis-naphthalimide based structures, and their various derivatives (e.g. amines, polyamine conjugates, heterocyclic, oligonucleotide and peptide based, and those based on metal complexes). Their cytotoxicity, mode of action and cell-selectivity are discussed and compared. The rich photophysical properties of the naphthalimides (which are highly dependent on the nature and the substitution pattern of the aryl ring) make them prime candidates as probes as the changes in spectroscopic properties such as absorption, dichroism, and fluorescence can all be used to monitor their binding to biomolecules. This also makes them useful species for monitoring their uptake and location within cells without the use of co-staining. The photochemical properties of the compounds have also been exploited, for example, for photocleavage of nucleic acids and for the destruction of tumour cells.

  19. Comprehensive insight into the binding of sunitinib, a multi-targeted anticancer drug to human serum albumin (United States)

    Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad


    Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.

  20. Folate Receptor-targeted Bioflavonoid Genistein-loaded Chitosan Nanoparticles for Enhanced Anticancer Effect in Cervical Cancers (United States)

    Cai, Limei; Yu, Rufen; Hao, Xi; Ding, Xiangcui


    In this study, novel folic acid-conjugated chitosan nanoparticle was formulated for specific delivery of bioflavonoid, Genistein (GEN), to the cervical cancer cells. The prepared GEN-loaded chitosan nanoparticles (GCN) and folic acid-conjugated GCN (FGCN) showed smaller size with a controlled drug release profile. FGCN exhibited enhanced internalization potential in HeLa cells than that of GCN. The specific internalization of FGCN was mainly due to the affinity of folic acid (FA) with FRs-α which is present in large numbers in HeLa cells. The results revealed that FGCN has a specific affinity towards HeLa cells that will contribute to the better treatment. Folic acid-tagged nanoformulations exhibited a superior cytotoxic effect compared to that of non-targeted formulations. Consistently, IC50 value of GEN decreased from 33.8 to 14.6 μg/ml when treated with FGCN after 24 h incubation. The apoptosis studies indicated that the FGCN nanoparticles were then either GCN or free GEN in terms of anticancer activity. Overall, results revealed that folate conjugation to the delivery system might have great effect on the survival of cervical cancers that will be beneficial for overall cancer treatment.

  1. Performance evaluation of structure based and ligand based virtual screening methods on ten selected anti-cancer targets. (United States)

    Ramasamy, Thilagavathi; Selvam, Chelliah


    Virtual screening has become an important tool in drug discovery process. Structure based and ligand based approaches are generally used in virtual screening process. To date, several benchmark sets for evaluating the performance of the virtual screening tool are available. In this study, our aim is to compare the performance of both structure based and ligand based virtual screening methods. Ten anti-cancer targets and their corresponding benchmark sets from 'Demanding Evaluation Kits for Objective In silico Screening' (DEKOIS) library were selected. X-ray crystal structures of protein-ligand complexes were selected based on their resolution. Openeye tools such as FRED, vROCS were used and the results were carefully analyzed. At EF1%, vROCS produced better results but at EF5% and EF10%, both FRED and ROCS produced almost similar results. It was noticed that the enrichment factor values were decreased while going from EF1% to EF5% and EF10% in many cases. Published by Elsevier Ltd.

  2. The DNA double-stranded break repair protein endo-exonuclease as a therapeutic target for cancer. (United States)

    Chow, Terry Y-K; Alaoui-Jamali, Moulay A; Yeh, Chiaoli; Yuen, Leonard; Griller, David


    DNA repair mechanisms are crucial for the maintenance of genomic stability and are emerging as potential therapeutic targets for cancer. In this study, we report that the endo-exonuclease, a protein involved in the recombination repair process of the DNA double-stranded break pathway, is overexpressed in a variety of cancer cells and could represent an effective target for developing anticancer drugs. We identify a dicationic diarylfuran, pentamidine, which has been used clinically to treat opportunistic infections and is an inhibitor of the endo-exonuclease as determined by enzyme kinetic assay. In clonogenic and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays as well as in the in vivo Lewis lung carcinoma mouse tumor model, pentamidine is shown to possess the ability to selectively kill cancer cells. The LD50 of pentamidine on cancer cells maintained in vitro is correlated with the endo-exonuclease enzyme activity. Tumor cell that has been treated with pentamidine is reduced in the endo-exonuclease as compared with the untreated control. Furthermore, pentamidine synergistically potentiates the cytotoxic effect of DNA strand break and cross-link-inducing agents such as mitomycin C, etoposide, and cisplatin. In addition, we used the small interfering RNA for the mouse homologue of the endo-exonuclease to down-regulate the level of endo-exonuclease in the mouse myeloma cell line B16F10. Down-regulation of the endo-exonuclease sensitizes the cell to 5-fluorouracil. These studies suggested the endo-exonuclease enzyme as a novel potential therapeutic target for cancer.

  3. Tumor Progression Locus 2 (Tpl2 Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    Directory of Open Access Journals (Sweden)

    Hye Won Lee


    Full Text Available Tumor progression locus 2 (Tpl2 is a mitogen-activated protein kinase (MAPK kinase kinase (MAP3K that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.

  4. Overview of Nrf2 as Therapeutic Target in Epilepsy

    Directory of Open Access Journals (Sweden)

    Liliana Carmona-Aparicio


    Full Text Available Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2, which plays a central role in the regulation of antioxidant response elements (ARE and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  5. Tachykinin receptors as therapeutic targets in stress-related disorders. (United States)

    Ebner, Karl; Sartori, Simone B; Singewald, Nicolas


    The first report demonstrating the therapeutic efficacy of an orally applied neurokinin-1 (NK1) receptor antagonist in depression was published 10 years ago. Although there were difficulties to reproduce this particular finding, a huge amount of data has been published since this time, supporting the potential therapeutic value of various tachykinin ligands as promising novel tools for the management of stress-related disorders including anxiety disorders, schizophrenia and depression. The present review summarizes evidence derived from anatomical, neurochemical, pharmacological and behavioral studies demonstrating the localization of tachykinin neuropeptides including substance P (SP), neurokinin A, neurokinin B and their receptors (NK1, NK2, NK3) in brain areas known to be implicated in stress-mechanisms, mood/anxiety regulation and emotion-processing; their role as neurotransmitters and/or neuromodulators within these structures and their interactions with other neurotransmitter systems including dopamine, noradrenaline and serotonin (5-hydroxytryptamine, 5-HT). Finally, there is clear functional evidence from animal and human studies that interference with tachykinin transmission can modulate emotional behavior. Based on these findings and on evidence of upregulated tachykinin transmission in individuals suffering from stress-related disorders, several diverse tachykinin receptor antagonists, as well as compounds with combined antagonist profile have been developed and are currently under clinical investigation revealing evidence for anxiolytic, antidepressant and antipsychotic efficacy, seemingly characterized by a low side effect profile. However, substantial work remains to be done to clarify the precise mechanism of action of these compounds, as well as the potential of combining them with established and experimental therapies in order to boost efficacy.

  6. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety. (United States)

    Kim, Sungwon; Park, Kyong Mi; Ko, Jin Young; Kwon, Ick Chan; Cho, Hyeon Geun; Kang, Dongmin; Yu, In Tag; Kim, Kwangmeyung; Na, Kun


    Recent researches to develop nano-carrier systems in anti-cancer drug delivery have focused on more complicated design to improve therapeutic efficacy and to reduce side effects. Although such efforts have great impact to biomedical science and engineering, the complexity has been a huddle because of clinical and economic problems. In order to overcome the problems, a simplest strategy to fabricate nano-carriers to deliver doxorubicin (DOX) was proposed in the present study. Two significant subjects (i) formation of nanoparticles loading and releasing DOX and (ii) binding specificity of them to cells, were examined. Folic acid (FA) was directly coupled with pullulan (Pul) backbone by ester linkage (FA/Pul conjugate) and the degree of substitution (DS) was varied, which were confirmed by 1H NMR and UV spectrophotometry. Light scattering results revealed that the nanogels possessed two major size distributions around 70 and 270 nm in an aqueous solution. Their critical aggregation concentrations (CACs) were less than 10 microg/mL, which are lower than general critical micelle concentrations (CMCs) of low-molecular-weight surfactants. Transmission electron microscopy (TEM) images showed well-dispersed nanogel morphology in a dried state. Depending on the DS, the nanogels showed different DOX-loading and releasing profiles. The DOX release rate from FA8/Pul (with the highest DS) for 24h was slower than that from FA4/or FA6/Pul, indicating that the FA worked as a hydrophobic moiety for drug holding. Cellular uptake of the nanogels (KB cells) was also monitored by confocal microscopy. All nanogels were internalized regardless of the DS of FA. Based on the results, the objectives of this study, to suggest a new method overcoming the complications in the drug carrier design, were successfully verified.

  7. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Vinod K. Ravikumar


    Full Text Available Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT. Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure.

  8. Myeloid derived suppressor cells as therapeutic target in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kim eDe Veirman


    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell-cell interactions and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma and leukemia.

  9. The Endocannabinoid System as a Therapeutic Target in Glaucoma (United States)

    Cairns, Elizabeth A.; Baldridge, William H.; Kelly, Melanie E. M.


    Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC) loss. Intraocular pressure (IOP) is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS) has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed. PMID:26881140

  10. Alzheimer’s disease: Risk factors and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel


    Full Text Available Alzheimer’s disease (AD, a neurodegenerative disorder, has been determined as an outcome of genetic as well as behavioral conditions. The complete understanding of its generation and progress is yet to be understood. However, there has been a significant progress in the diagnosis and identification of the associated risk factors of AD. Several of the risk factors were found connected with cholesterol. Scientists are mainly focusing on the reduction of amyloid β and stabilization of tau protein towards the development of its drugs. To modulate amyloid β, the key components of cholesterol metabolism have been attractive targets and the enzymes involved in the phosphorylation of tau have been tried to stabilize tau protein. This review article briefly highlights the symptoms, risk factors, and drug targets of AD.

  11. Relict plastidic metabolic process as a potential therapeutic target. (United States)

    Sharma, Drista; Soni, Rani; Rai, Praveen; Sharma, Bhaskar; Bhatt, Tarun Kumar


    The alignment of the evolutionary history of parasites with that of plants provides a different panorama in the drug development process. The housing of different metabolic processes, essential for parasite survival, adds to the indispensability of the apicoplast. The different pathways responsible for fueling the apicoplast and parasite offer a myriad of proteins responsible for the apicoplast function. The studies emphasizing the target-based approaches might help in the discovery of antimalarials. The different putative drug targets and their roles are highlighted. In addition, the origin of the apicoplast and metabolic processes are reviewed and the different drugs acting upon the enzymes of the apicoplast are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Endocannabinoid System as a Therapeutic Target in Glaucoma

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Cairns


    Full Text Available Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC loss. Intraocular pressure (IOP is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed.

  13. MicroRNAs: a novel therapeutic target for schizophrenia.

    LENUS (Irish Health Repository)

    Bravo, Javier A


    Schizophrenia is one of the most disabling psychiatric conditions. Current treatments target monoamine receptors but this approach does not address the full complexity of the disorder. Here we explore the possibility of developing new anti-psychotics by targeting microRNAs (miRNAs), single stranded RNA molecules, 21-23 nucleotides in length that are not translated into proteins and regulate gene expression. The present review reveals that research involving schizophrenia and miRNA is very recent (the earliest report from 2007) and miRNAs add a significant layer of complexity to the pathophysiology of the disorder. However, miRNAs offer an exciting potential not only to understand the underlying mechanisms of schizophrenia, but also for the future development of antipsychotics, as the human miRNA system provides a rich and diverse opportunity for pharmacological targeting. However, technology is still developing in order to produce effective strategies to modulate specific and localized changes in miRNA, particularly in relation to the central nervous system and schizophrenia.

  14. Gab Adapter Proteins as Therapeutic Targets for Hematologic Disease

    Directory of Open Access Journals (Sweden)

    Sheetal Verma


    Full Text Available The Grb-2 associated binder (Gab family of scaffolding/adaptor/docking proteins is a group of three molecules with significant roles in cytokine receptor signaling. Gabs possess structural motifs for phosphorylation-dependent receptor recruitment, Grb2 binding, and activation of downstream signaling pathways through p85 and SHP-2. In addition, Gabs participate in hematopoiesis and regulation of immune response which can be aberrantly activated in cancer and inflammation. The multifunctionality of Gab adapters might suggest that they would be too difficult to consider as candidates for “targeted” therapy. However, the one drug/one target approach is giving way to the concept of one drug/multiple target approach since few cancers are addicted to a single signaling molecule for survival and combination drug therapies can be problematic. In this paper, we cover recent findings on Gab multi-functionality, binding partners, and their role in hematological malignancy and examine the concept of Gab-targeted therapy.

  15. Prostanoid receptor EP2 as a therapeutic target. (United States)

    Ganesh, Thota


    Cycoloxygenase-2 (COX-2) induction is prevalent in a variety of (brain and peripheral) injury models where COX-2 levels correlate with disease progression. Thus, COX-2 has been widely explored for anti-inflammatory therapy with COX-2 inhibitors, which proved to be effective in reducing the pain and inflammation in patients with arthritis and menstrual cramps, but they have not provided any benefit to patients with chronic inflammatory neurodegenerative disease. Recently, two COX-2 drugs, rofecoxib and valdecoxib, were withdrawn from the United States market due to cardiovascular side effects. Thus, future anti-inflammatory therapy could be targeted through a specific prostanoid receptor downstream of COX-2. The PGE2 receptor EP2 is emerging as a pro-inflammatory target in a variety of CNS and peripheral diseases. Here we highlight the latest developments on the role of EP2 in diseases, mechanism of activation, and small molecule discovery targeted either to enhance or to block the function of this receptor.

  16. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1 (United States)

    Choi, Yong-Joon; Shin, Hyun-Woo; Chun, Yang-Sook; Leutou, Alain Simplice; Son, Byeng Wha; Park, Jong-Wan


    Hypoxia activates hypoxia-inducible factor 1, which promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. Thus, HIF-1 is one of the most compelling targets for treating cancers. The aim of this study was to find a small molecule that inhibits HIF-1 under hypoxia in cancer cells. 7,280 compounds in a chemical library were tested in a cancer cell line expressing luciferase HIF-dependently. Through three rounds of screening, we finally picked up a compound that originates from a marine bacterium parasitizing red alga. The antibiotic potently inhibited HIF-1 expression and its transcriptional activity in cancer cells exposed to hypoxia. Through two-step fractionation, diacetoxyscirpenol was purified and identified as a HIF-inhibiting ingredient. Mechanistically, diacetoxyscirpenol inhibits the synthesis of HIF-1α protein and also interferes with the dimerization of HIF-1α and ARNT. It attenuates HIF-mediated gene expression in cancer cells exposed to hypoxia, and by doing so reduces tumorigenic and angiogenic potentials of cancer cells. More importantly, diacetoxyscirpenol retarded tumor growth in mice, and reduced HIF-1α expression and vascular formation in the tumors. Overall, diacetoxyscirpenol is considered a potential drug deregulating the HIF-1 signaling pathway, and it could be beneficially employed for treating malignant tumors with hypoxic microenvironment. PMID:27613833

  17. Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Liang

    Full Text Available The mitotic spindle checkpoint (SAC genes have been considered targets of anticancer therapies. Here, we sought to identify the attractive mitotic spindle checkpoint genes appropriate for human hepatocellular carcinoma (HCC therapies. Through expression profile analysis of 137 selected mitotic spindle checkpoint genes in the publicly available microarray datasets, we showed that 13 genes were dramatically up-regulated in HCC tissues compared to normal livers and adjacent non-tumor tissues. A role of the 13 genes in proliferation was evaluated by knocking them down via small interfering RNA (siRNA in HCC cells. As a result, several mitotic spindle checkpoint genes were required for maintaining the proliferation of HCC cells, demonstrated by cell viability assay and soft agar colony formation assay. Then we established sorafenib-resistant sublines of HCC cell lines Huh7 and HepG2. Intriguingly, increased TTK expression was significantly associated with acquired sorafenib-resistance in Huh7, HepG2 cells. More importantly, TTK was observably up-regulated in 46 (86.8% of 53 HCC specimens. A series of in vitro and in vivo functional experiment assays showed that TTK overexpression promoted cell proliferation, anchor-dependent colony formation and resistance to sorafenib of HCC cells; TTK knockdown restrained cell growth, soft agar colony formation and resistance to sorafenib of HCC cells. Collectively, TTK plays an important role in proliferation and sorafenib resistance and could act as a potential therapeutic target for human hepatocellular carcinoma.

  18. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015) (United States)

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim


    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  19. Novel Small Molecule Inhibitor of Tyk2: Lucrative Therapeutic Target in Lupus (United States)


    AWARD NUMBER: W81XWH-16-1-0609 TITLE: Novel Small-Molecule Inhibitor of Tyk2: Lucrative Therapeutic Target in Lupus PRINCIPAL INVESTIGATOR...Aug 2017 4. TITLE AND SUBTITLE Novel Small-Molecule Inhibitor of Tyk2: Lucrative Therapeutic Target in Lupus 5a. CONTRACT NUMBER 5b. GRANT NUMBER...use of small molecule inhibitors of Tyk2 and Jak1 aimed at ameliorating the chronic inflammatory milieu and high titers of auto-antibodies in lupus

  20. Novel 1,3,4-Oxadiazole Induces Anticancer Activity by Targeting NF-κB in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chakrabhavi Dhananjaya Mohan


    Full Text Available Aberrant activation of NF-κB is linked with the progression of human malignancies including hepatocellular carcinoma (HCC, and blockade of NF-κB signaling could be a potential target in the treatment of several cancers. Therefore, designing of novel small molecule inhibitors that target NF-κB activation is of prime importance in the treatment of several cancers. In the present work, we report the synthesis of series of 1,3,4-oxadiazoles, investigated their anticancer potential against HCC cells, and identified 2-(3-chlorobenzo[b]thiophen-2-yl-5-(3-methoxyphenyl-1,3,4-oxadiazole (CMO as the lead compound. Further, we examined the effect of CMO on cell cycle distribution (flow cytometry, apoptosis (annexin V-propidium iodide-FITC staining, and phosphorylation of NF-κB signaling pathway proteins (IκB and p65 in HCC cells. We found that CMO induced antiproliferative effect in dose- and time-dependent manner. Also, CMO significantly increased the percentage of sub-G1 cell population and induced apoptosis. Furthermore, CMO found to decrease the phosphorylation of IκB (Ser 32 in the cytoplasmic extract and p65 (Ser 536 in the nuclear extract of HCC cells. It also abrogated the DNA binding ability and transcriptional activity of NF-κB. CMO induced the cleavage of PARP and caspase-3 in a time-dependent manner. In addition, transfection with p65 small interfering RNA blocks CMO-induced caspase-3/7 activation. Molecular docking analysis revealed that CMO interacts with the hydrophobic region of p65 protein. Thus, we are reporting CMO as an inhibitor of NF-κB signaling pathway.

  1. An integrated Drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Sonia Chelouah

    Full Text Available F14512 is a novel anti-tumor molecule based on an epipodophyllotoxin core coupled to a cancer-cell vectoring spermine moiety. This polyamine linkage is assumed to ensure the preferential uptake of F14512 by cancer cells, strong interaction with DNA and potent inhibition of topoisomerase II (Topo II. The antitumor activity of F14512 in human tumor models is significantly higher than that of other epipodophyllotoxins in spite of a lower induction of DNA breakage. Hence, the demonstrated superiority of F14512 over other Topo II poisons might not result solely from its preferential uptake by cancer cells, but could also be due to unique effects on Topo II interactions with DNA. To further dissect the mechanism of action of F14512, we used Drosophila melanogaster mutants whose genetic background leads to an easily scored phenotype that is sensitive to changes in Topo II activity and/or localization. F14512 has antiproliferative properties in Drosophila cells and stabilizes ternary Topo II/DNA cleavable complexes at unique sites located in moderately repeated sequences, suggesting that the drug specifically targets a select and limited subset of genomic sequences. Feeding F14512 to developing mutant Drosophila larvae led to the recovery of flies expressing a striking phenotype, "Eye wide shut," where one eye is replaced by a first thoracic segment. Other recovered F14512-induced gain- and loss-of-function phenotypes similarly correspond to precise genetic dysfunctions. These complex in vivo results obtained in a whole developing organism can be reconciled with known genetic anomalies and constitute a remarkable instance of specific alterations of gene expression by ingestion of a drug. "Drosophila-based anticancer pharmacology" hence reveals unique properties for F14512, demonstrating the usefulness of an assay system that provides a low-cost, rapid and effective complement to mammalian models and permits the elucidation of fundamental mechanisms of

  2. The Sphenopalatine Ganglion: Anatomy, Pathophysiology, and Therapeutic Targeting in Headache. (United States)

    Robbins, Matthew S; Robertson, Carrie E; Kaplan, Eugene; Ailani, Jessica; Charleston, Larry; Kuruvilla, Deena; Blumenfeld, Andrew; Berliner, Randall; Rosen, Noah L; Duarte, Robert; Vidwan, Jaskiran; Halker, Rashmi B; Gill, Nicole; Ashkenazi, Avi


    The sphenopalatine ganglion (SPG) has attracted the interest of practitioners treating head and face pain for over a century because of its anatomical connections and role in the trigemino-autonomic reflex. In this review, we discuss the anatomy of the SPG, as well as what is known about its role in the pathophysiology of headache disorders, including cluster headache and migraine. We then address various therapies that target the SPG, including intranasal medication delivery, new SPG blocking catheter devices, neurostimulation, chemical neurolysis, and ablation procedures. © 2015 American Headache Society.

  3. Exosomes: From Garbage Bins to Promising Therapeutic Targets. (United States)

    H Rashed, Mohammed; Bayraktar, Emine; K Helal, Gouda; Abd-Ellah, Mohamed F; Amero, Paola; Chavez-Reyes, Arturo; Rodriguez-Aguayo, Cristian


    Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.

  4. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Jose Luis Martin-Ventura


    Full Text Available Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of the main sources of reactive oxygen species (ROS in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.

  5. Clearing the fog of anticancer patents from 1993-2013: through an in-depth technology landscape & target analysis from pioneer research institutes and universities worldwide. (United States)

    Dara, Ajay; Sangamwar, Abhay T


    In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR): India's largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade anticancer scenario with respect to top public funded universities worldwide.

  6. Clearing the fog of anticancer patents from 1993-2013: through an in-depth technology landscape & target analysis from pioneer research institutes and universities worldwide.

    Directory of Open Access Journals (Sweden)

    Ajay Dara

    Full Text Available BACKGROUND: In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR: India's largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. METHODOLOGY/PRINCIPAL FINDINGS: The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. CONCLUSIONS/SIGNIFICANCE: The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade

  7. Clearing the Fog of Anticancer Patents from 1993–2013: Through an In-Depth Technology Landscape & Target Analysis from Pioneer Research Institutes and Universities Worldwide (United States)

    Dara, Ajay; Sangamwar, Abhay T.


    Background In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR): India’s largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. Methodology/Principal Findings The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. Conclusions/Significance The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade anticancer scenario

  8. Comparison of therapeutic responses to an anticancer drug in three stocks of ICR mice derived from three different sources. (United States)

    Sung, Ji Eun; Kim, Ji Eun; Lee, Hyun Ah; Yun, Woo Bin; Choi, Jun Young; Lee, Mi Rim; Park, Jin Ju; Kim, Hye Ryeong; Song, Bo Ram; Jung, Young Suk; Kim, Kil Soo; Hwang, Dae Youn


    Korl:ICR mice, established by the Korean National Institute of Food and Drug Safety Evaluation (NIFDS), are characterized based on their genetic variation, response to gastric injury, and response to constipation inducers. To compare the inhibitory responses of ICR stocks obtained from three different sources to the anticancer drug cisplatin (Cis), alterations in tumor volume, histopathological structure, and toxicity were examined in Sarcoma 180 tumor-bearing Korl:ICR, A:ICR (USA source), and B:ICR (Japan source) mice treated with low and high concentrations of Cis (L-Cis and H-Cis, respectively). Tumor size and volume were lower in H-Cis-treated mice than in L-Cis-treated mice in all three ICR stocks with no significant differences among stocks. There was a significant enhancement of the necrotizing areas in the histological structures in the L-Cis- and H-Cis-treated groups relative to that in the untreated group. The necrotizing area changes were similar in the Sarcoma 180 tumor-bearing Korl:ICR, A:ICR, and B:ICR mice. However, there were stock-bases differences in the serum biomarkers for liver and kidney toxic effects. In particular, the levels of AST, ALT and BUN increased differently in the three H-Cis-treated ICR stocks, whereas the levels of ALP and CRE were constant. Taken together, the results of the present study indicate that Korl:ICR, A:ICR, and B:ICR mice have similar overall inhibitory responses following Cis treatment of Sarcoma 180-derived solid tumors, although there were some differences in the magnitude of the toxic effects in the three ICR stocks.

  9. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy


    Pobbati, Ajaybabu V.; Han, Xiao; Hung, Alvin W.; Weiguang, Seetoh; Huda, Nur; Chen, Guo-Ying; Kang, CongBao; Chia, Cheng San Brian; Luo, Xuelian; Hong, Wanjin; Poulsen, Anders


    The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD’s co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small molecule inhibitors. Our X-ray crystallograp...

  10. Cannabidiol in Humans—The Quest for Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Stéphane Potvin


    Full Text Available Cannabidiol (CBD, a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word “cannabidiol”. Both monotherapy and combination studies (e.g., CBD + ∆9-THC were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies, schizophrenia and bipolar mania (four studies, social anxiety disorder (two studies, neuropathic and cancer pain (two studies, cancer anorexia (one study, Huntington’s disease (one study, insomnia (one study, and epilepsy (one study. Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150–600 mg/d may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed.

  11. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Lin


    Full Text Available Self-renewing tumor-initiating cells (TICs are thought to be responsible for tumor recurrence and chemo-resistance. Glycine decarboxylase, encoded by the GLDC gene, is reported to be overexpressed in TIC-enriched primary non-small-cell lung carcinoma (NSCLC. GLDC is a component of the mitochondrial glycine cleavage system, and its high expression is required for growth and tumorigenic capacity. Currently, there are no therapeutic agents against GLDC. As a therapeutic strategy, we have designed and tested splicing-modulating steric hindrance antisense oligonucleotides (shAONs that efficiently induce exon skipping (half maximal inhibitory concentration [IC50] at 3.5–7 nM, disrupt the open reading frame (ORF of GLDC transcript (predisposing it for nonsense-mediated decay, halt cell proliferation, and prevent colony formation in both A549 cells and TIC-enriched NSCLC tumor sphere cells (TS32. One candidate shAON causes 60% inhibition of tumor growth in mice transplanted with TS32. Thus, our shAONs candidates can effectively inhibit the expression of NSCLC-associated metabolic enzyme GLDC and may have promising therapeutic implications.

  12. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)


    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  13. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    Mittal, Amit Kumar; Tripathy, Debabrata; Choudhary, Alka; Aili, Pavan Kumar; Chatterjee, Anupam; Singh, Inder Pal; Banerjee, Uttam Chand


    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag + to Ag 0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC 50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of

  14. BMI-1, a promising therapeutic target for human cancer (United States)



    BMI-1 oncogene is a member of the polycomb-group gene family and a transcriptional repressor. Overexpression of BMI-1 has been identified in various human cancer tissues and is known to be involved in cancer cell proliferation, cell invasion, distant metastasis, chemosensitivity and patient survival. Accumulating evidence has revealed that BMI-1 is also involved in the regulation of self-renewal, differentiation and tumor initiation of cancer stem cells (CSCs). However, the molecular mechanisms underlying these biological processes remain unclear. The present review summarized the function of BMI-1 in different human cancer types and CSCs, and discussed the signaling pathways in which BMI-1 is potentially involved. In conclusion, BMI-1 may represent a promising target for the prevention and therapy of various cancer types. PMID:26622537

  15. Skp2 is a promising therapeutic target in breast cancer

    Directory of Open Access Journals (Sweden)

    Zhiwei eWang


    Full Text Available Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, Her2, PI3K/Akt, BRCA1 and BRCA2. Emerging evidence has shown that the F-box protein Skp2 (S-phase kinase associated protein 2 also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural chemopreventive agents as targeted approach for the prevention and/or treatment of breast cancer.

  16. Atopic dermatitis: recent insight on pathogenesis and novel therapeutic target. (United States)

    D'Auria, Enza; Banderali, Giuseppe; Barberi, Salvatore; Gualandri, Lorenzo; Pietra, Benedetta; Riva, Enrica; Cerri, Amilcare


    Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. It affects infancy, but it is also highly prevalent in adults and it is one of the disease burdens for the patients and their families. Nowadays, AD is recognized as a heterogenous disease with different subtypes with variable clinical manifestations which is affected by the impairments of the skin barrier. The severity of AD dictates the level of treatment. Current AD treatment focuses on restoration of the barrier function, mainly through the use of moisturizers and corticosteroids to control the inflammation, topical calcineurin inhibitors, and immunosuppresive drugs in the most severe cases. However, targeted disease-modifying therapies are under investigation. The most recent findings on the skin microbial dysbiosis is a promising future direction for the development of new treatments. We need to improve the understanding of the complex microbiome-host interactions, the role of autoimmunity, the comparative effectiveness of therapies and the ways to appropriately implement the educational strategies.

  17. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. (United States)

    Dang, C V


    Studies from many laboratories document that the MYC oncogene produces a pleiotropic transcription factor, Myc, which influences genes driven by all three RNA polymerases to orchestrate nutrient import with biomass accumulation for cell division. Myc has been shown to activate genes involved in glycolysis, glutaminolysis, and mitochondrial biogenesis to provide ATP and anabolic substrates for cell mass accumulation. Myc stimulates ribosome biogenesis and orchestrates the energetic demand for biomass accumulation through its regulation of glucose and glutamine import and metabolism. When normal cells are deprived of nutrients, endogenous MYC expression diminishes and cells withdraw from the cell cycle. However, ectopic MYC-driven cancer cells are locked in a state of deregulated biomass accumulation, which renders them addicted to glucose and glutamine. This addictive state can be exploited for cancer therapy, because nutrient deprivation kills Myc-driven cells and inhibition of the Myc targets, lactate dehydrogenase A or glutaminase, diminishes tumor xenograft growth in vivo.

  18. Therapeutic targets in cancer cell metabolism and autophagy (United States)

    Cheong, Heesun; Lu, Chao; Lindsten, Tullia; Thompson, Craig B.


    The metabolism of cancer cells is reprogrammed by oncogene signaling and/or mutations in metabolic enzymes. These metabolic alterations support cell proliferation and survival, but leave cancer cells dependent on continuous support of the nutrients that fuel their altered metabolism. Thus, in addition to core oncogenic pathways, many metabolic enzymes have become targets for novel therapies. Two novel processes- isoform-specific expression of metabolic enzymes and autophagy- have recently been shown to play critical roles in the adaptation of tumor cells to changes in nutrient availability and the cell's ability to sense and adapt to depletion of critical nutrients. These findings suggest that a better understanding of the molecular basis of cancer-associated metabolic changes has the potential to provide insights to enhance cancer therapy. PMID:22781696

  19. Tumor-Associated Macrophages: Therapeutic Targets for Skin Cancer

    Directory of Open Access Journals (Sweden)

    Taku Fujimura


    Full Text Available Tumor-associated macrophages (TAMs and regulatory T cells (Tregs are significant components of the microenvironment of solid tumors in the majority of cancers. TAMs sequentially develop from monocytes into functional macrophages. In each differentiation stage, TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment (e.g., expression of immune checkpoint molecules, production of Treg-related chemokines and cytokines, production of arginase I. Although the main population of TAMs is immunosuppressive M2 macrophages, TAMs can be modulated into M1-type macrophages in each differential stage, leading to the suppression of tumor growth. Because the administration of certain drugs or stromal factors can stimulate TAMs to produce specific chemokines, leading to the recruitment of various tumor-infiltrating lymphocytes, TAMs can serve as targets for cancer immunotherapy. In this review, we discuss the differentiation, activation, and immunosuppressive function of TAMs, as well as their benefits in cancer immunotherapy.

  20. REV-ERB and ROR: therapeutic targets for treating myopathies (United States)

    Welch, Ryan D.; Flaveny, Colin A.


    Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.

  1. Targeting nicotine addiction: the possibility of a therapeutic vaccine

    Directory of Open Access Journals (Sweden)

    Escobar-Chávez JJ


    Full Text Available José Juan Escobar-Chávez1, Clara Luisa Domínguez-Delgado2, Isabel Marlen Rodríguez-Cruz21Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México; 2División de Estudios de Posgrado (Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, MéxicoAbstract: Cigarette smoking is the primary cause of lung cancer, cardiovascular diseases, reproductive disorders, and delayed wound healing all over the world. The goals of smoking cessation are both to reduce health risks and to improve quality of life. The development of novel and more effective medications for smoking cessation is crucial in the treatment of nicotine dependence. Currently, first-line smoking cessation therapies include nicotine replacement products and bupropion. The partial nicotinic receptor agonist, varenicline, has recently been approved by the US Food and Drug Administration (FDA for smoking cessation. Clonidine and nortriptyline have demonstrated some efficacy, but side effects may limit their use to second-line treatment products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine D3 receptor antagonists. Nicotine vaccines are among newer products seeking approval from the FDA. Antidrug vaccines are irreversible, provide protection over years and need booster injections far beyond the critical phase of acute withdrawal symptoms. Interacting with the drug in the blood rather than with a receptor in the brain, the vaccines are free of side effects due to central interaction. For drugs like nicotine, which interacts with different types of receptors in many organs, this is a further advantage. Three anti-nicotine vaccines are today in an advanced stage of clinical evaluation. Results

  2. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. (United States)

    Li, Chunxia; Zhang, Guifeng; Zhao, Lei; Ma, Zhijun; Chen, Hongbing


    Nearly a century ago, Otto Warburg made the ground-breaking observation that cancer cells, unlike normal cells, prefer a seemingly inefficient mechanism of glucose metabolism: aerobic glycolysis, a phenomenon now referred to as the Warburg effect. The finding that rapidly proliferating cancer cells favors incomplete metabolism of glucose, producing large amounts of lactate as opposed to synthesizing ATP to sustain cell growth, has confounded scientists for years. Further investigation into the metabolic phenotype of cancer has expanded our understanding of this puzzling conundrum, and has opened new avenues for the development of anti-cancer therapies. Enhanced glycolytic flux is now known to allow for increased synthesis of intermediates for sustaining anabolic pathways critical for cancer cell growth. Alongside the increase in glycolysis, cancer cells transform their mitochondria into synthesis machines supported by augmented glutaminolysis, supplying lipid production, amino acid synthesis, and the pentose phosphate pathways. Inhibition of several of the key enzymes involved in these pathways has been demonstrated to effectively obstruct cancer cell growth and multiplication, sensitizing them to apoptosis. The modulation of various regulatory proteins involved in metabolic processes is central to cancerous reprogramming of metabolism. The finding that members of one of the major protein families involved in cell death regulation also aberrantly regulated in cancers, the Bcl-2 family of proteins, are also critical mediators of metabolic pathways, provides strong evidence for the importance of the metabolic shift to cancer cell survival. Targeting the anti-apoptotic members of the Bcl-2 family of proteins is proving to be a successful way to selectively target cancer cells and induce apoptosis. Further understanding of how cancer cells modify metabolic regulation to increase channeling of substrates into biosynthesis will allow for the discovery of novel drug

  3. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. (United States)

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R


    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. TCTP as a therapeutic target in melanoma treatment. (United States)

    Boia-Ferreira, M; Basílio, A B; Hamasaki, A E; Matsubara, F H; Appel, M H; Da Costa, C R V; Amson, R; Telerman, A; Chaim, O M; Veiga, S S; Senff-Ribeiro, A


    Translationally controlled tumour protein (TCTP) is an antiapoptotic protein highly conserved through phylogeny. Translationally controlled tumour protein overexpression was detected in several tumour types. Silencing TCTP was shown to induce tumour reversion. There is a reciprocal repression between TCTP and P53. Sertraline interacts with TCTP and decreases its cellular levels. We evaluate the role of TCTP in melanoma using sertraline and siRNA. Cell viability, migration, and clonogenicity were assessed in human and murine melanoma cells in vitro. Sertraline was evaluated in a murine melanoma model and was compared with dacarbazine, a major chemotherapeutic agent used in melanoma treatment. Inhibition of TCTP levels decreases melanoma cell viability, migration, clonogenicity, and in vivo tumour growth. Human melanoma cells treated with sertraline show diminished migration properties and capacity to form colonies. Sertraline was effective in inhibiting tumour growth in a murine melanoma model; its effect was stronger when compared with dacarbazine. Altogether, these results indicate that sertraline could be effective against melanoma and TCTP can be a target for melanoma therapy.

  5. High Density Lipoprotein: A Therapeutic Target in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Philip J. Barter


    Full Text Available High density lipoproteins (HDLs have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.

  6. Nicotinic ACh receptors as therapeutic targets in CNS disorders. (United States)

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L


    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.

  7. Mitochondrial respiration--an important therapeutic target in melanoma.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available The importance of mitochondria as oxygen sensors as well as producers of ATP and reactive oxygen species (ROS has recently become a focal point of cancer research. However, in the case of melanoma, little information is available to what extent cellular bioenergetics processes contribute to the progression of the disease and related to it, whether oxidative phosphorylation (OXPHOS has a prominent role in advanced melanoma. In this study we demonstrate that compared to melanocytes, metastatic melanoma cells have elevated levels of OXPHOS. Furthermore, treating metastatic melanoma cells with the drug, Elesclomol, which induces cancer cell apoptosis through oxidative stress, we document by way of stable isotope labeling with amino acids in cell culture (SILAC that proteins participating in OXPHOS are downregulated. We also provide evidence that melanoma cells with high levels of glycolysis are more resistant to Elesclomol. We further show that Elesclomol upregulates hypoxia inducible factor 1-α (HIF-1α, and that prolonged exposure of melanoma cells to this drug leads to selection of melanoma cells with high levels of glycolysis. Taken together, our findings suggest that molecular targeting of OXPHOS may have efficacy for advanced melanoma.

  8. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy (United States)

    Hernández, Cristina; Simó, Rafael


    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  9. Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema (United States)

    Tang, Guanghui; Yang, Guo-Yuan


    Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dysregulation of aquaporin-4 relates to the brain edema resulting from a variety of neuro-disorders, such as ischemic or hemorrhagic stroke, trauma, etc. During edema formation in the brain, aquaporin-4 has been shown to contribute to the astrocytic swelling, while in the resolution phase, it has been seen to facilitate the reabsorption of extracellular fluid. In addition, aquaporin-4-deficient mice are protected from cytotoxic edema produced by water intoxication and brain ischemia. However, aquaporin-4 deletion exacerbates vasogenic edema in the brain of different pathological disorders. Recently, our published data showed that the upregulation of aquaporin-4 in astrocytes probably contributes to the transition from cytotoxic edema to vasogenic edema. In this review, apart from the traditional knowledge, we also introduce our latest findings about the effects of mesenchymal stem cells (MSCs) and microRNA-29b on aquaporin-4, which could provide powerful intervention tools targeting aquaporin-4. PMID:27690011

  10. Squalene synthase as a target for Chagas disease therapeutics.

    Directory of Open Access Journals (Sweden)

    Na Shang


    Full Text Available Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.

  11. Myocardial fibroblast-matrix interactions and potential therapeutic targets. (United States)

    Goldsmith, Edie C; Bradshaw, Amy D; Zile, Michael R; Spinale, Francis G


    The cardiac extracellular matrix (ECM) is a dynamic structure, adapting to physiological and pathological stresses placed on the myocardium. Deposition and organization of the matrix fall under the purview of cardiac fibroblasts. While often overlooked compared to myocytes, fibroblasts play a critical role in maintaining ECM homeostasis under normal conditions and in response to pathological stimuli assume an activated, myofibroblast phenotype associated with excessive collagen accumulation contributing to impaired cardiac function. Complete appreciation of fibroblast function is hampered by the lack of fibroblast-specific reagents and the heterogeneity of fibroblast precursors. This is further complicated by our ability to dissect the role of myofibroblasts versus fibroblasts in myocardial in remodeling. This review highlights critical points in the regulation of collagen deposition by fibroblasts, the current panel of molecular tools used to identify fibroblasts and the role of fibroblast-matrix interactions in fibroblast function and differentiation into the myofibroblast phenotype. The clinical potential of exploiting differences between fibroblasts and myofibroblasts and using them to target specific fibroblast populations is also discussed. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium." Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. CD30 is a potential therapeutic target in malignant mesothelioma (United States)

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin


    CD30 is a cytokine receptor belonging to the tumor necrosis factor superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin’s disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in non-lymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by immunohistochemistry. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with either tumor grade, stage or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment. PMID:25589494

  13. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets

    NARCIS (Netherlands)

    Hendriksen, Erik; Olivier, Berend; Oosting, Ronald S


    The development of new pharmacological therapies starts with target discovery. Finding new therapeutic targets for anxiety disorders is a difficult process. Most of the currently described drugs for post-traumatic stress disorder (PTSD) are based on the inhibition of serotonin reuptake. The

  14. Improved clearance of radioiodinated hypericin as a targeted anticancer agent by using a duodenal drainage catheter in rats. (United States)

    Cona, Marlein Miranda; Feng, Yuanbo; Verbruggen, Alfons; Oyen, Raymond; Ni, Yicheng


    We sought to reduce the radioactive intestinal waste after intravenous injection of necrosis avid iodine-131-labeled hypericin in dual-targeting anticancer radiotherapy and to study its pharmacokinetics in rats using a newly designed catheter. Iodine-123-labeled hypericin was prepared with iodogen as oxidant and characterized by high-performance liquid chromatography and mass spectrometry. After iodine-123-labeled hypericin administration, duodenal juice was collected via a catheter from groups of rats (n = 5) at intervals of 0-4, 4-8 or 20-24 h. The content was assessed by gamma-counting. The biodistribution and pharmacokinetics of iodine-123-labeled hypericin were investigated in rats without (n = 5) and with continuous catheterization (n = 5) for 9 h. After labeling, a high radiochemical yield was obtained with iodine-123-labeled hypericin (>95%), as confirmed by high-performance liquid chromatography and mass spectrometry. In the duodenal aspirate from animals with intermittent catheterization during 24 h, radioactivity accounted for 46% of the total with two peaks at 3 h and 8 h, suggesting enterohepatic circulation. Rats with 9 h of catheterization exhibited one peak representing 20% of the radioactivity. Major metabolites appeared to be conjugated iodine-123-labeled hypericin forms. In rats without and with catheter, iodine-123-labeled hypericin showed exponential elimination from plasma with no significant dehalogenation. Delayed iodine-123-labeled hypericin excretion, a higher maximum concentration (Cmax), larger area under concentration-time curve [AUC(0-∞)] and a longer mean residence time were observed in non-catheterized animals (P elimination of iodine-131-labeled hypericin can be prevented using this approach.

  15. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer's Disease. (United States)

    Darvesh, Sultan


    The serine hydrolase butyrylcholinesterase (BChE), like the related enzyme acetylcholinesterase (AChE), co-regulates metabolism of the neurotransmitter acetylcholine. In the human brain BChE is mainly expressed in white matter and glia and in distinct populations of neurons in regions that are important in cognition and behavior, functions compromised in Alzheimer's disease (AD). AD is a neurodegenerative disorder causing dementia with no cure nor means for definitive diagnosis during life. In AD, BChE is found in association with pathology, such as β-amyloid (Aβ) plaques, particularly in the cerebral cortex where BChE is not normally found in quantity. Up to 30% of cognitively normal older adults have abundant Aβ deposition in the brain. We have designed an imaging agent that can detect, through autoradiography, BChE-associated Aβ plaques in the cerebral cortex of AD brains, but does not visualize Aβ plaques in brains of cognitively normal individuals. Furthermore, in an AD mouse model with BChE gene knocked out, there are up to 70% fewer fibrillar Aβ brain plaques, suggesting diminished BChE activity could prove beneficial as a curative approach to AD. To that end, we have examined numerous N-10-carbonyl phenothiazines that are specific inhibitors of human BChE, revealing important details of the enzyme's active site gorge. These phenothiazines can be designed without potential side effects caused by neurotransmitter receptor interactions. In conclusion, BChE is potentially an important target for diagnosis and treatment of AD.

  16. Ornithine decarboxylase as a therapeutic target for endometrial cancer.

    Directory of Open Access Journals (Sweden)

    Hong Im Kim

    Full Text Available Ornithine Decarboxylase (ODC a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05. Difluoromethylornithine (DFMO a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023. ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd] known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006, [Spd] (p<0.0001 and blood plasma ([Put] (p<0.0001, [Spd] (p = 0.0049 of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence.

  17. Development of a new anti-cancer agent for targeted radionuclide therapy: β- radiolabeled RAFT-RGD

    International Nuclear Information System (INIS)

    Petitprin, A.


    β-emitters radiolabeled RAFT-RGD as new agents for internal targeted radiotherapy. The αvβ3 integrin is known to play an important role in tumor-induced angiogenesis, tumor proliferation, survival and metastasis. Because of its overexpression on neo-endothelial cells such as those present in growing tumors, as well as on tumor cells of various origins, αvβ3 integrin is an attractive molecular target for diagnosis and therapy of the rapidly growing and metastatic tumors. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin αvβ3 in vitro and in vivo. RAFT-RGD has been used for tumor imaging and drug targeting. This study is the first to evaluate the therapeutic potential of the β-emitters radiolabeled tetrameric RGD peptide RAFT-RGD in a Nude mouse model of αvβ3 -expressing tumors. An injection of 37 MBq of 90 Y-RAFT-RGD or 177 Lu-RAFT-RGD in mice with αvβ3 -positive tumors caused a significant growth delay as compared with mice treated with 37 MBq of 90 Y-RAFT-RAD or 177 Lu-RAFT-RAD or untreated mice. In comparison, an injection of 30 MBq of 90 Y-RAFT-RGD had no efficacy for the treatment of αvβ3 -negative tumors. 90 Y-RAFT-RGD and 177 Lu-RAFT-RGD are potent αvβ3 -expressing tumor targeting agents for internal targeted radiotherapy. (author)

  18. Targeting the MicroRNA Passenger Strand for Regulating Therapeutic Transgenes. (United States)

    Kim, Sung Jin; Lee, Chang Ho; Lee, Seong-Wook


    Gene therapy strategies have been developed, which can tissue or disease specifically regulate expression of exogenous transgenes by means of endogenous microRNA (miRNA) activity. However, the use of an endogenous guide strand to regulate an exogenous transgene could affect expression of endogenous miRNA target genes. In this study, we developed a new regulatory system of exogenous transgene expression by targeting the passenger strand. We constructed reporter constructs harboring miRNA-122 guide or passenger target sites with perfect or imperfect complementarity. We observed downregulation of an exogenous transgene harboring the miRNA-122 target sites against either the guide or passenger strand in cells expressing the cognate miRNA or cells stably expressing the miRNA target site. Moreover, the transgene activity as well as the gene expression level increased specifically by intracellular introduction of the antisense RNA against the corresponding strand. Endogenous target gene expression was induced by the transgene construct harboring the miRNA guide strand target sites, but not the passenger strand target sites. Importantly, the therapeutic transgene activity was efficiently regulated by targeting the passenger strand. These results suggested that an approach to passenger strand-regulated expression of therapeutic transgenes could be applied more safely as a therapeutic tool.

  19. In silico prediction of novel therapeutic targets using gene-disease association data. (United States)

    Ferrero, Enrico; Dunham, Ian; Sanseau, Philippe


    Target identification and validation is a pressing challenge in the pharmaceutical industry, with many of the programmes that fail for efficacy reasons showing poor association between the drug target and the disease. Computational prediction of successful targets could have a considerable impact on attrition rates in the drug discovery pipeline by significantly reducing the initial search space. Here, we explore whether gene-disease association data from the Open Targets platform is sufficient to predict therapeutic targets that are actively being pursued by pharmaceutical companies or are already on the market. To test our hypothesis, we train four different classifiers (a random forest, a support vector machine, a neural network and a gradient boosting machine) on partially labelled data and evaluate their performance using nested cross-validation and testing on an independent set. We then select the best performing model and use it to make predictions on more than 15,000 genes. Finally, we validate our predictions by mining the scientific literature for proposed therapeutic targets. We observe that the data types with the best predictive power are animal models showing a disease-relevant phenotype, differential expression in diseased tissue and genetic association with the disease under investigation. On a test set, the neural network classifier achieves over 71% accuracy with an AUC of 0.76 when predicting therapeutic targets in a semi-supervised learning setting. We use this model to gain insights into current and failed programmes and to predict 1431 novel targets, of which a highly significant proportion has been independently proposed in the literature. Our in silico approach shows that data linking genes and diseases is sufficient to predict novel therapeutic targets effectively and confirms that this type of evidence is essential for formulating or strengthening hypotheses in the target discovery process. Ultimately, more rapid and automated target

  20. Endothelial nitric oxide synthase: a potential therapeutic target for cerebrovascular diseases. (United States)

    Zhu, Jinqiang; Song, Wanshan; Li, Lin; Fan, Xiang


    Endothelial nitric oxide (NO) is a significant signaling molecule that regulates cerebral blood flow (CBF), playing a pivotal role in the prevention and treatment of cerebrovascular diseases. However, achieving the expected therapeutic efficacy is difficult using direct administration of NO donors. Therefore, endothelial nitric oxide synthase (eNOS) becomes a potential therapeutic target for cerebrovascular diseases. This review summarizes the current evidence supporting the importance of CBF to cerebrovascular function, and the roles of NO and eNOS in CBF regulation.

  1. The pig as a model for therapeutic human anti-cancer vaccine development, elucidating the T-cell reactivity against IDO and RhoC

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    Immunotherapy against cancer has shown increased overall survival of metastatic cancer patients and is a promising new vaccine target. For this to succeed, appropriate tailoring of vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses towards co-delivered cancer antigens...... is important. Previous development of therapeutic cancer vaccines has largely been based on studies in mice and the majority of these candidate vaccines failed to establish therapeutic responses in subsequent human clinical trials. Since the porcine immunome is more closely related to the human counterpart, we...... here introduce pigs as a superior large animal model for human cancer vaccine development via the use of our unique technology for swine leukocyte antigen (SLA) production. IDO and RhoC, both known to be important in human cancer development and progression, were used as vaccine targets. Pigs were...

  2. Immunological monitoring of anticancer vaccines in clinical trials. (United States)

    Ogi, Chizuru; Aruga, Atsushi


    Therapeutic anticancer vaccines operate by eliciting or enhancing an immune response that specifically targets tumor-associated antigens. Although intense efforts have been made for developing clinically useful anticancer vaccines, only a few Phase III clinical trials testing this immunotherapeutic strategy have achieved their primary endpoint. Here, we report the results of a retrospective research aimed at clarifying the design of previously completed Phase II/III clinical trials testing therapeutic anticancer vaccines and at assessing the value of immunological monitoring in this setting. We identified 17 anticancer vaccines that have been investigated in the context of a completed Phase II/III clinical trial. The immune response of patients receiving anticancer vaccination was assessed for only 8 of these products (in 15 distinct studies) in the attempt to identify a correlation with clinical outcome. Of these studies, 13 were supported by a statistical correlation study (Log-rank test), and no less than 12 identified a positive correlation between vaccine-elicited immune responses and disease outcome. Six trials also performed a Cox proportional hazards analysis, invariably demonstrating that vaccine-elicited immune responses have a positive prognostic value. However, despite these positive results in the course of early clinical development, most therapeutic vaccines tested so far failed to provide any clinical benefit to cancer patients in Phase II/III studies. Our research indicates that evaluating the immunological profile of patients at enrollment might constitute a key approach often neglected in these studies. Such an immunological monitoring should be based not only on peripheral blood samples but also on bioptic specimens, whenever possible. The evaluation of the immunological profile of cancer patients enrolled in early clinical trials will allow for the identification of individuals who have the highest chances to benefit from anticancer vaccination

  3. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets. (United States)

    Winkler, Ethan A; Minter, Daniel; Yue, John K; Manley, Geoffrey T


    Traumatic brain injury is a heterogeneous disorder resulting from an external force applied to the head. The development of cerebral edema plays a central role in the evolution of injury following brain trauma and is closely associated with neurologic outcomes. Recent advances in the understanding of the molecular and cellular pathways contributing to the posttraumatic development of cerebral edema have led to the identification of multiple prospective therapeutic targets. The authors summarize the pathogenic mechanisms underlying cerebral edema and highlight the molecular pathways that may be therapeutically targeted to mitigate cerebral edema and associated sequelae following traumatic brain injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Utilizing native fluorescence imaging, modeling and simulation to examine pharmacokinetics and therapeutic regimen of a novel anticancer prodrug

    International Nuclear Information System (INIS)

    Wang, Jing-Hung; Endsley, Aaron N.; Green, Carol E.; Matin, A. C.


    Success of cancer prodrugs relying on a foreign gene requires specific delivery of the gene to the cancer, and improvements such as higher level gene transfer and expression. Attaining these objectives will be facilitated in preclinical studies using our newly discovered CNOB-GDEPT, consisting of the produrg: 6-chloro-9-nitro-5-oxo-5H-benzo-(a)-phenoxazine (CNOB) and its activating enzyme ChrR6, which generates the cytotoxic product 9-amino-6-chloro-5H-benzo[a]phenoxazine-5-one (MCHB). MCHB is fluorescent and can be noninvasively imaged in mice, and here we investigated whether MCHB fluorescence quantitatively reflects its concentration, as this would enhance its reporter value in further development of the CNOB-GDEPT therapeutic regimen. PK parameters were estimated and used to predict more effective CNOB administration schedules. CNOB (3.3 mg/kg) was injected iv in mice implanted with humanized ChrR6 (HChrR6)-expressing 4T1 tumors. Fluorescence was imaged in live mice using IVIS Spectrum, and quantified by Living Image 3.2 software. MCHB and CNOB were quantified also by LC/MS/MS analysis. We used non-compartmental model to estimate PK parameters. Phoenix WinNonlin software was used for simulations to predict a more effective CNOB dosage regimen. CNOB administration significantly prolonged mice survival. MCHB fluorescence quantitatively reflected its exposure levels to the tumor and the plasma, as verified by LC/MS/MS analysis at various time points, including at a low concentration of 2 ng/g tumor. The LC/MS/MS data were used to estimate peak plasma concentrations, exposure (AUC 0-24 ), volume of distribution, clearance and half-life in plasma and the tumor. Simulations suggested that the CNOB-GDEPT can be a successful therapy without large increases in the prodrug dosage. MCHB fluorescence quantifies this drug, and CNOB can be effective at relatively low doses. MCHB fluorescence characteristics will expedite further development of CNOB-GDEPT by, for example

  5. Anticancer drug development from traditional cytotoxic to targeted therapies: evidence of shorter drug research and development time, and shorter drug lag in Japan. (United States)

    Kawabata-Shoda, E; Masuda, S; Kimura, H


    Concern about the drug lag, the delay in marketing approval between one country and another, for anticancer drugs has increased in Japan. Although a number of studies have investigated the drug lag, none has investigated it in relation to the transition of anticancer therapy from traditional cytotoxic drugs to molecularly targeted agents. Our aim was to investigate current trend in oncology drug lag between the US and Japan and identify oncology drugs approved in only one of the two countries. Publicly and commercially available data sources were used to identify drugs approved in the US and Japan as of 31 December 2010 and the data used to calculate the drug lag for individual drugs. Fifty-one drugs were approved in both the US and Japan, whereas 34 and 19 drugs were approved only in the US or Japan, respectively. Of the 19 drugs approved only in Japan, 12 had not been subject to development for a cancer indication in the US, and all were approved before 1996 in Japan. Of the 34 drugs approved only in the US, 20 had not been subject to development in Japan, and none was in the top 25 by annual US anticancer drug-class sales. For drugs approved in both countries, the mean approval lag of the molecularly targeted drugs (MTDs) was significantly shorter than that of the non-molecularly targeted drugs (non-MTDs) (3·3 vs. 5·4 years). Further, mean R&D time of the MTDs was significantly shorter than that of non-MTDs (10·0 vs. 13·7 years). The price of MTDs had increased on average by 6·6% annually in the US, whereas it had decreased on average by 4·3% biyearly in Japan. The emergence of new molecularly targeted agents has contributed to reducing the approval lag, most likely due to improvements in R&D strategy. © 2012 Blackwell Publishing Ltd.

  6. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Fabliha Ahmed Chowdhury


    Full Text Available Glioblastoma multiforme (GBM is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ, the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.

  7. TNK2 Tyrosine Kinase as a Novel Therapeutic Target in Triple-Negative Breast Cancer (United States)


    Award Number: W81XWH-15-1-0311 TITLE: TNK2 Tyrosine Kinase as a Novel Therapeutic Target in Triple- Negative Breast Cancer PRINCIPAL...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Triple-negative breast cancers (TNBCs) represent only 10%-15% of all breast cancers ; however... cancers (TNBC) represent 10-15% of all breast cancers . While significant advances have been made for targeted therapy of ER and HER2-positive breast

  8. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. (United States)

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan


    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin α v β 3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer.

  9. Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model

    NARCIS (Netherlands)

    Bracke, S.; Desmet, E.; Guerrero-Aspizua, S.; Tjabringa, S.; Schalkwijk, J.; Gele, M. Van; Carretero, M.; Lambert, J.


    Diseases of the skin are amenable to RNAi-based therapies and targeting key components in the pathophysiology of psoriasis using RNAi may represent a successful new therapeutic strategy. We aimed to develop a straightforward and highly reproducible in vitro psoriasis model useful to study the

  10. Evaluation of MiR-181a as a potential therapeutic target in ...

    African Journals Online (AJOL)

    Purpose: To investigate microRNA-181 (miR-181) as a potential therapeutic target in osteoarthritis (OA). Methods: MiR-181 expression was evaluated in articular cartilage samples obtained from OA patients undergoing knee arthroplasty and non-OA (control) patients undergoing other orthopedic procedures. Following the ...

  11. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy. (United States)

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon


    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value net. We generated a list of the potential therapeutic targets whose inhibition recovers abnormally phosphorylated proteins in an atrophic state. They were evaluated by various approaches, such as Western blotting, GO terms, literature, known muscle atrophy-related genes and shortest path analysis. We expect the new proposed strategy to provide an understanding of phosphorylation status in muscle atrophy and to provide assistance towards

  12. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. (United States)

    Marei, Hadir; Malliri, Angeliki


    Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.

  13. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family (United States)

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans


    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  14. Potential Development of Tumor-Targeted Oral Anti-Cancer Prodrugs: Amino Acid and Dipeptide Monoester Prodrugs of Gemcitabine. (United States)

    Tsume, Yasuhiro; Drelich, Adam J; Smith, David E; Amidon, Gordon L


    One of the main obstacles for cancer therapies is to deliver medicines effectively to target sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through stroma cells in order to reach tumors. As a method to improve drug delivery to the tumor site, a prodrug approach for gemcitabine was adopted. Amino acid and dipeptide monoester prodrugs of gemcitabine were synthesized and their chemical stability in buffers, resistance to thymidine phosphorylase and cytidine deaminase, antiproliferative activity, and uptake/permeability in HFF cells as a surrogate to stroma cells were determined and compared to their parent drug, gemcitabine. The activation of all gemcitabine prodrugs was faster in pancreatic cell homogenates than their hydrolysis in buffer, suggesting enzymatic action. All prodrugs exhibited great stability in HFF cell homogenate, enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase, and deamination by cytidine deaminase compared to their parent drug. All gemcitabine prodrugs exhibited higher uptake in HFF cells and better permeability across HFF monolayers than gemcitabine, suggesting a better delivery to tumor sites. Cell antiproliferative assays in Panc-1 and Capan-2 pancreatic ductal cell lines indicated that the gemcitabine prodrugs were more potent than their parent drug gemcitabine. The transport and enzymatic profiles of gemcitabine prodrugs suggest their potential for delayed enzymatic bioconversion and enhanced resistance to metabolic enzymes, as well as for enhanced drug delivery to tumor sites, and cytotoxic activity in cancer cells. These attributes would facilitate the prolonged systemic circulation and improved therapeutic efficacy of gemcitabine prodrugs.

  15. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer (United States)

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA


    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  16. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. (United States)

    Mitroulis, Ioannis; Alexaki, Vasileia I; Kourtzelis, Ioannis; Ziogas, Athanassios; Hajishengallis, George; Chavakis, Triantafyllos


    Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Using Copy Number Alterations to Identify New Therapeutic Targets for Bladder Carcinoma

    Directory of Open Access Journals (Sweden)

    Donatella Conconi


    Full Text Available Bladder cancer represents the ninth most widespread malignancy throughout the world. It is characterized by the presence of two different clinical and prognostic subtypes: non-muscle-invasive bladder cancers (NMIBCs and muscle-invasive bladder cancers (MIBCs. MIBCs have a poor outcome with a common progression to metastasis. Despite improvements in knowledge, treatment has not advanced significantly in recent years, with the absence of new therapeutic targets. Because of the limitations of current therapeutic options, the greater challenge will be to identify biomarkers for clinical application. For this reason, we compared our array comparative genomic hybridization (array-CGH results with those reported in literature for invasive bladder tumors and, in particular, we focused on the evaluation of copy number alterations (CNAs present in biopsies and retained in the corresponding cancer stem cell (CSC subpopulations that should be the main target of therapy. According to our data, CCNE1, MYC, MDM2 and PPARG genes could be interesting therapeutic targets for bladder CSC subpopulations. Surprisingly, HER2 copy number gains are not retained in bladder CSCs, making the gene-targeted therapy less interesting than the others. These results provide precious advice for further study on bladder therapy; however, the clinical importance of these results should be explored.

  18. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S


    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  19. Aurora kinases as druggable targets in pediatric leukemia: heterogeneity in target modulation activities and cytotoxicity by diverse novel therapeutic agents.

    Directory of Open Access Journals (Sweden)

    Aarthi Jayanthan

    Full Text Available Leukemia is the most common pediatric malignancy, constituting more than 30% of all childhood cancers. Although cure rates have improved greatly, approximately one in five children relapse and poor survival rates post relapse remain a challenge. Given this, more effective and innovative therapeutic strategies are needed in order to improve prognosis. Aurora kinases, a family of serine/threonine kinases essential for the regulation of several mitotic processes, have been identified as potential targets for cancer therapeutics. Elevated expression of Aurora kinases has been demonstrated in several malignancies and is associated with aberrant mitotic activity, aneuploidy and alterations in chromosomal structure and genome instability. Based on this rationale, a number of small molecule inhibitors have been formulated and advanced to human studies in the recent past. A comparative analysis of these agents in cytotoxicity and target modulation analyses against a panel of leukemia cells provides novel insights into the unique mechanisms and codependent activity pathways involved in targeting Aurora kinases, constituting a distinctive preclinical experimental framework to identify appropriate agents and combinations in future clinical studies.

  20. Platelet Derived Growth Factor BB: A "Must-have" Therapeutic Target "Redivivus" in Ovarian Cancer. (United States)

    Cimpean, Anca Maria; Cobec, Ionut Marcel; Ceaușu, Raluca Amalia; Popescu, Roxana; Tudor, Anca; Raica, Marius

    We aimed to validate PDGF-BB protein expression by RNAscope, a sensitive method for PDGF-BB mRNA evaluation on paraffin embedded (FFPE) specimens of ovarian tumors. Seventy-five FFPE ovarian cancer biopsies were assessed by immunohistochemistry followed by PDGF-BB mRNA RNAscope validation. Dual PDGF-BB expression in tumor and stromal cells have been observed, being highly suggestive for PDGF-BB mediated stromal-tumor cells reciprocal interaction in ovarian cancer (p=0.008). It seems that the nuclear expression of the PDGF-BB represents a negative prognostic factor in ovarian tumors. Being a controversial issue in the literature, PDGF-BB nuclear expression detected by immunohistochemistry was validated by RNAscope in situ hybridization. More than 65% of cases had PDGF-BB mRNA amplification, confirming immunohistochemical results. We herein validated PDGF-BB as a potential therapeutic and prognostic tool of ovarian cancer aggressiveness. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  1. Plasmalemmal Vesicle Associated Protein (PLVAP) as a therapeutic target for treatment of hepatocellular carcinoma. (United States)

    Wang, Yun-Hsin; Cheng, Tsung-Yen; Chen, Ta-Yuan; Chang, Kai-Ming; Chuang, Vincent P; Kao, Kuo-Jang


    Hepatocellular carcinoma (HCC) is a malignancy with poor survival outcome. New treatment options for the disease are needed. In this study, we identified and evaluated tumor vascular PLVAP as a therapeutic target for treatment of HCC. Genes showing extreme differential expression between paired human HCC and adjacent non-tumorous liver tissue were investigated. PLVAP was identified as one of such genes with potential to serve as a therapeutic target for treatment of HCC. A recombinant monoclonal anti-PLVAP Fab fragment co-expressing extracellular domain of human tissue factor (TF) was developed. The potential therapeutic effect and toxicity to treat HCC were studied using a Hep3B HCC xenograft model in SCID mice. PLVAP was identified as a gene specifically expressed in vascular endothelial cells of HCC but not in non-tumorous liver tissues. This finding was confirmed by RT-PCR analysis of micro-dissected cells and immunohistochemical staining of tissue sections. Infusion of recombinant monoclonal anti-PLVAP Fab-TF into the main tumor feeding artery induced tumor vascular thrombosis and extensive tumor necrosis at doses between 2.5 μg and 12 μg. Tumor growth was suppressed for 40 days after a single treatment. Systemic administration did not induce tumor necrosis. Little systemic toxicity was noted for this therapeutic agent. The results of this study suggest that anti-PLVAP Fab-TF may be used to treat HCC cases for which transcatheter arterial chemoembolization (TACE) is currently used and potentially avoid the drawback of high viscosity of chemoembolic emulsion for TACE to improve therapeutic outcome. Anti-PLVAP Fab-TF may become a viable therapeutic agent in patients with advanced disease and compromised liver function.

  2. Multi-potent Natural Scaffolds Targeting Amyloid Cascade: In Search of Alzheimer's Disease Therapeutics. (United States)

    Chakraborty, Sandipan


    Alzheimer's Disease (AD) once considered a rare disorder emerges as a major health concern in recent times. The disease pathogenesis is very complex and yet to be understood completely. However, "Amyloid Cascade" is the central event in disease pathogenesis. Several proteins of the amyloid cascade are currently being considered as potential targets for AD therapeutics discovery. Many potential compounds are in clinical trials, but till now there is no known cure for the disease. Recent years have witnessed remarkable research interest in the search of novel concepts in drug designing for AD. Multi-targeted ligand design is a paradigm shift in conventional drug discovery. In this process rather than designing ligands targeting a single receptor, novel ligands have been designed/ synthesized that can simultaneously target many pathways involved in disease pathogenesis. Here, recent developments in computational drug designing protocols to identify multi-targeted ligand for AD have been discussed. Therapeutic potential of different multi-potent compounds also has been discussed briefly. Prime emphasis has been given to multi-potent ligand from natural resources. Polyphenols are an interesting group of compounds which show efficacy against a wide range of disease and have the property to exhibit multi-potency. Several groups attempted to identify novel multi-potent phytochemicals for AD therapy. Multi-potency of several polyphenols or compounds synthesized using the poly-phenolic scaffolds have been briefly discussed here. However, the multi-targeted drug designing for AD is still in early stages, more advancement in drug designing method/algorithm developments is urgently required to discover more efficient compounds for AD therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at

  3. Impact of Shed/Soluble targets on the PK/PD of approved therapeutic monoclonal antibodies. (United States)

    Samineni, Divya; Girish, Sandhya; Li, Chunze


    Suboptimal treatment for monoclonal antibodies (mAbs) directed against endogenous circulating soluble targets and the shed extracellular domains (ECD) of the membrane-bound targets is an important clinical concern due to the potential impact of mAbs on the in vivo efficacy and safety. Consequently, there are considerable challenges in the determination of an optimal dose and/or dosing regimen. Areas covered: This review outlines the impact of shed antigen targets from membrane-bound proteins and soluble targets on the PK and/or PD of therapeutic mAbs that have been approved in the last decade. We discuss various bioanalytical techniques that have facilitated the interpretation of the PK/PD properties of therapeutic mAbs and also considered the factors that may impact such measurements. Quantitative approaches include target-mediated PK models and bi- or tri-molecular interaction PK/PD models that describe the relationships between the antibody PK and the ensuing effects on PD biomarkers, to facilitate the mAb PK/PD characterization. Expert commentary: The proper interpretation of PK/PD relationships through the integrated PK/PD modeling and bioanalytical strategy facilitates a mechanistic understanding of the disease processes and dosing regimen optimization, thereby offering insights into developing effective therapeutic regimens. This review provides an overview of the impact of soluble targets or shed ECD on mAb PK/PD properties. We provide examples of quantitative approaches that facilitate the characterization of mAb PK/PD characteristics and their corresponding bioanalytical strategies.

  4. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells.

    Directory of Open Access Journals (Sweden)

    Bishoy eFaltas


    Full Text Available The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and micro-fluidics have led to the development of several devices for in-vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators and in-vivo photoacoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs. Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a local disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.

  5. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity

    Directory of Open Access Journals (Sweden)

    Mostafa Wanees Ahmed El husseny


    Full Text Available Adipokines are bioactive molecules that regulate several physiological functions such as energy balance, insulin sensitization, appetite regulation, inflammatory response, and vascular homeostasis. They include proinflammatory cytokines such as adipocyte fatty acid binding protein (A-FABP and anti-inflammatory cytokines such as adiponectin, as well as vasodilator and vasoconstrictor molecules. In obesity and type II diabetes mellitus (DM, insulin resistance causes impairment of the endocrine function of the perivascular adipose tissue, an imbalance in the secretion of vasoconstrictor and vasodilator molecules, and an increased production of reactive oxygen species. Recent studies have shown that targeting plasma levels of adipokines or the expression of their receptors can increase insulin sensitivity, improve vascular function, and reduce the risk of cardiovascular morbidity and mortality. Several reviews have discussed the potential of adipokines as therapeutic targets for type II DM and obesity; however, this review is the first to focus on their therapeutic potential for vascular dysfunction in type II DM and obesity.

  6. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma. (United States)

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Takagi, Satoshi


    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA.

  7. Pathogenesis and therapeutic targeting of aberrant MYC expression in haematological cancers. (United States)

    Schick, Markus; Habringer, Stefan; Nilsson, Jonas A; Keller, Ulrich


    Identifying and therapeutically targeting cancer cell liabilities is of utmost importance in order to improve the treatment of patients with malignancies of poor prognosis. The MYC family genes (MYC, MYCN and MYCL) are among the most deregulated proto-oncogenes in human cancer. Aberrant MYC expression is frequently associated with poor prognosis. Although many aspects of MYC-mediated tumour biology are well characterized, there are currently no effective means for targeting MYC in a specific manner that have been established for clinical use. This review first discusses the role of MYC in the pathogenesis of haematopoietic malignancies, and secondly summarizes how insight into MYC functions could be translated into therapeutic approaches. In particular, we will address the possibilities of taking advantage of MYC-induced cancer cell vulnerabilities that could be exploited in terms of synthetic lethal interactions. © 2017 John Wiley & Sons Ltd.

  8. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler


    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  9. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang


    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  10. G-Protein-Coupled Receptors: Next Generation Therapeutic Targets in Head and Neck Cancer?

    Directory of Open Access Journals (Sweden)

    Takeharu Kanazawa


    Full Text Available Therapeutic outcome in head and neck squamous cell carcinoma (HNSCC is poor in most advanced cases. To improve therapeutic efficiency, novel therapeutic targets and prognostic factors must be discovered. Our studies have identified several G protein-coupled receptors (GPCRs as promising candidates. Significant epigenetic silencing of GPCR expression occurs in HNSCC compared with normal tissue, and is significantly correlated with clinical behavior. Together with the finding that GPCR activity can suppress tumor cell growth, this indicates that GPCR expression has potential utility as a prognostic factor. In this review, we discuss the roles that galanin receptor type 1 (GALR1 and type 2 (GALR2, tachykinin receptor type 1 (TACR1, and somatostatin receptor type 1 (SST1 play in HNSCC. GALR1 inhibits proliferation of HNSCC cells though ERK1/2-mediated effects on cell cycle control proteins such as p27, p57, and cyclin D1, whereas GALR2 inhibits cell proliferation and induces apoptosis in HNSCC cells. Hypermethylation of GALR1, GALR2, TACR1, and SST1 is associated with significantly reduced disease-free survival and a higher recurrence rate. Although their overall activities varies, each of these GPCRs has value as both a prognostic factor and a therapeutic target. These data indicate that further study of GPCRs is a promising strategy that will enrich pharmacogenomics and prognostic research in HNSCC.

  11. mTOR inhibition induces compensatory, therapeutically targetable MEK activation in renal cell carcinoma. (United States)

    Bailey, Sean T; Zhou, Bing; Damrauer, Jeffrey S; Krishnan, Bhavani; Wilson, Harper L; Smith, Aleisha M; Li, Mingqing; Yeh, Jen Jen; Kim, William Y


    Rapamycin derivatives allosterically targeting mTOR are currently FDA approved to treat advanced renal cell carcinoma (RCC), and catalytic inhibitors of mTOR/PI3K are now in clinical trials for treating various solid tumors. We sought to investigate the relative efficacy of allosteric versus catalytic mTOR inhibition, evaluate the crosstalk between the mTOR and MEK/ERK pathways, as well as the therapeutic potential of dual mTOR and MEK inhibition in RCC. Pharmacologic (rapamycin and BEZ235) and genetic manipulation of the mTOR pathway were evaluated by in vitro assays as monotherapy as well as in combination with MEK inhibition (GSK1120212). Catalytic mTOR inhibition with BEZ235 decreased proliferation and increased apoptosis better than allosteric mTOR inhibition with rapamycin. While mTOR inhibition upregulated MEK/ERK signaling, concurrent inhibition of both pathways had enhanced therapeutic efficacy. Finally, primary RCC tumors could be classified into subgroups [(I) MEK activated, (II) Dual MEK and mTOR activated, (III) Not activated, and (IV) mTOR activated] based on their relative activation of the PI3K/mTOR and MEK pathways. Patients with mTOR only activated tumors had the worst prognosis. In summary, dual targeting of the mTOR and MEK pathways in RCC can enhance therapeutic efficacy and primary RCC can be subclassified based on their relative levels of mTOR and MEK activation with potential therapeutic implications.

  12. A hexane fraction of guava Leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells. (United States)

    Ryu, Nae Hyung; Park, Kyung-Ran; Kim, Sung-Moo; Yun, Hyung-Mun; Nam, Dongwoo; Lee, Seok-Geun; Jang, Hyeung-Jin; Ahn, Kyoo Seok; Kim, Sung-Hoon; Shim, Bum Sang; Choi, Seung-Hoon; Mosaddik, Ashik; Cho, Somi K; Ahn, Kwang Seok


    This study was carried out to evaluate the anticancer effects of guava leaf extracts and its fractions. The chemical compositions of the active extracts were also determined. In the present study, we set out to determine whether the anticancer effects of guava leaves are linked with their ability to suppress constitutive AKT/mammalian target of rapamycin (mTOR)/ribosomal p70 S6 kinase (S6K1) and mitogen-activated protein kinase (MAPK) activation pathways in human prostate cancer cells. We found that guava leaf hexane fraction (GHF) was the most potent inducer of cytotoxic and apoptotic effects in PC-3 cells. The molecular mechanism or mechanisms of GHF apoptotic potential were correlated with the suppression of AKT/mTOR/S6K1 and MAPK signaling pathways. This effect of GHF correlated with down-regulation of various proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis. Analysis of GHF by gas chromatography and gas chromatography-mass spectrometry tentatively identified 60 compounds, including β-eudesmol (11.98%), α-copaene (7.97%), phytol (7.95%), α-patchoulene (3.76%), β-caryophyllene oxide (CPO) (3.63%), caryophylla-3(15),7(14)-dien-6-ol (2.68%), (E)-methyl isoeugenol (1.90%), α-terpineol (1.76%), and octadecane (1.23%). Besides GHF, CPO, but not phytol, also inhibited the AKT/mTOR/S6K1 signaling pathway and induced apoptosis in prostate cancer cells. Overall, these findings suggest that guava leaves can interfere with multiple signaling cascades linked with tumorigenesis and provide a source of potential therapeutic compounds for both the prevention and treatment of cancer.

  13. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics. (United States)

    Huang, Zheyong; Pei, Ning; Wang, Yanyan; Xie, Xinxing; Sun, Aijun; Shen, Li; Zhang, Shuning; Liu, Xuebo; Zou, Yunzeng; Qian, Juying; Ge, Junbo


    Magnetic targeting has recently demonstrated potential in promoting magnetically loaded cell delivery to target lesion, but its application is limited by magnetic attenuation. For deep magnetic capture of cells for spatial targeting therapeutics, we designed a magnetic pole, in which the magnetic field density can be focused at a distance from the pole. As flowing through a tube served as a model of blood vessels, the magnetically loaded mesenchymal stem cells (MagMSCs) were highly enriched at the site distance from the magnetic pole. The cell capture efficiency was positively influenced by the magnetic flux density, and inversely influenced by the flow velocity, and well-fitted with the deductive value by theoretical considerations. It appeared to us that the spatially-focused property of the magnetic apparatus promises a new deep targeting strategy to promote homing and engraftment for cellular therapy. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening (United States)

    Machutta, Carl A.; Kollmann, Christopher S.; Lind, Kenneth E.; Bai, Xiaopeng; Chan, Pan F.; Huang, Jianzhong; Ballell, Lluis; Belyanskaya, Svetlana; Besra, Gurdyal S.; Barros-Aguirre, David; Bates, Robert H.; Centrella, Paolo A.; Chang, Sandy S.; Chai, Jing; Choudhry, Anthony E.; Coffin, Aaron; Davie, Christopher P.; Deng, Hongfeng; Deng, Jianghe; Ding, Yun; Dodson, Jason W.; Fosbenner, David T.; Gao, Enoch N.; Graham, Taylor L.; Graybill, Todd L.; Ingraham, Karen; Johnson, Walter P.; King, Bryan W.; Kwiatkowski, Christopher R.; Lelièvre, Joël; Li, Yue; Liu, Xiaorong; Lu, Quinn; Lehr, Ruth; Mendoza-Losana, Alfonso; Martin, John; McCloskey, Lynn; McCormick, Patti; O'Keefe, Heather P.; O'Keeffe, Thomas; Pao, Christina; Phelps, Christopher B.; Qi, Hongwei; Rafferty, Keith; Scavello, Genaro S.; Steiginga, Matt S.; Sundersingh, Flora S.; Sweitzer, Sharon M.; Szewczuk, Lawrence M.; Taylor, Amy; Toh, May Fern; Wang, Juan; Wang, Minghui; Wilkins, Devan J.; Xia, Bing; Yao, Gang; Zhang, Jean; Zhou, Jingye; Donahue, Christine P.; Messer, Jeffrey A.; Holmes, David; Arico-Muendel, Christopher C.; Pope, Andrew J.; Gross, Jeffrey W.; Evindar, Ghotas


    The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.

  15. Developing a Novel Therapeutic Strategy Targeting Kallikrein-4 to Inhibit Prostate Cancer Growth and Metastasis (United States)


    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone...both localised and bone metastatic cancerous tissue, and is an independent biomarker discriminating between benign and malignant prostate tissue [1,2...cellular function . siKLK4(A), siKLK4(B) and siControl are currently being conjugated onto HBP-peptide by collaborators from AIBN. siRNA sequences are

  16. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders. (United States)

    Ganz, Tomas; Nemeth, Elizabeta


    The review summarizes the current understanding of the role of hepcidin and ferroportin in normal iron homeostasis and its disorders. The various approaches to therapeutic targeting of hepcidin and ferroportin in iron-overload disorders (mainly hereditary hemochromatosis and β-thalassemia) and iron-restrictive anemias (anemias associated with infections, inflammatory disorders, and certain malignancies, anemia of chronic kidney diseases, and iron-refractory iron-deficiency anemia) are also discussed.

  17. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma. (United States)

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe


    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  18. Hypoxia-Inducible Factors: Mediators of Cancer Progression; Prognostic and Therapeutic Targets in Soft Tissue Sarcomas

    International Nuclear Information System (INIS)

    Sadri, Navid; Zhang, Paul J.


    Soft-tissue sarcomas remain aggressive tumors that result in death in greater than a third of patients due to either loco-regional recurrence or distant metastasis. Surgical resection remains the main choice of treatment for soft tissue sarcomas with pre- and/or post-operational radiation and neoadjuvant chemotherapy employed in more advanced stage disease. However, in recent decades, there has been little progress in the average five-year survival for the majority of patients with high-grade soft tissue sarcomas, highlighting the need for improved targeted therapeutic agents. Clinical and preclinical studies demonstrate that tumor hypoxia and up-regulation of hypoxia-inducible factors (HIFs) is associated with decreased survival, increased metastasis, and resistance to therapy in soft tissue sarcomas. HIF-mediated gene expression regulates many critical aspects of tumor biology, including cell survival, metabolic programming, angiogenesis, metastasis, and therapy resistance. In this review, we discuss HIFs and HIF-mediated genes as potential prognostic markers and therapeutic targets in sarcomas. Many pharmacological agents targeting hypoxia-related pathways are in development that may hold therapeutic potential for treating both primary and metastatic sarcomas that demonstrate increased HIF expression

  19. Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification (United States)


    Damiano, Teresa Gelardi, Gennaro Daniele, Fortunato Ciardiello, Giampaolo Tortora : Rational combination of targeted therapies as a strategy to overcome...angiogenesis, and invasiveness (Lynch et al., 2004; Paez et al., 2004; Pao et al., 2004; Janne et al., 2005; Pao and Miller, 2005; Ciardiello and Tortora , 2008...Anticancer Res 23: 4877–4884. Ciardiello F, Tortora G. (2008). EGFR antagonists in cancer treatment. N Engl J Med 358: 1160–1174. Cooper CS, Tempest

  20. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics. (United States)

    Knezevic, Nebojsa Nick; Yekkirala, Ajay; Yaksh, Tony L


    Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.

  1. Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis (United States)


    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands. PMID:23618382

  2. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. (United States)

    Zielonka, Jacek; Joseph, Joy; Sikora, Adam; Hardy, Micael; Ouari, Olivier; Vasquez-Vivar, Jeannette; Cheng, Gang; Lopez, Marcos; Kalyanaraman, Balaraman


    Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.

  3. Applications to the design of human therapeutics

    Indian Academy of Sciences (India)


    Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are dis- cussed. Methods for gene and siRNA delivery are .... sis for cancer treatment. Most of the current anticancer drugs have low thera- ...... Colorectal Cancer 6 29. 37. Sidhu S S, Li B, Chen Y, Fellouse F A, Eigenbrot C and Fuh ...

  4. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. (United States)

    Karimi, Mahdi; Mirshekari, Hamed; Moosavi Basri, Seyed Masoud; Bahrami, Sajad; Moghoofei, Mohsen; Hamblin, Michael R


    The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Thaiz F. Borin


    Full Text Available Metastatic breast cancer (BC (also referred to as stage IV spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4 family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE, an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.

  6. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Konstantinos Tzelepis


    Full Text Available Acute myeloid leukemia (AML is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L, BCL2, and MEN1, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A as a candidate for downstream study. KAT2A inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.

  7. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. (United States)

    Viganò, Marco; Sansone, Valerio; d'Agostino, Maria Cristina; Romeo, Pietro; Perucca Orfei, Carlotta; de Girolamo, Laura


    Musculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly effective in treating bone, cartilage, and tendon disorders or joint degeneration. As a consequence, the development of novel biological therapies that can treat more effectively these conditions should be the highest priority in regenerative medicine. Mesenchymal stem cells (MSCs) represent one of the most promising tools in musculoskeletal tissue regenerative medicine, thanks to their proliferation and differentiation potential and their immunomodulatory and trophic ability. Indeed, MSC-based approaches have been proposed for the treatment of almost all orthopedic conditions, starting from different cell sources, alone or in combination with scaffolds and growth factors, and in one-step or two-step procedures. While all these approaches would require cell harvesting and transplantation, the possibility to stimulate the endogenous MSCs to enhance their tissue homeostasis activity represents a less-invasive and cost-effective therapeutic strategy. Nowadays, the role of tissue-specific resident stem cells as possible therapeutic target in degenerative pathologies is underinvestigated. Biophysical stimulations, and in particular extracorporeal shock waves treatment and pulsed electromagnetic fields, are able to induce proliferation and support differentiation of MSCs from different origins and affect their paracrine production of growth factors and cytokines. The present review reports the attempts to exploit the resident stem cell potential in musculoskeletal pathologies, highlighting the role of MSCs as therapeutic target of currently applied biophysical treatments.

  8. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. (United States)

    Guerram, Mounia; Zhang, Lu-Yong; Jiang, Zhen-Zhou


    Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Application of Long Noncoding RNAs in Osteosarcoma: Biomarkers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Zhihong Li


    Full Text Available Osteosarcoma is the most common primary bone malignancy in children and adolescents. Although improvements in therapeutic strategies were achieved, the outcome remains poor for most patients with metastatic or recurrent osteosarcoma. Therefore, it is imperative to identify novel and effective prognostic biomarker and therapeutic targets for the disease. Long noncoding RNAs (lncRNAs are a novel class of RNA molecules defined as transcripts >200 nucleotides that lack protein coding potential. Many lncRNAs are deregulated in cancer and are important regulators for malignancies. Nine lncRNAs (91H, BCAR4, FGFR3-AS1, HIF2PUT, HOTTIP, HULC, MALAT-1, TUG1, UCA1 are upregulated and considered oncogenic for osteosarcoma. Loc285194 and MEG3 are two lncRNAs downregulated and as tumor suppressor for the disease. Moreover, the expressions of LINC00161 and ODRUL are associated with chemo-resistance of osteosarcoma. The mechanisms for these lncRNAs in regulating development of osteosarcoma are diverse, e.g. ceRNA, Wnt/β-catenin pathway, etc. The lncRNAs identified may serve as potential biomarkers or therapeutic targets for osteosarcoma.

  10. MMP-9 and CXCL8/IL-8 Are Potential Therapeutic Targets in Epidermolysis Bullosa Simplex (United States)

    Lettner, Thomas; Lang, Roland; Klausegger, Alfred; Hainzl, Stefan


    Epidermolysis bullosa refers to a group of genodermatoses that affects the integrity of epithelial layers, phenotypically resulting in severe skin blistering. Dowling-Meara, the major subtype of epidermolysis bullosa simplex, is inherited in an autosomal dominant manner and can be caused by mutations in either the keratin-5 (K5) or the keratin-14 (K14) gene. Currently, no therapeutic approach is known, and the main objective of this study was to identify novel therapeutic targets. We used microarray analysis, semi-quantitative real-time PCR, western blot and ELISA to identify differentially regulated genes in two K14 mutant cell lines carrying the mutations K14 R125P and K14 R125H, respectively. We found kallikrein-related peptidases and matrix metalloproteinases to be upregulated. We also found elevated expression of chemokines, and we observed deregulation of the Cdc42 pathway as well as aberrant expression of cytokeratins and junction proteins. We further demonstrated, that expression of these genes is dependent on interleukin-1 β signaling. To evaluate these data in vivo we analysed the blister fluids of epidermolysis bullosa simplex patients vs. healthy controls and identified matrix metalloproteinase-9 and the chemokine CXCL8/IL-8 as potential therapeutic targets. PMID:23894602

  11. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. (United States)

    Marchiq, Ibtissam; Pouysségur, Jacques


    Since Otto Warburg reported the 'addiction' of cancer cells to fermentative glycolysis, a metabolic pathway that provides energy and building blocks, thousands of studies have shed new light on the molecular mechanisms contributing to altered cancer metabolism. Hypoxia, through hypoxia-inducible factors (HIFs), in addition to oncogenes activation and loss of tumour suppressors constitute major regulators of not only the "Warburg effect" but also many other metabolic pathways such as glutaminolysis. Enhanced glucose and glutamine catabolism has become a recognised feature of cancer cells, leading to accumulation of metabolites in the tumour microenvironment, which offers growth advantages to tumours. Among these metabolites, lactic acid, besides imposing an acidic stress, is emerging as a key signalling molecule that plays a pivotal role in cancer cell migration, angiogenesis, immune escape and metastasis. Although interest in lactate for cancer development only appeared recently, pharmacological molecules blocking its metabolism are already in phase I/II clinical trials. Here, we review the metabolic pathways generating lactate, and we discuss the rationale for targeting lactic acid transporter complexes for the development of efficient and selective anticancer therapies.

  12. A multi-target protein of hTERTR-FAM96A presents significant anticancer potent in the treatment of hepatocellular carcinoma. (United States)

    Zhang, Meng-Yu; Wang, Jie-Ping


    The abilities to escape apoptosis induced by anticancer drugs are an essential factor of carcinogenesis and a hallmark of resistance to cancer therapy. In this study, we identified hTERTR-FAM96A (human telomerase reverse transcriptase-family with sequence similarity 96 member A) as a new efficient agent for apoptosome-activating and anti-tumor protein and investigated the potential tumor suppressor function in hepatocellular carcinoma. The hTERTR-FAM96A fusion protein was constructed by genetic engineering and its anticancer function of hTERTR-FAM96A was explored in vitro and in vivo by investigating the possible preclinical outcomes. Effects of hTERTR-FAM96A on improvement of apoptotic sensitivity and inhibition of migration and invasion were examined in cancer cells and tumors. Our results showed that the therapeutic effects of hTERTR-FAM96A were highly effective for inhibiting tumor growth and inducing apoptosis of hepatocellular carcinoma cells in H22-bearing nude mice. The hTERTR-FAM96A fusion protein could specifically bind with Apaf-1 and hTERT, which further induced apoptosis of hepatocellular carcinoma cells and improved apoptosis sensitivity. Our results indicated that hTERTR-FAM96A treatment enhanced cytotoxic effects by upregulation of cytotoxic T lymphocyte responses, interferon-γ release, and T lymphocyte infiltration. In addition, hTERTR-FAM96A led to tumor-specific immunologic cytotoxicity through increasing apoptotic body on hepatocellular tumors. Furthermore, hTERTR-FAM96A dramatically inhibited tumor growth, reduced death rate, and prolonged mice survival in hepatocellular carcinoma mice derived from three independent hepatocellular carcinoma mice cohorts compared to control groups. In summary, our data suggest that hTERTR-FAM96A may serve as an efficient anti-tumor agent for the treatment of hepatocellular carcinoma.

  13. Design and docking of novel series of hybrid xanthones as anti-cancer agent to target human DNA topoisomerase 2-alpha

    Directory of Open Access Journals (Sweden)

    Lalit Mohan Nainwal


    Full Text Available Topoisomerase (topo IIα is a homodimeric protein catalyzes topological vicissitudes by adding or by soothing super coiling transpiration, occurs in human DNA during DNA replication as an outcome chromosome segregation and condensation occurs during meiosis I and recombination. To prevent the cleavage and religation activity we administered novel hybrid substituted Xanthone series of drugs. The toxicity prediction showed outstanding results which impetus to study its anticancer activities by targeting topoisomerase (topo IIα. We developed the homology model of the topoisomerase (topo IIα due to the unavailability of 3D structure in the Protein Data Bank. Structural assessment of the modeled protein and confirmed the quality of the model. The ligands were docked using Autodock4.2 software and binding energy was reported. The compound XM9, XN2, XM7, XLNU and XNS scored lowest binding energy and highest binding affinity. The interaction sites and the hydrogen bond were observed.

  14. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Laursen, Janne Marie; Zucker, Daniel


    Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly...... as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system...... could be a way to improve cancer treatment either in the form of a vaccine with co-formulated antigen or as an immunotherapeutic vector to boost monocyte and DC activity in combination with other treatment protocols such as chemotherapy or radiotherapy. Cancer immunotherapy is a powerful new tool...

  15. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza


    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  16. CB2 and GPR55 receptors as therapeutic targets for systemic immune dysregulation

    Directory of Open Access Journals (Sweden)

    Juan Zhou


    Full Text Available The endocannabinoid system (ECS is involved in many physiological processes and has been suggested to play critical roles in the immune response and the central nervous system (CNS. Therefore, ECS modulation has potential therapeutic effects on immune dysfunctional disorders, such as sepsis and CNS injury-induced immunodeficiency syndrome (CIDS. In sepsis, excessive release of pro- and anti-inflammatory mediators results in multi-organ dysfunction/failure and death. In CIDS, an acute CNS injury dysregulates a normally well-balanced interplay between the CNS and immune system, leading to increased patients’ susceptibility to infections. In this review, we will discuss potential therapeutic modulation of the immune response in sepsis and CNS injury by manipulation of the ECS representing a novel target for immunotherapy.

  17. Endocannabinoid System: A Promising Therapeutic Target for the Treatment of Haematological Malignancies? (United States)

    Giaginis, Constantinos; Lakiotaki, Eleftheria; Korkolopoulou, Penelope; Konstantopoulos, Konstantinos; Patsouris, Efstratios; Theocharis, Stamatios


    The therapeutic properties of cannabinoids are well-known since ancient years. Growing evidence exist on endocannabinoid system (ECS) modulation related with human tumorigenesis. Taking into account the substantial role of ECS on immune cell regulation, the present review is aimed to summarize the emerging evidence concerning cannabinoid receptor (CBR) expression and cannabinoid ligand effects on haematological malignancies. Most of cannabinoid actions, mainly CB2R-mediated against haematopoietic malignant cells, seem promising, as inhibition of cell proliferation and apoptosis and paraptosis induction have been documented. Cannabinoid ligands appear to activate rudimentary pathways for cell survival, such as ERK, JNK, p38 MAPK, and to induce caspase synthesis, in vitro. Such data are strongly recommended to be confirmed by in vivo experiments with emphasis on cannabinoid ligands' bioavailability and phytocannabinoid psychotropic properties. The preliminary antitumoral ECS effects and their relative lack of important side effects render ECS a promising therapeutic target for the treatment of haematological malignancies.

  18. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases. (United States)

    Pichai, Madharasi V A; Ferguson, Lynnette R


    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans.

  19. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, Florence; Ray, Anne Marie; Dontenwill, Monique, E-mail: [UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral signaling and therapeutic targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch (France)


    Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

  20. ErbB polymorphisms: Insights and implications for response to targeted cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Moulay A Alaoui-Jamali


    Full Text Available Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs, polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3 and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary and to acquired (secondary resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  1. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery. (United States)

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep


    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at

  2. SHP2 phosphatase as a novel therapeutic target for melanoma treatment. (United States)

    Zhang, Ruo-Yu; Yu, Zhi-Hong; Zeng, Lifan; Zhang, Sheng; Bai, Yunpeng; Miao, Jinmin; Chen, Lan; Xie, Jingwu; Zhang, Zhong-Yin


    Melanoma ranks among the most aggressive and deadly human cancers. Although a number of targeted therapies are available, they are effective only in a subset of patients and the emergence of drug resistance often reduces durable responses. Thus there is an urgent need to identify new therapeutic targets and develop more potent pharmacological agents for melanoma treatment. Herein we report that SHP2 levels are frequently elevated in melanoma, and high SHP2 expression is significantly associated with more metastatic phenotype and poorer prognosis. We show that SHP2 promotes melanoma cell viability, motility, and anchorage-independent growth, through activation of both ERK1/2 and AKT signaling pathways. We demonstrate that SHP2 inhibitor 11a-1 effectively blocks SHP2-mediated ERK1/2 and AKT activation and attenuates melanoma cell viability, migration and colony formation. Most importantly, SHP2 inhibitor 11a-1 suppresses xenografted melanoma tumor growth, as a result of reduced tumor cell proliferation and enhanced tumor cell apoptosis. Taken together, our data reveal SHP2 as a novel target for melanoma and suggest SHP2 inhibitors as potential novel therapeutic agents for melanoma treatment.

  3. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets. (United States)

    Hendriksen, Hendrikus; Olivier, Berend; Oosting, Ronald S


    The development of new pharmacological therapies starts with target discovery. Finding new therapeutic targets for anxiety disorders is a difficult process. Most of the currently described drugs for post-traumatic stress disorder (PTSD) are based on the inhibition of serotonin reuptake. The mechanism of action of selective serotonin reuptake inhibitors was already described in 1977 (Benkert et al., 1977). Now, almost 40 years later, we still rely on the same mechanism of action and more effective pharmacological therapies, based on other working mechanisms, are not on the market yet. Finding new molecular switches that upon modulation cure or alleviate the disorder is hampered by a lack of valid animal models. Many of the characteristics of psychiatric disorders are typically human and hence animal models feature only part of the underlying pathology. In this review we define a set of criteria for animal models of PTSD. First, we describe the symptomatology and pathology of PTSD and the current pharmacological and non-pharmacological treatment options. Next, we compare three often-used animal models and analyze how these models comply with the set of criteria. Finally, we discuss how resolving the underlying mechanisms of effective non-pharmacological treatments (environmental enrichment, re-exposure) may aid therapeutic target discovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target. (United States)

    Chen, C-H; Fong, L W R; Yu, E; Wu, R; Trott, J F; Weiss, R H


    Targeted therapeutics, such as those abrogating hypoxia inducible factor (HIF)/vascular endothelial growth factor signaling, are initially effective against kidney cancer (or renal cell carcinoma, RCC); however, drug resistance frequently occurs via subsequent activation of alternative pathways. Through genome-scale integrated analysis of the HIF-α network, we identified the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) as a potential target molecule for kidney cancer. In a screen of nephrectomy samples from 56 patients with RCC, we found that MARCKS expression and its phosphorylation are increased and positively correlate with tumor grade. Genetic and pharmacologic suppression of MARCKS in high-grade RCC cell lines in vitro led to a decrease in cell proliferation and migration. We further demonstrated that higher MARCKS expression promotes growth and angiogenesis in vivo in an RCC xenograft tumor. MARCKS acted upstream of the AKT/mTOR pathway, activating HIF-target genes, notably vascular endothelial growth factor-A. Following knockdown of MARCKS in RCC cells, the IC50 of the multikinase inhibitor regorafenib was reduced. Surprisingly, attenuation of MARCKS using the MPS (MARCKS phosphorylation site domain) peptide synergistically interacted with regorafenib treatment and decreased survival of kidney cancer cells through inactivation of AKT and mTOR. Our data suggest a major contribution of MARCKS to kidney cancer growth and provide an alternative therapeutic strategy of improving the efficacy of multikinase inhibitors.

  5. Prospects for Therapeutic Targeting of MicroRNAs in Human Immunological Diseases. (United States)

    Luck, Marisa E; Muljo, Stefan A; Collins, Colm B


    MicroRNAs (miRNAs) are endogenous oligoribonucleotides with exciting therapeutic potential. Early studies established a clear role for miRNAs in leukocyte biology. The first miRNA-based therapy, miravirsen, is now in phase 2 clinical trials, making the reality of these therapies undeniable. The capacity for miRNAs to fine-tune inflammatory signaling make them attractive treatment targets for immunological diseases. Nonetheless, the degree of redundancy among miRNAs, coupled with the promiscuity of miRNA binding sites in the transcriptome, require consideration when designing miRNA-directed interventions. Altered miRNA expression occurs across a range of inflammatory conditions, including inflammatory bowel disease, arthritis, and diabetes. However, very few studies successfully treated murine models of immunological diseases with miRNA-based approaches. While discussing recent studies targeting miRNAs to treat immunological conditions, we also reflect on the risks of miRNA targeting and showcase some newer delivery systems that may improve the pharmacological profile of this class of therapeutics. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya


    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  7. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy (United States)

    Spinazzola, Janelle M.; Kunkel, Louis M.


    Introduction Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. Areas covered In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. Expert opinion For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation. PMID:28670506

  8. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. (United States)

    Akoumianakis, Ioannis; Tarun, Akansha; Antoniades, Charalambos


    Adipose tissue (AT) is an active endocrine organ with the ability to dynamically secrete a wide range of adipocytokines. Importantly, its secretory profile is altered in various cardiovascular disease states. AT surrounding vessels, or perivascular AT (PVAT), is recognized in particular as an important local regulator of vascular function and dysfunction. Specifically, PVAT has the ability to sense vascular paracrine signals and respond by secreting a variety of vasoactive adipocytokines. Due to the crucial role of PVAT in regulating many aspects of vascular biology, it may constitute a novel therapeutic target for the prevention and treatment of vascular disease pathogenesis. Signalling pathways in PVAT, such as those using adiponectin, H 2 S, glucagon-like peptide 1 or pro-inflammatory cytokines, are among the potential novel pharmacological therapeutic targets of PVAT. This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit © 2016 The British Pharmacological Society.

  9. Unraveling new therapeutic targets of coronary artery disease by genetic approaches. (United States)

    Lee, Sang Eun; Kim, Hyo-Soo


    Coronary artery disease (CAD) is the most common cause of death and physical disabilities in developed countries, even though efforts to identify and target causal factors such as hypertension and dyslipidemia have brought tremendous improvements in prevention and treatment. A rapid advance in technology has unraveled new genetic variants associated with CAD and also provided great opportunities to identify novel pathogenic mechanisms and to develop new drugs with higher specificity. Whole-genome sequencing and whole-exome sequencing has made it possible to find rare alleles that are responsible for CAD in small, affected families and case-control studies in a very efficient manner. At present, genome-wide association studies have identified more than 50 loci that explain approximately 10% of the heritability of CAD, most of which is unrelated to traditional risk factors. Mendelian randomization studies enable identification of causal factors among numerous biomarkers and to narrow down promising therapeutic targets. This review highlights new genetic approaches and demonstrates the extent to which the outcome contributes to the finding of new therapeutic targets.

  10. Targeting the Hippo Pathway Is a New Potential Therapeutic Modality for Malignant Mesothelioma. (United States)

    Sekido, Yoshitaka


    Malignant mesothelioma (MM) constitutes a very aggressive tumor that arises from the pleural or peritoneal cavities and is highly refractory to conventional therapies. Several key genetic alterations are associated with the development and progression of MM including mutations of the CDKN2A/ARF , NF2 , and BAP1 tumor-suppressor genes. Notably, activating oncogene mutations are very rare; thus, it is difficult to develop effective inhibitors to treat MM. The NF2 gene encodes merlin, a protein that regulates multiple cell-signaling cascades including the Hippo pathway. MMs also exhibit inactivation of Hippo pathway components including LATS1/2, strongly suggesting that merlin-Hippo pathway dysregulation plays a key role in the development and progression of MM. Furthermore, Hippo pathway inactivation has been shown to result in constitutive activation of the YAP1/TAZ transcriptional coactivators, thereby conferring malignant phenotypes to mesothelial cells. Critical YAP1/TAZ target genes, including prooncogenic CCDN1 and CTGF , have also been shown to enhance the malignant phenotypes of MM cells. Together, these data indicate the Hippo pathway as a therapeutic target for the treatment of MM, and support the development of new strategies to effectively target the activation status of YAP1/TAZ as a promising therapeutic modality for this formidable disease.

  11. Target-oriented mechanisms of novel herbal therapeutics in the chemotherapy of gastrointestinal cancer and inflammation. (United States)

    Ko, Joshua K; Auyeung, Kathy K


    A prominent group of effective cancer chemopreventive drugs has been derived from natural products having low toxicity while possessing apparent benefit in the disease process. It is plausible that there are multiple target molecules critical to cancer cell survival. Herbal terpenoids have demonstrated excellent target-specific anti-neoplastic functions by suppression of cell proliferation and induction of apoptosis. Transcriptional molecules in the NF-κB, MEK/ERK and PI3K/Akt/mTOR pathways are important molecular targets of chemotherapy that play distinctive roles in modulating the apoptosis cascades. It is recently suggested that NSAID-activated gene (NAG-1), a novel proapoptotic protein, is the upstream anti-carcinogenic target of NSAIDs, PPAR ligands and herbal chemotherapeutic agents that triggers some of the events mentioned above. Besides, angiogenesis, oxidative stress as well as inflammation are important factors that contribute to the development and metastasis of cancer, which could be actively modulated by novel agents of plant origin. The aim of the present review is to discuss and summarize the contemporary use of herbal therapeutics and phytochemicals in the treatment of human cancers, in particular that of the colon. The major events and signaling pathways in the carcinogenesis process being potentially modulated by natural products and novel herbal compounds will be evaluated, with emphasis on some terpenoids. Advances in eliciting the precise cellular and molecular mechanisms during the anti-tumorigenic process of novel herbal therapeutics will be of imperative clinical significance to increase the efficacy and reduce prominent adverse drug effects in cancer patients through target-specific therapy.

  12. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. (United States)

    Ramasamy, Thamil Selvee; Ayob, Ain Zubaidah; Myint, Hsu Hsu Lynn; Thiagarajah, Sharmanee; Amini, Farahnaz


    Colorectal cancer is one of the commonest cancers in the world and it is also a common cause of cancer-related death worldwide. Despite advanced treatment strategies, the disease is rarely cured completely due to recurrence. Evidence shows that this is due to a small population of cells, called cancer stem cells (CSCs), in the tumour mass that have the self-renewal and differentiation potential to give rise to a new tumour population. Many pre-clinical and clinical studies have used curcumin and its analogues as anti-cancer agents in various types of cancer, including colorectal cancer. Intriguingly, curcumin and its analogues have also recently been shown to be effective in lowering tumour recurrence by targeting the CSC population, hence inhibiting tumour growth. In this review, we highlight the efficacy of curcumin and its analogues in targeting colorectal CSC and also the underlying molecular mechanism involved. Curcumin, in the presence or absence of other anti-cancer agents, has been shown to reduce the size of tumour mass and growth in both in vivo and in vitro studies by affecting many intracellular events that are associated with cancer progression and CSC formation. An insight into the molecular mechanism has unraveled the mode of action via which curcumin could affect the key regulators in CSC, importantly; (1) the signaling pathways, including Wnt/β-catenin, Sonic Hedgehog, Notch and PI3K/Akt/mTOR, (2) microRNA and (3) the epithelial-mesenchymal transition at multiple levels. Therefore, curcumin could play a role as chemosensitiser whereby the colorectal CSCs are now sensitised towards the anti-cancer therapy, therefore, combination therapy using anti-cancer agent with curcumin could be much more effective than treatment using a single cancer agent. This potential treatment modality can be further developed by employing an effective delivery system using a nanotechnology based approach to treat colorectal cancer.

  13. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford


    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... garnered a great deal of interest due to the substantial room for improvement inherent to conventional chemotherapeutic agents. Chemotherapeutic agents and antiviral agents have a lot of features in common due to both of them typically targeting endogenous targets, unlike antibacterial compounds, though...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin...

  14. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M


    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  15. Synthesis, characterisation, and preliminary anti-cancer photodynamic therapeutic in vitro studies of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes (United States)

    Taylor, Patrick; Magnusen, Anthony R.; Moffett, Erick T.; Meyer, Kyle; Hong, Yiling; Ramsdale, Stuart E.; Gordon, Michelle; Stubbs, Javelyn; Seymour, Luke A.; Acharya, Dhiraj; Weber, Ralph T.; Smith, Paul F.; Dismukes, G. Charles; Ji, Ping; Menocal, Laura; Bai, Fengwei; Williams, Jennie L.; Cropek, Donald M.; Jarrett, William L.


    We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2•1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2•3H2O 2 (where tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2‴,3‴-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2•5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2•6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4”,4”'tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]•H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and 51V NMR spectroscopic studies were also used to assess the stability of the chloride salts of

  16. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. (United States)

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary


    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects. © 2016 S. Karger AG, Basel.

  17. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease. (United States)

    Ralevic, Vera


    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  18. Liquid Biopsy and Therapeutic Targets: Present and Future Issues in Thoracic Oncology

    Directory of Open Access Journals (Sweden)

    Paul Hofman


    Full Text Available The practice of liquid biopsy (LB has revolutionized the care of patients with metastatic lung cancer. Many oncologists now use this approach in daily practice, applying precise procedures for the detection of activating or resistance mutations in EGFR. These tests are performed with plasma DNA and have been approved as companion diagnostic test for patients treated with tyrosine kinase inhibitors. ALK is another important target in lung cancer since it leads to treatment of patients who are positive for a rearrangement in ALK identified with tumor tissue. By analogy with EGFR, LB for detection of genomic alterations in ALK (rearrangements or mutations has been rapidly adopted in the clinic. However, this promising approach has some limitations and has not yet been disseminated as much as the blood test targeting EGFR. In addition to these two therapeutic targets LB can be used for evaluation of the genomic status of other genes of interest of patients with lung cancer (ROS1, RET, NTRK MET, BRAF, HER2, etc.. LB can be performed to evaluate a specific target or for a more or less complex panel of genes. Considering the number of potential targets for clinical trials, techniques of next-generation sequencing of circulating DNA are on the rise. This review will provide an update on the contribution of LB to care of patients with metastatic lung cancer, including the present limits of this approach, and will consider certain perspectives.

  19. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan


    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  20. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Directory of Open Access Journals (Sweden)

    Ahmet Ulugöl


    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  1. Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Annie Schmid-Alliana


    Full Text Available Bone is one of the most preferential target site for cancer metastases, particularly for prostate, breast, kidney, lung and thyroid primary tumours. Indeed, numerous chemical signals and growth factors produced by the bone microenvironment constitute factors promoting cancer cell invasion and aggression. After reviewing the different theories proposed to provide mechanism for metastatic progression, we report on the gene expression profile of bone-seeking cancer cells. We also discuss the cross-talk between the bone microenvironment and invading cells, which impacts on the tumour actions on surrounding bone tissue. Lastly, we detail therapies for bone metastases. Due to poor prognosis for patients, the strategies mainly aim at reducing the impact of skeletal-related events on patients’ quality of life. However, recent advances have led to a better understanding of molecular mechanisms underlying bone metastases progression, and therefore of novel therapeutic targets.

  2. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders. (United States)

    Janus, A; Szahidewicz-Krupska, E; Mazur, G; Doroszko, A


    Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  3. Th17-Associated Cytokines as a Therapeutic Target for Steroid-Insensitive Asthma

    Directory of Open Access Journals (Sweden)

    Yuko Morishima


    Full Text Available Steroid-insensitive asthma is an infrequent but problematic airway disease that presents with persistent symptoms, airflow limitation, or recurrent exacerbations even when treated with steroid-based therapies. Because of unsatisfactory results obtained from currently available therapies for steroid-insensitive asthma, a better understanding of its pathogenesis and the development of new targeted molecular therapies are warranted. Recent studies indicated that levels of interleukin (IL-17 are increased and both eosinophils and neutrophils infiltrate the airways of severe asthmatics. IL-17 is a proinflammatory cytokine mainly secreted from helper T (Th 17 cells and is important for the induction of neutrophil recruitment and migration at sites of inflammation. This review focuses on the pathogenetic role of Th17 cells and their associated cytokines in steroid-insensitive asthma and discusses the prospects of novel therapeutic options targeting the Th17 signaling pathway.

  4. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. (United States)

    De Vlieghere, Elly; Verset, Laurine; Demetter, Pieter; Bracke, Marc; De Wever, Olivier


    Cancer-associated fibroblasts (CAFs) are drivers of tumour progression and are considered as a target and a tool in cancer diagnostic and therapeutic applications. An increased abundance of CAFs or CAF signatures are recognized as a bad prognostic marker in several cancer types. Tumour-environment biomimetics strongly improve our understanding of the communication between CAFs, cancer cells and other host cells. Several experimental drugs targeting CAFs are in clinical trials for multiple tumour entities; alternatively, CAFs can be exploited as a tool to characterize the functionality of circulating tumour cells or to capture them as a tool to prevent metastasis. The continuous interaction between tissue engineers, biomaterial experts and cancer researchers creates the possibility to biomimic the tumour-environment and provides new opportunities in cancer diagnostics and management.

  5. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    Directory of Open Access Journals (Sweden)

    A. Janus


    Full Text Available Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  6. New therapeutic targets in the management of urothelial carcinoma of the bladder

    Directory of Open Access Journals (Sweden)

    Sverrisson EF


    Full Text Available Einar F Sverrisson, Patrick N Espiritu, Philippe E SpiessDepartment of Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USAAbstract: Urothelial carcinoma of the bladder, despite the myriad of treatment approaches and our progressively increasing knowledge into its disease processes, remains one of the most clinically challenging problems in modern urological clinical practice. New therapies target biomolecular pathways and cellular mediators responsible for regulating cell growth and metabolism, both of which are frequently overexpressed in malignant urothelial cells, with the intent of inducing cell death by limiting cellular metabolism and growth, creating an immune response, or selectively delivering or activating a cytotoxic agent. These new and novel therapies may offer a potential for reduced toxicity and an encouraging hope for better treatment outcomes, particularly for a disease often refractory or not amenable to the current therapeutic approaches.Keywords: targeted therapy, intravesical agents, systemic therapies

  7. Genome-wide gene expression dataset used to identify potential therapeutic targets in androgenetic alopecia

    Directory of Open Access Journals (Sweden)

    R. Dey-Rao


    Full Text Available The microarray dataset attached to this report is related to the research article with the title: “A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia” (Dey-Rao and Sinha, 2017 [1]. Male-pattern hair loss that is induced by androgens (testosterone in genetically predisposed individuals is known as androgenetic alopecia (AGA. The raw dataset is being made publicly available to enable critical and/or extended analyses. Our related research paper utilizes the attached raw dataset, for genome-wide gene-expression associated investigations. Combined with several in silico bioinformatics-based analyses we were able to delineate five strategic molecular elements as potential novel targets towards future AGA-therapy.

  8. An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae.

    Directory of Open Access Journals (Sweden)

    Syed Babar Jamal

    Full Text Available Corynebacterium diphtheriae (Cd is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983 were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives. The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.

  9. Glycoprotein non-metastatic b (GPNMB: A metastatic mediator and emerging therapeutic target in cancer

    Directory of Open Access Journals (Sweden)

    Maric G


    Full Text Available Gordana Maric,1,2 April AN Rose,3 Matthew G Annis,1,2 Peter M Siegel1,2,4,5 1Goodman Cancer Research Centre, 2Department of Medicine, 3Faculty of Medicine, 4Department of Biochemistry, 5Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada Abstract: Molecularly targeted therapies are rapidly growing with respect to their clinical development and impact on cancer treatment due to their highly selective anti-tumor action. However, many aggressive cancers such as triple-negative breast cancer (TNBC currently lack well-defined therapeutic targets against which such agents can be developed. The identification of tumor-associated antigens and the generation of antibody drug-conjugates represent an emerging area of intense interest and growth in the field of cancer therapeutics. Glycoprotein non-metastatic b (GPNMB has recently been identified as a gene that is over-expressed in numerous cancers, including TNBC, and often correlates with the metastatic phenotype. In breast cancer, GPNMB expression in the tumor epithelium is associated with a reduction in disease-free and overall survival. Based on these findings, glembatumumab vedotin (CDX-011, an antibody-drug conjugate that selectively targets GPNMB, is currently being investigated in clinical trials for patients with metastatic breast cancer and unresectable melanoma. This review discusses the physiological and potential pathological roles of GPNMB in normal and cancer tissues, respectively, and details the clinical advances and challenges in targeting GPNMB-expressing malignancies. Keywords: GPNMB, osteoactivin, breast cancer, antibody-drug conjugates, CDX-011

  10. Molecular Characterization of Gastric Carcinoma: Therapeutic Implications for Biomarkers and Targets. (United States)

    Kankeu Fonkoua, Lionel; Yee, Nelson S


    Palliative chemotherapy is the mainstay of treatment of advanced gastric carcinoma (GC). Monoclonal antibodies including trastuzumab, ramucirumab, and pembrolizumab have been shown to provide additional benefits. However, the clinical outcomes are often unpredictable and they can vary widely among patients. Currently, no biomarker is available for predicting treatment response in the individual patient except human epidermal growth factor receptor 2 (HER2) amplification and programmed death-ligand 1 (PD-L1) expression for effectiveness of trastuzumab and pembrolizumab, respectively. Multi-platform molecular analysis of cancer, including GC, may help identify predictive biomarkers to guide selection of therapeutic agents. Molecular classification of GC by The Cancer Genome Atlas Research Network and the Asian Cancer Research Group is expected to identify therapeutic targets and predictive biomarkers. Complementary to molecular characterization of GC is molecular profiling by expression analysis and genomic sequencing of tumor DNA. Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS) on molecular profile (MP)-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy. Future strategies aiming to integrate molecular classification and profiling of tumors with therapeutic agents for achieving the goal of personalized treatment of GC are indicated.

  11. PROSPECT (Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification)

    National Research Council Canada - National Science Library

    Hong, Waun K; Stewart, David J


    We will develop a high throughput therapeutic-target focused (TTF) profiling platform and will combine this with tumor genome wide mRNA profiling and with serum or plasma profiling of phosphopeptides and DNA...

  12. Composition useful for transportation of therapeutically active substance to targeted cell and use of the composition in ..

    NARCIS (Netherlands)

    Bischoff, Rainer; Kolbe, Hanno; Schughart, Klaus; Transgene, S.A.


    PROBLEM TO BE SOLVED: To obtain the subject composition used for transferring a therapeutically active substance into mammalian cells, and useful for preparing a vector intended to transfer a polynucleotide into targeted cells, by including..

  13. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. (United States)

    Miao, Benchun; Ji, Zhenyu; Tan, Li; Taylor, Michael; Zhang, Jianming; Choi, Hwan Geun; Frederick, Dennie T; Kumar, Raj; Wargo, Jennifer A; Flaherty, Keith T; Gray, Nathanael S; Tsao, Hensin


    BRAF(V600E) is the most common oncogenic lesion in melanoma and results in constitutive activation of the MAPK pathway and uncontrolled cell growth. Selective BRAF inhibitors such as vemurafenib have been shown to neutralize oncogenic signaling, restrain cellular growth, and improve patient outcome. Although several mechanisms of vemurafenib resistance have been described, directed solutions to overcome these resistance lesions are still lacking. Herein, we found that vemurafenib resistance can be (i) mediated by EPHA2, a member of the largest receptor tyrosine kinases (RTK) subfamily erythropoietin-producing hepatocellular (EPH) receptors, and (ii) associated with a greater phenotypic dependence on EPHA2. Furthermore, we developed a series of first-in-class EPHA2 inhibitors and show that these new compounds potently induce apoptosis, suppress viability, and abrogate tumorigenic growth of melanoma cells, including those that are resistant to vemurafenib. These results provide proof of concept that RTK-guided growth, and therapeutic resistance, can be prospectively defined and selectively targeted. In this study, we show that resistance to selective BRAF inhibitors can be mediated by the RTK EPHA2. Furthermore, direct targeting of EPHA2 can successfully suppress melanoma growth and mitigate therapeutic resistance. ©2014 American Association for Cancer Research.

  14. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis. (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Li, Wen-Lin; Miao, Chao-Yu


    Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration. © 2016 John Wiley & Sons Ltd.

  15. Medicinal plants growing in the Judea region: network approach for searching potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arie Budovsky


    Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.

  16. Immune system of the inner ear as a novel therapeutic target for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Takayuki eOkano


    Full Text Available Sensorineural hearing loss (SNHL is a common clinical condition resulting from dysfunction in one or more parts in the auditory pathway between the inner ear and auditory cortex. Despite the prevalence of SNHL, little is known about its etiopathology, although several mechanisms have been postulated including ischemia, viral infection or reactivation, and microtrauma. Immune-mediated inner ear disease has been introduced and accepted as one SNHL pathophysiology; it responds to immunosuppressive therapy and is one of the few reversible forms of bilateral SNHL. The concept of immune-mediated inner ear disease is straightforward and comprehensible, but criteria for clinical diagnosis and the precise mechanism of hearing loss have not been determined. Moreover, the therapeutic mechanisms of corticosteroids are unclear, leading to several misconceptions by both clinicians and investigators concerning corticosteroid therapy. This review addresses our current understanding of the immune system in the inner ear and its involvement in the pathophysiology in SNHL. Treatment of SNHL, including immune-mediated inner ear disorder, will be discussed with a focus on the immune mechanism and immunocompetent cells as therapeutic targets. Finally, possible interventions modulating the immune system in the inner ear to repair the tissue organization and improve hearing in patients with SNHL will be discussed. Tissue macrophages in the inner ear appear to be a potential target for modulating the immune response in the inner ear in the pathophysiology of SNHL.

  17. Roles of glial cells in schizophrenia: possible targets for therapeutic approaches. (United States)

    Takahashi, Nagahide; Sakurai, Takeshi


    Glial cells consisting of oligodendrocytes, astrocytes, microglia, and NG2 positive cells are major cell populations in the central nervous system, number-wise. They function as effectors and modulators of neurodevelopment through a wide variety of neuron-glial cell interactions in brain development and functions. Glial cells can be affected by both genetic and environmental factors, leading to their dysfunctions in supporting neuronal development and functions. These in turn can affect neuronal cells, causing alterations at the circuitry level that manifest as behavioral characteristics associated with schizophrenia in late teens-early twenties. Glial cells are also involved in neuroinflammatory processes, which sometimes have deleterious effects on the normal brain development. If the glial involvement plays significant roles in schizophrenia, the processes involving glial cells can become possible therapeutic targets for schizophrenia. A number of known antipsychotics are shown to have beneficial effects on glial cells, but other drugs targeting glial cell functions may also have therapeutic effects on schizophrenia. The latter can be taken into consideration for future drug development for schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain

    Directory of Open Access Journals (Sweden)

    Smith TP


    Full Text Available Terika P Smith,1 Tami Haymond,1 Sherika N Smith,1 Sarah M Sweitzer1,2 1Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA; 2Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA Abstract: Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain. Keywords: endothelin-1, acute pain, chronic pain, endothelin receptor antagonists

  19. Retracted: Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. (United States)

    Deacon, R M J; Hurley, M J; Rebolledo, C M; Snape, M; Altimiras, F J; Farías, L; Pino, M; Biekofsky, R; Glass, L; Cogram, P


    Retraction: "Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566" by R. M. J. Deacon, M. J. Hurley, C. M. Rebolledo, M. Snape, F. J. Altimiras, L. Farías, M. Pino, R. Biekofsky, L. Glass and P. Cogram. The above article, from Genes, Brain and Behavior, published online on 12th May 2017 in Wiley Online Library (, has been retracted by agreement between the journal Editor in Chief, Andrew Holmes and John Wiley & Sons Ltd. The retraction has been agreed as all authors cannot agree on a revised author order, and at least one author continues to dispute the original order. In this case, the original article is being retracted on the grounds that the journal does not have permission to publish. Reference: Deacon, R. M. J., Hurley, M. J., Rebolledo, C. M., Snape, M., Altimiras, F. J., Farías, L., Pino, M., Biekofsky, R., Glass, L. and Cogram, P. (2017), Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. Genes, Brain and Behavior. doi:10.1111/gbb.12373. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression (United States)

    Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G.; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J.; Chan, Wai-In; Foster, Donna; Prinjha, Rab K.; Pimanda, John E.; Tenen, Daniel G.; Vassiliou, George S.; Koschmieder, Steffen; Adams, David J.


    The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963

  1. The Paramyxovirus Polymerase Complex as a Target for Next-Generation Anti-Paramyxovirus Therapeutics

    Directory of Open Access Journals (Sweden)

    Richard K Plemper


    Full Text Available The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV, as well as the emerging zoonotic Hendra and Nipah viruses. In the United States, RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path towards the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.

  2. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. (United States)

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida


    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Precision medicine comes of age in nephrology: identification of novel biomarkers and therapeutic targets for chronic kidney disease. (United States)

    Wyatt, Christina M; Schlondorff, Detlef


    The goal of "precision medicine" is to characterize diseases based on the underlying molecular biology, in order to identify specific biomarkers and therapeutic targets that will ultimately improve clinical outcomes. The nephrology research community has developed a strong foundation for precision medicine, and recent publications demonstrate the feasibility of this approach to identify potential biomarkers and therapeutic targets in chronic kidney disease. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. Identification of G-Protein-Coupled Receptors (GPCRs) in Pulmonary Artery Smooth Muscle Cells as Novel Therapeutic Targets (United States)


    pathophysiology and new therapeutic targets for PAH. Our approach is to isolate PASMCs from PAH subjects and controls, to define the expression and function of...their complement of GPCRs, with the goal of identifying GPCRs that have known physiologic agonists and are uniquely expressed and/or prominently up...regulated in PAH-PASMCs and to define their potential as novel therapeutic targets for PAH. 15. SUBJECT TERMS - 16. SECURITY CLASSIFICATION OF: 17

  5. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng


    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  6. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Ming Tsai


    Full Text Available Human gastric cancer (GC is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

  7. PD-1 and PD-L1 as emerging therapeutic targets in gastric cancer: current evidence

    Directory of Open Access Journals (Sweden)

    Tran PN


    Full Text Available Phu N Tran,1* Sarmen Sarkissian,1* Joseph Chao,2 Samuel J Klempner3,4 1Division of Hematology-Oncology, University of California Irvine, Orange, 2Department of Medical Oncology and Developmental Therapeutics, City of Hope, Duarte, 3Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 4The Angeles Clinic and Research Institute, Los Angeles, CA, USA *These authors contributed equally to this work Abstract: Gastric adenocarcinoma is a leading cause of global cancer-related morbidity and mortality, and new therapeutic approaches are needed. Despite the improved outcomes with monoclonal antibodies targeting human epidermal growth factor receptor 2 and vascular endothelial growth factor receptor 2, durable responses are uncommon. Targeting immune checkpoints including PD-1, PD-L1 and CTLA-4 have led to improved survival across several tumor types, frequently characterized by prolonged benefit in responding patients. Tumoral and lymphocyte-derived immunohistochemical staining for PD-1, PD-L1, and tumor mutational burden have shown potential as predictive response biomarkers in several tumor types. Optimal incorporation of immune-mediated therapies into gastric cancer (GC is an area of intense ongoing investigation and benefit has been demonstrated in smaller studies of advanced patients. Important questions of biomarker selection, roles for molecular characterization, optimal combinatorial approaches, and therapeutic sequencing remain. In this study, current data are reviewed for immune checkpoint inhibitors in GC, and putative biomarkers, ongoing trials, and future considerations are discussed. Keywords: immunotherapy, stomach cancer, checkpoint inhibitor, nivolumab, pembrolizumab, tumor mutational burden

  8. Review article: the endocannabinoid system in liver disease, a potential therapeutic target. (United States)

    Basu, P P; Aloysius, M M; Shah, N J; Brown, R S


    Endocannabinoids are a family of potent lipid-soluble molecules, acting on the cannabinoid (CB) receptors that mediate the effects of marijuana. The CB receptors, endocannabinoids and the enzymes involved in their synthesis and degradation are located in the brain and peripheral tissues, including the liver. To review the current understanding of the role of the endocannabinoid system in liver disease-associated pathophysiological conditions, and drugs targeting the endocannabinoid system as therapy for liver disease. Original articles and reviews were used to summarise the relevant pre-clinical and clinical research findings relating to this topic. The endocannabinoid system as a whole plays an important role in liver diseases (i.e. non-alcoholic liver disease, alcoholic liver disease, hepatic encephalopathy and autoimmune hepatitis) and related pathophysiological conditions (i.e. altered hepatic haemodynamics, cirrhotic cardiomyopathy, metabolic syndrome and ischaemia/reperfusion disease). Pharmacological targeting of the endocannabinoid system has had success as treatment for patients with liver disease, but adverse events led to withdrawal of marketing approval. However, there is optimism over novel therapeutics targeting the endocannabinoid system currently in the pre-clinical stage of development. The endocannabinoid system plays an important role in the pathophysiology of liver disease and its associated conditions. While some drugs targeting the endocannabinoid system have deleterious neurological adverse events, there is promise for a newer generation of therapies that do not cross the blood-brain barrier. © 2014 John Wiley & Sons Ltd.

  9. HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention (United States)

    Irving, Stephen L.; Brown, David G.; Anderson, Marie; Bazin, Richard; Cao, Joan; Ciaramella, Giuseppe; Isaacson, Jason; Jackson, Lynn; Hunt, Rachael; Kjerrstrom, Anne; Nieman, James A.; Patick, Amy K.; Perros, Manos; Scott, Andrew D.; Whitby, Kevin; Wu, Hua; Butler, Scott L.


    Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy. PMID:21170360

  10. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets. (United States)

    Weß, Ludger; Schnieders, Frank


    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  11. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T


    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  12. Self-assembled Multifunctional DNA Nanoflowers for the Circumvention of Multidrug Resistance in Targeted Anticancer Drug Delivery. (United States)

    Mei, Lei; Zhu, Guizhi; Qiu, Liping; Wu, Cuichen; Chen, Huapei; Liang, Hao; Cansiz, Sena; Lv, Yifan; Zhang, Xiaobing; Tan, Weihong


    Cancer chemotherapy has been impeded by side effects and multidrug resistance (MDR) partially caused by drug efflux from cancer cells, which call for targeted drug delivery systems additionally able to circumvent MDR. Here we report multifunctional DNA nanoflowers (NFs) for targeted drug delivery to both chemosensitive and MDR cancer cells and circumvent MDR in both leukemia and breast cancer cell models. NFs are self-assembled via liquid crystallization of DNA generated by Rolling Circle Replication, during which NFs are incorporated with aptamers for specific cancer cell recognition, fluorophores for bioimaging, and Doxorubicin (Dox)-binding DNA for drug delivery. NF sizes are tunable (down to ~200 nm in diameter), and the densely packed drug-binding motifs and porous intrastructures endow NFs with high drug loading capacity (71.4%, wt/wt). The Dox-loaded NFs (NF-Dox) are stable at physiological pH, yet drug release is facilitated in acidic or basic conditions. NFs deliver Dox into target chemosensitive and MDR cancer cells, preventing drug efflux and enhancing drug retention in MDR cells. Consequently, NF-Dox induces potent cytotoxicity in both target chemosensitive cells and MDR cells, but not nontarget cells, thus concurrently circumventing MDR and reducing side effects. Overall, these NFs are promising to circumvent MDR in targeted cancer therapy.

  13. Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention. (United States)

    Mastri, Michalis; Shah, Zaeem; Hsieh, Karin; Wang, Xiaowen; Wooldridge, Bailey; Martin, Sean; Suzuki, Gen; Lee, Techung


    Progressive fibrosis is a pathological hallmark of many chronic diseases responsible for organ failure. Although there is currently no therapy on the market that specifically targets fibrosis, the dynamic fibrogenic process is known to be regulated by multiple soluble mediators that may be therapeutically intervened. The failing hamster heart exhibits marked fibrosis and increased expression of secreted Frizzled-related protein 2 (sFRP2) amenable to reversal by mesenchymal stem cell (MSC) therapy. Given the previous demonstration that sFRP2-null mice subjected to myocardial infarction exhibited reduced fibrosis and improved function, we tested whether antibody-based sFRP2 blockade might counteract the fibrogenic pathway and repair cardiac injury. Cardiomyopathic hamsters were injected intraperitoneally twice a week each with 20 μg of sFRP2 antibody. Echocardiography, histology, and biochemical analyses were performed after 1 mo. sFRP2 antibody increased left ventricular ejection fraction from 40 ± 1.2 to 49 ± 6.5%, whereas saline and IgG control exhibited a further decline to 37 ± 0.9 and 31 ± 3.2%, respectively. Functional improvement is associated with a ∼ 50% reduction in myocardial fibrosis, ∼ 65% decrease in apoptosis, and ∼ 75% increase in wall thickness. Consistent with attenuated fibrosis, both MSC therapy and sFRP2 antibody administration significantly increased the activity of myocardial matrix metalloproteinase-2. Gene expression analysis of the hamster heart and cultured fibroblasts identified Axin2 as a downstream target, the expression of which was activated by sFRP2 but inhibited by therapeutic intervention. sFRP2 blockade also increased myocardial levels of VEGF and hepatocyte growth factor (HGF) along with increased angiogenesis. These findings highlight the pathogenic effect of dysregulated sFRP2, which may be specifically targeted for antifibrotic therapy.

  14. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. (United States)

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred


    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez


    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  16. Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Tong Aiping


    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. There is an urgent need to develop novel biomarkers for early diagnosis, as well as to identify new drug targets for therapeutic interventions. Patients and methods 54 paired HCC samples and 21 normal liver tissues were obtained from West China Hospital of Sichuan University. Informed consent was obtained from all the patients or their relatives prior to analysis, and the project was approved by the Institutional Ethics Committee of Sichuan University. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC-based proteomics was employed to profile the differentially expressed proteins between a HepG2 human hepatoma cell line and an immortal hepatic cell line L02. Validation of PGAM1 expression was performed by semi-quantitative RT-PCR, immunoblot and immunohistochemistry using clinical samples. shRNA expressing plasmids specifically targeting PGAM1 were designed and constructed by GenePharma Corporation (Shanghai, China, and were utilized to silence expression of PGAM1 in vitro and in vivo. Cell proliferation was measured by a combination of colony formation assay and Ki67 staining. Apoptosis was examined by flow cytometry and TUNEL assay. Results A total of 63 dysregulated proteins were identified, including 51 up-regulated proteins, and 12 down-regulated proteins (over 2-fold, p p in vitro and in vivo. Conclusion Our studies suggested that PGAM1 plays an important role in hepatocarcinogenesis, and should be a potential diagnostic biomarker, as well as an attractive therapeutic target for hepatocellular carcinoma.

  17. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets. (United States)

    Fernando, Deepani D; Marr, Edward J; Zakrzewski, Martha; Reynolds, Simone L; Burgess, Stewart T G; Fischer, Katja


    Scabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools. We performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi). We provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls. A series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.

  18. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation. (United States)

    Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M


    Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal

  19. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.; Anderson, Redmond-Craig; Zeng, Chenbo; Xu, Kuiying; Hou, Catherine; McDonald, Elizabeth S.; Pryma, Daniel A.; Mach, Robert H., E-mail:


    Background: Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods: Three TNBC cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 h. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion: Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. - Highlights: • TNBC cells are sensitive to sigma-2 receptor targeted drug conjugate SW IV-134. • MDA-MB-231 displayed the highest amount of sigma-2 receptors and corresponded well with

  20. Identification of anaplastic lymphoma kinase as a potential therapeutic target in Basal Cell Carcinoma. (United States)

    Ning, Hanna; Mitsui, Hiroshi; Wang, Claire Q F; Suárez-Fariñas, Mayte; Gonzalez, Juana; Shah, Kejal R; Chen, Jie; Coats, Israel; Felsen, Diane; Carucci, John A; Krueger, James G


    The pathogenesis of BCC is associated with sonic hedgehog (SHH) signaling. Vismodegib, a smoothened inhibitor that targets this pathway, is now in clinical use for advanced BCC patients, but its efficacy is limited. Therefore, new therapeutic options for this cancer are required. We studied gene expression profiling of BCC tumour tissues coupled with laser capture microdissection to identify tumour specific receptor tyrosine kinase expression that can be targeted by small molecule inhibitors. We found a >250 fold increase (FDRskin was observed by immunohistochemistry. Crizotinib, an FDA-approved ALK inhibitor, reduced keratinocyte proliferation in culture, whereas a c-Met inhibitor did not. Crizotinib significantly reduced the expression of GLI1 and CCND2 (members of SHH-pathway) mRNA by approximately 60% and 20%, respectively (p<0.01). Our data suggest that ALK may increase GLI1 expression in parallel with the conventional SHH-pathway and promote keratinocyte proliferation. Hence, an ALK inhibitor alone or in combination with targeting SHH-pathway molecules may be a potential treatment for BCC patients.

  1. The In-flow Capture of Superparamagnetic Nanoparticles for Targeting of Gene Therapeutics

    International Nuclear Information System (INIS)

    Darton, N. J.; Hallmark, B.; Han, X.; Palit, S.; Mackley, M. R.; Slater, N. K. H.; Darling, D.; Farzaneh, F.


    Superparamagnetic magnetite nanoparticles have been synthesised and used for in-flow capture experiments in vitro to provide a better understanding of the physical principles that underlie magnetic directed therapy. Experimental observations and modeling work have enabled initial refinement of magnetic targeting strategies and superparamagnetic nanoparticle properties for different therapeutic targeting requirements. It has been discovered that 330 nm and 580 nm agglomerates of 10 nm magnetite cores can be captured with a 0.5 T magnet in flows of up to 0.35 mlmin -1 in 410 μm diameter microcapillaries. These flows are typical of blood flow rates found in venules and arterioles in the human cardiovascular system. Further analysis of the data obtained from in-flow capture of superparamagnetic nanoparticles has enabled an initial model to be created, which can be used to estimate the steady state layer thickness of captured superparamagnetic nanoparticles and therefore capillary occlusion at the target site. This work provides the basis for future optimisation of a completely in vitro system for testing magnetic directed therapy, enabling data to be provided for preclinical trials

  2. Therapeutic potential of targeting cell division cycle associated 5 for oral squamous cell carcinoma. (United States)

    Tokuzen, Norihiko; Nakashiro, Koh-ichi; Tanaka, Hiroshi; Iwamoto, Kazuki; Hamakawa, Hiroyuki


    Molecularly targeted drugs are used in the treatment of a variety of malignant tumors, but this approach to developing novel therapies for oral squamous cell carcinoma (OSCC) has lagged behind the progress seen for other cancers. We have attempted to find appropriate molecular targets for OSCC and identified cell division cycle associated 5 (CDCA5) as a cancer-related gene which was overexpressed in all the human OSCC cells tested by microarray analysis. In this study, we investigated the expression and function of CDCA5 in OSCC. First, we confirmed that CDCA5 was overexpressed in 4 human OSCC cell lines by quantitative RT-PCR and Western blotting. We then tested the effect of synthetic small interfering RNAs specific for CDCA5 on the growth and invasion of human OSCC cells. Knockdown of CDCA5 markedly inhibited the growth of OSCC cells in vitro and in vivo. We also examined the expression of CDCA5 protein in 80 cases of OSCC immunohistochemically and found a significant association between CDCA5 expression levels and overall survival. These results suggest that CDCA5 functions as a critical gene supporting OSCC progression and that targeting CDCA5 may be a useful therapeutic strategy for OSCC.

  3. Novel Therapeutic Targets and Drug Candidates for Modifying Disease Progression in Adrenoleukodystrophy. (United States)

    Pujol, Aurora


    X-linked adrenoleukodystrophy (X-ALD) is the most frequent inherited monogenic demyelinating disease. It is often lethal and currently lacks a satisfactory therapy. The disease is caused by loss of function of the ABCD1 gene, a peroxisomal ATP-binding cassette transporter, resulting in the accumulation of very-long-chain fatty acids (VLCFA) in organs and plasma. Recent findings on pathomechanisms of the peroxisomal neurometabolic disease X-ALD have provided important clues on therapeutic targets. Here we describe the impact of chronic redox imbalance caused by the excess VLCFA on mitochondrial biogenesis and respiration, and explore the consequences on the protein quality control systems essential for cell survival, such as the proteasome and autophagic flux. Defective proteostasis, together with mitochondrial malfunction, is a hallmark of the most prevalent neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and of the aging process. Thus, we discuss molecular targets and emerging treatment options that may be common to both multifactorial neurodegenerative disorders and X-ALD. New-generation antioxidants, some of them mitochondrial targeted, mitochondrial biogenesis boosters such as pioglitazone and resveratrol, and the mTOR inhibitor temsirolimus hold promise as disease-modifying therapies. © 2016 S. Karger AG, Basel.

  4. TRP channels as targets for therapeutic intervention in obesity: focus on TRPV1 and TRPM5. (United States)

    Palmer, R Kyle; Lunn, Charles A


    The disease of obesity is one of the greatest healthcare challenges of our time. The increasing urgency for effective treatment is driving an intensive search for new targets for anti-obesity drug discovery. The TRP channel super family represents a class of proteins now recognized to serve many functions in physiology related to maintenance of health and the development of diseases. A few of these might offer new potential for therapeutic intervention in obesity. Among the TRP channels, TRPV1 appears most closely associated with body weight homeostasis through its influence on energy expenditure. TRPM5 has been thoroughly characterized as a critical component of taste signaling and recently has been implicated in insulin release. Because of its role in taste signaling, we argue that drugs designed to modulate TRPM5 could be useful in controlling energy consumption by impacting taste sensory signals. As drug targets for obesity, both TRPV1 and TRPM5 offer the advantage of operating in compartments that could limit drug distribution to the site of action. The potential for other TRP channels as anti-obesity drug targets also is discussed.

  5. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells. (United States)

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid


    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. © The Author (2015). Published by Oxford University Press on

  6. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia


    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  7. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease (United States)

    de la Monte, Suzanne M


    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  8. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. (United States)

    Benoy, Veronick; Van Helleputte, Lawrence; Prior, Robert; d'Ydewalle, Constantin; Haeck, Wanda; Geens, Natasja; Scheveneels, Wendy; Schevenels, Begga; Cader, M Zameel; Talbot, Kevin; Kozikowski, Alan P; Vanden Berghe, Pieter; Van Damme, Philip; Robberecht, Wim; Van Den Bosch, Ludo


    Peripheral nerve axons require a well-organized axonal microtubule network for efficient transport to ensure the constant crosstalk between soma and synapse. Mutations in more than 80 different genes cause Charcot-Marie-Tooth disease, which is the most common inherited disorder affecting peripheral nerves. This genetic heterogeneity has hampered the development of therapeutics for Charcot-Marie-Tooth disease. The aim of this study was to explore whether histone deacetylase 6 (HDAC6) can serve as a therapeutic target focusing on the mutant glycyl-tRNA synthetase (GlyRS/GARS)-induced peripheral neuropathy. Peripheral nerves and dorsal root ganglia from the C201R mutant Gars mouse model showed reduced acetylated α-tubulin levels. In primary dorsal root ganglion neurons, mutant GlyRS affected neurite length and disrupted normal mitochondrial transport. We demonstrated that GlyRS co-immunoprecipitated with HDAC6 and that this interaction was blocked by tubastatin A, a selective inhibitor of the deacetylating function of HDAC6. Moreover, HDAC6 inhibition restored mitochondrial axonal transport in mutant GlyRS-expressing neurons. Systemic delivery of a specific HDAC6 inhibitor increased α-tubulin acetylation in peripheral nerves and partially restored nerve conduction and motor behaviour in mutant Gars mice. Our study demonstrates that α-tubulin deacetylation and disrupted axonal transport may represent a common pathogenic mechanism underlying Charcot-Marie-Tooth disease and it broadens the therapeutic potential of selective HDAC6 inhibition to other genetic forms of axonal Charcot-Marie-Tooth disease. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. New therapeutic targets in the management of urothelial carcinoma of the bladder (United States)

    Sverrisson, Einar F; Espiritu, Patrick N; Spiess, Philippe E


    Urothelial carcinoma of the bladder, despite the myriad of treatment approaches and our progressively increasing knowledge into its disease processes, remains one of the most clinically challenging problems in modern urological clinical practice. New therapies target biomolecular pathways and cellular mediators responsible for regulating cell growth and metabolism, both of which are frequently overexpressed in malignant urothelial cells, with the intent of inducing cell death by limiting cellular metabolism and growth, creating an immune response, or selectively delivering or activating a cytotoxic agent. These new and novel therapies may offer a potential for reduced toxicity and an encouraging hope for better treatment outcomes, particularly for a disease often refractory or not amenable to the current therapeutic approaches. PMID:24400235

  10. RORα, a Potential Tumor Suppressor and Therapeutic Target of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jun Du


    Full Text Available The function of the nuclear receptor (NR in breast cancer progression has been investigated for decades. The majority of the nuclear receptors have well characterized natural ligands, but a few of them are orphan receptors for which no ligand has been identified. RORα, one member of the retinoid orphan nuclear receptor (ROR subfamily of orphan receptors, regulates various cellular and pathological activities. RORα is commonly down-regulated and/or hypoactivated in breast cancer compared to normal mammary tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells, in vitro and in vivo. Activity of RORα can be categorized into the canonical and non-canonical nuclear receptor pathways, which in turn regulate various breast cancer cellular function, including cell proliferation, apoptosis and invasion. This information suggests that RORα is a potent tumor suppressor and a potential therapeutic target for breast cancer.

  11. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel

    DEFF Research Database (Denmark)

    Wee, Zhen Ning; Yatim, Siti Maryam J M; Kohlbauer, Vera K


    it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic...... and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance...... by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance....

  12. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. (United States)

    Ray, Balmiki; Lahiri, Debomoy K


    Alzheimer's disease (AD) is a neurodegenerative disorder of the elderly. Deposition of amyloid beta plaque and associated neuroinflammation are the major hallmarks of AD. Whereas reactive oxygen species (ROS) and activated microglial cells contribute to neuronal loss, nuclear factor kappaB and apolipoprotein E participate in inflammatory process of AD. Current FDA approved drugs provide only symptomatic relief in AD. For broad spectrum of activity, some natural products are also being tested. Turmeric is used as an anti-inflammatory medicine in various regions of Asia. Curcumin, which is a yellow colored polyphenol compound present in turmeric, showed anti-inflammatory properties. Herein, we discuss the neurobiological and neuroinflammatory pathways of AD, evaluate different molecular targets and potential therapeutic agents, including curcumin, for the treatment of AD.

  13. p53, SKP2 and DKK3 as MYCN target genes and their potential therapeutic significance

    Directory of Open Access Journals (Sweden)

    Lindi eChen


    Full Text Available Neuroblastoma is the most common extracranial solid tumour of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumour progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2 and DKK3 and strategies that may be employed to target them.

  14. Therapeutic potential of mGluR5 targeting in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Anil eKumar


    Full Text Available Decades of research dedicated towards Alzheimer's disease (AD has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.

  15. Potentials of Long Noncoding RNAs (LncRNAs in Sarcoma: From Biomarkers to Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Li Min


    Full Text Available Sarcoma includes some of the most heterogeneous tumors, which make the diagnosis, prognosis and treatment of these rare yet diverse neoplasms especially challenging. Long noncoding RNAs (lncRNAs are important regulators of cancer initiation and progression, which implies their potential as neoteric prognostic and diagnostic markers in cancer, including sarcoma. A relationship between lncRNAs and sarcoma pathogenesis and progression is emerging. Recent studies demonstrate that lncRNAs influence sarcoma cell proliferation, metastasis, and drug resistance. Additionally, lncRNA expression profiles are predictive of sarcoma prognosis. In this review, we summarize contemporary advances in the research of lncRNA biogenesis and functions in sarcoma. We also highlight the potential for lncRNAs to become innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma.

  16. Predictive Biomarkers in Colorectal Cancer: From the Single Therapeutic Target to a Plethora of Options

    Directory of Open Access Journals (Sweden)

    Daniela Rodrigues


    Full Text Available Colorectal cancer (CRC is one of the most frequent cancers and is a leading cause of cancer death worldwide. Treatments used for CRC may include some combination of surgery, radiation therapy, chemotherapy, and targeted therapy. The current standard drugs used in chemotherapy are 5-fluorouracil and leucovorin in combination with irinotecan and/or oxaliplatin. Most recently, biologic agents have been proven to have therapeutic benefits in metastatic CRC alone or in association with standard chemotherapy. However, patients present different treatment responses, in terms of efficacy and toxicity; therefore, it is important to identify biological markers that can predict the response to therapy and help select patients that would benefit from specific regimens. In this paper, authors review CRC genetic markers that could be useful in predicting the sensitivity/resistance to chemotherapy.

  17. Galectins in hematological malignancies – role, functions and potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Kamil Wdowiak


    Full Text Available Galectins are a family of lectins characterized by an affinity for β – galactosides through the carbohydrate recognition domain (CRD. The extracellular and intracellular presence of Galectins has been described. Their activity and functions are mainly attributed to cell type. The tumor microenviroment is a complex milieu connected with immunosupression, angiogenesis and hypoxic compartments. The studies of interactions between Glycans – Lectins are highly advanced and promising. We are not able to explain the pathogenesis of many diseases only by protein – protein interactions, that is why in these studies is a chance to find a new therapeutic targets. Galectins play a fundametal functions in tumor growth and progression, angiogenesis, adhesion, tumor immune – escape. They are also active in inflammation, fibrosis, organogenesis and immunological functions. The most known Galectin is Gal-3. Depending on the localization Gal-3 may exhibit either pro – apoptotic or anti – apoptotic activity. This publication presents role of Galectins in hematological malignancies and shows potencial prognostoic value and new therapeutic possibilities.

  18. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Wenbin Wan


    Full Text Available Neuropathic pain (NPP is intolerable, persistent, and specific type of long-term pain. It is considered to be a direct consequence of pathological changes affecting the somatosensory system and can be debilitating for affected patients. Despite recent progr